Sample records for background dengue viruses

  1. Virulence Markers of Dengue Viruses

    DTIC Science & Technology

    1990-02-20

    of dengue viruses . We initially evaluated onocye-infectivity as a marker the for virulence of dengue-2 virus by testing 72 dengue-2 viral isolates...infectivity can be used as a virulence marker for dengue viruses . For this purpose, virulence is defined as the intrinsic ability of the virus to...but not dengue-1 and -3 viruses Table 5. Comparison of infectivity of dengue-2 virus in K-562 28 monocytes and viral monocyte infectivity index derived

  2. Dengue Virus Exposures Among Deployed U.S. Military Personnel

    PubMed Central

    Hesse, Elisabeth M.; Martinez, Luis J.; Jarman, Richard G.; Lyons, Arthur G.; Eckels, Kenneth H.; De La Barrera, Rafael A.; Thomas, Stephen J.

    2017-01-01

    Dengue virus infections have adversely impacted U.S. military operations since the Spanish–American War. The erosion of mission capabilities and lost duty days are underestimated. Appreciating the incidence and prevalence of dengue infections in U.S. military personnel is important to inform disease prevention strategies. Banked pre- and post-deployment serum samples from 1,000 U.S. military personnel with a single deployment to a dengue-endemic region were tested using a screening microneutralization assay to detect anti-dengue-virus-neutralizing antibodies. A total of 76 (7.6%) post-deployment samples were positive and 15 of the pre-deployment samples were negative. These figures represent an infection incidence of 1.5% and total of 17.6 seroconversions per 10,000 deployment months. These data represent a deploying military population with a relatively high background rate of dengue seropositivity, a low level of infection during deployment compared with background infection rates in the local populations, and the potential for worsening clinical attack rates with increased frequency of deployment. Additional studies are required to more clearly elucidate the dengue infection and disease risk in U.S. military personnel. PMID:28193746

  3. Dengue Virus Exposures Among Deployed U.S. Military Personnel.

    PubMed

    Hesse, Elisabeth M; Martinez, Luis J; Jarman, Richard G; Lyons, Arthur G; Eckels, Kenneth H; De La Barrera, Rafael A; Thomas, Stephen J

    2017-05-01

    AbstractDengue virus infections have adversely impacted U.S. military operations since the Spanish-American War. The erosion of mission capabilities and lost duty days are underestimated. Appreciating the incidence and prevalence of dengue infections in U.S. military personnel is important to inform disease prevention strategies. Banked pre- and post-deployment serum samples from 1,000 U.S. military personnel with a single deployment to a dengue-endemic region were tested using a screening microneutralization assay to detect anti-dengue-virus-neutralizing antibodies. A total of 76 (7.6%) post-deployment samples were positive and 15 of the pre-deployment samples were negative. These figures represent an infection incidence of 1.5% and total of 17.6 seroconversions per 10,000 deployment months. These data represent a deploying military population with a relatively high background rate of dengue seropositivity, a low level of infection during deployment compared with background infection rates in the local populations, and the potential for worsening clinical attack rates with increased frequency of deployment. Additional studies are required to more clearly elucidate the dengue infection and disease risk in U.S. military personnel.

  4. Dengue Virus Type 3, Brazil, 2002

    PubMed Central

    Schatzmayr, Hermann Gonçalves; Bispo de Filippis, Ana Maria; Barreto dos Santos, Flávia; Venâncio da Cunha, Rivaldo; Coelho, Janice Oliveira; José de Souza, Luiz; Guimarães, Flávia Ramos; Machado de Araújo, Eliane Saraiva; De Simone, Thatiane Santos; Baran, Meri; Teixeira, Gualberto; Miagostovich, Marize Pereira

    2005-01-01

    During the summer of 2002, Rio de Janeiro had a large epidemic of dengue fever; 288,245 cases were reported. A subset of 1,831 dengue hemorrhagic fever cases occurred. In this study, performed in the first half of 2002, samples from 1,559 patients with suspected cases of dengue infection were analyzed. From this total, 1,497 were obtained from patients with nonfatal cases, and 62 were obtained from patients with fatal cases. By the use of different methods, 831 (53.3%) cases, including 40 fatal cases, were confirmed as dengue infection. When virus identification was successful, dengue virus type 3 (DENV-3) was obtained in 99% of cases. Neurologic involvement was shown in 1 patient with encephalitis, confirmed by the detection of DENV-3 RNA in the cerebrospinal fluid. This explosive epidemic of DENV-3 was the most severe dengue epidemic reported in Brazil since dengue viruses were introduced in 1986. PMID:16229765

  5. Antiviral activity of lanatoside C against dengue virus infection.

    PubMed

    Cheung, Yan Yi; Chen, Karen Caiyun; Chen, Huixin; Seng, Eng Khuan; Chu, Justin Jang Hann

    2014-11-01

    Dengue infection poses a serious threat globally due to its recent rapid spread and rise in incidence. Currently, there is no approved vaccine or effective antiviral drug for dengue virus infection. In response to the urgent need for the development of an effective antiviral for dengue virus, the US Drug Collection library was screened in this study to identify compounds with anti-dengue activities. Lanatoside C, an FDA approved cardiac glycoside was identified as a candidate anti-dengue compound. Our data revealed that lanatoside C has an IC50 of 0.19μM for dengue virus infection in HuH-7 cells. Dose-dependent reduction in dengue viral RNA and viral proteins synthesis were also observed upon treatment with increasing concentrations of lanatoside C. Time of addition study indicated that lanatoside C inhibits the early processes of the dengue virus replication cycle. Furthermore, lanatoside C can effectively inhibit all four serotypes of dengue virus, flavivirus Kunjin, alphavirus Chikungunya and Sindbis virus as well as the human enterovirus 71. These findings suggest that lanatoside C possesses broad spectrum antiviral activity against several groups of positive-sense RNA viruses. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1984-08-01

    ND-R171 381 HUR IMMUNE RESPONSES TO DENGUE VIRUSES (U) 1/1 MASSRCHUSETTS UNIY M9DICAL SCHOOL WORCESTER F R~ ENNIS RUG 94 DRMt17-2-C-2233 UNCLASSIFIED...Responses to Dengue Viruses Annual Report 0(August 1983-July 1984) Francis A. Ennis, M.D. August 1984 Supported by U.S. Army Medical Research and...3M1- NO. SON No. Frederick, Maryland 21701-5012 61102A 61102BSI0 AA 104 11. TITLE Oxkf* Samqy Oao" Human Immune Responses to Dengue Viruses 12. PERSON

  7. Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus.

    PubMed

    Nascimento, Eduardo J M; George, James K; Velasco, Melissa; Bonaparte, Matthew I; Zheng, Lingyi; DiazGranados, Carlos A; Marques, Ernesto T A; Huleatt, James W

    2018-07-01

    Dengue virus infection elicits immune responses to multiple viral antigens including antibodies to dengue non-structural protein 1 (NS1) which are rapidly induced and detected within days of infection. The recombinant, live, attenuated, tetravalent dengue vaccine (CYD-TDV; Sanofi Pasteur) uses the yellow fever vaccine virus as a back-bone but expresses dengue virus pre-membrane and envelop proteins. Since CYD-TDV does not express dengue NS1, we evaluated the utility of dengue NS1-specific IgG antibodies as biomarkers of dengue exposure in CYD-TDV recipients and controls. We optimized and evaluated a quantitative anti-dengue NS1 IgG enzyme-linked immunosorbent assay (ELISA). Parameters assessed included: accuracy, dilutability/linearity, precision, limit of quantitation and specificity. The assay specificity was further evaluated using Japanese Encephalitis virus, West Nile virus, Yellow Fever virus or Zika virus positive sera samples collected following confirmed infection or vaccination. Receiver-operating-characteristics (ROC) curves as well as sensitivity and specificity for discriminating previous dengue exposure were assessed using 1250 reference samples. Overall, the anti-dengue NS1 IgG ELISA was able to discriminate previous dengue exposure from non-exposure before vaccination with CYD-TDV (ROC area under the curve > 0.9). Assessment of paired samples from 2511 vaccinated participants showed high overall agreement (93%) between pre-vaccination and post-vaccination dengue serostatus classification based on the anti-dengue NS1 IgG ELISA. However, misclassification of dengue serostatus was observed after vaccination likely due to a combination of asymptomatic dengue infections, assay variability and a modest effect of CYD-TDV on the anti-dengue NS1 IgG ELISA readout. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Dengue Virus Genome Uncoating Requires Ubiquitination.

    PubMed

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade

  9. Towards antiviral therapies for treating dengue virus infections.

    PubMed

    Kaptein, Suzanne Jf; Neyts, Johan

    2016-10-01

    Dengue virus is an emerging human pathogen that poses a huge public health burden by infecting annually about 390 million individuals of which a quarter report with clinical manifestations. Although progress has been made in understanding dengue pathogenesis, a licensed vaccine or antiviral therapy against this virus is still lacking. Treatment of patients is confined to symptomatic alleviation and supportive care. The development of dengue therapeutics thus remains of utmost importance. This review focuses on the few molecules that were evaluated in dengue virus-infected patients: balapiravir, chloroquine, lovastatin, prednisolone and celgosivir. The lessons learned from these clinical trials can be very helpful for the design of future trials for the next generation of dengue virus inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Peptides as Therapeutic Agents for Dengue Virus

    PubMed Central

    Chew, Miaw-Fang; Poh, Keat-Seong; Poh, Chit-Laa

    2017-01-01

    Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients. PMID:29200948

  11. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1982-07-01

    r AD Af29 019 PA I4OGENESIS OF DENGUE VACCINE VIRUSES IN MOSQITOES U) YALE UNIV NEW YIAVEN CONN SCHOOL OF MEDICINE B JBEAT ET AL 01 JUL 82 DAMD1779...1963-A ’UNCLASS IFIET) .AD.- PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES FINAL REPORT Barry J. Beaty, Ph.D. Thomas H. G. Aitken, Ph.D. July 1...NUMBER 4. TITLE (mid Subdl.) S. KVPE OF REPORT & PERIOD COVERED PATHOGENESIS OF DENGUE VACCINE VIRUSES Final Scientific Report IN MOSQUITOES 6/1/79 to 6

  12. Activity of andrographolide against dengue virus.

    PubMed

    Panraksa, Patcharee; Ramphan, Suwipa; Khongwichit, Sarawut; Smith, Duncan R

    2017-03-01

    Dengue is the most prevalent arthropod-transmitted viral illness of humans, with an estimated 100 million symptomatic infections occurring each year and more than 2.5 billion people living at risk of infection. There are no approved antiviral agents against dengue virus, and there is only limited introduction of a dengue vaccine in some countries. Andrographolide is derived from Andrographis paniculata, a medicinal plant traditionally used to treat a number of conditions including infections. The antiviral activity of andrographolide against dengue virus (DENV) serotype 2 was evaluated in two cell lines (HepG2 and HeLa) while the activity against DENV 4 was evaluated in one cell line (HepG2). Results showed that andrographolide had significant anti-DENV activity in both cell lines, reducing both the levels of cellular infection and virus output, with 50% effective concentrations (EC 50 ) for DENV 2 of 21.304 μM and 22.739 μM for HepG2 and HeLa respectively. Time of addition studies showed that the activity of andrographolide was confined to a post-infection stage. These results suggest that andrographolide has the potential for further development as an anti-viral agent for dengue virus infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Disruption of predicted dengue virus type 3 major outbreak cycle coincided with switching of the dominant circulating virus genotype.

    PubMed

    Tan, Kim-Kee; Zulkifle, Nurul-Izzani; Abd-Jamil, Juraina; Sulaiman, Syuhaida; Yaacob, Che Norainon; Azizan, Noor Syahida; Che Mat Seri, Nurul Asma Anati; Samsudin, Nur Izyan; Mahfodz, Nur Hidayana; AbuBakar, Sazaly

    2017-10-01

    Dengue is hyperendemic in most of Southeast Asia. In this region, all four dengue virus serotypes are persistently present. Major dengue outbreak cycle occurs in a cyclical pattern involving the different dengue virus serotypes. In Malaysia, since the 1980s, the major outbreak cycles have involved dengue virus type 3 (DENV3), dengue virus type 1 (DENV1) and dengue virus type 2 (DENV2), occurring in that order (DENV3/DENV1/DENV2). Only limited information on the DENV3 cycles, however, have been described. In the current study, we examined the major outbreak cycle involving DENV3 using data from 1985 to 2016. We examined the genetic diversity of DENV3 isolates obtained during the period when DENV3 was the dominant serotype and during the inter-dominant transmission period. Results obtained suggest that the typical DENV3/DENV1/DENV2 cyclical outbreak cycle in Malaysia has recently been disrupted. The last recorded major outbreak cycle involving DENV3 occurred in 2002, and the expected major outbreak cycle involving DENV3 in 2006-2012 did not materialize. DENV genome analyses revealed that DENV3 genotype II (DENV3/II) was the predominant DENV3 genotype (67%-100%) recovered between 1987 and 2002. DENV3 genotype I (DENV3/I) emerged in 2002 followed by the introduction of DENV3 genotype III (DENV3/III) in 2008. These newly emerged DENV3 genotypes replaced DENV3/II, but there was no major upsurge of DENV3 cases that accompanied the emergence of these viruses. DENV3 remained in the background of DENV1 and DENV2 until now. Virus genome sequence analysis suggested that intrinsic differences within the different dengue virus genotypes could have influenced the transmission efficiency of DENV3. Further studies and continuous monitoring of the virus are needed for better understanding of the DENV transmission dynamics in hyperendemic regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparison of PanBio Dengue Duo Enzyme-Linked Immunosorbent Assay (ELISA) and MRL Dengue Fever Virus Immunoglobulin M Capture ELISA for Diagnosis of Dengue Virus Infections in Southeast Asia

    PubMed Central

    Cuzzubbo, Andrea J.; Vaughn, David W.; Nisalak, Ananda; Solomon, Tom; Kalayanarooj, Siripen; Aaskov, John; Dung, Nguyen Minh; Devine, Peter L.

    1999-01-01

    The performances of the MRL dengue fever virus immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (ELISA) and the PanBio Dengue Duo IgM capture and IgG capture ELISA were compared. Eighty sera from patients with dengue virus infections, 24 sera from patients with Japanese encephalitis (JE), and 78 sera from patients with nonflavivirus infections, such as malaria, typhoid, leptospirosis, and scrub typhus, were used. The MRL test showed superior sensitivity for dengue virus infections (94 versus 89%), while the PanBio test showed superior specificity for JE (79 versus 25%) and other infections (100 versus 91%). The PanBio ELISA showed better overall performance, as assessed by the sum of sensitivity and specificity (F value). When dengue virus and nonflavivirus infections were compared, F values of 189 and 185 were obtained for the PanBio and MRL tests, respectively, while when dengue virus infections and JE were compared, F values of 168 and 119 were obtained. The results obtained with individual sera in the PanBio and MRL IgM ELISAs showed good correlation, but this analysis revealed that the cutoff value of the MRL test was set well below that of the PanBio test. Comparing the sensitivity and specificity of the tests at different cutoff values (receiver-operator analysis) revealed that the MRL and PanBio IgM ELISAs performed similarly in distinguishing dengue virus from nonflavivirus infections, although the PanBio IgM ELISA showed significantly better distinction between dengue virus infections and JE. The implications of these findings for the laboratory diagnosis of dengue are discussed. PMID:10473522

  15. Treatment Effectiveness of Amantadine Against Dengue Virus Infection.

    PubMed

    Lin, Chieh-Cheng; Chen, Wen-Ching

    2016-12-05

    BACKGROUND About 400 million cases of dengue, a mosquito-borne disease, are reported annually, but no drug is yet available for treatment. In 1988, at Feng Lin Clinic, Taiwan, we encountered about 10,000 cases and tested various drugs before confirming an antiviral effect of amantadine against dengue virus in vitro. After we administered amantadine to patients for 1-2 days, most achieved full remission. None experienced potentially life-threatening dengue hemorrhagic fever or dengue shock syndrome. Herein, we present 34 cases from recent clinical experience that show amantadine's unusual effect against dengue virus infection. CASE REPORT We divided 34 patients with symptoms of dengue fever, confirmed by a screening test, into 3 groups: 6 Category 1 patients received amantadine at onset, 21 Category 2 patients received amantadine within 2-6 days, and 7 Contrast group patients received no amantadine because they visited other clinics or were admitted to a large hospital. When Category 1 patients were treated with amantadine 100 mg 3 times per day, all symptoms dramatically subsided within 1-2 days. In Category 2 patients, most symptoms diminished within 1-2 days after starting the same regimen. In the Contrast group, all symptoms persisted 7 days after onset. White blood cell and platelet counts in Category 1 and 2 patients recovered to normal range, but remained below low normal in the Contrast group. CONCLUSIONS Amantadine is effective and should be given as soon as possible to stop the disease course if dengue fever is confirmed through screening or clinical signs and symptoms. A well-designed larger sample study is warranted to test this effectiveness.

  16. Tetravalent Dengue Vaccine Reduces Symptomatic and Asymptomatic Dengue Virus Infections in Healthy Children and Adolescents Aged 2–16 Years in Asia and Latin America

    PubMed Central

    Olivera-Botello, Gustavo; Coudeville, Laurent; Fanouillere, Karen; Guy, Bruno; Chambonneau, Laurent; Noriega, Fernando; Jackson, Nicholas

    2016-01-01

    Background. Asymptomatic dengue virus–infected individuals are thought to play a major role in dengue virus transmission. The efficacy of the recently approved quadrivalent CYD-TDV dengue vaccine against asymptomatic dengue virus infection has not been previously assessed. Methods. We pooled data for 3 736 individuals who received either CYD-TDV or placebo at 0, 6, and 12 months in the immunogenicity subsets of 2 phase 3 trials (clinical trials registration NCT01373281 and NCT01374516). We defined a seroconversion algorithm (ie, a ≥4-fold increase in the neutralizing antibody titer and a titer of ≥40 from month 13 to month 25) as a surrogate marker of asymptomatic infection in the vaccine and placebo groups. Results. The algorithm detected seroconversion in 94% of individuals with a diagnosis of virologically confirmed dengue between months 13 and 25, validating its discriminatory power. Among those without virologically confirmed dengue (n = 3 669), 219 of 2 485 in the vaccine group and 157 of 1 184 in the placebo group seroconverted between months 13 and 25, giving a vaccine efficacy of 33.5% (95% confidence interval [CI], 17.9%–46.1%) against asymptomatic infection. Vaccine efficacy was marginally higher in subjects aged 9–16 years (38.6%; 95% CI, 22.1%–51.5%). The annual incidence of asymptomatic dengue virus infection in this age group was 14.8%, which was 4.4 times higher than the incidence for symptomatic dengue (3.4%). Conclusions. The observed vaccine efficacy against asymptomatic dengue virus infections is expected to translate into reduced dengue virus transmission if sufficient individuals are vaccinated in dengue-endemic areas. PMID:27418050

  17. [Dengue virus serotype 1 (DENV-1) from Colombia: its contribution to dengue occurrence in Santander].

    PubMed

    Ocazionez-Jiménez, Raquel E; Ortiz-Báez, Ayda Susana; Gómez-Rangel, Sergio Yebrail; Miranda-Esquivel, Daniel R

    2013-09-01

    Between 1998 and 2008 all dengue virus serotypes circulated in the Departamento de Santander, an endemic region in northeastern Colombia. No information is available as to the role of serotype 1 (DENV-1) with respect to epidemiology of dengue. To analyze the relationship between changes in DENV-1 predominance with respect to genetic diversity, prevalence of others serotypes and occurrence of severe dengue. Virus genetic diversity was studied by phylogenetic analysis comparing E gene sequences from 12 viral strains. Data about serotypes predominance obtained in previous studies and official data about dengue incidence were used for analysis. Selected viruses grouped into genotype V together DENV-1 from Latin America countries, and segregation in four lineages was evidenced. Changes in virus predominance coincided with replacement of lineage, increase in prevalence of DENV-2 and DENV-3 and increase of severe dengue. Genetic divergence could have contributed to changes in DENV-1 predominance. The relationship of the virus with DENV-2 and DENV-3 could create scenarios that promote occurrence of severe cases. More studies are required to ascertain the precise role of serotypes in the epidemiology of dengue.

  18. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1984-01-01

    type 2 (Price, 1973), and attenuated Japanese encephalitis vaccine virus (Chen and Beaty, 1982). Sabin (1948) showed that attenuated dengue virus...M194 992 PATHOGENESIS OF DENGUJE VACCINE VIRUSES IN NOSSUITOES vi1 (u) COLORADO STATE UNIV FORT COLLINS DEPT OF MICROBIOLOGY AND ENVIRONMENTAL...IW AV wWW W N A A~~ Nq .. mcFILE COPY 0)0 AD PATHOGENESIS OF DENGUE VACCINE VIRUSES IN MOSQUITOES Annual Report Barry J. Beaty, Ph.D. D T IC ELECTE

  19. Broad neutralization of wild-type dengue virus isolates following immunization in monkeys with a tetravalent dengue vaccine based on chimeric yellow fever 17D/dengue viruses.

    PubMed

    Barban, Veronique; Munoz-Jordan, Jorge L; Santiago, Gilberto A; Mantel, Nathalie; Girerd, Yves; Gulia, Sandrine; Claude, Jean-Baptiste; Lang, Jean

    2012-08-01

    The objective of the study was to evaluate if the antibodies elicited after immunization with a tetravalent dengue vaccine, based on chimeric yellow fever 17D/dengue viruses, can neutralize a large range of dengue viruses (DENV). A panel of 82 DENVs was developed from viruses collected primarily during the last decade in 30 countries and included the four serotypes and the majority of existing genotypes. Viruses were isolated and minimally amplified before evaluation against a tetravalent polyclonal serum generated during vaccine preclinical evaluation in monkey, a model in which protection efficacy of this vaccine has been previously demonstrated (Guirakhoo et al., 2004). Neutralization was observed across all the DENV serotypes, genotypes, geographical origins and isolation years. These data indicate that antibodies elicited after immunization with this dengue vaccine candidate should widely protect against infection with contemporary DENV lineages circulating in endemic countries. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Human Immune Responses to Dengue Viruses.

    DTIC Science & Technology

    1986-07-01

    0-1 NO- 3K1- INO. "඄o. ________________%______ 61102A 1611025810 AA r104 (U) xvne Im e Seepuses to Donueo viruses If Irms Al. W~al 71W c 4w O PIT(w...HUMAN IMMUNE RESPONSES TO DENGUE VIRUSES . .. .............. Accesion For NTIS CRAM DTIC TAB 0 ANNUAL REPORT Unannounced 0 Justification FRANCIS A...purp6se of this study is to define the Immune responses of humans to dengue viruses . These studies should provide data which will be helpful in

  1. Dengue virus type 3, South Pacific Islands, 2013.

    PubMed

    Cao-Lormeau, Van-Mai; Roche, Claudine; Musso, Didier; Mallet, Henri-Pierre; Dalipanda, Tenneth; Dofai, Alfred; Nogareda, Francisco; Nilles, Eric J; Aaskov, John

    2014-06-01

    After an 18-year absence, dengue virus serotype 3 reemerged in the South Pacific Islands in 2013. Outbreaks in western (Solomon Islands) and eastern (French Polynesia) regions were caused by different genotypes. This finding suggested that immunity against dengue virus serotype, rather than virus genotype, was the principal determinant of reemergence.

  2. Dengue Virus 1 Outbreak in Buenos Aires, Argentina, 2016.

    PubMed

    Tittarelli, Estefanía; Lusso, Silvina B; Goya, Stephanie; Rojo, Gabriel L; Natale, Mónica I; Viegas, Mariana; Mistchenko, Alicia S; Valinotto, Laura E

    2017-10-01

    The largest outbreak of dengue in Buenos Aires, Argentina, occurred during 2016. Phylogenetic, phylodynamic, and phylogeographic analyses of 82 samples from dengue patients revealed co-circulation of 2 genotype V dengue virus lineages, suggesting that this virus has become endemic to the Buenos Aires metropolitan area.

  3. Dengue Virus Genome Uncoating Requires Ubiquitination

    PubMed Central

    Byk, Laura A.; Iglesias, Néstor G.; De Maio, Federico A.; Gebhard, Leopoldo G.; Rossi, Mario

    2016-01-01

    ABSTRACT The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. PMID:27353759

  4. Phylogenetic reconstruction of dengue virus type 2 in Colombia

    PubMed Central

    2012-01-01

    Background Dengue fever is perhaps the most important viral re-emergent disease especially in tropical and sub-tropical countries, affecting about 50 million people around the world yearly. In Colombia, dengue virus was first detected in 1971 and still remains as a major public health issue. Although four viral serotypes have been recurrently identified, dengue virus type 2 (DENV-2) has been involved in the most important outbreaks during the last 20 years, including 2010 when the fatality rate highly increased. As there are no major studies reviewing virus origin and genotype distribution in this country, the present study attempts to reconstruct the phylogenetic history of DENV-2 using a sequence analysis from a 224 bp PCR-amplified product corresponding to the carboxyl terminus of the envelope (E) gene from 48 Colombian isolates. Results As expected, the oldest isolates belonged to the American genotype (subtype V), but the strains collected since 1990 represent the American/Asian genotype (subtype IIIb) as previously reported in different American countries. Interestingly, the introduction of this genotype coincides with the first report of dengue hemorrhagic fever in Colombia at the end of 1989 and the increase of cases during the next years. Conclusion After replacement of the American genotype, several lineages of American/Asian subtype have rapidly spread all over the country evolving in new clades. Nevertheless, the direct association of these new variants in the raise of lethality rate observed during the last outbreak has to be demonstrated. PMID:22405440

  5. The Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of Indonesian Adults in Western Java

    PubMed Central

    Kosasih, Herman; Alisjahbana, Bachti; Nurhayati; de Mast, Quirijn; Rudiman, Irani F.; Widjaja, Susana; Antonjaya, Ungke; Novriani, Harli; Susanto, Nugroho H.; Jusuf, Hadi; van der Ven, Andre; Beckett, Charmagne G.; Blair, Patrick J.; Burgess, Timothy H.; Williams, Maya; Porter, Kevin R.

    2016-01-01

    Background Dengue has emerged as one of the most important infectious diseases in the last five decades. Evidence indicates the expansion of dengue virus endemic areas and consequently the exponential increase of dengue virus infections across the subtropics. The clinical manifestations of dengue virus infection include sudden fever, rash, headache, myalgia and in more serious cases, spontaneous bleeding. These manifestations occur in children as well as in adults. Defining the epidemiology of dengue in a given area is critical to understanding the disease and devising effective public health strategies. Methodology/Principal Findings Here, we report the results from a prospective cohort study of 4380 adults in West Java, Indonesia, from 2000–2004 and 2006–2009. A total of 2167 febrile episodes were documented and dengue virus infections were confirmed by RT-PCR or serology in 268 cases (12.4%). The proportion ranged from 7.6 to 41.8% each year. The overall incidence rate of symptomatic dengue virus infections was 17.3 cases/1,000 person years and between September 2006 and April 2008 asymptomatic infections were 2.6 times more frequent than symptomatic infections. According to the 1997 WHO classification guidelines, there were 210 dengue fever cases, 53 dengue hemorrhagic fever cases (including one dengue shock syndrome case) and five unclassified cases. Evidence for sequential dengue virus infections was seen in six subjects. All four dengue virus serotypes circulated most years. Inapparent dengue virus infections were predominantly associated with DENV-4 infections. Conclusions/Significance Dengue virus was responsible for a significant percentage of febrile illnesses in an adult population in West Java, Indonesia, and this percentage varied from year to year. The observed incidence rate during the study period was 43 times higher than the reported national or provincial rates during the same time period. A wide range of clinical severity was observed with

  6. Nine year trends of dengue virus infection in Mumbai, Western India.

    PubMed

    Shastri, Jayanthi; Williamson, Manita; Vaidya, Nilima; Agrawal, Sachee; Shrivastav, Om

    2017-01-01

    Dengue virus (DENV) causes a wide range of diseases in humans, from acute febrile illness Dengue fever (DF) to life-threatening Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Factors believed to be responsible for spread of Dengue virus infection include explosive population growth, unplanned urban overpopulation with inadequate public health systems, poor standing water and vector control, climate changes and increased international recreational, business, military travel to endemic areas. All of these factors must be addressed to control the spread of Dengue and other mosquito-borne infections. The detection of Dengue virus RNA by reverse transcriptase PCR (RT-PCR) in human serum or plasma samples is highly indicative of acute Dengue fever. Moreover, the method is able to identify the Dengue virus serotype by demonstrating defined sequence homologies in the viral genomic RNA. During the nine year period of this study analysis, 6767 strongly suspected cases were tested by RT-PCR. 1685 (24.9%) were Dengue PCR positive and confirmed as Dengue cases. Observations on the seasonality were based on the nine year's data as the intensity of sampling was at its maximum during monsoon season. Dengue typing was done on 100 positive samples after storage of Dengue RNA at - 80°C. Dengue serotypes were detected in 69 samples of which Dengue 2 was most predominant. 576 samples were processed for NS1 antigen and PCR simultaneously. 19/576 were positive (3.3 %) for NS1 as well as by PCR. 23/576 samples were negative for NS1 antigen, but were positive by RT-PCR. The remaining 534 samples which were negative for NS1 antigen were also negative by Dengue RT-PCR. In this study we sought to standardize rapid, sensitive, and specific fluorogenic probe-based RT-PCR assay to screen and serotype a representative range of Dengue viruses that are found in and around Mumbai. Qualitative Dengue virus TaqMan assays could have tremendous utility for the epidemiological

  7. Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    PubMed Central

    Doolittle, Janet M.; Gomez, Shawn M.

    2011-01-01

    Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811

  8. Dengue Virus 3 Genotype 1 Associated with Dengue Fever and Dengue Hemorrhagic Fever, Brazil

    PubMed Central

    Figueiredo, Leandra Barcelos; Cecílio, Alzira Batista; Ferreira, Gustavo Portela; Drumond, Betânia Paiva; Germano de Oliveira, Jaquelline; Bonjardim, Cláudio Antônio; Ferreira, Paulo César Peregrino

    2008-01-01

    Dengue serotype 3 viruses were isolated from patients in Brazil from 2002 through 2004. On the basis of phylogenetic analyses, these isolates were assigned genotype 1. This genotype had never been reported in South America before. Its appearance indicates a major risk factor for dengue epidemics and severe disease. PMID:18258129

  9. Dengue Hemorrhagic Fever Virus in Saudi Arabia: A Review.

    PubMed

    Al-Tawfiq, Jaffar A; Memish, Ziad A

    2018-02-01

    Dengue fever is a global disease with a spectrum of clinical manifestation ranging from mild febrile disease to a severe disease in the form of dengue hemorrhagic fever and dengue shock syndrome. Dengue virus is one viral hemorrhagic fever that exists in the Kingdom of Saudi Arabia in addition to Alkhurma (Alkhurma) Hemorrhagic Fever, Chikungunya virus, Crimean-Congo Hemorrhagic Fever, and Rift Valley Fever. The disease is limited to the Western and South-western regions of Saudi Arabia, where Aedes aegypti exists. The majority of the cases in Saudi Arabia had mild disease and is related to serotypes 1-3 but not 4. The prospect for Dengue virus control relies on vector control, health education, and possibly vaccine use. Despite extensive collaborative efforts between multiple governmental sectors, including Ministry of Health, Ministry of Municipalities and Rural Affairs, and Ministry of Water, dengue remains a major public health concern in the regions affected.

  10. Dengue death with evidence of hemophagocytic syndrome and dengue virus infection in the bone marrow.

    PubMed

    Ab-Rahman, Hasliana Azrah; Wong, Pooi-Fong; Rahim, Hafiz; Abd-Jamil, Juraina; Tan, Kim-Kee; Sulaiman, Syuhaida; Lum, Chai-See; Syed-Omar, Syarifah-Faridah; AbuBakar, Sazaly

    2015-01-01

    HPS is a potentially life-threatening histiocytic disorder that has been described in various viral infections including dengue. Its involvement in severe and fatal dengue is probably more common but is presently under recognized. A 38-year-old female was admitted after 5 days of fever. She was deeply jaundiced, leukopenic and thrombocytopenic. Marked elevation of transaminases, hyperbilirubinemia and hypoalbuminemia were observed. She had deranged INR values and prolonged aPTT accompanied with hypofibrinogenemia. She also had splenomegaly. She was positive for dengue IgM. Five days later she became polyuric and CT brain image showed gross generalized cerebral edema. Her conditions deteriorated by day 9, became confused with GCS of 9/15. Her BMAT showed minimal histiocytes. Her serum ferritin level peaked at 13,670.00 µg/mL and her sCD163 and sCD25 values were markedly elevated at 4750.00 ng/mL and 4191.00 pg/mL, respectively. She succumbed to the disease on day 10 and examination of her tissues showed the presence of dengue virus genome in the bone marrow. It is described here, a case of fatal dengue with clinical features of HPS. Though BMAT results did not show the presence of macrophage hemophagocytosis, other laboratory features were consistent with HPS especially marked elevation of ferritin, sCD163 and sCD25. Detection of dengue virus in the patient's bone marrow, fifteen days after the onset of fever was also consistent with the suggestion that the HPS is associated with dengue virus infection. The findings highlight HPS as a possible complication leading to severe dengue and revealed persistent dengue virus infection of the bone marrow. Detection of HPS markers; ferritin, sCD163 and sCD25, therefore, should be considered for early recognition of HPS-associated dengue.

  11. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    PubMed Central

    2014-01-01

    Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we

  12. Isolation of Ancestral Sylvatic Dengue Virus Type 1, Malaysia

    PubMed Central

    Teoh, Boon-Teong; Sam, Sing-Sin; Abd-Jamil, Juraina

    2010-01-01

    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle. PMID:21029545

  13. Use of Urea Wash ELISA to Distinguish Zika and Dengue Virus Infections.

    PubMed

    Tsai, Wen-Yang; Youn, Han Ha; Tyson, Jasmine; Brites, Carlos; Tsai, Jih-Jin; Pedroso, Celia; Drexler, Jan Felix; Balmaseda, Angel; Harris, Eva; Wang, Wei-Kung

    2018-07-01

    Serologic testing remains crucial for Zika virus diagnosis. We found that urea wash in a Zika virus nonstructural protein 1 IgG ELISA distinguishes secondary dengue virus infection from Zika virus infection with previous dengue (sensitivity 87.5%, specificity 93.8%). This test will aid serodiagnosis, serosurveillance, and monitoring of Zika complications in dengue-endemic regions.

  14. First isolation of dengue virus from the 2010 epidemic in Nepal.

    PubMed

    Pandey, Basu D; Nabeshima, Takeshi; Pandey, Kishor; Rajendra, Saroj P; Shah, Yogendra; Adhikari, Bal R; Gupta, Govinda; Gautam, Ishan; Tun, Mya M N; Uchida, Reo; Shrestha, Mahendra; Kurane, Ichiro; Morita, Kouichi

    2013-09-01

    Dengue is an emerging disease in Nepal and was first observed as an outbreak in nine lowland districts in 2006. In 2010, however, a large epidemic of dengue occurred with 4,529 suspected and 917 serologically-confirmed cases and five deaths reported in government hospitals in Nepal. The collection of demographic information was performed along with an entomological survey and clinical evaluation of the patients. A total of 280 serum samples were collected from suspected dengue patients. These samples were subjected to routine laboratory investigations and IgM-capture ELISA for dengue serological identification, and 160 acute serum samples were used for virus isolation, RT-PCR, sequencing and phylogenetic analysis. The results showed that affected patients were predominately adults, and that 10% of the cases were classified as dengue haemorrhagic fever/ dengue shock syndrome. The genetic characterization of dengue viruses isolated from patients in four major outbreak areas of Nepal suggests that the DENV-1 strain was responsible for the 2010 epidemic. Entomological studies identified Aedes aegypti in all epidemic areas. All viruses belonged to a monophyletic single clade which is phylogenetically close to Indian viruses. The dengue epidemic started in the lowlands and expanded to the highland areas. To our knowledge, this is the first dengue isolation and genetic characterization reported from Nepal.

  15. Dengue virus type 1 clade replacement in recurring homotypic outbreaks

    PubMed Central

    2013-01-01

    Background Recurring dengue outbreaks occur in cyclical pattern in most endemic countries. The recurrences of dengue virus (DENV) infection predispose the population to increased risk of contracting the severe forms of dengue. Understanding the DENV evolutionary mechanism underlying the recurring dengue outbreaks has important implications for epidemic prediction and disease control. Results We used a set of viral envelope (E) gene to reconstruct the phylogeny of DENV-1 isolated between the periods of 1987–2011 in Malaysia. Phylogenetic analysis of DENV-1 E gene revealed that genotype I virus clade replacements were associated with the cyclical pattern of major DENV-1 outbreaks in Malaysia. A total of 9 non-conservative amino acid substitutions in the DENV-1 E gene consensus were identified; 4 in domain I, 3 in domain II and 2 in domain III. Selection pressure analyses did not reveal any positively selected codon site within the full length E gene sequences (1485 nt, 495 codons). A total of 183 (mean dN/dS = 0.0413) negatively selected sites were found within the Malaysian isolates; neither positive nor negative selection was noted for the remaining 312 codons. All the viruses were cross-neutralized by the respective patient sera suggesting no strong support for immunological advantage of any of the amino acid substitutions. Conclusion DENV-1 clade replacement is associated with recurrences of major DENV-1 outbreaks in Malaysia. Our findings are consistent with those of other studies that the DENV-1 clade replacement is a stochastic event independent of positive selection. PMID:24073945

  16. Dengue viruses – an overview

    PubMed Central

    Bäck, Anne Tuiskunen; Lundkvist, Åke

    2013-01-01

    Dengue viruses (DENVs) cause the most common arthropod-borne viral disease in man with 50–100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF) is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence. PMID:24003364

  17. Antiviral activity of four types of bioflavonoid against dengue virus type-2

    PubMed Central

    2011-01-01

    Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound. Results The half maximal inhibitory concentration (IC50) of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA) were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1) reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other bioflavonoids

  18. N-Desmethylclozapine, Fluoxetine, and Salmeterol Inhibit Postentry Stages of the Dengue Virus Life Cycle.

    PubMed

    Medigeshi, Guruprasad R; Kumar, Rinki; Dhamija, Ekta; Agrawal, Tanvi; Kar, Meenakshi

    2016-11-01

    Around 10,000 people die each year due to severe dengue disease, and two-thirds of the world population lives in a region where dengue disease is endemic. There has been remarkable progress in dengue virus vaccine development; however, there are no licensed antivirals for dengue disease, and none appear to be in clinical trials. We took the approach of repositioning approved drugs for anti-dengue virus activity by screening a library of pharmacologically active compounds. We identified N-desmethylclozapine, fluoxetine hydrochloride, and salmeterol xinafoate as dengue virus inhibitors based on reductions in the numbers of infected cells and viral titers. Dengue virus RNA levels were diminished in inhibitor-treated cells, and this effect was specific to dengue virus, as other flaviviruses, such as Japanese encephalitis virus and West Nile virus, or other RNA viruses, such as respiratory syncytial virus and rotavirus, were not affected by these inhibitors. All three inhibitors specifically inhibited dengue virus replication with 50% inhibitory concentrations (IC 50 s) in the high-nanomolar range. Estimation of negative-strand RNA intermediates and time-of-addition experiments indicated that inhibition was occurring at a postentry stage, most probably at the initiation of viral RNA replication. Finally, we show that inhibition is most likely due to the modulation of the endolysosomal pathway and induction of autophagy. Copyright © 2016 Medigeshi et al.

  19. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perera, Rushika M.; Riley, Catherine; Isaac, Georgis

    Dengue virus causes {approx}50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complexmore » membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.« less

  20. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    PubMed Central

    Perera, Rushika; Moore, Ronald J.; Weitz, Karl W.; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Adamec, Jiri; Kuhn, Richard J.

    2012-01-01

    Dengue virus causes ∼50–100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture. PMID:22457619

  1. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    PubMed

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  2. Dengue Virus Activates Polyreactive, Natural IgG B Cells after Primary and Secondary Infection

    PubMed Central

    Toh, Ying Xiu; Flamand, Marie; Devi, Shamala; Koh, Mickey B.; Hibberd, Martin L.; Ooi, Eng Eong; Low, Jenny G.; Leo, Yee Sin; Gu, Feng; Fink, Katja

    2011-01-01

    Background Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection. Methodology/Principal Findings We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4–7 days after fever onset was more than 50% even after primary infection. Conclusions/Significance Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and “innate specificities” seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development. PMID:22216280

  3. New Genotype of Dengue Type 3 Virus Circulating in Brazil and Colombia Showed a Close Relationship to Old Asian Viruses

    PubMed Central

    Aquino, Victor Hugo; Amarilla, Alberto Anastacio; Alfonso, Helda Liz; Batista, Weber Cheli; Figueiredo, Luiz Tadeu Moraes

    2009-01-01

    Dengue type 3 genotype V viruses have been recently detected in Brazil and Colombia. In this study, we described another Brazilian isolate belonging to this genotype. Phylogenetic analysis including dengue type 3 viruses isolated worldwide showed that Brazilian and Colombian viruses were closely related to viruses isolated in Asia more than two decades ago. The characteristic evolutionary pattern of dengue type 3 virus cannot explain the close similarity of new circulating viruses with old viruses. Further studies are needed to confirm the origin of the new dengue type III genotype circulating in Brazil and Colombia. PMID:19823677

  4. 78 FR 16505 - Prospective Grant of Exclusive License: Chimeric West Nile/Dengue Viruses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Grant of Exclusive License: Chimeric West Nile/Dengue Viruses AGENCY: Centers for Disease Control and... giving an exclusive license, in the field of use of in vitro diagnostics for dengue virus infection, to.... Provisional Application 61/049,342, filed 4/30/2008, entitled ``Engineered, Chimeric West Nile/Dengue Viruses...

  5. Co-circulation of Dengue and Chikungunya Viruses, Al Hudaydah, Yemen, 2012

    PubMed Central

    El-Sawaf, Gamal; Faggioni, Giovanni; Vescio, Fenicia; Al Ameri, Ranya; De Santis, Riccardo; Helaly, Ghada; Pomponi, Alice; Metwally, Dalia; Fantini, Massimo; Qadi, Hussein; Ciccozzi, Massimo; Lista, Florigio

    2014-01-01

    We investigated 400 cases of dengue-like illness in persons hospitalized during an outbreak in Al Hudaydah, Yemen, in 2012. Overall, 116 dengue and 49 chikungunya cases were diagnosed. Dengue virus type 2 was the predominant serotype. The co-circulation of these viruses indicates that mosquitoborne infections represent a public health threat in Yemen. PMID:25061762

  6. Long-term memory cellular immune response to dengue virus after a natural primary infection.

    PubMed

    Sierra, Beatríz; García, Gissel; Pérez, Ana B; Morier, Luis; Rodríguez, Rayner; Alvarez, Mayling; Guzmán, María G

    2002-06-01

    This study was conducted to examine the memory T-cell response to dengue virus 20 years after a primary infection. We took advantage of the exceptional epidemiologic situation in Cuba, where the population initially suffered two large successive epidemics due to dengue virus 1 and 2 respectively over a 4-year period. Thereafter, no dengue virus circulation was subsequently observed, except for the Santiago de Cuba municipality. T-cell response was evaluated in peripheral blood mononuclear cells (PBMCs) from 20 individuals with history of a primary infection by dengue virus 1 or 2. Methods previously shown to induce lymphoproliferation of CD4+ memory T-cell subpopulations were used. We evaluated the proliferative responses generated in those PBMCs after stimulation with dengue virus 1, 2, 3 and 4 antigens in a serotype-specific and serotype-crossreactive way. Serotype-specific and serotype-crossreactive lymphoproliferative responses in all PBMCs donated by dengue immune donors were observed. The serotype-crossreactive response for dengue 2 was stronger than for the rest of the serotypes. This is the first report of cellular memory lymphocyte response specific for dengue virus detected 20 years after a primary infection by dengue.

  7. Evaluation of dengue virus strains for human challenge studies.

    PubMed

    Mammen, M P; Lyons, A; Innis, B L; Sun, W; McKinney, D; Chung, R C Y; Eckels, K H; Putnak, R; Kanesa-thasan, N; Scherer, J M; Statler, J; Asher, L V; Thomas, S J; Vaughn, D W

    2014-03-14

    Discordance between the measured levels of dengue virus neutralizing antibody and clinical outcomes in the first-ever efficacy study of a dengue tetravalent vaccine (Lancet, Nov 2012) suggests a need to re-evaluate the process of pre-screening dengue vaccine candidates to better predict clinical benefit prior to large-scale vaccine trials. In the absence of a reliable animal model and established correlates of protection for dengue, a human dengue virus challenge model may provide an approach to down-select vaccine candidates based on their ability to reduce risk of illness following dengue virus challenge. We report here the challenge of flavivirus-naïve adults with cell culture-passaged dengue viruses (DENV) in a controlled setting that resulted in uncomplicated dengue fever (DF). This sets the stage for proof-of-concept efficacy studies that allow the evaluation of dengue vaccine candidates in healthy adult volunteers using qualified DENV challenge strains well before they reach field efficacy trials involving children. Fifteen flavivirus-naïve adult volunteers received 1 of 7 DENV challenge strains (n=12) or placebo (n=3). Of the twelve volunteers who received challenge strains, five (two DENV-1 45AZ5 and three DENV-3 CH53489 cl24/28 recipients) developed DF, prospectively defined as ≥2 typical symptoms, ≥48h of sustained fever (>100.4°F) and concurrent viremia. Based on our study and historical data, we conclude that the DENV-1 and DENV-3 strains can be advanced as human challenge strains. Both of the DENV-2 strains and one DENV-4 strain failed to meet the protocol case definition of DF. The other two DENV-4 strains require additional testing as the illness approximated but did not satisfy the case definition of DF. Three volunteers exhibited effusions (1 pleural/ascites, 2 pericardial) and 1 volunteer exhibited features of dengue (rash, lymphadenopathy, neutropenia and thrombocytopenia), though in the absence of fever and symptoms. The occurrence of

  8. Invariant NKT Cell Response to Dengue Virus Infection in Human

    PubMed Central

    Matangkasombut, Ponpan; Chan-in, Wilawan; Opasawaschai, Anunya; Pongchaikul, Pisut; Tangthawornchaikul, Nattaya; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Duangchinda, Thaneeya; Screaton, Gavin; Mongkolsapaya, Juthathip

    2014-01-01

    Background Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection. Methods Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured. Results iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated. Conclusion iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future. PMID:24945350

  9. Class II ADP-ribosylation factors are required for efficient secretion of dengue viruses.

    PubMed

    Kudelko, Mateusz; Brault, Jean-Baptiste; Kwok, Kevin; Li, Ming Yuan; Pardigon, Nathalie; Peiris, J S Malik; Bruzzone, Roberto; Desprès, Philippe; Nal, Béatrice; Wang, Pei Gang

    2012-01-02

    Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins.

  10. Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity

    PubMed Central

    1989-01-01

    The severe complications of dengue virus infections, hemorrhagic manifestation and shock, are much more commonly observed during secondary infections caused by a different serotype of dengue virus than that which caused the primary infections. It has been speculated, therefore, that dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are caused by serotype crossreactive immunopathological mechanisms. We analyzed clones of dengue serotype crossreactive T lymphocytes derived from the PBMC of a donor who had been infected with dengue 3 virus. These PBMC responded best to dengue 3 antigen, but also responded to dengue 1, 2, and 4 antigens, in bulk culture proliferation assays. 12 dengue antigen-specific clones were established using a limiting dilution technique. All of the clones had CD3+ CD4+ CD8 phenotypes. Eight clones responded to dengue 1, 2, 3, and 4 antigens and are crossreactive, while four other clones responded predominantly to dengue 3 antigen. These results indicate that the serotype crossreactive dengue-specific T lymphocyte proliferation observed in bulk cultures reflects the crossreactive responses detected at the clonal level. Serotype crossreactive clones produced high titers of IFN- gamma after stimulation with dengue 3 antigens, and also produced IFN- gamma to lower levels after stimulation with dengue 1, 2, and 4 antigens. The crossreactive clones lysed autologous lymphoblastoid cell line (LCL) pulsed with dengue antigens, and the crossreactivity of CTL lysis by T cell clones was consistent with the crossreactivity observed in proliferation assays. Epidemiological studies have shown that secondary infections with dengue 2 virus cause DHF/DSS at a higher rate than the other serotypes. We hypothesized that the lysis of dengue virus-infected cells by CTL may lead to DHF/DSS; therefore, the clones were examined for cytotoxic activity against dengue 2 virus-infected LCL. All but one of the serotype crossreactive clones lysed dengue 2 virus

  11. Satellite based hydroclimatic understanding of evolution of Dengue and Zika virus

    NASA Astrophysics Data System (ADS)

    Khan, R.; Jutla, A.; Colwell, R. R.

    2017-12-01

    Vector-borne diseases are prevalent in tropical and subtropical regions especially in Africa, South America, and Asia. Vector eradication is perhaps not possible since pathogens adapt to local environment. In absence of appropriate vaccinations for Dengue and Zika virus, burden of these two infections continue to increase in several geographical locations. Aedes spp. is one of the major vectors for Dengue and Zika viruses. Etiologies on Dengue and Zika viruses are evolving, however the key question remains as to how one species of mosquito can transmit two different infections? We argue that a set of conducive environmental condition, modulated by regional climatic and weather processes, may lead to abundance of a specific virus. Using satellite based rainfall (TRMM/GPM), land surface temperature (MODIS) and dew point temperature (AIRS/MERRA), we have identified appropriate thresholds that can provide estimate on risk of abundance of Dengue or Zika viruses at least few weeks in advance. We will discuss a framework coupling satellite derived hydroclimatic and societal processes to predict environmental niches of favorability of conditions of Dengue or Zika risk in human population on a global scale.

  12. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes

    PubMed Central

    Ramirez, Jose L.; Dimopoulos, George

    2010-01-01

    Dengue virus has become one of the most important arboviral pathogens affecting the world today. The virus is transmitted among humans by the mosquitoes Aedes aegypti and Ae. albopictus. Like other vector-borne pathogens, this virus encounters innate immune defenses within the mosquito vector that limit infection. We have previously demonstrated the involvement of the Toll pathway in the anti-dengue defense at 7 days after infection. In the present study, we have investigated the activity of this immune signaling pathway against different dengue virus serotypes at the early stages of infection in laboratory and field-derived mosquito strains. Our studies corroborate the importance of the Toll pathway in the anti-dengue defense repertoire at 3 days after an infectious blood meal, when new virions are released from the midgut for dissemination and infection of other mosquito tissues. These immune defenses are furthermore conserved among different Ae. aegypti strains and can act against a broad range of dengue virus serotypes. PMID:20079370

  13. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates

    PubMed Central

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R.; Bett, Andrew J.

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  14. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    PubMed

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  15. Class II ADP-ribosylation Factors Are Required for Efficient Secretion of Dengue Viruses*

    PubMed Central

    Kudelko, Mateusz; Brault, Jean-Baptiste; Kwok, Kevin; Li, Ming Yuan; Pardigon, Nathalie; Peiris, J. S. Malik; Bruzzone, Roberto; Desprès, Philippe; Nal, Béatrice; Wang, Pei Gang

    2012-01-01

    Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins. PMID:22105072

  16. Vector competence of Malaysian Aedes albopictus with and without Wolbachia to four dengue virus serotypes.

    PubMed

    Joanne, Sylvia; Vythilingam, Indra; Teoh, Boon-Teong; Leong, Cherng-Shii; Tan, Kim-Kee; Wong, Meng-Li; Yugavathy, Nava; AbuBakar, Sazaly

    2017-09-01

    To determine the susceptibility status of Aedes albopictus with and without Wolbachia to the four dengue virus serotypes. Two newly colonised colonies of Ae. albopictus from the wild were used for the study. One colony was naturally infected with Wolbachia while in the other Wolbachia was removed by tetracycline treatment. Both colonies were orally infected with dengue virus-infected fresh blood meal. Dengue virus load was measured using quantitative RT-PCR at four-time intervals in the salivary glands, midguts and ovaries. Wolbachia did not significantly affect Malaysian Ae. albopictus dengue infection or the dissemination rate for all four dengue virus serotypes. Malaysian Ae. albopictus had the highest replication kinetics for DENV-1 and the highest salivary gland and midgut infection rate for DENV-4. Wolbachia, which naturally exists in Malaysian Ae. albopictus, does not significantly affect dengue virus replication. Malaysian Ae. albopictus is susceptible to dengue virus infections and capable of transmitting dengue virus, especially DENV-1 and DENV-4. Removal of Wolbachia from Malaysian Ae. albopictus would not reduce their susceptibility status. © 2017 John Wiley & Sons Ltd.

  17. Generation and comparative genomics of synthetic dengue viruses.

    PubMed

    Goz, Eli; Tsalenchuck, Yael; Benaroya, Rony Oren; Zafrir, Zohar; Atar, Shimshi; Altman, Tahel; Julander, Justin; Tuller, Tamir

    2018-05-08

    Synthetic virology is an important multidisciplinary scientific field, with emerging applications in biotechnology and medicine, aiming at developing methods to generate and engineer synthetic viruses. In particular, many of the RNA viruses, including among others the Dengue and Zika, are widespread pathogens of significant importance to human health. The ability to design and synthesize such viruses may contribute to exploring novel approaches for developing vaccines and virus based therapies. Here we develop a full multidisciplinary pipeline for generation and analysis of synthetic RNA viruses and specifically apply it to Dengue virus serotype 2 (DENV-2). The major steps of the pipeline include comparative genomics of endogenous and synthetic viral strains. Specifically, we show that although the synthetic DENV-2 viruses were found to have lower nucleotide variability, their phenotype, as reflected in the study of the AG129 mouse model morbidity, RNA levels, and neutralization antibodies, is similar or even more pathogenic in comparison to the wildtype master strain. Additionally, the highly variable positions, identified in the analyzed DENV-2 population, were found to overlap with less conserved homologous positions in Zika virus and other Dengue serotypes. These results may suggest that synthetic DENV-2 could enhance virulence if the correct sequence is selected. The approach reported in this study can be used to generate and analyze synthetic RNA viruses both on genotypic and on phenotypic level. It could be applied for understanding the functionality and the fitness effects of any set of mutations in viral RNA and for editing RNA viruses for various target applications.

  18. Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum.

    PubMed

    Dussart, Philippe; Labeau, Bhety; Lagathu, Gisèle; Louis, Philippe; Nunes, Marcio R T; Rodrigues, Sueli G; Storck-Herrmann, Cécile; Cesaire, Raymond; Morvan, Jacques; Flamand, Marie; Baril, Laurence

    2006-11-01

    We evaluated a one-step sandwich-format microplate enzyme immunoassay for detecting dengue virus NS1 antigen (Ag) in human serum by use of Platelia Dengue NS1 Ag kits (Bio-Rad Laboratories, Marnes La Coquette, France). We collected 299 serum samples from patients with dengue disease and 50 serum samples from patients not infected with dengue virus. For the 239 serum samples from patients with acute infections testing positive by reverse transcription-PCR and/or virus isolation for one of the four dengue virus serotypes, the sensitivity of the Platelia Dengue NS1 Ag kit was 88.7% (95% confidence interval, 84.0% to 92.4%). None of the serum samples from patients not infected with dengue virus tested positive with the Platelia Dengue NS1 Ag kit. A diagnostic strategy combining the Platelia Dengue NS1 Ag test for acute-phase sera and immunoglobulin M capture enzyme-linked immunosorbent assay for early-convalescent-phase sera increased sensitivity only from 88.7% to 91.9%. Thus, NS1 antigen detection with the Platelia Dengue NS1 Ag kit could be used for first-line testing for acute dengue virus infection in clinical diagnostic laboratories.

  19. Dengue virus in blood donations, Puerto Rico, 2005.

    PubMed

    Mohammed, Hamish; Linnen, Jeffrey M; Muñoz-Jordán, Jorge L; Tomashek, Kay; Foster, Gregory; Broulik, Amy S; Petersen, Lyle; Stramer, Susan L

    2008-07-01

    A single instance of transfusion-transmitted dengue infection has been reported. The high incidence of dengue in endemic countries, the high proportion of asymptomatic infection, and the median 5-day viremia, however, suggest that transfusion-associated dengue transmission may be more widespread than documented. The prevalence of dengue virus (DENV) RNA was determined in all blood donations to the American Red Cross in Puerto Rico from September 20 to December 4, 2005, using a specific type of nucleic acid amplification test called transcription-mediated amplification (TMA). TMA-positive donations were defined as those having two repeatedly reactive TMA results. TMA-positive donations were tested by enzyme-linked immunosorbent assay for immunoglobulin M (IgM) antibodies, by reverse transcription-polymerase chain reaction (RT-PCR), and by viral culture. Twelve (0.07%) of 16,521 blood donations tested were TMA-positive. Four were positive by RT-PCR (DENV serotypes 2 and 3). Virus was cultured from 3 of 4 RT-PCR-positive donations. One of the 12 TMA-positive donations was IgM-positive. Only 5 donations remained TMA-positive when diluted 1:16, as is done for routine minipool screening for other transfusion-transmissible viral infections (hepatitis C, human immunodeficiency, West Nile viruses [WNVs]). Nearly 1 in 1000 blood donations contained DENV RNA, and virus could be cultured from TMA-positive donations, suggesting a transfusion transmission risk similar to that which existed in the United States for WNV before universal donation screening. Similar to WNV, IgM antibody screening is likely to be ineffective, and some potentially infectious donations will be missed by minipool screening. Transfusion transmission should be considered in patients with dengue after blood transfusion.

  20. Immunofluorescence assay method to detect dengue virus in Paniai-Papua

    NASA Astrophysics Data System (ADS)

    Sucipto, Teguh Hari; Ahwanah, Nur Laila Fitriati; Churrotin, Siti; Matake, Norifumi; Kotaki, Tomohiro; Soegijanto, Soegeng

    2016-03-01

    The dengue viruses (DENV), which include in the family Flaviviridae and the genus Flavivirus, was endemic in tropical areas and had been transmitted to humans by Aedes aegypti. An increasing number of immigrants from endemic areas to the non-endemic areas have emphasized the need for a simple and reliable test for the diagnosis of dengue virus infection. The purpose of this study was to detect the dengue virus by immunofluorescence assay (IFA) in the general population at Paniai-Papua. The results obtained from this study had showed a significantly better discrimination for DENV specific IgG antibodies. A total of 158 samples, 116 samples were IgG antibodies positive and 42 samples were negative. The conclusion of this study, Papua is not only a malaria endemic area, but also dengue virus infections were detected by IFA method. Therefore, the IFA can be used as an important diagnostic tool, which is a quick and an easy way to test samples from immigrants who come to the non-endemic areas.

  1. Re-emergence of dengue virus serotype 2 strains in the 2013 outbreak in Nepal

    PubMed Central

    Gupta, Birendra Prasad; Singh, Sneha; Kurmi, Roshan; Malla, Rajani; Sreekumar, Easwaran; Manandhar, Krishna Das

    2015-01-01

    Background & objectives: Epidemiological interventions and mosquito control are the available measures for dengue control. The former approach uses serotype and genetic information on the circulating virus strains. Dengue has been frequently reported from Nepal, but this information is mostly lacking. The present study was done to generate a comprehensive clinical and virological picture of a dengue outbreak in Nepal during 2013. Methods: A hospital-based study involving patients from five districts of Nepal was carried out. Demographic information, clinical details and dengue serological status were obtained. Viral RNA was characterized at the molecular level by reverse-transcription polymerase chain reaction (RT-PCR), nucleotide sequencing and phylogenetic analysis. Results: From among the 2340 laboratory-confirmed dengue cases during the study period, 198 patients consented for the study. Clinically they had fever (100%), headache (59.1%), rashes (18.2%), retro-orbital pain (30.3%), vomiting (15.1%), joint pain (28.8%) and thrombocytopenia (74.3%). Fifteen (7.5%) of them had mucosal bleeding manifestations, and the rest were uncomplicated dengue fever. The patients were mostly adults with a mean age of 45.75 ± 38.61 yr. Of the 52 acute serum samples tested, 15 were positive in RT-PCR. The causative virus was identified as DENV serotype 2 belonging to the Cosmopolitan genotype. Interpretations & conclusions: We report here the involvement of DENV serotype 2 in an outbreak in Nepal in 2013. Earlier outbreaks in the region in 2010 were attributed to serotype 1 virus. As serotype shifts are frequently associated with secondary infections and severe disease, there is a need for enhancing surveillance especially in the monsoon and post-monsoon periods to prevent large-scale, severe dengue outbreaks in the region. PMID:26905233

  2. Enzyme-linked immunoassay for dengue virus IgM and IgG antibodies in serum and filter paper blood

    PubMed Central

    Tran, Thanh Nga T; de Vries, Peter J; Hoang, Lan Phuong; Phan, Giao T; Le, Hung Q; Tran, Binh Q; Vo, Chi Mai T; Nguyen, Nam V; Kager, Piet A; Nagelkerke, Nico; Groen, Jan

    2006-01-01

    Background The reproducibilty of dengue IgM and IgG ELISA was studied in serum and filter paper blood spots from Vietnamese febrile patients. Methods 781 pairs of acute (t0) and convalescent sera, obtained after three weeks (t3) and 161 corresponding pairs of filter paper blood spots were tested with ELISA for dengue IgG and IgM. 74 serum pairs were tested again in another laboratory with similar methods, after a mean of 252 days. Results Cases were classified as no dengue (10 %), past dengue (55%) acute primary (7%) or secondary (28%) dengue. Significant differences between the two laboratories' results were found leading to different diagnostic classification (kappa 0.46, p < 0.001). Filter paper results correlated poorly to serum values, being more variable and lower with a mean (95% CI) difference of 0.82 (0.36 to 1.28) for IgMt3, 0.94 (0.51 to 1.37) for IgGt0 and 0.26 (-0.20 to 0.71) for IgGt3. This also led to differences in diagnostic classification (kappa value 0.44, p < 0.001) The duration of storage of frozen serum and dried filter papers, sealed in nylon bags in an air-conditioned room, had no significant effect on the ELISA results. Conclusion Dengue virus IgG antibodies in serum and filter papers was not affected by duration of storage, but was subject to inter-laboratory variability. Dengue virus IgM antibodies measured in serum reconstituted from blood spots on filter papers were lower than in serum, in particular in the acute phase of disease. Therefore this method limits its value for diagnostic confirmation of individual patients with dengue virus infections. However the detection of dengue virus IgG antibodies eluted from filter paper can be used for sero-prevalence cross sectional studies. PMID:16436203

  3. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus.

    PubMed

    Wasik, Daniel; Mulchandani, Ashok; Yates, Marylynn V

    2017-05-15

    Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Diverse Dengue Type 2 Virus Populations Contain Recombinant and Both Parental Viruses in a Single Mosquito Host

    PubMed Central

    Craig, Scott; Thu, Hlaing Myat; Lowry, Kym; Wang, Xiao-fang; Holmes, Edward C.; Aaskov, John

    2003-01-01

    Envelope (E) protein genes sampled from populations of dengue 2 (DEN-2) virus in individual Aedes aegypti mosquitoes and in serum from dengue patients were copied to cDNA, cloned, and sequenced. The nucleotide sequences of the E genes in more than 70% of the clones differed from the consensus sequence for the corresponding virus population at up to 11 sites, and 24 of the 94 clones contained at least one stop codon. Virus populations recovered up to 2 years apart yielded clones with similar polymorphisms in the E gene. For one mosquito, the clones obtained fell into two genotypes. One group of sequences was closely related to those of viruses recovered from dengue patients in the same locality (Yangon, Myanmar) since 1995 and were classified as Asian 1 genotype. The second group were Cosmopolitan genotype viruses which were also circulating in Yangon in 2000 and which were related to DEN-2 viruses sampled from southern China in 1999. Finally, one clone was identified as a recombinant genome composed of portions of these two “parental” genotypes. This is the first report of recombinant and parental dengue viruses in a single host. PMID:12634407

  5. Reduced Risk of Disease During Postsecondary Dengue Virus Infections

    PubMed Central

    Olkowski, Sandra; Forshey, Brett M.; Morrison, Amy C.; Rocha, Claudio; Vilcarromero, Stalin; Halsey, Eric S.; Kochel, Tadeusz J.; Scott, Thomas W.; Stoddard, Steven T.

    2013-01-01

    Background. Antibodies induced by infection with any 1 of 4 dengue virus (DENV) serotypes (DENV-1–4) may influence the clinical outcome of subsequent heterologous infections. To quantify potential cross-protective effects, we estimated disease risk as a function of DENV infection, using data from longitudinal studies performed from September 2006 through February 2011 in Iquitos, Peru, during periods of DENV-3 and DENV-4 transmission. Methods. DENV infections before and during the study period were determined by analysis of serial serum samples with virus neutralization tests. Third and fourth infections were classified as postsecondary infections. Dengue fever cases were detected by door-to-door surveillance for acute febrile illness. Results. Among susceptible participants, 39% (420/1077) and 53% (1595/2997) seroconverted to DENV-3 and DENV-4, respectively. Disease was detected in 7% of DENV-3 infections and 10% of DENV-4 infections. Disease during postsecondary infections was reduced by 93% for DENV-3 and 64% for DENV-4, compared with primary and secondary infections. Despite lower disease rates, postsecondary infections constituted a significant proportion of apparent infections (14% [for DENV-3 infections], 45% [for DENV-4 infections]). Conclusions. Preexisting heterotypic antibodies markedly reduced but did not eliminate the risk of disease in this study population. These results improve understanding of how preinfection history can be associated with dengue outcomes and DENV transmission dynamics. PMID:23776195

  6. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noisakran, Sansanee; Medical Molecular Biology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Adulyadejvikrom Building; Sengsai, Suchada

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometrymore » (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.« less

  7. Understanding the Dengue Viruses and Progress towards Their Control

    PubMed Central

    Gould, Ernest A.

    2013-01-01

    Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this “scourge” of the tropical and subtropical world. PMID:23936833

  8. Detection of dengue virus in individual Aedes aegypti mosquitoes in Delhi, India.

    PubMed

    Vikram, Kumar; Nagpal, B N; Pande, Veena; Srivastava, Aruna; Saxena, Rekha; Singh, Himmat; Gupta, Sanjeev K; Tuli, N R; Yadav, N K; Olivier, Telle; Richard, Paul; Valecha, Neena

    2015-06-01

    Delhi, the capital city of India, has so far witnessed several outbreaks of dengue fever since 1967 (last one reported in 2013). Improved virological and entomological surveillance are the only tools that can help in prevention of dengue as well as in the development of dengue control programmes. The aim of the study was to conduct a prospective field study to detect dengue virus in adult Aedes aegypti mosquitoes collected from various localities represented by different socioeconomic groups in Delhi. The study areas were selected and categorized into high, medium and low income groups on the basis of socioeconomical characteristics of the resident population, where dengue cases were reported during the past three years by MCD. Dengue viral infection was detected in the head squash of each adult mosquito by immunofluorescent assay (IFA) employing monoclonal antibodies against dengue virus (DENV). A total of 2408 females and 1206 males of Ae. aegypti were collected and tested by IFA. Out of 2408 Ae. aegypti females, 14 were found positive, with minimum infection rate (MIR) of 5.8 per 1000 mosquitoes. Among the 18 study areas, 11 localities were found positive for dengue virus infection. Low income group (LIG) areas showed highest mosquito infectivity (9.8), followed by medium income group (MIG), i.e. 6.2; while least was observed in high income group (HIG), i.e. 1.3. No vertical transmission of dengue virus could be detected in 1206 Ae. aegypti males collected. The study concludes that there was high MIR in the identified localities of low and medium income groups. Estimation of MIR in a female Aedes mosquito in the existing arsenals for dengue surveillance would be an added advantage for early warning of dengue outbreak. The presence of infected mosquitoes in identified localities of Delhi was alarming and require rigorous vector surveillance so that the severe outbreaks can be prevented.

  9. Immunopathogenesis of Dengue Virus-Induced Redundant Cell Death: Apoptosis and Pyroptosis.

    PubMed

    Suwanmanee, San; Luplertlop, Natthanej

    Dengue virus infection is a self-limited condition, which is of particular importance in tropical and subtropical regions and for which no specific treatment or effective vaccine is available. There are several hypotheses explaining dengue pathogenesis. These usually refer to host immune responses, including antibody-dependent enhancement, cytokine expression, and dengue virus particles including NS1 protein, which lead to cell death by both apoptosis and pyroptosis. A clear understanding of the pathogenesis should facilitate the development of vaccines and therapies. This review focuses on the immunopathogenesis in relation to clinical manifestations and patterns of cell death, focusing on the pathogenesis of severe dengue.

  10. Characterization of recent and minimally passaged Brazilian dengue viruses inducing robust infection in rhesus macaques.

    PubMed

    Borges, Maria Beatriz; Marchevsky, Renato Sergio; Mendes, Ygara S; Mendes, Luiz Gustavo; Duarte, Ana Claudia; Cruz, Michael; de Filippis, Ana Maria Bispo; Vasconcelos, Pedro Fernando C; Freire, Marcos; Homma, Akira; Mossman, Sally; Lepine, Edith; Vanloubbeeck, Yannick; Lorin, Clarisse; Malice, Marie-Pierre; Caride, Elena; Warter, Lucile

    2018-01-01

    The macaque is widely accepted as a suitable model for preclinical characterization of dengue vaccine candidates. However, the only vaccine for which both preclinical and clinical efficacy results were reported so far showed efficacy levels that were substantially different between macaques and humans. We hypothesized that this model's predictive capacity may be improved using recent and minimally passaged dengue virus isolates, and by assessing vaccine efficacy by characterizing not only the post-dengue virus challenge viremia/RNAemia but also the associated-cytokine profile. Ten recent and minimally passaged Brazilian clinical isolates from the four dengue virus serotypes were tested for their infectivity in rhesus macaques. For the strains showing robust replication capacity, the associated-changes in soluble mediator levels, and the elicited dengue virus-neutralizing antibody responses, were also characterized. Three isolates from dengue virus serotypes 1, 2 and 4 induced viremia of high magnitude and longer duration relative to previously reported viremia kinetics in this model, and robust dengue virus-neutralizing antibody responses. Consistent with observations in humans, increased MCP-1, IFN-γ and VEGF-A levels, and transiently decreased IL-8 levels were detected after infection with the selected isolates. These results may contribute to establishing a dengue macaque model showing a higher predictability for vaccine efficacy in humans.

  11. Characterization of recent and minimally passaged Brazilian dengue viruses inducing robust infection in rhesus macaques

    PubMed Central

    Borges, Maria Beatriz; Marchevsky, Renato Sergio; Mendes, Ygara S.; Mendes, Luiz Gustavo; Duarte, Ana Claudia; Cruz, Michael; de Filippis, Ana Maria Bispo; Vasconcelos, Pedro Fernando C.; Freire, Marcos; Homma, Akira; Mossman, Sally; Lepine, Edith; Vanloubbeeck, Yannick; Lorin, Clarisse; Malice, Marie-Pierre; Caride, Elena

    2018-01-01

    The macaque is widely accepted as a suitable model for preclinical characterization of dengue vaccine candidates. However, the only vaccine for which both preclinical and clinical efficacy results were reported so far showed efficacy levels that were substantially different between macaques and humans. We hypothesized that this model’s predictive capacity may be improved using recent and minimally passaged dengue virus isolates, and by assessing vaccine efficacy by characterizing not only the post-dengue virus challenge viremia/RNAemia but also the associated-cytokine profile. Ten recent and minimally passaged Brazilian clinical isolates from the four dengue virus serotypes were tested for their infectivity in rhesus macaques. For the strains showing robust replication capacity, the associated-changes in soluble mediator levels, and the elicited dengue virus-neutralizing antibody responses, were also characterized. Three isolates from dengue virus serotypes 1, 2 and 4 induced viremia of high magnitude and longer duration relative to previously reported viremia kinetics in this model, and robust dengue virus-neutralizing antibody responses. Consistent with observations in humans, increased MCP-1, IFN-γ and VEGF-A levels, and transiently decreased IL-8 levels were detected after infection with the selected isolates. These results may contribute to establishing a dengue macaque model showing a higher predictability for vaccine efficacy in humans. PMID:29694440

  12. Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection

    PubMed Central

    Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George

    2014-01-01

    Upon exposure to dengue virus, the Aedes aegypti mosquito vector mounts an anti-viral immune defense by activating the Toll, JAK/STAT, and RNAi pathways, thereby limiting infection. While these pathways and several other factors have been identified as dengue virus antagonists, our knowledge of factors that facilitate dengue virus infection is limited. Previous dengue virus infection-responsive transcriptome analyses have revealed an increased mRNA abundance of members of the myeloid differentiation 2-related lipid recognition protein (ML) and the Niemann Pick-type C1 (NPC1) families upon dengue virus infection. These genes encode lipid-binding proteins that have been shown to play a role in host-pathogen interactions in other organisms. RNAi-mediated gene silencing of a ML and a NPC1 gene family member in both laboratory strain and field-derived Ae. aegypti mosquitoes resulted in significantly elevated resistance to dengue virus in mosquito midguts, suggesting that these genes play roles as dengue virus agonists. In addition to their possible roles in virus cell entry and replication, gene expression analyses suggested that ML and NPC1 family members also facilitate viral infection by modulating the mosquito’s immune competence. Our study suggests that the dengue virus influences the expression of these genes to facilitate its infection of the mosquito host. PMID:24135719

  13. Identification of helper T cell epitopes of dengue virus E-protein.

    PubMed

    Leclerc, C; Dériaud, E; Megret, F; Briand, J P; Van Regenmortel, M H; Deubel, V

    1993-05-01

    The T cell proliferative response to dengue 2 (Jamaica) E-glycoprotein (495 amino acids) was analyzed in vitro using either killed virus or E-protein fragments or synthetic peptides. Inactivated dengue virus stimulated dengue-specific lymph node (LN) CD4+T cell proliferation in BALB/c (H-2d), C3H (H-2k) and DBA/1 (H-2q) but not in C57BL/6 (H-2b) mice. Moreover, LN cells from dengue-virus primed BALB/c mice proliferated in vitro in response to three purified non-overlapping E-protein fragments expressed in E. coli as polypeptides fused to trpE (f22-205, f267-354, f366-424). To further determine T cell epitopes in the E-protein, synthetic peptides were selected using prediction algorithms for T cell epitopes. Highest proliferative responses were obtained after in vitro exposure of virus-primed LN cells to peptides p135-157, p270-298, p295-307 and p337-359. Peptide p59-78 was able to induce specific B and T cell responses in peptide-primed mice of H-2d, H-2q and H-2k haplotypes. Two peptides p59-78 corresponding to two dengue (Jamaica and Sri Lanka) isolates and differing only at position 71 cross-reacted at the B but not at the T cell level in H-2b mice. This analysis of murine T helper cell response to dengue E-protein may be of use in dengue subunit vaccine design.

  14. Tetravalent Dengue Vaccine Reduces Symptomatic and Asymptomatic Dengue Virus Infections in Healthy Children and Adolescents Aged 2-16 Years in Asia and Latin America.

    PubMed

    Olivera-Botello, Gustavo; Coudeville, Laurent; Fanouillere, Karen; Guy, Bruno; Chambonneau, Laurent; Noriega, Fernando; Jackson, Nicholas

    2016-10-01

    Asymptomatic dengue virus-infected individuals are thought to play a major role in dengue virus transmission. The efficacy of the recently approved quadrivalent CYD-TDV dengue vaccine against asymptomatic dengue virus infection has not been previously assessed. We pooled data for 3 736 individuals who received either CYD-TDV or placebo at 0, 6, and 12 months in the immunogenicity subsets of 2 phase 3 trials (clinical trials registration NCT01373281 and NCT01374516). We defined a seroconversion algorithm (ie, a ≥4-fold increase in the neutralizing antibody titer and a titer of ≥40 from month 13 to month 25) as a surrogate marker of asymptomatic infection in the vaccine and placebo groups. The algorithm detected seroconversion in 94% of individuals with a diagnosis of virologically confirmed dengue between months 13 and 25, validating its discriminatory power. Among those without virologically confirmed dengue (n = 3 669), 219 of 2 485 in the vaccine group and 157 of 1 184 in the placebo group seroconverted between months 13 and 25, giving a vaccine efficacy of 33.5% (95% confidence interval [CI], 17.9%-46.1%) against asymptomatic infection. Vaccine efficacy was marginally higher in subjects aged 9-16 years (38.6%; 95% CI, 22.1%-51.5%). The annual incidence of asymptomatic dengue virus infection in this age group was 14.8%, which was 4.4 times higher than the incidence for symptomatic dengue (3.4%). The observed vaccine efficacy against asymptomatic dengue virus infections is expected to translate into reduced dengue virus transmission if sufficient individuals are vaccinated in dengue-endemic areas. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases.

    PubMed

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; Melo, Maria Elisabeth Lisboa de; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; Silva, Luciene Alexandre Bié da; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-09-01

    We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses' epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  16. Dengue Virus Seroconversion in Travelers to Dengue-Endemic Areas

    PubMed Central

    Olivero, Rosemary M.; Hamer, Davidson H.; MacLeod, William B.; Benoit, Christine M.; Sanchez-Vegas, Carolina; Jentes, Emily S.; Chen, Lin H.; Wilson, Mary E.; Marano, Nina; Yanni, Emad A.; Ooi, Winnie W.; Karchmer, Adolf W.; Kogelman, Laura; Barnett, Elizabeth D.

    2016-01-01

    We conducted a prospective study to measure dengue virus (DENV) antibody seroconversion in travelers to dengue-endemic areas. Travelers seen in the Boston Area Travel Medicine Network planning to visit dengue-endemic countries for ≥ 2 weeks were enrolled from 2009 to 2010. Pre- and post-travel blood samples and questionnaires were collected. Post-travel sera were tested for anti-DENV IgG by indirect IgG enzyme-linked immunosorbent assay (ELISA) and anti-DENV IgM by capture IgM ELISA. Participants with positive post-travel anti-DENV IgG or IgM were tested for pre-travel anti-DENV IgG and IgM; they were excluded from the seroconversion calculation if either pre-travel anti-DENV IgG or IgM were positive. Paired sera and questionnaires were collected for 62% (589/955) of enrolled travelers. Most participants were 19–64 years of age, female, and white. The most common purposes of travel were tourism and visiting friends and relatives; most trips were to Asia or Africa. Median length of travel was 21 days. DENV antibody seroconversion by either anti-DENV IgM or IgG ELISA was 2.9–6.8%; lower range percent excluded potential false-positive anti-DENV IgG due to receipt of yellow fever or Japanese encephalitis vaccines at enrollment; upper range percent excluded proven false-positive anti-DENV IgM. Eighteen percent of those with seroconversion reported dengue-like symptoms. Seroconversion was documented for travel to Africa as well as countries and regions known to be highly dengue endemic (India, Brazil, southeast Asia). Given widespread risk of dengue, travel medicine counseling should include information on risk of dengue in endemic areas and advice on preventing insect bites and seeking prompt medical attention for febrile illness. PMID:27573631

  17. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia.

    PubMed

    Sasmono, R Tedjo; Wahid, Isra; Trimarsanto, Hidayat; Yohan, Benediktus; Wahyuni, Sitti; Hertanto, Martin; Yusuf, Irawan; Mubin, Halim; Ganda, Idham J; Latief, Rachmat; Bifani, Pablo J; Shi, Pei-Yong; Schreiber, Mark J

    2015-06-01

    Dengue fever is currently the most important mosquito-borne viral disease in Indonesia. In South Sulawesi province, most regions report dengue cases including the capital city, Makassar. Currently, no information is available on the serotypes and genotypes of the viruses circulating in the area. To understand the dynamic of dengue disease in Makassar, we carried out dengue fever surveillance study during 2007-2010. A total of 455 patients were recruited, in which antigen and serological detection revealed the confirmed dengue cases in 43.3% of patients. Molecular detection confirmed the dengue cases in 27.7% of patients, demonstrating that dengue places a significant disease burden on the community. Serotyping revealed that dengue virus serotype 1 (DENV-1) was the most predominant serotype, followed by DENV-2, -3, and -4. To determine the molecular evolution of the viruses, we conducted whole-genome sequencing of 80 isolates. Phylogenetic analysis grouped DENV-2, -3 and -4 to the Cosmopolitan genotype, Genotype I and Genotype II, respectively. Intriguingly, each serotype paints a different picture of evolution and transmission. DENV-1 appears to be undergoing a clade replacement with Genotype IV being supplanted by Genotype I. The Cosmopolitan DENV-2 isolates were found to be regionally endemic and is frequently being exchanged between countries in the region. By contrast, DENV-3 and DENV-4 isolates were related to strains with a long history in Indonesia although the DENV-3 strains appear to have been following a distinct evolutionary path since approximately 1998. To assess whether the various DENV serotypes/genotypes possess different growth characteristics, we performed growth kinetic assays on selected viruses. We observed the relatively higher rate of replication for DENV-1 and -2 compared to DENV-3 and -4. Within the DENV-1, viruses from Genotype I grow faster than that of Genotype IV. This higher replication rate may underlie their ability to replace the

  18. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia

    PubMed Central

    Le Goff, G.; Revollo, J.; Guerra, M.; Cruz, M.; Barja Simon, Z.; Roca, Y.; Vargas Florès, J.; Hervé, J.P.

    2011-01-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population. PMID:21894270

  19. An in-depth analysis of original antigenic sin in dengue virus infection.

    PubMed

    Midgley, Claire M; Bajwa-Joseph, Martha; Vasanawathana, Sirijitt; Limpitikul, Wannee; Wills, Bridget; Flanagan, Aleksandra; Waiyaiya, Emily; Tran, Hai Bac; Cowper, Alison E; Chotiyarnwong, Pojchong; Chotiyarnwon, Pojchong; Grimes, Jonathan M; Yoksan, Sutee; Malasit, Prida; Simmons, Cameron P; Mongkolsapaya, Juthathip; Screaton, Gavin R

    2011-01-01

    The evolution of dengue viruses has resulted in four antigenically similar yet distinct serotypes. Infection with one serotype likely elicits lifelong immunity to that serotype, but generally not against the other three. Secondary or sequential infections are common, as multiple viral serotypes frequently cocirculate. Dengue infection, although frequently mild, can lead to dengue hemorrhagic fever (DHF) which can be life threatening. DHF is more common in secondary dengue infections, implying a role for the adaptive immune response in the disease. There is currently much effort toward the design and implementation of a dengue vaccine but these efforts are made more difficult by the challenge of inducing durable neutralizing immunity to all four viruses. Domain 3 of the dengue virus envelope protein (ED3) has been suggested as one such candidate because it contains neutralizing epitopes and it was originally thought that relatively few cross-reactive antibodies are directed to this domain. In this study, we performed a detailed analysis of the anti-ED3 response in a cohort of patients suffering either primary or secondary dengue infections. The results show dramatic evidence of original antigenic sin in secondary infections both in terms of binding and enhancement activity. This has important implications for dengue vaccine design because heterologous boosting is likely to maintain the immunological footprint of the first vaccination. On the basis of these findings, we propose a simple in vitro enzyme-linked immunosorbent assay (ELISA) to diagnose the original dengue infection in secondary dengue cases.

  20. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections

    PubMed Central

    Khalid, Bahariah; Ching, Siew-Mooi; Chee, Hui-Yee

    2016-01-01

    Introduction Dengue virus (DENV) infection is currently a major cause of morbidity and mortality in the world; it has become more common and virulent over the past half-century and has gained much attention. Thus, this review compared the percentage of severe cases of both primary and secondary infections with different serotypes of dengue virus. Methods Data related to the number of cases involving dengue fever (DF), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS) or severe dengue infections caused by different serotypes of dengue virus were obtained by using the SCOPUS, the PUBMED and the OVID search engines with the keywords “(dengue* OR dengue virus*) AND (severe dengue* OR severity of illness index* OR severity* OR DF* OR DHF* OR DSS*) AND (serotypes* OR serogroup*)”, according to the MESH terms suggested by PUBMED and OVID. Results Approximately 31 studies encompassing 15,741 cases reporting on the dengue serotypes together with their severity were obtained, and meta-analysis was carried out to analyze the data. This study found that DENV-3 from the Southeast Asia (SEA) region displayed the greatest percentage of severe cases in primary infection (95% confidence interval (CI), 31.22–53.67, 9 studies, n = 598, I2 = 71.53%), whereas DENV-2, DENV-3, and DENV-4 from the SEA region, as well as DENV-2 and DENV-3 from non-SEA regions, exhibited the greatest percentage of severe cases in secondary infection (95% CI, 11.64–80.89, 4–14 studies, n = 668–3,149, I2 = 14.77–96.20%). Moreover, DENV-2 and DENV-4 from the SEA region had been found to be more highly associated with dengue shock syndrome (DSS) (95% CI, 10.47–40.24, 5–8 studies, n = 642–2,530, I2 = 76.93–97.70%), while DENV-3 and DENV-4 from the SEA region were found to be more highly associated with dengue hemorrhagic fever (DHF) (95% CI, 31.86–54.58, 9 studies, n = 674–2,278, I2 = 55.74–88.47%), according to the 1997 WHO dengue classification. Finally, DENV-2 and DENV-4

  1. Inhibitors of Dengue virus and West Nile virus proteases based on the aminobenzamide scaffold.

    PubMed

    Aravapalli, Sridhar; Lai, Huiguo; Teramoto, Tadahisa; Alliston, Kevin R; Lushington, Gerald H; Ferguson, Eron L; Padmanabhan, R; Groutas, William C

    2012-07-01

    Dengue and West Nile viruses (WNV) are mosquito-borne members of flaviviruses that cause significant morbidity and mortality. There is no approved vaccine or antiviral drugs for human use to date. In this study, a series of functionalized meta and para aminobenzamide derivatives were synthesized and subsequently screened in vitro against Dengue virus and West Nile virus proteases. Four active compounds were identified which showed comparable activity toward the two proteases and shared in common a meta or para(phenoxy)phenyl group. The inhibition constants (K(i)) for the most potent compound 7n against Dengue and West Nile virus proteases were 8.77 and 5.55 μM, respectively. The kinetics data support a competitive mode of inhibition of both proteases by compound 7n. This conclusion is further supported by molecular modeling. This study reveals a new chemical scaffold which is amenable to further optimization to yield potent inhibitors of the viral proteases via the combined utilization of iterative medicinal chemistry/structure-activity relationship studies and in vitro screening. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A young female presenting with unilateral sacroiliitis following dengue virus infection: a case report.

    PubMed

    Jayamali, W D; Herath, H M M T B; Kulatunga, Aruna

    2017-11-01

    Dengue is a common arthropod-borne viral infection in Sri Lanka which is spread by the mosquitos of the genus Aedes. The clinical features of dengue include high-grade fever associated with arthralgia and myalgia. However, dengue virus is not considered an arthritogenic virus. We report a case of a previously healthy young female who presented with imaging-confirmed right-sided sacroiliitis 10 days after developing dengue fever. This is the first reported case that shows a possible link between dengue infection and development of arthritis. A 14-year-old Sri Lankan female presented to our medical unit with right buttock and hip pain of 3 weeks' duration. She had serologically confirmed dengue infection 10 days prior to the onset of buttock pain. A clinical examination revealed features of right sacroiliitis. An X-ray of her sacroiliac joint showed joint space widening and reactive bone changes. Magnetic resonance imaging of her pelvis and sacroiliac joint confirmed the diagnosis of acute sacroiliitis. She had an erythrocyte sedimentation rate of 110 mm first hour with a normal C-reactive protein. Her human leukocyte antigen-B27, rheumatoid factor, antinuclear antibody, chikungunya antibody, hepatitis serology, Brucella serology, and tuberculin skin test were negative. She was treated with nonsteroidal anti-inflammatory drugs and showed gradual improvement. After excluding possible causes for sacroiliitis, we postulated that sacroiliitis in the index case could have been caused or triggered by dengue virus infection. However there is a possibility that the sacroiliitis merely coincided with the dengue virus infection. This case illustrates the possibility that dengue virus could have a link with the development of arthritis in the same manner as other arthritogenic viruses; possible mechanisms for this include direct invasion of the synovium and the joint tissue by the virus, immune complex formation and deposition in the joint tissue, and immune dysregulation

  3. Temporal distribution of dengue virus serotypes in Colombian endemic area and dengue incidence. Re-introduction of dengue-3 associated to mild febrile illness and primary infection.

    PubMed

    Ocazionez, Raquel Elvira; Cortés, Fabián Mauricio; Villar, Luis Angel; Gómez, Sergio Yebrail

    2006-11-01

    We have investigated the temporal distribution of dengue (DEN) virus serotypes in the department (state) of Santander, Colombia, in relation to dengue incidence, infection pattern, and severity of disease. Viral isolation was attended on a total of 1452 acute serum samples collected each week from 1998 to 2004. The infection pattern was evaluated in 596 laboratory-positive dengue cases using an IgG ELISA, and PRNT test. The dengue incidence was documented by the local health authority. Predominance of DEN-1 in 1998 and DEN-3 re-introduction and predominance in 2001-2003 coincided with outbreaks. Predominance of DEN-2 in 2000-2001 coincided with more dengue hemorrhagic fever (DHF). DEN-4 was isolated in 2000-2001 and 2004 but was not predominant. There was an annual increase of primary dengue infections (from 13.7 to 81.4%) that correlated with frequency of DEN-3 (r = 0.83; P = 0.038). From the total number of primary dengue infections DEN-3 (81.3%) was the most frequent serotype. DHF was more frequent in DEN-2 infected patients than in DEN-3 infected patients: 27.5 vs 10.9% (P < 0.05). DEN-3 viruses belonged to subtype C (restriction site-specific-polymerase chain reaction) like viruses isolated in Sri-Lanka and other countries in the Americas. Our findings show the importance of continuous virological surveillance to identify the risk factors of dengue epidemics and severity.

  4. Application of the dengue virus NS1 antigen rapid test for on-site detection of imported dengue cases at airports.

    PubMed

    Shu, Pei-Yun; Yang, Cheng-Fen; Kao, Jeng-Fong; Su, Chien-Ling; Chang, Shu-Fen; Lin, Chien-Chou; Yang, Wen-Chih; Shih, Hsiu; Yang, Shih-Yan; Wu, Ping-Fuai; Wu, Ho-Sheng; Huang, Jyh-Hsiung

    2009-04-01

    We used the dengue virus NS1 antigen (Ag) rapid test for on-site detection of imported dengue cases at airports. Among 22 positive cases of dengue identified from 850 patients with a fever suspected to have dengue, 17 were NS1 Ag test positive. These findings demonstrate the usefulness of the NS1 Ag rapid test in screening imported dengue cases at airports.

  5. Application of the Dengue Virus NS1 Antigen Rapid Test for On-Site Detection of Imported Dengue Cases at Airports▿

    PubMed Central

    Shu, Pei-Yun; Yang, Cheng-Fen; Kao, Jeng-Fong; Su, Chien-Ling; Chang, Shu-Fen; Lin, Chien-Chou; Yang, Wen-Chih; Shih, Hsiu; Yang, Shih-Yan; Wu, Ping-Fuai; Wu, Ho-Sheng; Huang, Jyh-Hsiung

    2009-01-01

    We used the dengue virus NS1 antigen (Ag) rapid test for on-site detection of imported dengue cases at airports. Among 22 positive cases of dengue identified from 850 patients with a fever suspected to have dengue, 17 were NS1 Ag test positive. These findings demonstrate the usefulness of the NS1 Ag rapid test in screening imported dengue cases at airports. PMID:19193828

  6. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes.

    PubMed

    Holman, David H; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U; Luo, Min; Zhang, Jianghui; Porter, Kevin R; Dong, John Y

    2007-02-01

    Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.

  7. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases

    PubMed Central

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; de Melo, Maria Elisabeth Lisboa; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; da Silva, Luciene Alexandre Bié; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-01-01

    Abstract We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses’ epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará. PMID:27598244

  8. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon.

    PubMed

    Demanou, Maurice; Pouillot, Régis; Grandadam, Marc; Boisier, Pascal; Kamgang, Basile; Hervé, Jean Pierre; Rogier, Christophe; Rousset, Dominique; Paupy, Christophe

    2014-07-01

    Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon. A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sampled. Environmental and housing characteristics were recorded. Randomized houses were prospected to record all water containers, and immature stages of Aedes mosquitoes were collected. Sera were screened for anti-dengue virus IgG and IgM antibodies. Risk factors of seropositivity were tested using logistic regression methods with random effects. Anti-dengue IgG were found from 61.4% of sera in Douala (n = 699), 24.2% in Garoua (n = 728) and 9.8% in Yaounde (n = 603). IgM were found from 0.3% of Douala samples, 0.1% of Garoua samples and 0.0% of Yaounde samples. Seroneutralization on randomly selected IgG positive sera showed that 72% (n = 100) in Douala, 80% (n = 94) in Garoua and 77% (n = 66) in Yaounde had antibodies specific for dengue virus serotype 2 (DENV-2). Age, temporary house walls materials, having water-storage containers, old tires or toilets in the yard, having no TV, having no air conditioning and having travelled at least once outside the city were independently associated with anti-dengue IgG positivity in Douala. Age, having uncovered water containers, having no TV, not being born in Garoua and not breeding pigs were significant risk factors in Garoua. Recent history of malaria, having banana trees and stagnant water in the yard were independent risk factors in Yaounde. In this survey, most identified risk factors of dengue were related to housing conditions. Poverty and underdevelopment are central to the dengue epidemiology in Cameroon.

  9. A novel association of acquired ADAMTS13 inhibitor and acute dengue virus infection

    PubMed Central

    Rossi, Fernanda C.; Angerami, Rodrigo N.; de Paula, Erich V.; Orsi, Fernanda L.; Shang, Dezhi; del Guercio, Vânia M.; Resende, Mariângela R.; Annichino-Bizzacchi, Joyce M.; da Silva, Luiz J.; Zheng, X. Long; Castro, Vagner

    2011-01-01

    BACKGROUND Dengue is a mosquito-borne viral disease with an increasing incidence worldwide. Thrombocytopenia is a common finding in dengue virus (DV) infection; however, the underlying mechanisms remain unknown. CASE REPORT Here we provide the first evidence of a case of antibody formation against ADAMTS13 (ADAMTS13 inhibitor) in the course of a severe acute DV infection resulting in thrombotic microangiopathy (TMA). The patient presented with classical dengue symptoms (positive epidemiology, high fever, myalgia, predominantly in the lower limbs and lumbar region for 1 week) and, after 11 days of initial symptoms, developed TMA. Clinical and laboratorial investigation of dengue and TMA was performed. RESULTS The patient presented with ADAMTS13 inhibitor (IgG) during the acute phase of the disease, without anti-platelet antibodies detectable. Dengue infection had laboratorial confirmation. There were excellent clinical and laboratory responses to 11 serial plasma exchanges. Anti-ADAMTS13 inhibitor disappeared after remission of TMA and dengue resolution. No recurrence of TMA symptoms was observed after 2-year follow-up. CONCLUSIONS Although the real incidence of dengue-related TMA is unknown, this case provides the basis for future epidemiologic studies on acquired ADAMTS13 deficiency in DV infection. The prompt clinical recognition of this complication and early installment of specific therapy with plasma exchange are likely to improve the outcome of severe cases of dengue. PMID:19788513

  10. Anti-Dengue Virus Constituents from Formosan Zoanthid Palythoa mutuki

    PubMed Central

    Lee, Jin-Ching; Chang, Fang-Rong; Chen, Shu-Rong; Wu, Yu-Hsuan; Hu, Hao-Chun; Wu, Yang-Chang; Backlund, Anders; Cheng, Yuan-Bin

    2016-01-01

    A new marine ecdysteroid with an α-hydroxy group attaching at C-4 instead of attaching at C-2 and C-3, named palythone A (1), together with eight known compounds (2–9) were obtained from the ethanolic extract of the Formosan zoanthid Palythoa mutuki. The structures of those compounds were mainly determined by NMR spectroscopic data analyses. The absolute configuration of 1 was further confirmed by comparing experimental and calculated circular dichroism (CD) spectra. Anti-dengue virus 2 activity and cytotoxicity of five isolated compounds were evaluated using virus infectious system and [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assays, respectively. As a result, peridinin (9) exhibited strong antiviral activity (IC50 = 4.50 ± 0.46 μg/mL), which is better than that of the positive control, 2′CMC. It is the first carotene-like substance possessing anti-dengue virus activity. In addition, the structural diversity and bioactivity of the isolates were compared by using a ChemGPS–NP computational analysis. The ChemGPS–NP data suggested natural products with anti-dengue virus activity locate closely in the chemical space. PMID:27517937

  11. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    DTIC Science & Technology

    1980-01-01

    1973). Sabin (1948) showed that attenuated dpngiie, passed through mosquitoes, did not revert to pathogenicity frnr man. -7- Thus even if the vaccine ...AD-A138 518 PATHOGENESIS OF DENGUE VACCINE YIRUSES IN MOSQUITOES 1/ (U) YALE UNIV NEW HAVEN CONN SCHOOL OF MEDICINE B J BEATY ET AL. 9i JAN 80 DRND7...34 ’ UNCLASSIFIED 0{) AD 0Pathogenesis of dengue vaccine viruses in mosquitoes -First Annual Report Barry I. Beaty, Ph.D. Thomas H. G

  12. The Incubation Periods of Dengue Viruses

    PubMed Central

    Chan, Miranda; Johansson, Michael A.

    2012-01-01

    Dengue viruses are major contributors to illness and death globally. Here we analyze the extrinsic and intrinsic incubation periods (EIP and IIP), in the mosquito and human, respectively. We identified 146 EIP observations from 8 studies and 204 IIP observations from 35 studies. These data were fitted with censored Bayesian time-to-event models. The best-fitting temperature-dependent EIP model estimated that 95% of EIPs are between 5 and 33 days at 25°C, and 2 and 15 days at 30°C, with means of 15 and 6.5 days, respectively. The mean IIP estimate was 5.9 days, with 95% expected between days 3 and 10. Differences between serotypes were not identified for either incubation period. These incubation period models should be useful in clinical diagnosis, outbreak investigation, prevention and control efforts, and mathematical modeling of dengue virus transmission. PMID:23226436

  13. Human dengue virus serotype 2 neutralizing antibodies target two distinct quaternary epitopes

    PubMed Central

    Gallichotte, Emily N.; Baric, Thomas J.; Widman, Douglas G.; Whitehead, Steve; Baric, Ralph S.; de Silva, Aravinda M.

    2018-01-01

    Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever and dengue shock syndrome. It is estimated that a third of the world’s population is at risk for infection, with an estimated 390 million infections annually. Dengue virus serotype 2 (DENV2) causes severe epidemics, and the leading tetravalent dengue vaccine has lower efficacy against DENV2 compared to the other 3 serotypes. In natural DENV2 infections, strongly neutralizing type-specific antibodies provide protection against subsequent DENV2 infection. While the epitopes of some human DENV2 type-specific antibodies have been mapped, it is not known if these are representative of the polyclonal antibody response. Using structure-guided immunogen design and reverse genetics, we generated a panel of recombinant viruses containing amino acid alterations and epitope transplants between different serotypes. Using this panel of recombinant viruses in binding, competition, and neutralization assays, we have finely mapped the epitopes of three human DENV2 type-specific monoclonal antibodies, finding shared and distinct epitope regions. Additionally, we used these recombinant viruses and polyclonal sera to dissect the epitope-specific responses following primary DENV2 natural infection and monovalent vaccination. Our results demonstrate that antibodies raised following DENV2 infection or vaccination circulate as separate populations that neutralize by occupying domain III and domain I quaternary epitopes. The fraction of neutralizing antibodies directed to different epitopes differs between individuals. The identification of these epitopes could potentially be harnessed to evaluate epitope-specific antibody responses as correlates of protective immunity, potentially improving vaccine design. PMID:29481552

  14. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, H.-P.; Hsieh, S.-C.; King, C.-C.

    In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibitedmore » by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates.« less

  15. Detection of dengue virus type 4 in Easter Island, Chile.

    PubMed

    Fernández, J; Vera, L; Tognarelli, J; Fasce, R; Araya, P; Villagra, E; Roos, O; Mora, J

    2011-10-01

    We report the detection of dengue virus type 4 (DENV-4) for the first time in Easter Island, Chile. The virus was detected in serum samples of two patients treated at the Hospital in Easter Island. The two samples were IgM positive, and the infection was confirmed by RT-PCR and genetic sequencing; viral isolation was possible with one of them. The Easter Island isolates were most closely related to genotype II of dengue type 4.

  16. Increased Levels of Txa₂ Induced by Dengue Virus Infection in IgM Positive Individuals Is Related to the Mild Symptoms of Dengue.

    PubMed

    Oliveira, Eneida S; Colombarolli, Stella G; Nascimento, Camila S; Batista, Izabella C A; Ferreira, Jorge G G; Alvarenga, Daniele L R; de Sousa, Laís O B; Assis, Rafael R; Rocha, Marcele N; Alves, Érica A R; Calzavara-Silva, Carlos E

    2018-02-28

    The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus -induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage.

  17. Maiden outbreaks of dengue virus 1 genotype III in rural central India.

    PubMed

    Barde, P V; Kori, B K; Shukla, M K; Bharti, P K; Chand, G; Kumar, G; Ukey, M J; Ali, N A; Singh, N

    2015-01-01

    Dengue is regarded as the most important arboviral disease. Although sporadic cases have been reported, serotypes responsible for outbreaks have not been identified from central India over the last 20 years. We investigated two outbreaks of febrile illness, in August and November 2012, from Korea district (Chhattisgarh) and Narsinghpur district (Madhya Pradesh), respectively. Fever and entomological surveys were conducted in the affected regions. Molecular and serological tests were conducted on collected serum samples. Dengue-specific amplicons were sequenced and phylogenetic analyses were performed. In Korea and Narsinghpur districts 37·3% and 59% of cases were positive, respectively, for dengue infection, with adults being the worst affected. RT-PCR confirmed dengue virus serotype 1 genotype III as the aetiology. Ninety-six percent of infections were primary. This is the first time that dengue virus 1 outbreaks have been documented from central India. Introduction of the virus into the population and a conducive mosquitogenic environment favouring increased vector density caused the outbreak. Timely diagnosis and strengthening vector control measures are essential to avoid future outbreaks.

  18. Superinfection interference between dengue-2 and dengue-4 viruses in Aedes aegypti mosquitoes.

    PubMed

    Muturi, Ephantus J; Buckner, Eva; Bara, Jeffrey

    2017-04-01

    Dengue virus consists of four antigenically distinct serotypes (DENV 1-4) that are transmitted to humans by Aedes aegypti and Aedes albopictus mosquitoes. In many dengue-endemic regions, co-circulation of two or more DENV serotypes is fairly common increasing the likelihood for exposure of the two vectors to multiple serotypes. We used a model system of DENV-2 and DENV-4 to investigate how prior exposure of Aedes aegypti to one DENV serotype affects its susceptibility to another serotype. Aedes aegypti mosquitoes were sequentially infected with DENV-2 and DENV-4 and the infection and dissemination rates for each virus determined. We found that prior infection of Ae. aegypti mosquitoes with DENV-4 rendered them significantly less susceptible to secondary infection with DENV-2. Although the results were not statistically significant, mosquitoes infected with DENV-2 were also less susceptible to secondary infection with DENV-4. The midgut dissemination and population dissemination rates for DENV-2 were significantly higher than those of DENV-4 when either virus was administered 7 days after administration of either a non-infectious blood meal or a blood meal containing a heterologous dengue serotype. These results demonstrate that superinfection interference between DENV serotypes is possible within Ae. aegypti mosquitoes, but its effect on DENV epidemiology may be dependent on the fitness of interacting serotypes. © 2017 John Wiley & Sons Ltd.

  19. The seroprevalence and seroincidence of dengue virus infection in western Kenya.

    PubMed

    Blaylock, Jason M; Maranich, Ashley; Bauer, Kristen; Nyakoe, Nancy; Waitumbi, John; Martinez, Luis J; Lynch, Julia

    2011-09-01

    Epidemics of dengue fever have been documented throughout the African continent over the past several decades, however little is known about the prevalence or incidence of dengue virus infection in the absence of an outbreak. No studies have analyzed the prevalence of dengue infection in western Kenya to date. This study describes the seroincidence and seroprevalence of dengue infection in western Kenya. Banked sera obtained from 354 healthy, afebrile children ages 12-47 months from Kisumu District, Kenya, were analyzed for antibodies to dengue virus using an IgG indirect ELISA. We found a seroprevalence of 1.1% (4 of 354 samples) and incidence of 8.5 seroconversions per 1000 persons per year in this study population. This appears to be similar to that previously reported in coastal regions of the country outside of known epidemic periods. Since there has never been a reported dengue epidemic in western Kenya, continued investigation and evaluation in a patient population presenting with fever is necessary to further confirm this finding. Published by Elsevier Ltd.

  20. Dengue virus infection in renal allograft recipients: a case series during 2010 outbreak.

    PubMed

    Prasad, N; Bhadauria, D; Sharma, R K; Gupta, A; Kaul, A; Srivastava, A

    2012-04-01

    Dengue virus infection is an emerging global threat caused by Arbovirus, a virus from Flaviridiae family, which is transmitted by mosquitoes, Aedes aegypti and Aedes albopictus. Renal transplant recipients who live in the endemic zones of dengue infection or who travel to an endemic zone could be at risk of this infection. Despite multiple epidemics and a high case fatality rate in the Southeast Asian region, only a few cases of dengue infection in renal transplant recipients have been reported. Here, we report a case series of 8 dengue viral infection in renal transplant recipients. Of the 8 patients, 3 developed dengue hemorrhagic shock syndrome and died. © 2011 John Wiley & Sons A/S.

  1. Evolution and heterogeneity of multiple serotypes of Dengue virus in Pakistan, 2006–2011

    PubMed Central

    2013-01-01

    Background Even though dengue has been recognized as one of the major public health threats in Pakistan, the understanding of its molecular epidemiology is still limited. The genotypic diversity of Dengue virus (DENV) serotypes involved in dengue outbreaks since 2005 in Pakistan is not well studied. Here, we investigated the origin, diversity, genetic relationships and geographic distribution of DENV to understand virus evolution during the recent expansion of dengue in Pakistan. Methods The study included 200 sera obtained from dengue-suspected patients from 2006 to 2011. DENV infection was confirmed in 94 (47%) sera by a polymerase chain reaction assay. These included 36 (38.3%) DENV-2, 57 DENV-3 (60.6%) and 1 DENV-4 (1.1%) cases. Sequences of 13 whole genomes (6 DENV-2, 6 DENV-3 and 1 DENV-4) and 49 envelope genes (26 DENV-2, 22 DENV-3 and 1 DENV-4) were analysed to determine the origin, phylogeny, diversity and selection pressure during virus evolution. Results DENV-2, DENV-3 and DENV-4 in Pakistan from 2006 to 2011 shared 98.5-99.6% nucleotide and 99.3-99.9% amino acid similarity with those circulated in the Indian subcontinent during the last decade. Nevertheless, Pakistan DENV-2 and DENV-3 strains formed distinct clades characterized by amino acid signatures of NS2A-I116T + NS5-K861R and NS3-K590R + NS5-S895L respectively. Each clade consisted of a heterogenous virus population that circulated in Southern (2006–2009) and Northern Pakistan (2011). Conclusions DENV-2, DENV-3 and DENV-4 that circulated during 2006–2011 are likely to have first introduced via the southern route of Pakistan. Both DENV-2 and DENV-3 have undergone in-situ evolution to generate heterogenous populations, possibly driven by sustained local DENV transmission during 2006–2011 periods. While both DENV-2 and DENV-3 continued to circulate in Southern Pakistan until 2009, DENV-2 has spread in a Northern direction to establish in Punjab Province, which experienced a massive dengue

  2. Identification of New Protein Interactions between Dengue Fever Virus and Its Hosts, Human and Mosquito

    PubMed Central

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L.

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host – dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies. PMID:23326450

  3. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    PubMed

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  4. Genetic stability of a dengue vaccine based on chimeric yellow fever/dengue viruses.

    PubMed

    Mantel, N; Girerd, Y; Geny, C; Bernard, I; Pontvianne, J; Lang, J; Barban, V

    2011-09-02

    A tetravalent dengue vaccine based on four live, attenuated, chimeric viruses (CYD1-4), constructed by replacing the genes coding for premembrane (prM) and envelope (E) proteins of the yellow fever (YF)-17D vaccine strain with those of the four serotypes of dengue virus, is in clinical phase III evaluation. We assessed the vaccine's genetic stability by fully sequencing each vaccine virus throughout the development and manufacturing process. The four viruses displayed complete genetic stability, with no change from premaster seed lots to bulk lots. When pursuing the virus growth beyond bulk lots, a few genetic variations were observed. Usually both the initial nucleotide and the new one persisted, and mutations appeared after a relatively high number of virus duplication cycles (65-200, depending on position). Variations were concentrated in the prM-E and non-structural (NS)4B regions. PrM-E variations had no impact on lysis-plaque size or neurovirulence in mice. None of the variations located in the YF-17D-derived genes corresponded with reversion to the wild-type Yellow Fever sequence. Variations in NS4B likely reflect virus adaptation to Vero cells growth. A low to undetectable viremia has been reported previously [1-3] in vaccinated non-human and human primates. Combined with the data reported here about the genetic stability of the vaccine strains, the probability of in vivo emergence of mutant viruses appears very low. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of Indonesian Adults in Western Java.

    PubMed

    Kosasih, Herman; Alisjahbana, Bachti; Nurhayati; de Mast, Quirijn; Rudiman, Irani F; Widjaja, Susana; Antonjaya, Ungke; Novriani, Harli; Susanto, Nugroho H; Jusuf, Hadi; van der Ven, Andre; Beckett, Charmagne G; Blair, Patrick J; Burgess, Timothy H; Williams, Maya; Porter, Kevin R

    2016-02-01

    Dengue has emerged as one of the most important infectious diseases in the last five decades. Evidence indicates the expansion of dengue virus endemic areas and consequently the exponential increase of dengue virus infections across the subtropics. The clinical manifestations of dengue virus infection include sudden fever, rash, headache, myalgia and in more serious cases, spontaneous bleeding. These manifestations occur in children as well as in adults. Defining the epidemiology of dengue in a given area is critical to understanding the disease and devising effective public health strategies. Here, we report the results from a prospective cohort study of 4380 adults in West Java, Indonesia, from 2000-2004 and 2006-2009. A total of 2167 febrile episodes were documented and dengue virus infections were confirmed by RT-PCR or serology in 268 cases (12.4%). The proportion ranged from 7.6 to 41.8% each year. The overall incidence rate of symptomatic dengue virus infections was 17.3 cases/1,000 person years and between September 2006 and April 2008 asymptomatic infections were 2.6 times more frequent than symptomatic infections. According to the 1997 WHO classification guidelines, there were 210 dengue fever cases, 53 dengue hemorrhagic fever cases (including one dengue shock syndrome case) and five unclassified cases. Evidence for sequential dengue virus infections was seen in six subjects. All four dengue virus serotypes circulated most years. Inapparent dengue virus infections were predominantly associated with DENV-4 infections. Dengue virus was responsible for a significant percentage of febrile illnesses in an adult population in West Java, Indonesia, and this percentage varied from year to year. The observed incidence rate during the study period was 43 times higher than the reported national or provincial rates during the same time period. A wide range of clinical severity was observed with most infections resulting in asymptomatic disease. The circulation of

  6. Evaluation of single-round infectious, chimeric dengue type 1 virus as an antigen for dengue functional antibody assays.

    PubMed

    Yamanaka, Atsushi; Suzuki, Ryosuke; Konishi, Eiji

    2014-07-23

    Dengue fever and dengue hemorrhagic fever are endemic throughout tropical and subtropical countries. Four serotypes of dengue viruses (DENV-1 to DENV-4), each with several genotypes including various subclades, are co-distributed in most endemic areas. Infection-neutralizing and -enhancing antibodies are believed to play protective and pathogenic roles, respectively. Measurement of these functional antibodies against a variety of viral strains is thus important for evaluating coverage and safety of dengue vaccine candidates. Although transportation of live virus materials beyond national borders is increasingly limited, this difficulty may be overcome using biotechnology that enables generation of an antibody-assay antigen equivalent to authentic virus based on viral sequence information. A rapid system to produce flavivirus single-round infectious particles (SRIPs) was recently developed using a Japanese encephalitis virus (JEV) subgenomic replicon plasmid. This system allows production of chimeric SRIPs that have surface proteins of other flaviviruses. In the present study, SRIPs of DENV-1 (D1-SRIPs) were evaluated as an antigen for functional antibody assays. Inclusion of the whole mature capsid gene of JEV into the replicon plasmid provided higher D1-SRIP yields than did its exclusion in cases where a DENV-1 surface-protein-expressing plasmid was used for co-transfection of 293T cells with the replicon plasmid. In an assay to measure the balance between neutralizing and enhancing activities, dose (antibody dilution)-dependent activity curves in dengue-immune human sera or mouse monoclonal antibodies obtained using D1-SRIP antigen were equivalent to those obtained using DENV-1 antigen. Similar results were obtained using additional DENV-2 and DENV-3 systems. In a conventional Vero-cell neutralization test, a significant correlation was shown between antibody titers obtained using D1-SRIP and DENV-1 antigens. These results demonstrate the utility of D1-SRIPs as

  7. Functionality of Dengue Virus Specific Memory T Cell Responses in Individuals Who Were Hospitalized or Who Had Mild or Subclinical Dengue Infection

    PubMed Central

    Jeewandara, Chandima; Adikari, Thiruni N.; Gomes, Laksiri; Fernando, Samitha; Fernando, R. H.; Perera, M. K. T.; Ariyaratne, Dinuka; Kamaladasa, Achala; Salimi, Maryam; Prathapan, Shamini

    2015-01-01

    Background Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood. Methodology/Principal findings Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus. Conclusions/significance The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials. PMID:25875020

  8. Inhibitor designing, virtual screening, and docking studies for methyltransferase: A potential target against dengue virus

    PubMed Central

    Singh, Jagbir; Kumar, Mahesh; Mansuri, Rani; Sahoo, Ganesh Chandra; Deep, Aakash

    2016-01-01

    Aim: Aim of this work was to design and identify some S-adenosyl-L-homocysteine (SAH) analogs as inhibitors of S-adenosyl-L-methionine-dependent methyltransferase (MTase) protein using computational approaches. Introduction: According to the current scenario the dengue has been a global burden. The people are being killed by dengue virus in an abundant number. Despite of lot of research being going on dengue worldwide, there is no single drug which can kill its virus. This creates an urge for new drug target identification and designing. MTase has been reported as an effective target against dengue virus as it catalyzes an essential step in methylation and capping of viral RNA for viral replication. Materials and Methods: The crystal structure of MTase in complex with SAH was used for designing new analogs of SAH. SAH analogs designed were analyzed on the basis of docking, ADMET, and toxicity analysis done using Discovery Studio 3.5. Results: Seventeen analogs found noncarcinogenic, nonmutagenic, as well as good ADMET properties and good drug-like profile. Conclusion: These SAH analogs, inhibitors of MTase may act as drugs against dengue virus. Further synthesis and biological testing against dengue virus is under observation. PMID:27413346

  9. Identification of novel target sites and an inhibitor of the dengue virus E protein.

    PubMed

    Yennamalli, Ragothaman; Subbarao, Naidu; Kampmann, Thorsten; McGeary, Ross P; Young, Paul R; Kobe, Bostjan

    2009-06-01

    Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the pre-fusion and post-fusion structures of the dengue virus E protein to identify potential novel sites that could bind small molecules, which could interfere with the conformational transitions that mediate the fusion process. We used an in silico virtual screening approach combining three different docking algorithms (DOCK, GOLD and FlexX) to identify compounds that are likely to bind to these sites. Seven structurally diverse molecules were selected to test experimentally for inhibition of dengue virus propagation. The best compound showed an IC(50) in the micromolar range against dengue virus type 2.

  10. Identification of novel target sites and an inhibitor of the dengue virus E protein

    NASA Astrophysics Data System (ADS)

    Yennamalli, Ragothaman; Subbarao, Naidu; Kampmann, Thorsten; McGeary, Ross P.; Young, Paul R.; Kobe, Bostjan

    2009-06-01

    Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the pre-fusion and post-fusion structures of the dengue virus E protein to identify potential novel sites that could bind small molecules, which could interfere with the conformational transitions that mediate the fusion process. We used an in silico virtual screening approach combining three different docking algorithms (DOCK, GOLD and FlexX) to identify compounds that are likely to bind to these sites. Seven structurally diverse molecules were selected to test experimentally for inhibition of dengue virus propagation. The best compound showed an IC50 in the micromolar range against dengue virus type 2.

  11. Mathematical analysis of dengue virus antibody dynamics

    NASA Astrophysics Data System (ADS)

    Perera, Sulanie; Perera, SSN

    2018-03-01

    Dengue is a mosquito borne viral disease causing over 390 million infections worldwide per annum. Even though information on how infection is controlled and eradicated from the body is lacking, antibodies are thought to play a major role in clearing the virus. In this paper, a non-linear conceptual dynamical model with humoral immune response and absorption effect has been proposed for primary dengue infection. We have included the absorption of pathogens into uninfected cells since this effect causes the virus density in the blood to decrease. The time delay that arises in the production of antibodies was accounted and is introduced through a continuous function. The basic reproduction number R0 is computed and a detailed stability analysis is done. Three equilibrium states, namely the infection free equilibrium, no immune equilibrium and the endemic equilibrium were identified and the existence and the stability conditions of these steady states were obtained. Numerical simulations proved the results that were obtained. By establishing the characteristic equation of the model at infection free equilibrium, it was observed that the infection free equilibrium is locally asymptotically stable if R0 < 1. A threshold value for the antibody production rate was identified for which the infection gets completely cured even if R0 > 1. Stability regions are identified for infection free equilibrium state with respect to the external variables and it is observed as the virus burst rate increases, the stability regions would decrease. These results implied that for higher virus burst rates, other conditions in the body must be strong enough to eliminate the disease completely from the host. The effect of time delay of antibody production on virus dynamics is discussed. It was seen that as the time delay in production of antibodies increases, the time for viral decline also increased. Also it was observed that the virus count goes to negligible levels within 7 - 14 days after

  12. Antiviral activity of four types of bioflavonoid against dengue virus type-2.

    PubMed

    Zandi, Keivan; Teoh, Boon-Teong; Sam, Sing-Sin; Wong, Pooi-Fong; Mustafa, Mohd Rais; Abubakar, Sazaly

    2011-12-28

    Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound. The half maximal inhibitory concentration (IC50) of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA) were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1) reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other bioflavonoids, including daidzein, naringin and

  13. Increased Levels of Txa2 Induced by Dengue Virus Infection in IgM Positive Individuals Is Related to the Mild Symptoms of Dengue

    PubMed Central

    Oliveira, Eneida S.; Colombarolli, Stella G.; Nascimento, Camila S.; Batista, Izabella C. A.; Ferreira, Jorge G. G.; Alvarenga, Daniele L. R.; de Sousa, Laís O. B.; Assis, Rafael R.; Rocha, Marcele N.; Alves, Érica A. R.; Calzavara-Silva, Carlos E.

    2018-01-01

    The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus-induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage. PMID:29495587

  14. Incidence and seroprevalence of dengue virus infections in Australian travellers to Asia.

    PubMed

    Ratnam, I; Black, J; Leder, K; Biggs, B-A; Matchett, E; Padiglione, A; Woolley, I; Panagiotidis, T; Gherardin, T; Pollissard, L; Demont, C; Luxemburger, C; Torresi, J

    2012-06-01

    The purpose of this study was to estimate the incidence density and prevalence of dengue virus infection in Australian travellers to Asia. We conducted a multi-centre prospective cohort study of Australian travellers over a 32-month period. We recruited 467 travellers (≥ 16 years of age) from three travel clinics who intended to travel Asia, and 387 (82.9%) of those travellers completed questionnaires and provide samples pre- and post-travel for serological testing for dengue virus infection. Demographic data, destination countries and history of vaccinations and flavivirus infections were obtained. Serological testing for dengue IgG and IgM by enzyme-linked immunosorbent assay (ELISA) (PanBio assay) was performed. Acute seroconversion for dengue infection was demonstrated in 1.0% of travellers, representing an incidence of 3.4 infections per 10,000 days of travel (95% confidence interval [CI]: 0.9-8.7). The seroprevalence of dengue infection was 4.4% and a greater number of prior trips to Asia was a predictor for dengue seroprevalence (p = 0.019). All travellers experienced subclinical dengue infections and had travelled to India (n = 3) and China (n = 1). This significant attack rate of dengue infection can be used to advise prospective travellers to dengue-endemic countries.

  15. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin.

    PubMed

    Peng, Minhua; Watanabe, Satoru; Chan, Kitti Wing Ki; He, Qiuyan; Zhao, Ya; Zhang, Zhongde; Lai, Xiaoping; Luo, Dahai; Vasudevan, Subhash G; Li, Geng

    2017-07-01

    In many countries afflicted with dengue fever, traditional medicines are widely used as panaceas for illness, and here we describe the systematic evaluation of a widely known natural product, luteolin, originating from the "heat clearing" class of herbs. We show that luteolin inhibits the replication of all four serotypes of dengue virus, but the selectivity of the inhibition was weak. In addition, ADE-mediated dengue virus infection of human cell lines and primary PBMCs was inhibited. In a time-of-drug-addition study, luteolin was found to reduce infectious virus particle formation, but not viral RNA synthesis, in Huh-7 cells. During the virus life cycle, the host protease furin cleaves the pr moiety from prM protein of immature virus particles in the trans-Golgi network to produce mature virions. Analysis of virus particles from luteolin-treated cells revealed that prM was not cleaved efficiently. Biochemical interrogation of human furin showed that luteolin inhibited the enzyme activity in an uncompetitive manner, with Ki value of 58.6 μM, suggesting that treatment may restrict the virion maturation process. Luteolin also exhibited in vivo antiviral activity in mice infected with DENV, causing reduced viremia. Given the mode of action of luteolin and its widespread source, it is possible that it can be tested in combination with other dengue virus inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mosquitoes infected with dengue viruses in Brazil

    PubMed Central

    2010-01-01

    Dengue epidemics have been reported in Brazil since 1985. The scenery has worsened in the last decade because several serotypes are circulating and producing a hyper-endemic situation, with an increase of DHF/DSS cases as well as the number of fatalities. Herein, we report dengue virus surveillance in mosquitoes using a Flavivirus genus-specific RT-Hemi-Nested-PCR assay. The mosquitoes (Culicidae, n = 1700) collected in the Northeast, Southeast and South of Brazil, between 1999 and 2005, were grouped into 154 pools. Putative genomes of DENV-1, -2 and -3 were detected in 6 mosquito pools (3.8%). One amplicon of putative DENV-1 was detected in a pool of Haemagogus leucocelaenus suggesting that this virus could be involved in a sylvatic cycle. DENV-3 was found infecting 3 pools of larvae of Aedes albopictus and the nucleotide sequence of one of these viruses was identified as DENV-3 of genotype III, phylogenetically related to other DENV-3 isolated in Brazil. This is the first report of a nucleotide sequence of DENV-3 from larvae of Aedes albopictus. PMID:20624314

  17. Characteristics of Mild Dengue Virus Infection in Thai Children

    DTIC Science & Technology

    2013-12-01

    disease burden assessments, transmissionmodeling, and determination of vaccine impact. INTRODUCTION Dengue virus (DENV) causes more human morbidity and...or symp- tom combination associated with dengue severity , although our analysis was limited by the small number of contacts with severe disease ...sur- veillance method in defining illness for purposes such as disease burden assessments, transmission modeling, and determination of vaccine impact

  18. Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae).

    PubMed

    Silva, Jéssica Barreto Lopes; Magalhães Alves, Debora; Bottino-Rojas, Vanessa; Pereira, Thiago Nunes; Sorgine, Marcos Henrique Ferreira; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2017-01-01

    Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium's ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.

  19. Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae)

    PubMed Central

    Silva, Jéssica Barreto Lopes; Magalhães Alves, Debora; Bottino-Rojas, Vanessa; Pereira, Thiago Nunes; Sorgine, Marcos Henrique Ferreira; Caragata, Eric Pearce

    2017-01-01

    Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium’s ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field. PMID:28732048

  20. Inhibitory effect of the green tea molecule EGCG against dengue virus infection.

    PubMed

    Raekiansyah, Muhareva; Buerano, Corazon C; Luz, Mark Anthony D; Morita, Kouichi

    2018-06-01

    Dengue virus (DENV) infection is a major public health problem worldwide; however, specific antiviral drugs against it are not available. Hence, identifying effective antiviral agents for the prevention of DENV infection is important. In this study, we showed that the reportedly highly biologically active green-tea component epigallocatechin gallate (EGCG) inhibited dengue virus infection regardless of infecting serotype, but no or minimal inhibition was observed with other flaviviruses, including Japanese encephalitis virus, yellow fever virus, and Zika virus. EGCG exerted its antiviral effect mainly at the early stage of infection, probably by interacting directly with virions to prevent virus infection. Our results suggest that EGCG specifically targets DENV and might be used as a lead structure to develop an antiviral drug for use against the virus.

  1. Dengue virus life cycle: viral and host factors modulating infectivity.

    PubMed

    Rodenhuis-Zybert, Izabela A; Wilschut, Jan; Smit, Jolanda M

    2010-08-01

    Dengue virus (DENV 1-4) represents a major emerging arthropod-borne pathogen. All four DENV serotypes are prevalent in the (sub) tropical regions of the world and infect 50-100 million individuals annually. Whereas the majority of DENV infections proceed asymptomatically or result in self-limited dengue fever, an increasing number of patients present more severe manifestations, such as dengue hemorrhagic fever and dengue shock syndrome. In this review we will give an overview of the infectious life cycle of DENV and will discuss the viral and host factors that are important in controlling DENV infection.

  2. Imported dengue virus serotype 1 from Madeira to Finland 2012.

    PubMed

    Huhtamo, E; Korhonen, Em; Vapalahti, O

    2013-02-21

    Imported dengue cases originating from the Madeiran outbreak are increasingly reported. In 2012 five Finnish travellers returning from Madeira were diagnosed with dengue fever. Viral sequence data was obtained from two patients. The partial C-preM sequences (399 and 396 bp respectively) were found similar to that of an autochthonous case from Madeira. The partial E-gene sequence (933 bp) which was identical among the two patients grouped phylogenetically with South American strains of dengue virus serotype 1.

  3. Dengue Virus Type 2 in Travelers Returning to Japan from Sri Lanka, 2017.

    PubMed

    Tsuboi, Motoyuki; Kutsuna, Satoshi; Maeki, Takahiro; Taniguchi, Satoshi; Tajima, Shigeru; Kato, Fumihiro; Lim, Chang-Kweng; Saijo, Masayuki; Takaya, Saho; Katanami, Yuichi; Kato, Yasuyuki; Ohmagari, Norio

    2017-11-01

    In June 2017, dengue virus type 2 infection was diagnosed in 2 travelers returned to Japan from Sri Lanka, where the country's largest dengue fever outbreak is ongoing. Travelers, especially those previously affected by dengue fever, should take measures to avoid mosquito bites.

  4. Dengue Virus Infection of Mast Cells Triggers Endothelial Cell Activation ▿

    PubMed Central

    Brown, Michael G.; Hermann, Laura L.; Issekutz, Andrew C.; Marshall, Jean S.; Rowter, Derek; Al-Afif, Ayham; Anderson, Robert

    2011-01-01

    Vascular perturbation is a hallmark of severe forms of dengue disease. We show here that antibody-enhanced dengue virus infection of primary human cord blood-derived mast cells (CBMCs) and the human mast cell-like line HMC-1 results in the release of factor(s) which activate human endothelial cells, as evidenced by increased expression of the adhesion molecules ICAM-1 and VCAM-1. Endothelial cell activation was prevented by pretreatment of mast cell-derived supernatants with a tumor necrosis factor (TNF)-specific blocking antibody, thus identifying TNF as the endothelial cell-activating factor. Our findings suggest that mast cells may represent an important source of TNF, promoting vascular endothelial perturbation following antibody-enhanced dengue virus infection. PMID:21068256

  5. Dengue and dengue haemorrhagic fever: Indian perspective.

    PubMed

    Chaturvedi, U C; Nagar, Rachna

    2008-11-01

    The relationship of this country with dengue has been long and intense. The ?rst recorded epidemic of clinically dengue-like illness occurred at Madras in 1780 and the dengue virus was isolated for the ?rst time almost simultaneously in Japan and Calcutta in 1943-1944. After the ?rst virologically proved epidemic of dengue fever along the East Coast of India in 1963-1964, it spread to allover the country.The ?rst full-blown epidemic of the severe form of the illness,the dengue haemorrhagic fever/dengue shock syndrome occurred in North India in 1996. Aedes aegypti is the vector for transmission of the disease. Vaccines or antiviral drugs are not available for dengue viruses; the only effective way to prevent epidemic degure fever/dengue haemorrhagic fever (DF/DHF) is to control the mosquito vector, Aedes aegypti and prevent its bite. This country has few virus laboratories and some of them have done excellent work in the area of molecular epidemiology,immunopathology and vaccine development. Selected work done in this country on the problems of dengue is presented here.

  6. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil.

    PubMed

    Drumond, Betania Paiva; Fagundes, Luiz Gustavo da Silva; Rocha, Raissa Prado; Fumagalli, Marcilio Jorge; Araki, Carlos Shigueru; Colombo, Tatiana Elisa; Nogueira, Mauricio Lacerda; Castilho, Thiago Elias; da Silveira, Nelson José Freitas; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-01-01

    Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1-4) are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER) when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by

  7. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil

    PubMed Central

    Drumond, Betania Paiva; da Silva Fagundes, Luiz Gustavo; Rocha, Raissa Prado; Fumagalli, Marcilio Jorge; Araki, Carlos Shigueru; Colombo, Tatiana Elisa; Nogueira, Mauricio Lacerda; Castilho, Thiago Elias; da Silveira, Nelson José Freitas; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-01-01

    Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1–4) are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER) when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population. PMID:26887252

  8. Optical diagnosis of dengue virus infected human blood using Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Firdous, Shamaraz

    2016-08-01

    Currently dengue fever diagnosis methods include capture ELISAs, immunofluorescence tests, and hemagglutination assays. In this study optical diagnosis of dengue virus infection in the whole blood is presented utilizing Mueller matrix polarimetry. Mueller matrices of about 50 dengue viral infected and 25 non-dengue healthy blood samples were recorded utilizing light source from 500 to 700 nm with scanning step of 10 nm. Polar decomposition of the Mueller matrices for all the blood samples was performed that yielded polarization properties including depolarization, diattenuation, degree of polarization, retardance and optical activity, out of which, depolarization index clusters up the diseased and healthy in to different separate groups. The average depolarized light in the case of dengue infection in the whole blood at 500 nm is 18%, whereas for the healthy blood samples it is 13.5%. This suggests that depolarization index of polarized light at the wavelengths of 500, 510, 520, 530 and 540 nm, we find that in case of depolarization index values are higher for dengue viral infection as compared to normal samples. This technique can effectively be used for the characterization of the dengue virus infected at an early stage of disease.

  9. Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females

    PubMed Central

    Luz, Paula M.; Castro, Márcia G.; Lourenço-de-Oliveira, Ricardo; Sorgine, Marcos H. F.; Peixoto, Alexandre A.

    2011-01-01

    Background Aedes aegypti is the main vector of the virus causing Dengue fever, a disease that has increased dramatically in importance in recent decades, affecting many tropical and sub-tropical areas of the globe. It is known that viruses and other parasites can potentially alter vector behavior. We investigated whether infection with Dengue virus modifies the behavior of Aedes aegypti females with respect to their activity level. Methods/Principal Findings We carried out intrathoracic Dengue 2 virus (DENV-2) infections in Aedes aegypti females and recorded their locomotor activity behavior. We observed an increase of up to ∼50% in the activity of infected mosquitoes compared to the uninfected controls. Conclusions Dengue infection alters mosquito locomotor activity behavior. We speculate that the higher levels of activity observed in infected Aedes aegypti females might involve the circadian clock. Further studies are needed to assess whether this behavioral change could have implications for the dynamics of Dengue virus transmission. PMID:21408119

  10. Cross reactivity of commercial anti-dengue immunoassays in patients with acute Zika virus infection.

    PubMed

    Felix, Alvina Clara; Souza, Nathalia C Santiago; Figueiredo, Walter M; Costa, Angela A; Inenami, Marta; da Silva, Rosangela M G; Levi, José Eduardo; Pannuti, Claudio Sergio; Romano, Camila Malta

    2017-08-01

    Several countries have local transmission of multiple arboviruses, in particular, dengue and Zika viruses, which have recently spread through many American countries. Cross reactivity among Flaviviruses is high and present a challenge for accurate identification of the infecting agent. Thus, we evaluated the level of cross reactivity of anti-dengue IgM/G Enzyme-Linked Immunosorbent Assays (ELISA) from three manufacturers against 122 serum samples obtained at two time-points from 61 patients with non-dengue confirmed Zika virus infection. All anti-dengue ELISAs cross reacted with serum from patients with acute Zika infection at some level and a worrisome number of seroconversion for dengue IgG and IgM was observed. These findings may impact the interpretation of currently standard criteria for dengue diagnosis in endemic regions. © 2017 Wiley Periodicals, Inc.

  11. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    PubMed

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  12. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    PubMed Central

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  13. Deployable, Field-Sustainable, Reverse Transcription-Polymerase Chain Reaction Assays for Rapid Screening and Serotype Identification of Dengue Virus in Mosquitoes

    DTIC Science & Technology

    2007-03-01

    C, Gottig S, Schiiiing S, et ai: Rapid detection and quantiilcation of RNA of Eboia and Marburg viruses, L.assa virus, Crimean - Congo hemorrhagic fever ...the past two decades, dengue fever (DF) and the poten- tially fatal forms ofthe disease, dengue hemorrhagic fever (DHF) and dengue shock syndrome, have...Viroi 2003; 77: i 1436-47. 5. Gubler DJ: Dengue and dengue hemorrhagic fever . Ciin Microbiol Rev 1998; 11: 480-96. 6. Fonseca BA, Fonseca SN: Dengue virus

  14. Unrecognized Dengue Virus Infections in Children, Western Kenya, 2014-2015.

    PubMed

    Vu, David M; Mutai, Noah; Heath, Claire J; Vulule, John M; Mutuku, Francis M; Ndenga, Bryson A; LaBeaud, A Desiree

    2017-11-01

    We detected a cluster of dengue virus infections in children in Kenya during July 2014-June 2015. Most cases were serotype 1, but we detected all 4 serotypes, including co-infections with 2 serotypes. Our findings implicate dengue as a cause of febrile illness in this population and highlight a need for robust arbovirus surveillance.

  15. Prevention and Control Strategies to Counter Dengue Virus Infection.

    PubMed

    Rather, Irfan A; Parray, Hilal A; Lone, Jameel B; Paek, Woon K; Lim, Jeongheui; Bajpai, Vivek K; Park, Yong-Ha

    2017-01-01

    Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.

  16. Prevention and Control Strategies to Counter Dengue Virus Infection

    PubMed Central

    Rather, Irfan A.; Parray, Hilal A.; Lone, Jameel B.; Paek, Woon K.; Lim, Jeongheui; Bajpai, Vivek K.; Park, Yong-Ha

    2017-01-01

    Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus. PMID:28791258

  17. Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference.

    PubMed

    Sze, Alexandre; Olagnier, David; Hadj, Samar Bel; Han, Xiaoying; Tian, Xiao Hong; Xu, Hong-Tao; Yang, Long; Shi, Qingwen; Wang, Penghua; Wainberg, Mark A; Wu, Jian Hui; Lin, Rongtuan

    2017-10-03

    Flaviviruses including Zika, Dengue and Hepatitis C virus cause debilitating diseases in humans, and the former are emerging as global health concerns with no antiviral treatments. We investigated Sophora Flavecens , used in Chinese medicine, as a source for antiviral compounds. We isolated Sophoraflavenone G and found that it inhibited Hepatitis C replication, but not Sendai or Vesicular Stomatitis Virus. Pre- and post-infection treatments demonstrated anti-flaviviral activity against Dengue and Zika virus, via viral RNA polymerase inhibition. These data suggest that Sophoraflavenone G represents a promising candidate regarding anti-Flaviviridae research.

  18. Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference

    PubMed Central

    Sze, Alexandre; Olagnier, David; Bel Hadj, Samar; Han, Xiaoying; Hong Tian, Xiao; Xu, Hong-Tao; Yang, Long; Shi, Qingwen; Wang, Penghua; Wainberg, Mark A.; Hui Wu, Jian

    2017-01-01

    Flaviviruses including Zika, Dengue and Hepatitis C virus cause debilitating diseases in humans, and the former are emerging as global health concerns with no antiviral treatments. We investigated Sophora Flavecens, used in Chinese medicine, as a source for antiviral compounds. We isolated Sophoraflavenone G and found that it inhibited Hepatitis C replication, but not Sendai or Vesicular Stomatitis Virus. Pre- and post-infection treatments demonstrated anti-flaviviral activity against Dengue and Zika virus, via viral RNA polymerase inhibition. These data suggest that Sophoraflavenone G represents a promising candidate regarding anti-Flaviviridae research. PMID:28972551

  19. Aedes aegypti from temperate regions of South America are highly competent to transmit dengue virus

    PubMed Central

    2013-01-01

    Background Aedes aegypti is extensively spread throughout South America where it has been responsible for large dengue epidemics during the last decades. Intriguingly, dengue transmission has not been reported in Uruguay and is essentially prevalent in subtropical northern Argentina which borders Uruguay. Methods We assessed vector competence for dengue virus (DENV) of Ae. aegypti populations collected in subtropical Argentina (Corrientes) as well as temperate Uruguay (Salto) and Argentina (Buenos Aires) in 2012 using experimental oral infections with DENV-2. Mosquitoes were incubated at 28°C and examined at 14 and 21 days p.i. to access viral dissemination and transmission. Batches of the Buenos Aires mosquitoes were also incubated at 15°C and 20°C. Results Although mosquitoes from temperate Uruguay and Argentina were competent to transmit DENV, those from subtropical Argentina were more susceptible, displaying the highest virus titters in the head and presenting the highest dissemination of infection and transmission efficiency rates when incubated at 28°C. Interestingly, infectious viral particles could be detected in saliva of mosquitoes from Buenos Aires exposed to 15°C and 20°C. Conclusions There is a potential risk of establishing DENV transmission in Uruguay and for the spread of dengue outbreaks to other parts of subtropical and temperate Argentina, notably during spring and summer periods. PMID:24373423

  20. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-05-31

    Although there have been considerable advances in the study of dengue virus, no vaccines or anti-dengue drugs are currently available for humans. Therefore, new approaches are necessary for the development of potent anti-dengue drugs. Natural antimicrobial peptides (AMPs) with potent antiviral activities are potential hits-to-leads for antiviral drug discovery. We performed this study to identify and characterise the inhibitory potential of the latarcin peptide (Ltc 1, SMWSGMWRRKLKKLRNALKKKLKGE) against dengue virus replication in infected cells. The Ltc 1 peptide showed a significantly inhibitory effect against the dengue protease NS2B-NS3pro at 37°C, a physiological human temperature, (IC50, 12.68 ± 3.2 μM), and greater inhibitory effect was observed at 40°C, a temperature similar to a high fever (IC50, 6.58 ± 4.1 μM). A greater reduction in viral load (p.f.u./ml) was observed at simultaneous (0.7 ± 0.3 vs. 7.2 ± 0.5 control) and post-treatment (1.8 ± 0.7 vs. 6.8 ± 0.6 control) compared to the pre-treatment (4.5 ± 0.6 vs. 6.9 ± 0.5 control). Treatment with the Ltc 1 peptide reduced the viral RNA in a dose-dependent manner with EC50 values of 8.3 ± 1.2, 7.6 ± 2.7 and 6.8 ± 2.5 μM at 24, 48 and 72 h, respectively. The Ltc 1 peptide exhibited significant inhibitory effects against dengue NS2B-NS3pro and virus replication in the infected cells. Therefore, further investigation is necessary to develop the Ltc 1 peptide as a new anti-dengue therapeutic.

  1. Complete genome sequence of a Dengue virus serotype 4 strain isolated in Roraima, Brazil.

    PubMed

    Naveca, Felipe G; Souza, Victor C; Silva, George A V; Maito, Rodrigo M; Granja, Fabiana; Siqueira, Thalita; Acosta, Pablo O A

    2012-02-01

    Dengue is the most important arboviral disease worldwide. We report the complete genome sequence of a dengue virus serotype 4, genotype II strain isolated in 2010 from a patient with classical dengue fever in Boa Vista, Roraima, Brazil.

  2. Evaluation of Commercially Available Anti–Dengue Virus Immunoglobulin M Tests

    PubMed Central

    Hunsperger, Elizabeth A.; Yoksan, Sutee; Buchy, Philippe; Nguyen, Vinh Chau; Sekaran, Shamala D.; Enria, Delia A.; Pelegrino, Jose L.; Vázquez, Susana; Artsob, Harvey; Drebot, Michael; Gubler, Duane J.; Halstead, Scott B.; Guzmán, María G.; Margolis, Harold S.; Nathanson, Carl-Michael; Lic, Nidia R. Rizzo; Bessoff, Kovi E.; Kliks, Srisakul

    2009-01-01

    Anti–dengue virus immunoglobulin M kits were evaluated. Test sensitivities were 21%–99% and specificities were 77%–98% compared with reference ELISAs. False-positive results were found for patients with malaria or past dengue infections. Three ELISAs showing strong agreement with reference ELISAs will be included in the World Health Organization Bulk Procurement Scheme. PMID:19239758

  3. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus

    PubMed Central

    Brady, Oliver J.; Gething, Peter W.; Bhatt, Samir; Messina, Jane P.; Brownstein, John S.; Hoen, Anne G.; Moyes, Catherine L.; Farlow, Andrew W.; Scott, Thomas W.; Hay, Simon I.

    2012-01-01

    Background Dengue is a growing problem both in its geographical spread and in its intensity, and yet current global distribution remains highly uncertain. Challenges in diagnosis and diagnostic methods as well as highly variable national health systems mean no single data source can reliably estimate the distribution of this disease. As such, there is a lack of agreement on national dengue status among international health organisations. Here we bring together all available information on dengue occurrence using a novel approach to produce an evidence consensus map of the disease range that highlights nations with an uncertain dengue status. Methods/Principal Findings A baseline methodology was used to assess a range of evidence for each country. In regions where dengue status was uncertain, additional evidence types were included to either clarify dengue status or confirm that it is unknown at this time. An algorithm was developed that assesses evidence quality and consistency, giving each country an evidence consensus score. Using this approach, we were able to generate a contemporary global map of national-level dengue status that assigns a relative measure of certainty and identifies gaps in the available evidence. Conclusion The map produced here provides a list of 128 countries for which there is good evidence of dengue occurrence, including 36 countries that have previously been classified as dengue-free by the World Health Organization and/or the US Centers for Disease Control. It also identifies disease surveillance needs, which we list in full. The disease extents and limits determined here using evidence consensus, marks the beginning of a five-year study to advance the mapping of dengue virus transmission and disease risk. Completion of this first step has allowed us to produce a preliminary estimate of population at risk with an upper bound of 3.97 billion people. This figure will be refined in future work. PMID:22880140

  4. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti.

    PubMed

    Gubler, D J; Nalim, S; Tan, R; Saipan, H; Sulianti Saroso, J

    1979-11-01

    The comparative susceptibility of 13 geographic strains of Aedes aegypti to oral infection with dengue viruses was studied by feeding the mosquitoes on a virus-erythrocyte-sugar suspension. Significant variation in susceptibility to four dengue serotypes was observed among the geographic strains tested. Mosquito strains which were more susceptible to one serotype were also more susceptible to the other serotypes, suggesting that the factors controlling susceptibility were the same for all types. The amount of virus required to infect mosquitoes orally varied inversely with the susceptibility of the geographic strain. Thresholds of infection were not the same for dengue types 1, 2, 3 and 4. There was no apparent difference in infectivity between prototype and recently isolated strains of dengue types 1 and 3. Crossing experimentibility as the resistant parent. No difference was observed between resistant and susceptible mosquito strains in the rate or the amount of viral replication after infection by the parenteral route, or in their ability to transmit dengue 2 virus after infection by the oral route.

  5. Co-infections with Chikungunya and Dengue Viruses, Guatemala, 2015.

    PubMed

    Edwards, Thomas; Signor, Leticia Del Carmen Castillo; Williams, Christopher; Donis, Evelin; Cuevas, Luis E; Adams, Emily R

    2016-11-01

    We screened serum samples referred to the national reference laboratory in Guatemala that were positive for chikungunya or dengue viruses in June 2015. Co-infection with both viruses was detected by reverse transcription PCR in 46 (32%) of 144 samples. Specimens should be tested for both arboviruses to detect co-infections.

  6. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but maymore » also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.« less

  7. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    PubMed Central

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  8. Endothelial dysfunction in dengue virus pathology.

    PubMed

    Vervaeke, Peter; Vermeire, Kurt; Liekens, Sandra

    2015-01-01

    Dengue virus (DENV) is a leading cause of illness and death, mainly in the (sub)tropics, where it causes dengue fever and/or the more serious diseases dengue hemorrhagic fever and dengue shock syndrome that are associated with changes in vascular permeability. Despite extensive research, the pathogenesis of DENV is still poorly understood and, although endothelial cells represent the primary fluid barrier of the blood vessels, the extent to which these cells contribute to DENV pathology is still under debate. The primary target cells for DENV are dendritic cells and monocytes/macrophages that release various chemokines and cytokines upon infection, which can activate the endothelium and are thought to play a major role in DENV-induced vascular permeability. However, recent studies indicate that DENV also replicates in endothelial cells and that DENV-infected endothelial cells may directly contribute to viremia, immune activation, vascular permeability and immune targeting of the endothelium. Also, the viral non-structural protein-1 and antibodies directed against this secreted protein have been reported to be involved in endothelial cell dysfunction. This review provides an extensive overview of the effects of DENV infection on endothelial cell physiology and barrier function. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.

    PubMed

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I

    2015-02-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.

  10. Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages

    PubMed Central

    Mammen, Mammen P; Pimgate, Chusak; Koenraadt, Constantianus J. M; Rothman, Alan L; Aldstadt, Jared; Nisalak, Ananda; Jarman, Richard G; Jones, James W; Srikiatkhachorn, Anon; Ypil-Butac, Charity Ann; Getis, Arthur; Thammapalo, Suwich; Morrison, Amy C; Libraty, Daniel H; Green, Sharone; Scott, Thomas W

    2008-01-01

    Background Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. Methods and Findings Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1–19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools

  11. Widespread signatures of local mRNA folding structure selection in four Dengue virus serotypes

    PubMed Central

    2015-01-01

    Background It is known that mRNA folding can affect and regulate various gene expression steps both in living organisms and in viruses. Previous studies have recognized functional RNA structures in the genome of the Dengue virus. However, these studies usually focused either on the viral untranslated regions or on very specific and limited regions at the beginning of the coding sequences, in a limited number of strains, and without considering evolutionary selection. Results Here we performed the first large scale comprehensive genomics analysis of selection for local mRNA folding strength in the Dengue virus coding sequences, based on a total of 1,670 genomes and 4 serotypes. Our analysis identified clusters of positions along the coding regions that may undergo a conserved evolutionary selection for strong or weak local folding maintained across different viral variants. Specifically, 53-66 clusters for strong folding and 49-73 clusters for weak folding (depending on serotype) aggregated of positions with a significant conservation of folding energy signals (related to partially overlapping local genomic regions) were recognized. In addition, up to 7% of these positions were found to be conserved in more than 90% of the viral genomes. Although some of the identified positions undergo frequent synonymous / non-synonymous substitutions, the selection for folding strength therein is preserved, and thus cannot be trivially explained based on sequence conservation alone. Conclusions The fact that many of the positions with significant folding related signals are conserved among different Dengue variants suggests that a better understanding of the mRNA structures in the corresponding regions may promote the development of prospective anti- Dengue vaccination strategies. The comparative genomics approach described here can be employed in the future for detecting functional regions in other pathogens with very high mutations rates. PMID:26449467

  12. In silico mutation analysis of non-structural protein-5 (NS5) dengue virus

    NASA Astrophysics Data System (ADS)

    Puspitasari, R. D.; Tambunan, U. S. F.

    2017-04-01

    Dengue fever is a world disease. It is endemic in more than 100 countries. Information about the effect of mutations in the virus is important in drug design and development. In this research, we studied the effect of mutation on NS5 dengue virus. NS5 is the large protein containing 67% amino acid similarity in DENV 1-4 and has multifunctional enzymatic activities. Dengue virus is an RNA virus that has very high mutation frequency with an average of 100 times higher than DNA mutations, and the accumulation of mutations will be possible to generate the new serotype. In this study, we report that mutation occurs in NS5 of DENV serotype 3, glutamine mutates into methionine at position 10 and threonine mutates into isoleucine at position 55. These residues are part of the domain named S-Adenosyl-L-Methionine-Dependent Methyltransferase (IPR029063).

  13. Autophagic machinery activated by dengue virus enhances virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.-R.; Lei, H.-Y.; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan

    2008-05-10

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that ismore » favorable for viral replication.« less

  14. Application of clustering methods: Regularized Markov clustering (R-MCL) for analyzing dengue virus similarity

    NASA Astrophysics Data System (ADS)

    Lestari, D.; Raharjo, D.; Bustamam, A.; Abdillah, B.; Widhianto, W.

    2017-07-01

    Dengue virus consists of 10 different constituent proteins and are classified into 4 major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering against 30 protein sequences of dengue virus taken from Virus Pathogen Database and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL) algorithm and then we analyze the result. By using Python program 3.4, R-MCL algorithm produces 8 clusters with more than one centroid in several clusters. The number of centroid shows the density level of interaction. Protein interactions that are connected in a tissue, form a complex protein that serves as a specific biological process unit. The analysis of result shows the R-MCL clustering produces clusters of dengue virus family based on the similarity role of their constituent protein, regardless of serotypes.

  15. Optimization and Validation of a Plaque Reduction Neutralization Test for the Detection of Neutralizing Antibodies to Four Serotypes of Dengue Virus Used in Support of Dengue Vaccine Development

    PubMed Central

    Timiryasova, Tatyana M.; Bonaparte, Matthew I.; Luo, Ping; Zedar, Rebecca; Hu, Branda T.; Hildreth, Stephen W.

    2013-01-01

    A dengue plaque reduction neutralization test (PRNT) to measure dengue serotype–specific neutralizing antibodies for all four virus serotypes was developed, optimized, and validated in accordance with guidelines for validation of bioanalytical test methods using human serum samples from dengue-infected persons and persons receiving a dengue vaccine candidate. Production and characterization of dengue challenge viruses used in the assay was standardized. Once virus stocks were characterized, the dengue PRNT50 for each of the four serotypes was optimized according to a factorial design of experiments approach for critical test parameters, including days of cell seeding before testing, percentage of overlay carboxymethylcellulose medium, and days of incubation post-infection to generate a robust assay. The PRNT50 was then validated and demonstrated to be suitable to detect and measure dengue serotype-specific neutralizing antibodies in human serum samples with acceptable intra-assay and inter-assay precision, accuracy/dilutability, specificity, and with a lower limit of quantitation of 10. PMID:23458954

  16. Outbreak of viral hemorrhagic fever caused by dengue virus type 3 in Al-Mukalla, Yemen

    PubMed Central

    2013-01-01

    Background Investigations were conducted by the authors to explore an outbreak of viral hemorrhagic fever (VHF) reported in 2010 from Al-Mukalla city, the capital of Hadramout in Yemen. Methods From 15–17 June 2010, the outbreak investigation period, specimens were obtained within 7 days after onset of illness of 18 acutely ill patients hospitalized with VHF and 15 household asymptomatic contacts of 6 acute cases. Additionally, 189 stored sera taken from acutely ill patients with suspected VHF hospitalized in the preceding 12 months were obtained from the Ministry of Health of Yemen. Thus, a total of 222 human specimens were collected; 207 specimens from acute cases and 15 specimens from contacts. All samples were tested with RT-PCR for dengue (DENV), Alkhumra (ALKV), Rift Valley Fever (RVFV), Yellow Fever (YFV), and Chikungunya (CHIKV) viruses. Samples were also tested for DENV IgM, IgG, and NS1-antigen. Medical records of patients were reviewed and demographic, clinical, and laboratory data was collected. Results Of 207 patients tested, 181 (87.4%) patients were confirmed to have acute dengue with positive dengue NS1-antigen (97 patients, 46.9%) and/or IgM (163 patients, 78.7%). Of the 181 patients with confirmed dengue, 100 (55.2%) patients were IgG-positive. DENV RNA was detected in 2 (1%) patients with acute symptoms; both samples were molecularly typed as DENV type 3. No other VHF viruses were detected. For the 15 contacts tested, RT-PCR tests for the five viruses were negative, one contact was dengue IgM positive, and another one was dengue IgG positive. Of the 181 confirmed dengue patients, 120 (66.3%) patients were males and the median age was 24 years. The most common manifestations included fever (100%), headache (94.5%), backache (93.4%), malaise (88.4%), arthralgia (85.1%), myalgia (82.3%), bone pain (77.9%), and leukopenia (76.2%). Two (1.1%) patients died. Conclusions DENV-3 was confirmed to be the cause of an outbreak of VHF in Al

  17. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    PubMed

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  18. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film.

    PubMed

    Tai, Dar-Fu; Lin, Chung-Yin; Wu, Tzong-Zeng; Chen, Li-Kuang

    2005-08-15

    Molecularly imprinted film was fabricated in the presence of a pentadecapeptide onto a quartz crystal microbalance (QCM) chip. This 15-mer peptide has been known as the linear epitope of the dengue virus NS1 protein. Imprinting resulted in an increased polymer affinity toward the corresponding templates but also to the virus protein. Direct detection of the dengue virus protein was achieved quantitatively. The QCM chip response to the NS1 protein was obtained using epitope-mediated imprinting demonstrating a comparable frequency shift in chips immobilized with monoclonal antibodies. The binding effect was further enhanced and confirmed using a monoclonal antibody to form a sandwich with the MIP-NS1 protein complex on the chip. No pretreatment was required.

  19. Drug repurposing of minocycline against dengue virus infection.

    PubMed

    Leela, Shilpa Lekshmi; Srisawat, Chatchawan; Sreekanth, Gopinathan Pillai; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai; Limjindaporn, Thawornchai

    2016-09-09

    Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Human Immune Response to Dengue Infections

    DTIC Science & Technology

    1989-07-31

    antigens of all 4 serotypes. These CTL lysed autologous fibroblasts infected with vaccinia-dengue recombinant viruses containing the E, or several non...responses of PBMC from a dengue 4-immune donor to call-free dengue viruses . .. ........... 6 Table 2. Lysis of dengue virus-infected fibroblasts by dengue...4-immune PBMC stimulated with dengue viruses ... ...... 7 Table 3. Inhibition of the lysis of dengue- infected fibroblasts by monoclonal anti-CD8

  1. Novel dengue virus NS2B/NS3 protease inhibitors.

    PubMed

    Wu, Hongmei; Bock, Stefanie; Snitko, Mariya; Berger, Thilo; Weidner, Thomas; Holloway, Steven; Kanitz, Manuel; Diederich, Wibke E; Steuber, Holger; Walter, Christof; Hofmann, Daniela; Weißbrich, Benedikt; Spannaus, Ralf; Acosta, Eliana G; Bartenschlager, Ralf; Engels, Bernd; Schirmeister, Tanja; Bodem, Jochen

    2015-02-01

    Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    PubMed

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  3. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir.

    PubMed

    Chen, Yen-Liang; Abdul Ghafar, Nahdiyah; Karuna, Ratna; Fu, Yilong; Lim, Siew Pheng; Schul, Wouter; Gu, Feng; Herve, Maxime; Yokohama, Fumiaki; Wang, Gang; Cerny, Daniela; Fink, Katja; Blasco, Francesca; Shi, Pei-Yong

    2014-02-01

    In a recent clinical trial, balapiravir, a prodrug of a cytidine analog (R1479), failed to achieve efficacy (reducing viremia after treatment) in dengue patients, although the plasma trough concentration of R1479 remained above the 50% effective concentration (EC(50)). Here, we report experimental evidence to explain the discrepancy between the in vitro and in vivo results and its implication for drug development. R1479 lost its potency by 125-fold when balapiravir was used to treat primary human peripheral blood mononuclear cells (PBMCs; one of the major cells targeted for viral replication) that were preinfected with dengue virus. The elevated EC(50) was greater than the plasma trough concentration of R1479 observed in dengue patients treated with balapiravir and could possibly explain the efficacy failure. Mechanistically, dengue virus infection triggered PBMCs to generate cytokines, which decreased their efficiency of conversion of R1479 to its triphosphate form (the active antiviral ingredient), resulting in decreased antiviral potency. In contrast to the cytidine-based compound R1479, the potency of an adenosine-based inhibitor of dengue virus (NITD008) was much less affected. Taken together, our results demonstrate that viral infection in patients before treatment could significantly affect the conversion of the prodrug to its active form; such an effect should be calculated when estimating the dose efficacious for humans.

  4. Dengue Virus 2 American-Asian Genotype Identified during the 2006/2007 Outbreak in Piauí, Brazil Reveals a Caribbean Route of Introduction and Dissemination of Dengue Virus in Brazil

    PubMed Central

    Barcelos Figueiredo, Leandra; Sakamoto, Tetsu; Leomil Coelho, Luiz Felipe; de Oliveira Rocha, Eliseu Soares; Gomes Cota, Marcela Menezes; Ferreira, Gustavo Portela; de Oliveira, Jaquelline Germano; Kroon, Erna Geessien

    2014-01-01

    Dengue virus (DENV) is the most widespread arthropod-borne virus, and the number and severity of outbreaks has increased worldwide in recent decades. Dengue is caused by DENV-1, DENV- 2, DENV-3 and DENV-4 which are genetically distant. The species has been subdivided into genotypes based on phylogenetic studies. DENV-2, which was isolated from dengue fever patients during an outbreak in Piaui, Brazil in 2006/2007 was analyzed by sequencing the envelope (E) gene. The results indicated a high similarity among the isolated viruses, as well as to other DENV-2 from Brazil, Central America and South America. A phylogenetic and phylogeographic analysis based on DENV-2E gene sequences revealed that these viruses are grouped together with viruses of the American-Asian genotype in two distinct lineages. Our results demonstrate the co-circulation of two American-Asian genotype lineages in northeast Brazil. Moreover, we reveal that DENV-2 lineage 2 was detected in Piauí before it disseminated to other Brazilian states and South American countries, indicating the existence of a new dissemination route that has not been previously described. PMID:25127366

  5. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    PubMed Central

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang; Jian, Yap Li; Chao, Alexander Theodore; Lescar, Julien; Yin, Zheng; Vedananda, T. R.; Keller, Thomas H.; Shi, Pei-Yong

    2011-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome. PMID:21147775

  6. Anthracene-based Inhibitors of Dengue Virus NS2B-NS3 Protease†

    PubMed Central

    Tomlinson, Suzanne M.; Watowich, Stanley J.

    2010-01-01

    Summary Dengue virus (DENV) is a mosquito-borne flavivirus that has strained global healthcare systems throughout tropical and subtropical regions of the world. In addition to plaguing developing nations, it has re-emerged in several developed countries with recent outbreaks in the USA (CDC, 2010), Australia (Hanna et al., 2009), Taiwan (Kuan et al., 2010) and France (La Ruche et al., 2010). DENV infection can cause significant disease, including dengue fever, dengue hemorrhagic fever, dengue shock syndrome, and death. There are no approved vaccines or antiviral therapies to prevent or treat dengue-related illnesses. However, the viral NS2B-NS3 protease complex provides a strategic target for antiviral drug development since NS3 protease activity is required for virus replication. Recently, we reported two compounds with inhibitory activity against the DENV protease in vitro and antiviral activity against dengue 2 (DEN2V) in cell culture (Tomlinson et al., 2009a). Analogs of one of the lead compounds were purchased, tested in protease inhibition assays, and the data evaluated with detailed kinetic analyses. A structure activity relationship (SAR) identified key atomic determinants (i.e. functional groups) important for inhibitory activity. Four “second series” analogs were selected and tested to validate our SAR and structural models. Here, we report improvements to inhibitory activity ranging between ~2- and 60-fold, resulting in selective low micromolar dengue protease inhibitors. PMID:21185332

  7. Functional Transplant of a Dengue Virus Serotype 3 (DENV3)-Specific Human Monoclonal Antibody Epitope into DENV1.

    PubMed

    Messer, William B; Yount, Boyd L; Royal, Scott R; de Alwis, Ruklanthi; Widman, Douglas G; Smith, Scott A; Crowe, James E; Pfaff, Jennifer M; Kahle, Kristen M; Doranz, Benjamin J; Ibarra, Kristie D; Harris, Eva; de Silva, Aravinda M; Baric, Ralph S

    2016-05-15

    The four dengue virus (DENV) serotypes, DENV1 through 4, are endemic throughout tropical and subtropical regions of the world. While first infection confers long-term protective immunity against viruses of the infecting serotype, a second infection with virus of a different serotype carries a greater risk of severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. Recent studies demonstrate that humans exposed to DENV infections develop neutralizing antibodies that bind to quaternary epitopes formed by the viral envelope (E) protein dimers or higher-order assemblies required for the formation of the icosahedral viral envelope. Here we show that the quaternary epitope target of the human DENV3-specific neutralizing monoclonal antibody (MAb) 5J7 can be partially transplanted into a DENV1 strain by changing the core residues of the epitope contained within a single monomeric E molecule. MAb 5J7 neutralized the recombinant DENV1/3 strain in cell culture and was protective in a mouse model of infection with the DENV1/3 strain. However, the 5J7 epitope was only partially recreated by transplantation of the core residues because MAb 5J7 bound and neutralized wild-type (WT) DENV3 better than the DENV1/3 recombinant. Our studies demonstrate that it is possible to transplant a large number of discontinuous residues between DENV serotypes and partially recreate a complex antibody epitope, while retaining virus viability. Further refinement of this approach may lead to new tools for measuring epitope-specific antibody responses and new vaccine platforms. Dengue virus is the most important mosquito-borne pathogen of humans worldwide, with approximately one-half the world's population living in regions where dengue is endemic. Dengue immunity following infection is robust and thought to be conferred by antibodies raised against the infecting virus. However, the specific viral components that these antibodies recognize and how they neutralize the virus

  8. Development of viable TAP-tagged dengue virus for investigation of host-virus interactions in viral replication.

    PubMed

    Poyomtip, Teera; Hodge, Kenneth; Matangkasombut, Ponpan; Sakuntabhai, Anavaj; Pisitkun, Trairak; Jirawatnotai, Siwanon; Chimnaronk, Sarin

    2016-03-01

    Dengue virus (DENV) is a mosquito-borne flavivirus responsible for life-threatening dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). The viral replication machinery containing the core non-structural protein 5 (NS5) is implicated in severe dengue symptoms but molecular details remain obscure. To date, studies seeking to catalogue and characterize interaction networks between viral NS5 and host proteins have been limited to the yeast two-hybrid system, computational prediction and co-immunoprecipitation (IP) of ectopically expressed NS5. However, these traditional approaches do not reproduce a natural course of infection in which a number of DENV NS proteins colocalize and tightly associate during the replication process. Here, we demonstrate the development of a recombinant DENV that harbours a TAP tag in NS5 to study host-virus interactions in vivo. We show that our engineered DENV was infective in several human cell lines and that the tags were stable over multiple viral passages, suggesting negligible structural and functional disturbance of NS5. We further provide proof-of-concept for the use of rationally tagged virus by revealing a high confidence NS5 interaction network in human hepatic cells. Our analysis uncovered previously unrecognized hnRNP complexes and several low-abundance fatty acid metabolism genes, which have been implicated in the viral life cycle. This study sets a new standard for investigation of host-flavivirus interactions.

  9. Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province, Thailand, Using an Enhanced Spatiotemporal Surveillance Strategy

    DTIC Science & Technology

    2015-05-18

    THOMAS AND OTHERS ENHANCED SURVEILLANCE FOR DENGUE Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province...of Medical Sciences, Bangkok, Thailand. Abstract. Dengue is of public health importance in tropical and sub-tropical regions. Dengue virus (DENV...with confirmed dengue (initiates) and associated cluster individuals (associates) with entomologic sampling. A total of 438 associates were enrolled

  10. Formation of infectious dengue virus-antibody immune complex in vivo in marmosets (Callithrix jacchus) after passive transfer of anti-dengue virus monoclonal antibodies and infection with dengue virus.

    PubMed

    Moi, Meng Ling; Ami, Yasushi; Shirai, Kenji; Lim, Chang-Kweng; Suzaki, Yuriko; Saito, Yuka; Kitaura, Kazutaka; Saijo, Masayuki; Suzuki, Ryuji; Kurane, Ichiro; Takasaki, Tomohiko

    2015-02-01

    Infection with a dengue virus (DENV) serotype induces cross-reactive, weakly neutralizing antibodies to different dengue serotypes. It has been postulated that cross-reactive antibodies form a virus-antibody immune complex and enhance DENV infection of Fc gamma receptor (FcγR)-bearing cells. We determined whether infectious DENV-antibody immune complex is formed in vivo in marmosets after passive transfer of DENV-specific monoclonal antibody (mAb) and DENV inoculation and whether infectious DENV-antibody immune complex is detectable using FcγR-expressing cells. Marmosets showed that DENV-antibody immune complex was exclusively infectious to FcγR-expressing cells on days 2, 4, and 7 after passive transfer of each of the mAbs (mAb 4G2 and mAb 6B6C) and DENV inoculation. Although DENV-antibody immune complex was detected, contribution of the passively transferred antibody to overall viremia levels was limited in this study. The results indicate that DENV cross-reactive antibodies form DENV-antibody immune complex in vivo, which is infectious to FcγR-bearing cells but not FcγR-negative cells. © The American Society of Tropical Medicine and Hygiene.

  11. Prevalence of dengue virus infection in US travelers who have lived in or traveled to dengue-endemic countries.

    PubMed

    Sanchez-Vegas, Carolina; Hamer, Davidson H; Chen, Lin H; Wilson, Mary E; Benoit, Christine; Hunsperger, Elizabeth; Macleod, William B; Jentes, Emily S; Ooi, Winnie W; Karchmer, Adolf W; Kogelman, Laura; Yanni, Emad; Marano, Nina; Barnett, Elizabeth D

    2013-01-01

    Dengue virus (DENV) infections may occur in travelers. To determine prevalence of anti-DENV IgG antibody in travelers who lived in or visited dengue-endemic countries and to describe risk factors and characteristics associated with infection and subsequent anti-DENV IgG antibody presence. Participants were enrolled from travel clinics of the Boston Area Travel Medicine Network from August 2008 through June 2009. Demographic information, trip duration, travel history, and a blood sample were collected. Serum samples were tested for anti-DENV IgG antibody by indirect IgG enzyme-linked immunosorbent assay (ELISA), and antibody-mediated virus neutralization by plaque reduction neutralization test (PRNT) for anti-DENV IgG antibody-positive and selected negative samples. Participants were stratified into group 1: born in dengue-endemic countries; group 2: born in nonendemic countries but lived continuously for ≥1 year in a dengue-endemic country; group 3: born in nonendemic countries and traveled to a dengue-endemic country for ≥2 weeks but <1 year. Six hundred travelers were enrolled. Anti-DENV IgG antibody was identified in 113 (19%) when tested by ELISA (51% in group 1, 40% in group 2, and 6.9% in group 3) and in 71 (12%) by PRNT (42% primary monotypic and 58% heterotypic reactive responses). Sensitivity and specificity of the ELISA based on PRNT results were 85% to 100% and 79% to 94%, assuming up to 15% misclassification of ELISA negative results. Presence of anti-DENV IgG antibody by ELISA was associated with years lived in dengue-endemic countries and birthplace in the Caribbean for group 1, receipt of Japanese encephalitis vaccine in group 3, and self-reported history of dengue in all three groups. Nineteen percent of participants who were born, lived in, or traveled to dengue-endemic countries had anti-DENV IgG antibody by ELISA; 12% had antibodies by PRNT, 85% of whom had no history of dengue. Presence of DENV antibodies was associated with years

  12. Risk factors for the incidence of dengue virus infection in preschool children.

    PubMed

    Teixeira, Maria G; Morato, Vanessa; Barreto, Florisneide R; Mendes, Carlos M C; Barreto, Maurício L; Costa, Maria da Conceição N

    2012-11-01

    To estimate the seroincidence of dengue in children living in Salvador, Bahia, Brazil and to evaluate the factors associated.   A prospective serological survey was carried out in a sample of children 0-3 years of age. A multilevel logistic model was used to identify the determinants of seroincidence. The seroprevalence of dengue was 26.6% in the 625 children evaluated. A second survey detected an incidence of 33.2%. Multilevel logistic regression showed a statistically significant association between the seroincidence of dengue and age and the premises index. In Salvador, the dengue virus is in active circulation during early childhood; consequently, children have heterotypic antibodies and run a high risk of developing dengue haemorrhagic fever, because the sequence and intensity of the three dengue virus serotypes currently circulating in this city are very similar to those that were circulating in Rio de Janeiro, Brazil, in 2008. Therefore, the authors strongly recommend that the health authorities in cities with a similar epidemiological scenario be aware of this risk and implement improvements in health care, particularly targeting the paediatric age groups. In addition, information should be provided to the population and actions should be implemented to combat this vector. © 2012 Blackwell Publishing Ltd.

  13. Dengue virus in Mexican bats.

    PubMed

    Aguilar-Setién, A; Romero-Almaraz, M L; Sánchez-Hernández, C; Figueroa, R; Juárez-Palma, L P; García-Flores, M M; Vázquez-Salinas, C; Salas-Rojas, M; Hidalgo-Martínez, A C; Pierlé, S Aguilar; García-Estrada, C; Ramos, C

    2008-12-01

    Individuals belonging to five families, 12 genera, and 19 different species of bats from dengue endemic areas in the Gulf and Pacific coasts of Mexico were examined by ELISA, RT-PCR, and for the presence of dengue virus (DV) NS1 protein. Nine individuals from four species were seropositive by ELISA: three insectivorous, Myotis nigricans (four positives/12 examined), Pteronotus parnellii (3/19), and Natalus stramineus (1/4), and one frugivorous Artibeus jamaicensis (1/35) (12.86% seroprevalence in positive species). DV serotype 2 was detected by RT-PCR in four samples from three species (all from the Gulf coast - rainy season): two frugivorous, A. jamaicensis (2/9), and Carollia brevicauda (1/2), and one insectivorous, M. nigricans (1/11). The latter was simultaneously positive for NS1 protein. DV RT-PCR positive animals were all antibody seronegative. M. nigricans showed positive individuals for all three tests. This is the first evidence suggesting the presence of DV in bats from Mexico.

  14. Phylogenetic analysis of dengue virus types 1 and 3 isolated in Jakarta, Indonesia in 1988.

    PubMed

    Sjatha, Fithriyah; Takizawa, Yamato; Yamanaka, Atsushi; Konishi, Eiji

    2012-12-01

    Dengue viruses are mosquito-borne viruses that cause dengue fever and dengue hemorrhagic fever, both of which are globally important diseases. These viruses have evolved in a transmission cycle between human hosts and mosquito vectors in various tropical and subtropical environments. We previously isolated three strains of dengue type 1 virus (DENV1) and 14 strains of dengue type 3 virus (DENV3) during an outbreak of dengue fever and dengue hemorrhagic fever in Jakarta, Indonesia in 1988. Here, we compared the nucleotide sequences of the entire envelope protein-coding region among these strains. The isolates were 97.6-100% identical for DENV1 and 98.8-100% identical for DENV3. All DENV1 isolates were included in two different clades of genotype IV and all DENV3 isolates were included in a single clade of genotype I. For DENV1, three Yap Island strains isolated in 2004 were the only strains closely related to the present isolates; the recently circulated Indonesian strains were in different clades. Molecular clock analyses estimated that ancestors of the genotype IV strains of DENV1 have been indigenous in Indonesia since 1948. We predict that they diverged frequently around 1967 and that their offspring distributed to Southeast Asia, the Western Pacific, and Africa. For DENV3, the clade containing all the present isolates also contained strains isolated from other Indonesian regions and other countries including Malaysia, Singapore, China, and East Timor from 1985-2010. Molecular clock analyses estimated that the common ancestor of the genotype I strains of DENV3 emerged in Indonesia around 1967 and diverged frequently until 1980, and that their offspring distributed mainly in Southeast Asia. The first dengue outbreak in 1968 and subsequent outbreaks in Indonesia might have influenced the divergence and distribution of the DENV1 genotype IV strains and the DENV3 genotype I strains in many countries. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Phylogenetic and evolutionary analyses of dengue viruses isolated in Jakarta, Indonesia.

    PubMed

    Lestari, C S Whinie; Yohan, Benediktus; Yunita, Anisa; Meutiawati, Febrina; Hayati, Rahma Fitri; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-12-01

    Dengue has affected Indonesia for the last five decades and become a major health problem in many cities in the country. Jakarta, the capital of Indonesia, reports dengue cases annually, with several outbreaks documented. To gain information on the dynamic and evolutionary history of dengue virus (DENV) in Jakarta, we conducted phylogenetic and evolutionary analyses of DENV isolated in 2009. Three hundred thirty-three dengue-suspected patients were recruited. Our data revealed that dengue predominantly affected young adults, and the majority of cases were due to secondary infection. A total of 171 virus isolates were successfully serotyped. All four DENV serotypes were circulating in the city, and DENV-1 was the predominant serotype. The DENV genotyping of 17 isolates revealed the presence of Genotypes I and IV in DENV-1, while DENV-2 isolates were grouped into the Cosmopolitan genotype. The grouping of isolates into Genotype I and II was seen for DENV-3 and DENV-4, respectively. Evolutionary analysis revealed the relatedness of Jakarta isolates with other isolates from other cities in Indonesia and isolates from imported cases in other countries. We revealed the endemicity of DENV and the role of Jakarta as the potential source of imported dengue cases in other countries. Our study provides genetic information regarding DENV from Jakarta, which will be useful for upstream applications, such as the study of DENV epidemiology and evolution and transmission dynamics.

  16. The Epidemiological Characteristics and Dynamic Transmission of Dengue in China, 2013

    PubMed Central

    lu, Liang; Bi, Peng; Lv, Ming; Liu, Qiyong

    2016-01-01

    Background There was a dengue epidemic in several regions of China in 2013. No study has explored the dynamics of dengue transmission between different geographical locations with dengue outbreaks in China. The purpose of the study is to analyze the epidemiological characteristics and to explore the dynamic transmission of dengue in China, 2013. Methodology and Principal Findings Records of dengue cases of 2013 were obtained from the China Notifiable Disease Surveillance System. Full E-gene sequences of dengue virus detected from the outbreak regions of China were download from GenBank. Geographical Information System and heatmaps were used to describe the epidemiological characteristics. Maximum Likelihood phylogenetic and Bayesian phylogeographic analyses were conducted to explore the dengue dynamic transmission. Yunnan Province and Guangdong Province had the highest imported cases in the 2013 epidemic. In the locations with local dengue transmission, most of imported cases occurred from June to November 2013 while local dengue cases developed from July to December, 2013. There were significant variations for the incidences of dengue, in terms of age distributions, among different geographic locations. However, gender differences were identified in Guangzhou, Foshan and Xishuangbanna. DENV 1–3 were detected in all locations with the disease outbreaks. Some genotypes were detected in more than one locations and more than one genotypes have been detected in several locations. The dengue viruses introduced to outbreak areas were predominantly from Southeast Asia. In Guangdong Province, the phylogeographical results indicated that dengue viruses of DENV 1 were transmitted to neighboring cities Foshan and Zhongshan from Guangzhou city, and then transmitted to Jiangmen city. The virus in DENV 3 was introduced to Guangzhou city, Guangdong Province from Xishuangbanna prefecture, Yunnan Province. Conclusions Repeated dengue virus introductions from Southeast Asia and

  17. Screening of antiviral activities in medicinal plants extracts against dengue virus using dengue NS2B-NS3 protease assay.

    PubMed

    Rothan, H A; Zulqarnain, M; Ammar, Y A; Tan, E C; Rahman, N A; Yusof, R

    2014-06-01

    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.

  18. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K. James; Sahoo, Malaya K.; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A.

    2016-01-01

    Background. Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses. Methods. Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded. Results. A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001). Conclusions. ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. PMID:27578819

  19. Effect of pretreatment with chromium picolinate on haematological parameters during dengue virus infection in mice.

    PubMed

    Shrivastava, Richa; Nagar, R; Ravishankar, G A; Upreti, R K; Chaturvedi, U C

    2007-11-01

    Dengue virus (DV) has caused severe epidemics of dengue fever (DF) and dengue haemorrhagic fever (DHF) and is endemic all over India. We have earlier reported that exposure of mice to hexavalent chromium [Cr(VI)] compounds increased the severity of dengue virus infection. Trivalent chromium picolinate (CrP) is used worldwide as micronutrient and nutritional supplement. The present study was therefore, carried out to investigate the effects of CrP on various haematological parameters during DV infection of mice. The Swiss Albino smice were inoculated with dengue virus (1000 LD50, intracerebrally) and fed with chromium picolinate (CrP) in drinking water (100 and 250 mg/l) for 24 wk. Peripheral blood leucocytes and other haematological parameters, and spleens were studied on days 4 and 8 after virus inoculations and the findings were compared with those given only CrP and the normal control age matched mice. CrP in drinking water for 24 wk had no significant effects on peripheral blood cells of mice. On the other hand, there was significant decrease in different haematological parameters following inoculation of normal mice with DV. In CrP fed mice the effects of DV infection were abolished on most of the haematological parameters. The findings of present study showed that the adverse effects of DV infection, specially on platelets and leucocytes, were abrogated by pretreatment of mice with CrP. The therapeutic utility of CrP in viral infections including dengue needs to be studied in depth.

  20. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    PubMed

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  2. Best Practices in Dengue Surveillance: A Report from the Asia-Pacific and Americas Dengue Prevention Boards

    PubMed Central

    Beatty, Mark E.; Stone, Amy; Fitzsimons, David W.; Hanna, Jeffrey N.; Lam, Sai Kit; Vong, Sirenda; Guzman, Maria G.; Mendez-Galvan, Jorge F.; Halstead, Scott B.; Letson, G. William; Kuritsky, Joel; Mahoney, Richard; Margolis, Harold S.

    2010-01-01

    Background Dengue fever is a virus infection that is spread by the Aedes aegypti mosquito and can cause severe disease especially in children. Dengue fever is a major problem in tropical and sub-tropical regions of the world. Methodology/Principal Findings We invited dengue experts from around the world to attend meetings to discuss dengue surveillance. We reviewed literature, heard detailed reports on surveillance programs, and shared expert opinions. Results Presentations by 22 countries were heard during the 2.5 day meetings. We describe the best methods of surveillance in general, the stakeholders in dengue surveillance, and the steps from mosquito bite to reporting of a dengue case to explore how best to carry out dengue surveillance. We also provide details and a comparison of the dengue surveillance programs by the presenting countries. Conclusions/Significance The experts provided recommendations for achieving the best possible data from dengue surveillance accepting the realities of the real world (e.g., limited funding and staff). Their recommendations included: (1) Every dengue endemic country should make reporting of dengue cases to the government mandatory; (2) electronic reporting systems should be developed and used; (3) at minimum dengue surveillance data should include incidence, hospitalization rates, deaths by age group; (4) additional studies should be completed to check the sensitivity of the system; (5) laboratories should share expertise and data; (6) tests that identify dengue virus should be used in patients with fever for four days or less and antibody tests should be used after day 4 to diagnose dengue; and (7) early detection and prediction of dengue outbreaks should be goals for national surveillance systems. PMID:21103381

  3. [Development of pseudoviral competitive internal controls for RT-PCR detection of dengue virus].

    PubMed

    Hang, Xiao-Tong; Li, Jian-Dong; Zhang, Quan-Fu; Li, Chuan; Zhang, Shuo; Liang, Mi-Fang; Li, De-Xin

    2010-02-01

    Development of pseudoviral competitive internal controls for RT-PCR laboratory detection of dengue virus. The internal controls target gene were obtained by insertion of a 180 bp non-related DNA fragment into RT-PCR detection target of dengue virus between the forward and reverse PCR primer binding regions. A yellow florescence protein reporter gene was induced at downstream of internal controls target gene via internal ribosome entry site gene. HEK 293T cells were transfected with plasmid containing this whole cassette and lentiviral packaging support plasmid. Pseudoviral particle was recovered from the supernatant and analyzed quantitatively and qualitatively in simulated samples at the same tube under different experimental conditions. The established pseudoviral competitive internal controls can be used in the RT-PCR detection of different serotype dengue virus and the whole detection process can be monitored. The obtained fragment is easy to be differentiated in agarose electrophoresis. The pseudoviral competitive internal controls could be used for the quality control of the laboratory diagnosis process, simple to prepare, stable for storage, easy to be transformed into internal controls for other RNA virus.

  4. Morphogenesis of Dengue Virus: Molecular Biology and Molecular Organization of Proteins.

    DTIC Science & Technology

    1981-02-01

    envelope and near the virion surface. The divalent cations probably act to stabilize viral envelope proteins, as recently found for feline leukemia ... Virus Sindbis virus (SV) and Semliki Forest Virus (SFV) are arthopod-borne alDhaviruses of the toqavirus family. Both viruses contain a nucleocaosid...AU-AIZ9 b"J MORPHOGENESIS OF DENGUE VIRUS : MOLECULAR BIO0OGY AND MOLECULAR ORGANIZATION OFPROENS(U CALIORNIAUNIV DAVIS DEPT 0F BACTERIOLO0Y J S

  5. Anti-dengue virus envelope protein domain III IgG ELISA among infants with primary dengue virus infections.

    PubMed

    Libraty, Daniel H; Zhang, Lei; Obcena, AnaMae; Brion, Job D; Capeding, Rosario Z

    2015-02-01

    Dengue is the most prevalent arthropod-borne viral illness in humans. The current gold standard serologic test for dengue virus (DENV) infection is a neutralizing antibody assay. We examined a DENV recombinant (r)E protein domain III IgG ELISA among infants with primary DENV infections. Infants experience a primary DENV infection in the presence of maternally derived anti-DENV IgG. The estimated DENV rE protein domain III IgG levels to the infecting serotype at the time of infant primary symptomatic DENV2 and DENV3 infections correlated with the 50% plaque reduction neutralization reciprocal antibody titers (PRNT50). Anti-DENVs 1-4 rE protein domain III IgG levels all correlated with each other, and the estimated rE protein domain III IgG level to the infecting serotype at the time of infection inversely correlated with dengue disease severity. The anti-DENV rE protein domain III IgG ELISA may be a useful and potentially high-throughput alternative to traditional DENV neutralizing antibody assays. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol.

    PubMed

    Silva, Fernando C; Rodrigues, Vanessa G; Duarte, Lucienir P; Lula, Ivana S; Sinisterra, Ruben D; Vieira-Filho, Sidney A; Rodrigues, Rodrigo A L; Kroon, Erna G; Oliveira, Patrícia L; Farias, Luiz M; Magalhães, Paula P; Silva, Grácia D F

    2017-01-01

    Diarrhea is an infectious disease caused by bacterial, virus, or protozoan, and dengue is caused by virus, included among the neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antidiarrheal potential of species of Maytenus genus, a phytochemical investigation followed by antibacterial activity test with extracts of branches and heartwood and bark of roots from Maytenus gonoclada were conducted. Moreover, due the frequency of isolation of lupeol from Maytenus genus the antiviral activity against Dengue virus and cytotoxicity of lupeol and its complex with β-cyclodextrins were also tested. The results indicated the bioactivity of ethyl acetate extract from branches and ethanol extract from heartwood of roots of M. gonoclada against diarrheagenic bacteria. The lupeol showed potent activity against Dengue virus and low cytotoxicity in LLC-MK2 cells, but its complex with β-cyclodextrin was inactive. Considering the importance of novel and selective antiviral drug candidates the results seem to be promising.

  7. Conformational changes in intact dengue virus reveal serotype-specific expansion

    PubMed Central

    Lim, Xin-Xiang; Chandramohan, Arun; Lim, Xin Ying Elisa; Bag, Nirmalya; Sharma, Kamal Kant; Wirawan, Melissa; Wohland, Thorsten; Lok, Shee-Mei; Anand, Ganesh S.

    2017-01-01

    Dengue virus serotype 2 (DENV2) alone undergoes structural expansion at 37 °C (associated with host entry), despite high sequence and structural homology among the four known serotypes. The basis for this differential expansion across strains and serotypes is unknown and necessitates mapping of the dynamics of dengue whole viral particles to describe their coordinated motions and conformational changes when exposed to host-like environments. Here we capture the dynamics of intact viral particles of two serotypes, DENV1 and DENV2, by amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and time resolved Förster Resonance Energy Transfer. Our results show temperature-dependent dynamics hotspots on DENV2 and DENV1 particles with DENV1 showing expansion at 40 °C but not at 37 °C. HDXMS measurement of virion dynamics in solution offers a powerful approach to identify potential epitopes, map virus-antibody complex structure and dynamics, and test effects of multiple host-specific perturbations on viruses and virus-antibody complexes. PMID:28186093

  8. Dengue infection.

    PubMed

    Guzman, Maria G; Gubler, Duane J; Izquierdo, Alienys; Martinez, Eric; Halstead, Scott B

    2016-08-18

    Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.

  9. Detection of dengue virus from mosquito cell cultures inoculated with human serum in the presence of actinomycin D.

    PubMed

    Ramos, C; Villaseca, J M; García, H; Hernández, D G; Ramos-Castañeda, J; Imbert, J L

    1995-01-01

    We report the use of cultures of mosquito cells (TRA-284) to detect dengue virus in serum from cases of dengue fever in the state of Puebla, México. Using the conventional procedure 56 of 171 samples (32.7%) were positive. The negative sera (67.3%) were passaged 'blind' in mosquito cell cultures but no virus was detected. However, when these sera were incubated in the presence of actinomycin D (an inhibitor of deoxyribonucleic acid transcription) 20 of the 115 samples (17.4%) became positive. This procedure increased the virus detection rate from 32.7% to 44.4%. Serotypes 1 and 4 were identified for the first time in the state of Puebla, where the transmission of dengue virus is increasing. The addition of actinomycin D to mosquito cell cultures may improve the detection of dengue virus and could be a useful tool for virological surveillance in endemic countries.

  10. Isolation and characterization of dengue virus serotype 2 from the large dengue outbreak in Guangdong, China in 2014.

    PubMed

    Zhao, Hui; Zhao, LingZhai; Jiang, Tao; Li, XiaoFeng; Fan, Hang; Hong, WenXin; Zhang, Yu; Zhu, Qin; Ye, Qing; Tong, YiGang; Cao, WuChun; Zhang, FuChun; Qin, ChengFeng

    2014-12-01

    Dengue has been well recognized as a global public health threat, but only sporadic epidemics and imported cases were reported in recent decades in China. Since July 2014, an unexpected large dengue outbreak has occurred in Guangdong province, China, resulting in more than 40000 patients including six deaths. To clarify and characterize the causative agent of this outbreak, the acute phase serum from a patient diagnosed with severe dengue was subjected to virus isolation and high-throughput sequencing (HTS). Traditional real-time RT-PCR and HTS with Ion Torrent PGM detected the presence of dengue virus serotype 2 (DENV-2). A clinical DENV-2 isolate GZ05/2014 was obtained by culturing the patient serum in mosquito C6/36 cells. The complete genome of GZ05/2014 was determined and deposited in GenBank under the access number KP012546. Phylogenetic analysis based on the complete envelope gene showed that the newly DENV-2 isolate belonged to Cosmopolitan genotype and clustered closely with other Guangdong strains isolated in the past decade. No amino acid mutations that are obviously known to increase virulence or replication were identified throughout the genome of GZ05/2014. The high homology of Guangdong DENV-2 strains indicated the possibility of establishment of local DENV-2 circulation in Guangdong, China. These results help clarify the origin of this epidemic and predict the future status of dengue in China.

  11. Serum Metabolomics Investigation of Humanized Mouse Model of Dengue Virus Infection.

    PubMed

    Cui, Liang; Hou, Jue; Fang, Jinling; Lee, Yie Hou; Costa, Vivian Vasconcelos; Wong, Lan Hiong; Chen, Qingfeng; Ooi, Eng Eong; Tannenbaum, Steven R; Chen, Jianzhu; Ong, Choon Nam

    2017-07-15

    Dengue is an acute febrile illness caused by dengue virus (DENV) and a major cause of morbidity and mortality in tropical and subtropical regions of the world. The lack of an appropriate small-animal model of dengue infection has greatly hindered the study of dengue pathogenesis and the development of therapeutics. In this study, we conducted mass spectrometry-based serum metabolic profiling from a model using humanized mice (humice) with DENV serotype 2 infection at 0, 3, 7, 14, and 28 days postinfection (dpi). Forty-eight differential metabolites were identified, including fatty acids, purines and pyrimidines, acylcarnitines, acylglycines, phospholipids, sphingolipids, amino acids and derivatives, free fatty acids, and bile acid. These metabolites showed a reversible-change trend-most were significantly perturbed at 3 or 7 dpi and returned to control levels at 14 or 28 dpi, indicating that the metabolites might serve as prognostic markers of the disease in humice. The major perturbed metabolic pathways included purine and pyrimidine metabolism, fatty acid β-oxidation, phospholipid catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan metabolism, phenylalanine metabolism, lysine biosynthesis and degradation, and bile acid biosynthesis. Most of these disturbed pathways are similar to our previous metabolomics findings in a longitudinal cohort of adult human dengue patients across different infection stages. Our analyses revealed the commonalities of host responses to DENV infection between humice and humans and suggested that humice could be a useful small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. IMPORTANCE Dengue virus is the most widespread arbovirus, causing an estimated 390 million dengue infections worldwide every year. There is currently no effective treatment for the disease, and the lack of an appropriate small-animal model of dengue infection has greatly

  12. Molecular epidemiology of type 1 and 2 dengue viruses in Brazil from 1988 to 2001.

    PubMed

    Pires Neto, R J; Lima, D M; de Paula, S O; Lima, C M; Rocco, I M; Fonseca, B A L

    2005-06-01

    Dengue is a mosquito-borne viral infection that in recent decades has become a major international public health concern. Epidemic dengue fever reemerged in Brazil in 1981. Since 1990 more than one dengue virus serotype has been circulating in this tropical country and increasing rates of dengue hemorrhagic fever and dengue shock syndrome have been detected every year. Some evidence supports the association between the introduction of a new serotype and/or genotype in a region and the appearance of dengue hemorrhagic fever. In order to study the evolutionary relationships and possible detection of the introduction of new dengue virus genotypes in Brazil in the last years, we analyzed partial nucleotide sequences of 52 Brazilian samples of both dengue type 1 and dengue type 2 isolated from 1988 to 2001 from highly endemic regions. A 240-nucleotide-long sequence from the envelope/nonstructural protein 1 gene junction was used for phylogenetic analysis. After comparing the nucleotide sequences originally obtained in this study to those previously studied by others, and analyzing the phylogenetic trees, we conclude that, after the initial introduction of the currently circulating dengue-1 and dengue-2 genotypes in Brazil, there has been no evidence of introduction of new genotypes since 1988. The increasing number of dengue hemorrhagic fever cases seen in Brazil in the last years is probably associated with secondary infections or with the introduction of new serotypes but not with the introduction of new genotypes.

  13. Molecular characterization of dengue viruses isolated from patients in Central Java, Indonesia.

    PubMed

    Kusmintarsih, Endang S; Hayati, Rahma F; Turnip, Oktaviani N; Yohan, Benediktus; Suryaningsih, Suhestri; Pratiknyo, Hery; Denis, Dionisius; Sasmono, R Tedjo

    2017-10-19

    Dengue is hyper-endemic in Indonesia. Purwokerto city in Central Java province is routinely ravaged by the disease. Despite the endemicity of dengue in this city, there is still no data on the virological aspects of dengue in the city. We conducted a molecular surveillance study of the circulating dengue viruses (DENV) in Purwokerto city to gain information on the virus origin, serotype and genotype distribution, and phylogenetic characteristics of DENV. A cross-sectional dengue molecular surveillance study was conducted in Purwokerto. Sera were collected from dengue-suspected patients attending three hospitals in the city. Diagnosis was performed using dengue NS1 antigen and IgG/IgM antibodies detection. DENV serotyping was performed using Simplexa Dengue real-time RT-PCR. Sequencing was conducted to obtain full-length DENV Envelope (E) gene sequences, which were then used in phylogenetic and genotypic analyses. Patients' clinical and demographic data were collected and analyzed. A total of 105 dengue-suspected patients' sera were collected, in which 80 (76.2%) were positive for IgM and/or IgG, and 57 (54.2%) were confirmed as dengue by NS1 antigen and/or DENV RNA detection using RT-PCR. Serotyping was successful for 47 isolates. All four serotypes circulated in the area with DENV-3 as the predominant serotype. Phylogenetic analyses grouped the isolates into Genotype I for DENV-1, Cosmopolitan genotype for DENV-2, and Genotype I and II for DENV-3 and -4, respectively. The analyses also revealed the close relatedness of Purwokerto isolates to other DENV strains from Indonesia and neighboring countries. We reveal the molecular and virological characteristics of DENV in Purwokerto, Banyumas regency, Central Java. The genotype and phylogenetic analyses indicate the endemicity of the circulating DENV in the city. Our serotype and genotype data provide references for future dengue molecular epidemiology studies and disease management in the region. Copyright © 2017 The

  14. The Influence of Multiple Host Contacts on the Acquisition and Transmission of Dengue-2 Virus

    DTIC Science & Technology

    1993-01-01

    5500 Stanoard Form 298 (Rev 2-89) PIs~~ bv AtI %t .34-| II Best Available Copy ABSTRACT Title of Dissertation: THE INFLUENCE OF MULTIPLE HOST CONTACTS...ABSTRACT Title of the Dissertaton: THE INFLUENCE OF MULTIPLE HOST CONTACTS ON THE ACQUISITION AND TRANSMISSION OF DENGUE-2 VIRUS BY A=DISAEX2 . John L...virus does not alter the feeding behavior of An. n•ngy~i. THE INFLUENCE OF MULTIPLE HOST CONTACTS ON THE ACQUISITION AND TRANSMISSION OF DENGUE-2 VIRUS BY

  15. Circulating serotypes of dengue virus and their incursion into non-endemic areas of Pakistan; a serious threat.

    PubMed

    Ali, Amjad; Ahmad, Habib; Idrees, Muhammad; Zahir, Fazli; Ali, Ijaz

    2016-08-26

    Dengue virus is circulating in Pakistan since 1994, which causes major and minor outbreaks in many areas of the country. The incidence of dengue in Pakistan in past years mainly restricted to parts of Sindh and Punjab provinces. As such, a severe dengue outbreak appeared in Pakistan in 2011, particularly in Punjab province with Lahore as the most hit city (290 deaths). In 2013, for the first time in the history of Pakistan, dengue outbreak erupted in Swat District, Khyber Pakhtunkhwa, which claimed more than 57 lives. Hence this study was conducted to document circulating serotypes of dengue virus in Pakistan in 2011 and 2013 dengue outbreaks in two different territories/areas of the country. In total, 1340 blood samples from people having dengue (ELISA positive) and/or dengue like symptoms from various cities/areas of Punjab and Swat, Khyber Pakhtunkhwa (KP) were collected and analyzed by reverse transcription polymerase chain reaction (RT-PCR) using serotype specific primers. The results indicated that all the four dengue virus serotypes were circulating in Punjab Province with highest frequency of DENV-2 (41.64 %) and DENV-3 (41.05 %). Similarly, DENV-2 (41.66 %) and DENV-3 (35.0 %) were dominant serotypes detected in KP-based people lived in Punjab. On the other hand only DENV-2 (40.0 %) and DENV-3 (60.0 %) were detected in Swat District. Furthermore an important observation noted in this study was mixed infection of DENV-2 and DENV-3 in Punjab in 2011 (3.81 %) and in people from KP infected in Punjab (8.33 %) which may account for the high mortality and morbidity rates as compared to previous outbreaks. Over all male population was mostly infected as compared to females and people in the age group between 15 to 45 was the highest infected group. The findings of this study indicate that all four serotypes of dengue virus are circulating in Punjab whereas serotypes 2 and 3 introduced for the first time into Swat, KP in 2013; about 600 km away from Lahore

  16. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes

    PubMed Central

    Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J

    2007-01-01

    Background To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection. PMID:17263893

  17. Interferon lambda inhibits dengue virus replication in epithelial cells.

    PubMed

    Palma-Ocampo, Helen K; Flores-Alonso, Juan C; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Flores-Mendoza, Lilian; Herrera-Camacho, Irma; Rosas-Murrieta, Nora H; Santos-López, Gerardo

    2015-09-28

    In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

  18. Frequent In-Migration and Highly Focal Transmission of Dengue Viruses among Children in Kamphaeng Phet, Thailand

    DTIC Science & Technology

    2013-01-17

    Maryland, United States of America Introduction Dengue is the leading cause of mosquito-borne viral disease worldwide, and dengue fever (DF) and dengue ...of the spread of dengue virus (DENV) at local scales is central to understanding the epidemiology and evolution of this major human pathogen. We...parents. The study area and design have been described previously [11,12,18]. The epidemiology of dengue is well characterized in this region of

  19. Purification and crystallization of dengue and West Nile virus NS2B-NS3 complexes.

    PubMed

    D'Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-02-01

    Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B-NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  20. Presence of entomobirnaviruses in Chinese mosquitoes in the absence of Dengue virus co-infection.

    PubMed

    Huang, Yong; Mi, Zhiqiang; Zhuang, Lu; Ma, Maijuan; An, Xiaoping; Liu, Wei; Cao, Wuchun; Tong, Yigang

    2013-03-01

    Birnaviruses, including the genus Entomobirnavirus, are socio-economically important viruses. Currently, only Drosophila X virus has been formally assigned to the genus Entomobirnavirus, but two more viruses were recently isolated, Espirito Santo virus (ESV) and Culex Y virus. The host mosquito has been reported to carry many viruses, but seldom entomobirnaviruses. To discover potential pathogens in mosquitoes, we exploited small-RNAs high-throughput sequencing of three mosquito species caught in South China. A virus that genetically likes entomobirnavirus, Mosquito X virus (MXV), was identified from Anopheles sinensis and was 97% identical to ESV, which co-infects with Dengue virus (DENV). However, the absence of DENV in the A. sinensis suggested the independence of MXV infection from dengue co-infection. Our discovery complements prior research on entomobirnaviruses and proved that MXV may be widespread in mosquitoes on different continents. This work also highlights the applying of high-throughput sequencing of small RNAs to survey viruses carried by insect vectors.

  1. Performance of commercial dengue NS1 ELISA and molecular analysis of NS1 gene of dengue viruses obtained during surveillance in Indonesia.

    PubMed

    Aryati, Aryati; Trimarsanto, Hidayat; Yohan, Benediktus; Wardhani, Puspa; Fahri, Sukmal; Sasmono, R Tedjo

    2013-12-29

    Early diagnosis of dengue infection is crucial for better management of the disease. Diagnostic tests based on the detection of dengue virus (DENV) Non Structural Protein 1 (NS1) antigen are commercially available with different sensitivities and specificities observed in various settings. Dengue is endemic in Indonesia and clinicians are increasingly using the NS1 detection for dengue confirmation. This study described the performance of Panbio Dengue Early NS1 and IgM Capture ELISA assays for dengue detection during our surveillance in eight cities in Indonesia as well as the genetic diversity of DENV NS1 genes and its relationship with the NS1 detection. The NS1 and IgM/IgG ELISA assays were used for screening and confirmation of dengue infection during surveillance in 2010-2012. Collected serum samples (n = 440) were subjected to RT-PCR and virus isolation, in which 188 samples were confirmed for dengue infection. The positivity of the ELISA assays were correlated with the RT-PCR results to obtain the sensitivity of the assays. The NS1 genes of 48 Indonesian virus isolates were sequenced and their genetic characteristics were studied. Using molecular data as gold standard, the sensitivity of NS1 ELISA assay for samples from Indonesia was 56.4% while IgM ELISA was 73.7%. When both NS1 and IgM results were combined, the sensitivity increased to 89.4%. The NS1 sensitivity varied when correlated with city/geographical origins and DENV serotype, in which the lowest sensitivity was observed for DENV-4 (19.0%). NS1 sensitivity was higher in primary (67.6%) compared to secondary infection (48.2%). The specificity of NS1 assay for non-dengue samples were 100%. The NS1 gene sequence analysis of 48 isolates revealed the presence of polymorphisms of the NS1 genes which apparently did not influence the NS1 sensitivity. We observed a relatively low sensitivity of NS1 ELISA for dengue detection on RT-PCR-positive dengue samples. The detection rate increased significantly

  2. Antibody Recognition of the Dengue Virus Proteome and Implications for Development of Vaccines

    DTIC Science & Technology

    2011-04-01

    Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic detenninants of dengue 2 virus. J. Infect. Dis. 194:790-794. 3... reactiv - ity against other DENV serotypes (1, 35). In contrast to DF, dengue hemorrhagic fever (DHF) is an infrequent but far more serious consequence of...recipients of the tetrava- lent DENV vaccine or from dengue cases owing to antibody cross- reactivity among serotypes (29). Furthermore, as results from

  3. Co-circulating serotypes in a dengue fever outbreak: Differential hematological profiles and phylogenetic relationships among viruses.

    PubMed

    Carmo, Andreia Moreira Dos Santos; Suzuki, Rodrigo Buzinaro; Cabral, Aline Diniz; Costa, Renata Torres da; Massari, Gabriela Pena; Riquena, Michele Marcondes; Fracasso, Helio Augusto Alves; Eterovic, Andre; Marcili, Arlei; Sperança, Márcia Aparecida

    2017-05-01

    Dengue virus, represented by four distinct, genetically diverse serotypes, is the etiologic agent of asymptomatic to severe hemorrhagic diseases. The spatiotemporal dynamics of dengue serotypes and its association to specific diseases vary among the different regions worldwide. By 2007, and in São Paulo State, Brazil, dengue-case concentration in urban centers had changed to increased incidence in small- and medium-sized towns, the case of Marília. The aim of this article was to distinguish dengue serotypes circulating during the 2007 Marília outbreak and define their association to demographic and hematological patient profiles, as well as the phylogenetic relationships among the different viruses. PCR amplicons corresponding to the junction of capsid and dengue pre-membrane encoding genes, obtained from dengue serologically positive patients, were sequenced. Hematological and demographic data of patients with different Dengue serotypes were evaluated by univariate and bivariate statistics. Dengue PCR sequences were used in phylogenetic relationships analyzed for maximum parsimony. Molecular typing confirmed co-circulation of the dengue serotypes 1 (DENV1) and 3 (DENV3), which presented divergent correlation patterns with regard to hematological descriptors. The increase in atypical lymphocytes, a likely indication of virus load, could be significantly associated to a decrease in leukocyte counts in the DENV3 group and platelet in the DENV1. Phylogenetic reconstitution revealed the introduction of DENV1 from northern Brazil and local divergence of DENV3 by either microevolution or viral introduction from other geographical regions or both. Dengue dynamics showed regional molecular-epidemiologic specificity, which has important implications for introduction of vaccines, disease management, and transmission control. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. First record in America of Aedes albopictus naturally infected with dengue virus during the 1995 outbreak at Reynosa, Mexico.

    PubMed

    Ibáñez-Bernal, S; Briseño, B; Mutebi, J P; Argot, E; Rodríguez, G; Martínez-Campos, C; Paz, R; de la Fuente-San Román, P; Tapia-Conyer, R; Flisser, A

    1997-10-01

    Mosquito collections were conducted during a dengue outbreak in Reynosa, Tamaulipas, Mexico, July-December 1995. A total of 6694 adult mosquitoes (four genera and nine species) were captured, of which 2986 (78.3% females and 21.7% males) were Aedes albopictus and 2339 (39.7% females and 60.3% males) were Ae.aegypti. These two species comprised 84.2% of the total collection. Specimens were grouped into pools, nearly 50% of them processed for detection of virus by cythopathic effect in C6-36 and VERO cell cultures and by haemagglutination test. Five pools gave positive haemagglutination reactions and were examined by immunofluorescence using monoclonal antibodies to flavivirus and to dengue virus. One pool of ten Ae.albopictus males was positive for dengue virus: serotypes 2 and 3 were identified by serotype-specific monoclonal antibodies and confirmed by RT-PCR. This is the first report of Ae.albopictus naturally infected with dengue virus in America. Also, it is the very first time Ae.albopictus males have been found infected with dengue virus in the wild.

  5. Dengue

    MedlinePlus

    Dengue is an infection caused by a virus. You can get it if an infected mosquito bites you. Dengue does not spread from person to person. It ... the world. Outbreaks occur in the rainy season. Dengue is rare in the United States. Symptoms include ...

  6. Human Immune Response to Dengue Infections

    DTIC Science & Technology

    1990-07-31

    flavivirus-crossreactive clone recognized dengue-l, -2, -3, and -4 virus and West Nile virus (WNV), but did not recognize yellow fever virus ( YFV ), while...three flavivirus-crossreactive clones recognized dengue-1, -2, -3 and -4 virus, WNV and YFV . We also examined the recognition of purified NS3 proteins of...dengue-l, YFV or WNV Ag. JK44 lysed target cells cultured with dengue-1, -2, and -3, but did not lyse target cells cultured with dengue-4, YFV or WNV Ag

  7. Assessing Disparities of Dengue Virus Transmission Risk across the US-Mexican Border Using a Climate Driven Vector-Epidemiological Model

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey

    2015-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.

  8. Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor

    PubMed Central

    Kakumani, Pavan Kumar; Ponia, Sanket Singh; S, Rajgokul K.; Sood, Vikas; Chinnappan, Mahendran; Banerjea, Akhil C.; Medigeshi, Guruprasad R.; Malhotra, Pawan

    2013-01-01

    RNA interference (RNAi) is an important antiviral defense response in plants and invertebrates; however, evidences for its contribution to mammalian antiviral defense are few. In the present study, we demonstrate the anti-dengue virus role of RNAi in mammalian cells. Dengue virus infection of Huh 7 cells decreased the mRNA levels of host RNAi factors, namely, Dicer, Drosha, Ago1, and Ago2, and in corollary, silencing of these genes in virus-infected cells enhanced dengue virus replication. In addition, we observed downregulation of many known human microRNAs (miRNAs) in response to viral infection. Using reversion-of-silencing assays, we further showed that NS4B of all four dengue virus serotypes is a potent RNAi suppressor. We generated a series of deletion mutants and demonstrated that NS4B mediates RNAi suppression via its middle and C-terminal domains, namely, transmembrane domain 3 (TMD3) and TMD5. Importantly, the NS4B N-terminal region, including the signal sequence 2K, which has been implicated in interferon (IFN)-antagonistic properties, was not involved in mediating RNAi suppressor activity. Site-directed mutagenesis of conserved residues revealed that a Phe-to-Ala (F112A) mutation in the TMD3 region resulted in a significant reduction of the RNAi suppression activity. The green fluorescent protein (GFP)-small interfering RNA (siRNA) biogenesis of the GFP-silenced line was considerably reduced by wild-type NS4B, while the F112A mutant abrogated this reduction. These results were further confirmed by in vitro dicer assays. Together, our results suggest the involvement of miRNA/RNAi pathways in dengue virus establishment and that dengue virus NS4B protein plays an important role in the modulation of the host RNAi/miRNA pathway to favor dengue virus replication. PMID:23741001

  9. Artificial receptors in serologic tests for the early diagnosis of dengue virus infection.

    PubMed

    Tai, Dar-Fu; Lin, Chung-Yin; Wu, Tzong-Zeng; Huang, Jyh-Hsiung; Shu, Pei-Yun

    2006-08-01

    Because of the range and nonspecificity of clinical presentations of dengue virus infections, we felt there was a need to create diagnostic tests. We used artificial receptors for the virus to develop serologic assays to detect dengue virus infection. We coated a quartz crystal microbalance (QCM) with molecularly imprinted polymers specific for nonstructural protein 1 of flavivirus. These artificial receptors were specifically created on a QCM chip by polymerization of monomers and were cross-linked in the presence of the epitope site of nonstructural protein 1. We tested serum samples from patients with confirmed cases of dengue reported to the Center for Disease Control in Taipei. Samples were diluted 100-fold; no other sample pretreatment was used. The QCM response was compared with results of monoclonal ELISA. QCM signals were >15 Hz in 18 of 21 (86%) of dengue samples and in 0 of 16 control samples. The correlation (r2) of the QCM response and the ELISA result was 0.73. Within-run and run-to-run imprecisions (CV) were 4%-28% and 10%-32%, respectively. The described assay offers a serologic technique for diagnosis of early viremia. The results illustrate the potential of well-organized polymers on the highly sensitive sensor system for diagnostic and biotechnological applications.

  10. Antibody-Dependent Enhancement of Dengue Virus Growth in Human Monocytes as a Risk Factor for Dengue Hemorrhagic Fever

    DTIC Science & Technology

    1989-01-01

    One serum exhibited a de - 1’-917 cells, no DEN-2 infection was observed gree of infection above the mean of normal se- in cell cultures in the absence...ORGANIZATION RERORT NUMBER(S) 5 MONTORNN __ ___ ____ ___ ____ i 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL la NAME OF MONITORING ORGANIZATION...schoolchildren in Bangkok were tested for their ability to enhance dengue 2 (DEN-2) virus growth in human monocytes in vitro . Two groups of dengue-immune

  11. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.

    PubMed

    Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

  12. Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection

    PubMed Central

    Bonizzoni, Mariangela; Dunn, W. Augustine; Campbell, Corey L.; Olson, Ken E.; Marinotti, Osvaldo; James, Anthony A.

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1–4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes. PMID:23209765

  13. Simulated Transmission of the Dengue Virus Across the US-Mexico Border Using Remotely Sensed and Ground Based Weather Data

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Quattrochi, Dale A.

    2015-01-01

    Incidence of dengue fever, caused by a mosquito transmitted virus, have increased in the Americas during recent decades. In the US, local transmission has been reported in southern Texas and Florida. However, despite its close proximity to dengue endemic areas in Mexico and the presence of a primary mosquito vector, there are no reports of local transmission in Arizona. Many studies have demonstrated that weather influences dengue virus transmission by regulating vector development rates, vector habitat availability, and the duration of the virus extrinsic incubation period (EIP). The EIP, the period between mosquito infection and the ability for it to retransmit the virus, is especially important given its high sensitivity to temperature and the short lifespan of mosquitoes. Other studies, however, have suggested that human related factors such as socioeconomic status and herd immunity may explain much of the disparity in dengue incidence in the US-Mexico border region. Using a meteorologically driven model of vector population dynamics and virus transmission we compare simulations of dengue fever cases in southern Arizona and northern Mexico. A Monte Carlo approach is employed to select parameter values by evaluating simulations in Hermosillo Mexico with reported dengue fever case data. Simulations that replicate the case data best are retained and rerun using remotely sensed climate data from other Arizona and Mexico locations to determine the relative influence of weather on virus transmission. Although human and environmental factors undoubtedly influence dengue transmission in the US-Mexico border regions, weather is a major facilitator of the transmission process.

  14. Nucleobases and corresponding nucleosides display potent antiviral activities against dengue virus possibly through viral lethal mutagenesis.

    PubMed

    Qiu, Li; Patterson, Steven E; Bonnac, Laurent F; Geraghty, Robert J

    2018-04-01

    Dengue virus affects millions of people worldwide each year. To date, there is no drug for the treatment of dengue-associated disease. Nucleosides are effective antivirals and work by inhibiting the accurate replication of the viral genome. Nucleobases offer a cheaper alternative to nucleosides for broad antiviral applications. Metabolic activation of nucleobases involves condensation with 5-phosphoribosyl-1-pyrophosphate to give the corresponding nucleoside-5'-monophosphate. This could provide an alternative to phosphorylation of a nucleoside, a step that is often rate limiting and inefficient in activation of nucleosides. We evaluated more than 30 nucleobases and corresponding nucleosides for their antiviral activity against dengue virus. Five nucleobases and two nucleosides were found to induce potent antiviral effects not previously described. Our studies further revealed that nucleobases were usually more active with a better tissue culture therapeutic index than their corresponding nucleosides. The development of viral lethal mutagenesis, an antiviral approach that takes into account the quasispecies behavior of RNA viruses, represents an exciting prospect not yet studied in the context of dengue replication. Passage of the virus in the presence of the nucleobase 3a (T-1105) and corresponding nucleoside 3b (T-1106), favipiravir derivatives, induced an increase in apparent mutations, indicating lethal mutagenesis as a possible antiviral mechanism. A more concerted and widespread screening of nucleobase libraries is a very promising approach to identify dengue virus inhibitors including those that may act as viral mutagens.

  15. Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase.

    PubMed

    Wang, Gang; Lim, Siew Pheng; Chen, Yen-Liang; Hunziker, Jürg; Rao, Ranga; Gu, Feng; Seh, Cheah Chen; Ghafar, Nahdiyah Abdul; Xu, Haoying; Chan, Katherine; Lin, Xiaodong; Saunders, Oliver L; Fenaux, Martijn; Zhong, Weidong; Shi, Pei-Yong; Yokokawa, Fumiaki

    2018-05-03

    To identify a potent and selective nucleoside inhibitor of dengue virus RNA-dependent RNA polymerase, a series of 2'- and/or 4'-ribose sugar modified uridine nucleoside phosphoramidate prodrugs and their corresponding triphosphates were synthesized and evaluated. Replacement of 2'-OH with 2'-F led to be a poor substrate for both dengue virus and human mitochondrial RNA polymerases. Instead of 2'-fluorination, the introduction of fluorine at the ribose 4'-position was found not to affect the inhibition of the dengue virus polymerase with a reduction in uptake by mitochondrial RNA polymerase. 2'-C-ethynyl-4'-F-uridine phosphoramidate prodrug displayed potent anti-dengue virus activity in the primary human peripheral blood mononuclear cell-based assay with no significant cytotoxicity in human hepatocellular liver carcinoma cell lines and no mitochondrial toxicity in the cell-based assay using human prostate cancer cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    PubMed

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  17. Chikungunya Virus Infections among Patients with Dengue-Like Illness at a Tertiary Care Hospital in the Philippines, 2012–2013

    PubMed Central

    Velasco, John Mark; Valderama, Maria Theresa; Lopez, Maria Nila; Chua, Domingo; Latog, Rene; Roque, Vito; Corpuz, June; Klungthong, Chonticha; Rodpradit, Prinyada; Hussem, Kittinun; Poolpanichupatam, Yongyuth; Macareo, Louis; Fernandez, Stefan; Yoon, In-Kyu

    2015-01-01

    Chikungunya virus (CHIKV) often co-circulates with dengue virus (DENV). A cross-sectional surveillance study was conducted at a tertiary hospital in Manila, Philippines, to describe the prevalence and characteristics of DENV and CHIKV infections among patients seeking care for dengue-like illness. Acute blood samples from patients ≥ 6 months of age clinically diagnosed with dengue from November 2012 to December 2013 underwent reverse transcription polymerase chain reaction (RT-PCR) to detect DENV and CHIKV RNA. A total of 118 patients with clinically diagnosed dengue (age range = 1–89 years, mean = 22 years; male-to-female ratio = 1.51) were tested by DENV RT-PCR; 40 (34%) were DENV PCR-positive (age range = 1–45 years, mean = 17 years). All DENV serotypes were detected: 11 (28%) DENV-1, 6 (15%) DENV-2, 6 (15%) DENV-3, and 17 (42%) DENV-4. Of 112 patients clinically diagnosed with dengue and tested by CHIKV RT-PCR, 11 (10%) were CHIKV PCR-positive (age range = 2–47 years, mean = 20.3 years). No coinfections were detected. Presenting signs/symptoms did not differ between DENV- and CHIKV-positive cases. Sequencing of envelope 1 gene from two CHIKV PCR-positive samples showed Asian genotype. This study highlights the potential for misdiagnosis of medically attended CHIKV infections as DENV infection and the difficulty in clinically differentiating dengue and chikungunya based on presenting signs/symptoms alone. This underscores the necessity for diagnostic laboratory tests to distinguish CHIKV infections in the background of actively co-circulating DENV. PMID:26416109

  18. Biosensing enhancement of dengue virus using microballoon mixers on centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Djordjevic, Ivan; Hosseini, Samira; Rothan, Hussin A; Yusof, Rohana; Madou, Marc J

    2015-05-15

    Dengue is the current leading cause of death among children in several Latin American and Asian countries. Due to poverty in areas where the disease is prevalent and the high cost of conventional diagnostic systems, low cost devices are needed to reduce the burden caused by dengue infection. Centrifugal microfluidic platforms are an alternative solution to reduce costs and increase the availability of a rapid diagnostic system. The rate of chemical reactions in such devices often depends on the efficiency of the mixing techniques employed in their microfluidic networks. This paper introduces a micromixer that operates by the expansion and contraction of a microballoon to produce a consistent periodical 3D reciprocating flow. We established that microballoons reduced mixing time of 12 μl liquids from 170 min, for diffusional mixing, to less than 23 s. We have also tested the effect of the microballoon mixers on the detection of the dengue virus. The results indicate that employing a microballoon mixer enhances the detection sensitivity of the dengue virus by nearly one order of magnitude compared to the conventional ELISA method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Help Control Mosquitoes that Spread Dengue, Chikungunya, and Zika Viruses

    MedlinePlus

    Help Control Mosquitoes that Spread Dengue, Chikungunya, and Zika Viruses B Z Z Z Z . Aside from being itchy ... for your information only. The Centers for Disease Control and Prevention and the U.S. Department of Health ...

  20. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection

    PubMed Central

    McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A.; Baric, Ralph S.; Lazear, Helen M.

    2017-01-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus–specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity. PMID:28418292

  1. Co-circulation and co-infections of all dengue virus serotypes in Hyderabad, India 2014.

    PubMed

    Vaddadi, K; Gandikota, C; Jain, P K; Prasad, V S V; Venkataramana, M

    2017-09-01

    The burden of dengue virus infections increased globally during recent years. Though India is considered as dengue hyper-endemic country, limited data are available on disease epidemiology. The present study includes molecular characterization of dengue virus strains occurred in Hyderabad, India, during the year 2014. A total of 120 febrile cases were recruited for this study, which includes only children and 41 were serologically confirmed for dengue positive infections using non-structural (NS1) and/or IgG/IgM ELISA tests. RT-PCR, nucleotide sequencing and evolutionary analyses were carried out to identify the circulating serotypes/genotypes. The data indicated a high percent of severe dengue (63%) in primary infections. Simultaneous circulation of all four serotypes and co-infections were observed for the first time in Hyderabad, India. In total, 15 patients were co-infected with more than one dengue serotype and 12 (80%) of them had severe dengue. One of the striking findings of the present study is the identification of serotype Den-1 as the first report from this region and this strain showed close relatedness to the Thailand 1980 strains but not to any of the strains reported from India until now. Phylogenetically, all four strains of the present study showed close relatedness to the strains, which are reported to be high virulent.

  2. Suppression of Virus Specific Immune Responses by IL-10 in Acute Dengue Infection

    PubMed Central

    Malavige, Gathsaurie Neelika; Jeewandara, Chandima; Alles, K. M. Luckmaal; Salimi, Maryam; Gomes, Laksiri; Kamaladasa, Achala; Jayaratne, S. D.; Ogg, Graham Stuart

    2013-01-01

    Background Elevated IL-10 has been shown to be associated with severe dengue infection (DI). We proceeded to investigate the role of IL-10 in the pathogenesis of acute DI. Materials and methods Ex vivo and cultured IFNγ ELISpot assays for dengue virus (DENV) NS3 protein and non dengue viral proteins were carried out in 26 patients with acute DI (16 with dengue haemorrhagic fever) and 12 healthy dengue seropositive individuals from Sri Lanka. DENV serotype specific (SS) responses were determined by using a panel of SS peptides. Results Serum IL-10 level were significantly higher (p = 0.02) in those who did not have in vitro responses to DENV-SS peptides (mean 144.2 pg/ml) when compared to those who responded (mean 75.7 pg/ml). DENV-NS3 specific ex vivo IFNγ ELISpot responses were also significantly lower (p = 0.0001) in those who did not respond to DENV-SS peptides (mean 42 SFU/million PBMCs) when compared to those who responded to DENV-SS peptides (mean 1024 SFU/million PBMCs). Serum IL-10 levels correlated significantly (p = 0.03) and inversely (Spearmans R = −0.45) with ex vivo DENV-NS3 specific responses but not with ex vivo non DENV specific responses (Spearmans R = −014, p = 0.52). Blockage of IL-10 in vitro significantly increased (p = 0.04) the ex vivo IFNγ ELISpot DENV-NS3 specific responses but had no effect on responses to non DENV proteins. Conclusion IL-10 appears to contribute to the pathogenesis of acute dengue infections by inhibiting DENV-specific T cell responses, which can be restored by blocking IL-10. PMID:24040431

  3. Clinical and laboratory profile of Zika virus infection in dengue suspected patients: A case series.

    PubMed

    Fernanda Estofolete, Cássia; Terzian, Ana Carolina Bernardes; Parreira, Ricardo; Esteves, Aida; Hardman, Lucas; Greque, Gilmar Valdir; Rahal, Paula; Nogueira, Maurício Lacerda

    2016-08-01

    The Zika virus (ZIKV) is an emerging arthropod-borne virus related to the dengue virus (DENV), and shows a similar clinical profile as other arboviral diseases, such as dengue and chikungunya virus (CHIKV). Historically, ZIKV has been associated with sporadic cases of human infection, but is now responsible for outbreaks worldwide. In Brazil, cases have been reported since 2015, with some cases causing severe disease. To identify clinical symptoms of Zika in patients in Dengue suspected patients. Description of a series of cases, wherein we analyzed 100 clinical samples collected from patients who exhibited acute febrile disease for ≤5days, from January to February 2016. In this study, we report 13 cases of ZIKV infection in adults presenting dengue-like symptoms in a DENV endemic area. All patients presented with fever, with myalgia being the second most frequently observed symptom. Two patients had rashes, but none of them had conjunctivitis. Other less frequent manifestations included headache, arthralgia, diarrhea, and nausea. The co-circulation of ZIKV and DENV is a serious public health concern, since it represents both a clinical and diagnostic challenge in endemic areas, as well as in the field of travel medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Discovery of novel dengue virus entry inhibitors via a structure-based approach.

    PubMed

    Leal, Emilse S; Aucar, M Gabriela; Gebhard, Leopoldo G; Iglesias, Nestor G; Pascual, María J; Casal, Juan J; Gamarnik, Andrea V; Cavasotto, Claudio N; Bollini, Mariela

    2017-08-15

    Dengue is a mosquito-borne virus that has become a major public health concern worldwide in recent years. However, the current treatment for dengue disease is only supportive therapy, and no specific antivirals are available to control the infections. Therefore, the need for safe and effective antiviral drugs against this virus is of utmost importance. Entry of the dengue virus (DENV) into a host cell is mediated by its major envelope protein, E. The crystal structure of the E protein reveals a hydrophobic pocket occupied by the detergent n-octyl-β-d-glucoside (β-OG) lying at a hinge region between domains I and II, which is important for the low-pH-triggered conformational rearrangement required for fusion. Thus, the E protein is an attractive target for the development of antiviral agents. In this work, we performed prospective docking-based virtual screening to identify small molecules that likely bind to the β-OG binding site. Twenty-three structurally different compounds were identified and two of them had an EC 50 value in the low micromolar range. In particular, compound 2 (EC 50 =3.1μM) showed marked antiviral activity with a good therapeutic index. Molecular dynamics simulations were used in an attempt to characterize the interaction of 2 with protein E, thus paving the way for future ligand optimization endeavors. These studies highlight the possibility of using a new class of DENV inhibitors against dengue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells

    PubMed Central

    Farias, Kleber Juvenal Silva; Machado, Paula Renata Lima; da Fonseca, Benedito Antônio Lopes

    2013-01-01

    Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2). Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU). These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells. PMID:23431254

  6. Chloroquine inhibits dengue virus type 2 replication in Vero cells but not in C6/36 cells.

    PubMed

    Farias, Kleber Juvenal Silva; Machado, Paula Renata Lima; da Fonseca, Benedito Antônio Lopes

    2013-01-01

    Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2). Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU). These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells.

  7. Live attenuated tetravalent dengue vaccine.

    PubMed

    Bhamarapravati, N; Sutee, Y

    2000-05-26

    The development of a live attenuated tetravalent dengue vaccine is currently the best strategy to obtain a vaccine against dengue viruses. The Mahidol University group developed candidate live attenuated vaccines by attenuation through serial passages in certified primary cell cultures. Dengue serotype 1, 2 and 4 viruses were developed in primary dog kidney cells, whereas dengue serotype 3 was serially passaged in primary African green monkey kidney cells. Tissue culture passaged strain viruses were subjected to biological marker studies. Candidate vaccines have been tested as monovalent (single virus), bivalent (two viruses), trivalent (three viruses) and tetravalent (all four serotype viruses) vaccines in Thai volunteers. They were found to be safe and immunogenic in both adults and children. The Mahidol live attenuated dengue 2 virus was also tested in American volunteers and resulted in good immune response indistinguishable from those induced in Thai volunteers. The master seeds from the four live attenuated virus strains developed were provided to Pasteur Merieux Connaught of France for production on an industrial scale following good manufacturing practice guidelines.

  8. Meningitis Associated with Simultaneous Infection by Multiple Dengue Virus Serotypes in Children, Brazil.

    PubMed

    Marinho, Paula Eillanny Silva; Bretas de Oliveira, Danilo; Candiani, Talitah Michel Sanchez; Crispim, Ana Paula Correia; Alvarenga, Pedro Paulo Martins; Castro, Fabrizia Cristina Dos Santos; Abrahão, Jonatas Santos; Rios, Maria; Coimbra, Roney Santos; Kroon, Erna Geessien

    2017-01-01

    To determine the causes of viral meningitis, we analyzed 22 cerebrospinal fluid samples collected during the 2014-2015 dengue epidemics in Brazil. We identified 3 serotypes of dengue virus (DENV-1, -2, and -3), as well as co-infection with 2 or 3 serotypes. We also detected the Asian II genotype of DENV-2.

  9. A DNA microarray-based assay to detect dual infection with two dengue virus serotypes.

    PubMed

    Díaz-Badillo, Alvaro; Muñoz, María de Lourdes; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G; Martínez-Muñoz, Jorge P; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-04-25

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  10. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    PubMed Central

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  11. Mosquito Bite Delivery of Dengue Virus Enhances Immunogenicity and Pathogenesis in Humanized Mice

    PubMed Central

    Cox, Jonathan; Mota, Javier; Sukupolvi-Petty, Soila; Diamond, Michael S.

    2012-01-01

    Dengue viruses (DENV) are transmitted to humans by the bite of Aedes aegypti or Aedes albopictus mosquitoes, with millions of infections annually in over 100 countries. The diseases they produce, which occur exclusively in humans, are dengue fever (DF) and dengue hemorrhagic fever (DHF). We previously developed a humanized mouse model of DF in which mice transplanted with human hematopoietic stem cells produced signs of DENV disease after injection with low-passage, wild-type isolates. Using these mice, but now allowing infected A. aegypti to transmit dengue virus during feeding, we observed signs of more severe disease (higher and more sustained viremia, erythema, and thrombocytopenia). Infected mice mounted innate (gamma interferon [IFN-γ] and soluble interleukin 2 receptor alpha [sIL-2Rα]) and adaptive (anti-DENV antibodies) immune responses that failed to clear viremia until day 56, while a mosquito bite alone induced strong immunomodulators (tumor necrosis factor alpha [TNF-α], IL-4, and IL-10) and thrombocytopenia. This is the first animal model that allows an evaluation of human immunity to DENV infection after mosquito inoculation. PMID:22573866

  12. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  13. Determination of clusters and factors associated with dengue dispersion during the first epidemic related to Dengue virus serotype 4 in Vitória, Brazil

    PubMed Central

    Herbinger, Karl-Heinz; Cerutti Junior, Crispim; Malta Romano, Camila; de Souza Areias Cabidelle, Aline; Fröschl, Günter

    2017-01-01

    Dengue occurrence is partially influenced by the immune status of the population. Consequently, the introduction of a new Dengue virus serotype can trigger explosive epidemics in susceptible populations. The determination of clusters in this scenario can help to identify hotspots and understand the disease dispersion regardless of the influence of the population herd immunity. The present study evaluated the pattern and factors associated with dengue dispersion during the first epidemic related to Dengue virus serotype 4 in Vitória, Espírito Santo state, Brazil. Data on 18,861 dengue cases reported in Vitória from September 2012 to June 2013 were included in the study. The analysis of spatial variation in temporal trend was performed to detect clusters that were compared by their respective relative risk, house index, population density, and income in an ecological study. Overall, 11 clusters were detected. The time trend increase of dengue incidence in the overall study population was 636%. The five clusters that showed a lower time trend increase than the overall population presented a higher incidence in the beginning of the epidemic and, compared to the six clusters with higher time trend increase, they presented higher relative risk for their inhabitants to acquire dengue infection (P-value = 0.02) and a lower income (P-value <0.01). House index and population density did not differ between the clusters. Early increase of dengue incidence and higher relative risk for acquiring dengue infection were favored in low-income areas. Preventive actions and improvement of infrastructure in low-income areas should be prioritized in order to diminish the magnitude of dengue dispersion after the introduction of a new serotype. PMID:28388694

  14. Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014

    PubMed Central

    Chang, Shu-Fen; Yang, Cheng-Fen; Hsu, Tung-Chieh; Su, Chien-Ling; Lin, Chien-Chou; Shu, Pei-Yun

    2016-01-01

    We present the results of a laboratory-based surveillance of dengue in Taiwan in 2014. A total of 240 imported dengue cases were identified. The patients had arrived from 16 countries, and Malaysia, Indonesia, the Philippines, and China were the most frequent importing countries. Phylogenetic analyses showed that genotype I of dengue virus type 1 (DENV-1) and the cosmopolitan genotype of DENV-2 were the predominant DENV strains circulating in southeast Asia. The 2014 dengue epidemic was the largest ever to occur in Taiwan since World War II, and there were 15,492 laboratory-confirmed indigenous dengue cases. Phylogenetic analysis showed that the explosive dengue epidemic in southern Taiwan was caused by a DENV-1 strain of genotype I imported from Indonesia. There were several possible causes of this outbreak, including delayed notification of the outbreak, limited staff and resources for control measures, abnormal weather conditions, and a serious gas pipeline explosion in the dengue hot spot areas in Kaohsiung City. However, the results of this surveillance indicated that both active and passive surveillance systems should be strengthened so appropriate public health measures can be taken promptly to prevent large-scale dengue outbreaks. PMID:26880779

  15. Rare occurrence of natural transovarial transmission of dengue virus and elimination of infected foci as a possible intervention method.

    PubMed

    Angel, Annette; Angel, Bennet; Joshi, Vinod

    2016-03-01

    Transovarial transmission of dengue virus has been studied in 33 districts of Rajasthan, India. Small proportion (1.09%) of breeding containers positive for the virus and their elimination has been demonstrated as a possible intervention method of disease control. Dengue virus was isolated from individual mosquitoes employing Indirect Fluorescence Antibody Test and Reverse Transcriptase Polymerase Chain Reaction. Out of 1,30,525 containers examined only 1432(1.09%) showed transovarially transmitted virus activity. Elimination of larvae from all the 1432 virus positive containers resulted in substantial control over prospective transmission of dengue. The study highlights rarity of transovarial transmission under natural conditions and sensitizes whether elimination of vertically infected foci could be used as a new intervention method. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Pharmacological intervention for dengue virus infection.

    PubMed

    Lai, Jenn-Haung; Lin, Yi-Ling; Hsieh, Shie-Liang

    2017-04-01

    Dengue virus (DENV) infection has a considerable health impact in tropical and subtropical countries worldwide. Escalation of infection rates greatly increases morbidity and mortality, most commonly from deaths due to dengue hemorrhagic fever and dengue shock syndrome. Although the development of an effective, long-lasting vaccine has been a major aim for control and prevention of DENV infection, the currently licensed vaccine has limitations and is less than satisfactory. Thus, there remains an important need to identify effective and tolerable medications for treatment of DENV-infected patients both in the early phase, to prevent progression to fatal outcomes, and to minimize deaths after patients develop severe complications. This review will address several specific points, including (1) approaches to identify anti-DENV medications, (2) recent advances in the development of potential compounds targeting DENV infection, (3) experience with clinical trials of regimens for DENV infection, (4) some available medications of potential for clinical trials against DENV infection, (5) reasons for unsuccessful outcomes and challenges of anti-DENV treatments, and (6) directions for developing or selecting better anti-DENV strategies. This review provides useful guidance for clinicians selecting drugs for DENV-infected patients with severe manifestations or potential fatal disease progression, and for basic researchers seeking to develop effective anti-DENV regimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Unusual Dengue Virus 3 Epidemic in Nicaragua, 2009

    PubMed Central

    Gutierrez, Gamaliel; Standish, Katherine; Narvaez, Federico; Perez, Maria Angeles; Saborio, Saira; Elizondo, Douglas; Ortega, Oscar; Nuñez, Andrea; Kuan, Guillermina; Balmaseda, Angel; Harris, Eva

    2011-01-01

    The four dengue virus serotypes (DENV1–4) cause the most prevalent mosquito-borne viral disease affecting humans worldwide. In 2009, Nicaragua experienced the largest dengue epidemic in over a decade, marked by unusual clinical presentation, as observed in two prospective studies of pediatric dengue in Managua. From August 2009–January 2010, 212 dengue cases were confirmed among 396 study participants at the National Pediatric Reference Hospital. In our parallel community-based cohort study, 170 dengue cases were recorded in 2009–10, compared to 13–65 cases in 2004–9. In both studies, significantly more patients experienced “compensated shock” (poor capillary refill plus cold extremities, tachycardia, tachypnea, and/or weak pulse) in 2009–10 than in previous years (42.5% [90/212] vs. 24.7% [82/332] in the hospital study (p<0.001) and 17% [29/170] vs. 2.2% [4/181] in the cohort study (p<0.001). Signs of poor peripheral perfusion presented significantly earlier (1–2 days) in 2009–10 than in previous years according to Kaplan-Meier survival analysis. In the hospital study, 19.8% of subjects were transferred to intensive care, compared to 7.1% in previous years – similar to the cohort study. DENV-3 predominated in 2008–9, 2009–10, and 2010–11, and full-length sequencing revealed no major genetic changes from 2008–9 to 2010–11. In 2008–9 and 2010–11, typical dengue was observed; only in 2009–10 was unusual presentation noted. Multivariate analysis revealed only “2009–10” as a significant risk factor for Dengue Fever with Compensated Shock. Interestingly, circulation of pandemic influenza A-H1N1 2009 in Managua was shifted such that it overlapped with the dengue epidemic. We hypothesize that prior influenza A H1N1 2009 infection may have modulated subsequent DENV infection, and initial results of an ongoing study suggest increased risk of shock among children with anti-H1N1-2009 antibodies. This study demonstrates that

  18. Enzyme-linked immunoassay for dengue virus IgM and IgG antibodies in serum and filter paper blood.

    PubMed

    Tran, Thanh Nga T; de Vries, Peter J; Hoang, Lan Phuong; Phan, Giao T; Le, Hung Q; Tran, Binh Q; Vo, Chi Mai T; Nguyen, Nam V; Kager, Piet A; Nagelkerke, Nico; Groen, Jan

    2006-01-25

    The reproducibilty of dengue IgM and IgG ELISA was studied in serum and filter paper blood spots from Vietnamese febrile patients. 781 pairs of acute (t0) and convalescent sera, obtained after three weeks (t3) and 161 corresponding pairs of filter paper blood spots were tested with ELISA for dengue IgG and IgM. 74 serum pairs were tested again in another laboratory with similar methods, after a mean of 252 days. Cases were classified as no dengue (10 %), past dengue (55%) acute primary (7%) or secondary (28%) dengue. Significant differences between the two laboratories' results were found leading to different diagnostic classification (kappa 0.46, p < 0.001). Filter paper results correlated poorly to serum values, being more variable and lower with a mean (95% CI) difference of 0.82 (0.36 to 1.28) for IgMt3, 0.94 (0.51 to 1.37) for IgGt0 and 0.26 (-0.20 to 0.71) for IgGt3. This also led to differences in diagnostic classification (kappa value 0.44, p < 0.001) The duration of storage of frozen serum and dried filter papers, sealed in nylon bags in an air-conditioned room, had no significant effect on the ELISA results. Dengue virus IgG antibodies in serum and filter papers was not affected by duration of storage, but was subject to inter-laboratory variability. Dengue virus IgM antibodies measured in serum reconstituted from blood spots on filter papers were lower than in serum, in particular in the acute phase of disease. Therefore this method limits its value for diagnostic confirmation of individual patients with dengue virus infections. However the detection of dengue virus IgG antibodies eluted from filter paper can be used for sero-prevalence cross sectional studies.

  19. Transmission of dengue virus from deceased donors to solid organ transplant recipients: case report and literature review.

    PubMed

    Rosso, Fernando; Pineda, Juan C; Sanz, Ana M; Cedano, Jorge A; Caicedo, Luis A

    Dengue fever is a vector-transmitted viral infection. Non-vectorial forms of transmission can occur through organ transplantation. We reviewed medical records of donors and recipients with suspected dengue in the first post-transplant week. We used serologic and molecular analysis to confirm the infection. Herein, we describe four cases of dengue virus transmission through solid organ transplantation. The recipients had positive serology and RT-PCR. Infection in donors was detected through serology. All cases presented with fever within the first week after transplantation. There were no fatal cases. After these cases, we implemented dengue screening with NS1 antigen detection in donors during dengue outbreaks, and no new cases were detected. In the literature review, additional cases had been published through August 2017. Transmission of Dengue virus can occur through organ donation. In endemic regions, it is important to suspect and screen for dengue in febrile and thrombocytopenic recipients in the postoperative period. Copyright © 2018 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Repertoire of virus-derived small RNAs produced by mosquito and mammalian cells in response to dengue virus infection.

    PubMed

    Schirtzinger, Erin E; Andrade, Christy C; Devitt, Nicholas; Ramaraj, Thiruvarangan; Jacobi, Jennifer L; Schilkey, Faye; Hanley, Kathryn A

    2015-02-01

    RNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lok, Shee-Mei; Kostyuchenko, Victor; Nybakken, Grant E.

    The monoclonal antibody 1A1D-2 has been shown to strongly neutralize dengue virus serotypes 1, 2 and 3, primarily by inhibiting attachment to host cells. A crystal structure of its antigen binding fragment (Fab) complexed with domain III of the viral envelope glycoprotein, E, showed that the epitope would be partially occluded in the known structure of the mature dengue virus. Nevertheless, antibody could bind to the virus at 37 degrees C, suggesting that the virus is in dynamic motion making hidden epitopes briefly available. A cryo-electron microscope image reconstruction of the virus:Fab complex showed large changes in the organization ofmore » the E protein that exposed the epitopes on two of the three E molecules in each of the 60 icosahedral asymmetric units of the virus. The changes in the structure of the viral surface are presumably responsible for inhibiting attachment to cells.« less

  2. Dengue on islands: a Bayesian approach to understanding the global ecology of dengue viruses.

    PubMed

    Feldstein, Leora R; Brownstein, John S; Brady, Oliver J; Hay, Simon I; Johansson, Michael A

    2015-05-01

    Transmission of dengue viruses (DENV), the most common arboviral pathogens globally, is influenced by many climatic and socioeconomic factors. However, the relative contributions of these factors on a global scale are unclear. We randomly selected 94 islands stratified by socioeconomic and geographic characteristics. With a Bayesian model, we assessed factors contributing to the probability of islands having a history of any dengue outbreaks and of having frequent outbreaks. Minimum temperature was strongly associated with suitability for DENV transmission. Islands with a minimum monthly temperature of greater than 14.8°C (95% CI: 12.4-16.6°C) were predicted to be suitable for DENV transmission. Increased population size and precipitation were associated with increased outbreak frequency, but did not capture all of the variability. Predictions for 48 testing islands verified these findings. This analysis clarified two key components of DENV ecology: minimum temperature was the most important determinant of suitability; and endemicity was more likely in areas with high precipitation and large, but not necessarily dense, populations. Wealth and connectivity, in contrast, had no discernable effects. This model adds to our knowledge of global determinants of dengue risk and provides a basis for understanding the ecology of dengue endemicity. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  3. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope.

    PubMed

    Metz, Stefan W; Thomas, Ashlie; White, Laura; Stoops, Mark; Corten, Markus; Hannemann, Holger; de Silva, Aravinda M

    2018-04-02

    The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form "rafts" that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1-4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen.

  4. Characterization of dengue virus 2 growth in megakaryocyte–erythrocyte progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Kristina B.; Hsiao, Hui-Mien; Bassit, Leda

    Megakaryocyte–erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectiousmore » DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis. - Highlights: • DenV replicates efficiently in undifferentiated megakaryocyte–erythrocyte progenitors. • MEP produced DenV differs in protein content from Vero produced DenV. • MEP produced DenV may be more difficult to neutralize relative to Vero DenV.« less

  5. Receptors and routes of dengue virus entry into the host cells.

    PubMed

    Cruz-Oliveira, Christine; Freire, João Miguel; Conceição, Thaís M; Higa, Luiza M; Castanho, Miguel A R B; Da Poian, Andrea T

    2015-03-01

    Dengue is the most prevalent arthropod-borne viral disease, caused by dengue virus, a member of the Flaviviridae family. Its worldwide incidence is now a major health problem, with 2.5 billion people living in risk areas. In this review, we integrate the structural rearrangements of each viral protein and their functions in all the steps of virus entry into the host cells. We describe in detail the putative receptors and attachment factors in mammalian and mosquito cells, and the recognition of viral immunocomplexes via Fcγ receptor in immune cells. We also discuss that virus internalization might occur through distinct entry pathways, including clathrin-mediated or non-classical clathrin-independent endocytosis, depending on the host cell and virus serotype or strain. The implications of viral maturation in virus entry are also explored. Finally, we discuss the mechanisms of viral genome access to the cytoplasm. This includes the role of low pH-induced conformational changes in the envelope protein that mediate membrane fusion, and original insights raised by our recent work that supports the hypothesis that capsid protein would also be an active player in this process, acting on viral genome translocation into the cytoplasm. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic determinants of dengue 2 virus.

    PubMed

    Amexis, Georgios; Young, Neal S

    2006-09-15

    For the production of dengue-vaccine candidates, empty capsids, or virus-like particles (VLPs), of parvovirus B19 that carry dengue 2-specific epitopes were employed as antigen carriers. Two epitopes (comprising amino acids 352-368 and 386-397) of domain BIII of the envelope glycoprotein were chosen to produce recombinant B19 VLPs for immunization of BALB/c mice. Serum samples from immunized mice revealed that recombinant B19 VLPs elicited strong humoral immune responses. In summary, this B19 VLP-vaccine platform produced high (> or =2.0 x 10(5)) anti-dengue 2 titers and robust (< or =1 120) 50%-plaque-reduction neutralization test (PRNT(50)) titers, which effectively neutralized live dengue 2 virus in PRNT(50) assays.

  7. Dengue encephalitis

    PubMed Central

    Borawake, Kapil; Prayag, Parikshit; Wagh, Atul; Dole, Swati

    2011-01-01

    We report a case of dengue fever with features of encephalitis. The diagnosis of dengue was confirmed by the serum antibodies to dengue and the presence of a dengue antigen in the cerebrospinal fluid. This patient had characteristic magnetic resonance imaging brain findings, mainly involving the bilateral thalami, with hemorrhage. Dengue is not primarily a neurotropic virus and encephalopathy is a common finding in Dengue. Hence various other etiological possibilities were considered before concluding this as a case of Dengue encephalitis. This case explains the importance of considering the diagnosis of dengue encephalitis in appropriate situations. PMID:22013316

  8. Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014.

    PubMed

    Chang, Shu-Fen; Yang, Cheng-Fen; Hsu, Tung-Chieh; Su, Chien-Ling; Lin, Chien-Chou; Shu, Pei-Yun

    2016-04-01

    We present the results of a laboratory-based surveillance of dengue in Taiwan in 2014. A total of 240 imported dengue cases were identified. The patients had arrived from 16 countries, and Malaysia, Indonesia, the Philippines, and China were the most frequent importing countries. Phylogenetic analyses showed that genotype I of dengue virus type 1 (DENV-1) and the cosmopolitan genotype of DENV-2 were the predominant DENV strains circulating in southeast Asia. The 2014 dengue epidemic was the largest ever to occur in Taiwan since World War II, and there were 15,492 laboratory-confirmed indigenous dengue cases. Phylogenetic analysis showed that the explosive dengue epidemic in southern Taiwan was caused by a DENV-1 strain of genotype I imported from Indonesia. There were several possible causes of this outbreak, including delayed notification of the outbreak, limited staff and resources for control measures, abnormal weather conditions, and a serious gas pipeline explosion in the dengue hot spot areas in Kaohsiung City. However, the results of this surveillance indicated that both active and passive surveillance systems should be strengthened so appropriate public health measures can be taken promptly to prevent large-scale dengue outbreaks. © The American Society of Tropical Medicine and Hygiene.

  9. Dengue fatal cases present virus-specific HMGB1 response in peripheral organs.

    PubMed

    Oliveira, Edson R A; Póvoa, Tiago F; Nuovo, Gerard J; Allonso, Diego; Salomão, Natália G; Basílio-de-Oliveira, Carlos A; Geraldo, Luiz H M; Fonseca, Celina G; Lima, Flávia R S; Mohana-Borges, Ronaldo; Paes, Marciano V

    2017-11-22

    Dengue is an important infectious disease that presents high incidence and yields a relevant number of fatal cases (about 20,000) every year worldwide. Despite its epidemiological relevance, there are many knowledge gaps concerning dengue pathogenesis, especially with regards to the circumstances that drive a mild clinical course to a severe disease. In this work, we investigated the participation of high mobility group box 1 (HMGB1), an important modulator of inflammation, in dengue fatal cases. Histopathological and ultrastructural analyses revealed that liver, lung and heart post-mortem samples were marked by tissue abnormalities, such as necrosis and apoptotic cell death. These observations go in line with an HMGB1-mediated response and raised concerns regarding the participation of this cytokine in promoting/perpetuating inflammation in severe dengue. Further experiments of immunohistochemistry (IHC) showed increased expression of cytoplasmic HMGB1 in dengue-extracted tissues when compared to non-dengue controls. Co-staining of DENV RNA and HMGB1 in the host cell cytoplasm, as found by in situ hybridization and IHC, confirmed the virus specific induction of the HMGB1-mediated response in these peripheral tissues. This report brings the first in-situ evidence of the participation of HMGB1 in severe dengue and highlights novel considerations in the development of dengue immunopathogenesis.

  10. The Nicaraguan Pediatric Dengue Cohort Study: Incidence of Inapparent and Symptomatic Dengue Virus Infections, 2004–2010

    PubMed Central

    Gordon, Aubree; Kuan, Guillermina; Mercado, Juan Carlos; Gresh, Lionel; Avilés, William; Balmaseda, Angel; Harris, Eva

    2013-01-01

    Dengue, caused by the four serotypes of dengue virus (DENV), is the most prevalent mosquito-borne viral disease of humans. To examine the incidence and transmission of dengue, the authors performed a prospective community-based cohort study in 5,545 children aged 2–14 years in Managua, Nicaragua, between 2004 and 2010. Children were provided with medical care through study physicians who systematically recorded medical consult data, and yearly blood samples were collected to evaluate DENV infection incidence. The incidence of dengue cases observed was 16.1 cases (range 3.4–43.5) per 1,000 person-years (95% CI: 14.5, 17.8), and a pattern of high dengue case incidence every other year was observed. The incidence of DENV infections was 90.2 infections (range 45.2–105.3) per 1,000 person-years (95% CI: 86.1, 94.5). The majority of DENV infections in young children (<6 years old) were primary (60%) and the majority of infections in older children (≥9 years of age) were secondary (82%), as expected. The incidence rate of second DENV infections (121.3 per 1,000 person-years; 95% CI: 102.7, 143.4) was significantly higher than the incidence rate of primary DENV infections (78.8 per 1,000 person-years; 95% CI: 73.2, 84.9). The rigorous analytic methodology used in this study, including incidence reporting in person-years, allows comparison across studies and across different infectious diseases. This study provides important information for understanding dengue epidemiology and informing dengue vaccine policy. PMID:24086788

  11. An outbreak of dengue virus (DENV) type 2 Cosmopolitan genotype in Israeli travellers returning from the Seychelles, April 2017.

    PubMed

    Lustig, Yaniv; Wolf, Dana; Halutz, Ora; Schwartz, Eli

    2017-06-29

    Dengue virus infection was diagnosed in six Israeli travellers returning from the Seychelles in April 2017. Phylogenetic analysis identified identical sequences belonging to the Cosmopolitan genotype of dengue virus type 2 in all samples sequenced, thus providing evidence for a probable dengue type 2 outbreak in the Seychelles. This report further demonstrates the role of travellers as sentinels for arboviral infections, especially in countries with limited diagnostic capabilities. This article is copyright of The Authors, 2017.

  12. Prolonged detection of dengue virus RNA in the semen of a man returning from Thailand to Italy, January 2018.

    PubMed

    Lalle, Eleonora; Colavita, Francesca; Iannetta, Marco; Gebremeskel Teklè, Saba; Carletti, Fabrizio; Scorzolini, Laura; Bordi, Licia; Vincenti, Donatella; Castilletti, Concetta; Ippolito, Giuseppe; Capobianchi, Maria Rosaria; Nicastri, Emanuele

    2018-05-01

    This study reports the presence of dengue virus RNA in longitudinally collected semen samples of a previously healthy Caucasian man, returning to Italy from Thailand with primary dengue fever, up to 37 days post-symptom onset, when viraemia and viruria were undetectable. This finding, coupled with the evidence of dengue virus negative-strand RNA, an indirect marker of ongoing viral replication, in the cellular fraction of semen, indicates a need to further investigate possible sexual transmission.

  13. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    PubMed

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  14. Losartan and enalapril decrease viral absorption and interleukin 1 beta production by macrophages in an experimental dengue virus infection.

    PubMed

    Hernández-Fonseca, Juan Pablo; Durán, Anyelo; Valero, Nereida; Mosquera, Jesús

    2015-11-01

    The role of angiotensin II (Ang II) in dengue virus infection remains unknown. The aim of this study was to determine the effect of losartan, an antagonist of the angiotensin II type 1 receptor (AT1 receptor), and enalapril, an inhibitor of angiotensin I-converting enzyme (ACE), on viral antigen expression and IL-1β production in peritoneal macrophages infected with dengue virus type 2. Mice treated with losartan or enalapril and untreated controls were infected intraperitoneally with the virus, and macrophages were analyzed. Infection resulted in increased IL-1β production and a high percentage of cells expressing viral antigen, and this was decreased by treatment with anti-Ang II drugs, suggesting a role for Ang II in dengue virus infection.

  15. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia

    PubMed Central

    2010-01-01

    Background Dengue Fever is one of the most important viral re-emergent diseases affecting about 50 million people around the world especially in tropical and sub-tropical countries. In Colombia, the virus was first detected in the earliest 70's when the disease became a major public health concern. Since then, all four serotypes of the virus have been reported. Although most of the huge outbreaks reported in this country have involved dengue virus serotype 1 (DENV-1), there are not studies about its origin, genetic diversity and distribution. Results We used 224 bp corresponding to the carboxyl terminus of envelope (E) gene from 74 Colombian isolates in order to reconstruct phylogenetic relationships and to estimate time divergences. Analyzed DENV-1 Colombian isolates belonged to the formerly defined genotype V. Only one virus isolate was clasified in the genotype I, likely representing a sole introduction that did not spread. The oldest strains were closely related to those detected for the first time in America in 1977 from the Caribbean and were detected for two years until their disappearance about six years later. Around 1987, a split up generated 2 lineages that have been evolving separately, although not major aminoacid changes in the analyzed region were found. Conclusion DENV-1 has been circulating since 1978 in Colombia. Yet, the phylogenetic relationships between strains isolated along the covered period of time suggests that viral strains detected in some years, although belonging to the same genotype V, have different recent origins corresponding to multiple re-introduction events of viral strains that were circulating in neighbor countries. Viral strains used in the present study did not form a monophyletic group, which is evidence of a polyphyletic origin. We report the rapid spread patterns and high evolution rate of the different DENV-1 lineages. PMID:20836894

  16. Invasion and Maintenance of Dengue Virus Type 2 and Type 4 in the Americas†

    PubMed Central

    Carrington, Christine V. F.; Foster, Jerome E.; Pybus, Oliver G.; Bennett, Shannon N.; Holmes, Edward C.

    2005-01-01

    Dengue virus type 4 (DENV-4) was first reported in the Americas in 1981, where it caused epidemics of dengue fever throughout the region. In the same year, the region's first epidemic of dengue hemorrhagic fever was reported, caused by an Asian strain of dengue virus type 2 (DENV-2) that was distinct from the American subtype circulating previously. Despite the importance of these epidemics, little is known about the rates or determinants of viral spread among island and mainland populations or their directions of movement. We employed a Bayesian coalescent approach to investigate the transmission histories of DENV-2 and DENV-4 since their introduction in 1981 and a parsimony method to assess patterns of strain migration. For both viruses there was an initial invasion phase characterized by an exponential increase in the number of DENV lineages, after which levels of genetic diversity remained constant despite reported fluctuations in DENV-2 and DENV-4 activity. Strikingly, viral lineage numbers increased far more rapidly for DENV-4 than DENV-2, indicative of a more rapid rate of exponential population growth in DENV-4 or a higher rate of geographic dispersal, allowing this virus to move more effectively among localities. We propose that these contrasting dynamics may reflect underlying differences in patterns of host immunity. Despite continued gene flow along particular transmission routes, the overall extent of viral traffic was less than expected under panmixis. Hence, DENV in the Americas has a clear geographic structure that maintains viral diversity between outbreaks. PMID:16282468

  17. The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti

    PubMed Central

    Bian, Guowu; Xu, Yao; Lu, Peng; Xie, Yan; Xi, Zhiyong

    2010-01-01

    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement. PMID:20368968

  18. Dermal CD14(+) Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4.

    PubMed

    Schaeffer, Evelyne; Flacher, Vincent; Papageorgiou, Vasiliki; Decossas, Marion; Fauny, Jean-Daniel; Krämer, Melanie; Mueller, Christopher G

    2015-07-01

    Dengue virus (DENV) is responsible for the most prevalent arthropod-borne viral infection in humans. Events decisive for disease development occur in the skin after virus inoculation by the mosquito. Yet, the role of human dermis-resident immune cells in dengue infection and disease remains elusive. Here we investigated how dermal dendritic cells (dDCs) and macrophages (dMs) react to DENV and impact on immunopathology. We show that both CD1c(+) and CD14(+) dDC subsets were infected, but viral load greatly increased in CD14(+) dDCs upon IL-4 stimulation, which correlated with upregulation of virus-binding lectins Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN/CD209) and mannose receptor (CD206). IL-4 also enhanced T-cell activation by dDCs, which was further increased upon dengue infection. dMs purified from digested dermis were initially poorly infected but actively replicated the virus and produced TNF-α upon lectin upregulation in response to IL-4. DC-SIGN(+) cells are abundant in inflammatory skin with scabies infection or Th2-type dermatitis, suggesting that skin reactions to mosquito bites heighten the risk of infection and subsequent immunopathology. Our data identify dDCs and dMs as primary arbovirus target cells in humans and suggest that dDCs initiate a potent virus-directed T-cell response, whereas dMs fuel the inflammatory cascade characteristic of dengue fever.

  19. First record of natural vertical transmission of dengue virus in Aedes aegypti from Cuba.

    PubMed

    Gutiérrez-Bugallo, Gladys; Rodriguez-Roche, Rosmari; Díaz, Gisell; Vázquez, Antonio A; Alvarez, Mayling; Rodríguez, Magdalena; Bisset, Juan A; Guzman, Maria G

    2017-10-01

    While horizontal transmission (human-mosquito-human) of dengue viruses largely determines the epidemiology of the disease, vertical transmission (infected female mosquito- infected offspring) has been suggested as a mechanism that ensures maintenance of the virus during adverse conditions for horizontal transmission to occur. The purpose of this study was to analyze the natural infection of larval stages of Aedes aegypti (Diptera: Culicidae) with the dengue virus (DENV) in Cuba. Here, we report vertical transmission of DENV-3 genotype III in natural populations of Ae. aegypti through RT-PCR detection and serotyping plus sequencing. Our report constitutes the first record of vertical transmission of DENV in Ae. aegypti from Cuba with details of its serotype and genotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dengue Virus Serotype 2 Established in Northern Mozambique (2015-2016).

    PubMed

    Oludele, John; Lesko, Birgitta; Mahumane Gundane, Isabel; de Bruycker-Nogueira, Fernanda; Muianga, Argentina; Ali, Sadia; Mula, Flora; Chelene, Imelda; Falk, Kerstin I; Barreto Dos Santos, Flávia; Gudo, Eduardo Samo

    2017-11-01

    After the report of an outbreak of dengue virus serotype 2 in 2014 in Nampula and Pemba cities, northern Mozambique, a surveillance system was established by the National Institute of Health. A study was performed during 2015-2016 to monitor the trend of the outbreak and confirm the circulating serotype of dengue virus (DENV). After the inclusion of consenting patients who met the case definition, samples from 192 patients were tested for the presence of nonstructural protein 1 antigen, and 60/192 (31%) samples were positive. Further analysis included DENV IgM antibodies, with 39 (20%) IgM positive cases. Reverse transcriptase (RT) PCR was performed for identification of the prevailing DENV serotype; 21/23 tested samples were DENV-2 positive, with DENV-2 present in both affected cities. When sequencing DENV, phenotype Cosmopolitan was identified. The surveillance indicates ongoing spread of DENV-2 in northern Mozambique 2 years after the first report of the outbreak.

  1. Phylogeography of Dengue Virus Serotype 4, Brazil, 2010–2011

    PubMed Central

    Nunes, Marcio Roberto Teixeira; Faria, Nuno Rodrigues; Vasconcelos, Helena Baldez; Medeiros, Daniele Barbosa de Almeida; Silva de Lima, Clayton Pereira; Carvalho, Valéria Lima; Pinto da Silva, Eliana Vieira; Cardoso, Jedson Ferreira; Sousa, Edivaldo Costa; Nunes, Keley Nascimento Barbosa; Rodrigues, Sueli Guerreiro; Abecasis, Ana Barroso; Suchard, Marc A.; Lemey, Philippe

    2012-01-01

    Dengue virus serotype 4 (DENV-4) reemerged in Roraima State, Brazil, 28 years after it was last detected in the country in 1982. To study the origin and evolution of this reemergence, full-length sequences were obtained for 16 DENV-4 isolates from northern (Roraima, Amazonas, Pará States) and northeastern (Bahia State) Brazil during the 2010 and 2011 dengue virus seasons and for an isolate from the 1982 epidemic in Roraima. Spatiotemporal dynamics of DENV-4 introductions in Brazil were applied to envelope genes and full genomes by using Bayesian phylogeographic analyses. An introduction of genotype I into Brazil from Southeast Asia was confirmed, and full genome phylogeographic analyses revealed multiple introductions of DENV-4 genotype II in Brazil, providing evidence for >3 introductions of this genotype within the last decade: 2 from Venezuela to Roraima and 1 from Colombia to Amazonas. The phylogeographic analysis of full genome data has demonstrated the origins of DENV-4 throughout Brazil. PMID:23092706

  2. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.

    PubMed

    Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena

    2010-05-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.

  3. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus.

    PubMed

    Dejnirattisai, Wanwisa; Wongwiwat, Wiyada; Supasa, Sunpetchuda; Zhang, Xiaokang; Dai, Xinghong; Rouvinski, Alexander; Jumnainsong, Amonrat; Edwards, Carolyn; Quyen, Nguyen Than Ha; Duangchinda, Thaneeya; Grimes, Jonathan M; Tsai, Wen-Yang; Lai, Chih-Yun; Wang, Wei-Kung; Malasit, Prida; Farrar, Jeremy; Simmons, Cameron P; Zhou, Z Hong; Rey, Felix A; Mongkolsapaya, Juthathip; Screaton, Gavin R

    2015-02-01

    Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.

  4. Vitamin D-Regulated MicroRNAs: Are They Protective Factors against Dengue Virus Infection?

    PubMed Central

    Arboleda, John F.; Urcuqui-Inchima, Silvio

    2016-01-01

    Over the last few years, an increasing body of evidence has highlighted the critical participation of vitamin D in the regulation of proinflammatory responses and protection against many infectious pathogens, including viruses. The activity of vitamin D is associated with microRNAs, which are fine tuners of immune activation pathways and provide novel mechanisms to avoid the damage that arises from excessive inflammatory responses. Severe symptoms of an ongoing dengue virus infection and disease are strongly related to highly altered production of proinflammatory mediators, suggesting impairment in homeostatic mechanisms that control the host's immune response. Here, we discuss the possible implications of emerging studies anticipating the biological effects of vitamin D and microRNAs during the inflammatory response, and we attempt to extrapolate these findings to dengue virus infection and to their potential use for disease management strategies. PMID:27293435

  5. Expanded Dengue.

    PubMed

    Kadam, D B; Salvi, Sonali; Chandanwale, Ajay

    2016-07-01

    The World Health Organization (WHO) has coined the term expanded dengue to describe cases which do not fall into either dengue shock syndrome or dengue hemorrhagic fever. This has incorporated several atypical findings of dengue. Dengue virus has not been enlisted as a common etiological agent in several conditions like encephalitis, Guillain Barre syndrome. Moreover it is a great mimic of co-existing epidemics like Malaria, Chikungunya and Zika virus disease, which are also mosquito-borne diseases. The atypical manifestations noted in dengue can be mutisystemic and multifacetal. In clinical practice, the occurrence of atypical presentation should prompt us to investigate for dengue. Knowledge of expanded dengue helps to clinch the diagnosis of dengue early, especially during ongoing epidemics, avoiding further battery of investigations. Dengue has proved to be the epidemic with the ability to recur and has a diverse array of presentation as seen in large series from India, Srilanka, Indonesia and Taiwan. WHO has given the case definition of dengue fever in their comprehensive guidelines. Accordingly, a probable case is defined as acute febrile illness with two or more of any findings viz. headache, retro-orbital pain, myalgia, arthralgia, rash, hemorrhagic manifestations, leucopenia and supportive serology. There have been cases of patients admitted with fever, altered mentation with or without neck stiffness and pyramidal tract signs. Some had seizures or status epilepticus as presentation. When they were tested for serology, dengue was positive. After ruling out other causes, dengue remained the only culprit. We have come across varied presentations of dengue fever in clinical practice and the present article throws light on atypical manifestations of dengue. © Journal of the Association of Physicians of India 2011.

  6. Virus-Specific Differences in Rates of Disease during the 2010 Dengue Epidemic in Puerto Rico

    PubMed Central

    Sharp, Tyler M.; Hunsperger, Elizabeth; Santiago, Gilberto A.; Muñoz-Jordan, Jorge L.; Santiago, Luis M.; Rivera, Aidsa; Rodríguez-Acosta, Rosa L.; Gonzalez Feliciano, Lorenzo; Margolis, Harold S.; Tomashek, Kay M.

    2013-01-01

    Background Dengue is a potentially fatal acute febrile illness (AFI) caused by four mosquito-transmitted dengue viruses (DENV-1–4) that are endemic in Puerto Rico. In January 2010, the number of suspected dengue cases reported to the passive dengue surveillance system exceeded the epidemic threshold and an epidemic was declared soon after. Methodology/Principal Findings To characterize the epidemic, surveillance and laboratory diagnostic data were compiled. A suspected case was a dengue-like AFI in a person reported by a health care provider with or without a specimen submitted for diagnostic testing. Laboratory-positive cases had: (i) DENV nucleic acid detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in an acute serum specimen; (ii) anti-DENV IgM antibody detected by ELISA in any serum specimen; or (iii) DENV antigen or nucleic acid detected in an autopsy-tissue specimen. In 2010, a total of 26,766 suspected dengue cases (7.2 per 1,000 residents) were identified, of which 46.6% were laboratory-positive. Of 7,426 RT-PCR-positive specimens, DENV-1 (69.0%) and DENV-4 (23.6%) were detected more frequently than DENV-2 (7.3%) and DENV-3 (<0.1%). Nearly half (47.1%) of all laboratory-positive cases were adults, 49.7% had dengue with warning signs, 11.1% had severe dengue, and 40 died. Approximately 21% of cases were primary DENV infections, and 1–4 year olds were the only age group for which primary infection was more common than secondary. Individuals infected with DENV-1 were 4.2 (95% confidence interval [CI]: 1.7–9.8) and 4.0 (95% CI: 2.4–6.5) times more likely to have primary infection than those infected with DENV-2 or -4, respectively. Conclusions/Significance This epidemic was long in duration and yielded the highest incidence of reported dengue cases and deaths since surveillance began in Puerto Rico in the late 1960's. This epidemic re-emphasizes the need for more effective primary prevention interventions to reduce the morbidity and

  7. Characterization of the 2013 dengue epidemic in Myanmar with dengue virus 1 as the dominant serotype.

    PubMed

    Ngwe Tun, Mya Myat; Kyaw, Aung Kyaw; Makki, Nader; Muthugala, Rohitha; Nabeshima, Takeshi; Inoue, Shingo; Hayasaka, Daisuke; Moi, Meng Ling; Buerano, Corazon C; Thwe, Saw Myat; Thant, Kyaw Zin; Morita, Kouichi

    2016-09-01

    In 2013 in Myanmar, dengue epidemic occurred with 20,255 cases including 84 deaths. This study aimed to determine the serological and molecular characteristics of dengue virus (DENV) infection among children with clinical diagnosis of dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) during this period. Single acute serum samples were collected from 300 children in Mandalay Children Hospital, Mandalay, Myanmar. Out of the 300 children, 175 (58.3%) and 183 (61%) were positive for anti-dengue IgM and anti-dengue IgG, respectively. Among the IgM positives, 41 (23.4%) had primary DENV infection. Thirty-nine DENV strains (23 DENV-1, 10 DENV-2 and 6 DENV-4) were successfully isolated after inoculation of the patient serum samples onto C6/36 cells. DENV 1 was the dominant serotype in the 2013 epidemic. There was no correlation between the infecting serotypes and clinical severities. The DENV-1 strains belonged to three lineages of the genotype 1; the DENV-2 strains were of the Asian I genotype and were separated into two lineages; and DENV-4 strains belonged to the same lineage of genotype I. It is of interest to note the diversity of DENV-1 and -2 circulating in the same location during June-August 2013. These DENV isolates were genetically close (98%-100%) to the other previously reported isolates from Myanmar and its neighboring countries, namely China, Thailand, Sri Lanka, Cambodia and Vietnam. Primary DENV infection was still high among the severe dengue cases. Different serotypes of DENV were co-circulating in 2013, however, genotype shift was not observed. Additionally, amino acid mutations were detected in the study strains not seen in the previously reported strains from other countries and Myanmar. This paper provided information on the circulating serotypes for the last 15years and the recent dengue situation in Mandalay, Myanmar after 2006. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Prolonged Co-circulation of Two Distinct Dengue Virus Type 3 Lineages in the Hyperendemic Area of Medellín, Colombia

    PubMed Central

    Ospina, Marta C.; Diaz, Francisco J.; Osorio, Jorge E.

    2010-01-01

    During the past two decades, Dengue virus-3 (DENV-3) has re-emerged in the Western Hemisphere causing significant epidemics of dengue fever (DF) and dengue hemorrhagic fever (DHF). In an effort to understand the molecular evolution of DENV-3 and their relationships to other DENV-3 circulating in the western hemisphere, we conducted a phylogenetic study on DENV-3 isolates made between 2002 and 2007 in the metropolitan area of Medellín, Colombia. An unexpected co-circulation of two different variants of DENV-3 subtype III during at least 5 years in Medellín was found. In addition, a more complete analysis of DENV-3 viruses isolated in other South American regions revealed the existence of three different subtype III lineages, all derived from independent introductions. This study documents significant genetic diversity of circulating viruses within the same subtype and an unusual capacity of the population of this city to support continuous circulation of multiple variants of dengue virus. PMID:20810837

  9. Increased capillary permeability mediated by a dengue virus-induced lymphokine.

    PubMed Central

    Khanna, M; Chaturvedi, U C; Sharma, M C; Pandey, V C; Mathur, A

    1990-01-01

    The mechanism of increased capillary permeability, seen in cases of dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), is not known. Dengue type 2 virus (DV) is known to induce production of a lymphokine, the cytotoxic factor (CF), by the T lymphocytes of mouse spleen. The data presented here show that intraperitoneal inoculation of CF in mice results in increased capillary permeability in a dose-dependent manner, as shown by leakage of intravenously injected radiolabelled iodine (125I) or Evans blue dye. Peak leakage occurred 30 min after inoculation of CF and the vascular integrity was restored by 2 hr. The increase in capillary permeability was abrogated by pretreatment of mice with anti-CF antibodies, avil (H1 receptor blocker) or ranitidine (H2 receptor blocker). The findings thus show that a DV-induced lymphokine, the CF, increases the capillary permeability via release of histamine. PMID:2312168

  10. [Yellow fever virus 17D neutralising antibodies in vaccinated Colombian people and unvaccinated ones having immunity against dengue].

    PubMed

    Gómez, Sergio Y; Ocazionez, Raquel E

    2008-01-01

    Determining the frequency of yellow fever seroprotective antibody neutralising titres (YF-NT >or=1:10) in Colombians vaccinated with the 17 D virus and ascertaining the extent to which YF virus can be neutralised by dengue antibodies. Serum samples were taken from 100 subjects who showed their vaccination record and from 116 residents in municipalities (Norte de Santander) affected by a wild YF outbreak in 2002-2003 who were reported to have been YF vaccinated. Sera from individuals with (n=61) and without (n=16) dengue antibodies who had never been YF vaccinated were included. All the sera were tested by 75 % YF plaque-reduction neutralization test. YF-NT titres >or=1:10 were founded in 90 % of subjects with vaccination recorded with minors variations in relation to age. In contrast, there was correlation between decrease of seroprotective YF-NT titres frequency and increase of immunization time (r=0.95; p=0.04). In residents in YF endemic area, YF-NT titres >or= 1.10 were founded in 92,6 % adults and 69 % children. YF 17 D virus was neutralized (52-100 %) by dengue sera more efficiently than non-dengue immune sera (p<0.001). Individuals immunised with YF vaccine 17 D could not be protected against YF: up to 31% children and 10 % adults. Dengue antibodies inhibited YF virus and its significance in terms of YF protection must be investigated.

  11. Development and Characterization of a Reverse Genetic System for Studying Dengue Virus Serotype 3 Strain Variation and Neutralization

    PubMed Central

    Messer, William B.; Yount, Boyd; Hacker, Kari E.; Donaldson, Eric F.; Huynh, Jeremy P.; de Silva, Aravinda M.; Baric, Ralph S.

    2012-01-01

    Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here

  12. Human Immune Response to Dengue Infections

    DTIC Science & Technology

    1991-06-30

    had been immunized with yellow fever vaccine and later became infected with dengue 3 virus, responded best to dengue 3 antigen but also responded to...effective dengue virus subunit vaccines . We found evidence of marked T cell activation in patients with DHF. T cell activation in patients with DF was similar...Treatment and Control of Dengue Hemorrhagic Fever. World Health Organization, Geneva, Switzerland 7. Sabin AB (1952) Research on dengue during World

  13. Genetic and Phenotypic Characterization of Manufacturing Seeds for a Tetravalent Dengue Vaccine (DENVax)

    PubMed Central

    Huang, Claire Y.-H.; Kinney, Richard M.; Livengood, Jill A.; Bolling, Bethany; Arguello, John J.; Luy, Betty E.; Silengo, Shawn J.; Boroughs, Karen L.; Stovall, Janae L.; Kalanidhi, Akundi P.; Brault, Aaron C.; Osorio, Jorge E.; Stinchcomb, Dan T.

    2013-01-01

    Background We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax) viruses. These viruses, containing the pre-membrane (prM) and envelope (E) genes of dengue serotypes 1–4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP. Methodology/Principal Findings After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai) Aedes aegypti mosquito vectors. Conclusion/Significance All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia. PMID:23738026

  14. Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    DTIC Science & Technology

    2012-07-01

    as an ‘‘index’’ case to initiate a positive cluster investigation around the index case house. Cohort children who were dengue PCR-negative from an ...were collected on days 0 and 15. Paired day 0 and 15 blood samples from child contacts were tested by both dengue PCR and an in-house dengue /Japanese...viral infections globally. An improved understanding of the spatial and temporal distribution of dengue virus (DENV) transmission between humans and

  15. Genomic approaches for understanding dengue: insights from the virus, vector, and host.

    PubMed

    Sim, Shuzhen; Hibberd, Martin L

    2016-03-02

    The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host-pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.

  16. Phylogenetic Analysis of Dengue Virus in Bangkalan, Madura Island, East Java Province, Indonesia.

    PubMed

    Sucipto, Teguh Hari; Kotaki, Tomohiro; Mulyatno, Kris Cahyo; Churrotin, Siti; Labiqah, Amaliah; Soegijanto, Soegeng; Kameoka, Masanori

    2018-01-01

    Dengue virus (DENV) infection is a major health issue in tropical and subtropical areas. Indonesia is one of the biggest dengue endemic countries in the world. In the present study, the phylogenetic analysis of DENV in Bangkalan, Madura Island, Indonesia, was performed in order to obtain a clearer understanding of its dynamics in this country. A total of 359 blood samples from dengue-suspected patients were collected between 2012 and 2014. Serotyping was conducted using a multiplex Reverse Transcriptase-Polymerase Chain Reaction and a phylogenetic analysis of E gene sequences was performed using the Bayesian Markov chain Monte Carlo (MCMC) method. 17 out of 359 blood samples (4.7%) were positive for the isolation of DENV. Serotyping and the phylogenetic analysis revealed the predominance of DENV-1 genotype I (9/17, 52.9%), followed by DENV-2 Cosmopolitan type (7/17, 41.2%) and DENV-3 genotype I (1/17, 5.9%) . DENV-4 was not isolated. The Madura Island isolates showed high nucleotide similarity to other Indonesian isolates, indicating frequent virus circulation in Indonesia. The results of the present study highlight the importance of continuous viral surveillance in dengue endemic areas in order to obtain a clearer understanding of the dynamics of DENV in Indonesia.

  17. [Discovery and whole genome sequences analysis of a dengue virus type 1 strain isolated in Henan province].

    PubMed

    Du, Yanhua; Zhang, Baifan; Li, Yi; Ma, Hongxia; Huang, Xueyong; Xu, Bianli

    2015-10-01

    To diagnose imported dengue fever case from Henan province, and to sequence and analyze the characteristics of whole genome sequence, and to explore the possible viral origin source. A suspected dengue fever case was reported in Yuzhou city, Henan province. The patient returned from foshan, Guangdong province on September 19, 2014, after the epidemiological investigation and serum specimen collected, which dengue fever case was diagnosed in the laboratory, then it was inoculated on Vero cells. Whole genome sequence was amplified by several pairs primers and characterized using biologic software. The imported case was diagnosed as dengue virus 1 serotype infection. Dengue 1 strain was isolated using Vero cells successfully. Whole genome was 10,670 nt, which belonged to dengue virus 1 serotype V genotype and didn't found any recombination event. The phylogenetic analysis demonstrated that the strain was closed to Indian starins isolated in 2008-2011, and the homology of nucleotide sequence was between 98.2%-99.4%. It was the first time to discover imported dengue 1 serotype case in Henan province. However, according to the patient has been to Guangdong province before onset, it inferred that the Indian strain had been imported to Guangdong province before this case in Henan province.

  18. Dengue human infection models to advance dengue vaccine development.

    PubMed

    Larsen, Christian P; Whitehead, Stephen S; Durbin, Anna P

    2015-12-10

    Dengue viruses (DENV) currently infect approximately 400 million people each year causing millions to seek care and overwhelming the health care infrastructure in endemic areas. Vaccines to prevent dengue and therapeutics to treat dengue are not currently available. The efficacy of the most advanced candidate vaccine against symptomatic dengue in general and DENV-2 in particular was much lower than expected, despite the ability of the vaccine to induce neutralizing antibody against all four DENV serotypes. Because seroconversion to the DENV serotypes following vaccination was thought to be indicative of induced protection, these results have made it more difficult to assess which candidate vaccines should or should not be evaluated in large studies in endemic areas. A dengue human infection model (DHIM) could be extremely valuable to down-select candidate vaccines or therapeutics prior to engaging in efficacy trials in endemic areas. Two DHIM have been developed to assess the efficacy of live attenuated tetravalent (LATV) dengue vaccines. The first model, developed by the Laboratory of Infectious Diseases at the U. S. National Institutes of Health, utilizes a modified DENV-2 strain DEN2Δ30. This virus was derived from the DENV-2 Tonga/74 that caused only very mild clinical infection during the outbreak from which it was recovered. DEN2Δ30 induced viremia in 100%, rash in 80%, and neutropenia in 27% of the 30 subjects to whom it was given. The Walter Reed Army Institute of Research (WRAIR) is developing a DHIM the goal of which is to identify DENV that cause symptomatic dengue fever. WRAIR has evaluated seven viruses and has identified two that meet dengue fever criteria. Both of these models may be very useful in the evaluation and down-selection of candidate dengue vaccines and therapeutics. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9).

    PubMed

    Chiu, Mei-Wui; Shih, Hsiu-Ming; Yang, Tsung-Han; Yang, Yun-Liang

    2007-05-01

    Dengue viruses are mosquito-borne flaviviruses and may cause the life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its envelope protein is responsible mainly for the virus attachment and entry to host cells. To identify the human cellular proteins interacting with the envelope protein of dengue virus serotype 2 inside host cells, we have performed a screening with the yeast-two-hybrid-based "Functional Yeast Array". Interestingly, the small ubiquitin-like modifier-1 conjugating enzyme 9 protein, modulating cellular processes such as those regulating signal transduction and cell growth, was one of the candidates interacting with the dengue virus envelope protein. With co-precipitation assay, we have demonstrated that it indeed could interact directly with the Ubc9 protein. Site-directed mutagenesis has demonstrated that Ubc9 might interact with the E protein via amino acid residues K51 and K241. Furthermore, immunofluorescence microscopy has shown that the DV2E-EGFP proteins tended to progress toward the nuclear membrane and co-localized with Flag-Ubc9 proteins around the nuclear membrane in the cytoplasmic side, and DV2E-EGFP also shifted the distribution of Flag-Ubc9 from evenly in the nucleus toward concentrating around the nuclear membrane in the nucleic side. In addition, over-expression of Ubc9 could reduce the plaque formation of the dengue virus in mammalian cells. This is the first report that DV envelope proteins can interact with the protein of sumoylation system and Ubc9 may involve in the host defense system to prevent virus propagation.

  20. Type I interferon signals in macrophages and dendritic cells control dengue virus infection: implications for a new mouse model to test dengue vaccines.

    PubMed

    Züst, Roland; Toh, Ying-Xiu; Valdés, Iris; Cerny, Daniela; Heinrich, Julia; Hermida, Lisset; Marcos, Ernesto; Guillén, Gerardo; Kalinke, Ulrich; Shi, Pei-Yong; Fink, Katja

    2014-07-01

    Dengue virus (DENV) infects an estimated 400 million people every year, causing prolonged morbidity and sometimes mortality. Development of an effective vaccine has been hampered by the lack of appropriate small animal models; mice are naturally not susceptible to DENV and only become infected if highly immunocompromised. Mouse models lacking both type I and type II interferon (IFN) receptors (AG129 mice) or the type I IFN receptor (IFNAR(-/-) mice) are susceptible to infection with mouse-adapted DENV strains but are severely impaired in mounting functional immune responses to the virus and thus are of limited use for study. Here we used conditional deletion of the type I IFN receptor (IFNAR) on individual immune cell subtypes to generate a minimally manipulated mouse model that is susceptible to DENV while retaining global immune competence. Mice lacking IFNAR expression on CD11c(+) dendritic cells and LysM(+) macrophages succumbed completely to DENV infection, while mice deficient in the receptor on either CD11c(+) or LysM(+) cells were susceptible to infection but often resolved viremia and recovered fully from infection. Conditional IFNAR mice responded with a swift and strong CD8(+) T-cell response to viral infection, compared to a weak response in IFNAR(-/-) mice. Furthermore, mice lacking IFNAR on either CD11c(+) or LysM(+) cells were also sufficiently immunocompetent to raise a protective immune response to a candidate subunit vaccine against DENV-2. These data demonstrate that mice with conditional deficiencies in expression of the IFNAR represent improved models for the study of DENV immunology and screening of vaccine candidates. Dengue virus infects 400 million people every year worldwide, causing 100 million clinically apparent infections, which can be fatal if untreated. Despite many years of research, there are no effective vaccine and no antiviral treatment available for dengue. Development of vaccines has been hampered in particular by the lack of

  1. Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses

    PubMed Central

    Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie

    2010-01-01

    Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour

  2. Proteomic analysis reveals the enhancement of human serum apolipoprotein A-1(APO A-1) in individuals infected with multiple dengue virus serotypes.

    PubMed

    Manchala, Nageswar Reddy; Dungdung, Ranjeet; Pilankatta, Rajendra

    2017-10-01

    Human serum protein profiling of the individual infected with multiple dengue virus serotypes for identifying the potential biomarkers and to investigate the cause for the severity of dengue virus infection. Dengue virus NS1-positive serum samples were pooled into two groups (S2 and S3) based on the molecular serotyping and number of heterotypic infections. The pooled serum samples were subjected to two-dimensional gel electrophoresis (2DGE) to identify the differentially expressed proteins. The peptide masses of upregulated protein were detected by matrix-assisted laser desorption-ionisation time-of-flight MALDI-TOF mass spectrometry and analysed by MASCOT search engine. The results were compared with the control group (S1). The commonly upregulated protein was validated by quantitative ELISA and compared with control as well as single serotypic infected samples. Based on 2DGE, total thirteen proteins were differentially upregulated in S2 and S3 groups as compared to control. Some of the upregulated proteins were involved in mediating the complement activation of immune response. The apolipoprotein A-1 (APO A-1) was upregulated in S2 and S3 groups. Upon validation, APO A-1 levels were increased in line with the number of heterotypic infection of dengue viruses. Heterotypic infection of dengue viruses upregulate the serum proteins involved in the complement pathway in the early phase of infection. There was a significant increase in the level of APO A-1 in three different serotypic infections of dengue virus as compared to control. Further, the role of APO-A1 can be explored in elucidating the mechanism of dengue pathogenesis. © 2017 John Wiley & Sons Ltd.

  3. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection

    PubMed Central

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N.; Gestwicki, Jason E.; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-01-01

    Summary Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. PMID:26582131

  4. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development.

    PubMed

    Tsai, Wen-Yang; Lin, Hong-En; Wang, Wei-Kung

    2017-01-01

    The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5-60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.

  5. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development

    PubMed Central

    Tsai, Wen-Yang; Lin, Hong-En; Wang, Wei-Kung

    2017-01-01

    The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5–60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development. PMID:28775720

  6. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    PubMed

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Reemergence of Dengue in Southern Texas, 2013.

    PubMed

    Thomas, Dana L; Santiago, Gilberto A; Abeyta, Roman; Hinojosa, Steven; Torres-Velasquez, Brenda; Adam, Jessica K; Evert, Nicole; Caraballo, Elba; Hunsperger, Elizabeth; Muñoz-Jordán, Jorge L; Smith, Brian; Banicki, Alison; Tomashek, Kay M; Gaul, Linda; Sharp, Tyler M

    2016-06-01

    During a dengue epidemic in northern Mexico, enhanced surveillance identified 53 laboratory-positive cases in southern Texas; 26 (49%) patients acquired the infection locally, and 29 (55%) were hospitalized. Of 83 patient specimens that were initially IgM negative according to ELISA performed at a commercial laboratory, 14 (17%) were dengue virus positive by real-time reverse transcription PCR performed at the Centers for Disease Control and Prevention. Dengue virus types 1 and 3 were identified, and molecular phylogenetic analysis demonstrated close identity with viruses that had recently circulated in Mexico and Central America. Of 51 household members of 22 dengue case-patients who participated in household investigations, 6 (12%) had been recently infected with a dengue virus and reported no recent travel, suggesting intrahousehold transmission. One household member reported having a recent illness consistent with dengue. This outbreak reinforces emergence of dengue in southern Texas, particularly when incidence is high in northern Mexico.

  8. Reemergence of Dengue in Southern Texas, 2013

    PubMed Central

    Thomas, Dana L.; Santiago, Gilberto A.; Abeyta, Roman; Hinojosa, Steven; Torres-Velasquez, Brenda; Adam, Jessica K.; Evert, Nicole; Caraballo, Elba; Hunsperger, Elizabeth; Muñoz-Jordán, Jorge L.; Smith, Brian; Banicki, Alison; Tomashek, Kay M.; Gaul, Linda

    2016-01-01

    During a dengue epidemic in northern Mexico, enhanced surveillance identified 53 laboratory-positive cases in southern Texas; 26 (49%) patients acquired the infection locally, and 29 (55%) were hospitalized. Of 83 patient specimens that were initially IgM negative according to ELISA performed at a commercial laboratory, 14 (17%) were dengue virus positive by real-time reverse transcription PCR performed at the Centers for Disease Control and Prevention. Dengue virus types 1 and 3 were identified, and molecular phylogenetic analysis demonstrated close identity with viruses that had recently circulated in Mexico and Central America. Of 51 household members of 22 dengue case-patients who participated in household investigations, 6 (12%) had been recently infected with a dengue virus and reported no recent travel, suggesting intrahousehold transmission. One household member reported having a recent illness consistent with dengue. This outbreak reinforces emergence of dengue in southern Texas, particularly when incidence is high in northern Mexico. PMID:27191223

  9. Ficus septica plant extracts for treating Dengue virus in vitro.

    PubMed

    Huang, Nan-Chieh; Hung, Wan-Ting; Tsai, Wei-Lun; Lai, Feng-Yi; Lin, You-Sheng; Huang, Mei-Shu; Chen, Jih-Jung; Lin, Wei-Yu; Weng, Jing-Ru; Chang, Tsung-Hsien

    2017-01-01

    Dengue virus types 1-4 (DENV-1-4) are positive-strand RNA viruses with an envelope that belongs to the Flaviviridae . DENV infection threatens human health worldwide. However, other than supportive treatments, no specific therapy is available for the infection. In order to discover novel medicine against DENV, we tested 59 crude extracts, without cytotoxicity, from 23 plants in vitro ; immunofluorescence assay revealed that the methanol extracts of fruit, heartwood, leaves and stem from Ficus septica Burm. f. had a promising anti-DENV-1 and DENV-2 effect. However, infection with the non-envelope picornavirus , Aichi virus, was not inhibited by treatment with F. septica extracts. F. septica may be a candidate antiviral drug against an enveloped virus such as DENV.

  10. Genetic polymorphisms of molecules involved in host immune response to dengue virus infection.

    PubMed

    Fang, Xin; Hu, Zhen; Shang, Weilong; Zhu, Junmin; Xu, Chuanshan; Rao, Xiancai

    2012-11-01

    The dengue virus (DENV) belongs to the flavivirus family. Each of the four distinct serotypes of this virus is capable of causing human disease, especially in tropical and subtropical areas. The majority of people infected with DENV manifest asymptomatic or dengue fever with flu-like self-limited symptoms. However, a small portion of patients emerge with severe manifestations referred to as dengue hemorrhagic fever, which has a high mortality rate if not treated promptly. The host immune system, which plays important roles throughout the whole process of DENV infection, has been confirmed to have double-edged effects on DENV infection. Recently, much attention has been paid to the genetic heterogeneity of molecules involved in the host immune response to DENV infection. This heterogeneity has been proved to be the determining factor for DENV disease orientation. The present review discusses the primary functions and single nucleotide polymorphisms of some critical molecules in the human DENV immunological defense, especially the polymorphism locus associated with the DENV pathogenesis and disease susceptibility. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded-Antigens for Rapid Diagnosis and Vaccine Development

    DTIC Science & Technology

    1988-10-31

    00 0 Cloning and Expression of Genes for Dengue Virus (Type-2 Encoded-Antigens for Rapid ODiagnosis and Vaccine DevelopmentN| ANNUAL PROGRESS REPORT...11. TITLE (include Security Classification) Cloning and Expression of Genes f or Dengue Virus Type 2 Fncoded Antigens for Rapid Diagnosis and Vaccine ...epidemics in Central and South Americas and the Caribbean is a cause of major concern. An effective vaccine is not available to protect individuals

  12. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    PubMed

    Henderson, Brittney R; Saeedi, Bejan J; Campagnola, Grace; Geiss, Brian J

    2011-01-01

    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  13. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    PubMed

    Mammen, Mammen P; Pimgate, Chusak; Koenraadt, Constantianus J M; Rothman, Alan L; Aldstadt, Jared; Nisalak, Ananda; Jarman, Richard G; Jones, James W; Srikiatkhachorn, Anon; Ypil-Butac, Charity Ann; Getis, Arthur; Thammapalo, Suwich; Morrison, Amy C; Libraty, Daniel H; Green, Sharone; Scott, Thomas W

    2008-11-04

    Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive

  14. Role of CD137 signaling in dengue virus-mediated apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagila, Amar; Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok; Netsawang, Janjuree

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. Amore » double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.« less

  15. Inhibition of Dengue Virus Entry into Target Cells Using Synthetic Antiviral Peptides

    PubMed Central

    Alhoot, Mohammed Abdelfatah; Rathinam, Alwin Kumar; Wang, Seok Mui; Manikam, Rishya; Sekaran, Shamala Devi

    2013-01-01

    Despite the importance of DENV as a human pathogen, there is no specific treatment or protective vaccine. Successful entry into the host cells is necessary for establishing the infection. Recently, the virus entry step has become an attractive therapeutic strategy because it represents a barrier to suppress the onset of the infection. Four putative antiviral peptides were designed to target domain III of DENV-2 E protein using BioMoDroid algorithm. Two peptides showed significant inhibition of DENV when simultaneously incubated as shown by plaque formation assay, RT-qPCR, and Western blot analysis. Both DET4 and DET2 showed significant inhibition of virus entry (84.6% and 40.6% respectively) using micromolar concentrations. Furthermore, the TEM images showed that the inhibitory peptides caused structural abnormalities and alteration of the arrangement of the viral E protein, which interferes with virus binding and entry. Inhibition of DENV entry during the initial stages of infection can potentially reduce the viremia in infected humans resulting in prevention of the progression of dengue fever to the severe life-threatening infection, reduce the infected vector numbers, and thus break the transmission cycle. Moreover these peptides though designed against the conserved region in DENV-2 would have the potential to be active against all the serotypes of dengue and might be considered as Hits to begin designing and developing of more potent analogous peptides that could constitute as promising therapeutic agents for attenuating dengue infection. PMID:23630436

  16. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection.

    PubMed

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin

    2017-10-15

    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Dengue and Dengue Hemorrhagic Fever

    PubMed Central

    Gubler, Duane J.

    1998-01-01

    Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyperendemicity (the cocirculation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 1998 this mosquito-borne disease is the most important tropical infectious disease after malaria, with an estimated 100 million cases of dengue fever, 500,000 cases of dengue hemorrhagic fever, and 25,000 deaths annually. The reasons for this resurgence and emergence of dengue hemorrhagic fever in the waning years of the 20th century are complex and not fully understood, but demographic, societal, and public health infrastructure changes in the past 30 years have contributed greatly. This paper reviews the changing epidemiology of dengue and dengue hemorrhagic fever by geographic region, the natural history and transmission cycles, clinical diagnosis of both dengue fever and dengue hemorrhagic fever, serologic and virologic laboratory diagnoses, pathogenesis, surveillance, prevention, and control. A major challenge for public health officials in all tropical areas of the world is to devleop and implement sustainable prevention and control programs that will reverse the trend of emergent dengue hemorrhagic fever. PMID:9665979

  18. A small molecule fusion inhibitor of dengue virus.

    PubMed

    Poh, Mee Kian; Yip, Andy; Zhang, Summer; Priestle, John P; Ma, Ngai Ling; Smit, Jolanda M; Wilschut, Jan; Shi, Pei-Yong; Wenk, Markus R; Schul, Wouter

    2009-12-01

    The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion. Two fusion assays were developed to examine the anti-fusion activities of compounds. The first assay measures the cellular internalization of propidium iodide upon membrane fusion. The second assay measures the protease activity of trypsin upon fusion between dengue virions and trypsin-containing liposomes. We performed an in silico virtual screening for small molecules that can potentially bind to the betaOG pocket and tested these candidate molecules in the two fusion assays. We identified one compound that inhibits dengue fusion in both assays with an IC(50) of 6.8 microM and reduces viral titers with an EC(50) of 9.8 microM. Time-of-addition experiments showed that the compound was only active when present during viral infection but not when added 1h later, in agreement with a mechanism of action through fusion inhibition.

  19. Molecular surveillance of dengue in Minas Gerais provides insights on dengue virus 1 and 4 circulation in Brazil.

    PubMed

    Dutra, Karina Rocha; Drumond, Betânia Paiva; de Rezende, Izabela Maurício; Nogueira, Maurício Lacerda; de Oliveira Lopes, Débora; Calzavara Silva, Carlos Eduardo; Siqueira Ferreira, Jaqueline Maria; Dos Santos, Luciana Lara

    2017-06-01

    Dengue, caused by any of the four types of Dengue virus (DENV) is the most important arbovirus in the world. In this study we performed a molecular surveillance of dengue during the greatest dengue outbreak that took place in Divinópolis, Minas Gerais state, Southeast Brazil, in 2013. Samples from 100 patients with clinical symptoms of dengue were studied and 26 were positive. The capsid/premembrane (CprM) and envelope gene sequences of some samples were amplified and sequenced. Molecular analyses demonstrated that two DENV-1 lineages, belonging to genotype V were introduced and co-circulated in Divinópolis. When compared to each other, those lineages presented high genetic diversity and showed unique amino acids substitutions in the envelope protein, including in domains I, II, and III. DENV-4 strains from Divinópolis clustered within genotype IIb and the most recent common ancestor was probably introduced into the city three years before the 2013 epidemic. Here we demonstrated for the first time the circulation of DENV-4 and the co-circulation of two DENV-1 lineages in Midwest region of Minas Gerais, Brazil. Moreover our analysis indicated the introduction of five DENV-1 lineages, genotype V into Brazil, in different times. J. Med. Virol. 89:966-973, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus

    PubMed Central

    Smartt, Chelsea T; Shin, Dongyoung; Alto, Barry W

    2017-01-01

    BACKGROUND Dengue viruses (DENV) are considered one of the most important emerging pathogens and dengue disease is a global health threat. The geographic expansion of dengue viruses has led to co-circulation of all four dengue serotypes making it imperative that new DENV control strategies be devised. OBJECTIVES Here we characterize dengue serotype-specific innate immune responses in Aedes aegypti and Aedes albopictus using DENV from Puerto Rico (PR). METHODS Ae. aegypti and Ae. albopictus were infected with dengue serotype 1 and 2 isolated from Puerto Rico. DENV infected mosquito samples were collected and temporal change in expression of selected innate immune response pathway genes analyzed by quantitative real time PCR. FINDINGS The Toll pathway is involved in anti-dengue response in Ae. aegypti, and Ae. albopictus. Infections with PR DENV- 1 elicited a stronger response from genes of the Toll immune pathway than PR DENV-2 in Ae. aegypti but in infected Ae. albopictus expression of Toll pathway genes tended to be similar between the serotypes. Two genes (a ribosomal S5 protein gene and a nimrod-like gene) from Ae. albopictus were expressed in response to DENV. MAIN CONCLUSIONS These studies revealed a role for antiviral genes in DENV serotype-specific interactions with DENV vectors, demonstrated that infections with DENV-2 can modulate the Toll immune response pathway in Ae. aegypti and elucidated candidate molecules that might be used to interfere with serotype specific vector-virus interactions. PMID:29211244

  1. Introduction and evolution of dengue virus type 2 in Pakistan: a phylogeographic analysis.

    PubMed

    Akram, Madiha; Fatima, Zareen; Purdy, Mike A; Sue, Amanda; Saleem, Sana; Amin, Irum; Shahid, Muhammad; Idrees, Muhammad; Nawaz, Rabia

    2015-09-22

    Pattern of Dengue periodic epidemics through the years along with sporadic cases of Dengue hemorrhagic fever followed by a severe 2011 epidemic of Dengue fever in Pakistan make Pakistan a Dengue endemic country. To study the entry and evolution of dengue virus serotype 2 (DENV-2) in Pakistan, we sequenced three full length genomes and 24 complete envelope sequences of DENV-2 from the years 2010, 2011 and 2013 collected from Punjab province of Pakistan. Phylogenetic and Bayesian phylogeographic analyses was applied to three full genome sequences as well as 24 envelope sequences to study the spatiotemporal dynamics of DENV-2 in Pakistan. Most of the DENV-2 viruses from the years 2008 to 2013 formed a monophyletic Pakistani clade in IVb sublineage of cosmopolitan genotype except one 2008 DENV-2 strain. Phylogeographic analysis revealed that this 2008 DENV-2 strain was rooted to India 25.4 years ago with a location probability of 0.88. However Pakistani clade rooted back to Sri Lanka 12.6 years ago with a location probability of 0.57. DENV-2 genotype IV was introduced in Pakistan in two time events. First event was introduction from India to Pakistan in the late 1980s (around 1986), and second event was introduction from Sri Lanka to Pakistan around 2000. The later introduction event was responsible for major outbreaks in the Punjab region of Pakistan, including major 2011 outbreak. After the second Introduction event, DENV-2 circulated locally in the region forming a distinct Sublineage within the IVb cosmopolitan genotype of DENV-2.

  2. Sources of Dengue Viruses Imported into Queensland, Australia, 2002–2010

    PubMed Central

    Northill, Judith A.; Pyke, Alyssa T.

    2012-01-01

    To assess risk for importation of dengue virus (DENV) into Queensland, Australia, and sources of imported viruses, we sequenced the envelope region of DENV isolates from symptomatic patients with a history of travel during 2002–2010. The number of imported dengue cases greatly increased over the surveillance period, some of which were associated with domestic outbreaks. Patients reported traveling to (in order) Asia, Papua New Guinea, Pacific Island countries, and non–Asia-Pacific countries. By using phylogenetic methods, we assigned DENV isolates from returning residents and overseas visitors with viremia to a specific genotypic group. Genotypes circulating in Asia were extremely diverse. Genotyping and molecular clock analysis supported Asian origination of a strain that caused an outbreak of DENV-4 in Pacific Island countries during 2007–2009, and subsequently, in Innisfail, Australia, in 2009. Our findings indicate that Asia is a major source of DENVs that are imported into Australia, causing a risk for epidemics. PMID:23092682

  3. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission

    PubMed Central

    Manuel, Menchie; Shan, Chao; Manokaran, Gayathri; Bradrick, Shelton S.; Missé, Dorothée; Shi, Pei-Yong

    2017-01-01

    Globally re-emerging dengue viruses are transmitted from human-to-human by Aedes mosquitoes. While viral determinants of human pathogenicity have been defined, there is a lack of knowledge of how dengue viruses influence mosquito transmission. Identification of viral determinants of transmission can help identify isolates with high epidemiological potential. Additionally, mechanistic understanding of transmission will lead to better understanding of how dengue viruses harness evolution to cycle between the two hosts. Here, we identified viral determinants of transmission and characterized mechanisms that enhance production of infectious saliva by inhibiting immunity specifically in salivary glands. Combining oral infection of Aedes aegypti mosquitoes and reverse genetics, we identified two 3’ UTR substitutions in epidemic isolates that increased subgenomic flaviviral RNA (sfRNA) quantity, infectious particles in salivary glands and infection rate of saliva, which represents a measure of transmission. We also demonstrated that various 3’UTR modifications similarly affect sfRNA quantity in both whole mosquitoes and human cells, suggesting a shared determinism of sfRNA quantity. Furthermore, higher relative quantity of sfRNA in salivary glands compared to midgut and carcass pointed to sfRNA function in salivary glands. We showed that the Toll innate immune response was preferentially inhibited in salivary glands by viruses with the 3’UTR substitutions associated to high epidemiological fitness and high sfRNA quantity, pointing to a mechanism for higher saliva infection rate. By determining that sfRNA is an immune suppressor in a tissue relevant to mosquito transmission, we propose that 3’UTR/sfRNA sequence evolution shapes dengue epidemiology not only by influencing human pathogenicity but also by increasing mosquito transmission, thereby revealing a viral determinant of epidemiological fitness that is shared between the two hosts. PMID:28753642

  4. Virus-Like Particle Secretion and Genotype-Dependent Immunogenicity of Dengue Virus Serotype 2 DNA Vaccine

    PubMed Central

    Galula, Jedhan U.; Shen, Wen-Fan; Chuang, Shih-Te

    2014-01-01

    ABSTRACT Dengue virus (DENV), composed of four distinct serotypes, is the most important and rapidly emerging arthropod-borne pathogen and imposes substantial economic and public health burdens. We constructed candidate vaccines containing the DNA of five of the genotypes of dengue virus serotype 2 (DENV-2) and evaluated the immunogenicity, the neutralizing (Nt) activity of the elicited antibodies, and the protective efficacy elicited in mice immunized with the vaccine candidates. We observed a significant correlation between the level of in vitro virus-like particle secretion, the elicited antibody response, and the protective efficacy of the vaccines containing the DNA of the different DENV genotypes in immunized mice. However, higher total IgG antibody levels did not always translate into higher Nt antibodies against homologous and heterologous viruses. We also found that, in contrast to previous reports, more than 50% of total IgG targeted ectodomain III (EDIII) of the E protein, and a substantial fraction of this population was interdomain highly neutralizing flavivirus subgroup-cross-reactive antibodies, such as monoclonal antibody 1B7-5. In addition, the lack of a critical epitope(s) in the Sylvatic genotype virus recognized by interdomain antibodies could be the major cause of the poor protection of mice vaccinated with the Asian 1 genotype vaccine (pVD2-Asian 1) from lethal challenge with virus of the Sylvatic genotype. In conclusion, although the pVD2-Asian 1 vaccine was immunogenic, elicited sufficient titers of Nt antibodies against all DENV-2 genotypes, and provided 100% protection against challenge with virus of the homologous Asian 1 genotype and virus of the heterologous Cosmopolitan genotype, it is critical to monitor the potential emergence of Sylvatic genotype viruses, since vaccine candidates under development may not protect vaccinated humans from these viruses. IMPORTANCE Five genotype-specific dengue virus serotype 2 (DENV-2) DNA vaccine

  5. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    PubMed

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  6. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination

    PubMed Central

    Nivarthi, Usha K.; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M.; Doranz, Benjamin J.; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P.; Whitehead, Steve S.; Baric, Ralph

    2016-01-01

    ABSTRACT The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination. IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody

  7. A novel association of acquired ADAMTS13 inhibitor and acute dengue virus infection.

    PubMed

    Rossi, Fernanda C; Angerami, Rodrigo N; de Paula, Erich V; Orsi, Fernanda L; Shang, Dezhi; del Guercio, Vânia M; Resende, Mariângela R; Annichino-Bizzacchi, Joyce M; da Silva, Luiz J; Zheng, X Long; Castro, Vagner

    2010-01-01

    Dengue is a mosquito-borne viral disease with an increasing incidence worldwide. Thrombocytopenia is a common finding in dengue virus (DV) infection; however, the underlying mechanisms remain unknown. Here we provide the first evidence of a case of antibody formation against ADAMTS13 (ADAMTS13 inhibitor) in the course of a severe acute DV infection resulting in thrombotic microangiopathy (TMA). The patient presented with classical dengue symptoms (positive epidemiology, high fever, myalgia, predominantly in the lower limbs and lumbar region for 1 week) and, after 11 days of initial symptoms, developed TMA. Clinical and laboratorial investigation of dengue and TMA was performed. The patient presented with ADAMTS13 inhibitor (IgG) during the acute phase of the disease, without anti-platelet antibodies detectable. Dengue infection had laboratorial confirmation. There were excellent clinical and laboratory responses to 11 serial plasma exchanges. Anti-ADAMTS13 inhibitor disappeared after remission of TMA and dengue resolution. No recurrence of TMA symptoms was observed after 2-year follow-up. Although the real incidence of dengue-related TMA is unknown, this case provides the basis for future epidemiologic studies on acquired ADAMTS13 deficiency in DV infection. The prompt clinical recognition of this complication and early installment of specific therapy with plasma exchange are likely to improve the outcome of severe cases of dengue.

  8. Isolation of dengue virus-specific memory B cells with live virus antigen from human subjects following natural infection reveals the presence of diverse novel functional groups of antibody clones.

    PubMed

    Smith, Scott A; de Alwis, A Ruklanthi; Kose, Nurgun; Jadi, Ramesh S; de Silva, Aravinda M; Crowe, James E

    2014-11-01

    Natural dengue virus (DENV) infection in humans induces antibodies (Abs) that neutralize the serotype of infection in a potent and type-specific manner; however, most Abs generated in response to infection are serotype cross-reactive and poorly neutralizing. Such cross-reactive Abs may enhance disease during subsequent infection with a virus of a different DENV serotype. Previous screening assays for DENV-specific human B cells and antibodies, using viral and recombinant antigens, mainly led to the isolation of dominant nonneutralizing B cell clones. To improve upon our ability to recover and study rare but durable and potently neutralizing DENV-specific Abs, we isolated human DENV-specific B cells by using a primary screen of binding to live virus, followed by a secondary screen with a high-throughput, flow cytometry-based neutralization assay to identify DENV-specific B cell lines prior to generation of hybridomas. Using this strategy, we identified several new classes of serotype-specific and serotype-cross-neutralizing anti-DENV monoclonal Abs (MAbs), including ultrapotent inhibitory antibodies with neutralizing activity concentrations of <10 ng/ml. We isolated serotype-specific neutralizing Abs that target diverse regions of the E protein, including epitopes present only on the intact, fully assembled viral particle. We also isolated a number of serotype-cross-neutralizing MAbs, most of which recognized a region in E protein domain I/II containing the fusion loop. These data provide insights into targets of the protective Ab-mediated immune response to natural DENV infection, which will prove valuable in the design and testing of new experimental DENV vaccines. Dengue virus infection is one of the most common mosquito-borne diseases and occurs in most countries of the world. Infection of humans with dengue virus induces a small number of antibodies that inhibit the infecting strain but also induces a large number of antibodies that can bind but do not inhibit

  9. Isolation of Dengue Virus-Specific Memory B Cells with Live Virus Antigen from Human Subjects following Natural Infection Reveals the Presence of Diverse Novel Functional Groups of Antibody Clones

    PubMed Central

    Smith, Scott A.; de Alwis, A. Ruklanthi; Kose, Nurgun; Jadi, Ramesh S.; de Silva, Aravinda M.

    2014-01-01

    ABSTRACT Natural dengue virus (DENV) infection in humans induces antibodies (Abs) that neutralize the serotype of infection in a potent and type-specific manner; however, most Abs generated in response to infection are serotype cross-reactive and poorly neutralizing. Such cross-reactive Abs may enhance disease during subsequent infection with a virus of a different DENV serotype. Previous screening assays for DENV-specific human B cells and antibodies, using viral and recombinant antigens, mainly led to the isolation of dominant nonneutralizing B cell clones. To improve upon our ability to recover and study rare but durable and potently neutralizing DENV-specific Abs, we isolated human DENV-specific B cells by using a primary screen of binding to live virus, followed by a secondary screen with a high-throughput, flow cytometry-based neutralization assay to identify DENV-specific B cell lines prior to generation of hybridomas. Using this strategy, we identified several new classes of serotype-specific and serotype-cross-neutralizing anti-DENV monoclonal Abs (MAbs), including ultrapotent inhibitory antibodies with neutralizing activity concentrations of <10 ng/ml. We isolated serotype-specific neutralizing Abs that target diverse regions of the E protein, including epitopes present only on the intact, fully assembled viral particle. We also isolated a number of serotype-cross-neutralizing MAbs, most of which recognized a region in E protein domain I/II containing the fusion loop. These data provide insights into targets of the protective Ab-mediated immune response to natural DENV infection, which will prove valuable in the design and testing of new experimental DENV vaccines. IMPORTANCE Dengue virus infection is one of the most common mosquito-borne diseases and occurs in most countries of the world. Infection of humans with dengue virus induces a small number of antibodies that inhibit the infecting strain but also induces a large number of antibodies that can bind

  10. siRNAs encapsulated in recombinant capsid protein derived from Dengue serotype 2 virus inhibits the four serotypes of the virus and proliferation of cancer cells.

    PubMed

    Kumar, A S Manoj; Reddy, G E C Vidyadhar; Rajmane, Yogesh; Nair, Soumya; Pai Kamath, Sangita; Sreejesh, Greeshma; Basha, Khalander; Chile, Shailaja; Ray, Kriti; Nelly, Vivant; Khadpe, Nilesh; Kasturi, Ravishankar; Ramana, Venkata

    2015-01-10

    siRNA delivery potential of the Dengue virus capsid protein in cultured cells was recently reported, but target knockdown potential in the context of specific diseases has not been explored. In this study we have evaluated the utility of the protein as an siRNA carrier for anti Dengue viral and anti cancer applications using cell culture systems. We show that target specific siRNAs delivered using the capsid protein inhibit infection by the four serotypes of Dengue virus and proliferation of two cancer cell lines. Our data confirm the potential of the capsid for anti Dengue viral and anti cancer RNAi applications. In addition, we have optimized a fermentation strategy to improve the yield of Escherichia coli expressed D2C protein since the reported yields of E. coli expressed flaviviral capsid proteins are low. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Dengue-associated kidney disease.

    PubMed

    Lizarraga, Karlo J; Nayer, Ali

    2014-01-01

    A mosquito-borne viral illness highly prevalent in the tropics and subtropics, dengue is considered a major global health threat by the World Health Organization. Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO) and Web of Science have been searched. An RNA virus from the genus Flavivirus, dengue virus is transmitted by Aedes aegypti,the yellow fever mosquito. Dengue is asymptomatic in as many as one half of infected individuals. Dengue fever is an acute febrile illness accompanied by constitutional symptoms. Dengue hemorrhagic fever and dengue shock syndrome are the severe forms of dengue infection.Dengue infection has been associated with a variety of renal disorders. Acute renal failure is a potential complication of severe dengue infection and is typically associated with hypotension, rhabdomyolysis, or hemolysis. Acute renal failure complicates severe dengue infection in 2-5% of the cases and carries a high mortality rate. Proteinuria has been detected in as high as 74% of patients with severe dengue infection. Hematuria has been reported in up to 12.5% of patients. Various types of glomerulonephritis have been reported during or shortly after dengue infection in humans and mouse models of dengue infection. Mesangial proliferation and immune complex deposition are the dominant histologic features of dengue-associated glomerulonephritis. On a rare occasion, dengue infection is associated with systemic autoimmune disorders involving the kidneys. In the vast majority of cases, dengue infection and associated renal disorders are self-limited.

  12. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    PubMed

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for

  13. Molecular detection of mixed infections with multiple dengue virus serotypes in suspected dengue samples in Tamaulipas, Mexico.

    PubMed

    Requena-Castro, Rocío; Reyes-López, Miguel Ángel; Rodríguez-Reyna, Rosa Eminé; Palma-Nicolás, Prisco; Bocanegra-García, Virgilio

    2017-07-01

    This study aimed to detect dengue virus (DENV) serotypes in serum samples obtained in Matamoros Tamaulipas, Mexico, and to determine the concordance of conventional nested reverse transcriptase polymerase chain reaction (RT-PCR) and a serological test [enzyme-linked immunosorbent assay (ELISA NS1)]. Here, we detected mixed infections consisting of four serotypes of DENV. The most prevalent serotype was DENV-1, followed by DENV-4. This is the first report of DENV-4 in our region. Mixed infections were also detected in 21.5% of samples, and the predominant coinfection consisted of DENV-1 and DENV-2. Therefore, continuous epidemiological surveillance of DENV in this area is required to predict future forms of dengue heterologous infections and the effect of this on health care.

  14. Neurological Manifestations of Dengue Infection.

    PubMed

    Li, Guo-Hong; Ning, Zhi-Jie; Liu, Yi-Ming; Li, Xiao-Hong

    2017-01-01

    Dengue counts among the most commonly encountered arboviral diseases, representing the fastest spreading tropical illness in the world. It is prevalent in 128 countries, and each year >2.5 billion people are at risk of dengue virus infection worldwide. Neurological signs of dengue infection are increasingly reported. In this review, the main neurological complications of dengue virus infection, such as central nervous system (CNS), peripheral nervous system, and ophthalmic complications were discussed according to clinical features, treatment and possible pathogenesis. In addition, neurological complications in children were assessed due to their atypical clinical features. Finally, dengue infection and Japanese encephalitis were compared for pathogenesis and main clinical manifestations.

  15. Phylogenetic analysis of the envelope protein (domain lll) of dengue 4 viruses

    PubMed Central

    Mota, Javier; Ramos-Castañeda, José; Rico-Hesse, Rebeca; Ramos, Celso

    2011-01-01

    Objective To evaluate the genetic variability of domain III of envelope (E) protein and to estimate phylogenetic relationships of dengue 4 (Den-4) viruses isolated in Mexico and from other endemic areas of the world. Material and Methods A phylogenetic study of domain III of envelope (E) protein of Den-4 viruses was conducted in 1998 using virus strains from Mexico and other parts of the world, isolated in different years. Specific primers were used to amplify by RT-PCR the domain III and to obtain nucleotide sequence. Based on nucleotide and deduced aminoacid sequence, genetic variability was estimated and a phylogenetic tree was generated. To make an easy genetic analysis of domain III region, a Restriction Fragment Length Polymorphism (RFLP) assay was performed, using six restriction enzymes. Results Study results demonstrate that nucleotide and aminoacid sequence analysis of domain III are similar to those reported from the complete E protein gene. Based on the RFLP analysis of domain III using the restriction enzymes Nla III, Dde I and Cfo I, Den-4 viruses included in this study were clustered into genotypes 1 and 2 previously reported. Conclusions Study results suggest that domain III may be used as a genetic marker for phylogenetic and molecular epidemiology studies of dengue viruses. The English version of this paper is available too at: http://www.insp.mx/salud/index.html PMID:12132320

  16. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand.

    PubMed

    Yamanaka, Atsushi; Oddgun, Duangjai; Chantawat, Nantarat; Okabayashi, Tamaki; Ramasoota, Pongrama; Churrotin, Siti; Kotaki, Tomohiro; Kameoka, Masanori; Soegijanto, Soegeng; Konishi, Eiji

    2016-04-01

    Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Crotoxin and phospholipases A₂ from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses.

    PubMed

    Muller, Vanessa Danielle Menjon; Russo, Raquel Rinaldi; Cintra, Adelia Cristina Oliveira; Sartim, Marco Aurélio; Alves-Paiva, Raquel De Melo; Figueiredo, Luiz Tadeu Moraes; Sampaio, Suely Vilela; Aquino, Victor Hugo

    2012-03-15

    Dengue is the most important arbovirus in the world with an estimated of 50 million dengue infections occurring annually and approximately 2.5 billion people living in dengue endemic countries. Yellow fever is a viral hemorrhagic fever with high mortality that is transmitted by mosquitoes. Effective vaccines against yellow fever have been available for almost 70 years and are responsible for a significant reduction of occurrences of the disease worldwide; however, approximately 200,000 cases of yellow fever still occur annually, principally in Africa. Therefore, it is a public health priority to develop antiviral agents for treatment of these virus infections. Crotalus durissus terrificus snake, a South American rattlesnake, presents venom with several biologically actives molecules. In this study, we evaluated the antiviral activity of crude venom and isolated toxins from Crotalus durissus terrificus and found that phospholipases A₂ showed a high inhibition of Yellow fever and dengue viruses in VERO E6 cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Repurposing of prochlorperazine for use against dengue virus infection.

    PubMed

    Simanjuntak, Yogy; Liang, Jian-Jong; Lee, Yi-Ling; Lin, Yi-Ling

    2015-02-01

    The increasing prevalence of dengue virus (DENV) infection presents serious disease and economic burdens in countries where dengue epidemics are occurring. Despite the clinical importance, no DENV vaccine or anti-DENV drug is available. In this study, we found that prochlorperazine (PCZ), a dopamine D2 receptor (D2R) antagonist approved to treat nausea, vomiting, and headache in humans has potent in vitro and in vivo antiviral activity against DENV infection. PCZ can block DENV infection by targeting viral binding and viral entry through D2R- and clathrin-associated mechanisms, respectively. Administration of PCZ immediately or 6 hours after DENV infection in a Stat1-deficient mouse model completely protected against or delayed lethality. Overall, PCZ showed a previously unknown antiviral effect against DENV infection, and D2R may play a role in the DENV life cycle. Prophylactic and/or therapeutic treatment with PCZ might reduce viral replication and relieve the clinical symptoms of patients with dengue. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Lineage shift of dengue virus in Eastern India: an increased implication for DHF/DSS.

    PubMed

    Shrivastava, A; Soni, M; Shrivastava, S; Sharma, S; Dash, P K; Gopalan, N; Behera, P K; Parida, M M

    2015-06-01

    Dengue fever, a mosquito-borne viral disease, has become a major public health problem with marked expansion in recent decades. Dengue has now become hyperendemic in India with co-circulation of all the four serotypes. Herein, we report an unprecedented outbreak which occurred during August to October 2011 in Odisha, eastern India. This is the first report of a large epidemic in Odisha. Detailed serological and molecular investigation was carried out to identify the aetiology. Almost half of the samples were found to be dengue antigen (NS1) positive. Further molecular assays revealed circulation of mixed dengue serotypes (DENV-2 and DENV-3). Cosmopolitan genotype of DENV-2 and -3 were identified as the aetiology by phylogenetic analysis. Interestingly, a new lineage of DENV-3 within cosmopolitan genotype was incriminated in this outbreak. The emergence of the unprecedented magnitude of the dengue outbreak with the involvement of a novel lineage of DENV in a newer state of India is a major cause for concern. There is an urgent need to monitor phylodynamics of dengue viruses in other endemic areas.

  20. Dengue fever (image)

    MedlinePlus

    Dengue fever, or West Nile fever, is a mild viral illness transmitted by mosquitoes which causes fever, ... second exposure to the virus can result in Dengue hemorrhagic fever, a life-threatening illness.

  1. Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design.

    PubMed

    Ramírez, Rosa; Falcón, Rosabel; Izquierdo, Alienys; García, Angélica; Alvarez, Mayling; Pérez, Ana Beatriz; Soto, Yudira; Muné, Mayra; da Silva, Emiliana Mandarano; Ortega, Oney; Mohana-Borges, Ronaldo; Guzmán, María G

    2014-10-01

    The NS3 protein is a multifunctional non-structural protein of flaviviruses implicated in the polyprotein processing. The predominance of cytotoxic T cell lymphocytes epitopes on the NS3 protein suggests a protective role of this protein in limiting virus replication. In this work, we studied the antigenicity and immunogenicity of a recombinant NS3 protein of the Dengue virus 2. The full-length NS3 gene was cloned and expressed as a His-tagged fusion protein in Escherichia coli. The pNS3 protein was purified by two chromatography steps. The recombinant NS3 protein was recognized by anti-protease NS3 polyclonal antibody and anti-DENV2 HMAF by Western Blot. This purified protein was able to stimulate the secretion of high levels of gamma interferon and low levels of interleukin-10 and tumor necrosis factor-α in mice splenocytes, suggesting a predominantly Th-1-type T cell response. Immunized BALB/c mice with the purified NS3 protein showed a strong induction of anti-NS3 IgG antibodies, essentially IgG2b, as determined by ELISA. Immunized mice sera with recombinant NS3 protein showed specific recognition of native dengue protein by Western blotting and immunofluorescence techniques. The successfully purified recombinant protein was able to preserv the structural and antigenic determinants of the native dengue protein. The antigenicity shown by the recombinant NS3 protein suggests its possible inclusion into future DENV vaccine preparations.

  2. Molecular Epidemiology of Autochthonous Dengue Virus Strains Circulating in Mexico ▿

    PubMed Central

    Rivera-Osorio, Pilar; Vaughan, Gilberto; Ramírez-González, Jose Ernesto; Fonseca-Coronado, Salvador; Ruíz-Tovar, Karina; Cruz-Rivera, Mayra Yolanda; Ruíz-Pacheco, Juan Alberto; Vázquez-Pichardo, Mauricio; Carpio-Pedroza, Juan Carlos; Cázares, Fernando; Escobar-Gutiérrez, Alejandro

    2011-01-01

    Dengue virus (DENV) is the most important arthropod-borne viral infection in humans. Here, the genetic relatedness among autochthonous DENV Mexican isolates was assessed. Phylogenetic and median-joining network analyses showed that viral strains recovered from different geographic locations are genetically related and relatively homogeneous, exhibiting limited nucleotide diversity. PMID:21775538

  3. Dengue virus non-structural Protein-1 expression and associated risk factors among febrile Patients attending University of Abuja Teaching Hospital, Nigeria.

    PubMed

    Nasir, Idris Abdullahi; Agbede, Olubunmi Olajide; Dangana, Amos; Baba, Marycelin; Haruna, Abubakar Shehu

    2017-02-15

    Dengue is a mosquito-borne and neglected tropical viral disease that has been reported to be hyper-endemic in Nigeria. However, this is the first dengue study in Abuja. This hospital-based cross-sectional study investigated the prevalence of Dengue virus (DENV) non-structural protein-1 (NS1) antigenaemia, anti-Dengue virus IgG and their associated risk factors among febrile patients attending the University of Abuja Teaching Hospital (UATH), Nigeria. From May to August 2016, blood samples were individually collected from 171 consented participants. These samples were analyzed using DENV NS1 and anti-DENV IgG Enzyme Linked Immunosorbent Assay (ELISA) kits. Well-structured questionnaires was used to collect sociodemographic variables of participants. Out of the 171 participants, the prevalence of Dengue virus NS1 antigenaemia and IgG seropositivity were 8.8% and 43.3%, respectively. Three (1.8%) of the patients were NS1 (+) IgG (-), 12 (7.0%) had NS1 (+) IgG (+), 62 (36.3%) were NS1 (-) IgG (+), while 97 (56.7%) of the remaining patients were NS1 (-) IgG (-). There was statistical association between DENV NS1 antigenaemia with age of patients (p=0.034), residence in proximity to waste dumpsites (p<0.0001) but not with occupation of patients (p=0.166), use of indoor insecticide sprays (p=0.4910) and presence of household artificial water containers (p=0.3650). There was statistical association between the prevalence of anti-Dengue virus IgG with occupation (p=0.0034) and education level of patients (p<0.001). However, there was no statistical association between the prevalence of anti-Dengue virus IgG with gender (p=0.4060) and residential area of patients (p=0.3896). Findings from this study revealed that DENV infection is one of the etiological agents of acute febrile illnesses in Abuja. It's recommended that Dengue testing be considered during differential diagnosis of febrile patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ocular manifestations of emerging arboviruses: Dengue fever, Chikungunya, Zika virus, West Nile virus, and yellow fever.

    PubMed

    Merle, H; Donnio, A; Jean-Charles, A; Guyomarch, J; Hage, R; Najioullah, F; Césaire, R; Cabié, A

    2018-06-18

    Arboviruses are viral diseases transmitted by mosquitoes and tick bites. They are a major cause of morbidity and sometimes mortality. Their expansion is constant and due in part to climate change and globalization. Mostly found in tropical regions, arboviruses are sometimes the source of epidemics in Europe. Recently, the Chikungunya virus and the Zika virus were responsible for very large epidemics impacting populations that had never been in contact with those viruses. There are currently no effective antiviral treatments or vaccines. Ocular manifestations due to those infections are thus more frequent and increasingly better described. They are sometimes, as with Zika, complicated by a congenital ocular syndrome. The goal of this review is to describe the ophthalmological manifestations of Dengue fever, Chikungunya virus, Zika virus, West Nile virus, and yellow fever. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Distinguishing Secondary Dengue Virus Infection From Zika Virus Infection With Previous Dengue by a Combination of 3 Simple Serological Tests.

    PubMed

    Tsai, Wen-Yang; Youn, Han Ha; Brites, Carlos; Tsai, Jih-Jin; Tyson, Jasmine; Pedroso, Celia; Drexler, Jan Felix; Stone, Mars; Simmons, Graham; Busch, Michael P; Lanteri, Marion; Stramer, Susan L; Balmaseda, Angel; Harris, Eva; Wang, Wei-Kung

    2017-11-13

    The explosive spread of Zika virus (ZIKV) and associated microcephaly present an urgent need for sensitive and specific serodiagnostic tests, particularly for pregnant women in dengue virus (DENV)-endemic regions. Recent reports of enhanced ZIKV replication by dengue-immune sera have raised concerns about the role of previous DENV infection on the risk and severity of microcephaly and other ZIKV complications. Enzyme-linked immunosorbent assays (ELISAs) based on ZIKV and DENV nonstructural protein 1 (NS1) were established to test acute, convalescent phase, and post-convalescent phase serum/plasma samples from reverse-transcription polymerase chain reaction-confirmed cases including 20 primary ZIKV, 25 ZIKV with previous DENV, 58 secondary DENV, and 16 primary DENV1 infections. ZIKV-NS1 immunoglobulin M (IgM) and immunoglobulin G (IgG) ELISAs combined can detect ZIKV infection with a sensitivity of 95% and specificity of 66.7%. The ZIKV-NS1 IgG cross-reactivity by samples from secondary DENV infection cases ranged from 66.7% to 28.1% (within 1 month to 1-2 years post-illness, respectively). Addition of DENV1-NS1 IgG ELISA can distinguish primary ZIKV infection; the ratio of absorbance of ZIKV-NS1 to DENV1-NS1 IgG ELISA can distinguish ZIKV with previous DENV and secondary DENV infections with a sensitivity of 87.5% and specificity of 81.3%. These findings were supported by analysis of sequential samples. An algorithm for ZIKV serodiagnosis based on 3 simple ELISAs is proposed to distinguish primary ZIKV, ZIKV with previous DENV, and secondary DENV infections; this could be applied to serodiagnosis for ZIKV, serosurveillance, and monitoring ZIKV infection during pregnancy to understand the epidemiology, pathogenesis, and complications of ZIKV in dengue-endemic regions. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. Myanmar Dengue Outbreak Associated with Displacement of Serotypes 2, 3, and 4 by Dengue 1

    PubMed Central

    Thu, Hlaing Myat; Lowry, Kym; Myint, Thein Thein; Shwe, Than Nu; Han, Aye Maung; Khin, Kyu Kyu; Thant, Kyaw Zin; Thein, Soe

    2004-01-01

    In 2001, Myanmar (Burma) had its largest outbreak of dengue—15,361 reported cases of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), including 192 deaths. That year, 95% of dengue viruses isolated from patients were serotype 1 viruses belonging to two lineages that had diverged from an earlier, now extinct, lineage sometime before 1998. The ratio of DHF to DSS cases in 2001 was not significantly different from that in 2000, when 1,816 cases of DHF/DSS were reported and dengue 1 also was the most frequently isolated serotype. However, the 2001 ratio was significantly higher than that in 1998 (also an outbreak year) and in 1999, when all four serotypes were detected and serotypes 1, 2, and 3 were recovered in similar numbers. The large number of clinical cases in 2001 may have been due, in part, to a preponderance of infections with dengue 1 viruses. PMID:15200847

  7. MOLECULAR CLASSIFICATION OF OUTCOMES FROM DENGUE VIRUS -3 INFECTIONS

    PubMed Central

    Brasier, Allan R.; Zhao, Yingxin; Wiktorowicz, John E.; Spratt, Heidi M.; Nascimento, Eduardo J. M.; Cordeiro, Marli T.; Soman, Kizhake V.; Ju, Hyunsu; Recinos, Adrian; Stafford, Susan; Wu, Zheng; Marques, Ernesto T.A.; Vasilakis, Nikos

    2015-01-01

    Objectives Dengue virus (DENV) infection is a significant risk to over a third of the human population that causes a wide spectrum of illness, ranging from sub-clinical disease to intermediate syndrome of vascular complications called Dengue Fever Complicated (DFC) and severe, dengue hemorrhagic fever (DHF). Methods for discriminating outcomes will impact clinical trials and understanding disease pathophysiology. Study Design We integrated a proteomics discovery pipeline with a heuristics to develop a molecular classifier to identify an intermediate phenotype of DENV-3 infectious outcome. Results 121 differentially expressed proteins were identified in plasma from DHF vs dengue fever (DF), and informative candidates were selected using nonparametric statistics. These were combined with markers that measure complement activation, acute phase response, cellular leak, granulocyte differentiation and viral load. From this, we applied quantitative proteomics to select a 15 member panel of proteins that accurately predicted DF, DHF, and DFC using a Random Forest Classifier. The classifier primarily relied on acute phase (A2M), complement (CFD), platelet counts and cellular leak (TPM4) to produce an 86% accuracy of prediction with an area under the receiver operating curve of >0.9 for DHF and DFC vs DF. Conclusions Integrating discovery and heuristic approaches to sample distinct pathophysiological processes is a powerful approach in infectious disease. Early detection of intermediate outcomes of DENV-3 will speed clinical trials evaluating vaccines or drug interventions. PMID:25728087

  8. Molecular classification of outcomes from dengue virus -3 infections.

    PubMed

    Brasier, Allan R; Zhao, Yingxin; Wiktorowicz, John E; Spratt, Heidi M; Nascimento, Eduardo J M; Cordeiro, Marli T; Soman, Kizhake V; Ju, Hyunsu; Recinos, Adrian; Stafford, Susan; Wu, Zheng; Marques, Ernesto T A; Vasilakis, Nikos

    2015-03-01

    Dengue virus (DENV) infection is a significant risk to over a third of the human population that causes a wide spectrum of illness, ranging from sub-clinical disease to intermediate syndrome of vascular complications called dengue fever complicated (DFC) and severe, dengue hemorrhagic fever (DHF). Methods for discriminating outcomes will impact clinical trials and understanding disease pathophysiology. We integrated a proteomics discovery pipeline with a heuristics approach to develop a molecular classifier to identify an intermediate phenotype of DENV-3 infectious outcome. 121 differentially expressed proteins were identified in plasma from DHF vs dengue fever (DF), and informative candidates were selected using nonparametric statistics. These were combined with markers that measure complement activation, acute phase response, cellular leak, granulocyte differentiation and viral load. From this, we applied quantitative proteomics to select a 15 member panel of proteins that accurately predicted DF, DHF, and DFC using a random forest classifier. The classifier primarily relied on acute phase (A2M), complement (CFD), platelet counts and cellular leak (TPM4) to produce an 86% accuracy of prediction with an area under the receiver operating curve of >0.9 for DHF and DFC vs DF. Integrating discovery and heuristic approaches to sample distinct pathophysiological processes is a powerful approach in infectious disease. Early detection of intermediate outcomes of DENV-3 will speed clinical trials evaluating vaccines or drug interventions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. House-to-house human movement drives dengue virus transmission

    PubMed Central

    Stoddard, Steven T.; Forshey, Brett M.; Morrison, Amy C.; Paz-Soldan, Valerie A.; Vazquez-Prokopec, Gonzalo M.; Astete, Helvio; Reiner, Robert C.; Vilcarromero, Stalin; Elder, John P.; Halsey, Eric S.; Kochel, Tadeusz J.; Kitron, Uriel; Scott, Thomas W.

    2013-01-01

    Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention. PMID:23277539

  10. Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges.

    PubMed

    Guzman, María G; Kouri, Gustavo

    2003-05-01

    The incidence of dengue and dengue hemorrhagic fever (DF/DHF) has increased significantly over the last decades. Yearly, an estimated 50-100 million cases of DF and about 250000-500000 cases of DHF occur worldwide. The epidemiological situation in Latin America now resembles that in Southeast Asia. Here, the main clinical, epidemiological and virological observations in the American region are presented and compared with those previously reported from Southeast Asia. During 2002, more than 30 Latin American countries reported over 1000000 DF cases. DHF occurred in 20 countries with more than 17000 DHF cases, including 225 fatalities. The co-circulation of multiple serotypes has been reported from many countries. In the Americas, DHF is observed both in children and adults; secondary infection by a different dengue virus serotype has been confirmed as an important risk factor for this severe form of the disease. However, some new risk factors such as the interval of dengue virus infections and the ethnicity and underlying chronic conditions of the patient have also been identified. The sequence of dengue virus infections and association with certain genotypes are further factors of importance. We also discuss the control and prevention strategies. In conclusion, without urgent action for the prevention and control of dengue/DHF and its vector, the current situation will worsen and, more dramatical, there is a risk of the urbanization of yellow fever.

  11. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection.

    PubMed

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N; Gestwicki, Jason E; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-11-19

    Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication, and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Genome sequence analysis of dengue virus 1 isolated in Key West, Florida.

    PubMed

    Shin, Dongyoung; Richards, Stephanie L; Alto, Barry W; Bettinardi, David J; Smartt, Chelsea T

    2013-01-01

    Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs.

  13. Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus.

    PubMed

    Taracena, Mabel L; Bottino-Rojas, Vanessa; Talyuli, Octavio A C; Walter-Nuno, Ana Beatriz; Oliveira, José Henrique M; Angleró-Rodriguez, Yesseinia I; Wells, Michael B; Dimopoulos, George; Oliveira, Pedro L; Paiva-Silva, Gabriela O

    2018-05-01

    Aedes aegypti is the vector of some of the most important vector-borne diseases like dengue, chikungunya, zika and yellow fever, affecting millions of people worldwide. The cellular processes that follow a blood meal in the mosquito midgut are directly associated with pathogen transmission. We studied the homeostatic response of the midgut against oxidative stress, as well as bacterial and dengue virus (DENV) infections, focusing on the proliferative ability of the intestinal stem cells (ISC). Inhibition of the peritrophic matrix (PM) formation led to an increase in reactive oxygen species (ROS) production by the epithelial cells in response to contact with the resident microbiota, suggesting that maintenance of low levels of ROS in the intestinal lumen is key to keep ISCs division in balance. We show that dengue virus infection induces midgut cell division in both DENV susceptible (Rockefeller) and refractory (Orlando) mosquito strains. However, the susceptible strain delays the activation of the regeneration process compared with the refractory strain. Impairment of the Delta/Notch signaling, by silencing the Notch ligand Delta using RNAi, significantly increased the susceptibility of the refractory strains to DENV infection of the midgut. We propose that this cell replenishment is essential to control viral infection in the mosquito. Our study demonstrates that the intestinal epithelium of the blood fed mosquito is able to respond and defend against different challenges, including virus infection. In addition, we provide unprecedented evidence that the activation of a cellular regenerative program in the midgut is important for the determination of the mosquito vectorial competence.

  14. Outbreak of viral hemorrhagic fever caused by dengue virus type 3 in Al-Mukalla, Yemen.

    PubMed

    Madani, Tariq A; Abuelzein, El-Tayeb M E; Al-Bar, Hussein M S; Azhar, Esam I; Kao, Moujahed; Alshoeb, Haj O; Bamoosa, Alabd R

    2013-03-14

    Investigations were conducted by the authors to explore an outbreak of viral hemorrhagic fever (VHF) reported in 2010 from Al-Mukalla city, the capital of Hadramout in Yemen. From 15-17 June 2010, the outbreak investigation period, specimens were obtained within 7 days after onset of illness of 18 acutely ill patients hospitalized with VHF and 15 household asymptomatic contacts of 6 acute cases. Additionally, 189 stored sera taken from acutely ill patients with suspected VHF hospitalized in the preceding 12 months were obtained from the Ministry of Health of Yemen. Thus, a total of 222 human specimens were collected; 207 specimens from acute cases and 15 specimens from contacts. All samples were tested with RT-PCR for dengue (DENV), Alkhumra (ALKV), Rift Valley Fever (RVFV), Yellow Fever (YFV), and Chikungunya (CHIKV) viruses. Samples were also tested for DENV IgM, IgG, and NS1-antigen. Medical records of patients were reviewed and demographic, clinical, and laboratory data was collected. Of 207 patients tested, 181 (87.4%) patients were confirmed to have acute dengue with positive dengue NS1-antigen (97 patients, 46.9%) and/or IgM (163 patients, 78.7%). Of the 181 patients with confirmed dengue, 100 (55.2%) patients were IgG-positive. DENV RNA was detected in 2 (1%) patients with acute symptoms; both samples were molecularly typed as DENV type 3. No other VHF viruses were detected. For the 15 contacts tested, RT-PCR tests for the five viruses were negative, one contact was dengue IgM positive, and another one was dengue IgG positive. Of the 181 confirmed dengue patients, 120 (66.3%) patients were males and the median age was 24 years. The most common manifestations included fever (100%), headache (94.5%), backache (93.4%), malaise (88.4%), arthralgia (85.1%), myalgia (82.3%), bone pain (77.9%), and leukopenia (76.2%). Two (1.1%) patients died. DENV-3 was confirmed to be the cause of an outbreak of VHF in Al-Mukalla. It is important to use both IgM and NS1-antigen

  15. Serological Evidence of Dengue Fever Among Refugees, Hargeysa, Somalia

    DTIC Science & Technology

    1989-01-01

    fever, Sindbis, Chikungunya, yellow HISTORY OF THE DISEASE IN THE fever, and Zika viruses . However, antibody reac- DAM CAMP tive to dengue 2 virus was...fever, Crimean-Congo hemorrhagic fever, Sindbis, Chikungunya, yellow fever, and Zika viruses . However, antibody reactive to dengue 2 virus was detected... ZIKA ) viruses . Further testing of sera for evidence of dengue S Barbera S , MOGAISCIO . viral infection was done by the enzyme immunoassay " (EIA

  16. Dengue-associated kidney disease

    PubMed Central

    J Lizarraga, Karlo; Nayer, Ali

    2014-01-01

    Context: A mosquito-borne viral illness highly prevalent in the tropics and subtropics, dengue is considered a major global health threat by the World Health Organization. Evidence Acquisitions: Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO) and Web of Science have been searched. Results: An RNA virus from the genus Flavivirus, dengue virus is transmitted by Aedes aegypti,the yellow fever mosquito. Dengue is asymptomatic in as many as one half of infected individuals. Dengue fever is an acute febrile illness accompanied by constitutional symptoms. Dengue hemorrhagic fever and dengue shock syndrome are the severe forms of dengue infection.Dengue infection has been associated with a variety of renal disorders. Acute renal failure is a potential complication of severe dengue infection and is typically associated with hypotension, rhabdomyolysis, or hemolysis. Acute renal failure complicates severe dengue infection in 2-5% of the cases and carries a high mortality rate. Proteinuria has been detected in as high as 74% of patients with severe dengue infection. Hematuria has been reported in up to 12.5% of patients. Various types of glomerulonephritis have been reported during or shortly after dengue infection in humans and mouse models of dengue infection. Mesangial proliferation and immune complex deposition are the dominant histologic features of dengue-associated glomerulonephritis. On a rare occasion, dengue infection is associated with systemic autoimmune disorders involving the kidneys. Conclusions: In the vast majority of cases, dengue infection and associated renal disorders are self-limited. PMID:24772398

  17. Eco-virological survey of Aedes mosquito larvae in selected dengue outbreak areas in Malaysia.

    PubMed

    Rohani, A; Aidil Azahary, A R; Malinda, M; Zurainee, M N; Rozilawati, H; Wan Najdah, W M A; Lee, H L

    2014-12-01

    BACKGROUND & OBJECTIVESI: Transovarial transmission of dengue virus in the Aedes vectors is now a well-documented phenomenon reported from many parts of the endemic areas in the world, which played an important role in initiating and maintaining the outbreak in human populations. This study investigated the factors affecting breeding habitats and the relationship with transovarial dengue virus in larvae of Aedes aegypti and Ae. albopictus. Larval surveillance was conducted in dengue outbreak areas in Malaysia from 2008 until 2009. Sampling was carried out based on habitat type, water condition (substrate type), canopy coverage, temperature and pH at breeding habitats. RT-PCR was performed to detect presence of transovarial dengue virus in larvae collected in the study areas. A total of 789 breeding habitats were identified during this study and the majority of these breeding sites were plastic containers (57.46%). Aedes albopictus dominated most of the water condition surveyed, while Ae. aegypti indicated preference toward habitats with clear water. Aedes aegypti was selective in selecting ovipositional sites compared to Ae. albopictus where shaded areas were shown to be the most preferred. From a total of 363 mosquito larvae pools, 23 (6.3%) pools were positive for dengue virus where 18 of them were from Ae. albopictus and five were from Ae. aegypti mosquito larvae pools. This study indicated the presence of transovarial transmission of dengue virus in immature Ae. aegypti and Ae. albopictus in the field. This study also showed that combination of water conditions, canopy coverage, temperature and pH of breeding habitats were the factors affecting the larval population. The study suggested that larval survey programme could serve as a tool not only to monitor the local dengue vector distribution but also to provide objective information for taking appropriate action by the community against dengue vectors.

  18. Dengue Virus Serotypes 1 and 2 Responsible for Major Dengue Outbreaks in Nepal: Clinical, Laboratory, and Epidemiological Features

    PubMed Central

    Dumre, Shyam Prakash; Bhandari, Renu; Shakya, Geeta; Shrestha, Sanjaya Kumar; Cherif, Mahamoud Sama; Ghimire, Prakash; Klungthong, Chonticha; Yoon, In-Kyu; Hirayama, Kenji; Na-Bangchang, Kesara; Fernandez, Stefan

    2017-01-01

    Abstract. Dengue virus (DENV) is expanding toward previously nonendemic areas. DENV has recently been introduced in Nepal with limited information. We report the clinical features and serotype distribution of DENV in Nepal during the 2010 outbreaks. A total of 1,215 clinical dengue cases at two major hospitals of central and western Nepal were investigated. Demographic, clinical, and laboratory parameters were recorded. Serum specimens were tested for DENV by IgM/IgG enzyme-linked immunosorbent assays (ELISAs) and reverse transcription polymerase chain reaction (RT-PCR). We confirmed DENV infection in 403 (33%) patients from 12 districts with an estimated case fatality rate of 1.5%. DENV infection was more common in adults (87%) and urban settings (74%). We detected all four serotypes but DENV-1 and -2 were mainly responsible for major outbreaks (92%). Overall, 60% of all DENV infections were secondary and 17% were severe dengue; both being more frequent among the DENV-2 infections. Rash, bleeding, abdominal pain, hepatomegaly, elevated liver enzymes, and thrombocytopenia were significantly more common in severe dengue compared with nonsevere infections. We also confirmed the expansion of dengue to hill urban areas (DENV-1 and -2), including the capital Kathmandu (altitude, 1,300 m) though > 90% cases were from southern plains. Differential clinical and laboratory features probably help in clinical decisions. Multiple serotypes circulation and elevated secondary infections pose potential risk of severe outbreaks and deaths in the future. Therefore, a country with recent dengue introduction, like Nepal, urgently requires a systematic surveillance and appropriate control measures in place to respond to any disastrous outbreaks. PMID:29031282

  19. High Content Screening of a Kinase-Focused Library Reveals Compounds Broadly-Active against Dengue Viruses

    PubMed Central

    Li, Xiaolan; Milan Bonotto, Rafaela; No, Joo Hwan; Kim, Keum Hyun; Baek, Sungmin; Kim, Hee Young; Windisch, Marc Peter; Pamplona Mosimann, Ana Luiza; de Borba, Luana; Liuzzi, Michel; Hansen, Michael Adsetts Edberg; Nunes Duarte dos Santos, Claudia; Freitas-Junior, Lucio Holanda

    2013-01-01

    Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-N-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates. PMID:23437413

  20. Maternal Zika Virus Disease Severity, Virus Load, Prior Dengue Antibodies, and Their Relationship to Birth Outcomes.

    PubMed

    Halai, Umme-Aiman; Nielsen-Saines, Karin; Moreira, Maria Lopes; de Sequeira, Patricia Carvalho; Junior, Jose Paulo Pereira; de Araujo Zin, Andrea; Cherry, James; Gabaglia, Claudia Raja; Gaw, Stephanie L; Adachi, Kristina; Tsui, Irena; Pilotto, Jose Henrique; Nogueira, Rita Ribeiro; de Filippis, Ana Maria Bispo; Brasil, Patricia

    2017-09-15

    Congenital Zika virus (ZIKV) syndrome is a newly identified condition resulting from infection during pregnancy. We analyzed outcome data from a mother-infant cohort in Rio de Janeiro in order to assess whether clinical severity of maternal ZIKV infection was associated with maternal virus load, prior dengue antibodies, or abnormal pregnancy/infant outcomes. A clinical severity assessment tool was developed based on duration of fever, severity of rash, multisystem involvement, and duration of symptoms during ZIKV infection. ZIKV-RNA load was quantified by polymerase chain reaction (PCR) cycles in blood/ urine. Dengue immunoglobulin G (IgG) antibodies were measured at baseline. Adverse outcomes were defined as fetal loss or a live infant with grossly abnormal clinical or brain imaging findings. Regression models were used to study potential associations. 131 ZIKV-PCR positive pregnant women were scored for clinical disease severity, 6 (4.6%) had mild disease, 98 (74.8%) had moderate disease, and 27 (20.6%) severe manifestations of ZIKV infection. There were 58 (46.4%) abnormal outcomes with 9 fetal losses (7.2%) in 125 pregnancies. No associations were found between: disease severity and abnormal outcomes (P = .961; odds ratio [OR]: 1.00; 95% confidence interval [CI]: 0.796-1.270); disease severity and viral load (P = .994); viral load and adverse outcomes (P = .667; OR: 1.02; 95% CI: 0.922-1.135); or existence of prior dengue antibodies (88% subjects) with severity score, ZIKV-RNA load or adverse outcomes (P = .667; OR: 0.78; 95% CI: 0.255-2.397). Congenital ZIKV syndrome does not appear to be associated with maternal disease severity, ZIKV-RNA load at time of infection or existence of prior dengue antibodies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. Fighting the Dengue Virus

    PubMed Central

    Aadil, Muhammad; Shafqat, Muhammad Nabeel

    2017-01-01

    The incidence of dengue has been on the upsurge in the last decade. It has affected around one-third of the world's population living in endemic areas. It can be asymptomatic or may present with some specific symptoms. No control measures have proven beneficial to decrease the prevalence of this disease. The emergence of dengue vaccine has been a revolutionary hope in the future of patients affected with this disease. No doubt, this vaccine has its limitations and may do more harm than good, but with correct use, it can prove to be the most beneficial step taken in managing dengue so far. PMID:28652954

  2. Genomic Epidemiology of a Dengue Virus Epidemic in Urban Singapore▿ †

    PubMed Central

    Schreiber, Mark J.; Holmes, Edward C.; Ong, Swee Hoe; Soh, Harold S. H.; Liu, Wei; Tanner, Lukas; Aw, Pauline P. K.; Tan, Hwee Cheng; Ng, Lee Ching; Leo, Yee Sin; Low, Jenny G. H.; Ong, Adrian; Ooi, Eng Eong; Vasudevan, Subhash G.; Hibberd, Martin L.

    2009-01-01

    Dengue is one of the most important emerging diseases of humans, with no preventative vaccines or antiviral cures available at present. Although one-third of the world's population live at risk of infection, little is known about the pattern and dynamics of dengue virus (DENV) within outbreak situations. By exploiting genomic data from an intensively studied major outbreak, we are able to describe the molecular epidemiology of DENV at a uniquely fine-scaled temporal and spatial resolution. Two DENV serotypes (DENV-1 and DENV-3), and multiple component genotypes, spread concurrently and with similar epidemiological and evolutionary profiles during the initial outbreak phase of a major dengue epidemic that took place in Singapore during 2005. Although DENV-1 and DENV-3 differed in viremia and clinical outcome, there was no evidence for adaptive evolution before, during, or after the outbreak, indicating that ecological or immunological rather than virological factors were the key determinants of epidemic dynamics. PMID:19211734

  3. Dengue virus induces and requires glycolysis for optimal replication.

    PubMed

    Fontaine, Krystal A; Sanchez, Erica L; Camarda, Roman; Lagunoff, Michael

    2015-02-01

    Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future. Approximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block the replication of

  4. Evidence of dengue virus replication in a non-traumatic spleen rupture case.

    PubMed

    de Souza, Luiz José; de Azevedo, João; Kohler, Liza Ingride Acha; Barros, Lorena de Freitas; Lima, Mariana Arêdes; Silva, Emiliana Mandarano; Mohana-Borges, Ronaldo; Nunes, Priscila Conrado Guerra; Paes, Marciano Viana

    2017-11-01

    The present report describes a case of splenic rupture due to dengue, a rare complication of dengue that should be considered in any patient with suspected dengue disease who started with left upper quadrant abdominal pain and hypotension. The pathophysiology of this entity is not yet well elucidated, but one of the theories present in the literature is that it is due to a depletion of coagulation factors and platelets leading to intra-splenic hemorrhage and rupture. The RT-PCR technique detected serotype 1 and histopathological studies of the spleen revealed significant atrophy of lymphoid follicles and extensive hemorrhage areas. Besides histopathological observations, virus replication was investigated by detection of dengue antigens, especially the non-structural 3 protein (NS3) in endothelial cells and splenic macrophages. This important complication has serious clinical repercussions and high mortality, due to the diagnostic difficulty and many factors that usually confuse or delay its diagnosis. Therefore, it is of the utmost importance to recognize their manifestations and their management to try to best minimize their consequences and mortality.

  5. Acute Febrile Illness Surveillance in a Tertiary Hospital Emergency Department: Comparison of Influenza and Dengue Virus Infections

    PubMed Central

    Lorenzi, Olga D.; Gregory, Christopher J.; Santiago, Luis Manuel; Acosta, Héctor; Galarza, Ivonne E.; Hunsperger, Elizabeth; Muñoz, Jorge; Bui, Duy M.; Oberste, M. Steven; Peñaranda, Silvia; García-Gubern, Carlos; Tomashek, Kay M.

    2013-01-01

    In 2009, an increased proportion of suspected dengue cases reported to the surveillance system in Puerto Rico were laboratory negative. As a result, enhanced acute febrile illness (AFI) surveillance was initiated in a tertiary care hospital. Patients with fever of unknown origin for 2–7 days duration were tested for Leptospira, enteroviruses, influenza, and dengue virus. Among the 284 enrolled patients, 31 dengue, 136 influenza, and 3 enterovirus cases were confirmed. Nearly half (48%) of the confirmed dengue cases met clinical criteria for influenza. Dengue patients were more likely than influenza patients to have hemorrhage (81% versus 26%), rash (39% versus 9%), and a positive tourniquet test (52% versus 18%). Mean platelet and white blood cell count were lower among dengue patients. Clinical diagnosis can be particularly difficult when outbreaks of other AFI occur during dengue season. A complete blood count and tourniquet test may be useful to differentiate dengue from other AFIs. PMID:23382160

  6. Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus

    PubMed Central

    2009-01-01

    Background Our understanding of the effects of human movement on dengue virus spread remains limited in part due to the lack of precise tools to monitor the time-dependent location of individuals. We determined the utility of a new, commercially available, GPS data-logger for long-term tracking of human movements in Iquitos, Peru. We conducted a series of evaluations focused on GPS device attributes key to reliable use and accuracy. GPS observations from two participants were later compared with semi-structured interview data to assess the usefulness of GPS technology to track individual mobility patterns. Results Positional point and line accuracy were 4.4 and 10.3 m, respectively. GPS wearing mode increased spatial point error by 6.9 m. Units were worn on a neck-strap by a carpenter and a moto-taxi driver for 14-16 days. The application of a clustering algorithm (I-cluster) to the raw GPS positional data allowed the identification of locations visited by each participant together with the frequency and duration of each visit. The carpenter moved less and spent more time in more fixed locations than the moto-taxi driver, who visited more locations for a shorter period of time. GPS and participants' interviews concordantly identified 6 common locations, whereas GPS alone identified 4 locations and participants alone identified 10 locations. Most (80%) of the locations identified by participants alone were places reported as visited for less than 30 minutes. Conclusion The present study demonstrates the feasibility of a novel, commercially available GPS data-logger for long-term tracking of humans and shows the potential of these units to quantify mobility patterns in relationship with dengue virus transmission risk in a tropical urban environment. Cost, battery life, size, programmability and ease of wear are unprecedented from previously tested units, proving the usefulness of GPS-dataloggers for linking movement of individuals and transmission risk of dengue

  7. Clinical and Virological Descriptive Study in the 2011 Outbreak of Dengue in the Amazonas, Brazil

    PubMed Central

    Martins, Valquiria do Carmo Alves; Bastos, Michele de Souza; Ramasawmy, Rajendranath; de Figueiredo, Regina Pinto; Gimaque, João Bosco Lima; Braga, Wornei Silva Miranda; Nogueira, Mauricio Lacerda; Nozawa, Sergio; Naveca, Felipe Gomes; Figueiredo, Luiz Tadeu Moraes; Mourão, Maria Paula Gomes

    2014-01-01

    Background Dengue is a vector-borne disease in the tropical and subtropical region of the world and is transmitted by the mosquito Aedes aegypti. In the state of Amazonas, Brazil during the 2011 outbreak of dengue all the four Dengue virus (DENV) serotypes circulating simultaneously were observed. The aim of the study was to describe the clinical epidemiology of dengue in Manaus, the capital city of the state of the Amazonas, where all the four DENV serotypes were co-circulating simultaneously. Methodology Patients with acute febrile illness during the 2011 outbreak of dengue, enrolled at the Fundação de Medicina Tropical Dr. Heitor Viera Dourado (FMT-HVD), a referral centre for tropical and infectious diseases in Manaus, were invited to participate in a clinical and virological descriptive study. Sera from 677 patients were analyzed by RT-nested-PCRs for flaviviruses (DENV 1–4, Saint Louis encephalitis virus-SLEV, Bussuquara virus-BSQV and Ilheus virus-ILHV), alphavirus (Mayaro virus-MAYV) and orthobunyavirus (Oropouche virus-OROV). Principal Findings Only dengue viruses were detected in 260 patients (38.4%). Thirteen patients were co-infected with more than one DENV serotype and six (46.1%) of them had a more severe clinical presentation of the disease. Nucleotide sequencing showed that DENV-1 belonged to genotype V, DENV-2 to the Asian/American genotype, DENV-3 to genotype III and DENV-4 to genotype II. Conclusions Co-infection with more than one DENV serotype was observed. This finding should be warning signs to health authorities in situations of the large dispersal of serotypes that are occurring in the world. PMID:24978469

  8. Molecular studies with Aedes (Stegomyia) aegypti (Linnaeus, 1762), mosquito transmitting the dengue virus.

    PubMed

    Pereira, Luciana Patrícia Lima Alves; Brito, Maria Cristiane Aranha; Araruna, Felipe Bastos; de Andrade, Marcelo Souza; Moraes, Denise Fernandes Coutinho; Borges, Antônio Carlos Romão; do Rêgo Barros Pires Leal, Emygdia Rosa

    2017-08-01

    Dengue is an infectious viral disease, which can present a wide clinical picture, ranging from oligo or asymptomatic forms, to bleeding and shock, and can progress to death. The disease problem has increased in recent years, especially in urban and suburban areas of tropical and subtropical regions. There are five dengue viruses, called serotypes (DEN-1, DEN-2, DEN-3, DEN-4, and DEN-5), which belong to the Flaviviridae family and are transmitted to humans through infected mosquito bites, with the main vector the Aedes aegypti mosquito (Linnaeus, 1762). Studies performed with Ae. aegypti, aimed at their identification and analysis of their population structure, are fundamental to improve understanding of the epidemiology of dengue, as well for the definition of strategic actions that reduce the transmission of this disease. Therefore, considering the importance of such research to the development of programs to combat dengue, the present review considers the techniques used for the molecular identification, and evaluation of the genetic variability of Ae. aegypti.

  9. Human T cell responses to Dengue and Zika virus infection compared to Dengue/Zika coinfection.

    PubMed

    Badolato-Corrêa, Jessica; Sánchez-Arcila, Juan Camilo; Alves de Souza, Thiara Manuele; Santos Barbosa, Luciana; Conrado Guerra Nunes, Priscila; da Rocha Queiroz Lima, Monique; Gandini, Mariana; Bispo de Filippis, Ana Maria; Venâncio da Cunha, Rivaldo; Leal de Azeredo, Elzinandes; de-Oliveira-Pinto, Luzia Maria

    2018-06-01

    Zika virus (ZIKV) and dengue virus (DENV) co-circulated during latest outbreaks in Brazil, hence, it is important to evaluate the host cross-reactive immune responses to these viruses. So far, little is known about human T cell responses to ZIKV and no reports detail adaptive immune responses during DENV/ZIKV coinfection. Here, we studied T cells responses in well-characterized groups of DENV, ZIKV, or DENV/ZIKV infected patients and DENV-exposed healthy donors. We evaluated chemokine receptors expression and single/multifunctional frequencies of IFNγ, TNF, and IL2-producing T cells during these infections. Even without antigenic stimulation, it was possible to detect chemokine receptors and IFNγ, TNF, and IL2-producing T cells from all individuals by flow cytometry. Additionally, PBMCs' IFNγ response to DENV NS1 protein and to polyclonal stimuli was evaluated by ELISPOT. DENV and ZIKV infections and DENV/ZIKV coinfections similarly induced expression of CCR5, CX3CR1, and CXCR3 on CD4 and CD8 T cells. DENV/ZIKV coinfection decreased the ability of CD4 + T cells to produce IFNγ + , TNF + , TNF  +  IFNγ + , and TNF  +  IL2 + , compared to DENV and ZIKV infections. A higher magnitude of IFNγ response to DENV NS1 was found in donors with a history of dengue infection, however, a hyporesponsiveness was found in acute DENV, ZIKV, or DENV/ZIKV infected patients, even previously infected with DENV. Therefore, we emphasize the potential impact of coinfection on the immune response from human hosts, mainly in areas where DENV and ZIKV cocirculate. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  10. Worldwide Spread of Dengue Virus Type 1

    PubMed Central

    Villabona-Arenas, Christian Julián; Zanotto, Paolo Marinho de Andrade

    2013-01-01

    Background DENV-1 is one of the four viral serotypes that causes Dengue, the most common mosquito-borne viral disease of humans. The prevalence of these viruses has grown in recent decades and is now present in more than 100 countries. Limited studies document the spread of DENV-1 over the world despite its importance for human health. Methodology/Principal Findings We used representative DENV-1 envelope gene sequences to unravel the dynamics of viral diffusion under a Bayesian phylogeographic approach. Data included strains from 45 distinct geographic locations isolated from 1944 to 2009. The estimated mean rate of nucleotide substitution was 6.56×10−4 substitutions/site/year. The larger genotypes (I, IV and V) had a distinctive phylogenetic structure and since 1990 they experienced effective population size oscillations. Thailand and Indonesia represented the main sources of strains for neighboring countries. Besides, Asia broadcast lineages into the Americas and the Pacific region that diverged in isolation. Also, a transmission network analysis revealed the pivotal role of Indochina in the global diffusion of DENV-1 and of the Caribbean in the diffusion over the Americas. Conclusions/Significance The study summarizes the spatiotemporal DENV-1 worldwide spread that may help disease control. PMID:23675416

  11. Internally Controlled, Multiplex Real-Time Reverse Transcription PCR for Dengue Virus and Yellow Fever Virus Detection.

    PubMed

    Rojas, Alejandra; Diagne, Cheikh T; Stittleburg, Victoria D; Mohamed-Hadley, Alisha; de Guillén, Yvalena Arévalo; Balmaseda, Angel; Faye, Oumar; Faye, Ousmane; Sall, Amadou A; Harris, Eva; Pinsky, Benjamin A; Waggoner, Jesse J

    2018-04-02

    The differential diagnosis of dengue virus (DENV) and yellow fever virus (YFV) infections in endemic areas is complicated by nonspecific early clinical manifestations. In this study, we describe an internally controlled, multiplex real-time reverse transcription PCR (rRT-PCR) for the detection of DENV and YFV. The DENV-YFV assay demonstrated specific detection and had a dynamic range of 2.0-8.0 log 10 copies/μL of eluate for each DENV serotype and YFV. Clinical performance was similar to a published pan-DENV assay: 48/48 acute-phase samples from dengue cases were detected in both assays. For YFV detection, mock samples were prepared with nine geographically diverse YFV isolates over a range of concentrations. The DENV-YFV assay detected 62/65 replicates, whereas 54/65 were detected using a reference YFV rRT-PCR. Given the reemergence of DENV and YFV in areas around the world, the DENV-YFV assay should be a useful tool to narrow the differential diagnosis and provide early case detection.

  12. Validation of the Pockit Dengue Virus Reagent Set for Rapid Detection of Dengue Virus in Human Serum on a Field-Deployable PCR System.

    PubMed

    Tsai, Jih-Jin; Liu, Li-Teh; Lin, Ping-Chang; Tsai, Ching-Yi; Chou, Pin-Hsing; Tsai, Yun-Long; Chang, Hsiao-Fen Grace; Lee, Pei-Yu Alison

    2018-05-01

    Dengue virus (DENV) infection, a mosquito-borne disease, is a major public health problem in tropical countries. Point-of-care DENV detection with good sensitivity and specificity enables timely early diagnosis of DENV infection, facilitating effective disease management and control, particularly in regions of low resources. The Pockit dengue virus reagent set (GeneReach Biotech), a reverse transcription insulated isothermal PCR (RT-iiPCR), is available to detect all four serotypes of DENV on the field-deployable Pockit system, which is ready for on-site applications. In this study, analytical and clinical performances of the assay were evaluated. The index assay did not react with 14 non-DENV human viruses, indicating good specificity. Compared to the U.S. CDC DENV-1-4 real-time quantitative RT-PCR (qRT-PCR) assay, testing with serial dilutions of virus-spiked human sera demonstrated that the index assay had detection endpoints that were separately comparable with the 4 serotypes. Excellent reproducibility was observed among repeat tests done by six operators at three sites. In clinical performance, 195 clinical sera collected around Kaohsiung city in 2012 and 21 DENV-4-spiked sera were tested with the RT-iiPCR and qRT-PCR assays in parallel. The 121 (11 DENV-1, 78 DENV-2, 11 DENV-3, and 21 DENV-4) qRT-PCR-positive and 95 qRT-PCR-negative samples were all positive and negative by the RT-iiPCR reagent results, respectively, demonstrating high (100%) interrater agreement (95% confidence interval [CI 95% ], ∼98.81% to 100%; κ = 1). With analytical and clinical performance equivalent to those of the reference qRT-PCR assay, the index PCR assay on the field-deployable system can serve as a highly sensitive and specific on-site tool for DENV detection. Copyright © 2018 American Society for Microbiology.

  13. Evaluation of a dengue NS1 antigen detection assay sensitivity and specificity for the diagnosis of acute dengue virus infection.

    PubMed

    Hermann, Laura L; Thaisomboonsuk, Butsaya; Poolpanichupatam, Yongyuth; Jarman, Richard G; Kalayanarooj, Siripen; Nisalak, Ananda; Yoon, In-Kyu; Fernandez, Stefan

    2014-10-01

    Currently, no dengue NS1 detection kit has regulatory approval for the diagnosis of acute dengue fever. Here we report the sensitivity and specificity of the InBios DEN Detect NS1 ELISA using a panel of well characterized human acute fever serum specimens. The InBios DENV Detect NS1 ELISA was tested using a panel composed of 334 serum specimens collected from acute febrile patients seeking care in a Bangkok hospital in 2010 and 2011. Of these patients, 314 were found to have acute dengue by either RT-PCR and/or anti-dengue IgM/IgG ELISA. Alongside the InBios NS1 ELISA kit, we compared the performance characteristics of the BioRad Platelia NS1 antigen kit. The InBios NS1 ELISA Ag kit had a higher overall sensitivity (86% vs 72.8%) but equal specificity (100%) compared to the BioRad Platelia kit. The serological status of the patient significantly influenced the outcome. In primary infections, the InBios NS1 kit demonstrated a higher sensitivity (98.8%) than in secondary infections (83.5%). We found significant variation in the sensitivity of the InBios NS1 ELISA kit depending on the serotype of the dengue virus and also found decreasing sensitivity the longer after the onset of illness, showing 100% sensitivity early during illness, but dropping below 50% by Day 7. The InBios NS1 ELISA kit demonstrated high accuracy when compared to the initial clinical diagnosis with greater than 85% agreement when patients were clinically diagnosed with dengue illness. Results presented here suggest the accurate detection of circulating dengue NS1 by the InBios DENV Detect NS1 ELISA can provide clinicians with a useful tool for diagnosis of early dengue infections.

  14. The Cellular Bases of Antibody Responses during Dengue Virus Infection

    PubMed Central

    Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo

    2016-01-01

    Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618

  15. Analysis of Individuals from a Dengue-Endemic Region Helps Define the Footprint and Repertoire of Antibodies Targeting Dengue Virus 3 Type-Specific Epitopes.

    PubMed

    Andrade, Daniela V; Katzelnick, Leah C; Widman, Doug G; Balmaseda, Angel; de Silva, Aravinda M; Baric, Ralph S; Harris, Eva

    2017-09-19

    The four dengue virus serotypes (DENV1 to 4) cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. Here, we use a recombinant DENV4 (rDENV4/3-M14) displaying a major DENV3 type-specific quaternary epitope recognized by human monoclonal antibody 5J7 to measure the proportion, magnitude, and kinetics of DENV3 type-specific neutralizing antibody responses targeting this epitope. Primary DENV3 sera from 30 individuals in a dengue hospital-based study in Nicaragua were studied 3, 6, 12, and 18 months post-infection, alongside samples collected annually 1 to 4 years post-primary DENV3 infection from 10 individuals in a cohort study in Nicaragua. We found substantial individual variation in the proportion of DENV3 type-specific neutralizing antibody titers attributed to the 5J7 epitope (range, 0 to 100%), with the mean significantly increasing from 22.6% to 41.4% from 3 to 18 months. We extended the transplanted DENV3 5J7 epitope on the virion (rDENV4/3-M16), resulting in increased recognition in several individuals, helping define the footprint of the epitope. However, 37% and 13% of the subjects still showed little to no recognition of the 5J7 epitope at 3 and 18 months, respectively, indicating that one or more additional DENV3 type-specific epitopes exist. Overall, this study demonstrates how DENV-immune plasma from populations from areas of endemicity, when coupled with structurally guided recombinant viruses, can help characterize the epitope-specific neutralizing antibody response in natural DENV infections, with direct implications for design and evaluation of dengue vaccines. IMPORTANCE The four serotypes of dengue virus cause dengue

  16. Human T Lymphocytes Are Permissive for Dengue Virus Replication.

    PubMed

    Silveira, Guilherme F; Wowk, Pryscilla F; Cataneo, Allan H D; Dos Santos, Paula F; Delgobo, Murilo; Stimamiglio, Marco A; Lo Sarzi, Maria; Thomazelli, Ana Paula F S; Conchon-Costa, Ivete; Pavanelli, Wander R; Antonelli, Lis R V; Báfica, André; Mansur, Daniel S; Dos Santos, Claudia N Duarte; Bordignon, Juliano

    2018-05-15

    Dengue virus (DV) infection can cause either a self-limiting flu-like disease or a threatening hemorrhage that may evolve to shock and death. A variety of cell types, such as dendritic cells, monocytes, and B cells, can be infected by DV. However, despite the role of T lymphocytes in the control of DV replication, there remains a paucity of information on possible DV-T cell interactions during the disease course. In the present study, we have demonstrated that primary human naive CD4 + and CD8 + T cells are permissive for DV infection. Importantly, both T cell subtypes support viral replication and secrete viable virus particles. DV infection triggers the activation of both CD4 + and CD8 + T lymphocytes, but preactivation of T cells reduces the susceptibility of T cells to DV infection. Interestingly, the cytotoxicity-inducing protein granzyme A is highly secreted by human CD4 + but not CD8 + T cells after exposure to DV in vitro Additionally, using annexin V and polycaspase assays, we have demonstrated that T lymphocytes, in contrast to monocytes, are resistant to DV-induced apoptosis. Strikingly, both CD4 + and CD8 + T cells were found to be infected with DV in acutely infected dengue patients. Together, these results show that T cells are permissive for DV infection in vitro and in vivo , suggesting that this cell population may be a viral reservoir during the acute phase of the disease. IMPORTANCE Infection by dengue virus (DV) causes a flu-like disease that can evolve to severe hemorrhaging and death. T lymphocytes are important cells that regulate antibody secretion by B cells and trigger the death of infected cells. However, little is known about the direct interaction between DV and T lymphocytes. Here, we show that T lymphocytes from healthy donors are susceptible to infection by DV, leading to cell activation. Additionally, T cells seem to be resistant to DV-induced apoptosis, suggesting a potential role as a viral reservoir in humans. Finally, we show

  17. Identification of Broad-Spectrum Dengue/Zika Virus Replication Inhibitors by Functionalization of Quinoline and 2,6-Diaminopurine Scaffolds.

    PubMed

    Kaptein, Suzanne J F; Vincetti, Paolo; Crespan, Emmanuele; Rivera, Jorge I Armijos; Costantino, Gabriele; Maga, Giovanni; Neyts, Johan; Radi, Marco

    2018-05-09

    Social and demographic changes across the world over the past 50 years have resulted in significant outbreaks of arboviruses such as dengue virus (DENV) and Zika virus (ZIKV). Despite the increased threat of infection, no approved drugs or fully protective vaccines are available to counteract the spread of DENV and ZIKV. The development of "broad-spectrum" antivirals (BSAs) that target common components of multiple viruses can be a more effective strategy to limit the rapid emergence of viral pathogens than the classic "one-bug/one-drug" approach. Starting from previously identified multitarget DENV inhibitors, herein we report the identification of novel 2,6-diaminopurine derivatives that are able to block the replication of both Zika virus and all serotypes of dengue virus (DENV 1-4) in infected cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nucleotide substitutions in dengue virus serotypes from Asian and American countries: insights into intracodon recombination and purifying selection

    PubMed Central

    2013-01-01

    Background Dengue virus (DENV) infection represents a significant public health problem in many subtropical and tropical countries. Although genetically closely related, the four serotypes of DENV differ in antigenicity for which cross protection among serotypes is limited. It is also believed that both multi-serotype infection as well as the evolution of viral antigenicity may have confounding effects in increased dengue epidemics. Numerous studies have been performed that investigated genetic diversity of DENV, but the precise mechanism(s) of dengue virus evolution are not well understood. Results We investigated genome-wide genetic diversity and nucleotide substitution patterns in the four serotypes among samples collected from different countries in Asia and Central and South America and sequenced as part of the Genome Sequencing Center for Infectious Diseases at the Broad Institute. We applied bioinformatics, statistical and coalescent simulation methods to investigate diversity of codon sequences of DENV samples representing the four serotypes. We show that fixation of nucleotide substitutions is more prominent among the inter-continental isolates (Asian and American) of serotypes 1, 2 and 3 compared to serotype 4 isolates (South and Central America) and are distributed in a non-random manner among the genes encoded by the virus. Nearly one third of the negatively selected sites are associated with fixed mutation sites within serotypes. Our results further show that of all the sites showing evidence of recombination, the majority (~84%) correspond to sites under purifying selection in the four serotypes. The analysis further shows that genetic recombination occurs within specific codons, albeit with low frequency (< 5% of all recombination sites) throughout the DENV genome of the four serotypes and reveals significant enrichment (p < 0.05) among sites under purifying selection in the virus. Conclusion The study provides the first evidence for intracodon

  19. Refining the global spatial limits of dengue virus transmission by evidence-based consensus.

    PubMed

    Brady, Oliver J; Gething, Peter W; Bhatt, Samir; Messina, Jane P; Brownstein, John S; Hoen, Anne G; Moyes, Catherine L; Farlow, Andrew W; Scott, Thomas W; Hay, Simon I

    2012-01-01

    Dengue is a growing problem both in its geographical spread and in its intensity, and yet current global distribution remains highly uncertain. Challenges in diagnosis and diagnostic methods as well as highly variable national health systems mean no single data source can reliably estimate the distribution of this disease. As such, there is a lack of agreement on national dengue status among international health organisations. Here we bring together all available information on dengue occurrence using a novel approach to produce an evidence consensus map of the disease range that highlights nations with an uncertain dengue status. A baseline methodology was used to assess a range of evidence for each country. In regions where dengue status was uncertain, additional evidence types were included to either clarify dengue status or confirm that it is unknown at this time. An algorithm was developed that assesses evidence quality and consistency, giving each country an evidence consensus score. Using this approach, we were able to generate a contemporary global map of national-level dengue status that assigns a relative measure of certainty and identifies gaps in the available evidence. The map produced here provides a list of 128 countries for which there is good evidence of dengue occurrence, including 36 countries that have previously been classified as dengue-free by the World Health Organization and/or the US Centers for Disease Control. It also identifies disease surveillance needs, which we list in full. The disease extents and limits determined here using evidence consensus, marks the beginning of a five-year study to advance the mapping of dengue virus transmission and disease risk. Completion of this first step has allowed us to produce a preliminary estimate of population at risk with an upper bound of 3.97 billion people. This figure will be refined in future work.

  20. Dengue fever among Israeli expatriates in Delhi, 2015: implications for dengue incidence in Delhi, India.

    PubMed

    Neuberger, Ami; Turgeman, Avigail; Lustig, Yaniv; Schwartz, Eli

    2016-03-01

    We present the data of 13 dengue cases diagnosed between 1 August and 15 September 2015 among 240 Israeli expatriates residing in Delhi. Attack rates were similar between adults (6/128, 4.7%) and children (7/112, 6.3%). dengue virus (DENV-2) was identified in two and DENV-1 in one dengue-seropositive sample. Another febrile patient was diagnosed with chikungunya virus infection. The reported incidence of dengue fever among people living in Delhi was lower than 0.1% as of September 2015. Based on our results, we hypothesize that the incidence of dengue fever in Delhi is grossly underestimated. © International Society of Travel Medicine, 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals

    PubMed Central

    Oidtman, Rachel J.; Huber, John H.; Kraemer, Moritz U. G.; Brady, Oliver J.; Johansson, Michael A.; Perkins, T. Alex

    2017-01-01

    Epidemic growth rate, r, provides a more complete description of the potential for epidemics than the more commonly studied basic reproduction number, R0, yet the former has never been described as a function of temperature for dengue virus or other pathogens with temperature-sensitive transmission. The need to understand the drivers of epidemics of these pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problematic. We addressed this need by developing temperature-dependent descriptions of the two components of r—R0 and the generation interval—to obtain a temperature-dependent description of r. Our results show that the generation interval is highly sensitive to temperature, decreasing twofold between 25 and 35°C and suggesting that dengue virus epidemics may accelerate as temperatures increase, not only because of more infections per generation but also because of faster generations. Under the empirical temperature relationships that we considered, we found that r peaked at a temperature threshold that was robust to uncertainty in model parameters that do not depend on temperature. Although the precise value of this temperature threshold could be refined following future studies of empirical temperature relationships, the framework we present for identifying such temperature thresholds offers a new way to classify regions in which dengue virus epidemic intensity could either increase or decrease under future climate change. PMID:28723920

  2. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals.

    NASA Astrophysics Data System (ADS)

    Siraj, A. S.; Oidtman, R. J.; Huber, J. H.; Kraemer, M. U.; Brady, O. J.; Johansson, M. A.; Perkins, T. A.

    2017-12-01

    Epidemic growth rate, r, provides a more complete description of the potential for epidemics than the more commonly studied basic reproduction number, R0, yet the former has never been described as a function of temperature for dengue virus or other pathogens with temperature-sensitive transmission. The need to understand the drivers of epidemics of these pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problematic. We addressed this need by developing temperature-dependent descriptions of the two components of r—R0 and the generation interval—to obtain a temperature-dependent description of r. Our results show that the generation interval is highly sensitive to temperature, decreasing twofold between 25 and 35 °C and suggesting that dengue virus epidemics may accelerate as temperatures increase, not only because of more infections per generation but also because of faster generations. Under the empirical temperature relationships that we considered, we found that r peaked at a temperature threshold that was robust to uncertainty in model parameters that do not depend on temperature. Although the precise value of this temperature threshold could be refined following future studies of empirical temperature relationships, the framework we present for identifying such temperature thresholds offers a new way to classify regions in which dengue virus epidemic intensity could either increase or decrease under future climate change.

  3. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus.

    PubMed

    Soto-Acosta, Rubén; Bautista-Carbajal, Patricia; Syed, Gulam H; Siddiqui, Aleem; Del Angel, Rosa M

    2014-09-01

    Dengue is the most common mosquito borne viral disease in humans. The infection with any of the 4 dengue virus serotypes (DENV) can either be asymptomatic or manifest in two clinical forms, the mild dengue fever or the more severe dengue hemorrhagic fever that may progress into dengue shock syndrome. A DENV replicative cycle relies on host lipid metabolism; specifically, DENV infection modulates cholesterol and fatty acid synthesis, generating a lipid-enriched cellular environment necessary for viral replication. Thus, the aim of this work was to evaluate the anti-DENV effect of the Nordihydroguaiaretic acid (NDGA), a hypolipidemic agent with antioxidant and anti-inflammatory properties. A dose-dependent inhibition in viral yield and NS1 secretion was observed in supernatants of infected cells treated for 24 and 48 h with different concentrations of NDGA. To evaluate the effect of NDGA in DENV replication, a DENV4 replicon transfected Vero cells were treated with different concentrations of NDGA. NDGA treatment significantly reduced DENV replication, reiterating the importance of lipids in viral replication. NDGA treatment also led to reduction in number of lipid droplets (LDs), the neutral lipid storage organelles involved in DENV morphogenesis that are known to increase in number during DENV infection. Furthermore, NDGA treatment resulted in dissociation of the C protein from LDs. Overall our results suggest that NDGA inhibits DENV infection by targeting genome replication and viral assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Spatial Analysis of Dengue Seroprevalence and Modeling of Transmission Risk Factors in a Dengue Hyperendemic City of Venezuela

    PubMed Central

    Vincenti-Gonzalez, Maria F.; Grillet, María-Eugenia; Velasco-Salas, Zoraida I.; Lizarazo, Erley F.; Amarista, Manuel A.; Sierra, Gloria M.; Comach, Guillermo

    2017-01-01

    Background Dengue virus (DENV) transmission is spatially heterogeneous. Hence, to stratify dengue prevalence in space may be an efficacious strategy to target surveillance and control efforts in a cost-effective manner particularly in Venezuela where dengue is hyperendemic and public health resources are scarce. Here, we determine hot spots of dengue seroprevalence and the risk factors associated with these clusters using local spatial statistics and a regression modeling approach. Methodology/Principal Findings From August 2010 to January 2011, a community-based cross-sectional study of 2012 individuals in 840 households was performed in high incidence neighborhoods of a dengue hyperendemic city in Venezuela. Local spatial statistics conducted at household- and block-level identified clusters of recent dengue seroprevalence (39 hot spot households and 9 hot spot blocks) in all neighborhoods. However, no clusters were found for past dengue seroprevalence. Clustering of infection was detected at a very small scale (20-110m) suggesting a high disease focal aggregation. Factors associated with living in a hot spot household were occupation (being a domestic worker/housewife (P = 0.002), lower socio-economic status (living in a shack (P<0.001), sharing a household with <7 people (P = 0.004), promoting potential vector breeding sites (storing water in containers (P = 0.024), having litter outdoors (P = 0.002) and mosquito preventive measures (such as using repellent, P = 0.011). Similarly, low socio-economic status (living in crowded conditions, P<0.001), having an occupation of domestic worker/housewife (P = 0.012) and not using certain preventive measures against mosquitoes (P<0.05) were directly associated with living in a hot spot block. Conclusions/Significance Our findings contribute to a better comprehension of the spatial dynamics of dengue by assessing the relationship between disease clusters and their risk factors. These results can inform health authorities

  5. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum.

    PubMed

    Dussart, Philippe; Petit, Laure; Labeau, Bhety; Bremand, Laetitia; Leduc, Alexandre; Moua, David; Matheus, Séverine; Baril, Laurence

    2008-08-20

    We compared the performance of two new commercial tests for the detection of dengue NS1 protein during the clinical phase of dengue virus (DENV) infection-an immunochromatographic test allowing rapid detection of the NS1 antigen, Dengue NS1 Ag STRIP (Bio-Rad Laboratories - Marnes La Coquette, France), and a two-step sandwich-format microplate enzyme-linked immunosorbent assay (ELISA), pan-E Dengue Early ELISA (Panbio - Brisbane, Australia)-with a one-step sandwich-format microplate ELISA, the Platelia Dengue NS1 Ag test (Bio-Rad). We tested 272 serum samples from patients with dengue disease. Of these, 222 were from patients with acute infection of one of the four dengue serotypes, detected by RT-PCR and/or virus isolation. Forty-eight acute-phase serum samples from patients not infected with dengue virus were also included. The sensitivity of the Platelia Dengue NS1 Ag test on acute serum samples (n = 222) was 87.4% (95% confidence interval: 82.3% to 91.5%); that of Dengue NS1 Ag STRIP was 81.5% (95% CI: 75.8% to 86.4%) after 15 minutes and 82.4% (95% CI: 76.8% to 87.2%) after 30 minutes. Both tests had a specificity of 100% (97.5% CI, one-sided test: 92.6% to 100.0%). The pan-E Dengue Early ELISA had a sensitivity of 60.4% (95% CI: 53.4% to 66.8%) and a specificity of 97.9% (95% CI: 88.9% to 99.9%). Our findings support the use of diagnostic tools based on the NS1 antigen detection for the diagnosis of acute DENV infection. The immunochromatographic test, Dengue NS1 Ag STRIP-the first rapid diagnostic test for DENV infection-was highly sensitive and specific, and would therefore be a suitable first-line test in the field. The pan-E Dengue Early ELISA was less sensitive than the Platelia test; this two-step ELISA should be combined with DENV IgM antibody detection for the diagnosis of DENV infection.

  6. An Analysis of the Potential Impact of Climate Change on Dengue Transmission in the Southeastern United States

    PubMed Central

    Butterworth, Melinda K.; Morin, Cory W.; Comrie, Andrew C.

    2016-01-01

    Background: Dengue fever, caused by a mosquito-transmitted virus, is an increasing health concern in the Americas. Meteorological variables such as temperature and precipitation can affect disease distribution and abundance through biophysical impacts on the vector and on the virus. Such tightly coupled links may facilitate further spread of dengue fever under a changing climate. In the southeastern United States, the dengue vector is widely established and exists on the current fringe of dengue transmission. Objectives: We assessed projected climate change–driven shifts in dengue transmission risk in this region. Methods: We used a dynamic mosquito population and virus transmission model driven by meteorological data to simulate Aedes aegypti populations and dengue cases in 23 locations in the southeastern United States under current climate conditions and future climate projections. We compared estimates for each location with simulations based on observed data from San Juan, Puerto Rico, where dengue is endemic. Results: Our simulations based on current climate data suggest that dengue transmission at levels similar to those in San Juan is possible at several U.S. locations during the summer months, particularly in southern Florida and Texas. Simulations that include climate change projections suggest that conditions may become suitable for virus transmission in a larger number of locations and for a longer period of time during each year. However, in contrast with San Juan, U.S. locations would not sustain year-round dengue transmission according to our model. Conclusions: Our findings suggest that Dengue virus (DENV) transmission is limited by low winter temperatures in the mainland United States, which are likely to prevent its permanent establishment. Although future climate conditions may increase the length of the mosquito season in many locations, projected increases in dengue transmission are limited to the southernmost locations. Citation: Butterworth

  7. Antibody Prophylaxis Against Dengue Virus 2 Infection in Non-Human Primates.

    PubMed

    Simmons, Monika; Putnak, Robert; Sun, Peifang; Burgess, Timothy; Marasco, Wayne A

    2016-11-02

    Passive immunization with anti-dengue virus (DENV) immune serum globulin (ISG) or monoclonal antibodies (Mabs) may serve to supplement or replace vaccination for short-term dengue immune prophylaxis. In the present study, we sought to establish proof-of-concept by evaluating several DENV-neutralizing antibodies for their ability to protect rhesus macaques against viremia following live virus challenge, including human anti-dengue ISG, and a human Mab (Mab11/wt) and its genetically engineered variant (Mab11/mutFc) that is unable to bind to cells with Fc gamma receptors (FcγR) and potentiate antibody-dependent enhancement (ADE). In the first experiment, groups of animals received ISG or Mab11/wt at low doses (3-10 mg/kg) or a saline control followed by challenge with DENV-2 at day 10 or 30. After passive immunization, only low-titered circulating virus-neutralizing antibody titers were measured in both groups, which were undetectable by day 30. After challenge at day 10, a reduction in viremia duration compared with the control was seen only in the ISG group (75%). However, after a day 30 challenge, no reduction in viremia was observed in both immunized groups. In a second experiment to test the effect of higher antibody doses on short-term protection, groups received either ISG, Mab11/wt, Mab11/mutFc (each at 25 mg/kg) or saline followed by challenge with DENV-2 on day 10. Increased virus-neutralizing antibody titers were detected in all groups at day 5 postinjection, with geometric mean titers (GMTs) of 464 (ISG), 313 (Mab11/wt), and 309 (Mab11/mutFc). After challenge, there was complete protection against viremia in the group that received ISG, and a reduction in viremia duration of 89% and 83% in groups that received Mab11/wt and Mab11/mutFc, respectively. An in vitro ADE assay in Fcγ receptor-bearing K562 cells with sera collected immediately before challenge showed increased DENV-2 infection levels in the presence of both ISG and Mab11/wt, which peaked at a

  8. Immune Response to Dengue Virus Infection in Pediatric Patients in New Delhi, India—Association of Viremia, Inflammatory Mediators and Monocytes with Disease Severity

    PubMed Central

    Singla, Mohit; Kar, Meenakshi; Sethi, Tavpritesh; Kabra, Sushil K.; Lodha, Rakesh; Chandele, Anmol; Medigeshi, Guruprasad R.

    2016-01-01

    Dengue virus, a mosquito-borne flavivirus, is a causative agent for dengue infection, which manifests with symptoms ranging from mild fever to fatal dengue shock syndrome. The presence of four serotypes, against which immune cross-protection is short-lived and serotype cross-reactive antibodies that might enhance infection, pose a challenge to further investigate the role of virus and immune response in pathogenesis. We evaluated the viral and immunological factors that correlate with severe dengue disease in a cohort of pediatric dengue patients in New Delhi. Severe dengue disease was observed in both primary and secondary infections. Viral load had no association with disease severity but high viral load correlated with prolonged thrombocytopenia and delayed recovery. Severe dengue cases had low Th1 cytokines and a concurrent increase in the inflammatory mediators such as IL-6, IL-8 and IL-10. A transient increase in CD14+CD16+ intermediate monocytes was observed early in infection. Sorting of monocytes from dengue patient peripheral blood mononuclear cells revealed that it is the CD14+ cells, but not the CD16+ or the T or B cells, that were infected with dengue virus and were major producers of IL-10. Using the Boruta algorithm, reduced interferon-α levels and enhanced aforementioned pro-inflammatory cytokines were identified as some of the distinctive markers of severe dengue. Furthermore, the reduction in the levels of IL-8 and IL-10 were identified as the most significant markers of recovery from severe disease. Our results provide further insights into the immune response of children to primary and secondary dengue infection and help us to understand the complex interplay between the intrinsic factors in dengue pathogenesis. PMID:26982706

  9. Dengue reemergence in Argentina.

    PubMed Central

    Avilés, G.; Rangeón, G.; Vorndam, V.; Briones, A.; Baroni, P.; Enria, D.; Sabattini, M. S.

    1999-01-01

    Aedes aegypti, eradicated from Argentina in 1963, has now reinfested the country as far south as Buenos Aires. In 1997, four persons with travel histories to Brazil, Ecuador, or Venezuela had confirmed dengue, and surveillance for indigenous transmission allowed the detection of 19 dengue cases in Salta Province. These cases of dengue are the first in Argentina since 1916 and represent a new southern extension of dengue virus. PMID:10460181

  10. Dengue virus infection in a French traveller to the hilly region of Nepal in 2015: a case report.

    PubMed

    Gupta, Birendra Prasad; Adhikari, Anurag; Rauniyar, Ramanuj; Kurmi, Roshan; Upadhya, Bishnu Prasad; Jha, Bimlesh Kumar; Pandey, Basudev; Das Manandhar, Krishna

    2016-03-21

    Dengue viral infections are known to pose a significant risk during travel to tropical regions, but it is surprising to find dengue transmission in the hilly region of Nepal, which is over 1800mtr above sea level. A 43-year-old Caucasian female traveler from France presented with fever and abdominal pain following a diarrheal illness while visiting the central hilly region of Nepal. Over the course of 9 days, she developed fever, body aches, and joint pain, with hemorrhagic manifestation. She was hospitalized in India and treated with supportive care, with daily monitoring of her platelets. An assessment by enzyme-linked immunosorbent assay showed that she was positive for dengue non-structural protein 1. Upon her return to France, dengue virus was confirmed by reverse transcriptase-polymerase chain reaction. The district where this dengue case was reported is in the hilly region of Nepal, neighboring the capital city Kathmandu. To the best of our knowledge, there has previously been no dengue cases reported from the district. This study is important because it aims to establish a potential region of dengue virus circulation not only in the tropics, but also in the subtropics as well, which in Nepal may exceed elevations of 1800mtr. This recent case report has raised alarm among concerned health personnel, researchers, and organizations that this infectious disease is now on the way to becoming established in a temperate climate.

  11. Characterization of Dengue Virus Infections Among Febrile Children Clinically Diagnosed With a Non-Dengue Illness, Managua, Nicaragua.

    PubMed

    Waggoner, Jesse J; Gresh, Lionel; Mohamed-Hadley, Alisha; Balmaseda, Angel; Soda, K James; Abeynayake, Janaki; Sahoo, Malaya K; Liu, Yuanyuan; Kuan, Guillermina; Harris, Eva; Pinsky, Benjamin A

    2017-06-15

    We sought to characterize dengue virus (DENV) infections among febrile children enrolled in a pediatric cohort study who were clinically diagnosed with a non-dengue illness ("C cases"). DENV infections were detected and viral load quantitated by real-time reverse transcription-polymerase chain reaction in C cases presenting between January 2007 and January 2013. One hundred forty-one of 2892 C cases (4.88%) tested positive for DENV. Of all febrile cases in the study, DENV-positive C cases accounted for an estimated 52.0% of patients with DENV viremia at presentation. Compared with previously detected, symptomatic dengue cases, DENV-positive C cases were significantly less likely to develop long-lasting humoral immune responses to DENV, as measured in healthy annual serum samples (79.7% vs 47.8%; P < .001). Humoral immunity was associated with viral load at presentation: 40 of 43 patients (93.0%) with a viral load ≥7.0 log10 copies/mL serum developed the expected rise in anti-DENV antibodies in annual samples versus 13 of 68 (19.1%) patients with a viral load below this level (P < .001). Antibody responses to DENV-positive C cases differ from responses to classic symptomatic dengue. These findings have important implications for DENV transmission modeling, immunology, and epidemiologic surveillance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  12. Discovery of Nanomolar Dengue and West Nile Virus Protease Inhibitors Containing a 4-Benzyloxyphenylglycine Residue.

    PubMed

    Behnam, Mira A M; Graf, Dominik; Bartenschlager, Ralf; Zlotos, Darius P; Klein, Christian D

    2015-12-10

    The dengue virus (DENV) and West Nile Virus (WNV) NS2B-NS3 proteases are attractive targets for the development of dual-acting therapeutics against these arboviral pathogens. We present the synthesis and extensive biological evaluation of inhibitors that contain benzyl ethers of 4-hydroxyphenylglycine as non-natural peptidic building blocks synthesized via a copper-complex intermediate. A three-step optimization strategy, beginning with fragment growth of the C-terminal 4-hydroxyphenylglycine to the benzyloxy ether, followed by C- and N-terminal optimization, and finally fragment merging generated compounds with in vitro affinities in the low nanomolar range. The most promising derivative reached Ki values of 12 nM at the DENV-2 and 39 nM at the WNV proteases. Several of the newly discovered protease inhibitors yielded a significant reduction of dengue and West Nile virus titers in cell-based assays of virus replication, with an EC50 value of 3.4 μM at DENV-2 and 15.5 μM at WNV for the most active analogue.

  13. Olive baboons: a non-human primate model for testing dengue virus type 2 replication.

    PubMed

    Valdés, Iris; Gil, Lázaro; Castro, Jorge; Odoyo, Damián; Hitler, Rikoi; Munene, Elephas; Romero, Yaremis; Ochola, Lucy; Cosme, Karelia; Kariuki, Thomas; Guillén, Gerardo; Hermida, Lisset

    2013-12-01

    This study evaluated the use of a non-human primate, the olive baboon (Papio anubis), as a model of dengue infection. Olive baboons closely resemble humans genetically and physiologically and have been used extensively for assessing novel vaccine formulations. Two doses of dengue virus type 2 (DENV-2) were tested in baboons: 10(3) and 10(4) pfu. Similarly, African green monkeys received the same quantity of virus and acted as positive controls. Following exposure, high levels of viremia were detected in both animal species. There was a trend to detect more days of viremia and more homogeneous viral titers in animals receiving the low viral dose. In addition, baboons infected with the virus generally exhibited positive virus isolation 1 day later than African green monkeys. Humoral responses consisting of antiviral and neutralizing antibodies were detected in all animals after infection. We conclude that baboons provide an alternative non-human primate species for experimental DENV-2 infection and we recommend their use for further tests of vaccines, administering the lowest dose assayed: 10(3) pfu. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. A local outbreak of dengue caused by an imported case in Dongguan China

    PubMed Central

    2012-01-01

    Background Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions around the world. Since the first occurrence of dengue was confirmed in Guangdong, China in 1978, dengue outbreaks have been reported sequentially in different provinces in South China transmitted by.peridomestic Ae. albopictus mosquitoes, diplaying Ae. aegypti, a fully domestic vector that transmits dengue worldwide. Rapid and uncontrolled urbanization is a characteristic change in developing countries, which impacts greatly on vector habitat, human lifestyle and transmission dynamics on dengue epidemics. In September 2010, an outbreak of dengue was detected in Dongguan, a city in Guangdong province characterized by its fast urbanization. An investigation was initiated to identify the cause, to describe the epidemical characteristics of the outbreak, and to implement control measures to stop the outbreak. This is the first report of dengue outbreak in Dongguan, even though dengue cases were documented before in this city. Methods Epidemiological data were obtained from local Center of Disease Control and prevention (CDC). Laboratory tests such as real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR), the virus cDNA sequencing, and Enzyme-Linked immunosorbent assay (ELISA) were employed to identify the virus infection and molecular phylogenetic analysis was performed with MEGA5. The febrile cases were reported every day by the fever surveillance system. Vector control measures including insecticidal fogging and elimination of habitats of Ae. albopictus were used to control the dengue outbreak. Results The epidemiological studies results showed that this dengue outbreak was initiated by an imported case from Southeast Asia. The outbreak was characterized by 31 cases reported with an attack rate of 50.63 out of a population of 100,000. Ae. albopictus was the only vector species responsible for the outbreak. The virus cDNA sequencing analysis showed

  15. Experimental in vitro and in vivo systems for studying the innate immune response during dengue virus infections.

    PubMed

    Kitab, Bouchra; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2018-03-08

    Dengue is the most prevalent arboviral disease in humans and leads to significant morbidity and socioeconomic burden in tropical and subtropical areas. Dengue is caused by infection with any of the four closely related serotypes of dengue virus (DENV1-4) and usually manifests as a mild febrile illness, but may develop into fatal dengue hemorrhagic fever and shock syndrome. There are no specific antiviral therapies against dengue because understanding of DENV biology is limited. A tetravalent chimeric dengue vaccine, Dengvaxia, has finally been licensed for use, but its efficacy was significantly lower against DENV-2 infections and in dengue-naïve individuals. The identification of mechanisms underlying the interactions between DENV and immune responses will help to determine efficient therapeutic and preventive options. It has been well established how the innate immune system responds to DENV infection and how DENV overcomes innate antiviral defenses, however further progress in this field remains hampered by the absence of appropriate experimental dengue models. Herein, we review the available in vitro and in vivo approaches to study the innate immune responses to DENV.

  16. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening.

    PubMed

    Hussain, Waqar; Qaddir, Iqra; Mahmood, Sajid; Rasool, Nouman

    2018-06-01

    Dengue fever is one of the most prevalent disease in tropical and sub-tropical regions of the world. According to the World Health Organisation (WHO), approximately 3.5 billion people have been affected with dengue fever. Four serotypes of dengue virus (DENV) i.e. DENV1, DENV2, DENV3 and DENV4 have up to 65% genetic variations among themselves. dengue virus 4 (DENV4) was first reported from Amazonas, Brazil and is spreading perilously due to lack of awareness of preventive measures, as it is the least targeted serotype. In this study, non-structural protein 4B of dengue virus 4 (DENV4-NS4B) is computationally characterised and simulations are performed including solvation, energy minimizations and neutralisation for the refinement of predicted model of the protein. The spiropyrazolopyridone is considered as an effective drug against NS4B of DENV2, therefore, a total of 91 different analogues of spiropyrazolopyridone are used to analyse their inhibitory action against DENV4-NS4B. These compounds are docked at the binding site with various binding affinities, representing their efficacy to block the binding pocket of the protein. Pharmacological and pharmacokinetic assessment performed on these inhibitors shows that these are suitable candidates to be used as a drug against the dengue fever. Among all these 91 compounds, Analogue-I and Analogue-II are analysed to be the most effective inhibitor having potential to be used as drugs against dengue virus.

  17. Dengue in Java, Indonesia: Relevance of Mosquito Indices as Risk Predictors

    PubMed Central

    Wijayanti, Siwi P. M.; Sunaryo, Sunaryo; Suprihatin, Suprihatin; McFarlane, Melanie; Rainey, Stephanie M.; Dietrich, Isabelle; Schnettler, Esther; Biek, Roman; Kohl, Alain

    2016-01-01

    Background No vaccine is currently available for dengue virus (DENV), therefore control programmes usually focus on managing mosquito vector populations. Entomological surveys provide the most common means of characterising vector populations and predicting the risk of local dengue virus transmission. Despite Indonesia being a country strongly affected by DENV, only limited information is available on the local factors affecting DENV transmission and the suitability of available survey methods for assessing risk. Methodology/principal findings We conducted entomological surveys in the Banyumas Regency (Central Java) where dengue cases occur on an annual basis. Four villages were sampled during the dry and rainy seasons: two villages where dengue was endemic, one where dengue cases occurred sporadically and one which was dengue-free. In addition to data for conventional larvae indices, we collected data on pupae indices, and collected adult mosquitoes for species identification in order to determine mosquito species composition and population density. Traditionally used larval indices (House indices, Container indices and Breteau indices) were found to be inadequate as indicators for DENV transmission risk. In contrast, species composition of adult mosquitoes revealed that competent vector species were dominant in dengue endemic and sporadic villages. Conclusions/significance Our data suggested that the utility of traditional larvae indices, which continue to be used in many dengue endemic countries, should be re-evaluated locally. The results highlight the need for validation of risk indicators and control strategies across DENV affected areas here and perhaps elsewhere in SE Asia. PMID:26967524

  18. Climate and dengue transmission: evidence and implications.

    PubMed

    Morin, Cory W; Comrie, Andrew C; Ernst, Kacey

    2013-01-01

    Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.

  19. Introducing dengue vaccine: Implications for diagnosis in dengue vaccinated subjects.

    PubMed

    Alagarasu, Kalichamy

    2016-05-27

    Diagnosis of dengue virus infections is complicated by preference for different diagnostic tests in different post onset days of illness and the presence of multiple serotypes leading to secondary and tertiary infections. The sensitivity of the most commonly employed diagnostic assays such as anti dengue IgM capture (MAC) ELISA and non structural protein (NS) 1 capture ELISA are lower in secondary and subsequent infections. Introduction of dengue vaccine in endemic regions will affect the way how dengue is diagnosed in vaccinated subjects. This viewpoint article discusses implications of introduction of dengue vaccine on the diagnosis of dengue infections in vaccinated subjects and the strategies that are needed to tackle the issue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Rapid Identification of Dengue Virus Serotypes Using Monoclonal Antibodies in an Indirect Immunofluorescence Test.

    DTIC Science & Technology

    1982-06-18

    areas !i). Presently, the only certain method of identification is through the use of rigidly standardized reference antiserum in a virus plaque...low passaged or unpassaged dengue virus from humans or insects using an indirect immunofluorescence 71 test. MATERIALS AND METHODS :, j Cell cultures...streptomycin. Maintanance medium for infected cell cultures consisted of the appropriate growth medium containing 0.4% bovine plasma albumin instead of FBS

  1. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences.

    PubMed

    Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José

    2015-07-01

    Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses.

  2. A brief review on dengue molecular virology, diagnosis, treatment and prevalence in Pakistan

    PubMed Central

    2012-01-01

    Dengue virus infection is a serious health problem infecting 2.5 billion people worldwide. Dengue is now endemic in more than 100 countries, including Pakistan. Each year hundreds of people get infected with dengue in Pakistan. Currently, there is no vaccine available for the prevention of Dengue virus infection due to four viral serotypes. Dengue infection can cause death of patients in its most severity, meanwhile many antiviral compounds are being tested against dengue virus infection to eradicate this disease but still there is a need to develop an efficient, low-cost and safe vaccine that can target all the four serotypes of dengue virus. This review summarizes dengue molecular virology, important drug targets, prevalence in Pakistan, diagnosis, treatment and medicinal plant inhibitors against dengue. PMID:22929369

  3. Acute disseminated encephalomyelitis in dengue viral infection.

    PubMed

    Wan Sulaiman, Wan Aliaa; Inche Mat, Liyana Najwa; Hashim, Hasnur Zaman; Hoo, Fan Kee; Ching, Siew Mooi; Vasudevan, Ramachandran; Mohamed, Mohd Hazmi; Basri, Hamidon

    2017-09-01

    Dengue is the most common arboviral disease affecting many countries worldwide. An RNA virus from the flaviviridae family, dengue has four antigenically distinct serotypes (DEN-1-DEN-4). Neurological involvement in dengue can be classified into dengue encephalopathy immune-mediated syndromes, encephalitis, neuromuscular or dengue muscle dysfunction and neuro-ophthalmic involvement. Acute disseminated encephalomyelitis (ADEM) is an immune mediated acute demyelinating disorder of the central nervous system following recent infection or vaccination. This monophasic illness is characterised by multifocal white matter involvement. Many dengue studies and case reports have linked ADEM with dengue virus infection but the association is still not clear. Therefore, this article is to review and discuss concerning ADEM in dengue as an immune-medicated neurological complication; and the management strategy required based on recent literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Prior Dengue Virus Exposure Shapes T Cell Immunity to Zika Virus in Humans

    PubMed Central

    Grifoni, Alba; Pham, John; Sidney, John; O'Rourke, Patrick H.; Paul, Sinu; Peters, Bjoern; Martini, Sheridan R.; de Silva, Aruna D.; Ricciardi, Michael J.; Silveira, Cassia G. T.; Maestri, Alvino; Costa, Priscilla R.; de-Oliveira-Pinto, Luzia Maria; de Azeredo, Elzinandes Leal; Damasco, Paulo Vieira; Phillips, Elizabeth; Mallal, Simon; de Silva, Aravinda M.; Collins, Matthew; Durbin, Anna; Diehl, Sean A.; Cerpas, Cristhiam; Balmaseda, Angel; Kuan, Guillermina; Coloma, Josefina; Harris, Eva; Crowe, James E.; Stone, Mars; Busch, Michael; Vivanco-Cid, Hector; Cox, Josephine; Graham, Barney S.; Ledgerwood, Julie E.; Turtle, Lance; Solomon, Tom; Kallas, Esper G.; Watkins, David I.; Weiskopf, Daniela

    2017-01-01

    ABSTRACT While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here, we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether preexisting dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with tetravalent dengue attenuated vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors but declines in DENV-preexposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells from DENV-preexposed donors selectively upregulated granzyme B and PD1, unlike DENV-naive donors. Finally, we discovered that ZIKV structural proteins (E, prM, and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins. IMPORTANCE The issue of potential ZIKV and DENV cross-reactivity and how preexisting DENV T cell immunity modulates Zika T cell responses is of great relevance, as the two viruses often cocirculate and Zika virus has been spreading in geographical regions where DENV is endemic or hyperendemic. Our data show that memory T cell responses elicited by prior

  5. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models

    PubMed Central

    Guabiraba, Rodrigo; Ryffel, Bernhard

    2014-01-01

    Dengue viruses (DENV), a group of four serologically distinct but related flaviviruses, are responsible for one of the most important emerging viral diseases. This mosquito-borne disease has a great impact in tropical and subtropical areas of the world in terms of illness, mortality and economic costs, mainly due to the lack of approved vaccine or antiviral drugs. Infections with one of the four serotypes of DENV (DENV-1–4) result in symptoms ranging from an acute, self-limiting febrile illness, dengue fever, to severe dengue haemorrhagic fever or dengue shock syndrome. We reviewed the existing mouse models of infection, including the DENV-2-adapted strain P23085. The role of CC chemokines, interleukin-17 (IL-17), IL-22 and invariant natural killer T cells in mediating the exacerbation of disease in immune-competent mice is highlighted. Investigations in both immune-deficient and immune-competent mouse models of DENV infection may help to identify key host–pathogen factors and devise novel therapies to restrain the systemic and local inflammatory responses associated with severe DENV infection. PMID:24182427

  6. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? The Challenges of a Dengue Vaccine.

    PubMed

    Screaton, Gavin; Mongkolsapaya, Juthathip

    2017-07-17

    A dengue vaccine has been pursued for more than 50 years and, unlike other flaviviral vaccines such as that against yellow fever, progress has been slow. In this review, we describe progress toward the first licensed dengue vaccine Dengvaxia, which does not give complete protection against disease. The antibody response to the dengue virion is reviewed, highlighting immunodominant yet poorly neutralizing responses in the context of a highly dynamic structurally flexible dengue virus particle. Finally, we review recent evidence for cross-reactivity between antibody responses to Zika and dengue viruses, which may further complicate the development of broadly protective dengue virus vaccines. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines.

    PubMed

    Zhang, Guangmei; Asad, Sultan; Khromykh, Alexander A; Asgari, Sassan

    2017-07-31

    The genus Flavivirus contains more than 70 single-stranded, positive-sense arthropod-borne RNA viruses. Some flaviviruses are particularly medically important to humans and other vertebrates including dengue virus (DENV), West Nile virus, and yellow fever virus. These viruses are transmitted to vertebrates by mosquitoes and other arthropod species. Mosquitoes are also infected by insect-specific flaviviruses (ISFs) that do not appear to be infective to vertebrates. Cell fusing agent virus (CFAV) was the first described ISF, which was discovered in an Aedes aegypti cell culture. We found that while CFAV infection could be significantly reduced by application of RNAi against the NS5 gene, removal of the treatment led to quick restoration of CFAV replication. Interestingly, we found that CFAV infection significantly enhanced replication of DENV, and vice versa, DENV infection significantly enhanced replication of CFAV in mosquito cells. We have shown that CFAV infection leads to increase in the expression of ribonuclease kappa (RNASEK), which is known to promote infection of viruses that rely on endocytosis and pH-dependent entry. Knockdown of RNASEK by dsRNA resulted in reduced DENV replication. Thus, increased expression of RNASEK induced by CFAV is likely to contribute to enhanced DENV replication in CFAV-infected cells.

  8. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    PubMed

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  9. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum.

    PubMed

    Bosch, Irene; de Puig, Helena; Hiley, Megan; Carré-Camps, Marc; Perdomo-Celis, Federico; Narváez, Carlos F; Salgado, Doris M; Senthoor, Dewahar; O'Grady, Madeline; Phillips, Elizabeth; Durbin, Ann; Fandos, Diana; Miyazaki, Hikaru; Yen, Chun-Wan; Gélvez-Ramírez, Margarita; Warke, Rajas V; Ribeiro, Lucas S; Teixeira, Mauro M; Almeida, Roque P; Muñóz-Medina, José E; Ludert, Juan E; Nogueira, Mauricio L; Colombo, Tatiana E; Terzian, Ana C B; Bozza, Patricia T; Calheiros, Andrea S; Vieira, Yasmine R; Barbosa-Lima, Giselle; Vizzoni, Alexandre; Cerbino-Neto, José; Bozza, Fernando A; Souza, Thiago M L; Trugilho, Monique R O; de Filippis, Ana M B; de Sequeira, Patricia C; Marques, Ernesto T A; Magalhaes, Tereza; Díaz, Francisco J; Restrepo, Berta N; Marín, Katerine; Mattar, Salim; Olson, Daniel; Asturias, Edwin J; Lucera, Mark; Singla, Mohit; Medigeshi, Guruprasad R; de Bosch, Norma; Tam, Justina; Gómez-Márquez, Jose; Clavet, Charles; Villar, Luis; Hamad-Schifferli, Kimberly; Gehrke, Lee

    2017-09-27

    The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1-4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-μl serum sample, the sensitivity and specificity values of the DENV1-4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-μl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction-positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes

    PubMed Central

    Waman, Vaishali P.; Kolekar, Pandurang; Ramtirthkar, Mukund R.; Kale, Mohan M.

    2016-01-01

    Background Dengue is one of the most common arboviral diseases prevalent worldwide and is caused by Dengue viruses (genus Flavivirus, family Flaviviridae). There are four serotypes of Dengue Virus (DENV-1 to DENV-4), each of which is further subdivided into distinct genotypes. DENV-2 is frequently associated with severe dengue infections and epidemics. DENV-2 consists of six genotypes such as Asian/American, Asian I, Asian II, Cosmopolitan, American and sylvatic. Comparative genomic study was carried out to infer population structure of DENV-2 and to analyze the role of evolutionary and spatiotemporal factors in emergence of diversifying lineages. Methods Complete genome sequences of 990 strains of DENV-2 were analyzed using Bayesian-based population genetics and phylogenetic approaches to infer genetically distinct lineages. The role of spatiotemporal factors, genetic recombination and selection pressure in the evolution of DENV-2 is examined using the sequence-based bioinformatics approaches. Results DENV-2 genetic structure is complex and consists of fifteen subpopulations/lineages. The Asian/American genotype is observed to be diversified into seven lineages. The Asian I, Cosmopolitan and sylvatic genotypes were found to be subdivided into two lineages, each. The populations of American and Asian II genotypes were observed to be homogeneous. Significant evidence of episodic positive selection was observed in all the genes, except NS4A. Positive selection operational on a few codons in envelope gene confers antigenic and lineage diversity in the American strains of Asian/American genotype. Selection on codons of non-structural genes was observed to impact diversification of lineages in Asian I, cosmopolitan and sylvatic genotypes. Evidence of intra/inter-genotype recombination was obtained and the uncertainty in classification of recombinant strains was resolved using the population genetics approach. Discussion Complete genome-based analysis revealed that the

  11. Recent advances in the identification of the host factors involved in dengue virus replication.

    PubMed

    Wang, Yi; Zhang, Ping

    2017-02-01

    Dengue virus (DENV) belongs to the genus Flavivirus of the family Flaviviridae and it is primarily transmitted via Aedes aegypti and Aedes albopictus mosquitoes. The life cycle of DENV includes attachment, endocytosis, protein translation, RNA synthesis, assembly, egress, and maturation. Recent researches have indicated that a variety of host factors, including cellular proteins and microRNAs, positively or negatively regulate the DENV replication process. This review summarizes the latest findings (from 2014 to 2016) in the identification of the host factors involved in the DENV life cycle and Dengue infection.

  12. Micronutrients and Dengue

    PubMed Central

    Ahmed, Sundus; Finkelstein, Julia L.; Stewart, Anna M.; Kenneth, John; Polhemus, Mark E.; Endy, Timothy P.; Cardenas, Washington; Mehta, Saurabh

    2014-01-01

    Dengue virus infection is the most widespread mosquito-borne viral infection in humans and has emerged as a serious global health challenge. In the absence of effective treatment and vaccine, host factors including nutritional status, which may alter disease progression, need investigation. The interplay between nutrition and other infections is well-established, and modulation of nutritional status often presents a simple low-cost method of interrupting transmission, reducing susceptibility, and/or ameliorating disease severity. This review examines the evidence on the role of micronutrients in dengue virus infection. We found critical issues and often inconsistent results across studies; this finding along with the lack of sufficient literature in this field have limited our ability to make any recommendations. However, vitamins D and E have shown promise in small supplementation trials. In summary, the role of micronutrients in dengue virus infection is an exciting research area and needs to be examined in well-designed studies with larger samples. PMID:25200269

  13. Inferences from the Chronology of Dengue and Zika Outbreaks in Human Populations

    NASA Astrophysics Data System (ADS)

    McDonald, C.; Usmani, M.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Dengue and Zika virus are becoming global health threats. With a recent resurgence of Zika virus in the Americas, there is a renewed interest to understand the physical pathways on interactions of vectors with human population. However, the challenge is in the availability of the vectors and viruses in regions that have suffered from outbreaks of these infections. Aedes spp. mosquitoes are the primary vectors of both Zika and Dengue viruses. The critical question is how one species of mosquito is able to transmit two different infections. Therefore, there is a need to understand the coherence and co-emergence behavior of Dengue and Zika infections. Our dominant hypothesis is that Dengue precedes Zika viruses. Here, we will show a global chronological trend of Dengue and Zika virus, or how an outbreak of dengue may lead to an outbreak of Zika virus, as regions with Zika virus outbreaks had demonstrated peak dengue incidences in prior months. We will also present global trends on key climatological and weather processes as a function of the emergence of these two viruses. We anticipate that this information can be used concurrently with geographical and meteorological information to more accurately predict the spread of Zika virus.

  14. Overview of current situation of dengue and dengue vector control

    USDA-ARS?s Scientific Manuscript database

    Dengue is the most important arbovirus of humans in the world. It is caused by one of four closely related virus serotypes whose primary vector is Aedes aegypti and secondarily by Ae. albopictus. A global dengue pandemic began in Southeast Asia after World War II and has intensified during the las...

  15. Incomplete Protection against Dengue Virus Type 2 Re-infection in Peru.

    PubMed

    Forshey, Brett M; Reiner, Robert C; Olkowski, Sandra; Morrison, Amy C; Espinoza, Angelica; Long, Kanya C; Vilcarromero, Stalin; Casanova, Wilma; Wearing, Helen J; Halsey, Eric S; Kochel, Tadeusz J; Scott, Thomas W; Stoddard, Steven T

    2016-02-01

    Nearly half of the world's population is at risk for dengue, yet no licensed vaccine or anti-viral drug is currently available. Dengue is caused by any of four dengue virus serotypes (DENV-1 through DENV-4), and infection by a DENV serotype is assumed to provide life-long protection against re-infection by that serotype. We investigated the validity of this fundamental assumption during a large dengue epidemic caused by DENV-2 in Iquitos, Peru, in 2010-2011, 15 years after the first outbreak of DENV-2 in the region. We estimated the age-dependent prevalence of serotype-specific DENV antibodies from longitudinal cohort studies conducted between 1993 and 2010. During the 2010-2011 epidemic, active dengue cases were identified through active community- and clinic-based febrile surveillance studies, and acute inapparent DENV infections were identified through contact tracing studies. Based on the age-specific prevalence of DENV-2 neutralizing antibodies, the age distribution of DENV-2 cases was markedly older than expected. Homologous protection was estimated at 35.1% (95% confidence interval: 0%-65.2%). At the individual level, pre-existing DENV-2 antibodies were associated with an incomplete reduction in the frequency of symptoms. Among dengue cases, 43% (26/66) exhibited elevated DENV-2 neutralizing antibody titers for years prior to infection, compared with 76% (13/17) of inapparent infections (age-adjusted odds ratio: 4.2; 95% confidence interval: 1.1-17.7). Our data indicate that protection from homologous DENV re-infection may be incomplete in some circumstances, which provides context for the limited vaccine efficacy against DENV-2 in recent trials. Further studies are warranted to confirm this phenomenon and to evaluate the potential role of incomplete homologous protection in DENV transmission dynamics.

  16. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  17. Enhanced West Nile Virus Surveillance in a Dengue-Endemic Area—Puerto Rico, 2007

    PubMed Central

    Torres-Aponte, Jomil M.; Luce, Richard R.; Hunsperger, Elizabeth; Muñoz-Jordan, Jorge L.; Beltrán, Manuela; Vergne, Edgardo; Argüello, D. Fermín; García, Enid J.; Sun, Wellington; Tomashek, Kay M.

    2013-01-01

    In June of 2007, West Nile virus (WNV) was detected in sentinel chickens and blood donors in Puerto Rico, where dengue virus (DENV) is hyperendemic. Enhanced human surveillance for acute febrile illness (AFI) began in eastern Puerto Rico on July 1, 2007. Healthcare providers submitted specimens from AFI cases for WNV and DENV virology and serology testing. Over 6 months, 385 specimens were received from 282 cases; 115 (41%) specimens were DENV laboratory-positive, 86 (31%) specimens were laboratory-indeterminate, and 32 (11%) specimens were laboratory-negative for WNV and DENV. One WNV infection was detected by anti-WNV immunoglobulin M (IgM) antibody and confirmed by a plaque reduction neutralization test. DENV and WNV infections could not be differentiated in 27 cases (10%). During a period of active WNV transmission, enhanced human surveillance identified one case of symptomatic WNV infection. Improved diagnostic methods are needed to allow differentiation of WNV and DENV in dengue-endemic regions. PMID:23478583

  18. Dengue fever: a Wikipedia clinical review.

    PubMed

    Heilman, James M; De Wolff, Jacob; Beards, Graham M; Basden, Brian J

    2014-01-01

    Dengue fever, also known as breakbone fever, is a mosquito-borne infectious tropical disease caused by the dengue virus. Symptoms include fever, headache, muscle and joint pains, and a characteristic skin rash that is similar to measles. In a small proportion of cases, the disease develops into life-threatening dengue hemorrhagic fever, which results in bleeding, thrombocytopenia, and leakage of blood plasma, or into dengue shock syndrome, in which dangerously low blood pressure occurs. Treatment of acute dengue fever is supportive, with either oral or intravenous rehydration for mild or moderate disease and use of intravenous fluids and blood transfusion for more severe cases. Along with attempts to eliminate the mosquito vector, work is ongoing to develop a vaccine and medications targeted directly at the virus.

  19. Identifying protein biomarkers in predicting disease severity of dengue virus infection using immune-related protein microarray.

    PubMed

    Soe, Hui Jen; Yong, Yean K; Al-Obaidi, Mazen M Jamil; Raju, Chandramathi Samudi; Gudimella, Ranganath; Manikam, Rishya; Sekaran, Shamala Devi

    2018-02-01

    Dengue virus is one of the most widespread flaviviruses that re-emerged throughout recent decades. The progression from mild dengue to severe dengue (SD) with the complications such as vascular leakage and hemorrhage increases the fatality rate of dengue. The pathophysiology of SD is not entirely clear. To investigate potential biomarkers that are suggestive of pathogenesis of SD, a small panel of serum samples selected from 1 healthy individual, 2 dengue patients without warning signs (DWS-), 2 dengue patients with warning signs (DWS+), and 5 patients with SD were subjected to a pilot analysis using Sengenics Immunome protein array. The overall fold changes of protein expressions and clustering heat map revealed that PFKFB4, TPM1, PDCL3, and PTPN20A were elevated among patients with SD. Differential expression analysis identified that 29 proteins were differentially elevated greater than 2-fold in SD groups than DWS- and DWS+. From the 29 candidate proteins, pathways enrichment analysis also identified insulin signaling and cytoskeleton pathways were involved in SD, suggesting that the insulin pathway may play a pivotal role in the pathogenesis of SD.

  20. Synergistic interactions between the NS3(hel) and E proteins contribute to the virulence of dengue virus type 1.

    PubMed

    de Borba, Luana; Strottmann, Daisy M; de Noronha, Lucia; Mason, Peter W; Dos Santos, Claudia N Duarte

    2012-01-01

    Dengue includes a broad range of symptoms, ranging from fever to hemorrhagic fever and may occasionally have alternative clinical presentations. Many possible viral genetic determinants of the intrinsic virulence of dengue virus (DENV) in the host have been identified, but no conclusive evidence of a correlation between viral genotype and virus transmissibility and pathogenicity has been obtained. We used reverse genetics techniques to engineer DENV-1 viruses with subsets of mutations found in two different neuroadapted derivatives. The mutations were inserted into an infectious clone of DENV-1 not adapted to mice. The replication and viral production capacity of the recombinant viruses were assessed in vitro and in vivo. The results demonstrated that paired mutations in the envelope protein (E) and in the helicase domain of the NS3 (NS3(hel)) protein had a synergistic effect enhancing viral fitness in human and mosquito derived cell lines. E mutations alone generated no detectable virulence in the mouse model; however, the combination of these mutations with NS3(hel) mutations, which were mildly virulent on their own, resulted in a highly neurovirulent phenotype. The generation of recombinant viruses carrying specific E and NS3(hel) proteins mutations increased viral fitness both in vitro and in vivo by increasing RNA synthesis and viral load (these changes being positively correlated with central nervous system damage), the strength of the immune response and animal mortality. The introduction of only pairs of amino acid substitutions into the genome of a non-mouse adapted DENV-1 strain was sufficient to alter viral fitness substantially. Given current limitations to our understanding of the molecular basis of dengue neuropathogenesis, these results could contribute to the development of attenuated strains for use in vaccinations and provide insights into virus/host interactions and new information about the mechanisms of basic dengue biology.

  1. Reappearance of chikungunya, formerly called dengue, in the Americas.

    PubMed

    Halstead, Scott B

    2015-04-01

    After an absence of ≈200 years, chikungunya returned to the American tropics in 2013. The virus is maintained in a complex African zoonotic cycle but escapes into an urban cycle at 40- to 50-year intervals, causing global pandemics. In 1823, classical chikungunya, a viral exanthem in humans, occurred on Zanzibar, and in 1827, it arrived in the Caribbean and spread to North and South America. In Zanzibar, the disease was known as kidenga pepo, Swahili for a sudden cramp-like seizure caused by an evil spirit; in Cuba, it was known as dengue, a Spanish homonym of denga. During the eighteenth century, dengue (present-day chikungunya) was distinguished from breakbone fever (present-day dengue), another febrile exanthem. In the twentieth century, experiments resulted in the recovery and naming of present-day dengue viruses. In 1952, chikungunya virus was recovered during an outbreak in Tanzania, but by then, the virus had lost its original name to present-day dengue viruses.

  2. An optimized expression vector for improving the yield of dengue virus-like particles from transfected insect cells.

    PubMed

    Charoensri, Nicha; Suphatrakul, Amporn; Sriburi, Rungtawan; Yasanga, Thippawan; Junjhon, Jiraphan; Keelapang, Poonsook; Utaipat, Utaiwan; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Sittisombut, Nopporn

    2014-09-01

    Recombinant virus-like particles (rVLPs) of flaviviruses are non-infectious particles released from cells expressing the envelope glycoproteins prM and E. Dengue virus rVLPs are recognized as a potential vaccine candidate, but large scale production of these particles is hindered by low yields and the occurrence of cytopathic effects. In an approach to improve the yield of rVLPs from transfected insect cells, several components of a dengue serotype 2 virus prM+E expression cassette were modified and the effect of these modifications was assessed during transient expression. Enhancement of extracellular rVLP levels by simultaneous substitutions of the prM signal peptide and the stem-anchor region of E with homologous cellular and viral counterparts, respectively, was further augmented by codon optimization. Extensive formation of multinucleated cells following transfection with the codon-optimized expression cassette was abrogated by introducing an E fusion loop mutation. This mutation also helped restore the extracellular E levels affected negatively by alteration of a charged residue at the pr-M junction, which was intended to promote maturation of rVLPs during export. Optimized expression cassettes generated in this multiple add-on modification approach should be useful in the generation of stably expressing clones and production of dengue virus rVLPs for immunogenicity studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue virus infection.

    PubMed

    Sierra, Beatriz; Alegre, Roberto; Pérez, Ana B; García, Gissel; Sturn-Ramirez, Katharina; Obasanjo, Olugbenga; Aguirre, Eglys; Alvarez, Mayling; Rodriguez-Roche, Rosmari; Valdés, Luis; Kanki, Phyllis; Guzmán, María G

    2007-06-01

    Dengue virus infection has emerged as one of the most important arthropod-borne diseases. In some dengue-infected individual, the disease progresses to its severe, life-threatening form, dengue hemorrhagic fever (DHF). Host genetic factors may be relevant and predispose some individuals to the severe dengue disease. The unique history of dengue outbreaks in Cuba is extremely advantageous for genetic studies of dengue disease resistance or susceptibility. Consequently, samples collected from 120 healthy individuals that developed dengue fever (DF) and DHF during the 1997 dengue 2 outbreak in the Santiago de Cuba municipality were HLA genotyped using polymerase chain reaction-sequence-specific primers. Polymorphism at the human leukocyte antigen (HLA) class I loci was significantly associated with DHF disease susceptibility, but polymorphism in the HLA-DRB1 was associated with protection. Amino acid peptides present in the poly-protein of the dengue 2 Jamaica strain, which are able to bind to the HLA class I and class II allotypes associated with susceptibility to or protection against the dengue clinical disease, respectively, were predicted using the BIMAS and SYFPEITHI predictive algorithms of peptide/MHC interaction.

  4. Dengue vaccine development: strategies and challenges.

    PubMed

    Ramakrishnan, Lakshmy; Pillai, Madhavan Radhakrishna; Nair, Radhakrishnan R

    2015-03-01

    Infection with dengue virus may result in dengue fever or a more severe outcome, such as dengue hemorrhagic syndrome/shock. Dengue virus infection poses a threat to endemic regions for four reasons: the presence of four serotypes, each with the ability to cause a similar disease outcome, including fatality; difficulties related to vector control; the lack of specific treatment; and the nonavailability of a suitable vaccine. Vaccine development is considered challenging due to the severity of the disease observed in individuals who have acquired dengue-specific immunity, either passively or actively. Therefore, the presence of vaccine-induced immunity against a particular serotype may prime an individual to severe disease on exposure to dengue virus. Vaccine development strategies include live attenuated vaccines, chimeric, DNA-based, subunit, and inactivated vaccines. Each of the candidates is in various stages of preclinical and clinical development. Issues pertaining to selection pressures, viral interaction, and safety still need to be evaluated in order to induce a complete protective immune response against all four serotypes. This review highlights the various strategies that have been employed in vaccine development, and identifies the obstacles to producing a safe and effective vaccine.

  5. Innate immune escape by Dengue and West Nile viruses.

    PubMed

    Gack, Michaela U; Diamond, Michael S

    2016-10-01

    Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Community Willingness to Participate in a Dengue Study in Aceh Province, Indonesia

    PubMed Central

    Anwar, Samsul; Bustaman, Aslam; Radiansyah, Arsil; Angraini, Pradiba; Fasli, Riny; Salwiyadi, Salwiyadi; Bastian, Reza Akbar; Oktiviyari, Ade; Akmal, Imaduddin; Iqbalamin, Muhammad; Adil, Jamalul; Henrizal, Fenni; Darmayanti, Darmayanti; Pratama, Rovy; Fajar, Jonny Karunia; Setiawan, Abdul Malik; Imrie, Allison; Kuch, Ulrich; Groneberg, David Alexander; Sasmono, R. Tedjo; Dhimal, Meghnath; Müller, Ruth

    2016-01-01

    Background Dengue virus infection is the most rapidly spreading vector-borne disease in the world. Essential research on dengue virus transmission and its prevention requires community participation. Therefore, it is crucial to understand the factors that are associated with the willingness of communities in high prevalence areas to participate in dengue research. The aim of this study was to explore factors associated with the willingness of healthy community members in Aceh province, Indonesia, to participate in dengue research that would require phlebotomy. Methodology/Principal Findings A community-based cross-sectional study was carried out in nine regencies and municipalities of Aceh from November 2014 to March 2015. Interviews using a set of validated questionnaires were conducted to collect data on demography, history of dengue infection, socioeconomic status, and knowledge, attitude and practice regarding dengue fever. Two-step logistic regression and Spearman’s rank correlation (rs) analysis were used to assess the influence of independent variables on dependent variables. Among 535 participants, less than 20% had a good willingness to participate in the dengue study. The factors associated with good willingness to participate were being female, working as a civil servant, private employee or entrepreneur, having a high socioeconomic status and good knowledge, attitude and practice regarding dengue. Good knowledge and attitude regarding dengue were positive independent predictors of willingness to participate (OR: 2.30 [95% CI: 1.36–3.90] and 3.73 [95% CI: 2.24–6.21], respectively). Conclusion/Significance The willingness to participate in dengue research is very low among community members in Aceh, and the two most important associated factors are knowledge and attitude regarding dengue. To increase participation rate, efforts to improve the knowledge and attitude of community members regarding dengue fever and dengue-related research is required

  7. Genetic relatedness of dengue viruses in Key West, Florida, USA, 2009-2010.

    PubMed

    Muñoz-Jordán, Jorge L; Santiago, Gilberto A; Margolis, Harold; Stark, Lillian

    2013-04-01

    Sequencing of dengue virus type 1 (DENV-1) strains isolated in Key West/Monroe County, Florida, indicate endemic transmission for >2 years of a distinct and predominant sublineage of the American-African genotype. DENV-1 strains isolated elsewhere in Florida grouped within a separate Central American lineage. Findings indicate endemic transmission of DENV into the continental United States.

  8. Direct cost of dengue hospitalization in Zhongshan, China: Associations with demographics, virus types and hospital accreditation.

    PubMed

    Zhang, Jing Hua; Yuan, Juan; Wang, Tao

    2017-08-01

    Zhongshan City of Guangdong Province (China) is a key provincial and national level area for dengue fever prevention and control. The aim of this study is to analyze how the direct hospitalization costs and the length of stay of dengue hospitalization cases vary according to associated factors such as the demographics, virus types and hospital accreditation. This study is based on retrospective census data from the Chinese National Disease Surveillance Reporting System. Totally, the hospital administrative data of 1432 confirmed dengue inpatients during 2013-2014 was obtained. A quantile regression model was applied to analyze how the direct cost of Dengue hospitalization varies with the patient demographics and hospital accreditation across the data distribution. The Length of Stay (LOS) was also examined. The average direct hospitalization cost of a dengue case in this study is US$ 499.64 during 2013, which corresponded to about 3.71% of the gross domestic product per capita in Zhongshan that year. The mean of the Length of Stay (LOS) is 7.2 days. The multivariate quantile regression results suggest that, after controlling potential compounding variables, the median hospitalization costs of male dengue patients were significantly higher than female ones by about US$ 18.23 (p<0.1). The hospitalization cost difference between the pediatric and the adult patients is estimated to be about US$ 75.25 at the median (p<0.01), but it increases sharply among the top 25 percentiles and reaches US$ 329 at the 90th percentile (p<0.01). The difference between the senior (older than 64 years old) and the adult patients increases steadily across percentiles, especially sharply among the top quartiles too. The LOS of the city-level hospitals is significantly shorter than that in the township-level hospitals by one day at the median (p<0.05), but no significant differences in their hospitalization costs. The direct hospitalization costs of dengue cases vary widely according to the

  9. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus.

    PubMed

    Brass, Abraham L; Huang, I-Chueh; Benita, Yair; John, Sinu P; Krishnan, Manoj N; Feeley, Eric M; Ryan, Bethany J; Weyer, Jessica L; van der Weyden, Louise; Fikrig, Erol; Adams, David J; Xavier, Ramnik J; Farzan, Michael; Elledge, Stephen J

    2009-12-24

    Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens. Copyright 2009 Elsevier Inc. All rights reserved.

  10. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences

    PubMed Central

    Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José

    2015-01-01

    Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses. PMID:26140346

  11. Emergence of a New Lineage of Dengue Virus Type 2 Identified in Travelers Entering Western Australia from Indonesia, 2010-2012

    PubMed Central

    Ernst, Timo; McCarthy, Suzi; Chidlow, Glenys; Luang-Suarkia, Dagwin; Holmes, Edward C.; Smith, David W.; Imrie, Allison

    2015-01-01

    Dengue virus (DENV) transmission is ubiquitous throughout the tropics. More than 70% of the current global dengue disease burden is borne by people who live in the Asia-Pacific region. We sequenced the E gene of DENV isolated from travellers entering Western Australia between 2010–2012, most of whom visited Indonesia, and identified a diverse array of DENV1-4, including multiple co-circulating viral lineages. Most viruses were closely related to lineages known to have circulated in Indonesia for some time, indicating that this geographic region serves as a major hub for dengue genetic diversity. Most notably, we identified a new lineage of DENV-2 (Cosmopolitan genotype) that emerged in Bali in 2011–2012. The spread of this lineage should clearly be monitored. Surveillance of symptomatic returned travellers provides important and timely information on circulating DENV serotypes and genotypes, and can reveal the herald wave of dengue and other emerging infectious diseases. PMID:25635775

  12. Proteomic Identification of Dengue Virus Binding Proteins in Aedes aegypti Mosquitoes and Aedes albopictus Cells

    PubMed Central

    Muñoz, Maria de Lourdes; Limón-Camacho, Gustavo; Tovar, Rosalinda; Diaz-Badillo, Alvaro; Mendoza-Hernández, Guillermo; Black, William C.

    2013-01-01

    The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin. PMID:24324976

  13. Characteristic of dengue disease in Taiwan: 2002-2007.

    PubMed

    Lin, Chien-Chou; Huang, Yh-Hsiung; Shu, Pei-Yun; Wu, Ho-Sheng; Lin, Yee-Shin; Yeh, Trai-Ming; Liu, Hsiao-Sheng; Liu, Ching-Chuan; Lei, Huan-Yao

    2010-04-01

    Taiwan's dengue outbreaks have a unique type of transmission: starting by import from abroad in early summer, spreading out locally, and ending in the winter. This pattern repeats every year. Most of the dengue patients are adults, with dengue fever peaking in the 50-54 year age range, and dengue hemorrhagic fever in the 60-64 year age range. Two patterns of dengue infection were found: DENV-2 in 2002 with 74% of secondary infection in contrast to non-DENV-2 (DENV-1 or DENV-3) in 2004-2007 with approximately 70% of primary infection. Secondary dengue virus infection increases disease morbidity, but not mortality in adults. The active serological surveillance shows two-thirds of the dengue-infected adults are symptomatic post infection. The Taiwanese experience of adult dengue should be valuable for countries or areas where, although dengue is not endemic, the Aedes aegypti vector exists and dengue virus can be introduced by travelers.

  14. The 2012 dengue outbreak in Madeira: exploring the origins.

    PubMed

    Wilder-Smith, A; Quam, M; Sessions, O; Rocklov, J; Liu-Helmersson, J; Franco, L; Khan, K

    2014-02-27

    In 2012, Madeira reported its first major outbreak of dengue. To identify the origin of the imported dengue virus, we investigated the interconnectivity via air travel between dengue-endemic countries and Madeira, and compared available sequences against GenBank. There were 22,948 air travellers to Madeira in 2012, originating from twenty-nine dengue-endemic countries; 89.6% of these international travellers originated from Venezuela and Brazil. We developed an importation index that takes into account both travel volume and the extent of dengue incidence in the country of origin. Venezuela and Brazil had by far the highest importation indices compared with all other dengue-endemic countries. The importation index for Venezuela was twice as high as that for Brazil. When taking into account seasonality in the months preceding the onset of the Madeira outbreak, this index was even seven times higher for Venezuela than for Brazil during this time. Dengue sequencing shows that the virus responsible for the Madeira outbreak was most closely related to viruses circulating in Venezuela, Brazil and Columbia. Applying the importation index, Venezuela was identified as the most likely origin of importation of dengue virus via travellers to Madeira. We propose that the importation index is a new additional tool that can help to identify and anticipate the most probable country of origin for importation of dengue into currently non-endemic countries.

  15. Characteristics and predictors for gastrointestinal hemorrhage among adult patients with dengue virus infection: Emphasizing the impact of existing comorbid disease(s).

    PubMed

    Huang, Wen-Chi; Lee, Ing-Kit; Chen, Yi-Chun; Tsai, Ching-Yen; Liu, Jien-Wei

    2018-01-01

    Gastrointestinal (GI) bleeding is a leading cause of death in dengue. This study aims to identify predictors for GI bleeding in adult dengue patients, emphasizing the impact of existing comorbid disease(s). Of 1300 adults with dengue virus infection, 175 (mean age, 56.5±13.7 years) patients with GI bleeding and 1,125 (mean age, 49.2±15.6 years) without GI bleeding (controls) were retrospectively analyzed. Among 175 patients with GI bleeding, dengue hemorrhagic fever was found in 119 (68%) patients; the median duration from onset dengue illness to GI bleeding was 5 days. Gastric ulcer, erythematous gastritis, duodenal ulcer, erosive gastritis, and hemorrhagic gastritis were found in 52.3%, 33.3%, 28.6%, 28.6%, and 14.3% of 42 patients with GI bleeding who had undergone endoscopic examination, respectively. Overall, nine of the 175 patients with GI bleeding died, giving an in-hospital mortality rate of 5.1%. Multivariate analysis showed age ≥60 years (cases vs. controls: 48% vs. 28.3%) (odds ratio [OR]: 1.663, 95% confidence interval [CI]: 1.128-2.453), end stage renal disease with additional comorbidities (cases vs. controls: 1.7% vs. 0.2%) (OR: 9.405, 95% CI: 1.4-63.198), previous stroke with additional comorbidities (cases vs. controls: 7.4% vs. 0.6%) (OR: 9.772, 95% CI: 3.302-28.918), gum bleeding (cases vs. controls: 27.4% vs. 11.5%) (OR: 1.732, 95% CI: 1.1-2.727), petechiae (cases vs. controls: 56.6% vs. 29.1%) (OR: 2.109, 95% CI: 1.411-3.153), and platelet count <50×109 cells/L (cases vs. controls: 53.1% vs. 25.8%) (OR: 3.419, 95% CI: 2.103-5.558) were independent predictors of GI bleeding in patients with dengue virus infection. Our study is the first to disclose that end stage renal disease and previous stroke, with additional comorbidities, were strongly significant associated with the risk of GI bleeding in patients with dengue virus infection. Identification of these risk factors can be incorporated into the patient assessment and management protocol

  16. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses.

    PubMed

    Megawati, Dewi; Masyeni, Sri; Yohan, Benediktus; Lestarini, Asri; Hayati, Rahma F; Meutiawati, Febrina; Suryana, Ketut; Widarsa, Tangking; Budiyasa, Dewa G; Budiyasa, Ngurah; Myint, Khin S A; Sasmono, R Tedjo

    2017-05-01

    A high number of dengue cases are reported annually in Bali. Despite the endemicity, limited data on dengue is available for Bali localities. Molecular surveillance study was conducted to explore the clinical and virological characteristics of dengue patients in urban Denpasar and rural Gianyar areas in Bali during the peak season in 2015. A total of 205 adult dengue-suspected patients were recruited in a prospective cross-sectional study. Demographic and clinical information were obtained, and dengue screening was performed using NS1 and IgM/IgG ELISAs. Viral RNA was subsequently extracted from patients' sera for serotyping using conventional RT-PCR and Simplexa Dengue real-time RT-PCR, followed by genotyping with sequencing method. We confirmed 161 patients as having dengue by NS1 and RT-PCR. Among 154 samples successfully serotyped, the DENV-3 was predominant, followed by DENV-1, DENV-2, and DENV-4. Serotype predominance was different between Denpasar and Gianyar. Genotyping results classify DENV-1 isolates into Genotype I and DENV-2 as Cosmopolitan Genotype. The classification grouped isolates into Genotype I and II for DENV-3 and DENV-4, respectively. Clinical parameters showed no relationship between infecting serotypes and severity. We observed the genetic diversity of circulating DENV isolates and their relatedness with historical data and importation to other countries. Our data highlights the role of this tourist destination as a potential source of dengue transmission in the region.

  17. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses

    PubMed Central

    Yohan, Benediktus; Lestarini, Asri; Hayati, Rahma F.; Meutiawati, Febrina; Suryana, Ketut; Widarsa, Tangking; Budiyasa, Dewa G.; Budiyasa, Ngurah; Myint, Khin S. A.

    2017-01-01

    A high number of dengue cases are reported annually in Bali. Despite the endemicity, limited data on dengue is available for Bali localities. Molecular surveillance study was conducted to explore the clinical and virological characteristics of dengue patients in urban Denpasar and rural Gianyar areas in Bali during the peak season in 2015. A total of 205 adult dengue-suspected patients were recruited in a prospective cross-sectional study. Demographic and clinical information were obtained, and dengue screening was performed using NS1 and IgM/IgG ELISAs. Viral RNA was subsequently extracted from patients’ sera for serotyping using conventional RT-PCR and Simplexa Dengue real-time RT-PCR, followed by genotyping with sequencing method. We confirmed 161 patients as having dengue by NS1 and RT-PCR. Among 154 samples successfully serotyped, the DENV-3 was predominant, followed by DENV-1, DENV-2, and DENV-4. Serotype predominance was different between Denpasar and Gianyar. Genotyping results classify DENV-1 isolates into Genotype I and DENV-2 as Cosmopolitan Genotype. The classification grouped isolates into Genotype I and II for DENV-3 and DENV-4, respectively. Clinical parameters showed no relationship between infecting serotypes and severity. We observed the genetic diversity of circulating DENV isolates and their relatedness with historical data and importation to other countries. Our data highlights the role of this tourist destination as a potential source of dengue transmission in the region. PMID:28531223

  18. Analysis of Dengue Serotype 4 in Sri Lanka during the 2012-2013 Dengue Epidemic.

    PubMed

    Uehara, Anna; Tissera, Hasitha Aravinda; Bodinayake, Champica K; Amarasinghe, Ananda; Nagahawatte, Ajith; Tillekeratne, L Gayani; Cui, Jie; Reller, Megan E; Palihawadana, Paba; Gunasena, Sunethra; Desilva, Aruna Dharshan; Wilder-Smith, Annelies; Gubler, Duane J; Woods, Christopher W; Sessions, October M

    2017-07-01

    The four serotypes of dengue virus (DENV-1, -2, -3, and -4) have had a rapidly expanding geographic range and are now endemic in over 100 tropical and subtropical countries. Sri Lanka has experienced periodic dengue outbreaks since the 1960s, but since 1989 epidemics have become progressively larger and associated with more severe disease. The dominant virus in the 2012 epidemic was DENV-1, but DENV-4 infections were also commonly observed. DENV-4 transmission was first documented in Sri Lanka when it was isolated from a traveler in 1978, but has been comparatively uncommon since dengue surveillance began in the early 1980s. To better understand the molecular epidemiology of DENV-4 infections in Sri Lanka, we conducted whole-genome sequencing on dengue patient samples from two different geographic locations. Phylogenetic analysis indicates that all sequenced DENV-4 strains belong to genotype 1 and are most closely related to DENV-4 viruses previously found in Sri Lanka and those recently found to be circulating in India and Pakistan.

  19. Yellow Fever Virus Exhibits Slower Evolutionary Dynamics than Dengue Virus ▿ †

    PubMed Central

    Sall, Amadou A.; Faye, Ousmane; Diallo, Mawlouth; Firth, Cadhla; Kitchen, Andrew; Holmes, Edward C.

    2010-01-01

    Although yellow fever has historically been one of the most important viral infections of humans, relatively little is known about the evolutionary processes that shape its genetic diversity. Similarly, there is limited information on the molecular epidemiology of yellow fever virus (YFV) in Africa even though it most likely first emerged on this continent. Through an analysis of complete E gene sequences, including a newly acquired viral collection from Central and West Africa (Senegal, Cameroon, Central African Republic, Côte d'Ivoire, Mali, and Mauritania), we show that YFV exhibits markedly lower rates of evolutionary change than dengue virus, despite numerous biological similarities between these two viruses. From this observation, along with a lack of clock-like evolutionary behavior in YFV, we suggest that vertical transmission, itself characterized by lower replication rates, may play an important role in the evolution of YFV in its enzootic setting. Despite a reduced rate of nucleotide substitution, phylogenetic patterns and estimates of times to common ancestry in YFV still accord well with the dual histories of colonialism and the slave trade, with areas of sylvatic transmission (such as Kedougou, Senegal) acting as enzootic/epidemic foci. PMID:19889759

  20. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses.

    PubMed

    Guy, Bruno; Guirakhoo, Farshad; Barban, Veronique; Higgs, Stephen; Monath, Thomas P; Lang, Jean

    2010-01-08

    Dengue viruses (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV) are major global health and growing medical problems. While a live-attenuated vaccine exists since decades against the prototype flavivirus, yellow fever virus (YFV), there is an urgent need for vaccines against dengue or West Nile diseases, and for improved vaccines against Japanese encephalitis. Live-attenuated chimeric viruses were constructed by replacing the genes coding for Premembrane (prM) and Envelope (E) proteins from YFV 17D vaccine strain with those of heterologous flaviviruses (ChimeriVax technology). This technology has been used to produce vaccine candidates for humans, for construction of a horse vaccine for West Nile fever, and as diagnostic reagents for dengue, Japanese encephalitis, West Nile and St. Louis encephalitis infections. This review focuses on human vaccines and their characterization from the early stages of research through to clinical development. Phenotypic and genetic properties and stability were examined, preclinical evaluation through in vitro or animal models, and clinical testing were carried out. Theoretical environmental concerns linked to the live and genetically modified nature of these vaccines have been carefully addressed. Results of the extensive characterizations are in accordance with the immunogenicity and excellent safety profile of the ChimeriVax-based vaccine candidates, and support their development towards large-scale efficacy trials and registration.

  1. Discovery of host-targeted covalent inhibitors of dengue virus

    PubMed Central

    de Wispelaere, Mélissanne; Carocci, Margot; Liang, Yanke; Liu, Qingsong; Sun, Eileen; Vetter, Michael L.; Wang, Jinhua; Gray, Nathanael S.; Yang, Priscilla L.

    2017-01-01

    We report here on an approach targeting the host reactive cysteinome to identify inhibitors of host factors required for the infectious cycle of Flaviviruses and other viruses. We used two parallel cellular phenotypic screens to identify a series of covalent inhibitors, exemplified by QL-XII-47, that are active against dengue virus. We show that the compounds effectively block viral protein expression and that this inhibition is associated with repression of downstream processes of the infectious cycle, and thus significantly contributes to the potent antiviral activity of these compounds. We demonstrate that QL-XII-47’s antiviral activity requires selective, covalent modification of a host target by showing that the compound's antiviral activity is recapitulated when cells are preincubated with QL-XII-47 and then washed prior to viral infection and by showing that QL-XII-47R, a non-reactive analog, lacks antiviral activity at concentrations more than 20-fold higher than QL-XII-47's IC90. QL-XII-47’s inhibition of Zika virus, West Nile virus, hepatitis C virus, and poliovirus further suggests that it acts via a target mediating inhibition of these other medically relevant viruses. These results demonstrate the utility of screens targeting the host reactive cysteinome for rapid identification of compounds with potent antiviral activity. PMID:28034743

  2. Natural attenuation of dengue virus type-2 after a series of island outbreaks: a retrospective phylogenetic study of events in the South Pacific three decades ago.

    PubMed

    Steel, Argon; Gubler, Duane J; Bennett, Shannon N

    2010-09-30

    Dengue is an expanding arboviral disease of variable severity characterized by the emergence of virus strains with greater fitness, epidemic potential and possibly virulence. To investigate the role of dengue virus (DENV) strain variation on epidemic activity we studied DENV-2 viruses from a series of South Pacific islands experiencing outbreaks of varying intensity and clinical severity. Initially appearing in 1971 in Tahiti and Fiji, the virus was responsible for subsequent epidemics in American Samoa, New Caledonia and Niue Island in 1972, reaching Tonga in 1973 where there was near-silent transmission for over a year. Based on whole-genome sequencing and phylogenetic analysis on 20 virus isolates, Tonga viruses were genetically unique, clustering in a single clade. Substitutions in the pre-membrane (prM) and nonstructural genes NS2A and NS4A correlated with the attenuation of the Tongan viruses and suggest that genetic change may play a significant role in dengue epidemic severity. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Molecular characterisation of dengue virus type 1 reveals lineage replacement during circulation in Brazilian territory.

    PubMed

    Carneiro, Adriana Ribeiro; Cruz, Ana Cecília Ribeiro; Vallinoto, Marcelo; Melo, Diego de Vasconcelos; Ramos, Rommel Thiago J; Medeiros, Daniele Barbosa Almeida; Silva, Eliana Vieira Pinto da; Vasconcelos, Pedro Fernando da Costa

    2012-09-01

    Dengue fever is the most important arbovirus infection found in tropical regions around the world. Dispersal of the vector and an increase in migratory flow between countries have led to large epidemics and severe clinical outcomes, such as dengue haemorrhagic fever and dengue shock syndrome. This study analysed the genetic variability of the dengue virus serotype 1 (DENV-1) in Brazil with regard to the full-length structural genes C/prM/M/E among 34 strains isolated during epidemics that occurred in the country between 1994-2011. Virus phylogeny and time of divergence were also evaluated with only the E gene of the strains isolated from 1994-2008. An analysis of amino acid differences between these strains and the French Guiana strain (FGA/89) revealed the presence of important nonsynonymous substitutions in the amino acid sequences, including residues E297 (Met→Thr) and E338 (Ser→Leu). A phylogenetic analysis of E proteins comparing the studied isolates and other strains selected from the GenBank database showed that the Brazilian DENV-1 strains since 1982 belonged to genotype V. This analysis also showed that different introductions of strains from the 1990s represented lineage replacement, with the identification of three lineages that cluster all isolates from the Americas. An analysis of the divergence time of DENV-1 indicated that the lineage circulating in Brazil emerged from an ancestral lineage that originated approximately 44.35 years ago.

  4. Bilateral rectus sheath haematoma complicating dengue virus infection in a patient on warfarin for mechanical aortic valve replacement: a case report.

    PubMed

    Rosa, Chamith Thushanga; Navinan, Mitrakrishnan Rayno; Samarawickrama, Sincy; Hamza, Himam; Gunarathne, Maheshika; Arulanantham, Arulprashanth; Subba, Neeha; Samarasiri, Udari; Mathias, Thushara; Kulatunga, Aruna

    2017-01-07

    The management of Dengue virus infection can be challenging. Varied presentations and numerous complications intrinsic to dengue by itself increase the complexity of treatment and potential mortality. When burdened with the presence of additional comorbidities and the need to continue compulsory medications, clear stepwise definitive guidance is lacking and patients tend to have more complex complications and outcomes calling to question the clinical decisions that may have been taken. The use and continuation of warfarin in dengue virus infection is one such example. We report a 65 year old South Asian female who presented with dengue fever. She had a history bronchial asthma, a prior abdominal surgery, and was on warfarin and maintained a therapeutically appropriate internationalized normalized ratio for a mechanical aortic valve replacement. Though preemptive decision to stop warfarin was taken with decreasing platelet counts, her clinical course was complicated with the development of bilateral rectus sheath haematoma's requiring resuscitation with blood transfusions. Though management of dengue viral fever has seen drastic evolution with recent updated guidance, clinical scenarios seen in the course of the illness still pose challenges to the managing physician. The need to continue obligatory anticoagulation which may seem counterintuitive during a complex disease such as dengue virus infection must be considered after understanding the potential risks versus that of its benefits. Though case by case decisions maybe warranted, a clear protocol would be very helpful in making clinical decisions, as the correct preemptive decision may potentially avert catastrophic and unpredictable bleeding events.

  5. Dengue and Dengue Hemorrhagic Fever, Brazil, 1981–2002

    PubMed Central

    Martelli, Celina Maria Turchi; Coelho, Giovanini Evelim; Simplício, Ana Cristina da Rocha; Hatch, Douglas L.

    2005-01-01

    In the last 5 years, Brazil has accounted for ≈70% of reported dengue fever cases in the Americas. We analyzed trends of dengue and dengue hemorrhagic fever (DHF) from the early 1980s to 2002 by using surveillance data from the Brazilian Ministry of Health. Two distinct epidemiologic patterns for dengue were observed: localized epidemics (1986–1993), and endemic and epidemic virus circulation countrywide (1994–2002). Currently, serotypes 1, 2, and 3 cocirculate in 22 of 27 states. Dengue and DHF affected mainly adults; however, an increase in occurrence of DHF among children has been recently detected in northern Brazil, which suggests a shift in the occurrence of severe disease to younger age groups. In 2002, hospitalizations increased, which points out the change in disease severity compared to that seen in the 1990s. We describe the epidemiology of dengue in Brazil, characterizing the changing patterns of it and DHF during the last 20 years. PMID:15705322

  6. The relevance of dengue virus genotypes surveillance at country level before vaccine approval

    PubMed Central

    Usme-Ciro, José A; Méndez, Jairo A; Laiton, Katherine D; Páez, Andrés

    2014-01-01

    Dengue is a major threat for public health in tropical and subtropical countries around the world. In the absence of a licensed vaccine and effective antiviral therapies, control measures have been based on education activities and vector elimination. Current efforts for developing a vaccine are both promising and troubling. At the advent of the introduction of a tetravalent dengue vaccine, molecular surveillance of the circulating genotypes in different geographical regions has gained considerable importance. A growing body of in vitro, preclinical, and clinical phase studies suggest that vaccine conferred protection in a geographical area could depends on the coincidence of the dengue virus genotypes included in the vaccine and those circulating. In this review we present the state-of-the-art in this field, highlighting the need of deeper knowledge on neutralizing immune response for making decisions about future vaccine approval and the potential need for different vaccine composition for regional administration. PMID:25483495

  7. The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection.

    PubMed

    Carnec, Xavier; Meertens, Laurent; Dejarnac, Ophélie; Perera-Lecoin, Manuel; Hafirassou, Mohamed Lamine; Kitaura, Jiro; Ramdasi, Rasika; Schwartz, Olivier; Amara, Ali

    2016-01-01

    Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a-dependent DENV

  8. Prior Dengue virus exposure shapes T cell immunity to Zika virus in humans.

    PubMed

    Grifoni, Alba; Pham, John; Sidney, John; O'Rourke, Patrick H; Paul, Sinu; Peters, Bjoern; Martini, Sheridan R; de Silva, Aruna D; Ricciardi, Michael J; Magnani, Diogo M; Silveira, Cassia G T; Maestri, Alvino; Costa, Priscilla R; de-Oliveira-Pinto, Luzia Maria; de Azeredo, Elzinandes Leal; Damasco, Paulo Vieira; Phillips, Elizabeth; Mallal, Simon; de Silva, Aravinda M; Collins, Matthew; Durbin, Anna; Diehl, Sean A; Cerpas, Cristhiam; Balmaseda, Angel; Kuan, Guillermina; Coloma, Josefina; Harris, Eva; Crowe, James E; Stone, Mars; Norris, Phillip J; Busch, Michael; Vivanco-Cid, Hector; Cox, Josephine; Graham, Barney S; Ledgerwood, Julie E; Turtle, Lance; Solomon, Tom; Kallas, Esper G; Watkins, David I; Weiskopf, Daniela; Sette, Alessandro

    2017-10-04

    While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether pre-existing dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with Tetravalent Dengue Attenuated Vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors, but declines in DENV pre-exposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells form DENV pre-exposed donors selectively up-regulated granzyme B and PD1, as compared to DENV-naïve donors. Finally, we discovered that ZIKV structural proteins (E, prM and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins. IMPORTANCE The issue of potential ZIKV and DENV cross-reactivity and how pre-existing DENV T cell immunity modulates ZIKA T cell responses is of great relevance as the two viruses often co-circulate and ZIKA virus has been spreading in geographical regions where DENV is endemic or hyper-endemic. Our data show that memory T cell responses elicited by

  9. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus.

    PubMed

    Waggoner, Jesse J; Gresh, Lionel; Vargas, Maria Jose; Ballesteros, Gabriela; Tellez, Yolanda; Soda, K James; Sahoo, Malaya K; Nuñez, Andrea; Balmaseda, Angel; Harris, Eva; Pinsky, Benjamin A

    2016-12-15

     Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses.  Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded.  A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log 10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001).  ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  10. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chotiwan, Nunya; Roehrig, John T.; Schlesinger, Jacob J.

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainlymore » plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection.« less

  11. Molecular epidemiology and evolutionary analysis of dengue virus type 2, circulating in Delhi, India.

    PubMed

    Sharma, Pankaj; Mittal, Veena; Chhabra, Mala; Kumari, Roop; Singh, Priyanka; Venkatesh, Srinivas

    2016-12-01

    Dengue virus type 2 (DENV-2) has been associated with severe dengue outbreaks in many countries including India. Its predominance was recorded nearly after a decade in the capital city, Delhi in 2013. The present study characterizes DENV-2 circulated during 2013-2014. Analysis based on envelope (E) gene showed the presence of two clades (I and II) of DENV-2, within the Cosmopolitan genotype. Analysis of time of most recent common ancestor revealed the existence of clade I for more than a decade (95 % HPD 13-16 years) however, clade II showed comparatively recent emergence (95 % HPD 5-13 years). Presence of different clades is of high significance as this may result in increased virus transmission and major outbreaks. Further, the presence of a unique amino acid substitution, Q325H was also observed in an isolate; 14/D2/Del/2013 (KT717981). This substitution falls in immune epitope (epitope id: 150268) and may have important role in host immune response.

  12. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? The Path to a Dengue Vaccine: Learning from Human Natural Dengue Infection Studies and Vaccine Trials.

    PubMed

    de Silva, Aravinda M; Harris, Eva

    2018-06-01

    Dengue virus (DENV) is the most common arthropod-borne viral disease of humans. Although effective vaccines exist against other flaviviral diseases like yellow fever and Japanese encephalitis, dengue vaccine development is complicated by the presence of four virus serotypes and the possibility of partial immunity enhancing dengue disease severity. Several live attenuated dengue vaccines are being tested in human clinical trials. Initial results are mixed, with variable efficacy depending on DENV serotype and previous DENV exposure. Here, we highlight recent discoveries about the human antibody response to DENV and propose guidelines for advancing development of safe and effective dengue vaccines. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Complete genome analysis of dengue virus type 3 isolated from the 2013 dengue outbreak in Yunnan, China.

    PubMed

    Wang, Xiaodan; Ma, Dehong; Huang, Xinwei; Li, Lihua; Li, Duo; Zhao, Yujiao; Qiu, Lijuan; Pan, Yue; Chen, Junying; Xi, Juemin; Shan, Xiyun; Sun, Qiangming

    2017-06-15

    In the past few decades, dengue has spread rapidly and is an emerging disease in China. An unexpected dengue outbreak occurred in Xishuangbanna, Yunnan, China, resulting in 1331 patients in 2013. In order to obtain the complete genome information and perform mutation and evolutionary analysis of causative agent related to this largest outbreak of dengue fever. The viruses were isolated by cell culture and evaluated by genome sequence analysis. Phylogenetic trees were then constructed by Neighbor-Joining methods (MEGA6.0), followed by analysis of nucleotide mutation and amino acid substitution. The analysis of the diversity of secondary structure for E and NS1 protein were also performed. Then selection pressures acting on the coding sequences were estimated by PAML software. The complete genome sequences of two isolated strains (YNSW1, YNSW2) were 10,710 and 10,702 nucleotides in length, respectively. Phylogenetic analysis revealed both strain were classified as genotype II of DENV-3. The results indicated that both isolated strains of Xishuangbanna in 2013 and Laos 2013 stains (KF816161.1, KF816158.1, LC147061.1, LC147059.1, KF816162.1) were most similar to Bangladesh (AY496873.2) in 2002. After comparing with the DENV-3SS (H87) 62 amino acid substitutions were identified in translated regions, and 38 amino acid substitutions were identified in translated regions compared with DENV-3 genotype II stains Bangladesh (AY496873.2). 27(YNSW1) or 28(YNSW2) single nucleotide changes were observed in structural protein sequences with 7(YNSW1) or 8(YNSW2) non-synonymous mutations compared with AY496873.2. Of them, 4 non-synonymous mutations were identified in E protein sequences with (2 in the β-sheet, 2 in the coil). Meanwhile, 117(YNSW1) or 115 (YNSW2) single nucleotide changes were observed in non-structural protein sequences with 31(YNSW1) or 30 (YNSW2) non-synonymous mutations. Particularly, 14 single nucleotide changes were observed in NS1 sequences with 4/14 non

  14. First evidence of dengue infection in domestic dogs living in different ecological settings in Thailand.

    PubMed

    Thongyuan, Suporn; Kittayapong, Pattamaporn

    2017-01-01

    Dengue is a vector-borne disease transmitted by Aedes mosquitoes. It is considered an important public health problem in many countries worldwide. However, only a few studies have been conducted on primates and domestic animals that could potentially be a reservoir of dengue viruses. Since domestic dogs share both habitats and vectors with humans, this study aimed to investigate whether domestic dogs living in different ecological settings in dengue endemic areas in Thailand could be naturally infected with dengue viruses. Serum samples were collected from domestic dogs in three different ecological settings of Thailand: urban dengue endemic areas of Nakhon Sawan Province; rubber plantation areas of Rayong Province; and Koh Chang, an island tourist spot of Trat Province. These samples were screened for dengue viral genome by using semi-nested RT-PCR. Positive samples were then inoculated in mosquito and dog cell lines for virus isolation. Supernatant collected from cell culture was tested for the presence of dengue viral genome by semi-nested RT-PCR, then double-strand DNA products were double-pass custom-sequenced. Partial nucleotide sequences were aligned with the sequences already recorded in GenBank, and a phylogenetic tree was constructed. In the urban setting, 632 domestic dog serum samples were screened for dengue virus genome by RT-PCR, and six samples (0.95%) tested positive for dengue virus. Four out of six dengue viruses from positive samples were successfully isolated. Dengue virus serotype 2 and serotype 3 were found to have circulated in domestic dog populations. One of 153 samples (0.65%) collected from the rubber plantation area showed a PCR-positive result, and dengue serotype 3 was successfully isolated. Partial gene phylogeny revealed that the isolated dengue viruses were closely related to those strains circulating in human populations. None of the 71 samples collected from the island tourist spot showed a positive result. We concluded that

  15. Analysis of Individuals from a Dengue-Endemic Region Helps Define the Footprint and Repertoire of Antibodies Targeting Dengue Virus 3 Type-Specific Epitopes

    PubMed Central

    Andrade, Daniela V.; Katzelnick, Leah C.; Widman, Doug G.; Balmaseda, Angel; de Silva, Aravinda M.; Baric, Ralph S.

    2017-01-01

    ABSTRACT The four dengue virus serotypes (DENV1 to 4) cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. Here, we use a recombinant DENV4 (rDENV4/3-M14) displaying a major DENV3 type-specific quaternary epitope recognized by human monoclonal antibody 5J7 to measure the proportion, magnitude, and kinetics of DENV3 type-specific neutralizing antibody responses targeting this epitope. Primary DENV3 sera from 30 individuals in a dengue hospital-based study in Nicaragua were studied 3, 6, 12, and 18 months post-infection, alongside samples collected annually 1 to 4 years post-primary DENV3 infection from 10 individuals in a cohort study in Nicaragua. We found substantial individual variation in the proportion of DENV3 type-specific neutralizing antibody titers attributed to the 5J7 epitope (range, 0 to 100%), with the mean significantly increasing from 22.6% to 41.4% from 3 to 18 months. We extended the transplanted DENV3 5J7 epitope on the virion (rDENV4/3-M16), resulting in increased recognition in several individuals, helping define the footprint of the epitope. However, 37% and 13% of the subjects still showed little to no recognition of the 5J7 epitope at 3 and 18 months, respectively, indicating that one or more additional DENV3 type-specific epitopes exist. Overall, this study demonstrates how DENV-immune plasma from populations from areas of endemicity, when coupled with structurally guided recombinant viruses, can help characterize the epitope-specific neutralizing antibody response in natural DENV infections, with direct implications for design and evaluation of dengue vaccines. PMID:28928210

  16. Adenovirus Delivered Short Hairpin RNA Targeting a Conserved Site in the 5′ Non-Translated Region Inhibits All Four Serotypes of Dengue Viruses

    PubMed Central

    Korrapati, Anil Babu; Swaminathan, Gokul; Singh, Aarti; Khanna, Navin; Swaminathan, Sathyamangalam

    2012-01-01

    Background Dengue is a mosquito-borne viral disease caused by four closely related serotypes of Dengue viruses (DENVs). This disease whose symptoms range from mild fever to potentially fatal haemorrhagic fever and hypovolemic shock, threatens nearly half the global population. There is neither a preventive vaccine nor an effective antiviral therapy against dengue disease. The difference between severe and mild disease appears to be dependent on the viral load. Early diagnosis may enable timely therapeutic intervention to blunt disease severity by reducing the viral load. Harnessing the therapeutic potential of RNA interference (RNAi) to attenuate DENV replication may offer one approach to dengue therapy. Methodology/Principal Findings We screened the non-translated regions (NTRs) of the RNA genomes of representative members of the four DENV serotypes for putative siRNA targets mapping to known transcription/translation regulatory elements. We identified a target site in the 5′ NTR that maps to the 5′ upstream AUG region, a highly conserved cis-acting element essential for viral replication. We used a replication-defective human adenovirus type 5 (AdV5) vector to deliver a short-hairpin RNA (shRNA) targeting this site into cells. We show that this shRNA matures to the cognate siRNA and is able to inhibit effectively antigen secretion, viral RNA replication and infectious virus production by all four DENV serotypes. Conclusion/Significance The data demonstrate the feasibility of using AdV5-mediated delivery of shRNAs targeting conserved sites in the viral genome to achieve inhibition of all four DENV serotypes. This paves the way towards exploration of RNAi as a possible therapeutic strategy to curtail DENV infection. PMID:22848770

  17. Selective Susceptibility of Human Skin Antigen Presenting Cells to Productive Dengue Virus Infection

    PubMed Central

    Cerny, Daniela; Haniffa, Muzlifah; Shin, Amanda; Bigliardi, Paul; Tan, Bien Keem; Lee, Bernett; Poidinger, Michael; Tan, Ern Yu; Ginhoux, Florent; Fink, Katja

    2014-01-01

    Dengue is a growing global concern with 390 million people infected each year. Dengue virus (DENV) is transmitted by mosquitoes, thus host cells in the skin are the first point of contact with the virus. Human skin contains several populations of antigen-presenting cells which could drive the immune response to DENV in vivo: epidermal Langerhans cells (LCs), three populations of dermal dendritic cells (DCs), and macrophages. Using samples of normal human skin we detected productive infection of CD14+ and CD1c+ DCs, LCs and dermal macrophages, which was independent of DC-SIGN expression. LCs produced the highest viral titers and were less sensitive to IFN-β. Nanostring gene expression data showed significant up-regulation of IFN-β, STAT-1 and CCL5 upon viral exposure in susceptible DC populations. In mice infected intra-dermally with DENV we detected parallel populations of infected DCs originating from the dermis and migrating to the skin-draining lymph nodes. Therefore dermal DCs may simultaneously facilitate systemic spread of DENV and initiate the adaptive anti-viral immune response. PMID:25474532

  18. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening

    NASA Astrophysics Data System (ADS)

    Halim, Sobia A.; Khan, Shanza; Khan, Ajmal; Wadood, Abdul; Mabood, Fazal; Hussain, Javid; Al-Harrasi, Ahmed

    2017-10-01

    Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3) Helicase encoded by the dengue virus (DENV) is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to design new NS-3 Helicase inhibitor by in silico ligand- and structure based approaches. Initially ligand-based pharmacophore model was generated that was used to screen a set of 1201474 compounds collected from ZINC Database. The compounds matched with the pharmacophore model were docked into the active site of NS-3 helicase. Based on docking scores and binding interactions, twenty five compounds are suggested to be potential inhibitors of NS3 Helicase. The pharmacokinetic properties of these hits were predicted. The selected hits revealed acceptable ADMET properties. This study identified potential inhibitors of NS-3 Helicase in silico, and can be helpful in the treatment of Dengue.

  19. Microparticles provide a novel biomarker to predict severe clinical outcomes of dengue virus infection.

    PubMed

    Punyadee, Nuntaya; Mairiang, Dumrong; Thiemmeca, Somchai; Komoltri, Chulaluk; Pan-Ngum, Wirichada; Chomanee, Nusara; Charngkaew, Komgrid; Tangthawornchaikul, Nattaya; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Avirutnan, Panisadee

    2015-02-01

    Shedding of microparticles (MPs) is a consequence of apoptotic cell death and cellular activation. Low levels of circulating MPs in blood help maintain homeostasis, whereas increased MP generation is linked to many pathological conditions. Herein, we investigated the role of MPs in dengue virus (DENV) infection. Infection of various susceptible cells by DENV led to apoptotic death and MP release. These MPs harbored a viral envelope protein and a nonstructural protein 1 (NS1) on their surfaces. Ex vivo analysis of clinical specimens from patients with infections of different degrees of severity at multiple time points revealed that MPs generated from erythrocytes and platelets are two major MP populations in the circulation of DENV-infected patients. Elevated levels of red blood cell-derived MPs (RMPs) directly correlated with DENV disease severity, whereas a significant decrease in platelet-derived MPs was associated with a bleeding tendency. Removal by mononuclear cells of complement-opsonized NS1-anti-NS1 immune complexes bound to erythrocytes via complement receptor type 1 triggered MP shedding in vitro, a process that could explain the increased levels of RMPs in severe dengue. These findings point to the multiple roles of MPs in dengue pathogenesis. They offer a potential novel biomarker candidate capable of differentiating dengue fever from the more serious dengue hemorrhagic fever. Dengue is the most important mosquito-transmitted viral disease in the world. No vaccines or specific treatments are available. Rapid diagnosis and immediate treatment are the keys to achieve a positive outcome. Dengue virus (DENV) infection, like some other medical conditions, changes the level and composition of microparticles (MPs), tiny bag-like structures which are normally present at low levels in the blood of healthy individuals. This study investigated how MPs in culture and patients' blood are changed in response to DENV infection. Infection of cells led to programmed

  20. Microparticles Provide a Novel Biomarker To Predict Severe Clinical Outcomes of Dengue Virus Infection

    PubMed Central

    Punyadee, Nuntaya; Mairiang, Dumrong; Thiemmeca, Somchai; Komoltri, Chulaluk; Pan-ngum, Wirichada; Chomanee, Nusara; Charngkaew, Komgrid; Tangthawornchaikul, Nattaya; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida

    2014-01-01

    ABSTRACT Shedding of microparticles (MPs) is a consequence of apoptotic cell death and cellular activation. Low levels of circulating MPs in blood help maintain homeostasis, whereas increased MP generation is linked to many pathological conditions. Herein, we investigated the role of MPs in dengue virus (DENV) infection. Infection of various susceptible cells by DENV led to apoptotic death and MP release. These MPs harbored a viral envelope protein and a nonstructural protein 1 (NS1) on their surfaces. Ex vivo analysis of clinical specimens from patients with infections of different degrees of severity at multiple time points revealed that MPs generated from erythrocytes and platelets are two major MP populations in the circulation of DENV-infected patients. Elevated levels of red blood cell-derived MPs (RMPs) directly correlated with DENV disease severity, whereas a significant decrease in platelet-derived MPs was associated with a bleeding tendency. Removal by mononuclear cells of complement-opsonized NS1–anti-NS1 immune complexes bound to erythrocytes via complement receptor type 1 triggered MP shedding in vitro, a process that could explain the increased levels of RMPs in severe dengue. These findings point to the multiple roles of MPs in dengue pathogenesis. They offer a potential novel biomarker candidate capable of differentiating dengue fever from the more serious dengue hemorrhagic fever. IMPORTANCE Dengue is the most important mosquito-transmitted viral disease in the world. No vaccines or specific treatments are available. Rapid diagnosis and immediate treatment are the keys to achieve a positive outcome. Dengue virus (DENV) infection, like some other medical conditions, changes the level and composition of microparticles (MPs), tiny bag-like structures which are normally present at low levels in the blood of healthy individuals. This study investigated how MPs in culture and patients' blood are changed in response to DENV infection. Infection of cells

  1. Case Series of Fatal Leptospira spp./Dengue Virus Co-Infections—Puerto Rico, 2010–2012

    PubMed Central

    Pérez Rodríguez, Nicole M.; Galloway, Renee; Blau, Dianna M.; Traxler, Rita; Bhatnagar, Julu; Zaki, Sherif R.; Rivera, Aidsa; Torres, Jose V.; Noyd, David; Santiago-Albizu, Xavier E.; García, Brenda Rivera; Tomashek, Kay M.; Bower, William A.; Sharp, Tyler M.

    2014-01-01

    Co-infection with pathogens that cause acute febrile illness creates a diagnostic challenge as a result of overlapping clinical manifestations. Here, we describe four fatal cases of Leptospira species/dengue virus co-infection in Puerto Rico. Although all patients sought care early, antibiotic administration was delayed for most. Steroids were administered to all patients, in most cases before antibiotics. These cases show the need for clinicians evaluating patients in or recently returned from the tropics with acute febrile illness to consider both dengue and leptospirosis. Furthermore, they illustrate the need for nucleic acid- or antigen-based rapid diagnostic tests to enable timely patient diagnosis and management. In particular, antibiotic therapy should be initiated early for patients with suspected leptospirosis, and steroids should not be administered to patients with suspected dengue. PMID:25092820

  2. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Claire Y.-H., E-mail: CHuang1@cdc.go; Butrapet, Siritorn; Moss, Kelly J.

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could notmore » re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.« less

  3. Population structure of the dengue viruses, Aragua, Venezuela, 2006–2007. Insights into dengue evolution under hyperendemic transmission

    PubMed Central

    Rodriguez-Roche, Rosmari; Villegas, Elci; Cook, Shelley; Poh Kim, Pauline A.W.; Hinojosa, Yoandri; Rosario, Delfina; Villalobos, Iris; Bendezu, Herminia; Hibberd, Martin L.; Guzman, Maria G.

    2012-01-01

    During the past three decades there has been a notable increase in dengue disease severity in Venezuela. Nevertheless, the population structure of the viruses being transmitted in this country is not well understood. Here, we present a molecular epidemiological study on dengue viruses (DENV) circulating in Aragua State, Venezuela during 2006–2007. Twenty-one DENV full-length genomes representing all of the four serotypes were amplified and sequenced directly from the serum samples. Notably, only DENV-2 was associated with severe disease. Phylogenetic trees constructed using Bayesian methods indicated that only one genotype was circulating for each serotype. However, extensive viral genetic diversity was found in DENV isolated from the same area during the same period, indicating significant in situ evolution since the introduction of these genotypes. Collectively, the results suggest that the non-structural (NS) proteins may play an important role in DENV evolution, particularly NS1, NS2A and NS4B proteins. The phylogenetic data provide evidence to suggest that multiple introductions of DENV have occurred from the Latin American region into Venezuela and vice versa. The implications of the significant viral genetic diversity generated during hyperendemic transmission, particularly in NS protein are discussed and considered in the context of future development and use of human monoclonal antibodies as antivirals and tetravalent vaccines. PMID:22197765

  4. Epidemiology of dengue and dengue hemorrhagic fever in a cohort of adults living in Bandung, West Java, Indonesia.

    PubMed

    Porter, Kevin R; Beckett, Charmagne G; Kosasih, Herman; Tan, Ratna Irsiana; Alisjahbana, Bachti; Rudiman, Pandji Irani Fianza; Widjaja, Susana; Listiyaningsih, Erlin; Ma'Roef, Chairin Nisa; McArdle, James L; Parwati, Ida; Sudjana, Primal; Jusuf, Hadi; Yuwono, Djoko; Wuryadi, Suharyono

    2005-01-01

    A prospective study of dengue fever (DF) and dengue hemorrhagic fever (DHF) was conducted in a cohort of adult volunteers from two textile factories located in West Java, Indonesia. Volunteers in the cohort were bled every three months and were actively followed for the occurrence of dengue (DEN) disease. The first two years of the study showed an incidence of symptomatic DEN disease of 18 cases per 1,000 person-years and an estimated asymptomatic/ mild infection rate of 56 cases per 1,000 person-years in areas of high disease transmission. In areas where no symptomatic cases were detected, the incidence of asymptomatic or mild infection was 8 cases per 1,000 person-years. Dengue-2 virus was the predominant serotype identified, but all four serotypes were detected among the cohort. Four cases of DHF and one case of dengue shock syndrome (DSS) were identified. Three of the four DHF cases were due to DEN-3 virus. The one DSS case occurred in the setting of a prior DEN-2 virus infection, followed by a secondary infection with DEN-1 virus. To our knowledge, this is the first report of a longitudinal cohort study of naturally acquired DF and DHF in adults.

  5. Enhanced Surveillance for Fatal Dengue-Like Acute Febrile Illness in Puerto Rico, 2010-2012

    PubMed Central

    Rivera, Aidsa; Torres-Velasquez, Brenda; Hunsperger, Elizabeth A.; Munoz-Jordan, Jorge L.; Sharp, Tyler M.; Rivera, Irma; Sanabria, Dario; Blau, Dianna M.; Galloway, Renee; Torres, Jose; Rodriguez, Rosa; Serrano, Javier; Chávez, Carlos; Dávila, Francisco; Perez-Padilla, Janice; Ellis, Esther M.; Caballero, Gladys; Wright, Laura; Zaki, Sherif R.; Deseda, Carmen; Rodriguez, Edda; Margolis, Harold S.

    2016-01-01

    Background Dengue is a leading cause of morbidity throughout the tropics; however, accurate population-based estimates of mortality rates are not available. Methods/Principal Findings We established the Enhanced Fatal Acute Febrile Illness Surveillance System (EFASS) to estimate dengue mortality rates in Puerto Rico. Healthcare professionals submitted serum and tissue specimens from patients who died from a dengue-like acute febrile illness, and death certificates were reviewed to identify additional cases. Specimens were tested for markers of dengue virus (DENV) infection by molecular, immunologic, and immunohistochemical methods, and were also tested for West Nile virus, Leptospira spp., and other pathogens based on histopathologic findings. Medical records were reviewed and clinical data abstracted. A total of 311 deaths were identified, of which 58 (19%) were DENV laboratory-positive. Dengue mortality rates were 1.05 per 100,000 population in 2010, 0.16 in 2011 and 0.36 in 2012. Dengue mortality was highest among adults 19–64 years and seniors ≥65 years (1.17 and 1.66 deaths per 100,000, respectively). Other pathogens identified included 34 Leptospira spp. cases and one case of Burkholderia pseudomallei and Neisseria meningitidis. Conclusions/Significance EFASS showed that dengue mortality rates among adults were higher than reported for influenza, and identified a leptospirosis outbreak and index cases of melioidosis and meningitis. PMID:27727271

  6. Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors.

    PubMed

    Weigel, Lena F; Nitsche, Christoph; Graf, Dominik; Bartenschlager, Ralf; Klein, Christian D

    2015-10-08

    Dengue virus is an increasingly global pathogen. One of the promising targets for antiviral drug discovery against dengue and related flaviviruses such as West Nile virus is the viral serine protease NS2B-NS3. We here report the synthesis and in vitro characterization of potent peptidic inhibitors of dengue virus protease that incorporate phenylalanine and phenylglycine derivatives as arginine-mimicking groups with modulated basicity. The most promising compounds were (4-amidino)-L-phenylalanine-containing inhibitors, which reached nanomolar affinities against dengue virus protease. The type and position of the substituents on the phenylglycine and phenylalanine side chains has a significant effect on the inhibitory activity against dengue virus protease and selectivity against other proteases. In addition, the non-natural, basic amino acids described here may have relevance for the development of other peptidic and peptidomimetic drugs such as inhibitors of the blood clotting cascade.

  7. Natural attenuation of Dengue Virus Type-2 after a series of island outbreaks: a re-trospective phylogenetic study of events in the South Pacific three decades ago

    PubMed Central

    Steel, Argon; Gubler, Duane J.; Bennett, Shannon N.

    2011-01-01

    Dengue is an expanding arboviral disease of variable severity characterized by the emergence of virus strains with greater fitness, epidemic potential and possibly virulence. To investigate the role of dengue virus (DENV) strain variation on epidemic activity we studied DENV-2 viruses from a series of South Pacific islands experiencing outbreaks of varying intensity and clinical severity. Initially appearing in 1971 in Tahiti and Fiji, the virus was responsible for subsequent epidemics in American Samoa, New Caledonia and Niue Island in 1972, reaching Tonga in 1973 where there was near-silent transmission for over a year. Based on whole-genome sequencing and phylogenetic analysis on 20 virus isolates, Tonga viruses were genetically unique, clustering in a single clade. Substitutions in the pre-membrane (prM) and nonstructural genes NS2A and NS4A correlated with the attenuation of the Tongan viruses and suggest that genetic change may play a significant role in dengue epidemic severity. PMID:20663532

  8. DNA-immunisation with dengue virus E protein domains I/II, but not domain III, enhances Zika, West Nile and Yellow Fever virus infection.

    PubMed

    Slon Campos, Jose L; Poggianella, Monica; Marchese, Sara; Mossenta, Monica; Rana, Jyoti; Arnoldi, Francesca; Bestagno, Marco; Burrone, Oscar R

    2017-01-01

    Dengue virus (DENV), the causative agent of dengue disease, is among the most important mosquito-borne pathogens worldwide. DENV is composed of four closely related serotypes and belongs to the Flaviviridae family alongside other important arthropod-borne viral pathogens such as Zika virus (ZIKV), West Nile virus (WNV) and Yellow Fever virus (YFV). After infection, the antibody response is mostly directed to the viral E glycoprotein which is composed of three structural domains named DI, DII and DIII that share variable degrees of homology among different viruses. Recent evidence supports a close serological interaction between ZIKV and DENV. The possibility of worse clinical outcomes as a consequence of antibody-dependent enhancement of infection (ADE) due to cross-reactive antibodies with poor neutralisation activity is a matter of concern. We tested polyclonal sera from groups of female Balb/C mice vaccinated with DNA constructs expressing DI/DII, DIII or the whole sE from different DENV serotypes and compared their activity in terms of cross-reactivity, neutralisation of virus infection and ADE. Our results indicate that the polyclonal antibody responses against the whole sE protein are highly cross-reactive with strong ADE and poor neutralisation activities due to DI/DII immunodominance. Conversely, anti-DIII polyclonal antibodies are type-specific, with no ADE towards ZIKV, WNV and YFV, and strong neutralisation activity restricted only to DENV.

  9. Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys.

    PubMed

    Bischof, Georg F; Magnani, Diogo M; Ricciardi, Michael; Shin, Young C; Domingues, Aline; Bailey, Varian K; Gonzalez-Nieto, Lucas; Rakasz, Eva G; Watkins, David I; Desrosiers, Ronald C

    2017-08-15

    Research on vaccine approaches that can provide long-term protection against dengue virus infection is needed. Here we describe the construction, immunogenicity, and preliminary information on the protective capacity of recombinant, replication-competent rhesus monkey rhadinovirus (RRV), a persisting herpesvirus. One RRV construct expressed nonstructural protein 5 (NS5), while a second recombinant expressed a soluble variant of the E protein (E85) of dengue virus 2 (DENV2). Four rhesus macaques received a single vaccination with a mixture of both recombinant RRVs and were subsequently challenged 19 weeks later with 1 × 10 5 PFU of DENV2. During the vaccine phase, plasma of all vaccinated monkeys showed neutralizing activity against DENV2. Cellular immune responses against NS5 were also elicited, as evidenced by major histocompatibility complex class I (MHC-I) tetramer staining in the one vaccinated monkey that was Mamu-A*01 positive. Unlike two of two unvaccinated controls, two of the four vaccinated monkeys showed no detectable viral RNA sequences in plasma after challenge. One of these two monkeys also showed no anamnestic increases in antibody levels following challenge and thus appeared to be protected against the acquisition of DENV2 following high-dose challenge. Continued study will be needed to evaluate the performance of herpesviral and other persisting vectors for achieving long-term protection against dengue virus infection. IMPORTANCE Continuing studies of vaccine approaches against dengue virus (DENV) infection are warranted, particularly ones that may provide long-term immunity against all four serotypes. Here we investigated whether recombinant rhesus monkey rhadinovirus (RRV) could be used as a vaccine against DENV2 infection in rhesus monkeys. Upon vaccination, all animals generated antibodies capable of neutralizing DENV2. Two of four vaccinated monkeys showed no detectable viral RNA after subsequent high-dose DENV2 challenge at 19 weeks

  10. Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever.

    PubMed

    Fink, Joshua; Gu, Feng; Vasudevan, Subhash G

    2006-01-01

    Dengue infections are a major cause of morbidity and mortality in the tropical and sub-tropical regions of the world. There is no vaccine for dengue and also there are no anti-viral drugs to treat the infection. Some patients, typically those experiencing a secondary infection with a different dengue serotype, may progress from an acute febrile disease to the more severe forms of disease, dengue haemorrhagic fever and dengue shock syndrome. Here we discuss the significant immunopathological component to severe disease and how T cells, cytokines and cross-reactive antibody combine to contribute to the progression to dengue haemorrhagic fever. These events are thought to lead to vascular leakage, the signature event in dengue haemorrhagic fever, and are addressed in this review by incorporating the concept of heterologous T cell immunity. The need for effective measures against dengue and dengue-related illness is clear. We propose that drugs against dengue virus, or the symptoms of severe dengue disease, are a viable goal.

  11. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, Thai Leong; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551; Chen, Yen Liang

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents anmore » interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.« less

  12. Characteristic of Dengue Disease in Taiwan: 2002–2007

    PubMed Central

    Lin, Chien-Chou; Huang, Yh-Hsiung; Shu, Pei-Yun; Wu, Ho-Sheng; Lin, Yee-Shin; Yeh, Trai-Ming; Liu, Hsiao-Sheng; Liu, Ching-Chuan; Lei, Huan-Yao

    2010-01-01

    Taiwan's dengue outbreaks have a unique type of transmission: starting by import from abroad in early summer, spreading out locally, and ending in the winter. This pattern repeats every year. Most of the dengue patients are adults, with dengue fever peaking in the 50–54 year age range, and dengue hemorrhagic fever in the 60–64 year age range. Two patterns of dengue infection were found: DENV-2 in 2002 with 74% of secondary infection in contrast to non-DENV-2 (DENV-1 or DENV-3) in 2004–2007 with ~70% of primary infection. Secondary dengue virus infection increases disease morbidity, but not mortality in adults. The active serological surveillance shows two-thirds of the dengue-infected adults are symptomatic post infection. The Taiwanese experience of adult dengue should be valuable for countries or areas where, although dengue is not endemic, the Aedes aegypti vector exists and dengue virus can be introduced by travelers. PMID:20348527

  13. Dengue: a continuing global threat

    PubMed Central

    Guzman, Maria G.; Halstead, Scott B.; Artsob, Harvey; Buchy, Philippe; Farrar, Jeremy; Gubler, Duane J.; Hunsperger, Elizabeth; Kroeger, Axel; Margolis, Harold S.; Martínez, Eric; Nathan, Michael B.; Pelegrino, Jose Luis; Simmons, Cameron; Yoksan, Sutee; Peeling, Rosanna W.

    2014-01-01

    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ~50 million dengue infections and ~500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future. PMID:21079655

  14. Surveillance for dengue and dengue-associated neurologic syndromes in the United States.

    PubMed

    Waterman, Stephen H; Margolis, Harold S; Sejvar, James J

    2015-05-01

    Autochthonous dengue virus transmission has occurred in the continental United States with increased frequency during the last decade; the principal vector, Aedes aegypti, has expanded its geographic distribution in the southern United States. Dengue, a potentially fatal arboviral disease, is underreported, and US clinicians encountering patients with acute febrile illness consistent with dengue are likely to not be fully familiar with dengue diagnosis and management. Recently, investigators suggested that an outbreak of dengue likely occurred in Houston during 2003 based on retrospective laboratory testing of hospitalized cases with encephalitis and aseptic meningitis. Although certain aspects of the Houston testing results and argument for local transmission are doubtful, the report highlights the importance of prospective surveillance for dengue in Aedes-infested areas of the United States, the need for clinical training on dengue and its severe manifestations, and the need for laboratory testing in domestic patients presenting with febrile neurologic illness in these regions to include dengue. © The American Society of Tropical Medicine and Hygiene.

  15. Surveillance for Dengue and Dengue-Associated Neurologic Syndromes in the United States

    PubMed Central

    Waterman, Stephen H.; Margolis, Harold S.; Sejvar, James J.

    2015-01-01

    Autochthonous dengue virus transmission has occurred in the continental United States with increased frequency during the last decade; the principal vector, Aedes aegypti, has expanded its geographic distribution in the southern United States. Dengue, a potentially fatal arboviral disease, is underreported, and US clinicians encountering patients with acute febrile illness consistent with dengue are likely to not be fully familiar with dengue diagnosis and management. Recently, investigators suggested that an outbreak of dengue likely occurred in Houston during 2003 based on retrospective laboratory testing of hospitalized cases with encephalitis and aseptic meningitis. Although certain aspects of the Houston testing results and argument for local transmission are doubtful, the report highlights the importance of prospective surveillance for dengue in Aedes-infested areas of the United States, the need for clinical training on dengue and its severe manifestations, and the need for laboratory testing in domestic patients presenting with febrile neurologic illness in these regions to include dengue. PMID:25371183

  16. Dengue Virus Infection Differentially Regulates Endothelial Barrier Function over Time through Type I Interferon Effects

    PubMed Central

    Liu, Ping; Woda, Marcia; Ennis, Francis A.; Libraty, Daniel H.

    2013-01-01

    Background The morbidity and mortality resulting from dengue hemorrhagic fever (DHF) are largely caused by endothelial barrier dysfunction and a unique vascular leakage syndrome. The mechanisms that lead to the location and timing of vascular leakage in DHF are poorly understood. We hypothesized that direct viral effects on endothelial responsiveness to inflammatory and angiogenesis mediators can explain the DHF vascular leakage syndrome. Methods We used an in vitro model of human endothelium to study the combined effects of dengue virus (DENV) type 2 (DENV2) infection and inflammatory mediators on paracellular macromolecule permeability over time. Results Over the initial 72 h after infection, DENV2 suppressed tumor necrosis factor (TNF)–α–mediated hyperpermeability in human umbilical vein endothelial cell (HUVEC) monolayers. This suppressive effect was mediated by type I interferon (IFN). By 1 week, TNF-α stimulation of DENV2-infected HUVECs synergistically increased cell cycling, angiogenic changes, and macromolecule permeability. This late effect could be prevented by the addition of exogenous type I IFN. Conclusions DENV infection of primary human endothelial cells differentially modulates TNF-α–driven angiogenesis and hyperpermeability over time. Type I IFN plays a central role in this process. Our findings suggest a rational model for the DHF vascular leakage syndrome. PMID:19530939

  17. Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication

    PubMed Central

    Castrillón-Betancur, Juan Camilo; Urcuqui-Inchima, Silvio

    2017-01-01

    BACKGROUND Dengue is considered one of the world’s most important mosquito-borne diseases. MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that play an important role in the regulation of gene expression in eukaryotes. Although miRNAs possess antiviral activity against many mammalian-infecting viruses, their involvement in Dengue virus (DENV) replication remains poorly understood. OBJECTIVE To determine the role of miR-484 and miR-744 in DENV infection and to examine whether DENV infection alters the expression of both miRNAs. METHODS We used bioinformatics tools to explore the relationship between DENV and cellular miRNAs. We then overexpressed miR-484 or miR-744 in Vero cells to examine their role in DENV replication using flow cytometry, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), and western blotting. FINDINGS We found several cellular miRNAs that target a conserved region within the 3′ untranslated region (3′ UTR) of the genome of the four DENV serotypes and found that overexpression of miR-484 or miR-744 inhibits infection by DENV-1 to DENV-4. Furthermore, we observed that DENV RNA might be involved in the downregulation of endogenous miR-484 and miR-744. CONCLUSION Our study identifies miR-484 and miR-744 as two possible restriction host factors against DENV infection. However, further studies are needed to directly verify whether miR-484 and miR-744 both have an anti-DENV effect in vivo. PMID:28327787

  18. Dengue Virus Infections among Haitian and Expatriate Non-governmental Organization Workers — Léogane and Port-au-Prince, Haiti, 2012

    PubMed Central

    Salyer, Stephanie J.; Ellis, Esther M.; Salomon, Corvil; Bron, Christophe; Juin, Stanley; Hemme, Ryan R.; Hunsperger, Elizabeth; Jentes, Emily S.; Magloire, Roc; Tomashek, Kay M.; Desormeaux, Anne Marie; Muñoz-Jordán, Jorge L.; Etienne, Lesly; Beltran, Manuela; Sharp, Tyler M.; Moffett, Daphne; Tappero, Jordan; Margolis, Harold S.; Katz, Mark A.

    2014-01-01

    In October 2012, the Haitian Ministry of Health and the US CDC were notified of 25 recent dengue cases, confirmed by rapid diagnostic tests (RDTs), among non-governmental organization (NGO) workers. We conducted a serosurvey among NGO workers in Léogane and Port-au-Prince to determine the extent of and risk factors for dengue virus infection. Of the total 776 staff from targeted NGOs in Léogane and Port-au-Prince, 173 (22%; 52 expatriates and 121 Haitians) participated. Anti-dengue virus (DENV) IgM antibody was detected in 8 (15%) expatriates and 9 (7%) Haitians, and DENV non-structural protein 1 in one expatriate. Anti-DENV IgG antibody was detected in 162 (94%) participants (79% of expatriates; 100% of Haitians), and confirmed by microneutralization testing as DENV-specific in 17/34 (50%) expatriates and 42/42 (100%) Haitians. Of 254 pupae collected from 68 containers, 65% were Aedes aegypti; 27% were Ae. albopictus. Few NGO workers reported undertaking mosquito-avoidance action. Our findings underscore the risk of dengue in expatriate workers in Haiti and Haitians themselves. PMID:25356592

  19. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes.

    PubMed

    Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J

    2007-01-30

    To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.

  20. 75 FR 6211 - Prospective Grant of Exclusive License: Purified Inactivated Dengue Tetravalent Vaccine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Exclusive License: Purified Inactivated Dengue Tetravalent Vaccine Containing a Common 30 Nucleotide Deletion in the 3'-UTR of Dengue Types 1,2,3, and 4 AGENCY: National Institutes of Health, Public Health...., ``Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue Viruses''-- European Patent...

  1. Health Beliefs and Practices Related to Dengue Fever: A Focus Group Study

    PubMed Central

    Wong, Li Ping; AbuBakar, Sazaly

    2013-01-01

    Background This qualitative study aimed to provide an in-depth understanding of the meaning of dengue fever (DF) amongst people living in a dengue endemic region, dengue prevention and treatment-seeking behaviours. The Health Belief Model was used as a framework to explore and understand dengue prevention behaviours. Methods A total of 14 focus group discussions were conducted with 84 Malaysian citizens of different socio-demographic backgrounds between 16th December, 2011 and 12th May, 2012. Results The study revealed that awareness about DF and prevention measures were high. The pathophysiology of dengue especially dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) were rarely known; as a result, it was seen as deadly by some but was also perceived as easily curable by others without a basis of understanding. Young adults and elderly participants had a low perception of susceptibility to DF. In general, the low perceived susceptibility emerged as two themes, namely a perceived natural ability to withstand infection and a low risk of being in contact with the dengue virus vector, Aedes spp. mosquitoes. The barriers to sustained self-prevention against dengue prevention that emerged in focus groups were: i) lack of self-efficacy, ii) lack of perceived benefit, iii) low perceived susceptibility, and iv) unsure perceived susceptibility. Low perceived benefit of continued dengue prevention practices was a result of lack of concerted action against dengue in their neighborhood. Traditional medical practices and home remedies were widely perceived and experienced as efficacious in treating DF. Conclusion Behavioural change towards attaining sustainability in dengue preventive practices may be enhanced by fostering comprehensive knowledge of dengue and a change in health beliefs. Wide use of unconventional therapy for DF warrants the need to enlighten the public to limit their reliance on unproven alternative treatments. PMID:23875045

  2. A Comprehensive Entomological, Serological and Molecular Study of 2013 Dengue Outbreak of Swat, Khyber Pakhtunkhwa, Pakistan

    PubMed Central

    Khan, Jehangir; Khan, Inamullah; Amin, Ibne

    2016-01-01

    Background Aedes aegypti and Aedes albopictus play a fundamental role in transmission of dengue virus to humans. A single infected Aedes mosquito is capable to act as a reservoir/amplifier host for dengue virus and may cause epidemics via horizontal and vertical modes of dengue virus (DENV) transmission. The present and future dengue development can be clarified by understanding the elements which help the dissemination of dengue transmission. The current study deals with molecular surveillance of dengue in addition to ecological and social context of 2013 dengue epidemics in Swat, Pakistan. Methods Herein, we reported dengue vectors surveillance in domestic and peridomistic containers in public and private places in 7 dengue epidemic-prone sites in District Swat, Pakistan from July to November 2013. Using the Flaviviruses genus-specific reverse transcriptase (RT) semi nested-PCR assay, we screened blood samples (N = 500) of dengue positive patients, 150 adult mosquito pools and 25 larval pools. Results The 34 adult and 7 larval mosquito pools were found positive. The adult positive pools comprised 30 pools of Ae. aegypti and 4 pools of Ae. albopictus, while among the 7 larval pools, 5 pools of Ae. aegypti and 2 pools of Ae. albopictus were positive. The detected putative genomes of dengue virus were of DENV-2 (35% in 14 mosquito pools & 39% in serum) and DENV-3 (65% in 27 mosquito pools & 61% in serum). The higher vector density and dengue transmission rate was recorded in July and August (due to favorable conditions for vector growth). About 37% of Ae. aegpti and 34% Ae. albopictus mosquitoes were collected from stagnant water in drums, followed by drinking water tanks (23% & 26%), tires (20% & 18%) and discarded containers (10% & 6%). Among the surveyed areas, Saidu was heavily affected (26%) by dengue followed by Kanju (20% and Landikas (12%). The maximum infection was observed in the age group of <15 (40%) followed by 15–45 (35%) and >45 (25%) years and was

  3. Diversity of dengue virus-3 genotype III in Jeddah, Saudi Arabia.

    PubMed

    Hashem, Anwar M; Sohrab, Sayed S; El-Kafrawy, Sherif A; Abd-Alla, Adly M M; El-Ela, Saeid Abo; Abujamel, Turki S; Hassan, Ahmed M; Farraj, Suha A; Othman, Noura A; Charrel, Remi N; Azhar, Esam I

    2018-07-01

    Dengue is the most important arboviral disease in tropical and subtropical countries. Dispersal of the vector and an increase in migratory flow between countries have led to large epidemics and severe clinical outcomes. Over the past 20 years, dengue epidemics have become more wide-spread and frequent. Previous studies have shown that dengue is endemic in Jeddah, Makkah and Al-Madinah in western Saudi Arabia as well as in Jazan region in the southern part of the country. The four serotypes of dengue virus (DENV) have been reported from western Saudi Arabia. It has been suggested that pilgrims could play a significant and unique role in DENV-1 and DENV-2 introduction into Saudi Arabia, especially in the cities of Jeddah, Makkah and Al-Madinah during Hajj and Umrah seasons. However, only limited data on DENV-3 in Saudi Arabia are available. All available DENV-3 sequences published and unpublished from Saudi Arabia and other countries were retrieved from Genbank and gene sequence repository and phylogenetically analyzed to examine the diversity of DENV-3 into the city of Jeddah. Based on the analysis of the envelope gene and non-structural 1 (E/NS1) junction sequences, we show that there were at least four independent introductions of DENV-3, all from genotype III into Jeddah. The first introduction was most probably before 1997 as Saudi virus isolates from 1997 formed a cluster without any close relationship to other globally circulating isolates, suggesting their local circulation from previous introduction events. Two introductions were most probably in 2004 with isolates closely-related to isolates from Africa and India (Asia), in addition to another introduction in 2014 with isolates clustering with those from Singapore (Asia). Our data shows that only genotype III isolates of DENV-3 are circulating in Jeddah and highlights the potential role of pilgrims in DENV-3 importation into western Saudi Arabia and subsequent exportation to their home countries during Hajj

  4. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India

    PubMed Central

    Chandele, Anmol; Sewatanon, Jaturong; Gunisetty, Sivaram; Singla, Mohit; Onlamoon, Nattawat; Akondy, Rama S.; Kissick, Haydn Thomas; Nayak, Kaustuv; Reddy, Elluri Seetharami; Kalam, Haroon; Kumar, Dhiraj; Verma, Anil; Panda, HareKrushna; Wang, Siyu; Angkasekwinai, Nasikarn; Pattanapanyasat, Kovit; Chokephaibulkit, Kulkanya; Lodha, Rakesh; Kabra, Sushil; Ahmed, Rafi

    2016-01-01

    ABSTRACT Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR+ CD38+ and HLA-DR− CD38+ effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR+ CD38+ subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue. IMPORTANCE Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains

  5. [Dengue in Panama, 1993].

    PubMed

    Quiroz, E; Ortega, M; Guzmán, M G; Vázquez, S; Pelegrino, J L; Campos, C; Bayard, V; Vázquez, M; Kourí, G

    1997-01-01

    Up to 1993, Panama was the only country in Central America where the autochthonous transmission of dengue virus had been detected without experimenting an explosive epidemic despite being reinfected with the Aedes aegypti mosquito since 1985. The characteristics of this first outbreak reported on November 19, 1993, are described in this paper. It is shown that even when there is a Program for the Surveillance and Control of Dengue, which considers low levels of Aedes aegypti infection and a system for the early detection of the virus, the epidemics appear if the community does not take an active part as it happened in 1994, 1995, and 1996. The 14 cases reported were located in an area under the responsibility of the Health Center in San Isidro, Belisario Porras, Special District of San Miguelito, in Panama City (13 cases in 4 blocks of the sector of Santa Librada and 1 case in San Isidro Valley). 3 patients were under 15 and 8 over 36, the other 3 were between 15 and 24.9 were females. The dengue type 2 virus was isolated in 3 patients. The presence of IgM and IgG antibodies to dengue was demonstrated in 11 patients, whereas in 8 over 20 it was observed a secondary type answer. According to the clinical picture, the epidemic was classified as dengue fever. The seroepidemiological survey carried out in the sector of Santa Librada and its surroundings 5 months after the appearance of the symptoms in the first case showed a prevalence of antibodies to dengue of 5.7% (46/802), mainly among individuals over 44. These results confirmed that the outbreak was geographically limited.

  6. A model of immunomodulatory for dengue infection mm

    NASA Astrophysics Data System (ADS)

    Zulfa, Annisa; Handayani, Dewi; Nuraini, Nuning

    2018-03-01

    An immunomodulatory model for dengue infection is constructed in this paper. This study focuses on T-cell compartments and B cells that are immune cells involved in the dengue infection process. Dengue virus-infected monocyte cells release interferons to signal T-cells to activate B-cells and produce antibodies. Immunomodulator acts as a treatment control and aims to increase the numbers of antibodies so it is expected to reduce the number of infected monocyte cells by dengue virus. Numerical simulation shows that the greater the rate of f (t) the immune cells will be stimulated to suppress the number of infected cells.

  7. Structure of acidic pH dengue virus showing the fusogenic glycoprotein trimers.

    PubMed

    Zhang, Xinzheng; Sheng, Ju; Austin, S Kyle; Hoornweg, Tabitha E; Smit, Jolanda M; Kuhn, Richard J; Diamond, Michael S; Rossmann, Michael G

    2015-01-01

    Flaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However, the dynamic nature of the fusogenic trimer has made the determination of its structure a challenge. Here we have used Fab fragments of the neutralizing antibody DV2-E104 to stop the conformational change of dengue virus at an intermediate stage of the fusion process. Using cryo-electron microscopy, we show that in this intermediate stage, the E glycoproteins form 60 trimers that are similar to the predicted "open" fusogenic trimer. The structure of a dengue virus has been captured during the formation of fusogenic trimers. This was accomplished by binding Fab fragments of the neutralizing antibody DV2-E104 to the virus at neutral pH and then decreasing the pH to 5.5. These trimers had an "open" conformation, which is distinct from the "closed" conformation of postfusion trimers. Only two of the three E proteins within each spike are bound by a Fab molecule at domain III. Steric hindrance around the icosahedral 3-fold axes prevents binding of a Fab to the third domain III of each E protein spike. Binding of the DV2-E104 Fab fragments prevents domain III from rotating by about 130° to the postfusion orientation and thus precludes the stem region from "zipping" together the three E proteins along the domain II boundaries into the "closed" postfusion conformation, thus inhibiting fusion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Simultaneous detection and serotyping of dengue infection using single tube multiplex CDC Dengue Real-Time RT-PCR from India.

    PubMed

    Sharma, Shashi; Tandel, Kundan; Danwe, Surabhi; Bhatt, Puneet; Dash, P K; Ranjan, Praveer; Rathi, K R; Gupta, Rajiv Mohan; Parida, M M

    2018-03-01

    Four antigenically different dengue virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) are known to cause infections in humans. Some of these are known to cause more severe disease than the others. Chances for developing Dengue hemorrhagic fever-dengue shock syndrome (DHF-DSS) increases significantly with history of previous infection with one of the four serotypes. Therefore, early diagnosis, serotyping and providing early warning of dengue fever epidemics to concerned authorities becomes very important for better patient outcome and to curb the rapid spread in the community. During the 2014 outbreak, a total of 100 samples from suspected cases of dengue were collected. NS1 antigen based rapid test was used for serological diagnosis. Dengue complex one step reverse transcription-polymerase chain reaction was performed to look for presence of viral RNA. Single tube multiplex RT-PCR was also performed to look for infecting serotype. CDC Dengue Multiplex Real Time PCR assay was performed for rapid diagnosis and simultaneous serotyping of the dengue virus. Out of the 100 samples screened, 69 were found to be positive by NS1Ag Rapid test. 34 samples were found positive by dengue consensus RT-PCR assay. 22 samples were found to be positive by single tube Dengue multiplex RT-PCR assay. Serotype DEN-2 was present in maximum numbers followed by DEN-3. 44 samples were found positive by DENV CDC Multiplex Real time PCR assay. DEN-2 was found in maximum numbers followed by DEN-1. Dengue remains to be an important health problem in India and across the globe. Few serotypes of dengue are more dangerous than the others. Rapid diagnosis and serotyping remains the key for better patient management and prevention of disease spreading in the community. Highly sensitive, specific and rapid CDC real time RT-PCR assay was found to be most promising tool among all available molecular diagnostic methods. This will serve a rapid and reliable simultaneous dengue virus detection as well

  9. Early Clinical Features of Dengue Virus Infection in Nicaraguan Children: A Longitudinal Analysis

    PubMed Central

    Biswas, Hope H.; Ortega, Oscar; Gordon, Aubree; Standish, Katherine; Balmaseda, Angel; Kuan, Guillermina; Harris, Eva

    2012-01-01

    Background Tens of millions of dengue cases and approximately 500,000 life-threatening complications occur annually. New tools are needed to distinguish dengue from other febrile illnesses. In addition, the natural history of pediatric dengue early in illness in a community-based setting has not been well-defined. Methods Data from the multi-year, ongoing Pediatric Dengue Cohort Study of approximately 3,800 children aged 2–14 years in Managua, Nicaragua, were used to examine the frequency of clinical signs and symptoms by day of illness and to generate models for the association of signs and symptoms during the early phase of illness and over the entire course of illness with testing dengue-positive. Odds ratios (ORs) and 95% confidence intervals were calculated using generalized estimating equations (GEE) for repeated measures, adjusting for age and gender. Results One-fourth of children who tested dengue-positive did not meet the WHO case definition for suspected dengue. The frequency of signs and symptoms varied by day of illness, dengue status, and disease severity. Multivariable GEE models showed increased odds of testing dengue-positive associated with fever, headache, retro-orbital pain, myalgia, arthralgia, rash, petechiae, positive tourniquet test, vomiting, leukopenia, platelets ≤150,000 cells/mL, poor capillary refill, cold extremities and hypotension. Estimated ORs tended to be higher for signs and symptoms over the course of illness compared to the early phase of illness. Conclusions Day-by-day analysis of clinical signs and symptoms together with longitudinal statistical analysis showed significant associations with testing dengue-positive and important differences during the early phase of illness compared to the entire course of illness. These findings stress the importance of considering day of illness when developing prediction algorithms for real-time clinical management. PMID:22413033

  10. Economic Burden of Dengue Virus Infection at the Household Level among Residents of Puerto Maldonado, Peru

    PubMed Central

    Salmon-Mulanovich, Gabriela; Blazes, David L.; Lescano, Andres G.; Bausch, Daniel G.; Montgomery, Joel M.; Pan, William K.

    2015-01-01

    Dengue virus (DENV) was reintroduced to Peru in the 1990s and has been reported in Puerto Maldonado (population ~65,000) in the Peruvian southern Amazon basin since 2000. This region also has the highest human migration rate in the country, mainly from areas not endemic for DENV. The objective of this study was to assess the proportion of household income that is diverted to costs incurred because of dengue illness and to compare these expenses between recent migrants (RMs) and long-term residents (LTRs). We administered a standardized questionnaire to persons diagnosed with dengue illness at Hospital Santa Rosa in Puerto Maldonado from December 2012 to March 2013. We compared direct and indirect medical costs between RMs and LTRs. A total of 80 participants completed the survey, of whom 28 (35%) were RMs and 52 (65%) were LTRs. Each dengue illness episode cost the household an average of US$105 (standard deviation [SD] = 107), representing 24% of their monthly income. Indirect costs were the greatest expense (US$56, SD = 87), especially lost wages. The proportion of household income diverted to dengue illness did not differ significantly between RM and LTR households. The study highlights the significant financial burden incurred by households when a family member suffers dengue illness. PMID:26217040

  11. Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus.

    PubMed

    Soares, Tatiane Sanches; Rodriguez Gonzalez, Boris Luis; Torquato, Ricardo José Soares; Lemos, Francisco Jose Alves; Costa-da-Silva, André L; Capurro Guimarães, Margareth de Lara; Tanaka, Aparecida Sadae

    2018-01-01

    During feeding with blood meal, female Aedes aegypti can transmit infectious agents, such as dengue, yellow fever, chikungunya and Zika viruses. Dengue virus causes human mortality in tropical regions of the world, and there is no specific treatment or vaccine with maximum efficiency being used for these infections. In the vector-virus interaction, the production of several molecules is modulated by both mosquitoes and invading agents. However, little information is available about these molecules in the Ae. aegypti mosquito during dengue infection. Inhibitors of the pacifastin family have been described to participate in the immune response of insects and Pac2 is the only gene of this family present in Ae. aegypti being then chosen for investigation. Pac2 was expressed in E. coli, purified and analyzed by mass spectrometry and SDS-PAGE. The Pac2 transcript was detected by qPCR, and its protein levels were assessed by Western blotting. The inhibitory activity of Pac2 was measured using its K i , IC 50 and zymography. Mosquito infections with DENV were introduced with the Brazilian ACS-46 DENV-2 strain propagated in C6/36 cells. In the present work, we showed that it is possibly involved in the interaction of the mosquitoes with the dengue virus. The Pac2 transcript was detected in larvae and in both the salivary gland and midgut of Ae. aegypti females, while the native protein was identified in females 3 h post-blood meal. Pac2 is a strong inhibitor of trypsin-like and thrombin-like proteases, which are present in 4th instar larvae midgut and females 24 h after blood meal. During DENV infection, up regulation of Pac2 expression occurs in the salivary gland and midgut. Pac2 is the first Pacifastin inhibitor member described in mosquitoes. Our results suggest that Pac2 acts on mosquito serine proteases, mainly the trypsin-like type, and is under transcriptional control by virus infection signals to allow its survival in the vector or by the mosquito as a defense

  12. Dengue disease status in Chennai (2006-2008): A retrospective analysis

    PubMed Central

    Gunasekaran, P.; Kaveri, K.; Mohana, S.; Arunagiri, Kavita; Babu, B.V. Suresh; Priya, P. Padma; Kiruba, R.; Kumar, V. Senthil; Sheriff, A. Khaleefathullah

    2011-01-01

    Background & objectives: Dengue is one of the most important Arboviral diseases in man with outbreaks in Southeast Asia and India. We report a retrospective analysis of the dengue positivity in the referred samples for three years period (2006 to 2008) at the Department of Virology, King Institute of Preventive Medicine, Chennai, Tamil Nadu, India. Methods: Serum samples from 1593 suspected cases (968 male and 625 female) were obtained. Of the 1593 cases screened, 1204 (75.5%) were paediatric cases and 389 (24.4%) adults. The samples were subjected to MAC ELISA and IgG ELISA. Results: Of the 968 patients, 686 (43.0%) were positive, of which 579 (84.0%) were in the paediatric age group (<14 yr) and 107 (15.5%) were adults. The IgM positivity being 356 (36.7%) in males and 330 (52.8%) in females. Of the 686 positives, 113 (16.47%) were positive for both IgM and IgG denoting secondary infection. There was a noticeable increased occurrence during the cooler months and during the monsoon and post-monsoon months. Interpretation & conclusions: The dengue IgM seropositivity among the suspected cases indicates active dengue virus activity. Increase in the probable secondary infections especially in a country like ours where multiple serotypes are prevalent raises concern over probable increase in the incidence of the more serious DHF/DSS. Studies need to be done to identify circulating serotypes of dengue virus to design preventive strategies. PMID:21441688

  13. Prospects for dengue vaccines for travelers

    PubMed Central

    2016-01-01

    Travel-acquired dengue cases have been increasing as the overall global dengue burden has expanded. In Korea, imported dengue cases have been reported since 2000 when it first became a notifiable disease. During the first four months of 2016, three times more dengue cases were reported in Korea than during the same period the previous year. A safe and efficacious vaccine for travelers would be beneficial to prevent dengue disease in individual travelers and potentially decrease the risk of virus spread to non-endemic areas. Here, we summarize the characteristics of dengue vaccines for travelers and review dengue vaccines currently licensed or in clinical development. PMID:27489798

  14. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan.

    PubMed

    Tsai, Cheng-Hui; Chen, Tien-Huang; Lin, Cheo; Shu, Pei-Yun; Su, Chien-Ling; Teng, Hwa-Jen

    2017-11-07

    We evaluated the impact of temperature and Wolbachia infection on vector competence of the local Aedes aegypti and Ae. albopictus populations of southern Taiwan in the laboratory. After oral infection with dengue serotype 1 virus (DENV-1), female mosquitoes were incubated at temperatures of 10, 16, 22, 28 and 34 °C. Subsequently, salivary gland, head, and thorax-abdomen samples were analyzed for their virus titer at 0, 5, 10, 15, 20, 25 and 30 days post-infection (dpi) by real-time RT-PCR. The results showed that Ae. aegypti survived significantly longer and that dengue viral genome levels in the thorax-abdomen (10 3.25 ± 0.53 -10 4.09 ± 0.71 PFU equivalents/ml) and salivary gland samples (10 2.67 ± 0.33 -10 3.89 ± 0.58 PFU equivalents/ml) were significantly higher at high temperature (28-34 °C). The survival of Ae. albopictus was significantly better at 16 or 28 °C, but the virus titers from thorax-abdomen (10 0.70 -10 2.39 ± 1.31 PFU equivalents/ml) and salivary gland samples (10 0.12 ± 0.05 -10 1.51 ± 0.31 PFU equivalents/ml) were significantly higher at 22-28 °C. Within viable temperature ranges, the viruses were detectable after 10 dpi in salivary glands and head tissues in Ae. aegypti and after 5-10 dpi in Ae. albopictus. Vector competence was measured in Ae. albopictus with and without Wolbachia at 28 °C. Wolbachia-infected mosquitoes survived significantly better and carried lower virus titers than Wolbachia-free mosquitoes. Wolbachia coinfections (92.8-97.2%) with wAlbA and wAlbB strains were commonly found in a wild population of Ae. albopictus. In southern Taiwan, Ae. aegypti is the main vector of dengue and Ae. albopictus has a non-significant role in the transmission of dengue virus due to the high prevalence of Wolbachia infection in the local mosquito population of southern Taiwan.

  15. Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti.

    PubMed

    Ye, Yixin H; Chenoweth, Stephen F; Carrasco, Alison M; Allen, Scott L; Frentiu, Francesca D; van den Hurk, Andrew F; Beebe, Nigel W; McGraw, Elizabeth A

    2016-11-01

    Dengue fever is the most common arboviral disease worldwide. It is caused by dengue viruses (DENV) and the mosquito Aedes aegypti is its primary vector. One of the most powerful determinants of a mosquito's ability to transmit DENV is the length of the extrinsic incubation period (EIP), the time it takes for a virus to be transmitted by a mosquito after consuming an infected blood meal. Here, we repeatedly measured DENV load in the saliva of individual mosquitoes over their lifetime and used this in combination with a breeding design to determine the extent to which EIP might respond to the evolutionary forces of drift and selection. We demonstrated that genetic variation among mosquitoes contributes significantly to transmission potential and length of EIP. We reveal that shorter EIP is genetically correlated with reduced mosquito lifespan, highlighting negative life-history consequences for virus-infected mosquitoes. This work highlights the capacity for local genetic variation in mosquito populations to evolve and to dramatically affect the nature of human outbreaks. It also provides the impetus for isolating mosquito genes that determine EIP. More broadly, our dual experimental approach offers new opportunities for studying the evolutionary potential of transmission traits in other vector/pathogen systems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    PubMed

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.

  17. Frequency and Clinical Manifestations of Dengue in Urban Medellin, Colombia

    PubMed Central

    Restrepo, Berta Nelly; Beatty, Mark E.; Goez, Yenny; Ramirez, Ruth E.; Letson, G. William; Diaz, Francisco J.; Piedrahita, Leidy Diana; Osorio, Jorge E.

    2014-01-01

    A dengue fever surveillance study was conducted at three medical facilities located in the low-income district of San Javier in Medellin, Colombia. During March 2008 to 2009, 781 patients with fever regardless of chief complaint were recruited for acute dengue virus infection testing. Of the 781 tested, 73 (9.3%) were positive for dengue infection. Serotypes DENV-2 (77%) and -3 (23%) were detected by PCR. One patient met the diagnostic criteria for dengue hemorrhagic fever. Only 3 out of 73 (4.1%) febrile subjects testing positive for dengue infection were diagnosed with dengue fever by the treating physician. This study confirms dengue virus as an important cause of acute febrile illness in Medellin, Colombia, but it is difficult to diagnose without dengue diagnostic testing. PMID:24987421

  18. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses.

    PubMed

    Kampmann, Thorsten; Yennamalli, Ragothaman; Campbell, Phillipa; Stoermer, Martin J; Fairlie, David P; Kobe, Bostjan; Young, Paul R

    2009-12-01

    The flaviviruses comprise a large group of related viruses, many of which pose a significant global human health threat, most notably the dengue viruses (DENV), West Nile virus (WNV) and yellow fever virus (YFV). Flaviviruses enter host cells via fusion of the viral and cellular membranes, a process mediated by the major viral envelope protein E as it undergoes a low pH induced conformational change in the endosomal compartment of the host cell. This essential entry stage in the flavivirus life cycle provides an attractive target for the development of antiviral agents. We performed an in silico docking screen of the Maybridge chemical database within a previously described ligand binding pocket in the dengue E protein structure that is thought to play a key role in the conformational transitions that lead to membrane fusion. The biological activity of selected compounds identified from this screen revealed low micromolar antiviral potency against dengue virus for two of the compounds. Our results also provide the first evidence that compounds selected to bind to this ligand binding site on the flavivirus E protein abrogate fusion activity. Interestingly, one of these compounds also has antiviral activity against both WNV (kunjin strain) and YFV.

  19. Dengue in India

    PubMed Central

    Gupta, Nivedita; Srivastava, Sakshi; Jain, Amita; Chaturvedi, Umesh C.

    2012-01-01

    Dengue virus belongs to family Flaviviridae, having four serotypes that spread by the bite of infected Aedes mosquitoes. It causes a wide spectrum of illness from mild asymptomatic illness to severe fatal dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Approximately 2.5 billion people live in dengue-risk regions with about 100 million new cases each year worldwide. The cumulative dengue diseases burden has attained an unprecedented proportion in recent times with sharp increase in the size of human population at risk. Dengue disease presents highly complex pathophysiological, economic and ecologic problems. In India, the first epidemic of clinical dengue-like illness was recorded in Madras (now Chennai) in 1780 and the first virologically proved epidemic of dengue fever (DF) occurred in Calcutta (now Kolkata) and Eastern Coast of India in 1963-1964. During the last 50 years a large number of physicians have treated and described dengue disease in India, but the scientific studies addressing various problems of dengue disease have been carried out at limited number of centres. Achievements of Indian scientists are considerable; however, a lot remain to be achieved for creating an impact. This paper briefly reviews the extent of work done by various groups of scientists in this country. PMID:23041731

  20. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus

    PubMed Central

    Barletta, Ana Beatriz Ferreira; Alves, Liliane Rosa; Nascimento Silva, Maria Clara L.; Sim, Shuzhen; Dimopoulos, George; Liechocki, Sally; Maya-Monteiro, Clarissa M.; Sorgine, Marcos H. Ferreira

    2016-01-01

    In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells – an immune responsive cell lineage – accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism. PMID:26887863

  1. Clinical and Virological Study of Dengue Cases and the Members of Their Households: The Multinational DENFRAME Project

    PubMed Central

    Dussart, Philippe; Baril, Laurence; Petit, Laure; Beniguel, Lydie; Quang, Luong Chan; Ly, Sowath; Azevedo, Raimunda do Socorro Silva; Meynard, Jean-Baptiste; Vong, Sirenda; Chartier, Loïc; Diop, Aba; Sivuth, Ong; Duong, Veasna; Thang, Cao Minh; Jacobs, Michael; Sakuntabhai, Anavaj; Nunes, Marcio Roberto Teixeira; Huong, Vu Ti Que; Buchy, Philippe; Vasconcelos, Pedro Fernando da Costa

    2012-01-01

    Background Dengue has emerged as the most important vector-borne viral disease in tropical areas. Evaluations of the burden and severity of dengue disease have been hindered by the frequent lack of laboratory confirmation and strong selection bias toward more severe cases. Methodology A multinational, prospective clinical study was carried out in South-East Asia (SEA) and Latin America (LA), to ascertain the proportion of inapparent dengue infections in households of febrile dengue cases, and to compare clinical data and biological markers from subjects with various dengue disease patterns. Dengue infection was laboratory-confirmed during the acute phase, by virus isolation and detection of the genome. The four participating reference laboratories used standardized methods. Principal Findings Among 215 febrile dengue subjects—114 in SEA and 101 in LA—28 (13.0%) were diagnosed with severe dengue (from SEA only) using the WHO definition. Household investigations were carried out for 177 febrile subjects. Among household members at the time of the first home visit, 39 acute dengue infections were detected of which 29 were inapparent. A further 62 dengue cases were classified at early convalescent phase. Therefore, 101 dengue infections were found among the 408 household members. Adding these together with the 177 Dengue Index Cases, the overall proportion of dengue infections among the study participants was estimated at 47.5% (278/585; 95% CI 43.5–51.6). Lymphocyte counts and detection of the NS1 antigen differed significantly between inapparent and symptomatic dengue subjects; among inapparent cases lymphocyte counts were normal and only 20% were positive for NS1 antigen. Primary dengue infection and a specific dengue virus serotype were not associated with symptomatic dengue infection. Conclusion Household investigation demonstrated a high proportion of household members positive for dengue infection, including a number of inapparent cases, the frequency of

  2. Association between sex, nutritional status, severity of dengue hemorrhagic fever, and immune status in infants with dengue hemorrhagic fever.

    PubMed

    Nguyen, Thanh Hung; Nguyen, Trong Lan; Lei, Huan-Yao; Lin, Yee-Shin; Le, Bich Lien; Huang, Kao-Jean; Lin, Chiou-Feng; Do, Quang Ha; Vu, Thi Que Huong; Lam, Thi My; Yeh, Trai-Ming; Huang, Jyh-Hsiung; Liu, Ching-Chuan; Halstead, Scott B

    2005-04-01

    The association between sex, nutritional status, and the severity of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), and immune status was investigated in 245 Vietnamese infants with predominantly primary infections with dengue virus. Male and female infants were at equal risk of developing DHF/DSS. However, infants of low height and weight for age were under-represented among DHF/DSS cases compared with 533 healthy baby clinic infant controls. Acute illness phase blood levels of selected cytokines (interferon-gamma and tumor necrosis factor-alpha) and serum levels of antibodies to dengue virus were elevated in the same range in male and female infants with DHF/DSS, as well as in infants with and without malnutrition.

  3. Vaccines and immunization strategies for dengue prevention

    PubMed Central

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  4. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia.

    PubMed

    Tian, Huaiyu; Sun, Zhe; Faria, Nuno Rodrigues; Yang, Jing; Cazelles, Bernard; Huang, Shanqian; Xu, Bo; Yang, Qiqi; Pybus, Oliver G; Xu, Bing

    2017-08-01

    The incidence of dengue has grown dramatically in recent decades worldwide, especially in Southeast Asia and the Americas with substantial transmission in 2014-2015. Yet the mechanisms underlying the spatio-temporal circulation of dengue virus (DENV) serotypes at large geographical scales remain elusive. Here we investigate the co-circulation in Asia of DENV serotypes 1-3 from 1956 to 2015, using a statistical framework that jointly estimates migration history and quantifies potential predictors of viral spatial diffusion, including socio-economic, air transportation and maritime mobility data. We find that the spread of DENV-1, -2 and -3 lineages in Asia is significantly associated with air traffic. Our analyses suggest the network centrality of air traffic hubs such as Thailand and India contribute to seeding dengue epidemics, whilst China, Cambodia, Indonesia, and Singapore may establish viral diffusion links with multiple countries in Asia. Phylogeographic reconstructions help to explain how growing air transportation networks could influence the dynamics of DENV circulation.

  5. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia

    PubMed Central

    Sun, Zhe; Faria, Nuno Rodrigues; Yang, Jing; Cazelles, Bernard; Huang, Shanqian; Xu, Bo; Yang, Qiqi; Pybus, Oliver G.; Xu, Bing

    2017-01-01

    The incidence of dengue has grown dramatically in recent decades worldwide, especially in Southeast Asia and the Americas with substantial transmission in 2014–2015. Yet the mechanisms underlying the spatio-temporal circulation of dengue virus (DENV) serotypes at large geographical scales remain elusive. Here we investigate the co-circulation in Asia of DENV serotypes 1–3 from 1956 to 2015, using a statistical framework that jointly estimates migration history and quantifies potential predictors of viral spatial diffusion, including socio-economic, air transportation and maritime mobility data. We find that the spread of DENV-1, -2 and -3 lineages in Asia is significantly associated with air traffic. Our analyses suggest the network centrality of air traffic hubs such as Thailand and India contribute to seeding dengue epidemics, whilst China, Cambodia, Indonesia, and Singapore may establish viral diffusion links with multiple countries in Asia. Phylogeographic reconstructions help to explain how growing air transportation networks could influence the dynamics of DENV circulation. PMID:28771468

  6. Dengue virus specific IgY provides protection following lethal dengue virus challenge and is neutralizing in the absence of inducing antibody dependent enhancement

    PubMed Central

    Williams, Katherine L.; Harris, Eva; Alvine, Travis D.; Henderson, Thomas; Schiltz, James; Nilles, Matthew L.; Bradley, David S.

    2017-01-01

    Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe disease manifestations that can occur following sequential infection with different dengue virus serotypes (DENV1-4). At present, there are no licensed therapies to treat DENV-induced disease. DHF and DSS are thought to be mediated by serotype cross-reactive antibodies that facilitate antibody-dependent enhancement (ADE) by binding to viral antigens and then Fcγ receptors (FcγR) on target myeloid cells. Using genetically engineered DENV-specific antibodies, it has been shown that the interaction between the Fc portion of serotype cross-reactive antibodies and FcγR is required to induce ADE. Additionally, it was demonstrated that these antibodies were as neutralizing as their non-modified variants, were incapable of inducing ADE, and were therapeutic following a lethal, antibody-enhanced infection. Therefore, we hypothesized that avian IgY, which do not interact with mammalian FcγR, would provide a novel therapy for DENV-induced disease. We demonstrate here that goose-derived anti-DENV2 IgY neutralized DENV2 and did not induce ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours following a lethal DENV2 infection. We were also able to demonstrate via epitope mapping that both full-length and alternatively spliced anti-DENV2 IgY recognized different epitopes, including epitopes that have not been previously identified. These observations provide evidence for the potential therapeutic applications of goose-derived anti-DENV2 IgY. PMID:28686617

  7. Dengue virus specific IgY provides protection following lethal dengue virus challenge and is neutralizing in the absence of inducing antibody dependent enhancement.

    PubMed

    Fink, Ashley L; Williams, Katherine L; Harris, Eva; Alvine, Travis D; Henderson, Thomas; Schiltz, James; Nilles, Matthew L; Bradley, David S

    2017-07-01

    Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe disease manifestations that can occur following sequential infection with different dengue virus serotypes (DENV1-4). At present, there are no licensed therapies to treat DENV-induced disease. DHF and DSS are thought to be mediated by serotype cross-reactive antibodies that facilitate antibody-dependent enhancement (ADE) by binding to viral antigens and then Fcγ receptors (FcγR) on target myeloid cells. Using genetically engineered DENV-specific antibodies, it has been shown that the interaction between the Fc portion of serotype cross-reactive antibodies and FcγR is required to induce ADE. Additionally, it was demonstrated that these antibodies were as neutralizing as their non-modified variants, were incapable of inducing ADE, and were therapeutic following a lethal, antibody-enhanced infection. Therefore, we hypothesized that avian IgY, which do not interact with mammalian FcγR, would provide a novel therapy for DENV-induced disease. We demonstrate here that goose-derived anti-DENV2 IgY neutralized DENV2 and did not induce ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours following a lethal DENV2 infection. We were also able to demonstrate via epitope mapping that both full-length and alternatively spliced anti-DENV2 IgY recognized different epitopes, including epitopes that have not been previously identified. These observations provide evidence for the potential therapeutic applications of goose-derived anti-DENV2 IgY.

  8. Molecular surveillance of Dengue in Sukabumi, West Java province, Indonesia.

    PubMed

    Nusa, Roy; Prasetyowati, Heni; Meutiawati, Febrina; Yohan, Benediktus; Trimarsanto, Hidayat; Setianingsih, Tri Yuli; Sasmono, R Tedjo

    2014-06-11

    Dengue is endemic and affects people in all Indonesian provinces. Increasing dengue cases have been observed every year in Sukabumi in West Java province. Despite the endemicity, limited data is available on the genetic of dengue viruses (DENV) circulating in the country. To understand the dynamics of dengue disease, we performed molecular and serological surveillance of dengue in Sukabumi. A total of 113 patients were recruited for this study. Serological data were obtained using anti-dengue IgM and IgG tests plus dengue NS1 antigen detection. Dengue detection and serotyping were performed using real-time RT-PCR. Viruses were isolated and the envelope genes were sequenced. Phylogenetic and evolutionary analyses were performed to determine the genotype of the viruses and their evolutionary rates. Real-time RT-PCR detected DENV in 25 (22%) of 113 samples. Serotyping revealed the predominance of DENV-2 (16 isolates, 64%), followed by DENV-1 (5 isolates, 20%), and DENV-4 (4 isolates, 16%). No DENV-3 was detected in the samples. Co-circulation of genotype I and IV of DENV-1 was observed. The DENV-2 isolates all belonged to the Cosmopolitan genotype, while DENV-4 isolates were grouped into genotype II. Overall, their evolutionary rates were similar to DENV from other countries. We revealed the distribution of DENV serotypes and genotypes in Sukabumi. Compared to data obtained from other cities in Indonesia, we observed the differing predominance of DENV serotypes but similar genotype distribution, where the infecting viruses were closely related with Indonesian endemic viruses isolated previously.

  9. Transovarial transmission of dengue 1 virus in Aedes aegypti larvae: real-time PCR analysis in a Brazilian city with high mosquito population density.

    PubMed

    Moraes, Alexsander; Cortelli, Filipe C; Miranda, Taís B; Aquino, Davi R; Cortelli, José R; Guimarães, Maria Isabel A; Costa, Fernando O; Cortelli, Sheila C

    2018-06-01

    Transovarial transmission is among the reported factors able to influence environmental maintenance of dengue virus (DENV). Endemic areas with active transmission of dengue are suitable for studying transovarial transmission. Brazil is a country where dengue is endemic and where DENV-1 is the most common disease-related virus serotype. This study aimed to identify transovarial transmission of DENV-1 in Aedes aegypti larvae by reverse-transcriptase nested real-time polymerase chain reaction. Between March and October 2016, Culicidae larvae were collected using traps in 3 locations in Taubaté, São Paulo, Brazil, which has a high occurrence of dengue. The collected larvae were sacrificed in the 3rd or 4th larval stage, classified, and stored at -20 °C. The A. aegypti larvae samples (n = 910) were separated into 91 pools of 10 specimens each from which RNA was extracted, reverse transcribed into cDNA, and analyzed by nested qPCR. None of the pools tested positive for DENV-1. Due to the absence of detectable virus in the evaluated samples, we concluded that transovarial transmission may not be the primary mechanism for maintenance of DENV-1 in this particular environment.

  10. Enhancing the sensitivity of Dengue virus serotype detection by RT-PCR among infected children in India.

    PubMed

    Ahamed, Syed Fazil; Vivek, Rosario; Kotabagi, Shalini; Nayak, Kaustuv; Chandele, Anmol; Kaja, Murali-Krishna; Shet, Anita

    2017-06-01

    Dengue surveillance relies on reverse transcription-polymerase chain reaction (RT-PCR), for confirmation of dengue virus (DENV) serotypes. We compared efficacies of published and modified primer sets targeting envelope (Env) and capsid-premembrane (C-prM) genes for detection of circulating DENV serotypes in southern India. Acute samples from children with clinically-diagnosed dengue were used for RT-PCR testing. All samples were also subjected to dengue serology (NS1 antigen and anti-dengue-IgM/IgG rapid immunochromatographic assay). Nested RT-PCR was performed on viral RNA using three methods targeting 654bp C-prM, 511bp C-prM and 641bp Env regions, respectively. RT-PCR-positive samples were validated by population sequencing. Among 171 children with suspected dengue, 121 were dengue serology-positive and 50 were dengue serology-negative. Among 121 serology-positives, RT-PCR detected 91 (75.2%) by CprM654, 72 (59.5%) by CprM511, and 74 (61.1%) by Env641. Among 50 serology-negatives, 10 (20.0%) were detected by CprM654, 12 (24.0%) by CprM511, and 11 (22.0%) by Env641. Overall detection rate using three methods sequentially was 82.6% (100/121) among serology-positive and 40.0% (20/50) among serology-negative samples; 6.6% (8/120) had co-infection with multiple DENV serotypes. We conclude that detection of acute dengue was enhanced by a modified RT-PCR method targeting the 654bp C-prM region, and further improved by using all three methods sequentially. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modeled Forecasts of Dengue Fever in San Juan, PR Using NASA Satellite Enhanced Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Morin, Cory; Quattrochi, Dale; Zavodsky, Bradley; Case, Jonathan

    2015-01-01

    Dengue virus is transmitted between humans and mosquitoes of the genus Aedes and causes approximately 96 million cases of disease (dengue fever) each year (Bhatet al. 2013). Symptoms of dengue fever include fever, headache, nausea, vomiting, and eye, muscle and joint pain (CDC). More sever manifestations such as abdominal pain, bleeding from nose and gums, vomiting of blood, and clammy skin occur in rare cases of dengue hemorrhagic fever (CDC). Dengue fever occurs throughout tropical and sub-tropical regions worldwide, however, the geographical range and size of epidemics is increasing. Weather and climate are drivers of dengue virus transmission dynamics (Morin et al. 2013) by affecting mosquito proliferation and the virus extrinsic incubation period (i.e. required time for the virus to replicate and disseminate within the mosquito before it can retransmit the virus).

  12. Isolation of infectious chikungunya virus and dengue virus using anionic polymer-coated magnetic beads.

    PubMed

    Patramool, Sirilaksana; Bernard, Eric; Hamel, Rodolphe; Natthanej, Luplertlop; Chazal, Nathalie; Surasombatpattana, Pornapat; Ekchariyawat, Peeraya; Daoust, Simon; Thongrungkiat, Supatra; Thomas, Frédéric; Briant, Laurence; Missé, Dorothée

    2013-10-01

    Mosquitoes-borne viruses are a major threat for human populations. Among them, chikungunya virus (CHIKV) and dengue virus (DENV) cause thousands of cases worldwide. The recent propagation of mosquito vectors competent to transmit these viruses to temperate areas increases their potential impact on susceptible human populations. The development of sensitive methods allowing the detection and isolation of infectious viruses is of crucial interest for determination of virus contamination in humans and in competent mosquito vectors. However, simple and rapid method allowing the capture of infectious CHIKV and DENV from samples with low viral titers useful for further genetic and functional characterization of circulating strains is lacking. The present study reports a fast and sensitive isolation technique based on viral particles adsorption on magnetic beads coated with anionic polymer, poly(methyl vinyl ether-maleic anhydrate) and suitable for isolation of infectious CHIKV and DENV from the four serotypes. Starting from quite reduced biological material, this method was accurate to combine with conventional detection techniques, including qRT-PCR and immunoblotting and allowed isolation of infectious particles without resorting to a step of cultivation. The use of polymer-coated magnetic beads is therefore of high interest for rapid detection and isolation of CHIKV and DENV from samples with reduced viral loads and represents an accurate approach for the surveillance of mosquito vector in area at risk for arbovirus outbreaks. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Dengue antibodies in blood donors.

    PubMed

    Ribas-Silva, Rejane Cristina; Eid, Andressa Ahmad

    2012-01-01

    Dengue is an urban arbovirus whose etiologic agent is a virus of the genus Flavorius with four distinct antigen serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) that is transmitted to humans through the bite of the mosquito Aedes aegypti. The Campo Mourão region in Brazil is endemic for dengue fever. OBTECTIVE: The aim of this study was to evaluate the presence of IgG and IgM antibodies specific to the four serotypes of dengue in donors of the blood donor service in the city of Campo Mourão. Epidemiological records were evaluated and 4 mL of peripheral blood from 213 blood donors were collected in tubes without anticoagulant. Serum was then obtained and immunochromatographic tests were undertaken (Imuno-Rápido Dengue IgM/IgG(TM)). Individuals involved in the study answered a social and epidemiological questionnaire on data which included age, gender and diagnosis of dengue. Only three (1.4%) of the 213 blood tests were positive for IgG anti-dengue antibodies. No donors with IgM antibody, which identifies acute infection, were identified. The results of the current analysis show that the introduction of quantitative or molecular serological methods to determine the presence of anti-dengue antibodies or the detection of the dengue virus in blood donors in endemic regions should be established so that the quality of blood transfusions is guaranteed.

  14. Dengue in the Americas and Southeast Asia: do they differ?

    PubMed

    Halstead, Scott B

    2006-12-01

    The populations of Southeast Asia (SE Asia) and tropical America are similar, and all four dengue viruses of Asian origin are endemic in both regions. Yet, during comparable 5-year periods, SE Asia experienced 1.16 million cases of dengue hemorrhagic fever (DHF), principally in children, whereas in the Americas there were 2.8 million dengue fever (DF) cases, principally in adults, and only 65,000 DHF cases. This review aims to explain these regional differences. In SE Asia, World War II amplified Aedes aegypti populations and the spread of dengue viruses. In the Americas, efforts to eradicate A. aegypti in the 1940s and 1950s contained dengue epidemics mainly to the Caribbean Basin. Cuba escaped infections with the American genotype dengue-2 and an Asian dengue-3 endemic in the 1960s and 1970s. Successive infections with dengue-1 and an Asian genotype dengue-2 resulted in the 1981 DHF epidemic. When this dengue-2 virus was introduced in other Caribbean countries, it encountered populations highly immune to the American genotype dengue-2. During the 1980s and 1990s, rapidly expanding populations of A. aegypti in Brazil permitted successive epidemics of dengue-1, -2, and -3. These exposures, however, resulted mainly in DF, with surprisingly few cases of DHF. The absence of high rates of severe dengue disease in Brazil, as elsewhere in the Americas, may be partly explained by the widespread prevalence of human dengue resistance genes. Understanding the nature and distribution of these genes holds promise for containing severe dengue. Future research on dengue infections should emphasize population-based designs.

  15. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication bymore » processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.« less

  16. Detection of dengue virus serotypes 1, 2 and 3 in selected regions of Kenya: 2011-2014.

    PubMed

    Konongoi, Limbaso; Ofula, Victor; Nyunja, Albert; Owaka, Samuel; Koka, Hellen; Makio, Albina; Koskei, Edith; Eyase, Fredrick; Langat, Daniel; Schoepp, Randal J; Rossi, Cynthia Ann; Njeru, Ian; Coldren, Rodney; Sang, Rosemary

    2016-11-04

    Dengue fever, a mosquito-borne disease, is associated with illness of varying severity in countries in the tropics and sub tropics. Dengue cases continue to be detected more frequently and its geographic range continues to expand. We report the largest documented laboratory confirmed circulation of dengue virus in parts of Kenya since 1982. From September 2011 to December 2014, 868 samples from febrile patients were received from hospitals in Nairobi, northern and coastal Kenya. The immunoglobulin M enzyme linked immunosorbent assay (IgM ELISA) was used to test for the presence of IgM antibodies against dengue, yellow fever, West Nile and Zika. Reverse transcription polymerase chain reaction (RT-PCR) utilizing flavivirus family, yellow fever, West Nile, consensus and sero type dengue primers were used to detect acute arbovirus infections and determine the infecting serotypes. Representative samples of PCR positive samples for each of the three dengue serotypes detected were sequenced to confirm circulation of the various dengue serotypes. Forty percent (345/868) of the samples tested positive for dengue by either IgM ELISA (14.6 %) or by RT-PCR (25.1 %). Three dengue serotypes 1-3 (DENV1-3) were detected by serotype specific RT-PCR and sequencing with their numbers varying from year to year and by region. The overall predominant serotype detected from 2011-2014 was DENV1 accounting for 44 % (96/218) of all the serotypes detected, followed by DENV2 accounting for 38.5 % (84/218) and then DENV3 which accounted for 17.4 % (38/218). Yellow fever, West Nile and Zika was not detected in any of the samples tested. From 2011-2014 serotypes 1, 2 and 3 were detected in the Northern and Coastal parts of Kenya. This confirmed the occurrence of cases and active circulation of dengue in parts of Kenya. These results have documented three circulating serotypes and highlight the need for the establishment of active dengue surveillance to continuously detect cases, circulating

  17. Transmission Dinamics Model Of Dengue Fever

    NASA Astrophysics Data System (ADS)

    Debora; Rendy; Rahmi

    2018-01-01

    Dengue fever is an endemic disease that is transmitted through the Aedes aegypti mosquito vector. The disease is present in more than 100 countries in America, Africa, and Asia, especially tropical countries. Differential equations can be used to represent the spread of dengue virus occurring in time intervals and model in the form of mathematical models. The mathematical model in this study tries to represent the spread of dengue fever based on the data obtained and the assumptions used. The mathematical model used is a mathematical model consisting of Susceptible (S), Infected (I), Viruses (V) subpopulations. The SIV mathematical model is then analyzed to see the solution behaviour of the system.

  18. Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities

    PubMed Central

    Peña-García, Víctor Hugo; Triana-Chávez, Omar; Mejía-Jaramillo, Ana María; Díaz, Francisco J.; Gómez-Palacio, Andrés; Arboleda-Sánchez, Sair

    2016-01-01

    Colombia is an endemic country for dengue fever where the four serotypes of virus dengue (DENV1–4) circulate simultaneously, and all types are responsible for dengue cases in the country. The control strategies are guided by entomological surveillance. However, heterogeneity in aedic indices is not well correlated with the incidence of the disease in cities such as Riohacha, Bello and Villavicencio. As an alternative, molecular detection of dengue virus in mosquitoes has been proposed as a useful tool for epidemiological surveillance and identification of serotypes circulating in field. We conducted a spatiotemporal fieldwork in these cities to capture adult mosquitoes to assess vector infection and explain the differences between Breteau indices and disease incidence. DENV infection in females and DENV serotype identification were evaluated and infection rates (IR) were estimated. The relationship between density, dengue cases and vector index was also estimated with logistic regression modeling and Pearson’s correlation coefficient. The lack of association between aedic indices and dengue incidence is in agreement with the weak associations between the density of the mosquitoes and their infection with DENV in the three cities. However, association was evident between the IR and dengue cases in Villavicencio. Furthermore, we found important negative associations between temperature and lag time from two to six weeks in Riohacha. We conclude that density of mosquitoes is not a good predictor of dengue cases. Instead, IR and temperature might explain better such heterogeneity. PMID:27455289

  19. The complex relationship between weather and dengue virus transmission in Thailand.

    PubMed

    Campbell, Karen M; Lin, C D; Iamsirithaworn, Sopon; Scott, Thomas W

    2013-12-01

    Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983-2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission "weather-space," basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27-29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively.

  20. Transmission spectroscopy of dengue viral infection Transmission spectroscopy of dengue viral infection

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Ahmed, M.; Rehman, A.; Nawaz, M.; Anwar, S.; Murtaza, S.

    2012-04-01

    We presented the rapid diagnostic test for dengue infection based on light spectrum of human blood. The transmission spectra of dengue infected whole blood samples have been recorded in ultra violet to near infrared range (400 - 800 nm) of about 30 conformed infected patients and compared to normal blood samples. Transmission spectra of dengue infected blood illustrate a strong band from 400 - 600 nm with prominant peaks at 540 and 580 nm, where is in case of normal blood below 600 nm, total absorption has been observed. These prominent peaks from 400 - 600 nm are characteristics of cells damage and dangue virus antibodies immunoglobulin G (IgG) and immunoglobulin M (IgM) produced against dengue antigen. The presented diagnostic method is non invasive, cost effective, easy and fast screening technique for dengue infected patients.