The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766
NASA Astrophysics Data System (ADS)
Zhang, J.; Qian, S. B.; Wang, S. M.; Sun, L. L.; Wu, Y.; Jiang, L. Q.
2018-03-01
Aims: We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods: The extraneous eclipses on the Kepler binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results: Three binaries with extraneous eclipses on the binary light curves were found and studied based on the Kepler observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13) and 0.0564(18)), similar mean primary densities (0.3264(42) ρ⊙ and 0.3019(28) ρ⊙), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.
Einstein observations of selected close binaries and shell stars
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Koch, R. H.; Plavec, M. J.
1984-01-01
Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.
MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team
2016-01-01
Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.
Finding False Positives Planet Candidates Due To Background Eclipsing Binaries in K2
NASA Astrophysics Data System (ADS)
Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey; DAVE Team
2016-06-01
We adapt the difference image centroid approach, used for finding background eclipsing binaries, to vet K2 planet candidates. Difference image centroids were used with great success to vet planet candidates in the original Kepler mission, where the source of a transit could be identified by subtracting images of out-of-transit cadences from in-transit cadences. To account for K2's roll pattern, we reconstruct out-of-transit images from cadences that are nearby in both time and spacecraft roll angle. We describe the method and discuss some K2 planet candidates which this method suggests are false positives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej
2014-02-01
We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levelsmore » in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.« less
KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gies, D. R.; Matson, R. A.; Guo, Z.
2015-12-15
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less
NASA Astrophysics Data System (ADS)
Zhang, Jia; Qian, Sheng-Bang; He, Jian-Duo
2017-02-01
Four candidates of eclipsing multiples, based on new extraneous eclipses found on Kepler binary light curves, are presented and studied. KIC 7622486 is a double eclipsing binary candidate with orbital periods of 2.2799960 d and 40.246503 d. The two binary systems do not eclipse each other in the line of sight, but there is mutual gravitational influence between them which leads to the small but definite eccentricity of 0.0035(0.0022) associated with the short 2.2799960 d period orbit. KIC 7668648 is a hierarchical quadruple system candidate, with two sets of solid 203 ± 5 d period extraneous eclipses and another independent set of extraneous eclipses. A clear and credible extraneous eclipse is found on the binary light curve of KIC 7670485 which makes it a triple system candidate. Two sets of extraneous eclipses with periods of about 390 d and 220 d are found on KIC 8938628 binary curves, which not only confirm the previous conclusion of the 388.5 ± 0.3 triple system, but also indicate new additional objects that make KIC 8938628 a hierarchical quadruple system candidate. The results from these four candidates will contribute to the field of eclipsing multiples.
Envelopes in eclipsing binary stars
NASA Technical Reports Server (NTRS)
Huang, S.
1972-01-01
Theoretical research on eclipsing binaries is presented. The specific areas of investigation are the following: (1) the relevance of envelopes to the study of the light curves of eclipsing binaries, (2) the disk envelope, and (3) the spherical envelope.
Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Shan, Yutong; Johnson, John A.; Morton, Timothy D.
2015-11-01
We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.
The first eclipsing binary catalogue from the MOA-II data base
NASA Astrophysics Data System (ADS)
Li, M. C. A.; Rattenbury, N. J.; Bond, I. A.; Sumi, T.; Bennett, D. P.; Koshimoto, N.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Evans, P.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yonehara, A.
2017-09-01
We present the first catalogue of eclipsing binaries in two MOA (Microlensing Observations in Astrophysics) fields towards the Galactic bulge, in which over 8000 candidates, mostly contact and semidetached binaries of periods <1 d, were identified. In this paper, the light curves of a small number of interesting candidates, including eccentric binaries, binaries with noteworthy phase modulations and eclipsing RS Canum Venaticorum type stars, are shown as examples. In addition, we identified three triple object candidates by detecting the light-travel-time effect in their eclipse time variation curves.
Eclipsing binary stars with a δ Scuti component
NASA Astrophysics Data System (ADS)
Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.
2017-09-01
Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.
Properties OF M31. V. 298 eclipsing binaries from PAndromeda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.-H.; Koppenhoefer, J.; Seitz, S.
2014-12-10
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detachedmore » eclipsing binaries spectroscopically and determine the distance to M31.« less
What we learn from eclipsing binaries in the ultraviolet
NASA Technical Reports Server (NTRS)
Guinan, Edward F.
1990-01-01
Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.
Eclipsing Stellar Binaries in the Galactic Center
NASA Astrophysics Data System (ADS)
Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham
2017-12-01
Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; McKeever, J.; Rawls, M. L.
2013-04-10
Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less
VizieR Online Data Catalog: Parameters of 529 Kepler eclipsing binaries (Kjurkchieva+, 2017)
NASA Astrophysics Data System (ADS)
Kjurkchieva, D.; Vasileva, D.; Atanasova, T.
2017-11-01
We reviewed the Kepler eclipsing binary catalog (Prsa et al. 2011, Cat. J/AJ/141/83; Slawson et al. 2011, Cat. J/AJ/142/160; Matijevic et al. 2012) to search for detached eclipsing binaries with eccentric orbits. (5 data files).
A1540-53, an eclipsing X-ray binary pulsator
NASA Technical Reports Server (NTRS)
Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Pravdo, S. H.; Saba, J. R.
1977-01-01
An eclipsing X-ray binary pulsator consistent with the location of A1540-53 has been observed. The source pulse period was 528.93 + or - 0.10 s. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 + or - 3 deg and the 4-hour transition to and from eclipse suggest an early-type giant or supergiant primary star.
Radial Velocities of 41 Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.
2017-12-01
Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.
A1540-53, an eclipsing X-ray binary pulsator
NASA Technical Reports Server (NTRS)
Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Saba, J. R.; Serlemitsos, P. J.
1977-01-01
An eclipsing X-ray binary pulsator consistent with the location of A1540-53 was observed. The source pulse period was 528.93 plus or minus 0.10 seconds. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 deg plus or minus 3 deg and the 4 h transition to and from eclipse suggest an early type, giant or supergiant, primary star.
A Photometric Study of the Eclipsing Binary Star PY Boötis
NASA Astrophysics Data System (ADS)
Michaels, E. J.
2016-12-01
Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.
A spectrum synthesis program for binary stars
NASA Technical Reports Server (NTRS)
Linnell, Albert P.; Hubeny, Ivan
1994-01-01
A new program produces synthetic spectra of binary stars at arbitrary values of orbital longitude, including longitudes of partial or complete eclipse. The stellar components may be distorted, either tidally or rotationally, or both. Either or both components may be rotating nonsynchronously. We illustrate the program performance with two cases: EE Peg, an eclipsing binary with small distortion, and SX Aur, an eclipsing binary that is close to contact.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-03-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.
Steffen, J. H.; Quinn, S. N.; Borucki, W. J.; ...
2011-10-01
We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017M circle-dot) and the orbital parametersmore » of the binary about the central star.« less
How I Learned to Stop Worrying and Love Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Moe, Maxwell Cassady
Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.
Artificial Intelligence in Astronomy
NASA Astrophysics Data System (ADS)
Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.
2010-12-01
From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.
Eclipsing binary stars in the era of massive surveys First results and future prospects
NASA Astrophysics Data System (ADS)
Papageorgiou, Athanasios; Catelan, Márcio; Ramos, Rodrigo Contreras; Drake, Andrew J.
2017-09-01
Our thinking about eclipsing binary stars has undergone a tremendous change in the last decade. Eclipsing binary stars are one of nature's best laboratories for determining the fundamental physical properties of stars and thus for testing the predictions of theoretical models. Some of the largest ongoing variable star surveys include the Catalina Real-time Transient Survey (CRTS) and the VISTA Variables in the Vía Láctea survey (VVV). They both contain a large amount of photometric data and plenty of information about eclipsing binaries that wait to be extracted and exploited. Here we briefly describe our efforts in this direction.
The X-ray eclipse of the LMC binary CAL 87
NASA Technical Reports Server (NTRS)
Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.
1993-01-01
ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.
VizieR Online Data Catalog: OGLE eclipsing binaries in LMC (Wyrzykowski+, 2003)
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-09-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive. (2 data files).
NASA Astrophysics Data System (ADS)
Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.
2016-12-01
We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.
The Search for Bright Variable Stars in Open Cluster NGC 6819.
NASA Astrophysics Data System (ADS)
Talamantes, Antonio; Sandquist, E. L.
2009-01-01
During this research period data was taken for seven nights at the 1m telescope at Mt. Laguna Observatory for the open cluster NGC 6819. For four of the nights data was taken using a V-band filter. For the three nights remaining nights the data was taken using an R-band filter. Photometry was done using the ISIS image subtraction package. Six new variable stars were located using these techniques. These variable types include a pulsating variable, five detached eclipsing binaries. Of the detached eclipsing binaries, three are near the cluster turnoff and two in the blue straggler region(and one of these has total eclipses). Nine previously known variables(six contact binaries, two detached eclipsing binaries and one near-contact binary) were also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groot, Paul J., E-mail: pgroot@astro.ru.nl
In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometricmore » light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.« less
The early-type multiple system QZ Carinae
NASA Astrophysics Data System (ADS)
Mayer, P.; Lorenz, R.; Drechsel, H.; Abseim, A.
2001-02-01
We present an analysis of the early-type quadruple system QZ Car, consisting of an eclipsing and a non-eclipsing binary. The spectroscopic investigation is based on new high dispersion echelle and CAT/CES spectra of H and He lines. The elements for the orbit of the non-eclipsing pair could be refined. Lines of the brighter component of the eclipsing binary were detected in near-quadrature spectra, while signatures of the fainter component could be identified in only few spectra. Lines of the primary component of the non-eclipsing pair and of both components of the eclipsing pair were found to be variable in position and strength; in particular, the He ii 4686 emission line of the brighter eclipsing component is strongly variable. An ephemeris for the eclipsing binary QZ Car valid at present was derived Prim. Min. = hel. JD 2448687.16 + 5fd9991 * E. The relative orbit of the two binary constituents of the multiple system is discussed. In contrast to earlier investigations we found radial velocity changes of the systemic velocities of both binaries, which were used - together with an O-C analysis of the expected light-time effect - to derive approximate parameters of the mutual orbit of the two pairs. It is shown that this orbit and the distance to QZ Car can be further refined by minima timing and interferometry. Based on observations collected at the European Southern Observatory, La Silla, Chile.
Eclipsing Binaries in Open Clusters
NASA Astrophysics Data System (ADS)
Southworth, John; Clausen, Jens Viggo
2006-08-01
The study of detached eclipsing binaries in open clusters can provide stringent tests of theoretical stellar evolutionary models, which must simultaneously fit the masses, radii, and luminosities of the eclipsing stars and the radiative properties of every other star in the cluster. We review recent progress in such studies and discuss two unusually interesting objects currently under analysis. GV Carinae is an A0 m + A8 m binary in the Southern open cluster NGC 3532; its eclipse depths have changed by 0.1 mag between 1990 and 2001, suggesting that its orbit is being perturbed by a relatively close third body. DW Carinae is a high-mass unevolved B1 V + B1 V binary in the very young open cluster Collinder 228, and displays double-peaked emission in the centre of the Hα line which is characteristic of Be stars. We conclude by pointing out that the great promise of eclipsing binaries in open clusters can only be satisfied when both the binaries and their parent clusters are well-observed, a situation which is less common than we would like.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.
Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the H{alpha} absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M{sub 1}more » = 0.283 {+-} 0.064 M{sub sun} and M{sub 2} = 0.274 {+-} 0.034 M{sub sun}, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.« less
Time Series Observations of the 2015 Eclipse of b Persei (not beta Persei) (Abstract)
NASA Astrophysics Data System (ADS)
Collins, D. F.
2016-06-01
(Abstract only) The bright (V = 4.6) ellipsoidal variable b Persei consists of a close non-eclipsing binary pair that shows a nearly sinusoidal light curve with a ~1.5 day period. This system also contains a third star that orbits the binary pair every 702 days. AAVSO observers recently detected the first ever optical eclipse of A-B binary pair by the third star as a series of snapshots (D. Collins, R. Zavala, J. Sanborn - AAVSO Spring Meeting, 2013); abstract published in Collins, JAAVSO, 41, 2, 391 (2013); b Per mis-printed as b Per therein. A follow-up eclipse campaign in mid-January 2015 recorded time-series observations. These new time-series observations clearly show multiple ingress and egress of each component of the binary system by the third star over the eclipse duration of 2 to 3 days. A simulation of the eclipse was created. Orbital and some astrophysical parameters were adjusted within constraints to give a reasonable fit to the observed light curve.
ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. B.; Luo, C. Q.; Fu, J. N.
2013-11-01
We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with amore » value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.« less
New Light Curves and Analysis of the Overcontact Binaries PP Lac and DK Sge
NASA Astrophysics Data System (ADS)
Sanders, S. J.; Hargis, J. R.; Bradstreet, D. H.
2004-12-01
As a by-product of the ongoing work with the Catalog and AtLas of Eclipsing Binaries database (CALEB; Bradstreet et al. 2004), several hundred eclipsing binary systems have been identified that have either unpublished or poor quality light curves. We present new V & Rc light curves for the overcontact systems PP Lac and DK Sge, both chosen because their deep eclipses (peak-to-peak amplitudes of nearly 0.7 mag) help constrain the light curve modelling. Data were obtained using the 41-cm telescope at the Eastern University Observatory equipped with an SBIG ST-10XME CCD. PP Lac (P= 0.40116 d) is a W-type contact binary with only one previously published light curve (Dumont & Maraziti 1990), but the data are sparse and almost non-existent at primary eclipse. Modelling of these data gave varying results; the published mass ratios differ by nearly 0.3. Our data confirms the noted differing eclipse depths but we find the primary eclipse to be total. We present a new light curve solution using Binary Maker 3 (Bradstreet & Steelman 2002) and Wilson-Devinney, finding the mass ratio to be well-constrained by the duration of total eclipse. A period study will be presented using previously existing and newly derived times of minimum light. DK Sge (P=0.62182 d) appears to be an A-type contact binary with no published light curve. The eclipses are partial, with the primary eclipse being deeper by about 0.08 mag. The maxima show evidence of a slight asymmetry, although the light curve appears to be repeatable over the 1 month of observations. We present the first light curve solution using Binary Maker 3 and Wilson-Devinney, but have limited mass ratio constraints due to the absence of radial velocity data. A period study will be presented using previously existing and newly derived times of minimum light.
On the development and applications of automated searches for eclipsing binary stars
NASA Astrophysics Data System (ADS)
Devor, Jonathan
Eclipsing binary star systems provide the most accurate method of measuring both the masses and radii of stars. Moreover, they enable testing tidal synchronization and circularization theories, as well as constraining models of stellar structure and dynamics. With the recent availability of large-scale multi-epoch photometric datasets, we are able to study eclipsing binary stars en masse. In this thesis, we analyzed 185,445 light curves from ten TrES fields, and 218,699 light curves from the OGLE II bulge fields. In order to manage such large quantities of data, we developed a pipeline with which we systematically identified eclipsing binaries, solved for their geometric orientations, and then found their components' absolute properties. Following this analysis, we assembled catalogs of eclipsing binaries with their models, computed statistical distributions of their properties, and located rare cases for further follow-up. Of particular importance are low-mass eclipsing binaries, which are rare, yet critical for resolving the ongoing mass-radius discrepancy between theoretical models and observations. To this end, we have discovered over a dozen new low-mass eclipsing binary candidates, and spectroscopically confirmed the masses of five of them. One of these confirmed candidates, T-Lyr1-17236, is especially interesting because of its uniquely long orbital period. We examined T-Lyr1-17236 in detail and found that it is consistent with the magnetic disruption hypothesis for explaining the observed mass-radius discrepancy. Both the source code of our pipeline and the complete list of our candidates are freely available.
A possible additional body in eclipsing binary system HS 2231+2441
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Shliakhetska, Ya. O.; Romanyuk, Ya. O.
2016-12-01
Analysis of the light curves of eclipsing binary systems HS 2231+2441, obtained with the 36-cm telescope, is made. In processing the photometric data on eclipses by method of timing, obtained evidence for the existence of a third body in the system.
Evidence for a planetary mass third body orbiting the binary star KIC 5095269
NASA Astrophysics Data System (ADS)
Getley, A. K.; Carter, B.; King, R.; O'Toole, S.
2017-07-01
In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations amongst the more than 2000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70 ± 0.08MJup object orbiting every 237.7 ± 0.1 d around a 1.2 M⊙ primary and a 0.51 M⊙ secondary in an 18.6 d orbit. A dynamical integration over 107 yr suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.
On the period determination of ASAS eclipsing binaries
NASA Astrophysics Data System (ADS)
Mayangsari, L.; Priyatikanto, R.; Putra, M.
2014-03-01
Variable stars, or particularly eclipsing binaries, are very essential astronomical occurrence. Surveys are the backbone of astronomy, and many discoveries of variable stars are the results of surveys. All-Sky Automated Survey (ASAS) is one of the observing projects whose ultimate goal is photometric monitoring of variable stars. Since its first light in 1997, ASAS has collected 50,099 variable stars, with 11,076 eclipsing binaries among them. In the present work we focus on the period determination of the eclipsing binaries. Since the number of data points in each ASAS eclipsing binary light curve is sparse, period determination of any system is a not straightforward process. For 30 samples of such systems we compare the implementation of Lomb-Scargle algorithm which is an Fast Fourier Transform (FFT) basis and Phase Dispersion Minimization (PDM) method which is non-FFT basis to determine their period. It is demonstrated that PDM gives better performance at handling eclipsing detached (ED) systems whose variability are non-sinusoidal. More over, using semi-automatic recipes, we get better period solution and satisfactorily improve 53% of the selected object's light curves, but failed against another 7% of selected objects. In addition, we also highlight 4 interesting objects for further investigation.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2004-03-01
We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog is accessible from the OGLE Internet archive.
NASA Astrophysics Data System (ADS)
Bours, M. C. P.; Marsh, T. R.; Parsons, S. G.; Dhillon, V. S.; Ashley, R. P.; Bento, J. P.; Breedt, E.; Butterley, T.; Caceres, C.; Chote, P.; Copperwheat, C. M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Kilkenny, D.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Sahman, D. I.; Vučković, M.; Wilson, R. W.
2016-08-01
We present a long-term programme for timing the eclipses of white dwarfs in close binaries to measure apparent and/or real variations in their orbital periods. Our programme includes 67 close binaries, both detached and semi-detached and with M-dwarfs, K-dwarfs, brown dwarfs or white dwarfs secondaries. In total, we have observed more than 650 white dwarf eclipses. We use this sample to search for orbital period variations and aim to identify the underlying cause of these variations. We find that the probability of observing orbital period variations increases significantly with the observational baseline. In particular, all binaries with baselines exceeding 10 yr, with secondaries of spectral type K2 - M5.5, show variations in the eclipse arrival times that in most cases amount to several minutes. In addition, among those with baselines shorter than 10 yr, binaries with late spectral type (>M6), brown dwarf or white dwarf secondaries appear to show no orbital period variations. This is in agreement with the so-called Applegate mechanism, which proposes that magnetic cycles in the secondary stars can drive variability in the binary orbits. We also present new eclipse times of NN Ser, which are still compatible with the previously published circumbinary planetary system model, although only with the addition of a quadratic term to the ephemeris. Finally, we conclude that we are limited by the relatively short observational baseline for many of the binaries in the eclipse timing programme, and therefore cannot yet draw robust conclusions about the cause of orbital period variations in evolved, white dwarf binaries.
Massive eclipsing binary candidates
NASA Technical Reports Server (NTRS)
Garrison, R. F.; Schild, R. E.; Hiltner, W. A.
1983-01-01
New UBV data are provided for 63 southern OB stars which are either identified in the survey by Garrison, Hiltner, and Schild as having double lines or are known from Wood et al. to be eclipsing binaries. Twenty of the stars are known eclipsing variables. Four stars, not previously known as eclipsing, have both spectroscopic evidence of duplicity and significant photometric variations. Several additional stars have a marginally significant spread in V magnitude.
VizieR Online Data Catalog: Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016)
NASA Astrophysics Data System (ADS)
Kirk, B.; Conroy, K.; Prsa, A.; Abdul-Masih, M.; Kochoska, A.; Matijevic, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; Doyle, L. R.; Fulton, B. J.; Hoekstra, A. J.; Jek, K.; Kane, S. R.; Kostov, V.; Latham, D.; Mazeh, T.; Orosz, J. A.; Pepper, J.; Quarles, B.; Ragozzine, D.; Shporer, A.; Southworth, J.; Stassun, K.; Thompson, S. E.; Welsh, W. F.; Agol, E.; Derekas, A.; Devor, J.; Fischer, D.; Green, G.; Gropp, J.; Jacobs, T.; Johnston, C.; Lacourse, D. M.; Saetre, K.; Schwengeler, H.; Toczyski, J.; Werner, G.; Garrett, M.; Gore, J.; Martinez, A. O.; Spitzer, I.; Stevick, J.; Thomadis, P. C.; Vrijmoet, E. H.; Yenawine, M.; Batalha, N.; Borucki, W.
2016-07-01
The Kepler Eclipsing Binary Catalog lists the stellar parameters from the Kepler Input Catalog (KIC) augmented by: primary and secondary eclipse depth, eclipse width, separation of eclipse, ephemeris, morphological classification parameter, and principal parameters determined by geometric analysis of the phased light curve. The previous release of the Catalog (Paper II; Slawson et al. 2011, cat. J/AJ/142/160) contained 2165 objects, through the second Kepler data release (Q0-Q2). In this release, 2878 objects are identified and analyzed from the entire data set of the primary Kepler mission (Q0-Q17). The online version of the Catalog is currently maintained at http://keplerEBs.villanova.edu/. A static version of the online Catalog associated with this paper is maintained at MAST https://archive.stsci.edu/kepler/eclipsing_binaries.html. (10 data files).
Modeling the Effects of Asynchronous Rotation on Secondary Eclipse Timings in HW VIr Binaries
NASA Astrophysics Data System (ADS)
Clancy, Padraig
2018-01-01
HW Vir binaries are post common envelope binaries consisting of a hot subdwarf and red dwarf, with light curves dominated by primary eclipses, a strong reflection effect, and secondary eclipses. They have orbital periods ranging from a few hours to half a day and are generally thought to be tidally locked; most studies assume both synchronous rotation and zero eccentricity when modeling HW Vir light curves and radial velocities. Their stable eclipse timings are frequently used in O-C studies to look for the presence of circumbinary objects, measure evolutionary changes in the orbital period, and even constrain the component masses through Roemer delay measurements of the secondary eclipse. While most systems are probably tidally locked or close to it, even slightly asynchronous rotation could theoretically shift the orbital phase of the reflection effect. Here we investigate how asynchronous rotation might affect measurements of secondary eclipse timings by generating thousands of synthetic light curves with a range of reflection effect phases, fitting eclipse timings, and creating O-C diagrams.
Mass-Luminosity Relations for Rapid and Slow Rotators.
NASA Astrophysics Data System (ADS)
Malkov, O. Yu.
2006-08-01
Comparing the radii of eclipsing binaries components and single stars we have found a noticeable difference between observational parameters of B0V-G0V components of eclipsing binaries and those of single stars of the corresponding spectral type. This difference was confirmed by re-analysing the results of independent investigations published in the literature. Larger radii and higher temperatures of A-F eclipsing binaries can be explained by synchronization of such stars in close systems that prevents them to rotate rapidly. So, we have found that the mass-luminosity relation based on eclipsing binary data cannot be used to derive the initial mass function of single stars. While our current knowledge of the empirical mass-luminosity relation for intermediate-mass (1.5 to 10 m[*]) stars is based exclusively on data from eclipsing binaries, knowledge of the mass-luminosity relation should come from dynamical mass determinations of visual binaries, combined with spatially resolved precise photometry. Then the initial mass function should be revised for m>1.5m[*]. Data were collected on fundamental parameters of stars with masses m > 1.5.m [*]). They are components of binaries with P > 15^d and consequently are not synchronised with the orbital periods and presumably are rapid rotators. These stars are believed to evolve similarly with single stars, so these data allow us to construct mass-luminosity and other relations that can more confidently be used for statistical and astrophysical investigations of single stars than so called standard relations, based on data on detached main-sequence double-lined short-period eclipsing binaries. Mass-luminosity, mass-temperature and mass-radius relations of single stars are presented, as well as their HR diagram.
The 1982 ultraviolet eclipse of the symbiotic binary AR Pav
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.
1983-01-01
Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.
Period analysis of the eclipsing binary AI Dra
NASA Astrophysics Data System (ADS)
Zasche, P.; Uhlář, R.; Svoboda, P.
2010-03-01
The eclipsing binary system AI Dra reveals changes of its orbital period. These variations could be described as a result of orbiting the eclipsing pair around a common center of mass with two unseen companions with the periods about 18 and 43 years together with a steady period increase. Fourteen new minima observations were carried out by the authors.
CCD Times of Minima of Selected Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Zejda, Miloslav
2004-12-01
682 CCD minima observations of 259 eclipsing binaries made mainly by author are presented. The observed stars were chosen mainly from catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.
Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica
NASA Astrophysics Data System (ADS)
Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu
2015-04-01
The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.
DID THE ANCIENT EGYPTIANS RECORD THE PERIOD OF THE ECLIPSING BINARY ALGOL-THE RAGING ONE?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetsu, L.; Porceddu, S.; Lyytinen, J.
The eclipses in binary stars give precise information of orbital period changes. Goodricke discovered the 2.867 day period in the eclipses of Algol in the year 1783. The irregular orbital period changes of this longest known eclipsing binary continue to puzzle astronomers. The mass transfer between the two members of this binary should cause a long-term increase of the orbital period, but observations over two centuries have not confirmed this effect. Here, we present evidence indicating that the period of Algol was 2.850 days three millennia ago. For religious reasons, the ancient Egyptians have recorded this period into the Cairomore » Calendar (CC), which describes the repetitive changes of the Raging one. CC may be the oldest preserved historical document of the discovery of a variable star.« less
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-04-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-07-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 detached eclipsing binaries obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light-curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cosω and e sinω, but orbital inclination is clearly underestimated in neural network tests.
Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri
NASA Astrophysics Data System (ADS)
Marchioni, Lucas; Guinan, Edward; Engle, Scott
2018-01-01
V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.
The new eclipsing magnetic binary system E 1114 + 182
NASA Technical Reports Server (NTRS)
Biermann, P.; Schmidt, G. D.; Liebert, J.; Tapia, S.; Strittmatter, P. A.; West, S.; Stockman, H. S.; Kuehr, H.; Lamb, D. Q.
1985-01-01
A comprehensive analysis of E 1114 + 182, the first eclipsing AM Herculis binary system and the shortest-period eclipsing cataclysmic variable known, is presented. The time-resolved X-ray observations which led to the system's recognition as an AM Her system with a roughly 90 minute orbital period are reported. The current optical photometric and polarimetric ephemeris and a description of the system's phase-modulated properties are given. The detailed photometric eclipse profile and the highly variable spectroscopic behavior are addressed. This information is used to determine systemic parameters and derive new information on the line emission regions. The data put severe constraints on current torque models for keeping the binary and white dwarf rotation in phase.
NASA Astrophysics Data System (ADS)
Hambsch, F.-J.
2018-06-01
(Abstract only) Several years ago by accident I observed YY Boo outside of an eclipse and was very surprised to see a short term periodic variation of about 0.1 mag. That was completely unexpected and it initiated an international campaign by amateurs to identify the cause of these variations. It turned out that YY Boo showed a pulsation period of about 88 min in addition to being an Algol type eclipsing binary. Hence it turned out that YY Boo has become a new member of a class of pulsating eclipsing binary systems with, at that time, the second largest amplitude after BO Her.
Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M
1996-06-25
The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.
NASA Technical Reports Server (NTRS)
Doyle, L. R.; Dunham, E. T.; Deeg, H. J.; Blue, J. E.; Jenkins, J. M.
1996-01-01
The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.
Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems
NASA Astrophysics Data System (ADS)
Kim, S.-L.; Lee, J. W.; Kwon, S.-G.; Youn, J.-H.; Mkrtichian, D. E.; Kim, C.
2003-07-01
We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/231
NASA Astrophysics Data System (ADS)
Terheide, Rachel; Zhang, Liyun; Han, Xianming; Lu, Hongpeng
2018-01-01
We present full-phase VRI-band light curves for eclipsing binary 1SWASP J061850.43+220511.9, and full-phase BVRI-band light curves for eclipsing binary 2MASS J07095549+3643564. The observations were conducted using the 0.94-m Holcomb Observatory telescope located on Butler University Campus in Indianapolis, Indiana, and the 0.6-m SARA telescope located at the Cerro Tololo Inter-American Observatory in Chile. We obtained key system parameters for both eclipsing binaries. For 1SWASP J061850.43+220511.9, the period is 0.21482 ±0.00053 days compared to 0.21439 days from an older study (Lohr et. al), the system mass ratio is found as 2.50 and the system is classified as EW type. Similarly, for 2MASS J07095549+3643564, we obtained a linear ephemeris and a physical model for the first time. We found its period to be 0.22297 ±0.00032 days, as compared to 0.446092 days and 0.11152 days from previous research (Drake et. al 2014, Hartman et. al 2011). 2MASS J07095549+3643564 is classified as a W Uma type eclipsing binary.
New Eclipsing Contact Binary System in Auriga
NASA Astrophysics Data System (ADS)
Austin, S. J.; Robertson, J. W.; Justice, C.; Campbell, R. T.; Hoskins, J.
2004-05-01
We present data on a newly discovered eclipsing binary system. The serendipitous discovery of this variable star was made by J.W. Robertson analyzing inhomogeneous ensemble photometry of stars in the field of the cataclysmic variable FS Aurigae from Indiana University RoboScope data. We obtained differential time-series BVR photometry during 2003 of this field variable using an ensemble of telescopes including the university observatories at ATU, UCA and joint ventures with amateur observatories in the state of Arkansas (Whispering Pines Observatory and Nubbin Ridge Observatory). The orbital period of this eclipsing system is 0.2508 days. The B-V light curve indicates colors of 1.2 around quadrature, to nearly 1.4 at primary eclipse. Binary star light curve models that best fit the BVR differential photometry suggest that the system is a contact binary overfilling the inner Roche Lobe by 12%, a primary component with a temperature of 4350K, a secondary component with a temperature of 3500K, a mass ratio of 0.37, and an inclination of 83 degrees. We present BVR light curves, an ephemeris, and best fit model parameters for the physical characteristics of this new eclipsing binary system.
Investigation of Times of Minima of Selected Early-Type Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Mayer, Pavel; Wolf, Marek; Niarchos, P. G.; Gazeas, K. D.; Manimanis, V. N.; Chochol, Drahomír
2006-08-01
New precise times of minimum light for several early-type eclipsing binaries were obtained at three observatories. The changes of period of the following measured binaries are discussed: V1182 Aql, LY Aur, SZ Cam, FZ CMa, QZ Car, LZ Cen, V606 Cen, AH Cep and TU~Mus.
Indoor Astronomy: A Model Eclipsing Binary Star System.
ERIC Educational Resources Information Center
Bloomer, Raymond H., Jr.
1979-01-01
Describes a two-hour physics laboratory experiment modeling the phenomena of eclipsing binary stars developed by the Air Force Academy as part of a week-long laboratory-oriented experience for visiting high school students. (BT)
The Eclipsing Binary On-Line Atlas (EBOLA)
NASA Astrophysics Data System (ADS)
Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.
2004-05-01
In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.
Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems
NASA Astrophysics Data System (ADS)
Geist, Emily; Beaky, Matthew; Jamison, Kate
2018-01-01
In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.
DEBCat: A Catalog of Detached Eclipsing Binary Stars
NASA Astrophysics Data System (ADS)
Southworth, J.
2015-07-01
Detached eclipsing binary star systems are our primary source of measured physical properties of normal stars. I introduce DEBCat: a catalog of detached eclipsing binaries with mass and radius measurements to the 2% precision necessary to put useful constraints on theoretical models of stellar evolution. The catalog was begun in 2006, as an update of the compilation by Andersen (1991). It now contains over 170 systems, and new results are added on appearance in the refereed literature. DEBCat is available at: http://www.astro.keele.ac.uk/jkt/debcat/.
A spectroscopic investigation of the eclipsing binary Epsilon Aurigae
NASA Technical Reports Server (NTRS)
Balachandran, Suchitra
1991-01-01
The objectives were to examine, in detail, the spectra of the eclipsing binary Epsilon Aurigae taken with the IUE satellite telescope during the 1982 to 1984 eclipse. All of the low resolution spectra were analyzed and UV light curves are presented. The primary findings are as follows: (1) a constant eclipse depth from 1600 A to longer wavelengths and a sharp drop in the eclipse depth from 1600 to 1200 A; (2) the absence of large amplitude fluctuations in the UV as expected from a Cepheid primary; and (3) equal ingress and egress times in contradiction to that interpreted from visible light curves. The effects of these findings on the eclipse geometry are being studied.
Theoretical studies of binaries in astrophysics
NASA Astrophysics Data System (ADS)
Dischler, Johann Sebastian
This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.
CCD Times of Minima of Faint Eclipsing Binaries in 2000
NASA Astrophysics Data System (ADS)
Zejda, Miloslav
2002-06-01
196 CCD minima observations of 122 eclipsing binaries made by the author in 2000 are presented. The observed stars were chosen from the catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.
NASA Astrophysics Data System (ADS)
Alton, K. B.; Nelson, R. H.
2018-06-01
GM CVn is an eclipsing W UMa binary system (P = 0.366984 d) which has been largely neglected since its variability was first detected during the ROTSE campaign (1999-2000). Other than a single unfiltered light curve (LC) no other photometric data have been published. LC data collected in three bandpasses (B, V, and Rc) at UnderOak Observatory (UO) produced three new times of minimum for GM CVn. These along with other eclipse timings from the literature were used to update the linear ephemeris. Roche modeling to produce synthetic LC fits to the observed data was accomplished using binary maker 3, wdwint56a, and phoebe v.31a. Newly acquired radial velocity data were pivotal to defining the absolute and geometric parameters for this partially eclipsing binary system. An unspotted solution achieved the best Roche model fits for the multi-color LCs collected in 2013.
Searching for planets around eclipsing binary stars using timing method: NSVS 14256825
NASA Astrophysics Data System (ADS)
Nasiroglu, Ilham; Goździewski, Krzysztof; Słowikowska, Aga; Krzeszowski, Krzysztof; Żejmo, Michal; Zola, Staszek; Er, Huseyin
2018-04-01
We present four new mid eclipse times and an updated O-C diagram of the short period eclipsing binary NSVS14256825. The new data follow the (O-C) trend and its model proposed in Nasiroglu et al. (2017). The (O-C) diagram shows quasi-periodic variations that can be explained with the presence of a brown-dwarf in a quasi-circular circumbinary orbit.
NASA Astrophysics Data System (ADS)
Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William
2011-03-01
The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.
Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems
NASA Astrophysics Data System (ADS)
Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek
2016-07-01
We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.
NASA Astrophysics Data System (ADS)
Hong, Kyeongsoo; Koo, Jae-Rim; Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Park, Jang-Ho; Kim, Hyoun-Woo; Lee, Dong-Joo; Kim, Dong-Jin; Han, Cheongho
2018-05-01
We report the results of photometric observations for doubly eclipsing binaries OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159, both of which are composed of two pairs (designated A&B) of a detached eclipsing binary located in the Large Magellanic Cloud. The light curves were obtained by high-cadence time-series photometry using the Korea Microlensing Telescope Network 1.6 m telescopes located at three southern sites (CTIO, SAAO, and SSO) between 2016 September and 2017 January. The orbital periods were determined to be 1.433 and 1.387 days for components A and B of OGLE-LMC-ECL-15674, respectively, and 2.988 and 3.408 days for OGLE-LMC-ECL-22159A and B, respectively. Our light curve solutions indicate that the significant changes in the eclipse depths of OGLE-LMC-ECL-15674A and B were caused by variations in their inclination angles. The eclipse timing diagrams of the A and B components of OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159 were analyzed using 28, 44, 28, and 26 new times of minimum light, respectively. The apsidal motion period of OGLE-LMC-ECL-15674B was estimated by detailed analysis of eclipse timings for the first time. The detached eclipsing binary OGLE-LMC-ECL-15674B shows a fast apsidal period of 21.5 ± 0.1 years.
Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST
NASA Astrophysics Data System (ADS)
Lee, Chien-Hsiu; Lin, Chien-Cheng
2017-02-01
Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.
Recent Minima of 171 Eclipsing Binary Stars
NASA Astrophysics Data System (ADS)
Samolyk, G.
2015-12-01
This paper continues the publication of times of minima for 171 eclipsing binary stars from observations reported to the AAVSO EB section. Times of minima from observations received by the author from March 2015 thru October 2015 are presented.
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana; Vasileva, Doroteya
2018-01-01
We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 10992733 and KIC 5632781 undergo total eclipses while KIC 10026136 reveals partial eclipses. The components of the targets are G and K stars. KIC 10992733 exhibited variations which were attributed to variable visibility of spot(s) on asynchronously rotating component. KIC 5632781 and KIC 1002613 reveal tidally-induced features at periastron, i.e. they might be considered as eclipsing heartbeat stars. The characteristics of the periastron features (shape, width and amplitude) confirm the theoretical predictions.
NASA Technical Reports Server (NTRS)
Mccluskey, G. E.; Kondo, Y.
1983-01-01
The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.
New variable stars discovered in the fields of three Galactic open clusters using the VVV survey
NASA Astrophysics Data System (ADS)
Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.
2016-11-01
This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.
Spectroscopic obit for the eclipsing binary IQ Persei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, A.
1975-10-01
Spectroscopic orbital elements are derived for the eclipsing binary IQ Per. Faint secondary lines are detected, and a mass ratio and individual masses are inferred. The components are found to be on the main sequence, and the system is detached. (auth)
NASA Astrophysics Data System (ADS)
Streamer, M.; Bohlsen, T.; Ogmen, Y.
2016-06-01
Eclipsing binary stars are especially valuable for studies of stellar evolution. If pulsating components are also present then the stellar interior can be studied using asteroseismology techniques. We present photometric data and the analysis of the delta Scuti pulsations that we have discovered in five eclipsing binary systems. The systems are: LT Herculis, RZ Microscopii, LY Puppis, V632 Scorpii and V638 Scorpii. The dominant pulsation frequencies range between 13 - 29 cycles per day with semi-amplitudes of 4 - 20 millimagnitudes.
New O-C Observations for 150 Algols: Insight to the Origins of Period Shifts
NASA Astrophysics Data System (ADS)
Hoffman, D. I.; Harrison, T. E.; McNamara, B. J.; Vestrand, W. T.
2005-12-01
Many eclipsing binaries of type Algol, RS CVn, and W UMa have observed orbital period shifts. Of these, many show both increasing and decreasing period shifts. Two leading explanations for these shifts are third body effects and magnetic activity changing the oblateness of the secondary, though neither one can explain all of the observed period oscillations. The first-generation Robotic Optical Transient Search Experiment (ROTSE-I) based in Los Alamos, NM, was primarily designed to look for the optical counterparts to gamma-ray bursts as well as searching for other optical transients not detected in gamma-rays. The telescope, consisting of four 200mm camera lenses, can image the entire northern sky twice in a night, which is a very useful tool in monitoring relatively bright eclipsing binaries for period shifts. The public data release from ROTSE-I, the Northern Sky Variability Survey (NSVS), spans one year of data stating in April, 1999. O-C data for 150 eclipsing binaries are presented using the NSVS data. We revisit work by Borkovits and Hegedüs on some third body candidates in several eclipsing binary systems using recent AAVSO and NSVS data. Some unusual light curves of eclipsing binaries produced from NSVS data is presented and discussed.
Binarity and Variable Stars in the Open Cluster NGC 2126
NASA Astrophysics Data System (ADS)
Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila
2018-04-01
We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.
A New Orbit for the Eclipsing Binary V577 Oph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffery, Elizabeth J.; Barnes, Thomas G. III; Montemayor, Thomas J.
Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocitymore » by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.« less
NASA Astrophysics Data System (ADS)
Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon
2018-04-01
The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.
The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417
NASA Astrophysics Data System (ADS)
Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle
2017-01-01
Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.
State-change in the "transition" binary millisecond pulsar J1023+0038
NASA Astrophysics Data System (ADS)
Stappers, B. W.; Archibald, A.; Bassa, C.; Hessels, J.; Janssen, G.; Kaspi, V.; Lyne, A.; Patruno, A.; Hill, A. B.
2013-10-01
We report a change in the state of PSR J1023+0038, a source which is believed to be transitioning from an X-ray binary to an eclipsing binary radio millisecond pulsar (Archibald et al. 2009, Science, 324, 1411). The system was known to contain an accretion disk in 2001 but has shown no signs of it, or of accretion, since then, rather exhibiting all the properties of an eclipsing binary millisecond radio pulsar (MSP).
Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations
NASA Astrophysics Data System (ADS)
Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.
2017-12-01
We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.
The massive multiple system HD 64315
NASA Astrophysics Data System (ADS)
Lorenzo, J.; Simón-Díaz, S.; Negueruela, I.; Vilardell, F.; Garcia, M.; Evans, C. J.; Montes, D.
2017-10-01
Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory values for its orbital period. Aims: We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. Methods: A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing binary, and to derive minimum masses for its components which dominate the system flux. Results: HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M⊙ and 10.2 M⊙, and likely masses ≈ 30 M⊙. Conclusions: HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90M⊙, but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system. Based on observations obtained at the European Southern Observatory under programmes 078.D-0665(A), 082-D.0136 and 093.A-9001(A). Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prsa, Andrej; Engle, Scott G.; Conroy, Kyle
2011-03-15
The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg{sup 2} field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID),more » ephemeris (BJD{sub 0}, P{sub 0}), morphology type, physical parameters (T{sub eff}, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T{sub 2}/T{sub 1}, q, fillout factor, and sin i for overcontacts, and T{sub 2}/T{sub 1}, (R{sub 1} + R{sub 2})/a, esin {omega}, ecos {omega}, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be {approx}1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.« less
Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data
NASA Astrophysics Data System (ADS)
Prsa, Andrej
Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary-to-primary light ratio regime of ~1-2% for the circumbinary host system Kepler-16. Semi-detached binaries are ideal targets to study the dynamical processes such as mass flow and accretion, and the associated thermal processes such as intensity variation due to distortion of the lobe-filling component and material inflow collisions with accretion disks. Overcontact binaries are very abundant, yet their evolution and radiative properties are poorly understood and conflicting theories exist to explain their population frequency and structure. In addition, we will measure eclipse timing variations for all program binaries that attest to the presence of perturbing third bodies (stellar and substellar!) or dynamical interaction between the components. By a dedicated, detailed, manual modeling of these sets of targets, we will be able to use Kepler's ultra-high precision photometry to a rewarding scientific end. Thanks to the unprecedented quality of Kepler data, this will be a highly focused effort that maximizes the scientific yield and the reliability of the results. Our team has ample experience dealing with Kepler data (PI Prsa serves as chair of the Eclipsing Binary Working Group in the Kepler Science Team), spectroscopic follow-up (Co-Is Mahadevan and Bender both have experience with radial velocity instrumentation and large spectroscopic surveys), and eclipsing binary modeling (PI Prsa and Co-I Devinney both have a long record of theoretical and computational development of modeling tools). The bulk of funding we are requesting is for two postdoctoral research fellows to conduct this work at 0.5 FTE/year each, for the total of 2 years.
First photometric study of two southern eclipsing binaries IS Tel and DW Aps
NASA Astrophysics Data System (ADS)
Özer, S.; Sürgit, D.; Erdem, A.; Öztürk, O.
2017-02-01
The paper presents the first photometric analysis of two southern eclipsing binary stars, IS Tel and DW Aps. Their V light curves from the All Sky Automated Survey were modelled by using Wilson-Devinney method. The final models give these two Algol-like binary stars as having detached configurations. Absolute parameters of the components of the systems were also estimated.
Data Mining the Ogle-II I-band Database for Eclipsing Binary Stars
NASA Astrophysics Data System (ADS)
Ciocca, M.
2013-08-01
The OGLE I-band database is a searchable database of quality photometric data available to the public. During Phase 2 of the experiment, known as "OGLE-II", I-band observations were made over a period of approximately 1,000 days, resulting in over 1010 measurements of more than 40 million stars. This was accomplished by using a filter with a passband near the standard Cousins Ic. The database of these observations is fully searchable using the mysql database engine, and provides the magnitude measurements and their uncertainties. In this work, a program of data mining the OGLE I-band database was performed, resulting in the discovery of 42 previously unreported eclipsing binaries. Using the software package Peranso (Vanmuster 2011) to analyze the light curves obtained from OGLE-II, the eclipsing types, the epochs and the periods of these eclipsing variables were determined, to one part in 106. A preliminary attempt to model the physical parameters of these binaries was also performed, using the Binary Maker 3 software (Bradstreet and Steelman 2004).
Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227
NASA Astrophysics Data System (ADS)
Guo, Zhao; Gies, Douglas R.; Fuller, Jim
2017-01-01
KIC 3230227 is a short period (P ≈ 7.0 days) eclipsing binary with a very eccentric orbit (e = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M1 = 1.84 ± 0.18 M⊙, M2 = 1.73 ± 0.17 M⊙ and radii of R1 = 2.01 ± 0.09 R⊙, R2 = 1.68 ± 0.08 R⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l = 2, m = -2 prograde modes.
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana P.; Vasileva, Doroteya L.
2018-02-01
We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.
Observations of the eclipsing binary b Persei
NASA Astrophysics Data System (ADS)
Templeton, Matthew R.
2015-01-01
Dr. Robert Zavala (USNO-Flagstaff) et al. request V time-series observations of the bright variable star b Persei 7-21 January 2015 UT, in hopes of catching a predicted eclipse on January 15. This is a follow-up to the February 2013 campaign announced in Alert Notice 476, and will be used as a photometric comparison for upcoming interferometric observations with the Navy Precision Optical Interferometer (NPOI) in Arizona. b Per (V=4.598, B-V=0.054) is ideal for photoelectric photometers or DSLR cameras. Telescopic CCD observers may observe by stopping down larger apertures. Comparison and check stars assigned by PI: Comp: SAO 24412, V=4.285, B-V = -0.013; Check: SAO 24512, V=5.19, B-V = -0.05. From the PI: "[W]e wanted to try and involve AAVSO observers in a follow up to our successful detection of the b Persei eclipse of Feb 2013, AAVSO Alert Notice 476 and Special Notice 333. Our goal now is to get good time resolution photometry as the third star passes in front of the close ellipsoidal binary. The potential for multiple eclipses exists. The close binary has a 1.5 day orbital period, and the eclipsing C component requires about 4 days to pass across the close binary pair. The primary eclipse depth is 0.15 magnitude. Photometry to 0.02 or 0.03 mags would be fine to detect this eclipse. Eclipse prediction date (JD 2457033.79 = 2015 01 11 UT, ~+/- 1 day) is based on one orbital period from the 2013 eclipse." More information is available at PI's b Persei eclipse web page: http://inside.warren-wilson.edu/~dcollins/bPersei/. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and information on the targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Scott W.; Ge Jian; De Lee, Nathan M.
2011-08-15
Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a massmore » of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M{sub 1} = 0.92 {+-} 0.1 M{sub sun}, we find M{sub 2} = 0.610 {+-} 0.036 M{sub sun}, R{sub 1} = 0.932 {+-} 0.076 R{sub sun}, and R{sub 2} = 0.559 {+-} 0.102 R{sub sun}, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M{sub 1} = 1.163 {+-} 0.034 M{sub sun}, R{sub 1} = 2.063 {+-} 0.058 R{sub sun}) and a G-type dwarf secondary (M{sub 2} = 0.905 {+-} 0.067 M{sub sun}, R{sub 2} = 0.887 {+-} 0.037 R{sub sun}). We provide the framework necessary to apply this analysis to much larger data sets.« less
Updated O-C Diagrams for Several Bright HW Vir Binaries Observed with the Evryscope
NASA Astrophysics Data System (ADS)
Corcoran, Kyle A.; Barlow, Brad; Corbett, Hank; Fors, Octavi; Howard, Ward S.; Law, Nicholas; Ratzloff, Jeff
2018-01-01
HW Vir systems are eclipsing, post-common-envelope binaries consisting of a hot subdwarf star and a cooler M dwarf or brown dwarf companion. They show a strong reflection effect and have characteristically short orbital periods of only a few hours, allowing observers to detect multiple eclipses per night. Observed minus calculated (O-C) studies allow one to measure miniscule variations in the orbital periods of these systems by comparing observed eclipse timings to a calculated ephemeris. This technique is useful for detecting period changes due to secular evolution of the binary, gravitational wave emission, or reflex motion from an orbiting circumbinary object. Numerous eclipse timings obtained over several years are vital to the proper interpretation and analysis of O-C diagrams. The Evryscope – an array of twenty-four individual telescopes built by UNC and deployed on Cerro Tololo – images the entire Southern sky once every two minutes, producing an insurmountable amount of data for objects brighter than 16th magnitude. The cadence with which Evryscope exposes makes it an unparalleled tool for O-C analyses of HW Vir binaries; it will catalogue thousands of eclipses over the next several years. Here we present updated O-C diagrams for several HW Vir binaries using recent measurements from the Evryscope. We also use observations of AA Dor, an incredibly stable astrophysical clock, to characterize the accuracy of the Evryscope’s timestamps.
1SWASP J200503.05-343726.5: A high mass ratio eclipsing binary near the period limit
NASA Astrophysics Data System (ADS)
Bin, Zhang; Shengbang, Qian; Zejda, Miloslav; Liying, Zhu; Nianping, Liu
2017-07-01
First CCD photometric light curves of the eclipsing binary system 1SWASP J200503.05-343726.5 are presented. Our complete light curves in V, R and I bands using the Bessell filter show an out-of-eclipsing distortion, which means that the components of the system may be active. The preliminary photometric solutions with a cool star-spot are derived by using the 2013 version of the Wilson-Devinney (W-D) code. The photometric solutions suggest that 1SWASP J200503.05-343726.5 is a shallow-contact eclipsing binary(f = 9.0 %) with a mass ratio of q = 1.0705 , which is very high for late-type binary systems near the period limit. The primary component is about 230 K hotter than the secondary component. Based on our new CCD eclipse times, the orbital period change was analyzed. According to O - C diagram, the orbital period of the 1SWASP J200503.05-343726.5 shows an increase at a rate of P˙ = + 5.43 ×10-8 days year-1. The period increase may be caused by mass transfer from the less massive component to the more massive one. This shallow-contact system may be formed from a detached short-period binary via orbital shrinkage because of dynamical interactions with a third component or by magnetic braking.
The O-type eclipsing contact binary LY Aurigae - member of a quadruple system
NASA Astrophysics Data System (ADS)
Mayer, Pavel; Drechsel, Horst; Harmanec, Petr; Yang, Stephenson; Šlechta, Miroslav
2013-11-01
The eclipsing binary LY Aur (O9 II + O9 III) belongs to the rare class of early-type contact systems. We obtained 23 new spectra at the Ondřejov and Dominion Astrophysical Observatories, which were analysed with four older Calar Alto and one ELODIE archive spectra. A new result of this study is that the visual companion of LY Aur - the spectral lines of which are clearly seen in our spectra - is also an SB1 binary having an orbital period of 20.46d, an eccentric orbit, and a radial velocity semi-amplitude of 33 km s-1. The Hα line blend contains an emission component, which shows dependence on the orbital phase of the eclipsing system, with the strongest emission around the secondary eclipse. Revised elements of the eclipsing binary and the orbital solution of the companion binary are determined from our set of spectra and new light-curve solutions of the eclipsing pair. The mass of the primary of 25.5 M⊙ agrees well with its spectral type, whereas the secondary mass of 14 M⊙ is smaller than expected. From an O-C analysis of the minimum times of LY Aur that span more than 40 years, we found that the orbital period is decreasing, indicating the presence of interaction processes. The system is likely in a phase of non-conservative mass exchange. Based on spectral observations collected at the German-Spanish Observatory, Calar Alto, Spain; Dominion Astrophysical Observatory, Canada; Ondřejov Observatory, Czech Republic, and an archival Haute Provence Observatory ELODIE spectrum.
NASA Astrophysics Data System (ADS)
Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang
2018-05-01
The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.
Interfacing modeling suite Physics Of Eclipsing Binaries 2.0 with a Virtual Reality Platform
NASA Astrophysics Data System (ADS)
Harriett, Edward; Conroy, Kyle; Prša, Andrej; Klassner, Frank
2018-01-01
To explore alternate methods for modeling eclipsing binary stars, we extrapolate upon PHOEBE’s (PHysics Of Eclipsing BinariEs) capabilities in a virtual reality (VR) environment to create an immersive and interactive experience for users. The application used is Vizard, a python-scripted VR development platform for environments such as Cave Automatic Virtual Environment (CAVE) and other off-the-shelf VR headsets. Vizard allows the freedom for all modeling to be precompiled without compromising functionality or usage on its part. The system requires five arguments to be precomputed using PHOEBE’s python front-end: the effective temperature, flux, relative intensity, vertex coordinates, and orbits; the user can opt to implement other features from PHOEBE to be accessed within the simulation as well. Here we present the method for making the data observables accessible in real time. An Occulus Rift will be available for a live showcase of various cases of VR rendering of PHOEBE binary systems including detached and contact binary stars.
Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Lurie, John C.; Vyhmeister, Karl; Hawley, Suzanne L.; Adilia, Jamel; Chen, Andrea; Davenport, James R. A.; Jurić, Mario; Puig-Holzman, Michael; Weisenburger, Kolby L.
2017-12-01
Few observational constraints exist for the tidal synchronization rate of late-type stars, despite its fundamental role in binary evolution. We visually inspected the light curves of 2278 eclipsing binaries (EBs) from the Kepler Eclipsing Binary Catalog to identify those with starspot modulations, as well as other types of out-of-eclipse variability. We report rotation periods for 816 EBs with starspot modulations, and find that 79% of EBs with orbital periods of less than 10 days are synchronized. However, a population of short-period EBs exists, with rotation periods typically 13% slower than synchronous, which we attribute to the differential rotation of high-latitude starspots. At 10 days, there is a transition from predominantly circular, synchronized EBs to predominantly eccentric, pseudosynchronized EBs. This transition period is in good agreement with the predicted and observed circularization period for Milky Way field binaries. At orbital periods greater than about 30 days, the amount of tidal synchronization decreases. We also report 12 previously unidentified candidate δ Scuti and γ Doradus pulsators, as well as a candidate RS CVn system with an evolved primary that exhibits starspot occultations. For short-period contact binaries, we observe a period-color relation and compare it to previous studies. As a whole, these results represent the largest homogeneous study of tidal synchronization of late-type stars.
Synthetic Survey of the Kepler Field
NASA Astrophysics Data System (ADS)
Wells, Mark; Prša, Andrej
2018-01-01
In the era of large scale surveys, including LSST and Gaia, binary population studies will flourish due to the large influx of data. In addition to probing binary populations as a function of galactic latitude, under-sampled groups such as low mass binaries will be observed at an unprecedented rate. To prepare for these missions, binary population simulations need to be carried out at high fidelity. These simulations will enable the creation of simulated data and, through comparison with real data, will allow the underlying binary parameter distributions to be explored. In order for the simulations to be considered robust, they should reproduce observed distributions accurately. To this end we have developed a simulator which takes input models and creates a synthetic population of eclipsing binaries. Starting from a galactic single star model, implemented using Galaxia, a code by Sharma et al. (2011), and applying observed multiplicity, mass-ratio, period, and eccentricity distributions, as reported by Raghavan et al. (2010), Duchêne & Kraus (2013), and Moe & Di Stefano (2017), we are able to generate synthetic binary surveys that correspond to any survey cadences. In order to calibrate our input models we compare the results of our synthesized eclipsing binary survey to the Kepler Eclipsing Binary catalog.
B and V photometry and analysis of the eclipsing binary RZ CAS
NASA Astrophysics Data System (ADS)
Riazi, N.; Bagheri, M. R.; Faghihi, F.
1994-01-01
Photoelectric light curves of the eclipsing binary RZ Cas are presented for B and V filters. The light curves are analyzed for light and geometrical elements, starting with a previously suggested preliminary method. The approximate results thus obtained are then optimised through the Wilson-Devinney computer programs.
An ultraviolet investigation of the unusual eclipsing binary system FF AQR
NASA Technical Reports Server (NTRS)
Dorren, J. D.; Guinan, E. F.; Sion, E. M.
1982-01-01
A series of seven low dispersion IUE exposures in ultraviolet and wavelength regions obtained on December 6, 1981 during the eclipse of the subdwarf, during egress, and out of eclipse is analyzed. These observations and the binary phase at which they were made are shown on a schematic representation of the V-band light curve obtained in 1975. The depth in V is 0.15 mag. The circles are IUE V magnitudes from FES measures obtained during the observing run. They indicate an eclipse depth some 0.05 mag lower than expected, possibly due to difficulties with the color term in the FES calibration. The eclipse depths of Dworetsky in U, B and V were assumed in the calculations.
A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu
2015-03-10
Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-massmore » pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.« less
New Light-Time Curve of Eclipsing Binary AM Leo
NASA Astrophysics Data System (ADS)
Gorda, S. Yu.; Matveeva, E. A.
2017-12-01
We present 72 photoelectric and CCD times of minima of eclipsing binary AM Leo obtained mainly during at Kourovka Astronomical Observatory of the Ural Federal University in Russia. We obtained new values of period of 50.5 years and eccentricity of 0.28 of the orbit of the eclipsing pair around the mass center of the system AM Leo with the third body. These results have been received taking into account the times of minima taken from literature and obtained from to .
EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary
NASA Astrophysics Data System (ADS)
Borkovits, T.; Albrecht, S.; Rappaport, S.; Nelson, L.; Vanderburg, A.; Gary, B. L.; Tan, T. G.; Justesen, A. B.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Ngo, H.; Wallack, N.; Ruane, G.; Mawet, D.; Howell, S. B.; Tronsgaard, R.
2018-05-01
We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (`EB') with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (`RV') spectroscopy observations, adaptive optics imaging, as well as ground-based photometric observations. From our analysis of all the observations, we derive good estimates for a number of the system parameters. We conclude that (1) both binaries are bound in a quadruple star system; (2) a linear trend to the RV curve of binary A is found over a 2-year interval, corresponding to an acceleration, \\dot{γ }= 0.0024 ± 0.0007 cm s-2; (3) small irregular variations are seen in the eclipse-timing variations (`ETVs') detected over the same interval; (4) the orbital separation of the quadruple system is probably in the range of 8-25 AU; and (5) the orbital planes of the two binaries must be inclined with respect to each other by at least 25°. In addition, we find that binary B is evolved, and the cooler and currently less massive star has transferred much of its envelope to the currently more massive star. We have also demonstrated that the system is sufficiently bright that the eclipses can be followed using small ground-based telescopes, and that this system may be profitably studied over the next decade when the outer orbit of the quadruple is expected to manifest itself in the ETV and/or RV curves.
Correlations among the parameters of the spherical model for eclipsing binaries
NASA Technical Reports Server (NTRS)
Sobieski, S.; White, J. E.
1971-01-01
Correlation coefficients were computed to investigate the parameters for describing the spherical model of an eclipsing binary system. Regions in parameter hyperspace were identified where strong correlations exist and, by implication, the solution determinacy is low. The results are presented in tabular form for a large number of system configurations.
Precision of Times-of-Minima and the Detection of Low-Mass Third Bodies Orbiting Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Genet, R. M.; Smith, T. C.
2004-12-01
Low-mass third bodies orbiting eclipsing binaries are difficult to detect by way of periodic shifts in photometric times-of-minima because the observational precision of these timings are of the same order as the expected effects of any low-mass companions. We are implementing three approaches to increasing the precision of our times-of-minima. First, we are obtaining many times-of-minima by utilizing relatively low-cost, dedicated telescopes and CCD cameras (10- and 14-inch Meade LX-200 telescopes and SBIG ST7-XE cameras). Operating in a semiautomatic mode, we select an eclipsing binary system, based on its placement in the sky, and observe it all night long - usually many nights in a row. We choose binaries with short enough periods to assure us of obtaining a complete light curve (and hence an eclipse) every night we observe. Second, we are striving to increase the photometric precision of each observation through the use of multiple comparison stars (ensemble photometry). We are also, in conjunction with California Polytechnic State University, investigating other ways of increasing the photometric precision of these low-cost systems (see E. Sturm this conference). Finally, we are utilizing complete, as opposed to partial, light curves in our analysis. Information outside primary eclipses is gathered as a matter of course, and its use can improve precision. A total of 186 complete light curves were obtained at the Dark Ridge and Orion Observatories during the 2004 observing season on six eclipsing binaries (TZ Boo, V523 Cas, RW Com, V1191 Cyg, GM Dra, and V400 Lyr). Please see T. Smith and R. Genet (this conference) for preliminary results on V523 Cas (30+ complete light curves).
NASA Astrophysics Data System (ADS)
Graczyk, Dariusz; Pietrzyński, Grzegorz; Thompson, Ian B.; Gieren, Wolfgang; Pilecki, Bogumił; Konorski, Piotr; Villanova, Sandro; Górski, Marek; Suchomska, Ksenia; Karczmarek, Paulina; Stepień, Kazimierz; Storm, Jesper; Taormina, Mónica; Kołaczkowski, Zbigniew; Wielgórski, Piotr; Narloch, Weronika; Zgirski, Bartłomiej; Gallenne, Alexandre; Ostrowski, Jakub; Smolec, Radosław; Udalski, Andrzej; Soszyński, Igor; Kervella, Pierre; Nardetto, Nicolas; Szymański, Michał K.; Wyrzykowski, Łukasz; Ulaczyk, Krzysztof; Poleski, Radosław; Pietrukowicz, Paweł; Kozłowski, Szymon; Skowron, Jan; Mróz, Przemysław
2018-06-01
We present a determination of the precise fundamental physical parameters of 20 detached, double-lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems; the remaining nine are systems already analyzed by our team for which we present updated parameters. The catalog results from our long-term survey of eclipsing binaries in the Magellanic Clouds suitable for high-precision determination of distances (the Araucaria Project). The V-band brightnesses of the systems range from 15.4 to 17.7 mag, and their orbital periods range from 49 to 773 days. Six systems have favorable geometry showing total eclipses. The absolute dimensions of all eclipsing binary components are calculated with a precision of better than 3%, and all systems are suitable for a precise distance determination. The measured stellar masses are in the range 1.4 to 4.6 M ⊙, and comparison with the MESA isochrones gives ages between 0.1 and 2.1 Gyr. The systems show an age–metallicity relation with no evolution of metallicity for systems older than 0.6 Gyr, followed by a rise to a metallicity maximum at age 0.5 Gyr and then a slow metallicity decrease until 0.1 Gyr. Two systems have components with very different masses: OGLE LMC-ECL-05430 and OGLE LMC-ECL-18365. Neither system can be fitted by a single stellar evolution isochrone, explained by a past mass transfer scenario in the case of ECL-18365 and a gravitational capture or hierarchical binary merger scenario in the case of ECL-05430. The longest-period system, OGLE LMC SC9_230659, shows a surprising apsidal motion that shifts the apparent position of the eclipses. This is a clear sign of a physical companion to the system; however, neither investigation of the spectra nor light-curve analysis indicates a third-light contribution larger than 2%–3%. In one spectrum of OGLE LMC-ECL-12669, we noted a peculiar dimming of one of the components by 65% well outside of the eclipses. We interpret this observation as arising from an extremely rare occultation event, as a foreground Galactic object covers only one component of an extragalactic eclipsing binary.
VizieR Online Data Catalog: Minima of 41 binaries from entire Kepler mission (Gies+, 2015)
NASA Astrophysics Data System (ADS)
Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V.; Orosz, J. A.; Peters, G. J.
2016-06-01
We embarked on a search for eclipse timing variations among a subset of 41 eclipsing binaries that were identified prior to the start of Kepler observations (see our first paper, Gies et al. 2012, cat. J/AJ/143/137). Our first paper documented the eclipse times in observations made over quarters Q0-Q9 (2009.3-2011.5). Now with the Kepler mission complete with observations through Q17 (ending 2013.4), we present here the eclipse timings for our sample of 41 binaries over the entire duration of the mission. The associated times given in our first paper were based upon UTC (Coordinated Universal Time) while the current set uses TDB (Barycentric Dynamical Time), and here we report the times in reduced Barycentric Julian Date (BJD-2400000 days). We used the Simple Aperture Photometry (SAP) flux except in the case of KIC04678873. The list of targets appears in Table1. The eclipse timing measurements were made in almost the same way as described in our first paper. Our measurements appear in Table2. (2 data files).
The dynamical mass of a classical Cepheid variable star in an eclipsing binary system.
Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Bono, G; Udalski, A; Soszyński, I; Minniti, D; Pilecki, B
2010-11-25
Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiants-it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids.
EXPLORING A 'FLOW' OF HIGHLY ECCENTRIC BINARIES WITH KEPLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Subo; Katz, Boaz; Socrates, Aristotle
2013-01-20
With 16-month of Kepler data, 15 long-period (40-265 days) eclipsing binaries on highly eccentric orbits (minimum e between 0.5 and 0.85) are identified from their closely separated primary and secondary eclipses ({Delta}t{sub I,II} = 3-10 days). These systems confirm the existence of a previously hinted binary population situated near a constant angular momentum track at P(1 - e {sup 2}){sup 3/2} {approx} 15 days, close to the tidal circularization period P{sub circ}. They may be presently migrating due to tidal dissipation and form a steady-state 'flow' ({approx}1% of stars) feeding the close-binary population (few % of stars). If so, futuremore » Kepler data releases will reveal a growing number (dozens) of systems at longer periods, following dN/dlgP {proportional_to} P {sup 1/3} with increasing eccentricities reaching e {yields} 0.98 for P {yields} 1000 days. Radial-velocity follow-up of long-period eclipsing binaries with no secondary eclipses could offer a significantly larger sample. Orders of magnitude more (hundreds) may reveal their presence from periodic 'eccentricity pulses', such as tidal ellipsoidal variations near pericenter passages. Several new few-day-long eccentricity-pulse candidates with long periods (P = 25-80 days) are reported.« less
Correlations among the parameters of the spherical model for eclipsing binaries.
NASA Technical Reports Server (NTRS)
Sobieski, S.; White, J.
1973-01-01
Correlation coefficients have been computed to investigate the parameters used to describe the spherical model of an eclipsing binary system. Regions in parameter hyperspace have been identified where strong correlations exist and, by implication, the solution determinacy is low. The results are presented in tabular form for a large number of system configurations.
Photoelectric observations of the long-period eclipsing binaries at Yonsei University Observatory
NASA Technical Reports Server (NTRS)
Nha, I. S.; Lee, Y. S.; Chun, Y. W.; Kim, H. I.; Kim, Y. S.
1985-01-01
A long term project (ten-years; 1982-92) for the photoelectric observation in the UBV passbands of selected eclipsing binaries with P 10 days has initiated at Yonsei University Observatory using 40-cm and 61-cm reflectors. The instrumentation used and the observation techniques and the reduction procedures applied to this investigation are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hekker, S.; Debosscher, J.; De Ridder, J.
2010-04-20
Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longermore » than 75 days.« less
NASA Astrophysics Data System (ADS)
Hedlund, Anne; Sandquist, Eric L.; Arentoft, Torben; Brogaard, Karsten; Grundahl, Frank; Stello, Dennis; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico; Molenda-Zakowicz, Joanna; Vanderburg, Andrew
2018-06-01
V1178 Tau is a double-lined spectroscopic eclipsing binary in NGC1817, one of the more massive clusters observed in the K2 mission. We have determined the orbital period (P = 2.20 d) for the first time, and we model radial velocity measurements from the HARPS and ALFOSC spectrographs, light curves collected by Kepler, and ground based light curves using the Eclipsing Light Curve code (ELC, Orosz & Hauschildt 2000). We present masses and radii for the stars in the binary, allowing for a reddening-independent means of determining the cluster age. V1178 Tau is particularly useful for calculating the age of the cluster because the stars are close to the cluster turnoff, providing a more precise age determination. Furthermore, because one of the stars in the binary is a delta Scuti variable, the analysis provides improved insight into their pulsations.
HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia
2015-11-20
The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M{sub ⊙} and R/R{sub ⊙} values with stellar evolutionary models. We also demonstrate that the system is likelymore » to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.« less
Photometric Study of the Pulsating, Eclipsing Binary OO Dra
NASA Astrophysics Data System (ADS)
Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Yan, Z. Z.; Luo, Z. Q.; Luo, C. Q.
2014-12-01
We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.
Photometric study of the pulsating, eclipsing binary OO DRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. B.; Deng, L. C.; Tian, J. F.
We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component.more » A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.« less
A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu
We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewer, Lauren N.; Sandquist, Eric L.; Jeffries, Mark W. Jr.
As part of our study of the old (∼2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVR{sub C}I{sub C}) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses M{sub B} = 1.090 ± 0.010 M{sub ⊙} and M{sub C} = 1.075 ± 0.013 M{sub ⊙}, and radii R{sub B} = 1.099 ± 0.006 ± 0.005 R{sub ⊙} and R{sub C} = 1.069 ± 0.006 ± 0.013 R{submore » ⊙}. The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is M{sub A} = 1.251 ± 0.057 M{sub ⊙}. A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and place them in the color–magnitude diagram (CMD). We also present improved analysis of two previously discussed detached eclipsing stars in NGC 6819 (WOCS 40007 and WOCS 23009) en route to a combined determination of the cluster’s distance modulus (m − M){sub V} = 12.38 ± 0.04. Because this paper significantly increases the number of measured stars in the cluster, we can better constrain the age of the CMD to be 2.21 ± 0.10 ± 0.20 Gyr. Additionally, using all measured eclipsing binary star masses and radii, we constrain the age to 2.38 ± 0.05 ± 0.22 Gyr. The quoted uncertainties are estimates of measurement and systematic uncertainties (due to model physics differences and metal content), respectively.« less
NASA Astrophysics Data System (ADS)
Yakut, Kadri
2015-08-01
We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.
NASA Astrophysics Data System (ADS)
Johnson, Marshall C.; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; McLane, Jacob; Sokal, Kimberly R.
2017-06-01
EPIC 203868608 is a source in the ~10 Myr old Upper Scorpius OB association. Using K2 photometry and ground-based follow-up observations, David et al. (2016) found that it consists of two brown dwarfs with a tertiary object at a projected separation of ~20 AU; the former objects appear to be a double-lined eclipsing binary with a period of 4.5 days. This is one of only two known eclipsing SB2s where both components are below the hydrogen-burning limit. We present additional follow-up observations of this system from the IGRINS high-resolution near-infrared spectrograph at McDonald Observatory. Our measured radial velocities do not follow the orbital solution presented by David et al. (2016). Instead, our combined IGRINS plus literature radial velocity dataset appears to indicate a period significantly different than that of the eclipsing binary obvious from the K2 light curve. We will discuss possible scenarios to account for the conflicting observations of this system.
A model of V356 Sagittarii. [eclipsing binary star
NASA Technical Reports Server (NTRS)
Wilson, R. E.; Caldwell, C. N.
1978-01-01
It is pointed out that V356 Sgr is an abnormal member of the Algol class of binaries. According to Popper (1955), the primary component is of spectral type B3V and is rotating rapidly, while the secondary is of type A2II and is rotating at least approximately in synchronism with the orbital motion. The system is either semidetached or quite near to being semidetached. The main anomalies are related to the ratio of eclipse depths, the very small reflection effect of the light curves, differences between the duration of the primary and the secondary eclipse, and the unusual characteristics of the primary eclipse. It is concluded that the lack of agreement between theory and observation can be due only to an important attribute of the binary which has not yet been incorporated into the theory. The peculiarities can most reasonably be explained in terms of a geometrically and optically thick disk which surrounds the primary component.
VizieR Online Data Catalog: OGLE II SMC eclipsing binaries (Wyrzykowski+, 2004)
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszinski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2009-03-01
We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog with individual photometry is accessible from the OGLE INTERNET archive, at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/smc/ecl . Regular observations of the SMC fields started on June 26, 1997 and covered about 2.4 square degrees of central parts of the SMC. Reductions of the photometric data collected up to the end of May 2000 were performed with the Difference Image Analysis (DIA) package. (1 data file).
Primordial main equence binary stars in the globular cluster M71
NASA Technical Reports Server (NTRS)
Yan, Lin; Mateo, Mario
1994-01-01
We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the implications of this on our estimates of the binary frequency in M71 and on the formation of blue stragglers.
V380 Dra: New short-period totally eclipsing active binary
NASA Astrophysics Data System (ADS)
Özdarcan, O.
2014-02-01
In this study, first complete and standard BVR light curves and photometric analysis of the eclipsing binary system V380 Dra are presented. Photometric analysis result indicates that the system has components which are cool main sequence stars. In light and color curves, remarkable asymmetry is observed, especially after secondary minimum, which is believed to be a result of chromospheric activity in one or both components. O-C diagram of available small number of eclipse times, together with new eclipse timings in this work, exhibits no significant variation. Preliminary light curve solution shows that the secondary minimum is total eclipse. By using the advantage of total eclipse and mass-luminosity relation, it is found that the system has a possible mass ratio of q = 0.81. First estimation of masses and radii of primary and secondary components are M1 = 0.77 M⊙,M2 = 0.62 M⊙ and R1 = 0.93 R⊙,R2 = 0.77 R⊙, respectively.
Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle
NASA Astrophysics Data System (ADS)
Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar
2018-06-01
We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.
A computer program for modeling non-spherical eclipsing binary star systems
NASA Technical Reports Server (NTRS)
Wood, D. B.
1972-01-01
The accurate analysis of eclipsing binary light curves is fundamental to obtaining information on the physical properties of stars. The model described accounts for the important geometric and photometric distortions such as rotational and tidal distortion, gravity brightening, and reflection effect. This permits a more accurate analysis of interacting eclipsing star systems. The model is designed to be useful to anyone with moderate computing resources. The programs, written in FORTRAN 4 for the IBM 360, consume about 80k bytes of core. The FORTRAN program listings are provided, and the computational aspects are described in some detail.
Search for Pulsating Stars in the Open Cluster NGC 1502
NASA Astrophysics Data System (ADS)
Stęślicki, M.
2006-04-01
We present results of a variability search in the field of the young open cluster NGC 1502. We confirm that a beta Cephei suspect WEBDA 26 is indeed pulsating with a period of 0.09612 d and semi-amplitude of about 3 mmag in V. A new VI light curve of the bright eclipsing binary and cluster member SZ Cam was obtained. In addition, we found two new variable stars. One is an interesting eclipsing binary showing total eclipses, which can be used to derive the distance to the cluster once radial velocities of the components will be obtained.
MM Herculis - An eclipsing binary of the RS CVn
NASA Technical Reports Server (NTRS)
Sowell, J. R.; Hall, D. S.; Henry, G. W.; Burke, E. W., Jr.; Milone, E. F.
1983-01-01
V, B and U differential photoelectric photometry has been obtained for the RS Canum Venaticorum-class eclipsing binary star MM Her, with the light outside the eclipse being Fourier-analyzed to study wave migration and amplitude. These, together with the mean light level of the system, have been monitored from 1976 through 1980. Observations within the eclipse have revealed eclipses to be partial, rather than total as previously thought. The geometric elements of the presently rectified light curve are forced on the pre-1980 light curves and found to be compatible. With these elements, and previously obtained double line radial velocity curves, new absolute dimensions of 1.18 solar masses and 1.58 solar radii are calculated for the hotter star and 1.27 solar masses and 2.83 solar radii for the cooler star. The plotting of color indices on the color-color curve indicates G2V and K2IV spectral types.
A new study of the interacting binary star V356 Sgr
NASA Technical Reports Server (NTRS)
Polidan, R. S.
1988-01-01
Results on V356 Sgr from IUE and Voyager ultraviolet (500 to 3200 A) observations obtained in 1986 and 1987, primarily during 2 total eclipses are presented. The eclipse of Aug. 15, 1986 was fully covered with IUE low dispersion images and 9 hr of Voyager UVS data. The eclipse of Mar. 25, 1987 was covered with IUE low dispersion images and 1 high dispersion SWP image. During both eclipses the total strength of the emission lines is found to be invariant. An uneclipsed UV continuum is detected at wavelengths shorter than 1500 A. The high dispersion SWP spectrum reveals that the emission lines are extremely broad, almost symmetrical emissions with weak, slightly blue shifted absorption components. No evidence of carbon, C I, C II, C III, or C IV, is seen in the emission or absorption spectrum of V356 Sgr in eclipse. Models for this binary system are presented.
PHYSICS OF ECLIPSING BINARIES. II. TOWARD THE INCREASED MODEL FIDELITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prša, A.; Conroy, K. E.; Horvat, M.
The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but weremore » not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.« less
Vulcan Identification of Eclipsing Binaries in the Kepler Field of View
NASA Astrophysics Data System (ADS)
Mjaseth, Kimberly; Batalha, N.; Borucki, W.; Caldwell, D.; Latham, D.; Martin, K. R.; Rabbette, M.; Witteborn, F.
2007-05-01
We report the discovery of 236 new eclipsing binary stars located in and around the field of view of the Kepler Mission. The binaries were identified from photometric light curves from the Vulcan exoplanet transit survey. The Vulcan camera is comprised of a modest aperture (10cm) f/2.8 Canon lens focusing a 7° x 7° field of view onto a 4096 x 4096 Kodak CCD. The system yields an hour-to-hour relative precision of 0.003 on 12th magnitude stars and saturates at 9th magnitude. The binaries have magnitudes in the range of 9.5 < V < 13.5 and periods ranging from 0.5 to 13 days. The milli-magnitude photometric precision allows detection of transits as shallow as 1%. The catalog contains a total of 273 eclipsing binary stars, including detached systems (high and low mass ratio), contact binaries, and triple systems. We present the derived orbital/transit properties, light curves, and stellar properties for selected targets. In addition, we summarize the results of radial velocity follow-up work. Support for this work came from NASA's Discovery Program and NASA's Origins of the Solar System Program.
VizieR Online Data Catalog: ASAS, NSVS, and LINEAR detached eclipsing binaries (Lee, 2015)
NASA Astrophysics Data System (ADS)
Lee, C.-H.
2016-04-01
We follow the approach of Devor et al. (2008AJ....135..850D, Cat. J/AJ/135/850) to analyse the LC from ASAS (Pojmanski et al., Cat. II/264, NSVS (Wozniak et al., 2004AJ....127.2436W, and LINEAR (Palaversa et al., Cat. J/AJ/146/101) and extract the physical properties of the eclipsing binaries. (3 data files).
Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon
2016-06-01
The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of the primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot-hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot-hot binaries, but not for hot-cool or cool-cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.
ORBITAL CIRCULARIZATION OF HOT AND COOL KEPLER ECLIPSING BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eylen, Vincent Van; Albrecht, Simon; Winn, Joshua N., E-mail: vincent@phys.au.dk
The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler . This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of themore » primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot–hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot–hot binaries, but not for hot–cool or cool–cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.« less
Orbital evolution and search for eccentricity and apsidal motion in the eclipsing HMXB 4U 1700-37
NASA Astrophysics Data System (ADS)
Islam, Nazma; Paul, Biswajit
2016-09-01
In the absence of detectable pulsations in the eclipsing high-mass X-ray binary 4U 1700-37, the orbital period decay is necessarily determined from the eclipse timing measurements. We have used the earlier reported mid-eclipse time measurements of 4U 1700-37 together with the new measurements from long-term light curves obtained with the all sky monitors RXTE-ASM, Swift-BAT and MAXI-GSC, as well as observations with RXTE-PCA, to measure the long-term orbital evolution of the binary. The orbital period decay rate of the system is estimated to be {dot{P}}/P = -(4.7 ± 1.9) × 10^{-7} yr-1, smaller compared to its previous estimates. We have also used the mid-eclipse times and the eclipse duration measurements obtained from 10-years-long X-ray light curve with Swift-BAT to separately put constraints on the eccentricity of the binary system and attempted to measure any apsidal motion. For an apsidal motion rate greater than 5 deg yr-1, the eccentricity is found to be less than 0.008, which limits our ability to determine the apsidal motion rate from the current data. We discuss the discrepancy of the current limit of eccentricity with the earlier reported values from radial velocity measurements of the companion star.
Period changes of the sample of eclipsing binaries with active chromospheres
NASA Astrophysics Data System (ADS)
Jableka, D.; Zola, S.; Zakrzewski, B.; Szymanski, T.; Kuzmicz, A.; de Villiers, S. N.; Zejda, M.; Koziel-Wierzbowska, D.
2012-11-01
In this work we present results derived from analysis of the O-C behaviour of ten eclipsing binary systems: AR Lac, CG Cyg, HP Aur, MM Her, RS CVn, RT And, SV Cam, V471 Tau, WW Dra and CF Tuc. It was proved on the basis of moments of minima compiled from the literature and new ones determined from recent observations, that these binaries show long term (19-91 years) modulations of their orbital periods, clearly visible in their O-C diagrams. Two possible explanations for this effect are considered: (1) the light-travel time effect due to the presence of a third body orbiting the eclipsing systems; (2) the Applegate mechanism predicting period modulation by changes in the distribution of angular momentum as a star goes through its activity cycles. It was found that in the case of four systems the existence of a third star, orbiting the binary, is a more plausible explanation of observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graczyk, Dariusz; Gieren, Wolfgang; Konorski, Piotr
In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with amore » precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (∼5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paegert, Martin; Stassun, Keivan G.; Burger, Dan M.
2014-08-01
We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together withmore » a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (∼60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.« less
KIC 11401845: An Eclipsing Binary with Multiperiodic Pulsations and Light-travel Time
NASA Astrophysics Data System (ADS)
Lee, Jae Woo; Hong, Kyeongsoo; Kim, Seung-Lee; Koo, Jae-Rim
2017-02-01
We report the {\\text{}}{Kepler} photometry of KIC 11401845 displaying multiperiodic pulsations, superimposed on binary effects. Light-curve synthesis shows that the binary star is a short-period detached system with a very low mass ratio of q = 0.070 and filling factors of F1 = 45% and F2 = 99%. Multiple-frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the observed data. We detected 23 frequencies with signal-to-noise ratios larger than 4.0, of which the orbital harmonics (f4, f6, f9, f15) in the low-frequency domain may originate from tidally excited modes. For the high frequencies of 13.7-23.8 day-1, the period ratios and pulsation constants are in the ranges of {P}{pul}/{P}{orb}=0.020{--}0.034 and Q = 0.018-0.031 days, respectively. These values and the position on the Hertzsprung-Russell diagram demonstrate that the primary component is a δ Sct pulsating star. We examined the eclipse timing variation of KIC 11401845 from the pulsation-subtracted data and found a delay of 56 ± 17 s in the arrival times of the secondary eclipses relative to the primary eclipses. A possible explanation of the time shift may be some combination of a light-travel-time delay of about 34 s and a very small eccentricity of e\\cos ω < 0.0002. This result represents the first measurement of the Rømer delay in noncompact binaries.
NASA Technical Reports Server (NTRS)
Thorstensen, John R.; Ringwald, F. A.; Wade, Richard A.; Schmidt, Gary D.; Norsworthy, Jane E.
1991-01-01
This paper reports extensive optical observations on the PG0027 + 260 binary, carried out on August 1984 with the 1.3 McGraw-Hill telescope and Mark II spectrometer at Michigan-Dartmouth-MIT Observatory on Kitt Peak. It is shown that this object is an eclipsing novalike variable with an orbital period of 3.51 hr. The PG0027 + 260 displays several unexplained phenomena which are remarkably similar to those of the SW Sex, DW UMa, and V1315 Aql, which are eclipsing novalike stars with periods between 3 and 4 hrs. The eclipse of the PG0027 + 260 is modeled, and it is shown that, while the mean eclipse light curve is easy to match, there is no simple explanation for the variable depth.
Optical polarization observations of epsilon Aurigae during the 2009-2011 eclipse
NASA Astrophysics Data System (ADS)
Henson, Gary D.; Burdette, John; Gray, Sharon
2012-05-01
Polarization observations of the unique eclipsing binary, Epsilon Aurigae, are being carried out using a new dual beam imaging polarimeter on the 0.36m telescope of the Harry D. Powell Observatory. This bright binary system has a 27.1 year period with an eclipse duration of nearly two years. The primary is known to be a pulsating F0 supergiant with the secondary a large and essentially opaque disk. We report here on the characteristics of the polarimeter and on the status of V-band observations that are being obtained to better understand the system's geometry and the nature of its two components. In particular, the characteristics of the secondary disk remain a puzzle. Results are compared to polarization observations from the 1982-1984 eclipse.
NASA Astrophysics Data System (ADS)
Reid, Piper
2013-01-01
A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.
KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, H.; Borkovits, T.; Rappaport, S. A.
2016-03-01
KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. Frommore » the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.« less
Eclipsing Binaries with Possible Tertiary Components
NASA Astrophysics Data System (ADS)
Snyder, LeRoy F.
2013-05-01
Many eclipsing binary star systems (EBS) show long-term variations in their orbital periods which are evident in their O-C (observed minus calculated period) diagrams. This research carried out an analysis of 324 eclipsing binary systems taken from the systems analyzed in the Bob Nelson's O-C Files database. Of these 18 systems displayed evidence of periodic variations of the arrival times of the eclipses. These rates of period changes are sinusoidal variations. The sinusoidal character of these variations is suggestive of Keplerian motion caused by an orbiting companion. The reason for these changes is unknown, but mass loss, apsidal motion, magnetic activity and the presence of a third body have been proposed. This paper has assumed light time effect as the cause of the sinusoidal variations caused by the gravitational pull of a tertiary companion orbiting around the eclipsing binary systems. An observed minus calculated (O-C) diagram of the 324 systems was plotted using a quadratic ephemeris to determine if the system displayed a sinusoidal trend in theO-C residuals. After analysis of the 18 systems, seven systems, AW UMa, BB PEG, OO Aql, V508 Oph, VW Cep, WCrv and YY ERI met the benchmark of the criteria of a possible orbiting companion. The other 11 systems displayed a sinusoidal variation in the O-C residuals of the primary eclipses but these systems in the Bob Nelson's O-C Files did not contain times of minimum (Tmin) of the secondary eclipses and therefore not conclusive in determining the presents of the effects of a tertiary companion. An analysis of the residuals of the seven systems yields a light-time semi-amplitude, orbital period, eccentricity and mass of the tertiary companion as the amplitude of the variation is proportional to the mass, period and inclination of the 3rd orbiting body. Knowing the low mass of the tertiary body in the seven cases the possibility of five of these tertiary companions being brown dwarfs is discussed.
NASA Astrophysics Data System (ADS)
Liakos, A.; Niarchos, P.
2009-03-01
CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.
NASA Astrophysics Data System (ADS)
David-Uraz, A.; Moffat, A. F. J.; Chené, A.-N.; MOST Collaboration
2012-12-01
The WR + O binary CV Ser has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. However, the first high-precision time-dependent photometric observations obtained with the MOST space telescope in 2009 show two consecutive eclipses over the 29 day orbit, with varying depths. A subsequent MOST run in 2010 showed a somewhat asymmetric eclipse profile. Parallel optical spectroscopy was obtained from the Observatoire du Mont-Mégantic (2009 and 2010) and from the Dominion Astrophysical Observatory (2009).
Photometric study of the eclipsing binary GR Bootis
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Zhang, Y. P.; Fu, J. N.; Xue, H. F.
2016-07-01
We present CCD photometry and low-resolution spectra of the eclipsing binary GR Boo. A new ephemeris is determined based on all the available times of the minimum light. The period analysis reveals that the orbital period is decreasing with a rate of dP / dt = - 2.05 ×10-10 d yr-1 . A photometric analysis for the obtained light curves is performed with the Wilson-Devinney Differential Correction program for the first time. The photometric solutions confirm the W UMa-type nature of the binary system. The mass ratio turns out to be q = 0.985 ± 0.001 . The evolutionary status and physical nature of the binary system are briefly discussed.
A New Binary Star System of EW Type in Draco: GSC 03905-01870
NASA Astrophysics Data System (ADS)
Barquin, S.
2018-05-01
Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.
Sub-1% accuracy in fundamental stellar parameters from triply eclipsing systems
NASA Astrophysics Data System (ADS)
Prsa, Andrej
The current state-of-the-art level of accuracy in fundamental stellar parameters from eclipsing binary stars is 2-3%. Here we propose to use eclipsing triple stars to reduce the error bars by an entire order of magnitude, i.e. to 0.2-0.3%. This can be done because a presence of the third component breaks most of the degeneracy inherent in binary systems between the inclination and stellar sizes. We detail the feasibility arguments and foresee that these results will provide exceptional benchmark objects for stringent tests of stellar evolution and population models. The formation channel of close binary stars (with separations of several stellar radii) is a matter of debate. It is clear that close binaries cannot form in situ because (1) the physical radius of a star shrinks by a large factor between birth and the main sequence, yet many main-sequence stars have companions orbiting at a distance of only a few stellar radii, and (2) in current theories of planet formation, the region within 0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many hot jupiters are observed at such distances. Current theories of dynamic orbital evolution attribute orbital shrinking to Kozai cycles and tidal friction, which are long-lasting, perturbative effects that take Gyrs to shrink orbits by 1-2 orders of magnitude. This implies that, if a binary star system has a tertiary companion, it will be in a hierarchical structure, and any disruptive orbital encounters should be exceedingly rare after a certain period. The Kepler satellite observed continuously over 2800 eclipsing binary stars over 4 years of its mission lifetime. The ultra-high precision photometry and essentially uninterrupted time coverage enables us to time the eclipses to a 6 second precision. Because of the well understood physics that governs the orbital motion of two bodies around the center of mass, the expected times of eclipses can be predicted to a fraction of a second. When other physical processes interplay, such as apsidal motion, mass transfer or third body interactions, the times of eclipses deviate from predictions: they either come early or late. These deviations are called eclipse timing variations (ETVs) and can range from a few seconds to a few hours. Our team measured ETVs for the entire Kepler data-set of eclipsing binaries and found 516 that demonstrate significant deviations. Of those, 16 show strong interactions between the binary system and the tertiary component that significantly affects the binary orbit within a single encounter. This observed rate of dynamical perturbation events is unexpectedly high and at odds with current theories. We propose to study these objects in great detail: (1) to apply a developed photodynamical code to model multiple body interactions; (2) to fully solve orbital dynamics of these interacting bodies using all available Kepler data, deriving masses of all objects to better than 1%; (3) to measure the occurrence rate of strong orbital interactions in multiple systems and compare it to the predicted rates; (4) to hypothesize and simulate additional evolution channels that could potentially lead to such a high occurrence rate of disruptive events; and (5) to integrate these systems over time and test whether this dynamic evolution can cause efficient orbital tightening and the creation of short period binaries. The team consists of a PI who has experience with Kepler satellite's idiosyncrasies, two postdoctoral fellows, one graduate student, and six undergraduate students that will invest their summer months to learn about multiple body interactions. The proposed study has far-reaching research goals in stellar and planetary science astrophysics, a strong educational/training component and is aligned with NASA's objectives as outlined in the NRA call. Kepler is the only instrument that can provide the accuracy and temporal coverage required for the execution of this project.
NASA Astrophysics Data System (ADS)
Parsons, S. G.; Hermes, J. J.; Marsh, T. R.; Gänsicke, B. T.; Tremblay, P.-E.; Littlefair, S. P.; Sahman, D. I.; Ashley, R. P.; Green, M.; Rattanasoon, S.; Dhillon, V. S.; Burleigh, M. R.; Casewell, S. L.; Buckley, D. A. H.; Braker, I. P.; Irawati, P.; Dennihy, E.; Rodríguez-Gil, P.; Winget, D. E.; Winget, K. I.; Bell, Keaton J.; Kilic, Mukremin
2017-10-01
Using data from the extended Kepler mission in K2 Campaign 10, we identify two eclipsing binaries containing white dwarfs with cool companions that have extremely short orbital periods of only 71.2 min (SDSS J1205-0242, a.k.a. EPIC 201283111) and 72.5 min (SDSS J1231+0041, a.k.a. EPIC 248368963). Despite their short periods, both systems are detached with small, low-mass companions, in one case a brown dwarf and in the other case either a brown dwarf or a low-mass star. We present follow-up photometry and spectroscopy of both binaries, as well as phase-resolved spectroscopy of the brighter system, and use these data to place preliminary estimates on the physical and binary parameters. SDSS J1205-0242 is composed of a 0.39 ± 0.02 M⊙ helium-core white dwarf that is totally eclipsed by a 0.049 ± 0.006 M⊙ (51 ± 6MJ) brown-dwarf companion, while SDSS J1231+0041 is composed of a 0.56 ± 0.07 M⊙ white dwarf that is partially eclipsed by a companion of mass ≲0.095 M⊙. In the case of SDSS J1205-0242, we look at the combined constraints from common-envelope evolution and brown-dwarf models; the system is compatible with similar constraints from other post-common-envelope binaries, given the current parameter uncertainties, but has potential for future refinement.
HST images of the eclipsing pulsar B1957+20
NASA Technical Reports Server (NTRS)
Fruchter, Andrew S.; Bookbinder, Jay; Bailyn, Charles D.
1995-01-01
We have obtained images of the eclipsing pulsar binary PSR B1957+20 using the Planetary Camera of the Hubble Space Telescope (HST). The high spatial resolution of this instrument has allowed us to separate the pulsar system from a nearby background star which has confounded ground-based observations of this system near optical minimum. Our images limit the temperature of the backside of the companion to T less than or approximately = 2800 K, about a factor of 2 less than the average temperature of the side of the companion facing the pulsar, and provide a marginal detection of the companion at optical minimum. The magnitude of this detection is consistent with previous work which suggests that the companion nearly fills its Roche lobe and is supported through tidal dissipation.
The 1984 eclipse of the symbiotic binary SY Muscae
NASA Technical Reports Server (NTRS)
Kenyon, S. J.; Michalitisianos, A. G.; Lutz, J. H.; Kafatos, M.
1985-01-01
Data from IUE spectra obtained with the 10 x 20-arcsec aperture on May 13, 1984, and optical spectrophotometry obtained with an SIT vidicon on the 1.5-m telescope at CTIO on April 29-May 1, 1984, are reported for the symbiotic binary SY Mus. The data are found to be consistent with a model of a red-giant secondary of 60 solar radii which completely eclipses the hot primary every 627 d but only partially eclipses the 75-solar-radius He(+) region surrounding the primary. The distance to SY Mus is estimated as 1.3 kpc. It is suggested that the large Balmer decrement in eclipse, with (H-alpha)/(H-beta) = 8.3 and (H-beta)/(H-gamma) = 1.5, is associated with an electron density of about 10 to the 10th/cu cm.
Periodicity and eclipse minima timing of CM Draconis.
NASA Astrophysics Data System (ADS)
Vázquez-Martín, S.; Deeg, H. J.; Dreizler, S.; von Essen, C.; Kozhevnikov, V. P.
2015-05-01
Periodic deviations from a linear ephemeris of a binary star's eclipses can indicate the presence of a third body in orbit around both. Hints for such companion around the M4.5/M4.5 binary CMDra were published by Deeg et al. (2008). The assignment of a planet in the CMDra system can however only be accepted if the earlier observed periodicity trends can be verified through further observations over several years. For eclipsing binary stars of low mass, the method of eclipse minimum timing allows one to set mass limits for the detection of a third body. Deeg et al. (2008) concluded that the two possibilities for the source of CMDra's timing variations that remain valid are a planet of a few Jupiter masses on a two decade-long orbit, or an object on a century-to-millenium long orbit with masses 1.5M_J < M_{p} < 0.1M_{⊙}. However, they concluded that it is necessary to do continued observations of the timing of CMDra's eclipses to be decisive regarding the continued viability of the sinusoidal-fit-model, and hence, about the validity of a Jovian-type planet in a circumbinary orbiting around the system. Here we update the analysis of Deeg et al. (2008), including further data presented in Morales et al. (2009r) and new observations taken at Ural Observatory (2008-2013). Eclipse minimum times were obtained using the Kwee-van-Woerden method.
Record-Breaking Eclipsing Binary
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind the small, hot core shrouded by a large, cool disk of stripped gas. The large size of the disk causes the eclipse of the primary to last for years, as viewed from Earth.The authors estimate the properties such a disk would need to produce the observed light curve. They find that if the companion were surrounded by a disk several AU in diameter, it could orbit at a distance of ~20-30 AU from the primary and reproduce the emission we see.The next eclipse of TYC-2505-672-1 will begin in April 2080. We neednt wait until then to gather more information about this system, however! Radial velocity measurements will help establish the masses of the two components, and high-cadence UV observations could reveal more about the evolutionary state of the system. Studying this extreme binary provides an excellent opportunity to learn more about the environments in late-life star systems.CitationJoseph E. Rodriguez et al 2016 AJ 151 123. doi:10.3847/0004-6256/151/5/123
NASA Astrophysics Data System (ADS)
Bogensberger, David; Clarke, Fraser; Lynas-Gray, Anthony Eugene
2017-12-01
Several post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25th to 2017 January 27th. Available eclipse timings suggest a brown dwarf tertiary having a mass of at least 0.0236(40) M⊙, an elliptical orbit with an eccentricity of 0.376(98) and an orbital period of 11.77(67) years about the binary centreof- mass. The mass and orbit suggest a hybrid formation, in which some ejected material from the subdwarf progenitor was accreted on to a precursor tertiary component, although additional observations would be needed to confirm this interpretation and investigate other possible origins for the binary orbital period change.
Absolute Parameters for the F-type Eclipsing Binary BW Aquarii
NASA Astrophysics Data System (ADS)
Maxted, P. F. L.
2018-05-01
BW Aqr is a bright eclipsing binary star containing a pair of F7V stars. The absolute parameters of this binary (masses, radii, etc.) are known to good precision so they are often used to test stellar models, particularly in studies of convective overshooting. ... Maxted & Hutcheon (2018) analysed the Kepler K2 data for BW Aqr and noted that it shows variability between the eclipses that may be caused by tidally induced pulsations. ... Table 1 shows the absolute parameters for BW Aqr derived from an improved analysis of the Kepler K2 light curve plus the RV measurements from both Imbert (1979) and Lester & Gies (2018). ... The values in Table 1 with their robust error estimates from the standard deviation of the mean are consistent with the values and errors from Maxted & Hutcheon (2018) based on the PPD calculated using emcee for a fit to the entire K2 light curve.
The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula
NASA Astrophysics Data System (ADS)
Henderson, Calen B.; Stassun, K. G.
2009-01-01
We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.
Contact Binaries on Their Way Towards Merging
NASA Astrophysics Data System (ADS)
Gazeas, K.
2015-07-01
Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.
The first comprehensive catalog of γ Dor pulsators and their characteristics
NASA Astrophysics Data System (ADS)
Ibanoglu, C.; Çakırlı, Ö.; Sipahi, E.
2018-07-01
We present the first comprehensive catalog of the γ Doradus type pulsating stars. This catalog covers observational properties of all γ Dor variables obtained until January 2017. The photometric and physical properties of 109 well - known γ Dor pulsators, 18 hybrid stars, 13 anomalous γ Dor stars, and 22 γ Dor stars in eclipsing plus 1 non-eclipsing SB2 binary systems are presented as separate tables. In addition, 291 candidate γ Dor variables discovered by CoRot, 307 candidate γ Dor, 205 hybrid and 11 candidate γ Dor in binaries discovered by Kepler were also presented. Distribution of the genuine single γ Dor pulsators in the Ppuls-Teff, Amplitude-Teff, Amplitude-Ppuls and L-Teff diagrams are presented and discussed. We find following correlations for the γ Dor pulsators in the eclipsing binaries: Ppuls ∝ Porb0.27, Ppuls ∝ Q0.45, and Ppuls ∝ r-0.44, where (Q) is the pulsation constant and r is the fractional radius of the pulsating component in the binary system. The correlation coefficients are not high enough due to limited sample and scattering in the data.
NASA Astrophysics Data System (ADS)
Kjurkchieva, D.; Popov, V. A.; Eneva, J.; Petrov, N.
2018-05-01
We present photometric observations in Sloan filters g', i' of the short-period eclipsing stars KR Lyn, CSS J110212+244412, NSVS 4917488 and NSVS 7336024. The light curve solutions revealed that all targets are overcontact binaries whose components are G and K stars. Their temperature differences do not exceed 300 K but they differ considerably in size and mass. NSVS 4917488 and NSVS 7336024 reveal total eclipses and their parameters can be considered as well-determined. We found that KR Lyn, NSVS 4917488 and NSVS 7336024 are of W-subtype while CSS J110212+244412 is A-subtype W UMa-type star.
The Exciting World of Binary Stars: Not Just Eclipses Anymore (Abstract)
NASA Astrophysics Data System (ADS)
Pablo, B.
2018-06-01
(Abstract only) Binary stars have always been essential to astronomy. Their periodic eclipses are the most common and efficient method for determining precise masses and radii of stars. Binaries are known for their predictability and have been observed for hundreds if not thousands of years. As such, they are often ignored by observers as uninteresting, however, nothing could be farther from the truth. In the last ten years alone the importance of binary stars, as well of our knowledge of them, has changed significantly. In this talk, I will introduce you to this new frontier of heartbeats, mergers, and evolution, while hopefully motivating a change in the collective thinking of how this unique class of objects is viewed. Most importantly,
Young and Waltzing Binary Stars
NASA Astrophysics Data System (ADS)
2001-10-01
ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a star determines its fate . Massive stars (with masses more than 50 times that of the Sun) lead a glorious, but short life. They are hot and very luminous and exhaust their energy supply in just a few million years. At the other end of the scale, low-mass stars like the Sun are more economical with their resources. Being cooler and dimmer, they are able to shine for billions of years [2]. But although the mass determines the fate of a star, it is not a trivial matter to measure this crucial parameter. In fact, it can only be determined directly if the star happens to be gravitationally bound to another star in a binary stellar system. Observations of the orbital motions of the two stars as they circle each other allows to "weigh" them, and also provide other important information, e.g. about their sizes and temperatures. Orbital motions The understanding of orbital motions has a long history in astronomy. The basic laws of Johannes Kepler (1571-1630) are still used to calculate the masses of orbiting objects, in the solar system as well as in binary stellar systems. However, while the observations of the motion of the nine planets and moons have allowed us to measure quite accurately the masses of objects in our vicinity, the information needed to "weigh" the binary stellar systems is not that easy to obtain. As a result, the mass estimates of the stars in binary systems are often rather uncertain. A main problem is that the individual stars in many binary systems can not be visually separated, even in the best telescopes. The information about the orbit may then come from the motions of the stars, if these are revealed by spectroscopic observations of the combined light (such systems are referred to as "spectroscopic binaries"). If absorption lines from both components are present in the spectrum, the measured wavelength of these double lines will shift periodically back and forth. This is the well-known Doppler effect and it directly reflects the changing velocities of the stars, as they move along their orbits and periodically approach and recede from the observer. Such spectroscopic observations therefore allow to measure the orbital velocities of the stars. It is exactly the same technique that is used to study and weigh extra-solar planets orbiting other stars [3]. However, this method has an important limitation. From the spectroscopical observations alone, it is only possible to deduce limits on the masses, as the inclination of orbits to the line-of-sight is usually unknown. The masses derived in this way (for stars as well as for exoplanets) are therefore only lower limits on the actual masses. Eclipsing Binaries However, fortunate observational circumstances sometimes allow to obtain all information about the stellar orbits. If a binary system is viewed (almost exactly) edge-on, the stars may pass in front of each other from time to time. Astronomers refer to this phenomenon as an "eclipse" and speak about an "eclipsing binary". The effect is similar to a "solar" eclipse as seen on the Earth, whenever the Moon passes in front of the Sun. Like the Moon blocks the sunlight, less light is received from the eclipsed star and thus the combined light from the binary system decreases during the eclipse. The way this happens (astronomers speak about the system's "lightcurve") then provides the additional information about the inclination of the orbit that is needed to determine exactly the stellar masses in a "spectroscopic" binary system. Very accurate values for the stellar diameters and the surface temperatures of the two stars can also be deduced. In short, when a full set of observations is available, it is possible to give a comprehensive description of an eclipsing binary system and its components. Eclipsing, spectroscopic binaries thus represent true cornerstones for the determination of stellar masses , and as such they are fundamental for our understanding of stellar evolution . Rather few such systems are known, but they can also be used to check ("calibrate") other, indirect methods to derive stellar parameters. It is on this background that the first discovery of an eclipsing binary system with two young, solar-like stars is of great interest. The Orion Binary Young stars are not so easy to find. One way is to look for their high-energy emission from a hot corona, created by their enhanced magnetic activity. The object RXJ 0529.4+0041 was first discovered in this way by the X-ray satellite ROSAT. Subsequent optical spectroscopy showed this object to be a young, low-mass spectroscopic binary system. And when a team of astronomers [1] used a 91-cm telescope at the Serra La Nave observing station on the slope of the Etna volcano (Sicily) to monitor the light curve, they also discovered that this system undergoes eclipses. All data confirm that RXJ 0529.4+0041 is located in the Orion Nebula at a distance of about 1500 light-years. This is one of the nearest star-forming regions and almost all stars in this area are quite young. Spectroscopic observations soon confirmed that the binary system was no exception. In particular, fairly strong absorption lines of the fragile element Lithium [4] were detected in both of the binary stars. As Lithium is known to be rapidly destroyed in stars, the finding of a relatively high content of this element implies that the stars must indeed be young. They were probably formed no more than 10 million years ago, i.e., in astronomical terms, they are "infant" stars . High-resolution spectroscopic observations, mostly with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , were used to determine the radial velocities of the stars. From these, a first determination of the orbital and stellar parameters was possible. The orbital period turned out to be short. The two stars swing around each other in just 3 days. This also means they must be very close to each other (but still entirely detached from each other) - the detailed analysis showed that the distance between the two components is only 12 solar radii, or a little more than 8 million kilometres. If you would image yourself standing on the surface of the smaller star, the disk of the companion star would extend some 15° in the sky. This is 30 times larger than our view of the Sun! ADONIS observations The short orbital period and the even shorter duration of the eclipses, only 6 hours, posed a real challenge for the observers. They decided to obtain further high-angular resolution observations with the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. Most fortunately, early ADONIS images demonstrated that this binary stellar system has a third companion, sufficiently far away from the two others to be seen as a separate star by ADONIS. This unexpected bonus made it possible to monitor the light changes of the binary system in great detail, by using the third companion as a convenient "reference" star. In December 2000 and January 2001, detailed ADONIS images of the RXJ 0529.4+0041 system were obtained in three near-infrared filters (the J-, H- and K-bands). ADONIS is equipped with the SHARP II camera and eliminates the adverse image-smearing effects of the atmospheric turbulence in real-time by means of a computer-controlled flexible mirror. As expected, the new, extremely sharp images of RXJ 0529.4+0041 greatly improved the achievable photometric precision. In particular, as the image of the third component was perfectly separated from the others, it did not "contaminate" the derived light curve of the eclipsing binary. The movie Primary eclipse Secondary eclipse ESO PR Photo 29a/01 ESO PR Photo 29a/01 [Preview - JPEG: 375 x 400 pix - 87k] [Normal - JPEG: 750 x 800 pix - 240k] ESO PR Photo 29d/01 ESO PR Photo 29d/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 272k] ESO PR Photo 29b/01 ESO PR Photo 29b/01 [Preview - JPEG: 375 x 400 pix - 90k] [Normal - JPEG: 750 x 800 pix - 240k] ESO PR Photo 29e/01 ESO PR Photo 29e/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 280k] ESO PR Photo 29c/01 ESO PR Photo 29c/01 [Preview - JPEG: 375 x 400 pix - 94k] [Normal - JPEG: 750 x 800 pix - 256k] ESO PR Photo 29f/01 ESO PR Photo 29f/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 280k] Caption : Six individual frames from the ADONIS movie of the RXJ 0529.4+0041 eclipsing, binary stellar system, corresponding to the time around the "primary" and "secondary" eclipses, respectively. For a detailed explanation, read the text. ESO PR Video Clip 06/01 [512 x 448 pix MPEG] ESO PR Video Clip 06/01 (150 frames/00:06 min) [MPEG Video; 512 x 448 pix; 871 k] ESO Video Clip 06/01 shows the ADONIS images of the RXJ 0529.4+0041 eclipsing, binary stellar system, as recorded in three near-infrared filters (J, H, and K; to the left), with the observed light-curves (top) and a graphical representation of the system during a full orbit, as it would look like to a nearby observer. More details in the text The ADONIS images have been combined into an instructive movie ( PR Video Clip 06/01 ). The left-hand panel shows the eclipsing binary system (it is the upper right and brighter of the two objects; the light from the two stars merge into a single point of light) and the well visible third component (lower left), as they were recorded by ADONIS in the three different filter bands. As the two stars in the binary system move around each other in their orbits, eclipses occur and the brightness of the binary system clearly changes - it may help to play the movie several times to see this more clearly. For reference, the Universal Time (UT) and the orbital phase (increasing from 0 to 1 during a full revolution) are continuously displayed in the movie. The right-hand panel shows a build-up of the observed light curves for the binary system. It represents the brightness difference between binary system and the third object that shines with constant light. Both the primary, deeper and the secondary, less deep eclipses are well visible. The primary eclipse was observed on December 8, 2000 and is here displayed at phase zero. During this minimum, the brightness of the binary system decreases by about 45% (0.4 magnitudes). The primary eclipse takes place when the smaller component blocks the light from the brighter and hotter star. The orbital motions of the two stars are illustrated by a computer-generated, animated sequence. The secondary eclipse (at phase 0.5) dims the light from the system less; it occurs when the larger and brighter star almost completely (about 90%) hides its smaller companion. The second minimum was recorded on January 12, 2001. None of the eclipses is therefore "total". The stellar parameters A detailed analysis of these high-precision light curves allowed the astronomers to determine the orbits and hence, to perform an extremely accurate measurement of the fundamental stellar parameters for the two young stars of RXJ 0529.4+0041 . The star that is eclipsed during the primary eclipse (the "primary") is the more massive and also the hotter and brighter of the two stars. Its mass is 1.3 times that of our Sun, i.e., about 2.6 10 30 kg [2]. Its diameter is nearly 1.6 times larger than that of our Sun (i.e., about 2.2 million km) and the surface temperature is found to be a little more than 5000 °C, or a few hundred degrees cooler than the Sun. The "secondary" star is slightly lighter than our Sun. Its weight is about 90% of that of the Sun (1.8 10 30 kg) and the diameter is 20% larger (about 1.7 million km), while the surface temperature is 4000 degrees. In fact, these two stars are still so young that most of their energy comes from the contraction process - the first phase during which they are formed from an interstellar cloud by this process is not yet over and they are still getting smaller. It is by this process that collapsing stars heat up enough to start nuclear burning. When infant stars in RXJ 0529.4+0041 eventually reach middle-age, their sizes will most likely also be quite similar to that of the Sun. The significance of RXJ 0529.4+0041 Few systems are known for which such precise determinations of the stellar parameters have ever been possible - and this binary system represents the first case where both the components are such young stars . A detailed comparison of the derived stellar parameters with current models for the evolution of young stars shows fairly good agreement for the primary component. However, there are certain discrepancies in the case of the secondary component, showing that the current models for the early stages of lower-mass stars must still be refined. More information Part of the results described in this press release are described in more detail in a scientific article ( "RXJ 0529.4+0041: a low-mass pre-main sequence eclipsing-spectroscopic binary" by E. Covino et al.) that has been published in the European research journal Astronomy & Astrophysics (Vol. 361, p. 49). Notes [1] The team consists of Elvira Covino (Principal Investigator), Juan M. Alcalá , Rosita Paladino (all Osservatorio Astronomico di Capodimonte, Napoli, Italy), Antonio Frasca , Santo Catalano , Ettore Marilli (all Osservatorio Astrofisico di Catania, Italy) and Michael Sterzik (ESO-Chile). [2] One solar mass corresponds to 1.99 10 30 kg, or about 330,000 times the mass of the Earth. The Sun is about 4500 million years old and its total lifetime is of the order of 12-13,000 million years. It is an interesting thought that if the Sun would have been somewhat heavier, its total lifetime might have been too short for living organisms to develop on the Earth. In fact, the biological evolution that ultimately lead to the emergence of human beings apparently lasted about 4 billion years; this corresponds to the total lifetime of a star that is only about 20 % heavier than the Sun. Note also the current ESO-ESA CERN educational programme on "Life in the Universe". [3] In the case of exoplanets, the planet itself is not visible, but the spectral lines from the star are seen to wobble due to the gravitational influence of the planet, cf. ESO PR 07/01. [4] Several ESO Press Releases concern observations of the element Lithium in stars, e.g., PR 03/99 (in a giant star), PR 08/00 (in a metal-poor star) and PR 10/01 (from a "swallowed" exoplanet).
1998 UBV Light Curves of Eclipsing Binary AI Draconis and Absolute Parameters
NASA Astrophysics Data System (ADS)
Jassur, D. M. Z.; Khaledian, M. S.; Kermani, M. H.
New UBV photometry of Algol-Type eclipsing binary star AI Dra and the absolute physical parameters of this system have been presented. The light curve analysis carried out by the method of differential corrections indicates that both components are inside their Roche-Lobes. From combining the photometric solution with spectroscopic data obtained from velocity curve analysis, it has been found that the system consist of a main sequence primary and an evolved (subgiant) secondary.
A Photometric Study of the Eclipsing Binary NSV 1000
NASA Astrophysics Data System (ADS)
Richards, T. J.; Bembrick, C. S.
2018-06-01
Abstract NSV 1000 is an unstudied eclipsing binary in Hydrus. Our photometric research in the period 2014-2016 shows it is a W UMa system with a period of 0.336 579 6(3) d, consistent with the catalogued period. Model fitting to our B, V, and Ic light curves shows the two stars are barely in contact. The parameters derived from the fit satisfy the broadly defined characteristics of a W-type W UMa system.
NASA Astrophysics Data System (ADS)
Lubin, Jack B.; Rodriguez, Joseph E.; Zhou, George; Conroy, Kyle E.; Stassun, Keivan G.; Collins, Karen; Stevens, Daniel J.; Labadie-Bartz, Jonathan; Stockdale, Christopher; Myers, Gordon; Colón, Knicole D.; Bento, Joao; Kehusmaa, Petri; Petrucci, Romina; Jofré, Emiliano; Quinn, Samuel N.; Lund, Michael B.; Kuhn, Rudolf B.; Siverd, Robert J.; Beatty, Thomas G.; Harlingten, Caisey; Pepper, Joshua; Gaudi, B. Scott; James, David; Jensen, Eric L. N.; Reichart, Daniel; Kedziora-Chudczer, Lucyna; Bailey, Jeremy; Melville, Graeme
2017-08-01
We report the discovery of KELT J041621-620046, a moderately bright (J ˜ 10.2) M-dwarf eclipsing binary system at a distance of 39 ± 3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extremely Little Telescope (KELT) survey. The system has a short orbital period of ˜1.11 days and consists of components with {M}1={0.447}+0.052-0.047 {M}⊙ and {M}2={0.399}+0.046-0.042 {M}⊙ in nearly circular orbits. The radii of the two stars are {R}1={0.540}+0.034-0.032 {R}⊙ and {\\text{}}{R}2=0.453+/- 0.017 {R}⊙ . Full system and orbital properties were determined (to ˜10% error) by conducting an EBOP (Eclipsing Binary Orbit Program) global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17%-28% and cooler by 4%-10% than predicted by standard (non-magnetic) stellar models. Strong Hα emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.
We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (∼1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With amore » radius of 1.06 ± 0.01 R {sub Jup}, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M {sub Jup}. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric ( e {sub bin} = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.« less
Kepler-1647b: The Largest and Longest-period Kepler Transiting Circumbinary Planet
NASA Astrophysics Data System (ADS)
Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; Quarles, Billy; Short, Donald R.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Gregorio, Joao; Hinse, Tobias C.; Isaacson, Howard; Jenkins, Jon M.; Jensen, Eric L. N.; Kane, Stephen; Kull, Ilya; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Mazeh, Tsevi; Müller, Tobias W. A.; Pepper, Joshua; Quinn, Samuel N.; Ragozzine, Darin; Shporer, Avi; Steffen, Jason H.; Torres, Guillermo; Windmiller, Gur; Borucki, William J.
2016-08-01
We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (˜1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06 ± 0.01 R Jup, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M Jup. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric (e bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.
NASA Astrophysics Data System (ADS)
Sybilski, P.; Pawłaszek, R. K.; Sybilska, A.; Konacki, M.; Hełminiak, K. G.; Kozłowski, S. K.; Ratajczak, M.
2018-07-01
We have obtained high-resolution spectra of four eclipsing binary systems (FM Leo, NN Del, V963 Cen and AI Phe) with the view to gaining an insight into the relative orientations of their stellar spin axes and orbital axes. The so-called Rossiter-McLaughlin (RM) effect, i.e. the fact that the broadening and the amount of blue or redshift in the spectra during an eclipse depends on the tilt of the spin axis of the background star, has the potential of reconciling observations and theoretical models if such a tilt is found. We analyse the RM effect by disentangling the spectra, removing the front component and measuring the remaining, distorted lines with a broadening function (BF) obtained from single-value decomposition (SVD), weighting by the intensity centre of the BF in the eclipse. All but one of our objects show no significant misalignment, suggesting that aligned systems are dominant. We provide stellar as well as orbital parameters for our systems. With five measured spin-orbit angles, we increase significantly (from 9 to 14) the number of stars for which it has been measured. The spin-orbit angle β calculated for AI Phe's secondary component shows a misalignment of 87±17°. NN Del, with a large separation of components and a long dynamical time-scale for circularization and synchronization, is an example of a close to primordial spin-orbit angle measurement.
The evolution of eccentricity in the eclipsing binary system AS Camelopardalis
NASA Astrophysics Data System (ADS)
Kozyreva, Valentina; Kusakin, Anatoly; Bogomazov, Alexey
2018-01-01
In 2002, 2004 and 2017 we conducted high precision CCD photometry observations of the eclipsing binary system AS Cam. By analysis of the light curves from1967 to 2017 (our data + data from the literature) we obtained photometric elements of the system and found a change in the system’s orbital eccentricity of Δe = 0.03±0.01. This change can indicate that there is a third companion in the system in a highly inclined orbit with respect to the orbital plane of the central binary, and its gravitational influence may cause the discrepancy between observed and theoretical apsidal motion rates of AS Cam.
NASA Technical Reports Server (NTRS)
Hall, Douglas S.
1991-01-01
The eclipsing binary CG Cyg provides observational confirmation of three predictions made by Applegate's (1991) improvement on the theory that magnetic cycles cause the quasi-periodic orbital period changes in binaries containing a convective star. The mean brightness outside eclipse and the period vary with the same cycle length of about 50 yr. The light curve and O - C curve are in phase, with maximum light and period increase occurring in early 1980. The chromospherically active star becomes bluer in phase with the brightening. Because a period increase occurs at maximum brightness, the sense of the star's differential rotation is specified: outside rotating faster.
A SUBSTELLAR COMPANION TO THE WHITE DWARF-RED DWARF ECLIPSING BINARY NN Ser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.-B.; Dai, Z.-B.; Liao, W.-P.
2009-11-20
NN Ser is a short-period (P = 3.12 hr) close binary containing a very hot white dwarf primary with a mass of 0.535 M{sub sun} and a fully convective secondary with a mass of 0.111 M{sub sun}. The changes in the orbital period of the eclipsing binary were analyzed based on our five newly determined eclipse times together with those compiled from the literature. A small-amplitude (0fd00031) cyclic period variation with a period of 7.56 years was discovered to be superimposed on a possible long-term decrease. The periodic change was plausibly explained as the light-travel time effect via the presencemore » of a tertiary companion. The mass of the tertiary companion is determined to be M{sub 3}sin i' = 0.0107(+-0.0017) M{sub sun} when a total mass of 0.646 M{sub sun} for NN Ser is adopted. For orbital inclinations i' >= 49.{sup 0}56, the mass of the tertiary component was calculated to be M {sub 3} <= 0.014 M{sub sun}; thus it would be an extrasolar planet. The third body is orbiting the white dwarf-red dwarf eclipsing binary at a distance shorter than 3.29 AU. Since the observed decrease rate of the orbital period is about two orders larger than that caused by gravitational radiation, it can be plausibly interpreted by magnetic braking of the fully convective component, which is driving this binary to evolve into a normal cataclysmic variable.« less
The Light-time Effect in the Eclipsing Binaries with Early-type Components U CrB and RW Tau
NASA Astrophysics Data System (ADS)
Khaliullina, A. I.
2018-04-01
A detailed study of the orbital-period variations of the Algol-type eclipsing binaries with earlyspectral- type primary components U CrB and RW Tau has been performed. The period variations in both systems can be described as a superposition of secular and cyclic variations of the period. A secular period increase at a rate of 2.58d × 10-7/year is observed for U CrB, which can be explained if there is a uniform flow of matter from the lower-mass to the higher-mass component, with the total angular momentum conserved. RW Tau features a secular period decrease at a rate of -8.6d × 10-7/year; this could be due to a loss of angular momentum by the binary due to magnetic braking. The cyclic orbital-period variations of U CrB and RWTau can be explained by the motion of the eclipsing binary systems along their long-period orbits. In U CrB, this implies that the eclipsing binary moves with a period of 91.3 years around a third body with mass M 3 > 1.13 M ⊙; in RW Tau, the period of the motion around the third body is 66.6 years, and the mass of the third body is M 3 > 1.24 M ⊙. It also cannot be ruled out that the variations are due to the magnetic cycles of the late-type secondaries. The residual period variations could be a superposition of variations due to non-stationary ejection of matter and effects due to magnetic cycles.
The puzzling orbital period evolution of the LMXB AX J1745.6-2901
NASA Astrophysics Data System (ADS)
Ponti, G.; De, K.; Munoz-Darias, T.; Stella, L.; Nandra, K.
2017-10-01
The discovery of gravitational waves through mergers of binary black holes raises the question of how such compact systems form, renewing issues related to the orbital evolution of binary systems. Eclipsing X-ray binaries are excellent tools to constrain the orbital period evolution and how the system loses angular momentum. I will present an X-ray eclipse timing analysis (spanning an interval of more than 20 yr) of one of such objects, AX J1745.6-2901. Its orbital period is decreasing at a rate Pdotorb=-4.03+-0.32 e-11 s s-1, at least one order of magnitude larger than expected from conservative mass transfer and angular momentum losses due to gravitational waves and magnetic braking, and it might result from either non-conservative mass transfer or magnetic activity changing the quadrupole moment of the companion star. I will also show that imprinted on the long-term evolution of the orbit, there are highly significant eclipse leads delays of 10-30 s, characterized by a clear state dependence in which, on average, eclipses occur earlier during the hard state. Finally, I will discuss whether accretion disc winds might have an impact onto the orbital evolution.
Hot subdwarfs in (eclipsing) binaries with brown dwarf or low-mass main-sequence companions
NASA Astrophysics Data System (ADS)
Schaffenroth, Veronika; Geier, Stephan; Heber, Uli
2014-09-01
The formation of hot subdwarf stars (sdBs), which are core helium-burning stars located on the extended horizontal branch, is not yet understood. Many of the known hot subdwarf stars reside in close binary systems with short orbital periods of between a few hours and a few days, with either M-star or white-dwarf companions. Common-envelope ejection is the most probable formation channel. Among these, eclipsing systems are of special importance because it is possible to constrain the parameters of both components tightly by combining spectroscopic and light-curve analyses. They are called HW Virginis systems. Soker (1998) proposed that planetary or brown-dwarf companions could cause the mass loss necessary to form an sdB. Substellar objects with masses greater than >10 M_J were predicted to survive the common-envelope phase and end up in a close orbit around the stellar remnant, while planets with lower masses would entirely evaporate. This raises the question if planets can affect stellar evolution. Here we report on newly discovered eclipsing or not eclipsing hot subdwarf binaries with brown-dwarf or low-mass main-sequence companions and their spectral and photometric analysis to determine the fundamental parameters of both components.
Mapping the accretion disc of the short period eclipsing binary SDSS J0926+3624
NASA Astrophysics Data System (ADS)
Schlindwein, Wagner; Baptista, Raymundo
2018-05-01
We report the analysis of time-series of optical photometry of SDSS J0926+3624 collected with the Liverpool Robotic Telescope between 2012 February and March while the object was in quiescence. We combined our median eclipse timing with those in the literature to revise the ephemeris and confirm that the binary period is increasing at a rate \\dot{P}=(3.2 ± 0.4)× 10^{-13} s/s. The light curves show no evidence of either the orbital hump produced by a bright spot at disc rim or of superhumps; the average out-of-eclipse brightness level is consistently lower than previously reported. The eclipse map from the average light curve shows a hot white dwarf surrounded by a faint, cool accretion disc plus enhanced emission along the gas stream trajectory beyond the impact point at the outer disc rim, suggesting the occurrence of gas stream overflow/penetration at that epoch. We estimate a disc mass input rate of \\dot{M}=(9 ± 1)× 10^{-12} M_⊙ yr^{-1}, more than an order of magnitude lower than that expected from binary evolution with conservative mass transfer.
Digitizing Villanova University's Eclipsing Binary Card Catalogue
NASA Astrophysics Data System (ADS)
Guzman, Giannina; Dalton, Briana; Conroy, Kyle; Prsa, Andrej
2018-01-01
Villanova University’s Department of Astrophysics and Planetary Science has years of hand-written archival data on Eclipsing Binaries at its disposal. This card catalog began at Princeton in the 1930’s with notable contributions from scientists such as Henry Norris Russel. During World War II, the archive was moved to the University of Pennsylvania, which was one of the world centers for Eclipsing Binary research, consequently, the contributions to the catalog during this time were immense. It was then moved to University of Florida at Gainesville before being accepted by Villanova in the 1990’s. The catalog has been kept in storage since then. The objective of this project is to digitize this archive and create a fully functional online catalog that contains the information available on the cards, along with the scan of the actual cards. Our group has built a database using a python-powered infrastructure to contain the collected data. The team also built a prototype web-based searchable interface as a front-end to the catalog. Following the data-entry process, information like the Right Ascension and Declination will be run against SIMBAD and any differences between values will be noted as part of the catalog. Information published online from the card catalog and even discrepancies in information for a star, could be a catalyst for new studies on these Eclipsing Binaries. Once completed, the database-driven interface will be made available to astronomers worldwide. The group will also acquire, from the database, a list of referenced articles that have yet to be found online in order to further pursue their digitization. This list will be comprised of references in the cards that were neither found on ADS nor online during the data-entry process. Pursuing the integration of these references to online queries such as ADS will be an ongoing process that will contribute and further facilitate studies on Eclipsing Binaries.
Observations and light curve solutions of a selection of middle-contact W UMa binaries
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana Petrova; Popov, Velimir Angelov; Lyubenova Vasileva, Doroteya; Petrov, Nikola Ivanov
2018-04-01
Photometric observations in Sloan g‧ and i‧ bands of W UMa binaries NSVS 4340949, T-Dra0–00959, GSC 03950–00707, NSVS 4665041, NSVS 4803568, MM Peg, MM Com and NSVS 4751449 are presented. The light curve solutions revealed that the components of each target are of G and K spectral types. The binaries of the sample have middle-contact configurations whose fillout factors are within the range 0.2–0.4. The only exception is NSVS 4751449 which is in deeper contact (fillout factor of 0.55). It precisely obeys the relation between mass ratio and fillout factor for deep, low mass ratio overcontact binaries. One of the eclipses of almost all targets (except MM Peg) is an occultation and their photometric mass ratios and solutions could be accepted with confidence. We found that the target components have almost equal temperatures but differ considerably in size and mass. The components of the partially-eclipsed MM Peg have close parameters. Our solutions reveal that NSVS 4340949, T-Dra0–00959, NSVS 4803568 and MM Com are of W subtype while GSC 03950–00707, NSVS 4665041, MM Peg and NSVS 4751449 are of A subtype. This subclassification is well-determined for all totally-eclipsed binaries. The targets confirm the trends in which W-subtype systems have smaller periods and lower temperatures than A subtype binaries.
WW Geminorum: An Early B-type Eclipsing Binary Evolving into the Contact Phase
NASA Astrophysics Data System (ADS)
Yang, Y.-G.; Yang, Y.; Dai, H.-F.; Yin, X.-G.
2014-11-01
WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q ph = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the period studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P mod = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10-8 day yr-1, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.
The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects
NASA Astrophysics Data System (ADS)
van Eyken, Julian C.; Ciardi, David R.; Rebull, Luisa M.; Stauffer, John R.; Akeson, Rachel L.; Beichman, Charles A.; Boden, Andrew F.; von Braun, Kaspar; Gelino, Dawn M.; Hoard, D. W.; Howell, Steve B.; Kane, Stephen R.; Plavchan, Peter; Ramírez, Solange V.; Bloom, Joshua S.; Cenko, S. Bradley; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Nugent, Peter E.; Ofek, Eran O.; Poznanski, Dovi; Quimby, Robert M.; Grillmair, Carl J.; Laher, Russ; Levitan, David; Mattingly, Sean; Surace, Jason A.
2011-08-01
The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3fdg5 × 2fdg3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 ± 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).
The Quadruple-lined, Doubly Eclipsing System V482 Persei
NASA Astrophysics Data System (ADS)
Torres, Guillermo; Sandberg Lacy, Claud H.; Fekel, Francis C.; Wolf, Marek; Muterspaugh, Matthew W.
2017-09-01
We report spectroscopic and differential photometric observations of the A-type system V482 Per, which reveal it to be a rare hierarchical quadruple system containing two eclipsing binaries. One binary has the previously known orbital period of 2.4 days and a circular orbit, and the other a period of 6 days, a slightly eccentric orbit (e = 0.11), and shallow eclipses only 2.3% deep. The two binaries revolve around their common center of mass in a highly elongated orbit (e = 0.85) with a period of 16.67 yr. Radial velocities are measured for all components from our quadruple-lined spectra and are combined with the light curves and measurements of times of minimum light for the 2.4 day binary to solve for the elements of the inner and outer orbits simultaneously. The line-of-sight inclination angles of the three orbits are similar, suggesting they may be close to coplanar. The available observations appear to indicate that the 6 day binary experiences significant retrograde apsidal motion in the amount of about 60 deg per century. We derive absolute masses for the four stars good to better than 1.5%, along with radii with formal errors of 1.1% and 3.5% for the 2.4 day binary and ˜9% for the 6 day binary. A comparison of these and other physical properties with current stellar evolution models gives excellent agreement for a metallicity of [{Fe}/{{H}}]=-0.15 and an age of 360 Myr.
NASA Astrophysics Data System (ADS)
Gibson, Justus L.; Stencel, Robert E.; Ketzeback, William; Barentine, John; Coughlin, Jeffrey; Leadbeater, Robin; Saurage, Gabrelle
2018-06-01
Worldwide interest in the recent eclipse of epsilon Aurigae resulted in the generation of several extensive data sets, including high resolution spectroscopic monitoring. This lead to the discovery, among other things, of the existence of a mass transfer stream, seen notably during third contact. We explored spectroscopic facets of the mass transfer stream during third contact, using high resolution spectra obtained with the ARCES and TripleSpec instruments at Apache Point Observatory. One hundred and sixteen epochs of data were obtained between 2009 and 2012, and equivalent widths and line velocities measured for high versus low eccentricity accretion disk lines. These datasets also enable greater detail to be measured of the mid-eclipse enhancement of the He I 10830Å line, and the discovery of the P Cygni shape of the Pa-β line at third contact. We found evidence of higher speed material, associated with the mass transfer stream, persisting between third and fourth eclipse contacts. We visualized the disk and stream interaction using SHAPE software, and used CLOUDY software to estimate that the source of the enhanced He I 10830A absorption arises from a region with nH = 1011 cm-3 and temperature of 20,000 K, consistent with a mid-B type central star. Van Rensbergen binary star evolutionary models are somewhat consistent with the current binary parameters for their case of a 9 plus 8 solar mass initial binary, evolving into a 2.3 and 14.11 solar mass end product after 35 Myr. With these results, it is possible to make predictions which suggest that continued monitoring prior to the next eclipse (2036) will help resolve standing questions about the mass and age of this binary.
NASA Technical Reports Server (NTRS)
Mullally, Fergal
2017-01-01
We present an automated method of identifying background eclipsing binaries masquerading as planet candidates in the Kepler planet candidate catalogs. We codify the manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al. (2013) with a series of measurements and tests that can be performed algorithmically. We compare our automated results with a sample of manually vetted KOIs from the catalog of Burke et al. (2014) and find excellent agreement. We test the performance on a set of simulated transits and find our algorithm correctly identifies simulated false positives approximately 50 of the time, and correctly identifies 99 of simulated planet candidates.
Orbital period variation study of the low-mass Algol eclipsing binary AI Draconis
NASA Astrophysics Data System (ADS)
Hanna, Magdy A.
2013-06-01
Orbital period changes for the Algol-type eclipsing binary AI Dra were studied based on the analysis of its observed times of light minimum. The period variation showed cyclic changes in the interval from JD. ≈ 24 36000 to JD. ≈ 24 47500 and a secular period increase rate (dP/dt = 2.44 × 10-7 d/year) starting from JD. ≈ 24 48500 up to 24 55262, in a time scale equals to 5 × 106 year.
Variable Star and Exoplanet Section of the Czech Astronomical Society
NASA Astrophysics Data System (ADS)
Brát, L.; Zejda, M.
2010-12-01
We present activities of Czech variable star observers organized in the Variable Star and Exoplanet Section of the Czech Astronomical Society. We work in four observing projects: B.R.N.O. - eclipsing binaries, MEDUZA - intrinsic variable stars, TRESCA - transiting exoplanets and candidates, HERO - objects of high energy astrophysics. Detailed information together with O-C gate (database of eclipsing binaries minima timings) and OEJV (Open European Journal on Variable stars) are available on our internet portal http://var.astro.cz.
YSOVAR: Six Pre-main-sequence Eclipsing Binaries in the Orion Nebula Cluster
2012-06-25
reserved. Printed in the U.S.A. YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER M. Morales-Calderón1,2, J. R. Stauffer1, K. G...multi-color light curves for∼2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have...readable tables 1. INTRODUCTION The Orion Nebula Cluster (ONC) contains several thousand members, and since it is nearby, it provides an excellent em
First Spectroscopic Solutions of Two Southern Eclipsing Binaries: HO Tel and QY Tel
NASA Astrophysics Data System (ADS)
Sürgit, D.; Erdem, A.; Engelbrecht, C. A.; van Heerden, P.; Manick, R.
2015-07-01
We present preliminary results from the analysis of spectroscopic observations of two southern eclipsing binary stars, HO Tel and QY Tel. The grating spectra of these two systems were obtained at the Sutherland Station of the South African Astronomical Observatory in 2013. Radial velocities of the components were determined by the Fourier disentangling technique. Keplerian radial velocity models of HO Tel and QY Tel give their mass ratio as 0.921±0.005 and 1.089±0.007, respectively.
VizieR Online Data Catalog: Light curves for the eclipsing binary V1094 Tau (Maxted+, 2015)
NASA Astrophysics Data System (ADS)
Maxted, P. F. L.; Hutcheon, R. J.; Torres, G.; Lacy, C. H. S.; Southworth, J.; Smalley, B.; Pavlovski, K.; Marschall, L. A.; Clausen, J. V.
2015-04-01
Photometric light curves of the detached eclipsing binary V1094 Tau in the Stroemgren u-,v-,b- and y-bands, and in the Johnson V-band. The curves in the Stroemgren bands were obtained with the Stroemgren Automatic Telescope (SAT) at ESO, La Silla. The curves in the V-band were obtained with the NFO telescope in New Mexico and with the URSA telescope at the University of Arkansas. (6 data files).
NASA Astrophysics Data System (ADS)
Hughes, Anna; Boley, Aaron C.
2017-10-01
Kepler Object of Interest 425 (KOI 425) is an eclipsing binary with periodic features in addition to the known primary and secondary transits. This KOI has been observed by Saterne et al. 2012 with SOPHIE, who found its phase variance to be indicative of a diluted eclipsing binary, likely produced by a multi-star system. We analyze the complete set of Kepler archival data for this system along with the published SOPHIE results to assess the multiplicity and the dynamics of the system.
Using color photometry to separate transiting exoplanets from false positives
NASA Astrophysics Data System (ADS)
Tingley, B.
2004-10-01
The radial velocity technique is currently used to classify transiting objects. While capable of identifying grazing binary eclipses, this technique cannot reliably identify blends, a chance overlap of a faint background eclipsing binary with an ordinary foreground star. Blends generally have no observable radial velocity shifts, as the foreground star is brighter by several magnitudes and therefore dominates the spectrum, but their combined light can produce events that closely resemble those produced by transiting exoplanets. The radial velocity technique takes advantage of the mass difference between planets and stars to classify exoplanet candidates. However, the existence of blends renders this difference an unreliable discriminator. Another difference must therefore be utilized for this classification - the physical size of the transiting body. Due to the dependence of limb darkening on color, planets and stars produce subtly different transit shapes. These differences can be relatively weak, little more than 1/10th the transit depth. However, the presence of even small color differences between the individual components of the blend increases this difference. This paper shows that this color difference is capable of discriminating between exoplanets and blends reliably, theoretically capable of classifying even terrestrial-class transits, unlike the radial velocity technique.
GK Dra: a delta Scuti Star in a New Eclipsing System Discovered by Hipparcos
NASA Astrophysics Data System (ADS)
Dallaporta, Sergio; Tomov, Toma; Zwitter, Tomaz; Munari, Ulisse
2002-09-01
GK Dra has been discovered by the Hipparcos mission as a 17 days eclipsing binary. We present here the first ground-based study of this star, based on extensive BV photoelectric photometry. We found a period of 9.974 days, equal depth primary and secondary eclipse (m=0.35 mag), no color variation in eclipse, and one of the components being a Sct star with an amplitude of 0.04 mag and a period of about 2.7 hours.
Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps
NASA Astrophysics Data System (ADS)
Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.
2017-07-01
Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed on randomized training sets. Results: We obtain excellent results (about 5% global error rate) with classification into light curve morphology classes on the Hipparcos data. The classification into system morphology classes using the Catalog and Atlas of Eclipsing binaries (CALEB) has a higher error rate (about 10.5%), most importantly due to the (sometimes strong) similarity of the photometric light curves originating from physically different systems. When trained on CALEB and then applied to Kepler-detected eclipsing binaries subsampled according to Gaia observing times, LDA and SOM provide tractable, easy-to-visualize subspaces of the full (functional) space of light curves that summarize the most important phenomenological elements of the individual light curves. The sequence of light curves ordered by their first linear discriminant coefficient is compared to results obtained using local linear embedding. The SOM method proves able to find a 2-dimensional embedded surface in the space of the light curves which separates the system morphology classes in its different regions, and also identifies a few other phenomena, such as the asymmetry of the light curves due to spots, eccentric systems, and systems with a single eclipse. Furthermore, when data from other surveys are projected to the same SOM surface, the resulting map yields a good overview of the general biases and distortions due to differences in time sampling or population.
NASA Astrophysics Data System (ADS)
Faulkner, D. R.; Samec, R. G.; Stoddard, M. L.; McKenzie, R.; Rebar, D.; Lavoie, G. D.; Moody, S.; Miller, J.; Van Hamme, W.
2002-12-01
As a part of our continuing search for solar type binaries with impacting gas streams, we present light curves of V343 Cen, UY Mus, HT Aps, and V1961 Sgr. These are all neglected variables whose observing histories show little or no observations since their discovery. The CCD observations were taken at the 0.9-m at CTI0 in the UBVRI Johnson-Cousins system. The observations were taken in on 2002, May 31-June 8 and 2001, May 16 - 23 respectively. UY Mus is a near contact binary with a large difference in eclipse depths of V = 0.67 mag. Otherwise the curve appears symmetric. The times of minimum light determined from our data are HJD Min I = 242047.62316(6) and Min II = 2452050.4874(3) where the value in parentheses is the standard error in the last decimal place. V1961 Sgr (GCVS 6848 485) is a W UMa binary with a difference in eclipse depths of V = 0.11 mag and a possible variable spot area causing a V = 0.04 mag variation in MAX I from night to night. HT Aps is a near contact solar type binary with a large difference in eclipse depths of V= 0.47 mag and a somewhat asymmetric (difference in maxima, V= 0.4 mag) light curve. It is a possibly a candidate for a binary with a gas stream. One time of minimum light determined from our data is HJD Min I = 2452331.63725 (12). V343 Cen is a near contact binary with a large difference in eclipse depths of V= 0.42 mag and distortions that give evidence of a gas stream collision. The difference in maxima is V = 0.07 mag. The curve shows little variation over the 4 day interval of observation. Light curves analyses, new period determinations and photometric data will be presented for these variables. Acknowledgements: We wish to thank the American Astronomical Society for their continued support of our undergraduate research programs through their small research grants. Faulkner and Samec were visiting Astronomers, Cerro Tololo InterAmerican Observatory, National Optical Astronomical Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.
Inferred Eccentricity and Period Distributions of Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Matijevic, G.
2014-01-01
Determining the underlying eccentricity and orbital period distributions from an observed sample of eclipsing binary stars is not a trivial task. Shen and Turner (2008) have shown that the commonly used maximum likelihood estimators are biased to larger eccentricities and they do not describe the underlying distribution correctly; orbital periods suffer from a similar bias. Hogg, Myers and Bovy (2010) proposed a hierarchical probabilistic method for inferring the true eccentricity distribution of exoplanet orbits that uses the likelihood functions for individual star eccentricities. The authors show that proper inference outperforms the simple histogramming of the best-fit eccentricity values. We apply this method to the complete sample of eclipsing binary stars observed by the Kepler mission (Prsa et al. 2011) to derive the unbiased underlying eccentricity and orbital period distributions. These distributions can be used for the studies of multiple star formation, dynamical evolution, and they can serve as a drop-in replacement to prior, ad-hoc distributions used in the exoplanet field for determining false positive occurrence rates.
A simultaneous spectroscopic and photometric study of two eclipsing binaries: V566 Oph and V972 Her
NASA Astrophysics Data System (ADS)
Selam, S. O.; Esmer, E. M.; Şenavcı, H. V.; Bahar, E.; Yörükoğlu, O.; Yılmaz, M.; Baştürk, Ö.
2018-02-01
In this study, we have performed simultaneous solutions of light and radial velocity curves of two eclipsing binary systems, V566 Oph and V972 Her. We observed both systems spectroscopically with a very recently installed spectrograph on the 40 cm telescope, T40, located in Ankara University Kreiken Observatory (AUKR), for the first time. We made use of the photometric data from the Hipparcos satellite for V972 Her, while we obtained the photometric observations of V566 Oph by using the 35 cm telescope, T35, located also in our observatory campus. We derived the absolute parameters for both systems and discussed their evolutionary states. In addition to the simultaneous analysis, we have also analyzed the change in mid-eclipse times for V566 Oph, and found cyclic variations, for which we have discussed light-time effect and magnetic activity as their potential origin, superimposed on a secular change due to a mass transfer between the components of the binary.
K2 Variable Catalogue: Variable stars and eclipsing binaries in K2 campaigns 1 and 0
NASA Astrophysics Data System (ADS)
Armstrong, D. J.; Kirk, J.; Lam, K. W. F.; McCormac, J.; Walker, S. R.; Brown, D. J. A.; Osborn, H. P.; Pollacco, D. L.; Spake, J.
2015-07-01
Aims: We have created a catalogue of variable stars found from a search of the publicly available K2 mission data from Campaigns 1 and 0. This catalogue provides the identifiers of 8395 variable stars, including 199 candidate eclipsing binaries with periods up to 60 d and 3871 periodic or quasi-periodic objects, with periods up to 20 d for Campaign 1 and 15 d for Campaign 0. Methods: Lightcurves are extracted and detrended from the available data. These are searched using a combination of algorithmic and human classification, leading to a classifier for each object as an eclipsing binary, sinusoidal periodic, quasi periodic, or aperiodic variable. The source of the variability is not identified, but could arise in the non-eclipsing binary cases from pulsation or stellar activity. Each object is cross-matched against variable star related guest observer proposals to the K2 mission, which specifies the variable type in some cases. The detrended lightcurves are also compared to lightcurves currently publicly available. Results: The resulting catalogue gives the ID, type, period, semi-amplitude, and range of the variation seen. We also make available the detrended lightcurves for each object. The catalogue is available at http://deneb.astro.warwick.ac.uk/phrlbj/k2varcat/ and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A19
Relativistic apsidal motion in eccentric eclipsing binaries
NASA Astrophysics Data System (ADS)
Wolf, M.; Claret, A.; Kotková, L.; Kučáková, H.; Kocián, R.; Brát, L.; Svoboda, P.; Šmelcer, L.
2010-01-01
Context. The study of apsidal motion in detached eclipsing binary systems is known to be an important source of information about stellar internal structure as well as the possibility of verifying of General Relativity outside the Solar System. Aims: As part of the long-term Ondřejov and Ostrava observational projects, we aim to measure precise times of minima for eccentric eclipsing binaries, needed for the accurate determination of apsidal motion, providing a suitable test of the effects of General Relativity. Methods: About seventy new times of minimum light recorded with photoelectric or CCD photometers were obtained for ten eccentric-orbit eclipsing binaries with significant relativistic apsidal motion. Their O-C diagrams were analysed using all reliable timings found in the literature, and new or improved elements of apsidal motion were obtained. Results: We confirm very long periods of apsidal motion for all systems. For BF Dra and V1094 Tau, we present the first apsidal-motion solution. The relativistic effects are dominant, representing up to 100% of the total observable apsidal-motion rate in several systems. The theoretical and observed values of the internal structure constant k 2 were compared for systems with lower relativistic contribution. Using the light-time effect solution, we predict a faint third component for V1094 Tau orbiting with a short period of about 8 years. Partly based on photoelectric observations secured at the Hvar Observatory, Faculty of Geodesy, Zagreb, Croatia, in October 2008.
Jenkins, J M; Doyle, L R; Cullers, D K
1996-02-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.
1996-01-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
Hidden slow pulsars in binaries
NASA Technical Reports Server (NTRS)
Tavani, Marco; Brookshaw, Leigh
1993-01-01
The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.
High-resolution multi-band imaging for validation and characterization of small Kepler planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, Mark E.; Silva, David R.; Barclay, Thomas
2015-02-01
High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting amore » total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.« less
W UMa Type Eclipsing Binary VW Cep
NASA Astrophysics Data System (ADS)
Kang, Bong-Seok; Lee, Yong-Sam; Jeong, Jang-Hae
2000-06-01
A total of 1,018 observations (509 in B, 509 in V ) of the eclipsing binary VW Cep was made during 7 nights from April through May in 1999 at Sobaeksan Optical Astronomy Observatory, using the CCD camera attached to the 61cm telescope. A time of minimum light of HJD2451327.2282 was determined from our data, and we constructed BV light curves with the data. Using Wilson-Devinney's binary model, we analized the light curves. The absolute dimension of M1 = 0.95Msolar, M2 = 0.33Msolar, R1 = 1.02Rsolar, R2 = 0.66Rsolar of the VW Cep system were derived from our light curve solution and Kaszas et al. (1998) spectroscoppic rsult.
A Photometric Study of Three Eclipsing Binary Stars (Poster abstract)
NASA Astrophysics Data System (ADS)
Ryan, A.
2016-12-01
(Abstract only) As part of a program to study eclipsing binary stars that exhibit the O'Connell Effect (OCE) we are observing a selection of binary stars in a long term study. The OCE is a difference in maximum light across the ligthcurve possibly cause by starspots. We observed for 7 nights at McDonald Observatory using the 30-inch telescope in July 2015, and used the same telescope remotely for a total of 20 additional nights in August, October, December, and January. We will present lightcurves for three stars from this study, characterize the OCE for these stars, and present our model results for the physical parameters of the star making up each of these systems.
A New Light Curve and Analysis of the Long Period Eclipsing Binary BF Draconis
NASA Astrophysics Data System (ADS)
Wolf, G. W.; Craig, L. E.; Caffey, J. F.
1999-01-01
The star BF Draconis was found to be an eclipsing binary by Strohmeier, Knigge and Ott (1962) and originally thought to be an Algol-type system with a period of 5.6 days. A spectrographic study by Imbert (1985) showed that the period was actually double this value and that the system consisted of two well-separated, almost-equal F-type stars in elliptical orbit. Diethelm, Wolf and Agerer (1993) later published a preliminary light curve of this system showing minima of unequal depth and width with a displaced secondary, confirming the elliptical orbit but disagreeing with Imbert on the specific orbital parameters. As a part of our long-term program of obtaining improved light curves of double-lined spectroscopic and eclipsing binaries, we have observed BF Draconis for the past four years using the 0.4 meter telescope at the Baker Observatory of Southwest Missouri State University. Complete light curves in the Cousins BVRI passbands have been obtained with our Photometrics CCD system, and a new model and orbital parameters for the binary have been determined using the Wilson-Devinney program. This research has been supported by NSF Grants AST-9315061 and AST-9605822 and NASA Grant NGT5-40060.
NASA Astrophysics Data System (ADS)
Faulkner, Danny R.; Samec, Ronald G.; Caton, Daniel B.
2018-06-01
We report here on a period study and the analysis of BVRcIc light curves (taken in 2017) of MT Cam (GSC03737-01085), which is a solar type (T ~ 5500K) eclipsing binary. D. Caton observed MT Cam on 05, 14, 15, 16, and 17, December 2017 with the 0.81-m reflector at Dark Sky Observatory. Six times of minimum light were calculated from four primary eclipses and two secondary eclipses:HJD I = 24 58092.4937±0.0002, 2458102.74600±0.0021, 2458104.5769±0.0002, 2458104.9434±0.0029HJD II = 2458103.6610±0.0001, 2458104.7607±0.0020,Six times of minimum light were also calculated from data taken by Terrell, Gross, and Cooney, in their 2016 and 2004 observations (reported in IBVS #6166; TGC, hereafter). In addition, six more times of minimum light were taken from the literature. From all 18 times of minimum light, we determined the following light elements:JD Hel Min I=2458102.7460(4) + 0.36613937(5) EWe found the orbital period was constant over the 14 years spanning all observations. We note that TGC found a slightly increasing period. However, our results were obtained from a period study rather than comparison of observations from only two epochs by the Wilson-Devinney (W-D) Program. A BVRcIc Johnson-Cousins filtered simultaneous W-D Program solution gives a mass ratio (0.3385±0.0014) very nearly the same as TGC’s (0.347±0.003), and a component temperature difference of only ~40 K. As with TGC, no spot was needed in the modeling. Our modeling (beginning with Binary Maker 3.0 fits) was done without prior knowledge of TGC’s. This shows the agreement achieved when independent analyses are done with the W-D code. The present observations were taken 1.8 years later than the last curves by TGC, so some variation is expected.The Roche Lobe fill-out of the binary is ~13% and the inclination is ~83.5 degrees. The system is a shallow contact W-type W UMa Binary, albeit, the amplitudes of the primary and secondary eclipse are very nearly identical. An eclipse duration of ~21 minutes was determined for the secondary eclipse and the light curve solution. Additional and more detailed information is given in the poster paper.
HD 66051: the first eclipsing binary hosting an early-type magnetic star
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.
2018-05-01
Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.
NASA Astrophysics Data System (ADS)
Schaffenroth, V.; Barlow, B. N.; Drechsel, H.; Dunlap, B. H.
2015-04-01
Hot subdwarf B stars (sdBs) are evolved, core helium-burning objects located on the extreme horizontal branch. Their formation history is still puzzling because the sdB progenitors must lose nearly all of their hydrogen envelope during the red-giant phase. About half of the known sdBs are in close binaries with periods from 1.2 h to a few days, which implies that they experienced a common-envelope phase. Eclipsing hot subdwarf binaries (also called HW Virginis systems) are rare but important objects for determining fundamental stellar parameters. Even more significant and uncommon are those binaries containing a pulsating sdB, since the mass can be determined independently by asteroseismology. Here we present a first analysis of the eclipsing hot subdwarf binary V2008-1753. The light curve shows a total eclipse, a prominent reflection effect, and low-amplitude pulsations with periods from 150 to 180 s. An analysis of the light- and radial velocity curves indicates a mass ratio close to q = 0.146, an radial velocity semi-amplitude of K = 54.6 km s-1, and an inclination of i = 86.8°. Combining these results with our spectroscopic determination of the surface gravity, log g = 5.83, the best-fitting model yields an sdB mass of 0.47 M⊙ and a companion mass of 69 MJup. Because the latter mass is below the hydrogen-burning limit, V2008-1753 represents the first HW Vir system that is known to consist of a pulsating sdB and a brown dwarf companion. Consequently, it holds strong potential for better constraining models of sdB binary evolution and asteroseismology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; McKeever, J.; Jackiewicz, J.
2016-12-01
Given the potential of ensemble asteroseismology for understanding fundamental properties of large numbers of stars, it is critical to determine the accuracy of the scaling relations on which these measurements are based. From several powerful validation techniques, all indications so far show that stellar radius estimates from the asteroseismic scaling relations are accurate to within a few percent. Eclipsing binary systems hosting at least one star with detectable solar-like oscillations constitute the ideal test objects for validating asteroseismic radius and mass inferences. By combining radial velocity (RV) measurements and photometric time series of eclipses, it is possible to determine themore » masses and radii of each component of a double-lined spectroscopic binary. We report the results of a four-year RV survey performed with the échelle spectrometer of the Astrophysical Research Consortium’s 3.5 m telescope and the APOGEE spectrometer at Apache Point Observatory. We compare the masses and radii of 10 red giants (RGs) obtained by combining radial velocities and eclipse photometry with the estimates from the asteroseismic scaling relations. We find that the asteroseismic scaling relations overestimate RG radii by about 5% on average and masses by about 15% for stars at various stages of RG evolution. Systematic overestimation of mass leads to underestimation of stellar age, which can have important implications for ensemble asteroseismology used for Galactic studies. As part of a second objective, where asteroseismology is used for understanding binary systems, we confirm that oscillations of RGs in close binaries can be suppressed enough to be undetectable, a hypothesis that was proposed in a previous work.« less
Absolute Properties of the Low-Mass Eclipsing Binary CM Draconis
NASA Astrophysics Data System (ADS)
Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Torres, Guillermo; Gallardo, José; Guinan, Edward F.; Charbonneau, David; Wolf, Marek; Latham, David W.; Anglada-Escudé, Guillem; Bradstreet, David H.; Everett, Mark E.; O'Donovan, Francis T.; Mandushev, Georgi; Mathieu, Robert D.
2009-02-01
Spectroscopic and eclipsing binary systems offer the best means for determining accurate physical properties of stars, including their masses and radii. The data available for low-mass stars have yielded firm evidence that stellar structure models predict smaller radii and higher effective temperatures than observed, but the number of systems with detailed analyses is still small. In this paper, we present a complete reanalysis of one of such eclipsing systems, CM Dra, composed of two dM4.5 stars. New and existing light curves as well as a radial velocity curve are modeled to measure the physical properties of both components. The masses and radii determined for the components of CM Dra are M 1 = 0.2310 ± 0.0009 M sun, M 2 = 0.2141 ± 0.0010M sun, R 1 = 0.2534 ± 0.0019 R sun, and R 2 = 0.2396 ± 0.0015 R sun. With relative uncertainties well below the 1% level, these values constitute the most accurate properties to date for fully convective stars. This makes CM Dra a valuable benchmark for testing theoretical models. In comparing our measurements with theory, we confirm the discrepancies previously reported for other low-mass eclipsing binaries. These discrepancies seem likely to be due to the effects of magnetic activity. We find that the orbit of this system is slightly eccentric, and we have made use of eclipse timings spanning three decades to infer the apsidal motion and other related properties.
SS Bootis - A totally eclipsing binary of the RS CVn type
NASA Technical Reports Server (NTRS)
Vaucher, C. A.; Africano, J. L.; Henry, G. W.; Hall, D. S.; Wilson, J. W.
1983-01-01
Photoelectric photometry gathered for SS Bootis over the 1976-1981 period shows a distortion wave amplitude variation from 0.05 to 0.20 mag, with no apparent pattern. From the rectified light curve, a new time of midprimary eclipse was found to be 2444332.0335 + or - 0.0005 days. Solutions of the primary eclipse data, rectified for star spots as well as for ellipticity and reflection, are presented.
NASA Astrophysics Data System (ADS)
Perrier, C.; Breysacher, J.; Rauw, G.
2009-09-01
Aims: We present a technique to determine the orbital and physical parameters of eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced by the absorption of the O-star light by the stellar wind of the W-R star. Methods: Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of the wind transparency and limb-darkening laws. Results: The method is applied to the SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an LBV-like event in August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the system allows a quality assessment of the results obtained.
NASA Astrophysics Data System (ADS)
Tamajo, E.; Munari, U.; Siviero, A.; Tomasella, L.; Dallaporta, S.
2012-03-01
We present a spectroscopic and photometric analysis of the multiple system and early-type eclipsing binary SZ Cam (O9 IV + B0.5 V), which consists of an eclipsing SB2 pair of orbital period P = 2.7 days in a long orbit (~55 yrs) around a non-eclipsing SB1 pair of orbital period P = 2.8 days. We have reconstructed the spectra of the individual components of SZ Cam from the observed composite spectra using the technique of spectral disentangling. We used them together with extensive and accurate BVIC CCD photometry to obtain an orbital solution. Our photometry revealed the presence of a β Cep variable in the SZ Cam hierarchical system, probably located within the non-eclipsing SB1 pair. The pulsation period is (0.33265 ± 0.00005) days and the observed total amplitude in the B band is (0.0105 ± 0.0005) mag. NLTE analysis of the disentangled spectra provided atmospheric parameters for all three components, consistent with those derived from orbital solution. Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A139
NASA Astrophysics Data System (ADS)
Stephens, R. D.; Warner, B. D.
2006-05-01
When observing asteroids we select from two to five comparison stars for differential photometry, taking the average value of the comparisons for the single value to be subtracted from the value for the asteroid. As a check, the raw data of each comparison star are plotted as is the difference between any single comparison and the average of the remaining stars in the set. On more than one occasion, we have found that at least one of the comparisons was variable. In two instances, we took time away from our asteroid lightcurve work to determine the period of the two binaries and attempted to model the system using David Bradstreet's Binary Maker 3. Unfortunately, neither binary showed a total eclipse. Therefore, our results are not conclusive and present only one of many possibilities.
WW Geminorum: An early B-type eclipsing binary evolving into the contact phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y.-G.; Dai, H.-F.; Yin, X.-G.
2014-11-01
WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q {sub ph} = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the periodmore » studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P {sub mod} = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10{sup –8} day yr{sup –1}, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.« less
The MUCHFUSS photometric campaign
NASA Astrophysics Data System (ADS)
Schaffenroth, V.; Geier, S.; Heber, U.; Gerber, R.; Schneider, D.; Ziegerer, E.; Cordes, O.
2018-06-01
Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which have lost almost all of their hydrogen envelope. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions like late-type stars or brown dwarfs are detectable via characteristic light-curve variations like reflection effects and often also eclipses. To search for such objects, we obtained multi-band light curves of 26 close sdO/B binary candidates from the MUCHFUSS project with the BUSCA instrument. We discovered a new eclipsing reflection effect system (P = 0.168938 d) with a low-mass M dwarf companion (0.116 M⊙). Three more reflection effect binaries found in the course of the campaign have already been published; two of them are eclipsing systems, and in one system only showing the reflection effect but no eclipses, the sdB primary is found to be pulsating. Amongst the targets without reflection effect a new long-period sdB pulsator was discovered and irregular light variations were found in two sdO stars. The found light variations allowed us to constrain the fraction of reflection effect binaries and the substellar companion fraction around sdB stars. The minimum fraction of reflection effect systems amongst the close sdB binaries might be greater than 15% and the fraction of close substellar companions in sdB binaries may be as high as 8.0%. This would result in a close substellar companion fraction to sdB stars of about 3%. This fraction is much higher than the fraction of brown dwarfs around possible progenitor systems, which are solar-type stars with substellar companions around 1 AU, as well as close binary white dwarfs with brown dwarf companions. This might suggest that common envelope interactions with substellar objects are preferentially followed by a hot subdwarf phase.
NASA Technical Reports Server (NTRS)
Hertz, Paul; Wood, Kent S.; Cominsky, Lynn
1995-01-01
EXO 0748-676, an eclipsing low-mass X-ray binary, is one of only about four or five low-mass X-ray binaries for which orbital period evolution has been reported. We observed a single eclipse egress with ROSAT . The time of this egress is consistent with the apparent increase in P(sub orb) previously reported on the basis of EXOSAT and Ginga observations. Standard analysis, in which O-C (observed minus calculated) timing residuals are examined for deviations from a constant period, implicitly assume that the only uncertainty in each residual is measurement error and that these errors are independent. We argue that the variable eclipse durations and profiles observed in EXO 0748-676 imply that there is an additional source of uncertainty in timing measurements, that this uncertainty is intrinsic to the binary system, and that it is correlated from observation to observation with a variance which increases as a function of the number of binary cycles between observations. This intrinsic variability gives rise to spurious trends in O-C residuals which are misinterpreted as changes in the orbital period. We describe several statistics tests which can be used to test for the presence of intrinsic variability. We apply those statistical tests which are suitable to the EXO 0748-676 observations. The apparent changes in the orbital period of EXO 0748-676 can be completely accounted for by intrinsic variability with an rms variability of approximately 0.35 s per orbital cycle. The variability appears to be correlated from cycle-to-cycle on timescales of less than 1 yr. We suggest that the intrinsic variability is related to slow changes in either the source's X-ray luminosity or the structure of the companion star's atmosphere. We note that several other X-ray binaries and cataclysmic variables have previously reported orbital period changes which may also be due to intrinsic variability rather than orbital period evolution.
Line Identifications in the Far Ultraviolet Spectrum of the Eclipsing Binary System 31 Cygni
NASA Astrophysics Data System (ADS)
Hagen Bauer, Wendy; Bennett, P. D.
2011-05-01
The eclipsing binary system 31 Cygni (K4 Ib + B3 V) was observed at several phases with the Far Ultraviolet Spectrosocopic Explorer (FUSE) satellite. During total eclipse, a rich emission spectrum was observed, produced by scattering of hot star photons in the extended wind of the K supergiant. The system was observed during deep chromospheric eclipse, and 2.5 months after total eclipse ended. We present an atlas of line identifications in these spectra. During total eclipse, emission features from C II , C III, N I, N II, N III, O I, Si II, P II, P III, S II, S III, Ar I, Cr III, Fe II, Fe III, and Ni II were detected. The strongest emission features arise from N II. These lines appear strongly in absorption during chromospheric eclipse, and even 2.5 months after total eclipse, the absorption bottoms out on the underlying emission seen during total eclipse. The second strongest features in the emission spectrum arise from Fe III. Any chromospheric Fe III absorption is buried within strong chromospheric absorption from other species, mainly Fe II. The emission profiles of most of the doubly-ionized species are red-shifted relative to the systemic velocity, with asymmetric profiles with a steeper long-wavelength edge. Emission profiles from singly-ionized species tend to be more symmetric and centered near the systemic velocity. In deep chromospheric eclipse, absorption features are seen from neutral and singly-ionized species, arising from lower levels up to 3 eV. Many strong chromospheric features are doubled in the observation obtained during egress from eclipse. The 31 Cygni spectrum taken 2.5 months after total eclipse ended ws compared to single-star B spectra from the FUSE archives. There was still some additional chromospheric absorption from strong low-excitation Fe II, O I and Ar I.
NASA Astrophysics Data System (ADS)
Kim, C.-H.; Kreiner, J. M.; Zakrzewski, B.; Ogłoza, W.; Kim, H.-W.; Jeong, M.-J.
2018-04-01
A comprehensive catalog of 623 galactic eclipsing binary (EB) systems with eccentric orbits is presented with more than 2830 times of minima determined from the archived photometric data by various sky-survey projects and new photometric measurements. The systems are divided into two groups according to whether the individual system has a GCVS name or not. All the systems in both groups are further classified into three categories (D, A, and A+III) on the basis of their eclipse timing diagrams: 453 D systems showing just constantly displaced secondary minima, 139 A systems displaying only apsidal motion (AM), and 31 A+III systems exhibiting both AM and light-time effects. AM parameters for 170 systems (A and A+III systems) are consistently calculated and cataloged with basic information for all systems. Some important statistics for the AM parameters are discussed and compared with those derived for the eccentric EB systems in the Large and Small Magellanic Clouds.
NASA Astrophysics Data System (ADS)
Kozyreva, V. S.; Ibrahimov, M. A.; Gaynullina, E. R.; Karimov, R. G.; Hafizov, B. M.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Yu. G.; Bogomazov, A. I.; Irsmambetova, T. R.; Tutukov, A. V.
2018-01-01
This study aims timing the eclipses of the short period low mass binary star AB And. The times of minima are taken from the literature and from our observations in October 2013 (22 times of minima) and in August 2014 (23 times of minima). We find and discuss an inaccuracy in the determination of the types of minima in the previous investigation by Li et al. (2014). We study the secular evolution of the central binary's orbital period and the possibility of the existence of third and fourth companions in the system.
LX Persei, an eclipsing binary with H and K emission
NASA Technical Reports Server (NTRS)
Weiler, E. J.
1974-01-01
The masses and MK classes were calculated for the eclipsing spectroscopic binary LX Persei. Its spectrum shows strong H and K emission and doubled lines in the photographic region. The Ca II emission velocity shifts vary in phase with the secondary's absorption lines and are presumably associated with this component. The stars are tentatively classed as G0 V and K0 IV, and the cooler component is the more massive by a ratio of 0.96. The system has a period of 8.0 days.
Physical implications of the eclipsing binary pulsar
NASA Technical Reports Server (NTRS)
Wasserman, Ira; Cordes, James M.
1988-01-01
The observed characteristics of the msec pulsar P1957+20, discovered in an eclipsing binary by Fruchter et al. (1988), are considered theoretically. Model equations for the stellar wind and optical emission are derived and used to estimate the effective temperature and optical luminosity associated with wind excitation; then the energy levels required to generate such winds are investigated. The color temperature of the pulsar-heated stellar surface calculated under the assumption of adiabatic expansion is 1000-10,000 K, in good agreement with the observational estimate of 5500 K.
A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.
2016-10-01
We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.
Period changes of the long-period cataclysmic binary EX Draconis
NASA Astrophysics Data System (ADS)
Pilarčík, L.; Wolf, M.; Dubovský, P. A.; Hornoch, K.; Kotková, L.
2012-03-01
The cataclysmic variable star EX Dra is a relatively faint but frequently investigated eclipsing dwarf nova. In total 35 new eclipses were measured photometrically as part of our long-term monitoring of interesting eclipsing systems. Using published and new mid-eclipse times obtained between 2004 and 2011 we constructed the observed-minus-calculated diagram. The current data present 21 years of period modulation with a semi-amplitude of 2.5 min. The eclipse timings show significant deviations from the best sinusoidal fit, which indicates that this ephemeris is not a complete description of the data. The fractional period change is roughly ΔP/P = 3 × 10-6.
GJ 3236 - radial velocity determination
NASA Astrophysics Data System (ADS)
Kára, J.; Wolf, M.; Zharikov, S.
2018-04-01
We present a new study of low-mass red-dwarf eclipsing binary GJ 3236 using spectroscopic data obtained by the 2.12-m telescope at the San Pedro Mártir Observatory. We resolved radial velocities of both components of the binary and improved determination of the physical parameters of the binary.
The Araucaria project. The distance to the small Magellanic Cloud from late-type eclipsing binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graczyk, Dariusz; Pietrzyński, Grzegorz; Gieren, Wolfgang
2014-01-01
We present a distance determination to the Small Magellanic Cloud (SMC) based on an analysis of four detached, long-period, late-type eclipsing binaries discovered by the Optical Gravitational Lensing Experiment (OGLE) survey. The components of the binaries show negligible intrinsic variability. A consistent set of stellar parameters was derived with low statistical and systematic uncertainty. The absolute dimensions of the stars are calculated with a precision of better than 3%. The surface brightness-infrared color relation was used to derive the distance to each binary. The four systems clump around a distance modulus of (m – M) = 18.99 with a dispersionmore » of only 0.05 mag. Combining these results with the distance published by Graczyk et al. for the eclipsing binary OGLE SMC113.3 4007, we obtain a mean distance modulus to the SMC of 18.965 ± 0.025 (stat.) ± 0.048 (syst.) mag. This corresponds to a distance of 62.1 ± 1.9 kpc, where the error includes both uncertainties. Taking into account other recent published determinations of the SMC distance we calculated the distance modulus difference between the SMC and the Large Magellanic Cloud equal to 0.458 ± 0.068 mag. Finally, we advocate μ{sub SMC} = 18.95 ± 0.07 as a new 'canonical' value of the distance modulus to this galaxy.« less
Orbital period changes in RW CrA, DX Vel and V0646 Cen
NASA Astrophysics Data System (ADS)
Volkov, I. M.; Chochol, D.; Grygar, J.; Mašek, M.; Juryšek, J.
2017-06-01
We aim to determine the absolute parameters of the components of southern Algol-type binaries with deep eclipses RW CrA, DX Vel, V0646 Cen and interpret their orbital period changes. The data analysis is based on a high quality Walraven photoelectric photometry, obtained in the 1960-70s, our recent CCD photometry, ASAS (Pojmanski, 2002), and Hipparcos (Perryman et al., 1997) photometry of the objects. Their light curves were analyzed using the PHOEBE program with fixed effective temperatures of the primary components, found from disentangling the Walraven (B-U) and (V-B) colour indices. We found the absolute parameters of the components of all three objects. All reliable observed times of minimum light were used to construct and analyze the Eclipse Time Variation (ETV) diagrams. We interpreted the ETV diagrams of the detached binary RW CrA and the semi-detached binary DX Vel by a LIght-Time Effect (LITE), estimated parameters of their orbits and masses of their third bodies. We suggest a long term variation of the inclination angle of both eclipsing binaries, caused by a non-coplanar orientation of their third body orbits. We interpreted the detected orbital period increase in the semi-detached binary V0646 Cen by a mass transfer from the less to more massive component with the rate M⊙ = 6.08×10-9 M⊙/yr.
Light curve variations of the eclipsing binary V367 Cygni
NASA Astrophysics Data System (ADS)
Akan, M. C.
1987-07-01
The long-period eclipsing binary star V367 Cygni has been observed photoelectrically in two colours, B and V, in 1984, 1985, and 1986. These new light curves of the system have been discussed and compared for the light-variability with the earlier ones presented by Heiser (1962). Using some of the previously published photoelectric light curves and the present ones, several primary minima times have been derived to calculate the light elements. Any attempt to obtain a photometric solution of the binary is complicated by the peculiar nature of the light curve caused by the presence of the circumstellar matter in the system. Despite this difficulty, however, some approaches are being carried out to solve the light curves which are briefly discussed.
NASA Astrophysics Data System (ADS)
Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.
2013-01-01
This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18
Spectral irradiance curve calculations for any type of solar eclipse
NASA Technical Reports Server (NTRS)
Deepak, A.; Merrill, J. E.
1974-01-01
A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = sub c (1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail.
VX Her: Eclipsing Binary System or Single Variable Star
NASA Astrophysics Data System (ADS)
Perry, Kathleen; Castelaz, Michael; Henson, Gary; Boghozian, Andrew
2015-01-01
VX Her is a pulsating variable star with a period of .4556504 days. It is believed to be part of an eclipsing binary system (Fitch et al. 1966). This hypothesis originated from Fitch seeing VX Her's minimum point on its light curve reaching a 0.7 magnitude fainter than normal and remaining that way for nearly two hours. If VX Her were indeed a binary system, I would expect to see similar results with a fainter minimum and a broader, more horizontal dip. Having reduced and analyzed images from the Southeastern Association for Research in Astronomy Observatory in Chile and Kitt Peak, as well as images from a 0.15m reflector at East Tennessee State University, I found that VX Her has the standard light curve of the prototype variable star, RR Lyrae. Using photometry, I found no differing features in its light curve to suggest that it is indeed a binary system. However, more observations are needed in case VX Her is a wide binary.
Observations of hot stars and eclipsing binaries with FRESIP
NASA Technical Reports Server (NTRS)
Gies, Douglas R.
1994-01-01
The FRESIP project offers an unprecedented opportunity to study pulsations in hot stars (which vary on time scales of a day) over a several year period. The photometric data will determine what frequencies are present, how or if the amplitudes change with time, and whether there is a connection between pulsation and mass loss episodes. It would initiate a new field of asteroseismology studies of hot star interiors. A search should be made for selected hot stars for inclusion in the list of project targets. Many of the primary solar mass targets will be eclipsing binaries, and I present estimates of their frequency and typical light curves. The photometric data combined with follow up spectroscopy and interferometric observations will provide fundamental data on these stars. The data will provide definitive information on the mass ratio distribution of solar-mass binaries (including the incidence of brown dwarf companions) and on the incidence of planets in binary systems.
NASA Astrophysics Data System (ADS)
Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason
2016-01-01
Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.
Light equation in eclipsing binary CV Boo: third body candidate in elliptical orbit
NASA Astrophysics Data System (ADS)
Bogomazov, A. I.; Kozyreva, V. S.; Satovskii, B. L.; Krushevska, V. N.; Kuznyetsova, Y. G.; Ehgamberdiev, S. A.; Karimov, R. G.; Khalikova, A. V.; Ibrahimov, M. A.; Irsmambetova, T. R.; Tutukov, A. V.
2016-12-01
A short period eclipsing binary star CV Boo is tested for the possible existence of additional bodies in the system with a help of the light equation method. We use data on the moments of minima from the literature as well as from our observations during 2014 May-July. A variation of the CV Boo's orbital period is found with a period of {≈}75 d. This variation can be explained by the influence of a third star with a mass of {≈}0.4 M_{⊙} in an eccentric orbit with e≈0.9. A possibility that the orbital period changes on long time scales is discussed. The suggested tertiary companion is near the chaotic zone around the central binary, so CV Boo represents an interesting example to test its dynamical evolution. A list of 14 minima moments of the binary obtained from our observations is presented.
The infrared counterpart of the eclipsing X-ray binary HO253 + 193
NASA Technical Reports Server (NTRS)
Zuckerman, B.; Becklin, E. E.; Mclean, I. S.; Patterson, Joseph
1992-01-01
We report the identification of the infrared counterpart of the pulsating X-ray source HO253 + 193. It is a highly reddened star varying in K light with a period near 3 hr, but an apparent even-odd effect in the light curve implies that the true period is 6.06 hr. Together with the recent report of X-ray eclipses at the latter period, this establishes the close binary nature of the source. Infrared minimum occurs at X-ray minimum, certifying that the infrared variability arises from the tidal distortion of the lobe-filling secondary. The absence of a point source at radio wavelengths, plus the distance derived from the infrared data, suggests that the binary system is accidentally located behind the dense core of the molecular cloud Lynds 1457. The eclipses and pulsations in the X-ray light curve, coupled with the hard X-ray spectrum and low luminosity, demonstrate that HO253 + 193 contains an accreting magnetic white dwarf, and hence belongs to the 'DQ Herculis' class of cataclysmic variables.
NASA Technical Reports Server (NTRS)
Corcoran, Michael F.; Nichols, Joy; Naze, Yael; Rauw, Gregor; Pollock, Andrew; Moffat, Anthony; Richardson, Noel; Evans, Nancy; Hamaguchi, Kenji; Oskinova, Lida;
2013-01-01
Delta Ori is the nearest massive, single-lined eclipsing binary (O9.5 II + B0.5III). As such it serves as a fundamental calibrator of the mass-radius-luminosity relation in the upper HR diagram. It is also the only eclipsing O-type binary system which is bright enough to be observable with the CHANDRA gratings in a reasonable exposure. Studies of resolved X-ray line complexes provide tracers of wind mass loss rate and clumpiness; occultation by the X-ray dark companion of the line emitting region can provide direct spatial information on the location of the X-ray emitting gas produced by shocks embedded in the wind of the primary star. We obtained phase-resolved spectra with Chandra in order to determine the level of phase-dependent vs. secular variability in the shocked wind. Along with the Chandra observations we obtained simultaneous photometry from space with the Canadian MOST satellite to help understand the relation between X-ray and photospheric variability.
Searching for Extrasolar Trojan Planets: A Status Report
NASA Astrophysics Data System (ADS)
Caton, D. B.; Davis, S. A.; Kluttz, K. A.; Stamilio, R. J.; Wohlman, K. D.
2001-05-01
We are exploring the light curves of eclipsing binaries for the photometric signature of planets that may exist at the L4 and L5 Lagrange points of the stellar system. While no binaries are known to exist that strictly satisfy the stellar mass ratio constraint for the restricted three-body problem, the general solution would allow a planet formed at the L-point to remain there if there are no major perturbing bodies such as an additional planet. We have coined such objects "Trojan planets." The advantage of this approach is that the phases of the planetary eclipses are known. We picked systems with deep primary eclipses, to maximize the amount of system light eclipsed by the planet when in front of the hotter star. We also scanned the Finding List for Observers of Interactive Binary Stars, for G dwarf systems, but found only a few that were high inclination and detached. The target list includes QY Aql, YZ Aql, V442 Cas, SS Cet, S Cnc, VW Cyg, WW Cyg, RR Dra, RX Gem, RY Gem, VW Hya, Y Leo, TV Mon, BN Sct, UW Vir, AC UMa, and GSC 1657. We have concentrated on V442 Cas and YZ Aql, based on initial results that show anomalies in the light curves near the phases where a Trojan planet eclipse is expected. New work is being done on brighter systems by using a "spot filter," similar to that developed by Castellano (PASP 112, 821-6),2000), to allow longer exposures that provide brighter comparison stars. We will report on the observations made to date on several systems. We gratefully acknowledge the support of the National Science Foundation, through grants AST-9731062 and AST-0089248. We also appreciate the support of the Fund for Astrophysical Research. Gregory Shelton and Brenda Corbin, at the U.S. naval Observatory Library, have been indispensable in providing references for these binary systems. This research has made use of the Simbad database, operated at CDS, Strasbourg, France
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez Maqueo Chew, Yilen; Stassun, Keivan G.; Hebb, Leslie
Parenago 1802, a member of the {approx}1 Myr Orion Nebula Cluster, is a double-lined, detached eclipsing binary in a 4.674 day orbit, with equal-mass components (M{sub 2}/M{sub 1} = 0.985 {+-} 0.029). Here we present extensive VI{sub C} JHK{sub S} light curves (LCs) spanning {approx}15 yr, as well as a Keck/High Resolution Echelle Spectrometer (HIRES) optical spectrum. The LCs evince a third light source that is variable with a period of 0.73 days, and is also manifested in the high-resolution spectrum, strongly indicating the presence of a third star in the system, probably a rapidly rotating Classical T Tauri star.more » We incorporate this third light into our radial velocity and LC modeling of the eclipsing pair, measuring accurate masses (M{sub 1} = 0.391 {+-} 0.032 and M{sub 2} = 0.385 {+-} 0.032 M{sub Sun }), radii (R{sub 1} = 1.73 {+-} 0.02 and R{sub 2} = 1.62 {+-} 0.02 R{sub Sun }), and temperature ratio (T{sub eff,1}/T{sub eff,2} = 1.0924 {+-} 0.0017). Thus, the radii of the eclipsing stars differ by 6.9% {+-} 0.8%, the temperatures differ by 9.2% {+-} 0.2%, and consequently the luminosities differ by 62% {+-} 3%, despite having masses equal to within 3%. This could be indicative of an age difference of {approx}3 Multiplication-Sign 10{sup 5} yr between the two eclipsing stars, perhaps a vestige of the binary formation history. We find that the eclipsing pair is in an orbit that has not yet fully circularized, e = 0.0166 {+-} 0.003. In addition, we measure the rotation rate of the eclipsing stars to be 4.629 {+-} 0.006 days; they rotate slightly faster than their 4.674 day orbit. The non-zero eccentricity and super-synchronous rotation suggest that the eclipsing pair should be tidally interacting, so we calculate the tidal history of the system according to different tidal evolution theories. We find that tidal heating effects can explain the observed luminosity difference of the eclipsing pair, providing an alternative to the previously suggested age difference.« less
GSC 4232.2850, a new eclipsing binary with elliptical orbit
NASA Astrophysics Data System (ADS)
Goranskij, V.; Shugarov, S.; Kroll, P.; Golovin, A.
2005-04-01
GSC 4232.2830 (20h 01m 28s.407, +61? 10' 17".18, 2000.0, v=12m.1) was suspected to be an eclipsing binary by VPG in the routine overview of photographical plates taken with 40-cm astrograph of SAI Crimean station. To define orbital elements of the binary, we searched for observations in Sonneberg Observatory plate collection, NSVS database (Wozniak et al., 2004), and carried out visual monitoring with a small telescope equipped with an electronic image tube, an analogue of a night vision device. Later, when we had found a preliminary solution, we carried out accurate CCD photometry to improve the orbital elements. We should note, that the depths of eclipses in the NSVS database do not exceed 0m.2, what contradicts to other observations. We suppose that NSVS measurements concern to integral light of two stars, a variable star, and a nearby brighter star, GSC 4232.2395, due to low resolution of this survey, 72". Using all the available observations we found the single orbital solution with an elliptical orbit and the period of 11,6 day. The center of the secondary minimum occurs at the orbital phase 0.69835 or 8.1 day after the primary minimum. The improved ephemeris derived using accurate CCD observations is following: HJD Min I = 2453278,3185(2) + 11.628188 (5) x E. O-C analysis does not show orbital period variations during the time interval of observations, or any evidence of apsidal motion. The observations show that both eclipses have about equal depth 0m.60, but essentially different duration, 0p.028 (7 h.8) for Min I, and 0 p.0175 (4 h.9) for Min II. The eclipses are partial. CCD photometry gives mean colors U-B = -0 m.06, B-V = 0 m.57, and V-R = 0 m.50 without notable color variations in the eclipse phases. Old Sonneberg photographic observations indicate that the eclipses were shallower in the middle of the past century than in the present time! Such contradictions may suggest that the depth of eclipses varied, as in the well-known system SSLac (Mossakovskaja, 1993; Milone et al, 2000; Torres and Stefanic, 2001). The eclipse depth variations should be verified with more precise observations taken during the longer time interval.
High-energy emission from the eclipsing millisecond pulsar PSR 1957+20
NASA Technical Reports Server (NTRS)
Arons, Jonathan; Tavani, Marco
1993-01-01
The properties of the high-energy emission expected from the eclipsing millisecond pulsar system PSR 1957+20 are investigated. Emission is considered by both the relativistic shock produced by the pulsar wind in the nebula surrounding the binary and by the shock constraining the mass outflow from the companion star of PSR 1957+20. On the basis of the results of microscopic plasma physical models of relativistic shocks it is suggested that the high-energy radiation is produced in the range from X-rays to MeV gamma rays in the binary and in the range from 0.01 eV to about 40 keV in the nebula. Doppler boost of the emission in the radiating wind suggests the flux should vary on the orbital time scale, with the largest flux observed roughly coincident with the pulsar's radio eclipse.
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Maloney, F. P.
1985-01-01
The apsidal motion of the eccentric eclipsing binary DI Herculis (HD 175227) is determined from an analysis of the available observations and eclipse timings from 1959 to 1984. Least squares solutions to the primary and secondary minima extending over an 84-yr interval yielded a small advance of periastron omega dot of 0.65 deg/100 yr + or - 0.18/100 yr. The observed advance of the periastron is about one seventh of the theoretical value of 4.27 deg/100 yr that is expected from the combined relativistic and classical effects. The discrepancy is about -3.62 deg/100 yr, or a magnitude of about 20 sigma. Classical mechanisms which explain the discrepancy are discussed, together with the possibility that there may be problems with general relativity itself.
NASA Astrophysics Data System (ADS)
Benbakoura, M.; Gaulme, P.; McKeever, J.; Beck, P. G.; Jackiewicz, J.; García, R. A.
2017-12-01
Asteroseismology is a powerful tool to measure the fundamental properties of stars and probe their interiors. This is particularly efficient for red giants because their modes are well detectable and give information on their deep layers. However, the seismic relations used to infer the mass and radius of a star have been calibrated on the Sun. Therefore, it is crucial to assess their accuracy for red giants which are not perfectly homologous to it. We study eclipsing binaries with a giant component to test their validity. We identified 16 systems for which we intend to compare the dynamical masses and radii obtained by combined photometry and spectroscopy to the values obtained from asteroseismology. In the present work, we illustrate our approach on a system from our sample.
IUE observations of the atmospheric eclipsing binary system Zeta Aurigae
NASA Technical Reports Server (NTRS)
Champman, R. D.
1980-01-01
IUE observations of the eclipsing binary system Zeta Aurigae made prior to and during the eclipse of the relatively small B8 V star by the cool supergiant star (spectral type K2 II) are reported. Spectral lines produced by the absorption of B star radiation in the atmosphere of the K star during eclipse can be used as a probe of the extended K star atmosphere, due to the negligible cool star continuum in the 1200-3200 A region. Spectra taken prior to eclipse are found to be similar to those of the single B8 V star 64 Ori, with the exception of very strong multi-component absorption lines of Si II, Si IV, C IV and the Mg resonance doublet with strong P Cygni profiles, indicating a double shell. Absorption lines including those corresponding to Al II, Al III, Cr II, Mn II, Fe II, Ni II and Ca II are observed to increase in strength and number as the eclipse progresses, with high-ionization-potential lines formed far from the K star, possibly in a shock wave, and low-ionization potential lines, formed in cool plasma, probably a cool wind, nearer to the K star. Finally, an emission-line spectra with lines corresponding to those previously observed in absorption is noted at the time the B-star continuum had disappeared.
An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent.
Pietrzyński, G; Graczyk, D; Gieren, W; Thompson, I B; Pilecki, B; Udalski, A; Soszyński, I; Kozłowski, S; Konorski, P; Suchomska, K; Bono, G; Moroni, P G Prada; Villanova, S; Nardetto, N; Bresolin, F; Kudritzki, R P; Storm, J; Gallenne, A; Smolec, R; Minniti, D; Kubiak, M; Szymański, M K; Poleski, R; Wyrzykowski, L; Ulaczyk, K; Pietrukowicz, P; Górski, M; Karczmarek, P
2013-03-07
In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately. The eclipsing-binary method was previously applied to the LMC, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.
Photometric Mapping of Two Kepler Eclipsing Binaries: KIC11560447 and KIC8868650
NASA Astrophysics Data System (ADS)
Senavci, Hakan Volkan; Özavci, I.; Isik, E.; Hussain, G. A. J.; O'Neal, D. O.; Yilmaz, M.; Selam, S. O.
2018-04-01
We present the surface maps of two eclipsing binary systems KIC11560447 and KIC8868650, using the Kepler light curves covering approximately 4 years. We use the code DoTS, which is based on maximum entropy method in order to reconstruct the surface maps. We also perform numerical tests of DoTS to check the ability of the code in terms of tracking phase migration of spot clusters. The resulting latitudinally averaged maps of KIC11560447 show that spots drift towards increasing orbital longitudes, while the overall behaviour of spots on KIC8868650 drifts towards decreasing latitudes.
Massive companions of binary systems
NASA Astrophysics Data System (ADS)
Jableka, D.; Zola, S.; Zakrzewski, B.; Kreiner, J. M.; Ogloza, W.
2018-04-01
We examined the O-C diagrams of eclipsing binary systems and selected these exhibiting cyclic shape, either sinusoidal or quasi sinusoidal. Assuming these variations being due to the Light Time Travel effect (LTE), we estimated the parameters of companions with the Monte Carlo method. As a result, we identified nearly two dozen of eclipsing systems that might have companions with a minimum mass larger than that of a neutron star. Their masses fall into the range between 1.7 and 34 solar masses. This sample of triples with high mass companions can be confirmed with the help of observations gathered by Gaia: parallaxes and astrometric measurements.
Classification of close binary systems by Svechnikov
NASA Astrophysics Data System (ADS)
Dryomova, G. N.
The paper presents the historical overview of classification schemes of eclipsing variable stars with the foreground of advantages of the classification scheme by Svechnikov being widely appreciated for Close Binary Systems due to simplicity of classification criteria and brevity.
NASA Astrophysics Data System (ADS)
Schaffenroth, Veronika; Barlow, Brad; Geier, Stephan; Vučković, Maja; Kilkenny, Dave; Schaffenroth, Johannes
2017-12-01
Planets and brown dwarfs in close orbits will interact with their host stars, as soon as the stars evolve to become red giants. However, the outcome of those interactions is still unclear. Recently, several brown dwarfs have been discovered orbiting hot subdwarf stars at very short orbital periods of 0.065 - 0.096 d. More than 8% of the close hot subdwarf binaries might have sub-stellar companions. This shows that such companions can significantly affect late stellar evolution and that sdB binaries are ideal objects to study this influence. Thirty-eight new eclipsing sdB binary systems with cool low-mass companions and periods from 0.05 to 0.5 d were discovered based on their light curves by the OGLE project. In the recently published catalog of eclipsing binaries in the Galactic bulge, we discovered 75 more systems. We want to use this unique and homogeneously selected sample to derive the mass distribution of the companions, constrain the fraction of sub-stellar companions and determine the minimum mass needed to strip off the red-giant envelope. We are especially interested in testing models that predict hot Jupiter planets as possible companions. Therefore, we started the EREBOS (Eclipsing Reflection Effect Binaries from the OGLE Survey) project, which aims at analyzing those new HW Vir systems based on a spectroscopic and photometric follow up. For this we were granted an ESO Large Program for ESO-VLT/FORS2. Here we give an update on the the current status of the project and present some preliminary results.
Orbital Period Variations in the NY Vir System, Revisited in the Light of New Data
NASA Astrophysics Data System (ADS)
Baştürk, Özgür; Esmer, Ekrem Murat
2018-02-01
NY Virginis is an eclipsing binary system with a subdwarf B primary and an M type dwarf secondary. Recent studies (Qian et al. 2012; Lee et al. 2014) suggested the presence of two circumbinary planets with a few Jovian masses within the system. Lee et al. (2014) examined the orbital stabilities of the suggested planets, using the best-fit parameters derived from their eclipse timing variation analysis. They found that the outer companion should be ejected from the system in about 800 000 years. An observational report from Pulley et al. (2016) pointed out that the recent mideclipse times of the binary deviate significantly from the models suggested by Lee et al. (2014). In fact, variations in the orbital period of the system had already been recognized by many authors, but the parameters of these variations vary significantly as new data accumulate. Here, we analyze the eclipse timing variations of the NY Vir system, using new mid-eclipse times that we have obtained together with earlier published measurements in order to understand the nature of the system and constrain its parameters.
Observations and Analysis of the F-type Near-Contact Binary, NSVS 1054 1123
NASA Astrophysics Data System (ADS)
Caton, Daniel Bruce; Samec, Ronald G.; Faulkner, Danny R.
2018-01-01
NSVS 1054 1123 is a F2±2 type (T~ 6750K) eclipsing binary. It was observed in April and May, 2015 at the Appalachian State University’s Dark Sky Observatory in North Carolina with the 32-inch telescope. Six times of minimum light were determined from our present observations, which include two primary eclipses and four secondary eclipses:HJD Min I = 2457113.9330 ±0. 0.0002, 24 57147.8761 ±0.0001,HJD Min II = 2457117.80391 ±0.0006, 2457136.8600 ±0. 0007, 2457148.77040 ±0.0004, 2457151.7468 ±0.0002In addition, six observations at minima were introduced as low weighted times of minimum light taken from archived NSVS Data.The following quadratic ephemerides was determined from all available times of minimum light:JD Hel Min I=2457147.87646±0.00049d + 0 .5954966±0.0000065 X E -0.0000000017± 0.0000000007 X E2A period decrease may indicate that the binary is undergoing magnetic braking and is approaching its contact configuration. A BVRcIc simultaneous (preliminary) Wilson-Devinney Program (W-D) solution indicates that the system has a mass ratio of 0.5828±0.0004, and a component temperature difference of 2350 K. The large DT in the components verify that the binary is not in contact. A Binary Maker fitted hot spot altered slightly but was not eliminated in the WD Synthetic Light Curve Computations. It remains on the larger component at the equator on the correct (following) side for a stream spot directed from the secondary component (as dictated by the Coriolis effect). This could indicate that the components are near filling their respective Roche Lobes. The fill-out of our model is -0.036 for the primary component and -0.048 for the secondary component. The inclination is ~79 degrees, not enough for the system to undergo a total eclipse.Additional and more detailed information is given in this report.
New Pleiades Eclipsing Binaries and a Hyades Transiting System Identified by K2
NASA Astrophysics Data System (ADS)
David, Trevor J.; Conroy, Kyle E.; Hillenbrand, Lynne A.; Stassun, Keivan G.; Stauffer, John; Rebull, Luisa M.; Cody, Ann Marie; Isaacson, Howard; Howard, Andrew W.; Aigrain, Suzanne
2016-05-01
We present the discovery in Kepler’s K2 mission observations and our follow-up radial velocity (RV) observations from Keck/HIRES for four eclipsing binary (EB) star systems in the young benchmark Pleiades and Hyades clusters. Based on our modeling results, we announce two new low mass ({M}{tot}\\lt 0.6 {M}⊙ ) EBs among Pleiades members (HCG 76 and MHO 9) and we report on two previously known Pleiades binaries that are also found to be EB systems (HII 2407 and HD 23642). We measured the masses of the binary HCG 76 to ≲2.5% precision, and the radii to ≲4.5% precision, which together with the precise effective temperatures yield an independent Pleiades distance of 132 ± 5 pc. We discuss another EB toward the Pleiades that is a possible but unlikely Pleiades cluster member (AK II 465). The two new confirmed Pleiades systems extend the mass range of Pleiades EB components to 0.2-2 {M}⊙ . Our initial measurements of the fundamental stellar parameters for the Pleiades EBs are discussed in the context of the current stellar models and the nominal cluster isochrone, finding good agreement with the stellar models of Baraffe et al. at the nominal Pleiades age of 120 Myr. Finally, in the Hyades, we report a new low mass eclipsing system (vA 50) that was concurrently discovered and studied by Mann et al. We confirm that the eclipse is likely caused by a Neptune-sized transiting planet, and with the additional RV constraints presented here we improve the constraint on the maximum mass of the planet to be ≲1.2 MJup.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.
Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G
2017-04-20
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
X-RAY SPECTROSCOPY OF THE HIGH-MASS X-RAY BINARY PULSAR CENTAURUS X-3 OVER ITS BINARY ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naik, Sachindra; Ali, Zulfikar; Paul, Biswajit, E-mail: snaik@prl.res.in
2011-08-20
We present a comprehensive spectral analysis of the high-mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as {approx}40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high-energy cutoff and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by themore » presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2-3 with a significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggest that the dipping activity in Cen X-3 is caused by an obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in the case of dipping low-mass X-ray binaries.« less
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.
2018-01-01
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167
Photometric Properties of the HW Vir-type Binary OGLE-GD-ECL-11388
NASA Astrophysics Data System (ADS)
Hong, Kyeongsoo; Lee, Jae Woo; Lee, Dong-Joo; Kim, Seung-Lee; Koo, Jae-Rim; Park, Jang-Ho; Lee, Chung-Uk; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok
2017-01-01
We present the first extensive photometric results for the eclipsing binary OGLE-GD-ECL-11388 with a period of about 3.5 hours located in the Galactic disk. For the photometric solutions, we obtained the BVI light curves from both the KMTNet observations in 2015 and the OGLE-III survey data from 2001-2009, which show striking reflection effects and very sharp eclipses. The light curve synthesis indicates that the eclipsing system is a HW Vir-type binary with a mass ratio of q = 0.289, an orbital inclination of i = 81.9 deg, and a temperature ratio between both components of T 2/T 1 = 0.091. A frequency analysis was applied to the light residuals from our binary model; however, no pulsating periodicity from the subdwarf B-type primary component was detected under signal-to-noise amplitude ratios larger than 4.0. A total of 27 minimum epochs spanning 15 yr were used to analyze the eclipse timing variations of OGLE-GD-ECL-11388. It was found that the orbital period has varied due to a continuous period decrease at a rate of dP/dt = -1.1 × 10-8 day yr-1 or a sinusoidal oscillation with a semiamplitude of K = 35 s and a cycle of P 3 = 8.9 yr. The period decrease may be explained by an angular momentum loss via magnetic stellar wind braking or may be only a part of the sinusoidal variation. We think the most likely interpretation of the orbital period change, at present, is the light-time effect via the presence of a third body with a mass of {M}3\\sin {i}3=12.5 M Jup, putting it in the boundary zone between planets and brown dwarfs.
Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries
NASA Technical Reports Server (NTRS)
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.
2017-01-01
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus
2017-04-20
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curvesmore » and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.« less
Observations of the Eclipsing Millisecond Pulsar
NASA Astrophysics Data System (ADS)
Bookbinder, Jay
1990-12-01
FRUCHTER et al. (1988a) HAVE RECENTLY DISCOVERED a 1.6 MSEC PULSAR (PSR 1957+20) IN A 9.2 HOUR ECLIPSING BINARY SYSTEM. THE UNUSUAL BEHAVIOR OF THE DISPERSION MEASURE AS A FUNCTION OF ORBITAL PHASE, AND THE DISAPPEARANCE OF THE PULSAR SIGNAL FOR 50 MINUTES DURING EACH ORBIT, IMPLIES THAT THE ECLIPSES ARE DUE TO A PULSAR-INDUCED WIND FLOWING OFF OF THE COMPANION. THE OPTICAL COUNTERPART IS A 21ST MAGNITUDE OBJECT WHICH VARIES IN INTENSITY OVER THE BINARY PERIOD; ACCURATE GROUND-BASED OBSERVATIONS ARE PREVENTED BY THE PROXIMITY (0.7") OF A 20TH MAGNITUDE K DWARF. WE PROPOSE TO OBSERVE THE OPTICAL COUNTERPART IN A TWO-PART STUDY. FIRST, THE WF/PC WILL PROVIDE ACCURATE MULTICOLOR PHOTOMETRY, ENABLING US TO DETERMINE UNCONTAMINATED MAGNITUDES AND COLORS BOTH AT MAXIMUM (ANTI-ECLIPSE) AS WELL AS AT MINIMUM (ECLIPSE). SECOND, WE PROPOSE TO OBSERVE THE EXPECTED UV LINE EMISSION WITH FOS, ALLOWING FOR AN INTIAL DETERMINATION OF THE TEMPERATURE AND DENSITY STRUCTURE AND ABUNDANCES OF THE WIND THAT IS BEING ABLATED FROM THE COMPANION. STUDY OF THIS UNIQUE SYSTEM HOLDS ENORMOUS POTENTIAL FOR THE UNDERSTANDING OF THE RADIATION FIELD OF A MILLISECOND PULSAR AND THE EVOLUTION OF LMXRBs AND MSPs IN GENERAL. WE EXPECT THESE OBSERVATIONS TO PLACE VERY SIGNIFICANT CONTRAINTS ON MODELS OF THIS UNIQUE OBJECT.
Determination of the Fundamental Properties of the Eclipsing Binary V541 Cygni
NASA Astrophysics Data System (ADS)
McGruder, Chima; Torres, Guillermo; Siverd, Robert; Pepper, Joshua; Rodriguez, Joseph; KELT Collaboration
2017-01-01
We report new high-resolution spectroscopic observations of the B-type detached spectroscopic eclipsing binary V541 Cygni (e = 0.465 and P =15.34 days). We combine analysis of these new spectra with analysis of V-band photometry from the literature to obtain the most precise measurements of the fundamental properties of the stars to date (yielding ~1% errors in the masses and ~2% for the radii). A comparison with current stellar evolution models indicates good fits for an age of ~ 200 million years and [Fe/H] ~ -0.2. Available eclipse timings gathered over 40 years were used to re-determine the apsidal motion of the system, dω/dt = 0.993 degs/cent, which is larger than what theory suggests.The SAO REU program was funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
Photometric Analysis of Eclipsing Binary Az Vir
NASA Astrophysics Data System (ADS)
Neugarten, Andrew; Akiba, Tatsuya; Gokhale, Vayujeet
2018-06-01
We present photometric analysis of the eclipsing binary star system Az Vir. Standard BVR filter data were obtained using the 17-inch PlaneWave Instruments CDK telescope at the Truman State University Observatory in Kirksville, Mo and the 31-inch NURO telescope at the Lowell Observatory complex in Flagstaff, AZ. We apply an eight-term truncated Fourier fit to the light curves generated from these data to confirm the classification of Az Vir as a W Ursae Majoris-type eclipsing variable, using criteria specified by Rucinski (1997). We also calculate the values for the O’Connell Effect Ratio (OER) and the Light Curve Asymmetry (LCA) to quantify the asymmetry in the BVR light curves. In addition, we use data provided by the SuperWASP mission to perform long term O-C (observed minus calculated) analysis on the system to determine if and how its period is changing.
Photometric analysis of the eclipsing binary star AI Draconis
NASA Astrophysics Data System (ADS)
Deǧirmenci, Ö. L.; Gülmen, Ö.; Sezer, C.; Erdem, A.; Devlen, A.
2000-11-01
New photometric data from the eclipsing binary star AI Draconis has been analyzed with the method of Wilson-Devinney. The system shows a period increase of about 0.91 sec per century, which corresponds to a mass transfer from the less to the more massive component at a rate of 7.5 10-7 Msun/yr under the conservative mass transfer hypothesis. We also suggest that the system has an unseen component which orbits around the mass center of the triplet system with a period of about 23 yrs. We found that the projectional angular separation between the third star and eclipsing pair varies from 0.048 arcsec to 0.235 arcsec. These results suggestive of a third body should be checked in the future with more sensitive observations. Table 1 is only available electronically with the On-Line publication at http://link.springer.de/link/service/00230/
WHITE-LIGHT FLARES ON CLOSE BINARIES OBSERVED WITH KEPLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qing; Xin, Yu; Liu, Ji-Feng
2016-06-01
Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period ( P {sub orb}) and rotation period ( P {sub rot}, calculated for only detached binaries). Wemore » find that the AL increases with decreasing P {sub orb} or P {sub rot}, up to the critical values at P {sub orb} ∼ 3 days or P {sub rot} ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.« less
The 1982-1984 Eclipse of Epsilon Aurigae
NASA Technical Reports Server (NTRS)
Stencel, R. E. (Editor)
1985-01-01
A workshop proceedings concerned with the new data collected during the 1982-1984 eclipse period of the 27-year system Epsilon Aurigae is presented. This binary star has been a classic problem in astrophysics because the opaque eclipsing object is nonstellar, and probably disk shaped. Invited papers concerning the history of the system, optical, infrared and ultraviolet photometry, optical polarimetry and ultraviolet spectroscopy are included. An invited paper concerning comprehensive theoretical interpretation in the context of stellar evolution also is included. The information collected herein is unparalleled in scope and will remain a standard reference until the next eclipse cycle in the year 2009 A.D., in all probability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Nicholas M.; Kraus, Adam L.; Street, Rachel
2012-10-01
We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decomposemore » low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing binary systems can have arbitrarily small eclipse depths in red bands and generate plausible small-planet-transit light curves. As such, these systems are a source of false positives for M-dwarf transiting planet searches. We present several ways to rapidly distinguish these binaries from transiting planet systems.« less
Probing the low-stellar-mass domain with Kepler and APOGEE observations of eclipsing binaries
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Hambleton, Kelly
2018-01-01
Observations of low-mass stars (M < 0.5 Msun) have been shown to systematically disagree with the predictions of stellar evolutionary models, where observed radii can be inflated by as much as 5-15% as compared to model predictions. One of the proposed explanations for this discrepancy that is gaining traction are stellar magnetic fields impeding the onset of convection and the subsequent bloating of the star. Here we present modeling analysis results of two benchmark eclipsing binaries, KIC 3003991 and KIC 2445134, with low mass companions (M ~ 0.2 MSun and M ~ 0.5 MSun, respectively). The models are based on Kepler photometry and APOGEE spectroscopy. APOGEE is a part of the Sloan spectroscopic survey that observes in the near-infrared, providing greater sensitivity towards fainter, red companions. We combine the binary modeling software PHOEBE with emcee, an affine invariant Markov chain Monte Carlo sampler; celerite, a Gaussian process library; and our own codes to create a modeling suite capable of modeling correlated noise, shot noise, nuisance astrophysical signals (such as spots) and the full set of eclipsing binary parameters. The results are obtained within a probabilistic framework, with robust mass and radius uncertainties ~1-4%. We overplot the derived masses, radii and temperatures over evolutionary models and note stellar size bloating w.r.t. model predictions for both systems. This work has been funded by the NSF grant #1517460.
BVRI Photometric Study of the High Mass Ratio, Detached, Pre-contact W UMa Binary GQ Cancri
NASA Astrophysics Data System (ADS)
Samec, R. G.; Olson, A.; Caton, D.; Faulkner, D. R.
2017-12-01
CCD BVRcIc light curves of GQ Cancri were observed in April 2013 using the SARA North 0.9-meter Telescope at Kitt Peak National Observatory in Arizona in remote mode. It is a high-amplitude (V 0.9 magnitude) K0±V type eclipsing binary (T1 5250 K) with a photometrically-determined mass ratio of M2 / M1 = 0.80. Its spectral color type classifies it as a pre-contact W UMa Binary (PCWB). The Wilson-Devinney Mode 2 solutions show that the system has a detached binary configuration with fill-outs of 94% and 98% for the primary and secondary component, respectively. As expected, the light curve is asymmetric due to spot activity. Three times of minimum light were calculated, for two primary eclipses and one secondary eclipse, from our present observations. In total, some 26 times of minimum light covering nearly 20 years of observation were used to determine linear and quadratic ephemerides. It is noted that the light curve solution remained in a detached state for every iteration of the computer runs. The components are very similar with a computed temperature difference of only 4 K, and the flux of the primary component accounts for 53±55% of the system's light in B, V, Rc, and Ic. A 12-degree radius high latitude white spot (faculae) was iterated on the primary component.
Photometric Study of The Solar Type, Total Eclipsing Binary, TYC 2853-18-1
NASA Astrophysics Data System (ADS)
Samec, Ronald G.; Figg, E. R.; Faulkner, D.; Van Hamme, W.
2009-12-01
We present an analysis of the Solar-Type eclipsing binary, TYC 2853-18-1 (Persei), based on observations taken at the National Undergraduate Research Observatory (NURO) and the Southeastern Association for Research in Astronomy (SARA) in the Fall, 2007 and Spring, 2008. Light curves, a period study and a synthetic light curve solution are presented for this variable which was recently discovered by TYCHO as an eclipsing binary (2006, IBVS 5700). Our CCD observations of TYC 2853-18-1 [GSC 2853 0018, RA(2000) = 02h 47m 07.996s, DEC(2000) = +41° 22’ 32.80"] were taken on 20,27 December, 2007 at Lowell Observatory with the 0.81-m reflector with NURO time and 25 November, 3 December, 2007 and 19 February, 2008 via remote observing from Kitt Peak with SARA. NURO observations were take with the thermoelectrically cooled (<-100C) 2KX2K CCD NASACAM. Standard BVRcIc Johnson-Cousins filters were used. Our light curve solution was calculated with the 2004 Wilson code. Mean times of eclipse include, HJDMinI = 2454516.6131(±0.0005), 2454440.52974(±0.00008), 2454438.7605 (±0.0001), 2454462.6464 (±0.0003), HJDMinII = 2454455.71985 (±0.00060), 255462.7943 (±0.0002). These, including the epoch by ROTSE (2006, IBVS 5699) and the epoch calculated by the Wilson code, yielded the following ephemeris: HJD Hel Min I =2451370.8753(±.0.0010)d + 0.2949039 (±0.0000001)E Our unspotted Wilson code solution reveals TYC 2853-18-1 to be a W-type W UMa contact binary with unequal eclipse depths (amplitudes are 0.72 and 0.61 mags in V). It has shallow contact (8% fill-out) and a brief, but total eclipse. Its curves dictate a mass ratio of 2.62±0.01, a component temperature difference of only 73±5 ° K and an inclination of 82.0±0.2°. Spot activity is indicated by night to night variations. We wish to thank the NURO and SARA for their allocation of observing time, as well as NASA and the AAS for their support in paying for travel and publication expenses.
Period variations of Algol-type eclipsing binaries AD And, TWCas and IV Cas
NASA Astrophysics Data System (ADS)
Parimucha, Štefan; Gajdoš, Pavol; Kudak, Viktor; Fedurco, Miroslav; Vaňko, Martin
2018-04-01
We present new analyses of variations in O – C diagrams of three Algol-type eclipsing binary stars: AD And, TW Cas and IV Cas. We have used all published minima times (including visual and photographic) as well as newly determined ones from our and SuperWasp observations. We determined orbital parameters of 3rd bodies in the systems with statistically significant errors, using our code based on genetic algorithms and Markov chain Monte Carlo simulations. We confirmed the multiple nature of AD And and the triple-star model of TW Cas, and we proposed a quadruple-star model of IV Cas.
IUE spectra of the eclipsing binary NN Serpentis
NASA Technical Reports Server (NTRS)
Wood, Janet H.; Marsh, Thomas R.
1991-01-01
Low-resolution SWP and LWP IUE spectra are used to fit the temperature and angular radius of the white dwarf in the detached eclipsing binary NN Ser. It is found that the redenning to the system has E(B-V) of 0.05 +/-0.05, the white dwarf temperature is 60,000 +/-10,000 K, and the age of the white dwarf is less than 10 exp 7. The shape of eclipse and the K-magnitude of the secondary star are used to constrain the inclination of the binary and the masses and radii of the two stars. The size of the secondary star relative to its Roche lobe and the age of the white dwarf indicate that mass transfer has not yet occurred and that the system is a precataclysmic variable rather than a cataclysmic variable which has entered the period gap. Fitting the observed magnitude of the sinusoidal modulation with a reprocessing model shows that only when i is approximately equal to 90 deg is the required temperature of the secondary star consistent with these results. For this solution the white dwarf temperature is also consistent with those obtained from the IUE spectra.
Learning a Novel Detection Metric for the Detection of O’Connell Effect Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Johnston, Kyle; Haber, Rana; Knote, Matthew; Caballero-Nieves, Saida Maria; Peter, Adrian; Petit, Véronique
2018-01-01
With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. Here we focus on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern detection algorithm for the targeted identification of eclipsing binaries which demonstrate a feature known as the O’Connell Effect. A methodology for the reduction of stellar variable observations (time-domain data) into Distribution Fields (DF) is presented. Push-Pull metric learning, a variant of LMNN learning, is used to generate a learned distance metric for the specific detection problem proposed. The metric will be trained on a set of a labelled Kepler eclipsing binary data, in particular systems showing the O’Connell effect. Performance estimates will be presented, as well the results of the detector applied to an unlabeled Kepler EB data set; this work is a crucial step in the upcoming era of big data from the next generation of big telescopes, such as LSST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M {sub ⊙} and a 0.52 M {sub ⊙} WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binarymore » merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.« less
Photometric Solutions of Three Eclipsing Binary Stars Observed from Dome A, Antarctica
NASA Astrophysics Data System (ADS)
Liu, N.; Fu, J. N.; Zong, W.; Wang, L. Z.; Uddin, S. A.; Zhang, X. B.; Zhang, Y. P.; Cang, T. Q.; Li, G.; Yang, Y.; Yang, G. C.; Mould, J.; Morrell, N.
2018-04-01
Based on spectroscopic observations for the eclipsing binaries CSTAR 036162 and CSTAR 055495 with the WiFeS/2.3 m telescope at SSO and CSTAR 057775 with the Mage/Magellan I at LCO in 2017, stellar parameters are derived. More than 100 nights of almost-continuous light curves reduced from the time-series photometric observations by CSTAR at Dome A of Antarctic in i in 2008 and in g and r in 2009, respectively, are applied to find photometric solutions for the three binaries with the Wilson–Devinney code. The results show that CSTAR 036162 is a detached configuration with the mass ratio q = 0.354 ± 0.0009, while CSTAR 055495 is a semi-detached binary system with the unusual q = 0.946 ± 0.0006, which indicates that CSTAR 055495 may be a rare binary system with mass ratio close to one and the secondary component filling its Roche Lobe. This implies that a mass-ratio reversal has just occurred and CSTAR 055495 is in a rapid mass-transfer stage. Finally, CSTAR 057775 is believed to be an A-type W UMa binary with q = 0.301 ± 0.0008 and a fill-out factor of f = 0.742(8).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faigler, S.; Kull, I.; Mazeh, T.
We report the discovery of four short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white dwarf (WD) secondary (dA+WD)—KIC 4169521, KOI-3818, KIC 2851474, and KIC 9285587. The systems show BEaming, Ellipsoidal and Reflection (BEER) phase modulations together with primary and secondary eclipses. These add to the 6 Kepler and 18 WASP short-period eclipsing dA+WD binaries that were previously known. The light curves, together with follow-up spectroscopic observations, allow us to derive the masses, radii, and effective temperatures of the two components of the four systems. The orbital periods, of 1.17–3.82 days, andmore » WD masses, of 0.19–0.22 M{sub ⊙}, are similar to those of the previously known systems. The WD radii of KOI-3818, KIC 2851474, and KIC 9285587 are 0.026, 0.035, and 0.026 R{sub ⊙}, respectively, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries. These three binaries extend the previously known population to older systems with cooler and smaller WD secondaries. KOI-3818 displays evidence for a fast-rotating primary and a minute but significant eccentricity, ∼1.5 × 10{sup −3}. These features are probably the outcome of the mass-transfer process.« less
A Detailed Survey of Pulsating Variables in Five Globular Clusters (Abstract)
NASA Astrophysics Data System (ADS)
Murphy, B. W.
2016-12-01
(Abstract only) Globular clusters are ideal laboratories for conducting a stellar census. Of particular interest are pulsating variables, which provide astronomers with a tool to probe the properties of the stars and the cluster. We observed each of five globular clusters hundreds to thousands of times over a time span ranging from 2 to 4 years in B, V, and I filters using the SARA 0.6-meter telescope located at Cerro Tololo Interamerican Observatory and the 0.9-meter telescope located at Kitt Peak, Arizona. The images were analyzed using difference image analysis to identify and produce light curves of all variables found in each cluster. In total we identified 377 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 319 RR Lyrae variables (193 RR0, 18 RR01, 101 RR1, 7 RR2), 9 SX Phe stars, 5 Cepheid variables, 11 eclipsing variables, and 33 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 3 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 14 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 55 RR0, 57 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 50 RR0, 16 RR1, 4 eclipsing binaries, and 7 long period variables. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the B, V, and I light curves to further analyze the properties of the variable stars and hence the physical properties of each globular cluster.
NASA Technical Reports Server (NTRS)
Auer, L. H.; Koenigsberger, G.
1994-01-01
Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.
Birth of millisecond pulsars in globular clusters
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Bailyn, C. D.
1988-01-01
It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.
Eclipsing binary stars as tests of gravity theories - The apsidal motion of AS Camelopardalis
NASA Technical Reports Server (NTRS)
Maloney, Frank P.; Guinan, Edward F.; Boyd, Patricia T.
1989-01-01
AS Camelopardalis is an 8th-magnitude eclipsing binary that consists of two main-sequence (B8 V and a B9.5 V) components in an eccentric orbit (e = 0.17) with an orbital period of 3.43 days. Like the eccentric eclipsing system DI Herculis, and a few other systems, AS Cam is an important test case for studying relativistic apsidal motion. In these systems, the theoretical general relativistic apsidal motion is comparable to that expected from classical effects arising from tidal and rotational deformation of the stellar components. Accurate determinations of the orbital and stellar properties of AS Cam have been made by Hilditch (1972) and Khalliulin and Kozyreva (1983) that permit the theoretical relativistic and classical contributions to the apsidal motion to be determined reasonably well. All the published timings of primary and secondary minima have been gathered and supplemented with eclipse timings from 1899 to 1920 obtained from the Harvard plate collection. Least-squares solutions of the eclipse timings extending over an 80 yr interval yield a smaller than expected apsidal motion, in agreement with that found by Khalliulin and Kozyreva from a smaller set of data. The observed apsidal motion for AS Cam is about one-third that expected from the combined relativistic and classical effects. Thus, AS Cam joins DI Her in having an observed apsidal motion significantly less than that predicted from theory.
Simultaneous CCD Photometry of Two Eclipsing Binary Stars in Pegasus - Part2: BX Peg
NASA Astrophysics Data System (ADS)
Alton, K. B.
2013-05-01
BX Peg is an overcontact W UMa binary system (P = 0.280416 d) which has been rather well studied, but not fully understood due to complex changes in eclipse timings and light curve variations attributed to star spots. Photometric data collected in three bandpasses (B, V, and Ic) produced nineteen new times of minimum for BX Peg. These were used to update the linear ephemeris and further analyze potential changes in orbital periodicity by examining long-term changes in eclipse timings. In addition, synthetic fitting of light curves by Roche modeling was accomplished with the assistance of three different programs, two of which employ the Wilson-Devinney code. Different spotted solutions were necessary to achieve the best Roche model fits for BX Peg light curves collected in 2008 and 2011. Overall, the long-;term decrease (9.66 × 10-3 sec y-1) in orbital period defined by the parabolic fit of eclipse timing data could arise from mass transfer or angular momentum loss. The remaining residuals from observed minus predicted eclipse timings for BX Peg exhibit complex but non-random behavior. These may be related to magnetic activity cycles and/or the presence of an unseen mass influencing the times of minimum, however, additional minima need to be collected over a much longer timescale to resolve the nature of these complex changes.
Citizen Sky, Solving the Mystery of epsilon Aurigae
NASA Astrophysics Data System (ADS)
Turner, Rebecca; Price, A.; Kloppenborg, B.; Henden, A.
2010-01-01
Citizen Sky is a multi-year, NSF funded citizen science project involving the bright star eps Aur. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. It begins with a 10 Star Training Program of several types of binary and transient variable stars that are easy to observe from suburban locations with the naked eye. Participants then move on to monitoring the rare and mysterious 2009-2011 eclipse (already underway) of epsilon Aurigae. This object undergoes eclipses only every 27.1 years and each eclipse lasts nearly two years. The star is bright enough to be seen with the naked eye from most urban areas. Training will be provided in observing techniques as well as basic data analysis of photometric and visual datasets (light curve and period analysis). The project also involves two public workshops, one on observing (already held in August of 2009) and one on data analysis and scientific paper writing (to be held in 2010.) This project has been made possible by the National Science Foundation.
Period Variations of the Eclipsing Binary Systems T LMi and VX Lac
NASA Astrophysics Data System (ADS)
Yılmaz, M.; İzci, D. D.; Gümüş, D.; Özavci, İ.; Selam, S. O.
2015-07-01
We present a period analysis of the two Algol-type eclipsing binary systems T LMi and VX Lac using all available times of minimum in the literature, as well as new minima obtained at the Ankara University Kreiken Observatory. The period analysis of T LMi suggests mass transfer between the components and also a third body that is dynamically bound to the binary system. The analysis of VX Lac also suggests mass transfer between the components, and the presence of a third and a fourth body under the assumption of a Light-Time Effect. In addition, the periodic variation of VX Lac was examined under the hypothesis of magnetic activity, and the corresponding parameters were derived. We report here the orbital parameters for both systems, along with the ones related to mass transfer, and those for the third and fourth bodies.
NASA Astrophysics Data System (ADS)
Darwish, M. S.; Shokry, A.; Saad, S. M.; El-Sadek, M. A.; Essam, A.; Ismail, M.
2017-05-01
A CCD photometric study is presented for the eclipsing binary system 2MASS J20004638 + 0547475. Observations of the system were obtained in the V, R and I colours with the 2Kx2K CCD attached to 1.88 m Kottamia Optical Telescope. New times of light minimum and new ephemeris were obtained. The V, R and I light curves were analyzed using the PHOEBE 0.31 program to determine geometrical and physical parameters of the system. The results show that 2MASS J20004638 + 0547475, is A-Type WUMa and is an overcontact binary with high fill-out factor = 69%. The current evolutionary status of the system indicates that the primary component lies very close to the main sequence while the secondary is evolved. The asymmetric maxima were studied and a modeling of the hot spot parameters is given.
Multi-band photometric study of the short-period eclipsing binary GR Boo
NASA Astrophysics Data System (ADS)
Wang, Daimei; Zhang, Liyun; Han, Xianming L.; Lu, Hongpeng
2017-05-01
We present BVRI light curves with complete phase coverage for the short-period (p = 0.377day) eclipsing binary star GR Boo. We carried out the observations using the SARA 90 cm telescope located at Kitt Peak National Observatory. We obtained six new light curve minimum times. By fitting all of the available O-C minimum times, we obtained an updated ephemeris that shows the orbital period of GR Boo is decreasing at a rate of P˙ = - 2.36 ×10-7 days/year. This decrease in its period can be explained by either mass transfer from the more massive component to the less massive one, or angular momentum exchange due to magnetic activities. We also obtained a set of revised orbital parameters using the Wilson & Devinney program. And finally, we concluded that GR Boo is a contact binary with a dark spot.
NASA Astrophysics Data System (ADS)
Shokry, A.; Saad, S. M.; Hamdy, M. A.; Beheary, M. M.; Abolazm, M. S.; Gadallah, K. A.; El-Depsey, M. H.; Al-Gazzar, M. S.
2018-02-01
A new photometric study of two eclipsing binary systems (GU CMa and SWASP J011732.10+525204.9) is presented. The accepted solutions of analyzing the light curves revealed that GU CMa is a semi-detached system consisting of two early spectral type components, (B2 and B2.5) while SWASP J011732.10+525204.9 is a contact binary with two late type components (K2 and M1). The primary component of each system is the massive one. The geometric configuration indicates that SWASP J011732.10+525204.9 passes through a very critical phase in which each component exactly fills its limited lobe with zero fill out ratio. New times of minimum and the absolute physical parameters for each system are determined. The evolution status for each system has been investigated.
A possible third component in the eclipsing binary system HS 2231+2441
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Romanyuk, Ya. O.; Shliahetskaya, Ya. O.
2016-05-01
We used a differential photometry method in which we compared the flow of program star and standard one. Observations of the 21 nights in the period from July 26 to December 2, 2015 are used for processing. The accuracy of determining for each measurement is in the range 0,003...0,009 m for different nights. On the basis of obtained data were created corresponding light curves. Next, we calculate the time difference between the centers of transits. Its time dependence showed the presence of a possible periodic change in the deflection of the middle transit time from the calculated average value. This may indicate the presence of a third object in the eclipsing binary system. It has been found that the periodic variation of the orbital period can be explained by the gravitational influence of a third companion on the central binary system with an orbital period of about 97±10 d.
Light Curve and Analysis of the Eclipsing Binary BF Centauri
NASA Astrophysics Data System (ADS)
Morris, M. A.; Wolf, G. W.
2003-12-01
The eclipsing binary star BF Centauri was observed photometrically by GWW in the uvby filter system from Mt. John Observatory in New Zealand during 1982, 1989 and 1998. It was also observed spectroscopically at 10 A/mm by W. A. Lawson in 1993 at Mt. Stromlo in Australia to obtain a radial velocity solution. The combined light curves and spectroscopic results have been analyzed using the 1998 version of Robert Wilson's WD light-curve programs. A consistent model for the system will be presented. This analysis was done as a part of a senior research project by MAM, who would like to acknowledge financial support from the Missouri Space Grant Consortium.
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2014-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6397 at 10cm, for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system.
Photometric Follow-up of Eclipsing Binary Candidates from KELT and Kepler
NASA Astrophysics Data System (ADS)
Garcia Soto, Aylin; Rodriguez, Joseph E.; Bieryla, Allyson; KELT survey
2018-01-01
Eclipsing binaries (EBs) are incredibly valuable, as they provide the opportunity to precisely measure fundamental stellar parameters without the need for stellar models. Therefore, we can use EBs to directly test stellar evolution models. Constraining the stellar properties of stars is important since they directly influence our understanding of any planets orbiting them. Using the Harvard University's Clay 0.4m telescope and Fred Lawrence Whipple Observatory’s 1.2m telescope on Mount Hopkins, Arizona, we conducted follow-up multi-band photometric observations of EB candidates from the Kilodegree Extremely Little Telescope (KELT) survey and the Kepler mission. We will present our follow-up observations and AstroImageJ analysis on these 5 EB systems.
Physical Properties and Evolution of the Eclipsing Binary System XZ Canis Minoris
NASA Astrophysics Data System (ADS)
Poochaum, R.; Komonjinda, S.; Soonthornthum, B.; Rattanasoon, S.
2010-07-01
This research aims to study the eclipse binary system so that its physical properties and evolution can be determined and used as an example to teach high school astronomy. The study of an eclipsing binary system XZ Canis Minoris (XZ CMi) was done at Sirindhorn Observatory, Chiang Mai University using a 0.5-meter reflecting telescope with CCD photometric system (2184×1417 pixel) in B V and R bands of UVB System. The data obtained were used to construct the light curve for each wavelength band and to compute the times of its light minima. New elements were derived using observations with linear to all available minima. As a result, linear ephemeris is HDJmin I = .578 808 948+/-0.000 000 121+2450 515.321 26+/-0.001 07 E, and the new orbital period of XZ CMi is 0.578 808 948+/-0.000 000 121 day. The values obtained were used with the previously published times of minima to get O-C curve of XZ CMi. The result revealed that the orbital period of XZ CMi is continuously decreased at a rate of 0.007 31+/-0.000 57 sec/year. This result indicates that the binary stars are moving closer continuously. From the O-C residuals, there is significant change to indicate the existence of the third body or magnetic activity cycle on the star. However, further analysis of the physical properties of XZ CMi is required.
Time-resolved spectroscopy and photometry of the eclipsing AM Herculis binary EXO 033319 - 2554.2
NASA Technical Reports Server (NTRS)
Allen, Richard G.; Berriman, Graham; Smith, Paul S.; Schmidt, Gary D.
1989-01-01
Time-resolved optical observations of the eclipsing AM Herculis binary EXO 033319 - 2554.2 are presented. High-speed photometry of an eclipse is presented and used to derive a new ephemeris for the system and to estimate the size of the region responsible for the cyclotron emission. Optical spectra that span the orbital cycle are presented, the cyclotron emission in these spectra is discussed, and the flux and radial velocity variations of H-beta, H-gamma, and He II 4686 A are examined. Models of the flux and radial velocity variations of the emission lines indicate that about half the line emission comes from low-velocity material that is about 1.4 x 10 to the 10th cm from the white dwarf. The rest comes from high-velocity material that is about 10 to the 10th cm from the white dwarf and is moving toward it at about 600 km/s.
Discovery of two eclipsing X-ray binaries in M 51
NASA Astrophysics Data System (ADS)
Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng
2018-04-01
We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 hr) and eclipse fraction (22% ± 0.1%) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35M⊙). By combining the X-ray lightcurve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18, and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.
EC 10246-2707: an eclipsing subdwarf B + M dwarf binary
NASA Astrophysics Data System (ADS)
Barlow, B. N.; Kilkenny, D.; Drechsel, H.; Dunlap, B. H.; O'Donoghue, D.; Geier, S.; O'Steen, R. G.; Clemens, J. C.; LaCluyze, A. P.; Reichart, D. E.; Haislip, J. B.; Nysewander, M. C.; Ivarsen, K. M.
2013-03-01
We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary, EC 10246-2707, and present multicolour photometric and spectroscopic observations of this system. Similar to other HW Vir-type binaries, the light curve shows both primary and secondary eclipses, along with a strong reflection effect from the M dwarf; no intrinsic light contribution is detected from the cool companion. The orbital period is 0.118 507 9936 ± 0.000 000 0009 d, or about 3 h. Analysis of our time series spectroscopy reveals a velocity semi-amplitude of K1 = 71.6 ± 1.7 km s-1 for the sdB and best-fitting atmospheric parameters of Teff = 28 900 ± 500 K, log g = 5.64 ± 0.06 and log N(He)/N(H) = -2.5 ± 0.2. Although we cannot claim a unique solution from modelling the light curve, the best-fitting model has an sdB mass of 0.45 M⊙ and a cool companion mass of 0.12 M⊙. These results are roughly consistent with a canonical-mass sdB and M dwarf separated by a ˜ 0.84 R⊙. We find no evidence of pulsations in the light curve and limit the amplitude of rapid photometric oscillations to <0.08 per cent. Using 15 yr of eclipse timings, we construct an observed minus calculated (O - C) diagram but find no statistically significant period changes; we rule out |dot{P}| > 7.2 × 10^{-12}. If EC 10246-2707 evolves into a cataclysmic variable, its period should fall below the famous cataclysmic variable period gap.
Discovery of two eclipsing X-ray binaries in M 51
NASA Astrophysics Data System (ADS)
Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng
2018-07-01
We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039 erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 h) and eclipse fraction (22 ± 0.1 per cent) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35 M⊙). By combining the X-ray light-curve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18 and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.
Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS
NASA Astrophysics Data System (ADS)
Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team
2018-06-01
Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.
Tapir: A web interface for transit/eclipse observability
NASA Astrophysics Data System (ADS)
Jensen, Eric
2013-06-01
Tapir is a set of tools, written in Perl, that provides a web interface for showing the observability of periodic astronomical events, such as exoplanet transits or eclipsing binaries. The package provides tools for creating finding charts for each target and airmass plots for each event. The code can access target lists that are stored on-line in a Google spreadsheet or in a local text file.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Zhao; Gies, Douglas R.; Fuller, Jim, E-mail: guo@astro.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jfuller@caltech.edu
KIC 3230227 is a short period (P ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M {sub 1} = 1.84 ± 0.18 M {sub ⊙}, M {sub 2} = 1.73 ± 0.17 M {sub ⊙} and radii of R {sub 1} = 2.01 ± 0.09 R {sub ⊙}, R {sub 2} = 1.68 ± 0.08 R {sub ⊙} for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system.more » After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l = 2, m = −2 prograde modes.« less
V850 Cyg: An eclipsing binary with a giant γ Dor pulsator
NASA Astrophysics Data System (ADS)
Çakırlı, Ö.; Ibanoglu, C.; Sipahi, E.; Akan, M. C.
2017-04-01
We present new spectroscopic observations of the double-lined eclipsing binary V850 Cyg. The long-cadence photometric observations obtained by Kepler were analysed and combined with the analysis of radial velocities for deriving the absolute parameters of the components. Masses and radii were determined as Mp=1.601 ± 0.076 M⊙ and Rp=4.239 ± 0.076 R⊙, Ms=0.851 ± 0.053 M⊙ and Rs=5.054 ± 0.087 R⊙ for the components of V850 Cyg. We estimate an interstellar reddening of 0.28 ± 0.12 mag and a distance of 1040 ± 160 pc for the system. The measured rotational velocity of the secondary appears to lower than that of synchronize rotation. However its spectral lines are too weak to be measured the rotational velocity with reasonable accuracy. We have extracted the synthetic light curve from the observations and excluded the data within the eclipses for the frequency analysis. We obtained at least nine frequencies in the γ Dor regime. It seems that the primary component oscillates with a dominant period of about 1.152549 ± 0.000009 days. We also compare pulsational properties of the primary star of V850 Cyg with the γ Dor type pulsating components in other binaries.
On a possible additional component in an eclipsing binary system HS 2231 + 2441
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Romanyuk, Ya. O.; Shliahetskaya, Ya. O.
2016-05-01
Timing method based on the registration period of variations of a periodic process, associated with the star. The study of stellar eclipsing binary system for a long time allows a series of several transits, depending on the orbital period of the satellite smaller. We present a photometric study of system of the type HW Vir HS 2231 + 2441. Photometric data processing was performed using C-MuniWin Version 1.2.30 program. The accuracy of values for each observation point is in the range 0,003...0,009m for different nights. The calculated ephemeris determined from the light curve by fitting of arc of minimums to the nuclei of primary and secondary eclipses. The amplitude of the periodic changes of minimums moments that arise from the orbital motion of a close pair of stars around the barycenter of the triple system, is less than 0.0008 days (1.15 minutes). It was found that the periodic variation of the orbital period can be explained by the gravitational influence of a third companion on the central binary system with an orbital period of about 97±10d. Periodogram analysis of the observational data series indicate also on the periodicity with values of 48±5d and 195±15d, but with substantially less reliably
NASA Astrophysics Data System (ADS)
Windemuth, Diana; Herbst, William; Tingle, Evan; Fuechsl, Rachel; Kilgard, Roy; Pinette, Melanie; Templeton, Matthew; Henden, Arne
2013-05-01
The eclipsing binary θ1 Orionis B1, variable star designation BM Ori, is the faintest of the four well-known Trapezium stars at the heart of the Orion Nebula. The primary is a B3 star (~6 M ⊙) but the nature of the secondary (~2 M ⊙) has long been mysterious, since the duration and shape of primary eclipse are inappropriate for any sort of ordinary star. Here we report nearly continuous photometric observations obtained with the MOST satellite over ~4 cycles of the 6.47 d binary period. The light curve is of unprecedented quality, revealing a deep, symmetric primary eclipse as well as a clear reflection effect and secondary eclipse. In addition, there are other small disturbances, some of which repeat at the same phase over the four cycles monitored. The shape of the primary light curve has clearly evolved significantly over the past 40 years. While its overall duration and depth have remained roughly constant, the slopes of the descent and ascent phases are significantly shallower now than in the past and its distinctive flat-bottomed "pseudo-totality" is much less obvious or even absent in the most recent data. We further demonstrate that the primary eclipse was detected at X-ray wavelengths during the Chandra Orion Ultradeep Project (COUP) study. The light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on orbiting the B3 primary. The dramatic change in shape over four decades is modeled as an opacity variation in a tenuous outer envelope or disk of the secondary object. We presume that the secondary is an extremely young protostar at an earlier evolutionary phase than can be commonly observed elsewhere in the Galaxy and that the opacity variations observed are related to its digestion of some accreted matter over the last 50-100 years. Indeed, this object deserves continued observational and theoretical attention as the youngest known eclipsing binary system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windemuth, Diana; Herbst, William; Tingle, Evan
2013-05-01
The eclipsing binary {theta}{sup 1} Orionis B{sub 1}, variable star designation BM Ori, is the faintest of the four well-known Trapezium stars at the heart of the Orion Nebula. The primary is a B3 star ({approx}6 M{sub Sun }) but the nature of the secondary ({approx}2 M{sub Sun }) has long been mysterious, since the duration and shape of primary eclipse are inappropriate for any sort of ordinary star. Here we report nearly continuous photometric observations obtained with the MOST satellite over {approx}4 cycles of the 6.47 d binary period. The light curve is of unprecedented quality, revealing a deep,more » symmetric primary eclipse as well as a clear reflection effect and secondary eclipse. In addition, there are other small disturbances, some of which repeat at the same phase over the four cycles monitored. The shape of the primary light curve has clearly evolved significantly over the past 40 years. While its overall duration and depth have remained roughly constant, the slopes of the descent and ascent phases are significantly shallower now than in the past and its distinctive flat-bottomed ''pseudo-totality'' is much less obvious or even absent in the most recent data. We further demonstrate that the primary eclipse was detected at X-ray wavelengths during the Chandra Orion Ultradeep Project (COUP) study. The light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on orbiting the B3 primary. The dramatic change in shape over four decades is modeled as an opacity variation in a tenuous outer envelope or disk of the secondary object. We presume that the secondary is an extremely young protostar at an earlier evolutionary phase than can be commonly observed elsewhere in the Galaxy and that the opacity variations observed are related to its digestion of some accreted matter over the last 50-100 years. Indeed, this object deserves continued observational and theoretical attention as the youngest known eclipsing binary system.« less
NASA Astrophysics Data System (ADS)
Samec, Ronald G.; Caton, Daniel B.; Faulkner, Danny R.
2018-06-01
CCD, VRI light curves of V573 Peg were taken in 26,27 September and 2, 4 and 6 October, 2017 at the Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University by D. Caton. V573 Peg was discovered by the SAVS survey which classified it as a V= 0.51 amplitude, EW variable. They included a rough spectrum identifying the binary was about a type G, although the period would indicate it is an F-type contact binary. Five times of minimum light were calculated, two primary eclipses and three secondary, from our present observations:HJD I = 2458023.6420±0.0012, 2458028.6522±0.0021,HJD II = 2458022.5991±0.0011, 2458023.8510±0.0010 and 2458028.8608±0.0005,The following linear and quadratic ephemerides were determined from all available times of minimum light.JD Hel MinI = 2456876.49437±0.00078d + 0.41745021±0. 00000017 × E, -JD Hel MinI = 2456876.49580±0.00023d + 0. 417448601±0.000000083× E - 0.000000000274±0.000000000012 X E2A 14-year period study (24 times of minimum light) revealed that the orbital period decreasing with a high level of confidence, possibly due to magnetic braking. The mass ratio is found to be somewhat extreme, M2/M1=0.2629±0.0006.Its Roche Lobe fill-out is 25%. The solution had no need of spots. The temperature difference of the components is about ~130 K, with the secondary as the hotter star, so it is a W-type W UMa Binary. The inclination is 80.4±0.1° . The secondary eclipse shows a time of constant light with an eclipse duration of 24 minutes. More details of our results will be given at the meeting.
NASA Astrophysics Data System (ADS)
Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.
2017-09-01
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ˜34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Liu, L.; Zhu, L.-Y.; He, J.-J.; Yang, Y.-G.; Bernasconi, L.
2011-05-01
The newly discovered short-period close binary star, XY LMi, has been monitored photometrically since 2006. Its light curves are typical EW-type light curves and show complete eclipses with durations of about 80 minutes. Photometric solutions were determined through an analysis of the complete B, V, R, and I light curves using the 2003 version of the Wilson-Devinney code. XY LMi is a high fill-out, extreme mass ratio overcontact binary system with a mass ratio of q = 0.148 and a fill-out factor of f = 74.1%, suggesting that it is in the late evolutionary stage of late-type tidal-locked binary stars. As observed in other overcontact binary stars, evidence for the presence of two dark spots on both components is given. Based on our 19 epochs of eclipse times, we found that the orbital period of the overcontact binary is decreasing continuously at a rate of dP/dt = -1.67 × 10-7 days yr-1, which may be caused by mass transfer from the primary to the secondary and/or angular momentum loss via magnetic stellar wind. The decrease of the orbital period may result in the increase of the fill-out, and finally, it will evolve into a single rapid-rotation star when the fluid surface reaches the outer critical Roche lobe.
Ingress observations of the 1980 eclipse of the symbiotic star CI Cyngni
NASA Technical Reports Server (NTRS)
Stencel, R. E.; Michalitsianos, A. G.; Kafatos, M.; Boyarchuk, A. A.
1981-01-01
One of the major results from the IUE may prove to be the knowledge gained by studies of the ultraviolet spectra of symbiotic stars. Symbiotics combine spectral features of a cool M giant like photosphere with strong high excitation emission lines of nebular origin, superposed. The UV spectra are dominated by intense permitted and semiforbidden emission lines and weak continua indicative of hot compact objects and accretion disks. Two symbiotics, AR Pav and CI Cyg are thought to be eclipsing binaries and IUE observations during the 1980 eclipse of CI Cygni are discussed.
RR Lyrae stars in eclipsing systems -- historical candidates
NASA Astrophysics Data System (ADS)
Liška, J.; Skarka, M.; Hájková, P.; Auer, R. F.
2016-03-01
Discovery of binary systems among RR Lyrae stars belongs to challenges of present astronomy. So far, none of classical RR Lyrae stars was clearly confirmed, that it is a part of an eclipsing system. From this reason we studied two RR Lyrae stars, VX Her and RW Ari, in which changes assigned to eclipses were detected in sixties and seventies of the 20th century. In this paper our preliminary results based on analysis of new photometric measurements are presented as well as the results from the detailed analysis of original measurements. A new possible eclipsing system, RZ Cet was identified in the archive data. Our analysis rather indicates errors in measurements and reductions of the old data than real changes for all three stars.
NASA Astrophysics Data System (ADS)
Chamberlain, Heather; Samec, Ronald G.; Caton, Daniel Bruce; Van Hamme, Walter
2018-01-01
PY Aqr (GSC 05191-00853) is a solar Type (T ~ 5750K) eclipsing binary. It was observed in July to October, 2017 at Cerro Tololo in remote mode with the 0.6-m SARA South reflector. Two times of minimum light were calculated from our present observations, a primary and a secondary eclipse:HJD Min I = 2457951.7762±0.0006 HJD Min II = 2458019.5295±00.0003. Both weighted as 1.0.In addition, four timings were determined from online data given in IBVS 5600 and five observations at minima were determined from archived All Sky Automated Survey Data:HJD Min I = 2452908.3165, 2452912.33612 HJD Min II = 2452877.5621, 2452913.34465. All weighted as 0.5.ASAS Observations at minima: 2452094.688, 2453478.882, 2453266.576, 2452093.685 and 54729.600. Each weighted as 0.10The following linear and quadratic ephemerides were determined from all available times of minimum light:JD Hel Min I=2452951.7443±0.0008d + 0.402093441±0.000000099 X E {1} JD Hel Min I=2452951.7439±0.0007d + 0.4020912±0.0000007 X E +0.00000000018 ± 0.00000000006 X E2 {2}A BVRI Bessell filtered simultaneous Wilson-Devinney Program (W-D) solution reveals that the system has a mass ratio of ~0.34 and a component temperature difference of only ~40 K. One low luminosity (Tfact ~ 0.94, ~66 degree radius) large cool region of spots was iterated on the primary component in the WD Synthetic Light Curve computations. It appears in the Southern Hemisphere (colatitude 155 degrees). The Roche Lobe fill-out of the binary is ~17%. The inclination is ~86 degrees. An eclipse duration of ~10 minutes was determined for the primary eclipse and the light curve solution. Additional and more detailed information is given in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, Jeroen, E-mail: jeroen@space.mit.edu
2012-12-01
Relativistic Lense-Thirring precession of a tilted inner accretion disk around a compact object has been proposed as a mechanism for low-frequency ({approx}0.01-70 Hz) quasi-periodic oscillations (QPOs) in the light curves of X-ray binaries. A substantial misalignment angle ({approx}15 Degree-Sign -20 Degree-Sign ) between the inner-disk rotation axis and the compact-object spin axis is required for the effects of this precession to produce observable modulations in the X-ray light curve. A consequence of this misalignment is that in high-inclination X-ray binaries the precessing inner disk will quasi-periodically intercept our line of sight to the compact object. In the case of neutron-starmore » systems, this should have a significant observational effect, since a large fraction of the accretion energy is released on or near the neutron-star surface. In this Letter, I suggest that this specific effect of Lense-Thirring precession may already have been observed as {approx}1 Hz QPOs in several dipping/eclipsing neutron-star X-ray binaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faigler, S.; Mazeh, T.; Tal-Or, L.
We present seven newly discovered non-eclipsing short-period binary systems with low-mass companions, identified by the recently introduced BEER algorithm, applied to the publicly available 138-day photometric light curves obtained by the Kepler mission. The detection is based on the beaming effect (sometimes called Doppler boosting), which increases (decreases) the brightness of any light source approaching (receding from) the observer, enabling a prediction of the stellar Doppler radial-velocity (RV) modulation from its precise photometry. The BEER algorithm identifies the BEaming periodic modulation, with a combination of the well-known Ellipsoidal and Reflection/heating periodic effects, induced by short-period companions. The seven detections weremore » confirmed by spectroscopic RV follow-up observations, indicating minimum secondary masses in the range 0.07-0.4 M{sub Sun }. The binaries discovered establish for the first time the feasibility of the BEER algorithm as a new detection method for short-period non-eclipsing binaries, with the potential to detect in the near future non-transiting brown-dwarf secondaries, or even massive planets.« less
An Atlas of Far-ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications
NASA Astrophysics Data System (ADS)
Hagen Bauer, Wendy; Bennett, Philip D.
2014-04-01
The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe III and Cr III) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe II and O I) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ~80 km s-1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.
A search for tight hierarchical triple systems amongst the eclipsing binaries in the CoRoT fields
NASA Astrophysics Data System (ADS)
Hajdu, T.; Borkovits, T.; Forgács-Dajka, E.; Sztakovics, J.; Marschalkó, G.; Benkő, J. M.; Klagyivik, P.; Sallai, M. J.
2017-10-01
We report a comprehensive search for hierarchical triple stellar system candidates amongst eclipsing binaries (EBs) observed by the CoRoT spacecraft. We calculate and check eclipse timing variation (ETV) diagrams for almost 1500 EBs in an automated manner. We identify five relatively short period Algol systems for which our combined light-curve and complex ETV analyses (including both the light-travel time effect and short-term dynamical third-body perturbations) resulted in consistent third-body solutions. The computed periods of the outer bodies are between 82 and 272 d (with an alternative solution of 831 d for one of the targets). We find that the inner and outer orbits are near coplanar in all but one case. The dynamical masses of the outer subsystems determined from the ETV analyses are consistent with both the results of our light-curve analyses and the spectroscopic information available in the literature. One of our candidate systems exhibits outer eclipsing events as well, the locations of which are in good agreement with the ETV solution. We also report another certain triply eclipsing triple system that, however, is lacking a reliable ETV solution due to the very short time range of the data, and four new blended systems (composite light curves of two EBs each), where we cannot decide whether the components are gravitationally bounded or not. Amongst these blended systems, we identify the longest period and highest eccentricity EB in the entire CoRoT sample.
Hubble Space Telescope Parallel Observations Supporting the Kepler Mission
NASA Astrophysics Data System (ADS)
Caldwell, J.; Borucki, W.
1999-09-01
Kepler will detect Earth-like planets by monitoring 100,000 stars over four years for planetary transits. The required photometric precision is one part in 100.000. It is expected that if such ``Earths" are common, about 200 will be detected. In order to achieve the necessary precision, Kepler will be intentionally unfocussed, spreading the light of a single star over an area of 25 pixels. This will minimize the effect of space-craft jitter on photon counting. However, it will also allow the possibility of confusion with background objects which may be in the line of sight to a Kepler target. The greatest concern is that there may be a distant eclipsing binary star which could introduce a photometric signature that is similar to a planetary transit. For the brightest stars in Kepler's intended magnitude range, which is 9 to 14 mv, this will not be serious, because the profiles are different: eclipses have a ``V" shape, transits are flat-bottomed, and Kepler will differentiate the two. However, in this magnitude range, the number of stars per magnitude doubles at each fainter magnitude. More than half of Kepler's discoveries will be in the magnitude which is the faintest in which the precision of the photometry will be able to reveal a transit. That is, most of the discoveries will be low signal to noise events, in which the reality of a small decrease in the light from the region of the target star is certain, but the details of the decrease are not. Hubble Space Telescope images indicate there will be, on average, 0.5 background objects in the magnitude range that could be a problem for Kepler in the 25 pixel blur region of Kepler's optics. Approximately half of the stars will be binaries. The probability that a binary will be eclipsing is the same as that a planetary orbit will be transitting. In order to reduce the chance of a misidentification, various strategies can be used. Rather than integrating the signal over the 25 pixels and returning only the sum, the entire pixel set can be returned for some or all of the target stars. The spectral bandpass can be filtered to maximize contrast between target stars and background ones. Dedicated Hubble imaging could eliminate all uncertainty for over 90 per cent of Kepler's target stars in one HST orbit per star. Further, moving to high galactic latitude would reduce the chance of confusion faster than the decrease in the number of targets stars. Our and other studies indicate that at high galactic latitudes, a large fraction of the background objects are galaxies rather than stars. Galaxies cannot produce a photometric event which mimics a planetary transit. Finally, our studies have shown that a large fraction of the stars in the magnitude range of concern to Kepler may in fact be cool white dwarfs, from which the probability of a confusing event is small. Nevertheless, we acknowledge that a few per cent of the 200 Earths that Kepler is expected to find may be erroneous, and we urge travellers to confirm their hotel reservations directly before setting out to visit one of them.
NASA Technical Reports Server (NTRS)
Clark, George W.
1994-01-01
The x-ray phenomena of the binary system SMC X-1/Sk 160, observed with the Ginga and ROSAT x-ray observatories, are compared with computed phenomena derived from a three dimensional hydrodynamical model of the stellar wind perturbed by x-ray heating and ionization which is described in the accompanying paper. In the model the BOI primary star has a line-driven stellar wind in the region of the x-ray shadow and a thermal wind in the region heated by x-rays. We find general agreement between the observed and predicted x-ray spectra throughout the binary orbit cycle, including the extended, variable, and asymmetric eclipse transitions and the period of deep eclipse.
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2011-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2012-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2012-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2011-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2013-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
White dwarf-main sequence binaries from LAMOST: the DR5 catalogue
NASA Astrophysics Data System (ADS)
Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.
2018-07-01
We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large sky Area Multi-Object fibre Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early-type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light-curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.
White dwarf-main sequence binaries from LAMOST: the DR5 catalogue
NASA Astrophysics Data System (ADS)
Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.
2018-03-01
We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically-selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.
Monitoring HD 148703 during upcoming eclipses
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2017-06-01
Dr. Milena Ratajczak (University of Wrocław) has requested AAVSO observers' assistance in monitoring the very bright (V = 4.23) and very unusual eclipsing binary HD 148703 (HR 6143, N Sco) during its infrequent primary and secondary eclipses scheduled for 2017 June 11 and June 14, respectively. Dr. Ratajczak writes: "[HD 148703] N Sco is a B-type detached eclipsing binary, which turned out to be an exceptionally interesting object to study when we realised its orbital period is 223 days and time between eclipses is only 3.5 days. Such configuration makes it an extremely eccentric system, probably the most eccentric from any objects of that class ever studied...Since the object is very bright, it's difficult to use professional photometric telescopes due to saturation issues. That is why we kindly invite amateur astronomers to join the campaign. Data taken during times of eclipses (photometry) and time between eclipses (radial velocities from spectroscopy) which occur next week are crucial to cover in order to determine orbital and stellar parameters of system's components. Data taken over that time will be of very high value for us." The next primary eclipse time of minimum is on 2017 June 11 (UT 00:41:45), and the secondary on June 14 (UT 09:17:34). Each eclipse lasts about 20 hours. The amplitude of the primary eclipse is 0.15 magnitude, and the secondary 0.35 mag. PEP V and DSLR V photometry is requested. (CCD V is welcome if saturation can be avoided.) Beginning immediately, one to a few snapshots each night are requested to establish an out-of-eclipse baseline for each observer; they should continue for a few nights after the secondary eclipse has occurred.Time series photometry is requested beginning 12 hours before each time of minimum and continuing until 12 hours after. Precision to 0.01 mag or better per single observation is needed. Exposures should be as long as possible without saturating; don't make very short exposures simply for the purpose of gathering more data points. B or Ic data would also be useful; B is preferred to Ic. If imaging in more than one filter, please make five V observations for each B or Ic.Visual observations are also welcome. For spectroscopy now through June 20, resolution of at least a few thousands is needed. Coordinates: RA = 16 31 22.93 Dec = -34 42 15.7 (2000.0). Finder charts may be created and data from the AAVSO International Database may be viewed, plotted, or downloaded (www.aavso.org).
GLOBAL ANALYSIS OF KOI-977: SPECTROSCOPY, ASTEROSEISMOLOGY, AND PHASE-CURVE ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Teruyuki; Sato, Bun'ei; Kobayashi, Atsushi
2015-01-20
We present a global analysis of KOI-977, one of the planet host candidates detected by Kepler. The Kepler Input Catalog (KIC) reports that KOI-977 is a red giant, for which few close-in planets have been discovered. Our global analysis involves spectroscopic and asteroseismic determinations of stellar parameters (e.g., mass and radius) and radial velocity (RV) measurements. Our analyses reveal that KOI-977 is indeed a red giant, possibly in the red clump, but its estimated radius (≳ 20 R {sub ☉} = 0.093 AU) is much larger than KOI-977.01's orbital distance (∼0.027 AU) estimated from its period (P {sub orb} ∼more » 1.35 days) and host star's mass. RV measurements show a small variation, which also contradicts the amplitude of ellipsoidal variations seen in the light curve folded with KOI-977.01's period. Therefore, we conclude that KOI-977.01 is a false positive, meaning that the red giant, for which we measured the radius and RVs, is different from the object that produces the transit-like signal (i.e., an eclipsing binary). On the basis of this assumption, we also perform a light curve analysis including the modeling of transits/eclipses and phase-curve variations, adopting various values for the dilution factor D, which is defined as the flux ratio between the red giant and eclipsing binary. Fitting the whole folded light curve as well as individual transits in the short cadence data simultaneously, we find that the estimated mass and radius ratios of the eclipsing binary are consistent with those of a solar-type star and a late-type star (e.g., an M dwarf) for D ≳ 20.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhanjoy; Stassun, Keivan G., E-mail: s.mohanty@imperial.ac.uk, E-mail: keivan.stassun@vanderbilt.edu
2012-10-10
We present high-resolution optical spectra of the young brown dwarf eclipsing binary 2M0535-05, obtained during eclipse of the higher-mass (primary) brown dwarf. Combined with our previous spectrum of the primary alone (Paper I), the new observations yield the spectrum of the secondary alone. We investigate, through a differential analysis of the two binary components, whether cool surface spots are responsible for suppressing the temperature of the primary. In Paper I, we found a significant discrepancy between the empirical surface gravity of the primary and that inferred via fine analysis of its spectrum. Here we find precisely the same discrepancy inmore » surface gravity, both qualitatively and quantitatively. While this may again be ascribed to either cool spots or model opacity errors, it implies that cool spots cannot be responsible for preferentially lowering the temperature of the primary: if they were, spot effects on the primary spectrum should be preferentially larger, and they are not. The T{sub eff}'s we infer for the primary and secondary, from the TiO-{epsilon} bands alone, show the same reversal, in the same ratio, as is empirically observed, bolstering the validity of our analysis. In turn, this implies that if suppression of convection by magnetic fields on the primary is the fundamental cause of the T{sub eff} reversal, then it cannot be a local suppression yielding spots mainly on the primary (though both components may be equally spotted), but a global suppression in the interior of the primary. We briefly discuss current theories of how this might work.« less
V773 Cas, QS Aql, AND BR Ind: ECLIPSING BINARIES AS PARTS OF MULTIPLE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zasche, P.; Juryšek, J.; Nemravová, J.
2017-01-01
Eclipsing binaries remain crucial objects for our understanding of the universe. In particular, those that are components of multiple systems can help us solve the problem of the formation of these systems. Analysis of the radial velocities together with the light curve produced for the first time precise physical parameters of the components of the multiple systems V773 Cas, QS Aql, and BR Ind. Their visual orbits were also analyzed, which resulted in slightly improved orbital elements. What is typical for all these systems is that their most dominant source is the third distant component. The system V773 Cas consists of two similarmore » G1-2V stars revolving in a circular orbit and a more distant component of the A3V type. Additionally, the improved value of parallax was calculated to be 17.6 mas. Analysis of QS Aql resulted in the following: the inner eclipsing pair is composed of B6V and F1V stars, and the third component is of about the B6 spectral type. The outer orbit has high eccentricity of about 0.95, and observations near its upcoming periastron passage between the years 2038 and 2040 are of high importance. Also, the parallax of the system was derived to be about 2.89 mas, moving the star much closer to the Sun than originally assumed. The system BR Ind was found to be a quadruple star consisting of two eclipsing K dwarfs orbiting each other with a period of 1.786 days; the distant component is a single-lined spectroscopic binary with an orbital period of about 6 days. Both pairs are moving around each other on their 148 year orbit.« less
THE VARYING LIGHT CURVE AND TIMINGS OF THE ULTRASHORT-PERIOD CONTACT BINARY KIC 9532219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim
2016-03-20
KIC 9532219 is a W UMa-type eclipsing binary with an orbital period of 0.1981549 days that is below the short-period limit (∼0.22 days) of the period distribution for contact binaries. The Kepler light curve of the system exhibits striking changes in both eclipse depths and light maxima. Applying third-body and spot effects, the light-curve synthesis indicates that the eclipsing pair is currently in a marginal contact stage with a mass ratio of q = 1.20, an orbital inclination of i = 66.°0, a temperature difference of T{sub 1}–T{sub 2} = 172 K, and a third light of l{sub 3} = 75.9%.more » To understand the light variations with time, we divided up the light curve into 312 segments and analyzed them separately. The results reveal that variation of eclipse depth is primarily caused by changing amounts of contamination due to the nearby star KIC 9532228 between the Kepler Quarters and that the variable O’Connell effect originates from the starspot activity on the less massive primary component. Based on our light-curve timings, a period study of KIC 9532219 indicates that the orbital period has varied as a combination of a downward parabola and a light-travel-time (LTT) effect due to a third body, which has a period of 1196 days and a minimum mass of 0.0892 M{sub ⊙} in an orbit of eccentricity 0.150. The parabolic variation could be a small part of a second LTT orbit due to a fourth component in a wider orbit, instead of either mass transfer or angular momentum loss.« less
The X-ray Spectral Evolution of eta Carinae as Seen by ASCA
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Fredericks, A. C.; Petre, R.; Swank, J. H.; Drake, S. A.; White, Nicholas E. (Technical Monitor)
2000-01-01
Using data from the ASCA X-ray observatory, we examine the variations in the X-ray spectrum of the supermassive star nu Carinae with an unprecedented combination of spatial and spectral resolution. We include data taken during the recent X-ray eclipse in 1997-1998, after recovery from the eclipse, and during and after an X-ray flare. We show that the eclipse variation in the X-ray spectrum is apparently confined to a decrease in the emission measure of the source. We compare our results with a simple colliding wind binary model and find that the observed spectral variations are only consistent, with the binary model if there is significant high-temperature emission far from the star and/or a substantial change in the temperature distribution of the hot plasma. If contamination in the 2-10 keV band is important, the observed eclipse spectrum requires an absorbing column in excess of 10(exp 24)/sq cm for consistency with the binary model, which may indicate an increase in the first derivative of M from nu Carinae near the time of periastron passage. The flare spectra are consistent with the variability seen in nearly simultaneous RXTE observations and thus confirm that nu Carinae itself is the source of the flare emission. The variation in the spectrum during the flare seems confined to a change in the source emission measure. By comparing 2 observations obtained at the same phase in different X-ray cycles, we find that the current, X-ray brightness of the source is slightly higher than the brightness of the source during the last cycle perhaps indicative of a long-term increase in the first derivative of M, not associated with the X-ray cycle.
Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse
NASA Technical Reports Server (NTRS)
Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.
2002-01-01
We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.
LUT observations of the mass-transferring binary AI Dra
NASA Astrophysics Data System (ADS)
Liao, Wenping; Qian, Shengbang; Li, Linjia; Zhou, Xiao; Zhao, Ergang; Liu, Nianping
2016-06-01
Complete UV band light curve of the eclipsing binary AI Dra was observed with the Lunar-based Ultraviolet Telescope (LUT) in October 2014. It is very useful to adopt this continuous and uninterrupted light curve to determine physical and orbital parameters of the binary system. Photometric solutions of the spot model are obtained by using the W-D (Wilson and Devinney) method. It is confirmed that AI Dra is a semi-detached binary with secondary component filling its critical Roche lobe, which indicates that a mass transfer from the secondary component to the primary one should happen. Orbital period analysis based on all available eclipse times suggests a secular period increase and two cyclic variations. The secular period increase was interpreted by mass transfer from the secondary component to the primary one at a rate of 4.12 ×10^{-8}M_{⊙}/yr, which is in agreement with the photometric solutions. Two cyclic oscillations were due to light travel-time effect (LTTE) via the presence of two cool stellar companions in a near 2:1 mean-motion resonance. Both photometric solutions and orbital period analysis confirm that AI Dra is a mass-transferring binary, the massive primary is filling 69 % of its critical Roche lobe. After the primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration.
MUCHFUSS - Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS
NASA Astrophysics Data System (ADS)
Geier, S.; Schaffenroth, V.; Hirsch, H.; Tillich, A.; Heber, U.; Maxted, P. F. L.; Østensen, R. H.; Barlow, B. N.; O'Toole, S. J.; Kupfer, T.; Marsh, T.; Gänsicke, B.; Napiwotzki, R.; Cordes, O.; Müller, S.; Classen, L.; Ziegerer, E.; Drechsel, H.
2012-06-01
The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions (white dwarfs with masses M>1.0 M⊙, neutron stars or black holes). The existence of such systems is predicted by binary evolution calculations and some candidate systems have been found. We identified ≃1100 hot subdwarf stars from the Sloan Digital Sky Survey (SDSS). Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. About 70 radial velocity variable subdwarfs have been selected as good candidates for follow-up time resolved spectroscopy to derive orbital parameters and photometric follow-up to search for features like eclipses in the light curves. Up to now we found nine close binary sdBs with short orbital periods ranging from ≃0.07 d to 1.5 d. Two of them are eclipsing binaries with companions that are most likely of substellar nature.
Orbital variability in the eclipsing pulsar binary PSR B1957+20
NASA Technical Reports Server (NTRS)
Arzoumanian, Z.; Fruchter, A. S.; Taylor, J. H.
1994-01-01
We have conducted timing observations of the eclipsing millisecond binary pulsar PSR B1957+20, extending the span of data on this pulsar to more than five years. During this time the orbital period of the system has varied by roughly Delta P(sub b)/P(sub b) = 1.6 x 10(exp -7), changing quardratically with time and displaying with time and displaying an orbital period second derivative of P(sub b) = (1.43 +/- 0.08) x 10(exp -18)/sec. The previous measurement of a large negative orbital period derivative reflected only the short-term behavior of the system during the early observations; the orbital period derivative is now positive. If, as we suspect, the PSR B1957+20 system is undergoing quasi-cyclic orbital period variations similar to those found in other close binaries such as Algol and RS CVn, then the 0.025 solar mass companion to PSR B1957+20 is most likely non-degenerate, convective, and magnetically active.
HD 47755, a new eclipsing binary
NASA Technical Reports Server (NTRS)
Koch, R. H.; Bradstreet, D. H.; Hrivnak, B. J.; Pfeiffer, R. J.; Perry, P. M.
1986-01-01
The IUE spectra of the close binary star HD 47755 have been examined in order to determine its geometry, chemical composition, and light curve. UBV fluxes in the spectra, when dereddened for E(B-V) = 0.09 yield an effective temperature of 16,500 K. The ratio of the mean radii of the stars is found to agree well with an old blueband spectrophotometric value. Eclipses in the binary have been observed and a complex green light curve is derived. It is suggested that the wind from at least one of the components of HD 47755 is the source of the complexity in the light curve. The geometry of the HD 47755 is compared to that of V 641 Mon, A definite cluster member of NGC 2264. The interstellar line spectrum is found to be similar to that of V 641 Mon and the column densities for a few interstellar ions are given in a table. Evaluation of the nonastrometric evidence indicates that HD 47755 is also a member of NGC 2264.
Orbital period study of the Algol-type eclipsing binary system TW Draconis
NASA Astrophysics Data System (ADS)
Qian, S. B.; Boonrucksar, S.
2002-10-01
The century-long times of light minimum of the Algol-type eclipsing binary star, TW Dra (BD +64°1077, Sp A5V+K2III), are investigated by considering a new pattern of period change. Two sudden period increases and two successive period decreases are discovered to superimpose on a rapid secular increase (d P/d t=+4.43×10 -6 days/year). The secular increase may be caused by a dynamical mass transfer from the secondary to the primary component (d m/d t=6.81×10 -7 M ⊙/year) that is in agreement with the semi-detached configuration of the system and with the existence of a hot spot and a gaseous stream in the binary system. The irregular period jumps superimposed on the secular increase can be explained by the structure variation of the K2-type giant via instabilities of the outer convective layer or via magnetic activity cycles.
CHROMOSPHERIC EMISSION OF PLANET CANDIDATE HOST STARS: A WAY TO IDENTIFY FALSE POSITIVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karoff, Christoffer; Knudsen, Mads Faurschou; Albrecht, Simon
2016-10-10
It has been hypothesized that the presence of closely orbiting giant planets is associated with enhanced chromospheric emission of their host stars. The main cause for such a relation would likely be enhanced dynamo action induced by the planet. We present measurements of chromospheric emission in 234 planet candidate systems from the Kepler mission. This ensemble includes 37 systems with giant-planet candidates, which show a clear emission enhancement. The enhancement, however, disappears when systems that are also identified as eclipsing binary candidates are removed from the ensemble. This suggests that a large fraction of the giant-planet candidate systems with chromosphericmore » emission stronger than the Sun are not giant-planet systems, but false positives. Such false-positive systems could be tidally interacting binaries with strong chromospheric emission. This hypothesis is supported by an analysis of 188 eclipsing binary candidates that show increasing chromospheric emission as function of decreasing orbital period.« less
BV Observations of the Eclipsing Binary XZ Andromedae at the EKU Observatory (Abstract)
NASA Astrophysics Data System (ADS)
Ciocca, M.
2018-06-01
(Abstract only) XZ Andromedae is an Algol-type eclipsing binary. It has been the subject of many observing campaigns, all aiming at determining the mechanisms responsible for its period variation. Results have been inconsistent and the period changes did not seem to have a common explanation between authors. The latest of these observations (Y.-G. Yang, New Astronomy, 25, 2013, 109) concluded that a third companion may be present and that mass transfer from the secondary to the primary companion may be occurring. We performed measurements in the Bessel band passes B and V, measured several times of minimum and developed a model, using binary maker 3, that matches well the observations and includes mass transfer by adding a hot spot on the primary (the cool, more evolved companion) and a "cold" spot on the secondary (hotter, but smaller companion). The data were collected at the EKU observatory with a Celestron C14 telescope and a SBIG STL-6303 camera.
Surface activity and oscillation amplitudes of red giants in eclipsing binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; Jackiewicz, J.; Appourchaux, T.
2014-04-10
Among the 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16%-24% of the semi-major axis, andmore » where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.« less
Absolute dimensions and masses of eclipsing binaries. V. IQ Persei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, C.H.; Frueh, M.L.
1985-08-01
New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, andmore » apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references.« less
Coevality in Young Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Simon, M.; Toraskar, Jayashree
2017-06-01
The ages of the components in very short period pre-main-sequence (PMS) binaries are essential to an understanding of their formation. We considered a sample of seven PMS eclipsing binaries (EBs) with ages 1-6.3 MY and component masses 0.2-1.4 {M}⊙ . The very high precision with which their masses and radii have been measured and the capability provided by the Modules for Experiments in Stellar Astrophysics to calculate their evolutionary tracks at exactly the measured masses allows the determination of age differences of the components independent of their luminosities and effective temperatures. We found that the components of five EBs, ASAS J052821+0338.5, Parenago 1802, JW 380, CoRoT 223992193, and UScoCTIO 5, formed within 0.3 MY of each other. The parameters for the components of V1174 Ori imply an implausible large age difference of 2.7 MY and should be reconsidered. The seventh EB in our sample, RX J0529.4+0041 fell outside the applicability of our analysis.
Epsilon Aurigae. [eclipsing binary system
NASA Technical Reports Server (NTRS)
Chapman, R. D.
1985-01-01
In April 1984, fourth contact ended the two year long eclipse of Epsilon Aurigae. An astrometric study of the study of the system was carried out by Van de kamp (1978) leading to the conclusion that the orbit is seen very close to edge on. The eclipse was monitored by a number of groups from the ground and from spacecraft such as the IUE. Ultraviolet observations of the system from IUE have thrown new light on the nature of the system that led to the conclusion that the secondary object is probably a cold, dusty accretion disk surrounding a star that is completely hidden inside the disk.
NASA Astrophysics Data System (ADS)
Bright, Jane; Torres, Guillermo
2018-01-01
We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.
APSIDAL MOTION AND A LIGHT CURVE SOLUTION FOR 13 LMC ECCENTRIC ECLIPSING BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zasche, P.; Wolf, M.; Vraštil, J.
2015-12-15
New CCD observations for 13 eccentric eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54 m telescope located at the La Silla Observatory in Chile. These systems were observed for their times of minimum and 56 new minima were obtained. These are needed for accurate determination of the apsidal motion. Besides that, in total 436 times of minimum were derived from the photometric databases OGLE and MACHO. The O – C diagrams of minimum timings for these B-type binaries were analyzed and the parameters of the apsidal motion were computed. The light curves of thesemore » systems were fitted using the program PHOEBE, giving the light curve parameters. We derived for the first time relatively short periods of the apsidal motion ranging from 21 to 107 years. The system OGLE-LMC-ECL-07902 was also analyzed using the spectra and radial velocities, resulting in masses of 6.8 and 4.4 M{sub ⊙} for the eclipsing components. For one system (OGLE-LMC-ECL-20112), the third-body hypothesis was also used to describe the residuals after subtraction of the apsidal motion, resulting in a period of about 22 years. For several systems an additional third light was also detected, which makes these systems suspect for triplicity.« less
NASA Astrophysics Data System (ADS)
Zinnecker, Hans
We review the multiplicity of massive stars by compiling the abstracts of the most relevant papers in the field. We start by discussing the massive stars in the Orion Trapezium Cluster and in other Galactic young clusters and OB associations, and end with the R136 cluster in the LMC. The multiplicity of field O-stars and runaway OB stars is also reviewed. The results of both visual and spectroscopic surveys are presented, as well as data for eclipsing systems. Among the latter, we find the most massive known binary system WR20a, with two ~,80M_⊙ components in a 3 day orbit. Some 80% of the wide visual binaries in stellar associations are in fact hierarchical triple systems, where typically the more massive of the binary components is itself a spectroscopic or even eclipsing binary pair. The multiplicity (number of companions) of massive star primaries is significantly higher than for low-mass solar-type primaries or for young low-mass T Tauri stars. There is also a striking preponderance of very close nearly equal mass binary systems (the origin of which has recently been explained in an accretion scenario). Finally, we offer a new idea as to the origin of massive Trapezium systems, frequently found in the centers of dense young clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geier, S.; Schaffenroth, V.; Drechsel, H.
Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here, we report the discovery of an HW Vir system in the course ofmore » the MUCHFUSS project. A most likely substellar object ({approx_equal}0.068 M{sub sun}) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelope, but also triggered its ejection and enabled the sdB star to form. The system provides evidence that brown dwarfs may indeed be able to significantly affect late stellar evolution.« less
Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.
2006-01-01
We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.
NASA Astrophysics Data System (ADS)
Samec, Ronald George; Koenke, Sam S.; Faulkner, Danny R.
2015-08-01
A new classification of eclipsing binary has emerged, Pre Contact WUMa Binaries (PCWB’s, Samec et al. 2012). These solar-type systems are usually detached or semidetached with one or both components under filling their critical Roche lobes. They usually have EA or EB-type light curves (unequal eclipse depths, indicating components with substantially different temperatures). The accepted scenario for these W UMa binaries is that they are undergoing steady but slow angular momentum losses due to magnetic braking as stellar winds blow radially away on stiff bipolar field lines. These binaries are believed to come into stable contact and eventually coalesce into blue straggler type, single, fast rotating A-type stars (Guinan and Bradstreet,1988). High precision 2012 and 2009 light curves are compared for the very short period (~0.43d) Precontact W UMa Binary (PCWB), V1001 Cassiopeia. This is the shortest period PCWB found so far. Its short period, similar to the majority of W UMa’s, in contrast to its distinct Algol-type light curve, make it a very rare and interesting system. Our solutions of light curves separated by some three years give approximately the same physical parameters. However the spots radically change, in temperature, area and position causing a distinctive variation in the shape of the light curves. We conclude that spots are very active on this solar type dwarf system and that it may mimic its larger cousins, the RS CVn binaries.
Short apsidal period of three eccentric eclipsing binaries discovered in the Large Magellanic Cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Kyeongsoo; Lee, Chung-Uk; Kim, Seung-Lee
2014-06-01
We present new elements of apsidal motion in three eccentric eclipsing binaries located in the Large Magellanic Cloud. The apsidal motions of the systems were analyzed using both light curves and eclipse timings. The OGLE-III data obtained during the long period of 8 yr (2002-2009) allowed us to determine the apsidal motion period from their analyses. The existence of third light in all selected systems was investigated by light curve analysis. The O – C diagrams of EROS 1018, EROS 1041, and EROS 1054 were analyzed using the 30, 44, and 26 new times of minimum light, respectively, determined frommore » full light curves constructed from EROS, MACHO, OGLE-II, OGLE-III, and our own observations. This enabled a detailed study of the apsidal motion in these systems for the first time. All of the systems have a significant apsidal motion below 100 yr. In particular, EROS 1018 shows a very fast apsidal period of 19.9 ± 2.2 yr in a detached system.« less
NASA Astrophysics Data System (ADS)
Nelson, R. H.; Terrell, D.; Milone, E. F.
2016-02-01
This is the third of a series of four papers, the goal of which is to identify the overcontact eclipsing binary star systems for which a solid case can be made for mass exchange. To reach this goal, it is necessary first to identify those systems for which there is a strong case for period change. We have identified 60 candidate systems; in the first two papers (Nelson et al. 2014, 2016) we discussed 40 individual cases; this paper continues with the last 20. For each system, we present a detailed discussion and evaluation concerning the observational and interpretive material presented in the literature. At least one eclipse timing (ET) diagram, commonly referred to as an "O-C diagram", that includes the latest available data, accompanies each discussion. In paper 4, we will discuss the mechanisms that can cause period change and which of the 60 systems can be reliably concluded to exhibit mass exchange; we will also provide a list of marginal and rejected cases - suitable for future work.
Photometric study and absolute parameters of the short-period eclipsing binary HH Bootis
NASA Astrophysics Data System (ADS)
Gürol, B.; Bradstreet, D. H.; Demircan, Y.; Gürsoytrak, S. H.
2015-11-01
We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system HH Bootis from new CCD (BVRI) light curves and published radial velocity data. The photometric data were obtained in 2011 and 2012 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be a W-type W UMa system of a type different from that suggested by Dal and Sipahi (2013). An interesting cyclic period variation in the time intervals between primary and secondary eclipses ("half-period variation") was discovered and analyzed and its possible cause is discussed. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.627M⊙ , M2 = 1.068M⊙ , R1 = 0.782R⊙ and R2 = 0.997R⊙ . New light elements were derived and finally the evolutionary status of the system is discussed.
Apsidal motion in eccentric eclipsing binaries: TV Ceti and V451 Ophiuchi
NASA Astrophysics Data System (ADS)
Wolf, M.; Diethelm, R.; Hornoch, K.
2001-07-01
Several new times of minimum light recorded with photoelectric means have been gathered for two bright eccentric eclipsing binaries TV Cet (P = 9fd1 , e = 0.055) and V451 Oph (P = 2fd2 , e = 0.013). Analysis of all available eclipse timings of TV Ceti has revealed a small motion of the line of apsides of dot ω = 0.000 30 +/- 0.000 08 deg cycle-1, corresponding to an apsidal period of U = 30 000 +/- 8 000 years. The contribution from the general relativity effects is dominant (dot ωrel/dot ω ~ 80 % ). In this system, the third body on an eccentric orbit with a period of 28.5 years is also predicted. The more precise values for the apsidal motion elements were computed for V451 Oph, where apsidal motion with a period of 170 +/- 5 years was confirmed. The corresponding internal structure constants log k2 were derived. Some of the observations reported in this paper were obtained at the South Africa Astronomical Observatory, Sutherland, South Africa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.-B.; Wang, J.-J.; Liu, L.
2015-02-01
NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the Wilson–Devinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(±2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves ismore » explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ∘}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(±0.17)×10{sup −6} days yr{sup −1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.« less
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2013-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2014-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).
The disappearing act: a dusty wind eclipsing RW Aur
NASA Astrophysics Data System (ADS)
Bozhinova, I.; Scholz, A.; Costigan, G.; Lux, O.; Davis, C. J.; Ray, T.; Boardman, N. F.; Hay, K. L.; Hewlett, T.; Hodosán, G.; Morton, B.
2016-12-01
RW Aur is a young binary star that experienced a deep dimming in 2010-2011 in component A and a second even deeper dimming from summer 2014 to summer 2016. We present new unresolved multiband photometry during the 2014-2016 eclipse, new emission line spectroscopy before and during the dimming, archive infrared photometry between 2014 and 2015, as well as an overview of literature data. Spectral observations were carried out with the Fibre-fed RObotic Dual-beam Optical Spectrograph on the Liverpool Telescope. Photometric monitoring was done with the Las Cumbres Observatory Global Telescope Network and James Gregory Telescope. Our photometry shows that RW Aur dropped in brightness to R = 12.5 in 2016 March. In addition to the long-term dimming trend, RW Aur is variable on time-scales as short as hours. The short-term variation is most likely due to an unstable accretion flow. This, combined with the presence of accretion-related emission lines in the spectra suggest that accretion flows in the binary system are at least partially visible during the eclipse. The equivalent width of [O I] increases by a factor of 10 in 2014, coinciding with the dimming event, confirming previous reports. The blueshifted part of the Hα profile is suppressed during the eclipse. In combination with the increase in mid-infrared brightness during the eclipse reported in the literature and seen in WISE archival data, and constraints on the geometry of the disc around RW Aur A we arrive at the conclusion that the obscuring screen is part of a wind emanating from the inner disc.
NASA Technical Reports Server (NTRS)
Woo, Jonathan W.; Clark, George W.; Day, Charles S. R.; Nagase, Fumiaki; Takeshima, Toshiaki
1994-01-01
We have measured the decaying dust-scattered X-ray halo of Cen X-3 during its binary eclipse with the ASCA solid-state imaging spectrometer (SIS). The surface brightness profile (SBP) of the image in the low-energy band (0.5-3 keV) lies substantially above the point-spread function (PSF) of the X-ray telescope, while the SBP in the high-energy band (5-10 keV) exhibits no significant deviation. By contrast, the SBPs of Vela X-1 during its eclipse are consistent with the PSF in both the low- and high-energy bands -- strong evidence that a dust halo is indeed present in Cen X-3. Accordingly, we modeled the SBP of Cen X-3 taken from six consecutive time segments under the principal assumptions that the dust is distributed uniformly along a segment of the line of sight, the grains have a power-law size distribution, and the low-energy source flux was the same function of orbital phase before as during our observation. The best-fit set of parameters included a grain density value of 1.3 g/cu cm, substanially less than the density of 'astronomical silicate.' This result supports the idea that interstellar grains are 'fluffy' aggregates of smaller solid particles. We attribute the failure to detect a halo of Vela X-1 during its eclipse phase to extended strong circumsource absorption that probably occurred before the eclipse and allowed the halo to decay away before the observation began.
The atmospheric structures of the companion stars of eclipsing binary x ray sources
NASA Technical Reports Server (NTRS)
Clark, George W.
1992-01-01
This investigation was aimed at determining structural features of the atmospheres of the massive early-type companion stars of eclipse x-ray pulsars by measurement of the attenuation of the x-ray spectrum during eclipse transitions and in deep eclipse. Several extended visits were made to ISAS in Japan by G. Clark and his graduate student, Jonathan Woo to coordinate the Ginga observations and preliminary data reduction, and to work with the Japanese host scientist, Fumiaki Nagase, in the interpretation of the data. At MIT extensive developments were made in software systems for data interpretation. In particular, a Monte Carlo code was developed for a 3-D simulation of the propagation of x-rays from the neutron star through the ionized atmosphere of the companion. With this code it was possible to determine the spectrum of Compton-scattered x-rays in deep eclipse and to subtract that component from the observed spectra, thereby isolating the software component that is attributable in large measure to x-rays that have been scattered by interstellar grains. This research has culminated in the submission of paper to the Astrophysical Journal on the determination of properties of the atmosphere of QV Nor, the BOI companion of 4U 1538-52, and the properties of interstellar dust grains along the line of sight from the source. The latter results were an unanticipated byproduct of the investigation. Data from Ginga observations of the Magellanic binaries SMC X-1 and LMC X-4 are currently under investigation as the PhD thesis project of Jonathan Woo who anticipated completion in the spring of 1993.
First photometric study of ultrashort-period contact binary 1SWASP J140533.33+114639.1
NASA Astrophysics Data System (ADS)
Zhang, Bin; Qian, Sheng-Bang; Michel, Ri; Soonthornthum, Boonrucksar; Zhu, Li-Ying
2018-03-01
In this paper, CCD photometric light curves for the short-period eclipsing binary 1SWASP J140533.33+114639.1 (hereafter J1405) in the BV R bands are presented and analyzed using the 2013 version of the Wilson-Devinney (W-D) code. It is discovered that J1405 is a W-subtype shallow contact binary with a contact degree of f = 7.9 ± 0.5% and a mass ratio of q = 1.55 ± 0.02. In order to explain the asymmetric light curves of the system, a cool starspot on the more massive component is employed. This shallow contact eclipsing binary may have been formed from a short-period detached system through orbital shrinkage due to angular momentum loss. Based on the (O – C) method, the variation of orbital period is studied using all the available times of minimum light. The (O – C) diagram reveals that the period is increasing continuously at a rate of dP/dt = +2.09 × 10‑7, d yr‑1, which can be explained by mass transfer from the less massive component to the more massive one.
Observations and Light Curve Solutions of Ultrashort-Period Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana P.; Dimitrov, Dinko P.; Ibryamov, Sunay I.; Vasileva, Doroteya L.
2018-02-01
Photometric observations in V and I bands and low-dispersion spectra of 10 ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NSVS 10632802) are presented. One of them, NSVS 2729229, is newly discovered target. The results from modelling and analysis of our observations revealed that (i) eight targets have overcontact configurations with considerable fill-out factor (up to 0.5), while NSVS 4876238 and ASAS 0718-03 have almost contact configurations; (ii) NSVS 4876238 is rare ultrashort-period binary of detached type; (iii) all stellar components are late dwarfs; (iv) the temperature difference of the components of each target does not exceed 400 K; (v) NSVS 2175434 and SWASP 074658.62 + 224448.5 exhibit total eclipses and their parameters could be assumed as well determined; (v) NSVS 2729229 shows emission in the Hα line. Masses, radii, and luminosities of the stellar components were estimated by the empirical relation `period, orbital axis' for short- and ultrashort-period binaries. We found linear relations mass-luminosity and mass-radius for the stellar components of our targets.
The near-infrared properties of compact binary systems
NASA Astrophysics Data System (ADS)
Froning, Cynthia Suzanne
I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)
Broderick, J W; Fender, R P; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J-M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; Ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P
2016-07-01
The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν -0.4 ), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.
NASA Astrophysics Data System (ADS)
Samec, R. G.; Caton, D. B.; Faulkner, D. R.
2018-06-01
CCD VRcIc light curves of V573 Peg were taken 26 and 27 September and 2, 4, and 6 October, 2017, at the Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University. Five times of minimum light were calculated, two primary and three secondary eclipses, from our present observations. The following quadratic ephemeris was determined from all available times of minimum light: JD Hel MinI = 2456876.4958 (2) d + 0.41744860 (8) × E -2.74 (12) × 10^-10 × E2, where the parentheses hold the ± error in the last two digits of the preceding value. A 14-year period study (covered by 24 times of minimum light) reveals a decreasing orbital period with high confidence, possibly due to magnetic braking. The mass ratio is found to be somewhat extreme, M2 / M1 = 0.2629 ± 0.0006 (M1 / M2 = 3.8). Its Roche Lobe fill-out is ˜25%. The solution had no need of spots. The component temperature difference is about 130 K, with the less massive component as the hotter one, so it is a W-type W UMa Binary. The inclination is 80.4 ± 0.1°. Our secondary eclipse shows a time of constant light with an eclipse duration of 24 minutes. More information is given in the following report.
Two bodies with high eccentricity around the cataclysmic variable QS Vir
NASA Astrophysics Data System (ADS)
Almeida, Leonardo A.; Jablonski, Francisco
2011-11-01
QS Vir is an eclipsing cataclysmic variable with 3.618 hrs orbital period. This system has the interesting characteristics that it does not show mass transfer between the components through the L1 Lagrangian point and shows a complex orbital period variation history. Qian et al. (2010) associated the orbital period variations to the presence of a giant planet in the system plus angular momentum loss via magnetic braking. Parsons et al. (2010) obtained new eclipse timings and observed that the orbital period variations associated to a hypothetical giant planet disagree with their measurements and concluded that the decrease in orbital period is part of a cyclic variation with period ~16 yrs. In this work, we present 28 new eclipse timings of QS Vir and suggest that the orbital period variations can be explained by a model with two circumbinary bodies. The best fitting gives the lower limit to the masses M1 sin(i) ~ 0.0086 M⊙ and M2 sin(i) ~ 0.054 M⊙ orbital periods P1 ~ 14.4 yrs and P2 ~ 16.99 yrs, and eccentricities e1 ~ 0.62 and e2~0.92 for the two external bodies. Under the assumption of coplanarity among the two external bodies and the inner binary, we obtain a giant planet with ~0.009 M⊙ and a brown dwarf with ~ 0.056 M⊙ around the eclipsing binary QS Vir.
The WFCAM Transit Survey: A Search for Rocky Planets Around Cool Stars
NASA Astrophysics Data System (ADS)
Birkby, J.; Hodgkin, S.; Pinfield, D.; WTS Consortium
2011-12-01
We report on the WFCAM Transit Survey which is a near-infrared photometric monitoring campaign designed primarily to test the predictions of planet formation theory. We monitor a statisically significant sample of ˜6,000 M-dwarfs (M<0.6M⊙) across 6 sq. deg of the sky, by taking advantage of the highly-efficient queue-scheduled operational mode of the 3.8m United Kingdom Infrared Telescope. Our light curves have RMS < 1% between 13 < J < 16 magnitudes and preliminary simulations indicate the survey is sensitive to at least Jupiter-like transits of M-dwarfs. The survey is approximately 25% complete and within this dataset we find i) no planet-like transit events, despite thorough and extensive follow-up this summer and ii) 32 new M-dwarf eclipsing binaries. We do not speculate on the planet fraction of M-dwarfs at this incomplete stage of our survey, but once we achieve 1,000 epochs of observation on our entire M-dwarf sample, we will have a significant observational constraint to place on occurrence of planets around M-dwarfs. We report masses and radii for three of our newly discovered eclipsing binary, with errors of 3-7%, which all show inflated radii when compared to stellar evolution models (e.g. Baraffe et al. (1998)). Our results support the growing body of observations with inflated M-dwarf radii, which may be caused by increased magnetic activity inhibiting the convection efficiency or increased star spot coverage (e.g. Chabrier et al. (2007); Jackson et al. (2009)). Finally, we present preliminary mass and radius estimates of a fourth new eclipsing binary, which is one of the lowest mass binary systems ever discovered and will provide a calibrating point in the desert of observations between 0.1-0.2M⊙.
NASA Astrophysics Data System (ADS)
Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.
2018-05-01
The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chien-Hsiu, E-mail: leech@naoj.org
Eclipsing binaries offer a unique opportunity to determine basic stellar properties. With the advent of wide-field camera and all-sky time-domain surveys, thousands of eclipsing binaries have been charted via light curve classification, yet their fundamental properties remain unexplored mainly due to the extensive efforts needed for spectroscopic follow-ups. In this paper, we present the discovery of a short-period ( P = 0.313 day), double-lined M-dwarf eclipsing binary, CSSJ114804.3+255132/SDSSJ114804.35+255132.6, by cross-matching binary light curves from the Catalina Sky Survey and spectroscopically classified M dwarfs from the Sloan Digital Sky Survey. We obtain follow-up spectra using the Gemini telescope, enabling us to determinemore » the mass, radius, and temperature of the primary and secondary component to be M {sub 1} = 0.47 ± 0.03(statistic) ± 0.03(systematic) M {sub ⊙}, M {sub 2} = 0.46 ± 0.03(statistic) ± 0.03(systematic) M {sub ⊙}, R {sub 1} = 0.52 ± 0.08(statistic) ± 0.07(systematic) R {sub ⊙}, R {sub 2} =0.60 ± 0.08(statistic) ± 0.08(systematic) R {sub ⊙}, T {sub 1} = 3560 ± 100 K, and T {sub 2} = 3040 ± 100 K, respectively. The systematic error was estimated using the difference between eccentric and non-eccentric fits. Our analysis also indicates that there is definitively third-light contamination (66%) in the CSS photometry. The secondary star seems inflated, probably due to tidal locking of the close secondary companion, which is common for very short-period binary systems. Future spectroscopic observations with high resolution will narrow down the uncertainties of stellar parameters for both components, rendering this system as a benchmark for studying fundamental properties of M dwarfs.« less
NASA Astrophysics Data System (ADS)
Bradstreet, David H.; Sanders, S. J.; Volpert, C. G.
2013-01-01
New precision V & Rc light curves of the eclipsing binaries V546 And and V566 And have been obtained using the 41-cm telescopes at the Eastern University Observatory equipped with SBIG ST-10XME CCD’s. V546 And (GSC 2828:18, P = 0.3831 days, m = 11.2) has only one published discovery light curve with significant scatter in the data. The system was observed on seven nights from 30 Aug - 20 Sep 2012, accumulating approximately 900 observations in both V and Rc. The light curves show distinctly that the system is totally eclipsing and preliminary analysis indicates that the binary is W-type (the larger, more massive star is the cooler component), has a mass ratio of 0.34, small temperature difference between the stars of 300 K, and a fillout of 0.30. There is also strong evidence of the presence of starspots influencing the slopes of both eclipses. V566 And (GSC 2321:257, P = 0.3897 days, m = 10.9) is a totally eclipsing overcontact system likewise showing obvious O’Connell effects likely due to starspots. V566 And was observed on seven nights from 30 Aug - 25 Sep 2012, accumulating more than 900 observations in both V and Rc. Preliminary light curve models indicate a W-type system with a small temperature difference between the stars of 200 K and a mass ratio of only 0.20. The original comparison star for V566 And, GSC 2321:911 (m = 12.0), turned out to be a previously unknown variable star with a period of approximately 0.466 days and a light amplitude in Rc of 0.15 mag. This new variable has no information concerning it in the online archives and initial analysis seems to indicate that this may be an ellipsoidal variable. The complete light curve analyses will be presented for both systems and the new variable’s light curves will also be discussed.
NASA Astrophysics Data System (ADS)
Stevens, Daniel; Gaudi, Scott; Beatty, Thomas; Siverd, Robert
2018-05-01
Double-lined eclipsing binaries (EBs) have been the gold standard for direct, precise (less than a few percent), and accurate measurements of stellar masses and radii. However, with the availability of Gaia parallaxes and nearly complete spectral energy distributions (SEDs) of millions of stars, it will soon be possible to make such measurements for the much larger number of single-lined EBs such as high mass-ratio systems and transiting planets, both of which are routinely found by transit surveys. Combining high-precision eclipse photometry and radial velocity (RV) observations of the primary star enables measurements of the primary star's density, the ratio of stellar radii, and a combination of the stars' masses. Broad-band photometry from the ultraviolet to the infrared plus a Gaia parallax and an effective temperature of the primary from either the SED or high-resolution spectra, allow one to measure the radius (and mass via the density) of the primary. The radius and mass of the secondary can then be determined in the usual way with the radius ratio and RVs, and the companion's effective temperature can be determined from a secondary eclipse measurement and the primary star's effective temperature. For single-lined EBs, the precision of ingress/egress duration measurements dominates the error budget of the masses and companion radius. We propose to observe one primary and secondary eclipse of the F+M binary TYC 4223-1012-1, an M dwarf on a 16.5-day orbit around an F dwarf. Ground-based data poorly constrain TYC 4223-1012-1's masses due to the near-impossibility of observing the full 10-hr eclipse from the ground. By combining extant RV and SED data with the Spitzer data, we expect to measure the mass, radius, and effective temperature of the M dwarf to a few percent. This is comparable to the precision of the best-characterized literature M dwarfs, but at an orbital period far beyond the majority of such systems, where tidal effects should be negligible.
Highlights of Odessa Branch of AN in 2017
NASA Astrophysics Data System (ADS)
Andronov, I. L.
2017-12-01
An annual report with a list of publications. Our group works on the variable star research within the international campaign "Inter-Longitude Astronomy" (ILA) based on temporarily working groups in collaboration with Poland, Slovakia, Korea, USA and other countries. A recent self-review on highlights was published in 2017. Our group continues the scientific school of Prof. Vladymir P. Tsesevich (1907 - 1983). Another project we participate is "AstroInformatics". The unprecedented photo-polarimetric monitoring of a group of AM Her - type magnetic cataclysmic variable stars was carried out since 1989 (photometry in our group - since 1978). A photometric monitoring of the intermediate polars (MU Cam, V1343 Her, V2306 Cyg et al.) was continued to study rotational evolution of magnetic white dwarfs. The super-low luminosity state was discovered in the outbursting intermediate polar = magnetic dwarf nova DO Dra. Previously typical low state was some times interrupted by outbursts, which are narrower than usual dwarf nova outbursts. Once there were detected TPO - "Transient Periodic Oscillations". The orbital and quasi-periodic variability was recently studied. Such super-low states are characteristic for nova-like variables (e.g. MV Lyr, TT Ari) or intermediate polars, but unusual for the dwarf novae. The electronic "Catalogue of Characteristics and Atlas of the Light Curves of Newly-Discovered Eclipsing Binary Stars" was compiled and is being prepared for publication. The software NAV ("New Algol Variable") with specially developed algorithms was used. It allows to determine the begin and end of the eclipses even in EB and EW - type stars, whereas the current classification (GCVS, VSX) claims that the begin and end of eclipses only in the EA - type objects. The further improvements of the NAV algorithm were comparatively studied. The "Wall-Supported Polynomial" (WSP) algoritms were implemented in the software MAVKA for statistically optimal modeling of flat eclipses and exoplanet transitions. MAVKA was used for studies of effects of the mass transfer and presence of the third components in close binary stellar systems and analysis of the poorly studied eclipsing binary 2MASS J20355082+5242136. Atlas of the Light Curves and Phase Plane Portraits of Selected Long-Period Variables was compiled.
SAURON: The Wallace Observatory Small AUtonomous Robotic Optical Nightwatcher
NASA Astrophysics Data System (ADS)
Kosiarek, M.; Mansfield, M.; Brothers, T.; Bates, H.; Aviles, R.; Brode-Roger, O.; Person, M.; Russel, M.
2017-07-01
The Small AUtonomous Robotic Optical Nightwatcher (SAURON) is an autonomous telescope consisting of an 11-inch Celestron Nexstar telescope on a SoftwareBisque Paramount ME II in a Technical Innovations ProDome located at the MIT George R. Wallace, Jr. Astrophysical Observatory. This paper describes the construction of the telescope system and its first light data on T-And0-15785, an eclipsing binary star. The out-of-eclipse R magnitude of T-And0-15785 was found to be 13.3258 ± 0.0015 R magnitude, and the magnitude changes for the primary and secondary eclipses were found to be 0.7145 ± 0.0515 and 0.6085 ± 0.0165 R magnitudes, respectively.
Photometry of AM Herculis - A slow optical pulsar
NASA Technical Reports Server (NTRS)
Priedhorsky, W. C.; Krzeminski, W.
1978-01-01
Multicolor photometry of the X-ray binary AM Her suggests that the red component of the optical flux is closely related to the source of optical circular polarization in the system. It is concluded from the periodic modulation of flux in the U through R bands, which is particularly well-defined when plotted as color curves, that the primary and secondary minima are neither eclipses by a secondary star nor eclipses by a hot spot. It is suggested that the primary minimum in the visual light curve is the eclipse of a region of intense optical emission in the magnetic field near the surface of a degenerate dwarf by that dwarf itself.
NASA Astrophysics Data System (ADS)
Guo, Z.; Gies, D. R.; Matson, R. A.
2017-12-01
We report the discovery of a post-mass-transfer Gamma Doradus/Delta Scuti hybrid pulsator in the eclipsing binary KIC 9592855. This binary has a circular orbit, an orbital period of 1.2 days, and contains two stars of almost identical masses ({M}1=1.72 {M}⊙ ,{M}2=1.71 {M}⊙ ). However, the cooler secondary star is more evolved ({R}2=1.96 {R}⊙ ), while the hotter primary is still on the zero-age-main-sequence ({R}1=1.53 {R}⊙ ). Coeval models from single-star evolution cannot explain the observed masses and radii, and binary evolution with mass-transfer needs to be invoked. After subtracting the binary light curve, the Fourier spectrum shows low-order pressure-mode pulsations, and more dominantly, a cluster of low-frequency gravity modes at about 2 day-1. These g-modes are nearly equally spaced in period, and the period spacing pattern has a negative slope. We identify these g-modes as prograde dipole modes and find that they stem from the secondary star. The frequency range of unstable p-modes also agrees with that of the secondary. We derive the internal rotation rate of the convective core and the asymptotic period spacing from the observed g-modes. The resulting values suggest that the core and envelope rotate nearly uniformly, i.e., their rotation rates are both similar to the orbital frequency of this synchronized binary.
Determining accurate distances to nearby galaxies
NASA Astrophysics Data System (ADS)
Bonanos, Alceste Zoe
2005-11-01
Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a, which confirmed that the system consists of two extremely massive stars and refined the values of the masses. It is the most massive binary known with an accurate mass determination.
A Catalog of Visual Double and Multiple Stars With Eclipsing Components
2009-08-01
astrometric data were analyzed, resulting in new orbits for eight systems and new times of minimum light for a number of the eclipsing binaries. Some...analyses; one especially productive source is the study of the long- time behav- ior of the period of an EB. As might be expected, the longer the time ...span of conjunction time measurements, or times of min- imum light, the greater the chance of detecting a long-period orbit due to an additional
Observational Δν-ρ¯ Relation for δ Sct Stars using Eclipsing Binaries and Space Photometry
NASA Astrophysics Data System (ADS)
García Hernández, A.; Martín-Ruiz, S.; Monteiro, Mário J. P. F. G.; Suárez, J. C.; Reese, D. R.; Pascual-Granado, J.; Garrido, R.
2015-10-01
Delta Scuti (δ Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modeling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of global stellar parameters. In this work, we used space photometry observations of eclipsing binaries with a δ Sct component to obtain reliable physical parameters and oscillation frequencies. Using that information, we derived an observational scaling relation between the stellar mean density and a frequency pattern in the oscillation spectrum. This pattern is analogous to the solar-like large separation but in the low order regime. We also show that this relation is independent of the rotation rate. These findings open the possibility of accurately characterizing this type of pulsator and validate the frequency pattern as a new observable for δ Sct stars.
Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu
We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The shortmore » temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.« less
NASA Astrophysics Data System (ADS)
Andronov, I. L.; Antoniuk, K. A.; Baklanov, A. V.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Dubovsky, P. A.; Han, W.; Hegedus, T.; Henden, A.; Hric, L.; Chun-Hwey, Kim; Yonggi, Kim; Kolesnikov, S. V.; Kudzej, I.; Liakos, A.; Niarchos, P. G.; Oksanen, A.; Patkos, L.; Petrik, K.; Pit', N. V.; Shakhovskoy, N. M.; Virnina, N. A.; Yoon, J.; Zola, S.
2010-12-01
We present a review of highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types classical, asynchronous, intermedi ate polars with 25 timescales corresponding to differ ent physical mechanisms and their combinations (part "Polar"); negative and positive superhumpers in nova- like and dwarf novae stars ("Superhumper"); symbiotic ("Symbiosis"); eclipsing variables with and without ev idence for a current mass transfer ("Eclipser") with a special emphasis on systems with a direct impact of the stream into the gainor star's atmosphere, which we propose to call "Impactors", or V361 Lyr-type stars. Other parts of the ILA project are "Stellar Bell" (pul sating variables of different types and periods - M, SR, RV Tau, RR Lyr, Delta Sct) and "New Variable".
NASA Astrophysics Data System (ADS)
Stassun, Keivan; David, Trevor J.; Conroy, Kyle E.; Hillenbrand, Lynne; Stauffer, John R.; Pepper, Joshua; Rebull, Luisa M.; Cody, Ann Marie
2016-06-01
Prior to K2, only one eclipsing binary in the Pleiades was known (HD 23642). We present the discovery and characterization of three additional eclipsing binaries (EBs) in this ~120 Myr old benchmark open cluster. Unlike HD 23642, all three of the new EBs are low mass (Mtot < 1 M⊙) and thus their components are still undergoing pre-main-sequence contraction at the Pleiades age. Low mass EBs are rare, especially in the pre-main-sequence phase, and thus these systems are valuable for constraining theoretical stellar evolution models. One of the three new EBs is single-lined with a K-type primary (HII 2407). The second (HCG 76) comprises two nearly equal-mass 0.3 M⊙ stars, with masses and radii measured with precisions of better than 3% and 5%, respectively. The third (MHO 9) has an M-type primary with a secondary that is possibly quite close to the hydrogen-burning limit, but needs additional follow-up observations to better constrain its parameters. We use the precise parameters of HCG 76 to test the predictions of stellar evolution models, and to derive an independent distance to the Pleiades of 132±5 pc. Finally, we present tentative evidence for differential rotation in the primary component of the newly discovered Pleiades EB HII 2407, and we also characterize a newly discovered transiting Neptune-sized planet orbiting an M-dwarf in the Hyades.
NASA Astrophysics Data System (ADS)
Murphy, Brian W.; Darragh, Andrew; Hettinger, Paul; Hibshman, Adam; Johnson, Elliott W.; Liu, Z. J.; Pajkos, Michael A.; Stephenson, Hunter R.; Vondersaar, John R.; Conroy, Kyle E.; McCombs, Thayne A.; Reinhardt, Erik D.; Toddy, Joseph
2015-08-01
We present the results of an extensive study intended to search for and properly classify the variable stars in five galactic globular clusters. Each of the five clusters was observed hundreds to thousands of times over a time span ranging from 2 to 4 years using the SARA 0.6m located at Cerro Tololo Interamerican Observatory. The images were analyzed using the image subtract method of Alard (2000) to identify and produce light curves of all variables found in each cluster. In total we identified 373 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 312 RR Lyrae variables (187 RR0, 18 RR01, 99 RR1, 8 RR2), 9 SX Phe stars, 6 Cepheid variables, 11 eclipsing variables, and 35 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 2 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 13 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 52 RR0, 56 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 48 RR0, 15 RR1, 1 RR2, 5 eclipsing binaries, and 9 long period variables. Using the RR Lyrae variables we found the mean V magnitude of the horizontal branch to be VHB = ⟨V ⟩RR = 17.63, 15.51, 15.72, 17.13, and 16.37 magnitudes for IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584, respectively. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the light curves to further analyze the properties of the variable stars and hence physical properties of each clusters. In this poster we will give the temperature, radius, stellar mass, metallicity, and helium abundance of the set of RR Lyrae variable stars found in each of the five globular clusters.
NASA Astrophysics Data System (ADS)
Martignoni, M.; Barani, C.; Acerbi, F.
2018-07-01
We present the first light curve analysis of the eclipsing binary V658 Lyr. B, V and Ic photometric observations made from 2014 to 2017 of this W UMa-type binary star are collected, the complete light curves were obtained in 2015 (4 nights) and 2016 (11 nights) and are used for a detailed photometric analysis to determine orbital and physical parameters using the Wilson-Devinney code. The results obtained indicates that V658 Lyr is an A-type overcontact binary system with both components of spectral type (G2 + G4). Based on our 17 ToM the short orbital period of the eclipsing binary was confirmed and revised to P = 0.3302577 days. The orbital period was found to show a cyclic variations and a decrease rate of dP/dt = - 2.97 × 10 -7 days yr-1 , which can be interpreted as a mass transfer from the more massive component to the less massive one. We have not found an asymmetry of the light curves. The mass of the primary and secondary stars are calculated to be M1 = 1.18M⊙( ± 0.08) and M2 = 0.21M⊙( ± 0.01) indicating the primary to be underluminous for its mass and the secondary to be overluminous for its mass.
The variable He 10830 A line of Algol. [eclipsing binary star
NASA Technical Reports Server (NTRS)
Zirin, H.; Liggett, M. A.
1982-01-01
Spectra of several eclipses of Algol in the range 10500-11000 A where the line contribution of Algol B is important, are presented. Strong unshifted 10830 (2000 mA) absorption peaks at primary minimum but disappears between phases 0.3 and 0.7. At minimum the line must primarily arise in Algol B, but the presence of 10830 absorption just outside eclipse, when the contribution to the total light of Algol B is small, must be due to excitation of He in the atmosphere of the primary by X-ray irradiation from Algol B, a known X-ray source. A Si I line from Algol B is also detected, and the Pa-gamma line sometimes peaks during eclipse. Even if some of the 10830 absorption comes from Algol A, Algol B still has the strongest 10830 (3000 mA) yet measured in any star.
The eclipsing AM Herculis variable H1907 + 690
NASA Technical Reports Server (NTRS)
Remillard, R. A.; Silber, A.; Stroozas, B. A.; Tapia, S.
1991-01-01
The discovery is reported of an eclipsing cataclysmic variable that exhibits up to 10 percent circular polarization at optical wavelengths, securing its classification as an AM Herculis type binary. The object, H1907 + 609, was located with the guidance of X-ray positions from the HEAO 1 survey. Optical CCD photometry exhibits deep eclipses, from which is derived a precise orbital period of 1.743750 hr. The eclipse duration suggests an inclination angle about 80 deg for a main-sequence secondary star. The optical flux has been persistently faint during observations spanning 1987-1990, while the X-ray measurements suggest long-term X-ray variability. The polarization and photometric light curves can be interpreted with a geometric model in which most of the accretion is directed toward a single magnetic pole, with an accretion spot displaced about 17 deg in longitude from the projection of the secondary star on the white dwarf surface.
V1494 Aql: Eclipsing Fast Nova with an Unusual Orbital Light Curve
NASA Astrophysics Data System (ADS)
Kato, Taichi; Ishioka, Ryoko; Uemura, Makoto; Starkey, Donn R.; Krajci, Tom
2004-03-01
We present the time-resolved photometry of V1494 Aql (Nova Aql 1999 No. 2) between 2001 November and 2003 June. The object is confirmed to be an eclipsing nova with a period of 0.1346138(2)d. The eclipses were present in all observed epochs. The orbital light curve shows a rather unusual profile, consisting of a bump-like feature at phase 0.6-0.7 and a dip-like feature at phase 0.2-0.4. These features were probably persistently present in all available observations between 2001 and 2003. A period analysis outside of the eclipses has confirmed that these variations have a period common to the orbital period, and are unlikely to be interpreted as superhumps. We suspect that the structure (probably in the accretion disk) fixed in the binary rotational frame is somehow responsible for this feature.
Probing the mysteries of the X-ray binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji
2014-10-01
4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 ± 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, themore » predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V; however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index Γ = 1.85{sub −0.05}{sup +0.04} and a high-energy cutoff at 5.5 ± 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI Kα, Fe Kα, Fe XXV Kα, and Fe XXVI Kα were observed in the Suzaku spectra. Out of eclipse, the Fe Kα line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.« less
K2 eclipsing binaries in the benchmark open cluster Ruprecht 147
NASA Astrophysics Data System (ADS)
Torres, Guillermo
Open clusters are ideal laboratories to study stellar astrophysics. They represent homogeneous collections of hundreds or thousands of stars that were formed together and should therefore have the same age, chemical composition, space motion, and distance. Easily measured properties for member stars such as the brightness and color can be used to infer some of the characteristics of the ensemble including the age and distance, by comparing with model isochrones in the color-magnitude diagram. In recent years space missions such as CoRoT and Kepler have enabled the detection of solar-like oscillations in some of the brighter open cluster members, which can yield asteroseismic estimates of the stellar masses and radii through simple scaling relations anchored on the Sun, and also ages under certain assumptions. Furthermore, when photometric rotation periods of stars can be measured in them, clusters will well-known ages then become essential calibrators for gyrochronology relations, which describe how stars spin down as they get older due to magnetic braking from stellar winds. These relations are important because they provide one of the few empirical ways to age-date field stars. For clusters endowed with detached, double-lined eclipsing binaries amenable to study, even stronger constraints on their properties become available that are of an entirely different nature. The absolute masses and radii of the binary components can be measured very accurately and in a model-independent way, providing an opportunity for stringent tests of stellar evolution theory. The ages that can also be obtained by comparison with models can serve to validate other age estimates mentioned above. Ruprecht 147 is remarkable in that it permits all of these types of studies at the same time. It is the oldest nearby open cluster, with an age of about 3 Gyr and a distance of only 300 pc. This makes it a favorable target for follow-up studies. The metallicity is well determined from previous spectroscopic investigations. It was observed photometrically by the K2 mission for 80 days in late 2015, enabling both asteroseismic and rotation period studies of dozens of members. What makes it truly unique, however, is that it has no less than five eclipsing binaries brighter than 13th magnitude that lend themselves to high-precision mass and radius determinations. No other open cluster has as many, let alone an old one. The brightest binary happens to be at the tip of the turnoff and provides an unusually strong constraint on age. A very special opportunity for study has thus presented itself. This is a proposal to analyze publicly available K2 photometry for the five bright eclipsing binaries discovered in Ruprecht 147, with the goal of fashioning the cluster into an important new benchmark for high-precision testing of stellar astrophysics. We will supplement the K2 light curves, processed with special detrending techniques, with ground-based spectroscopic observations yielding radial velocities for the stars. With these we will derive accurate masses, radii, and temperatures for the components of each binary using well-proven classical methodologies. The impact of the project is that the large number of binaries will allow for an unprecedented and extraordinarily strong test of stellar evolution theory over a range of masses, not available for any other open cluster. The ages we will infer are completely independent of, and of a different nature than other estimates in Ruprecht 147, coming from isochrone fitting in the colormagnitude diagram, asteroseismology of the brighter cluster members, or the use of gyrochronology relations. We will thus have a unique opportunity to cross-validate four different age-dating techniques in the same cluster. Additionally, our accurate eclipsing binary masses and radii will enable crucial tests of the asteroseismic scaling relations, which will improve their use for single stars.
Campaign Photometry During The 2010 Eclipse Of Epsilon Aurigae
NASA Astrophysics Data System (ADS)
Hopkins, Jeff; Stencel, R. E.
2011-01-01
Epsilon Aurigae is a long period (27.1 years) eclipsing binary star system with an eclipse that lasts nearly 2 years, but with severe ambiguities about component masses and shape. The current eclipse began on schedule in August of 2009. During the previous, 1982-1984 eclipse, an International Campaign was formed to coordinate a detailed study of the system. While that Campaign was deemed successful, the evolutionary status of the star system remained unclear. Epsilon Aurigae has been observed nearly continuously since the 1982 eclipse. The current Campaign was officially started in 2006. In addition to a Yahoo forum we have a dedicated web site and more than 18 online newsletters reporting photometry, spectroscopy, interferometry and polarimetry data. High quality UBVRIJH band photometric data since before the start of the current eclipse has been submitted. We explore the color differences among the light curves in terms of eclipse phases and archival data. At least one new model of the star system has been proposed since the current Campaign began: a low mass but very high luminosity F star plus a B star surrounded by a debris disk. The current eclipse and in particular the interferometry and spectroscopic data have caused new thoughts on defining eclipsing variable star contact points and phases of an eclipse. Second contact may not be the same point as start of totality and third contact may not be the same point as the start of egress and end of totality. In addition, the much awaited mid-eclipse brightening may or may not have appeared. This paper identifies the current Campaign contributors and the photometric data. This work was supported in part by the bequest of William Herschel Womble in support of astronomy at the University of Denver, by NSF grant 1016678 to the University of Denver.
Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingzhi; Ma, Bin; Hu, Yi
AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time-domain astronomy at Dome A, Antarctica. Here, we present the results of an i -band images survey from AST3-1 toward one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with i magnitude ≤16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, and EA), 27 pulsating variable stars ( δ Scuti, γ Doradus, δ Cephei variable, and RR Lyrae stars), and 248 other types of variables (unclassifiedmore » periodic, multiperiodic, and aperiodic variable stars). Of the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another variable shows a secondary maximum after peak brightness. We also detected a complex binary system with an RS CVn-like light-curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.« less
The first Doppler images of the eclipsing binary SZ Piscium
NASA Astrophysics Data System (ADS)
Xiang, Yue; Gu, Shenghong; Cameron, A. Collier; Barnes, J. R.; Zhang, Liyun
2016-02-01
We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September-December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about 0.9 M⊙ and 1283 ± 10 d, respectively. After removing the contribution of the third body from the least-squares deconvolved profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant star-spot activities on the surface of the K subgiant component. The distributions of star-spots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.
NASA Astrophysics Data System (ADS)
Marschall, L. A.; Torres, G.; Neuhauser, R.
1998-05-01
BVRI Observations of the star BD+05 706, carried out between January, 1997, and April 1998 using the 0.4m reflector and Photometrics CCD camera at the Gettysburg College Observatory, show that the star is an eclipsing binary system with a light curve characteristic of a class of semi-detached binaries known as the "cool Algols". These results are in good agreement with the previous report of BD+05 706 as a cool Algol by Torres, Neuhauser, and Wichmann,(Astron. J., 115, May 1998) who based their classification on the strong X-ray emission detected by Rosat and on a series of spectroscopic observations of the radial velocities of both components of the system obtained at the Oak Ridge Observatory, the Fred L. Whipple Observatory, and the Multiple Mirror Telescope. Only 10 other examples of cool Algols are known, and the current photometric light curve, together with the radial velocity curves obtained previously, allows us to derive a complete solution for the physical parameters of each component, providing important constraints on models for these interesting systems.
The first orbital parameters and period variation of the short-period eclipsing binary AQ Boo
NASA Astrophysics Data System (ADS)
Wang, Shuai; Zhang, Liyun; Pi, Qingfeng; Han, Xianming L.; Zhang, Xiliang; Lu, Hongpeng; Wang, Daimei; Li, TongAn
2016-10-01
We obtained the first VRI CCD light curves of the short-period contact eclipsing binary AQ Boo, which was observed on March 22 and April 19 in 2014 at Xinglong station of National Astronomical Observatories, and on January 20, 21 and February 28 in 2015 at Kunming station of Yunnan Observatories of Chinese Academy of Sciences, China. Using our six newly obtained minima and the minima that other authors obtained previously, we revised the ephemeris of AQ Boo. By fitting the O-C (observed minus calculated) values of the minima, the orbital period of AQ Boo shows a decreasing tendency P˙ = - 1.47(0.17) ×10-7 days/year. We interpret the phenomenon by mass transfer from the secondary (more massive) component to the primary (less massive) one. By using the updated Wilson & Devinney program, we also derived the photometric orbital parameters of AQ Boo for the first time. We conclude that AQ Boo is a near contact binary with a low contact factor of 14.43%, and will become an over-contact system as the mass transfer continues.
Absolute parameters of eclipsing binaries in Southern Hemisphere sky - II: QY Tel
NASA Astrophysics Data System (ADS)
Erdem, A.; Sürgit, D.; Engelbrecht, C. A.; van Heerden, H. P.; Manick, R.
2016-11-01
This paper presents the first analysis of spectroscopic and photometric observations of the neglected southern eclipsing binary star, QY Tel. Spectroscopic observations were carried out at the South African Astronomical Observatory in 2013. New radial velocity curves from this study and V light curves from the All Sky Automated Survey were solved simultaneously using modern light and radial velocity curve synthesis methods. The final model describes QY Tel as a detached binary star where both component stars fill at least half of their Roche limiting lobes. The masses and radii were found to be 1.32 (± 0.06) M⊙, 1.74 (± 0.15) R⊙ and 1.44 (± 0.09) M⊙, 2.70 (± 0.16) R⊙ for the primary and secondary components of the system, respectively. The distance to QY Tel was calculated as 365 (± 40) pc, taking into account interstellar extinction. The evolution case of QY Tel is also examined. Both components of the system are evolved main-sequence stars with an age of approximately 3.2 Gy, when compared to Geneva theoretical evolution models.
Physical Properties of the LMC Eclipsing Binary Stars
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Devinney, E. J.; Guinan, E. F.; Engle, S. G.; DeGeorge, M.
2009-01-01
To date, three independent studies have devised an automatic procedure to analyse and extract the principal parameters of 2581 detached eclipsing binary stars from the OGLE photometric survey of the Large Magellanic Cloud (LMC): Devor (2005), Tamuz et al. (2006), and Prsa et al. (2008). For time efficiency, Devor used a simple model of two spherical, limb-darkened stars without tidal or reflection physics. Tamuz et al.'s approach employs a more realistic EBOP model, which is still limited in handling proximity physics. Our study used a back-propagating neural network that was trained on the light curves computed by a modern Wilson-Devinney code. The three approaches are confronted and correlations in the results are sought that indicate the degree of reliability of the obtained results. A database of solutions consistent across all three studies is presented. We assess the suitability of each method for other morphology types (i.e. semi-detached and overcontact binaries) and we overview the practical limitations of these methods for the upcoming survey data. This research is supported by NFS/RUI Grant No. AST-05-07542, which we gratefully acknowledge.
Spectroscopic observations of the detached binary PG 1413 + 015
NASA Technical Reports Server (NTRS)
Fulbright, Michael S.; Liebert, James; Bergeron, P.; Green, Richard
1993-01-01
We present improved estimates of the stellar parameters of the eclipsing, precataclysmic binary system PG 1413 + 015 (GH Vir), which has an orbital period of only 8h16m. Model atmosphere fits a Balmer line profiles yield T(eff) = 48,800 +/- 1200 K and log g = 7.70 +/- 0.11 for the DAO white dwarf primary star, from which a mass of 0.51 +/- 0.04 solar mass is inferred using evolutionary models. An ultraviolet spectrum obtained with the IUE Observatory has a slope consistent with this temperature and the assumption of no interstellar extinction. A red CCD spectrum of the secondary star during the 12-minute total eclipse indicates a spectral type of M3 V-M5 V. Reanalysis of the eclipse light curve leads to an inferred radius of 0.15 solar radius and a mass of 0.10 solar mass for the secondary, the latter being marginally consistent with the spectral type. Reprocessing on the facing side of the secondary produces phase-dependent Balmer line emission and detectable variations in the continuum from 6500-9000 A. The observed levels of reprocessing are consistent with expectations based on the above stellar parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, Anthony L., E-mail: piro@caltech.edu
The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling ofmore » the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.« less
Detection of a Hot Binary Companion of eta Carinae
NASA Technical Reports Server (NTRS)
Sonnebom, G.; Iping, R. C.; Gull, T. R.; Massa, D. L.; Hillier, D. J.
2006-01-01
A hot companion of eta Carinae has been detected using high resolution spectra (905 - 1180 A) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Observations were obtained at two epochs of the 2024-day orbit: 2003 June during ingress to the 2003.5 X-ray eclipse and 2004 April several months after egress. These data show that essentially all the far-UV flux from eta Car shortward of Lyman alpha disappeared at least two days before the start of the X-ray eclipse (2003 June 29), implying that the hot companion, eta Car B, was also eclipsed by the dense wind or extended atmosphere of eta Car A. Analysis of the far-UV spectrum shows that eta Car B is a luminous hot star. N II 1084-1086 emission disappears at the same time as the far-UV continuum, indicating that this feature originates from eta Car B itself or in close proximity to it. The strong N II emission also raises the possibility that the companion star is nitrogen rich. The observed FUV flux levels and spectral features, combined with the timing of their disappearance, is consistent with eta Carinae being a massive binary system
Detection of a Hot Binary Companion of eta Carinae
NASA Technical Reports Server (NTRS)
Sonneborn, G.; Iping, R. C.; Gull, T. R.; Massa, D.; Hillier, D. J.
2006-01-01
A hot companion of eta Carinae has been detected using high resolution spectra (905 - 1 180 Angsroms) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Observations were obtained at two epochs of the 2024-day orbit: 2003 June during ingress to the 2003.5 X-ray eclipse and 2004 April several months after egress. These data show that essentially all the far-UV flux from eta Car shortward of Lyman alpha disappeared at least two days before the start of the X-ray eclipse (2003 June 29), implying that the hot companion, eta Car By was also eclipsed by the dense wind or extended atmosphere of eta Car A. Analysis of the far-UV spectrum shows that eta Car B is a luminous hot star. N II 1084-1086 emission disappears at the same time as the far-UV continuum, indicating that this feature originates from eta Car B itself or in close proximity to it. The strong N II emission also raises the possibility that the companion star is nitrogen rich. The observed FUV flux levels and spectral features, combined with the timing of their disappearance, are consistent with eta Carinae being a massive binary system.
Preliminary Studies of Interacting Binaries From NURO Observations : V963 Cygni and GSC 1419 0091
NASA Astrophysics Data System (ADS)
Samec, R. G.; Jones, S. M.; Scott, T.; Branning, J.; Miller, J.; Faulkner, D. R.; Hawkins, N. C.
2005-12-01
We present preliminary analyses of V963 and V965 Cygni based on observations taken at the National Undergraduate Research Observatory (NURO). Our CCD observations were taken 07-12 March 2005 and 19-25 July 2004 by DRF,RGS, and NCH with the Lowell Observatory 31-inch reflector. Standard UBVRI filters were used. Preliminary light curve analyses and updated periodicity studies are presented for these variables. V963 Cyg (GSC 2656 1995,α (2000) = 19h 44m 04.92s, δ (2000) = +31 41 50.17) is a detached binary discovered by Wachmann (Ast Abh Ham St VI, #1, 1961). The eclipse depths are nearly equal, 0.78 and 0.67 magnitudes in in V in the primary and secondary eclipses, respectively, causing observers to MISTAKINGLY classify it as an Algol-type system. Thus the two stars are similar in temperature and the period has to be DOUBLED. The curves appear fairlysymmetrical with a depressed section following the primary eclipse in R and I about 0.2 phase units wide. In BVRI, 100 to 130 observations were taken along with 75 in U. We determined three new times of minimum light, two secondary eclipses, HJD Min II = 2453207.76857±0.00029d and 2453211.9540±0.0032d, and one primary eclipse HJD Min I = 2453209.86073±0.00095d. A corrected period and an improved ephemeris was computed using available times of minimum light: HJD Min I = 2453209.8616(±0.0011)d + 1.39466792(±0.00000019)*E. GSC 1419 0091 (Brh V132) [α (2000) = 10h 11m 59.152s,δ (2000) = +16 52 30.28] is an overcontact binary discovered by Klaus Bernhard (BAV, http://www.var-mo.de/star/brh_v132.htm). We took approximately 60-65 observations in each of B,V,R, and I. We determined four new times of minimum light: HJD Min I = 2453437.8293(±0.0003) and 2453441.8291(±0.0019), and HJD Min II = 2453437.6973(±0.0012) and 2453442.76317(±0.0005). We computed an improved ephemeris from all available times of minimum and low light: HJD Min I = 2452754.4733(±0.0030)d + 0.2667251*E(±0.0000011). The light curves show shallow eclipse amplitudes of 0.46 and 0.43 mags in B and V, respectively, and a time of constant light in the secondary eclipse of 31 m. We wish to thank the NURO for their allocation of observing time, as well as NASA and the American Astronomical Society for their support in paying for travel and publication expenses.
Discovery of the Closest Hot Subdwarf Binary with White Dwarf Companion
NASA Astrophysics Data System (ADS)
Geier, S.; Marsh, T. R.; Dunlap, B. H.; Barlow, B. N.; Schaffenroth, V.; Ziegerer, E.; Heber, U.; Kupfer, T.; Maxted, P. F. L.; Miszalski, B.; Shporer, A.; Telting, J. H.; Ostensen, R. H.; O'Toole, S. J.; Gänsicke, B. T.; Napiwotzki, R.
2013-01-01
We report the discovery of an extremely close, eclipsing binary system. A white dwarf is orbited by a core He-burning compact hot subdwarf star with a period as short as ≃ 0.04987 d making this system the most compact hot subdwarf binary discovered so far. The subdwarf will start to transfer helium-rich material on short timescales of less than 50 Myr. The ignition of He-burning at the surface may trigger carbon-burning in the core although the WD is less massive than the Chandrasekhar limit (> 0.74 M⊙) making this binary a possible progenitor candidate for a supernova type Ia event.
NASA Astrophysics Data System (ADS)
Pablo, Herbert; Richardson, Noel D.; Moffat, Anthony F. J.; Corcoran, Michael; Shenar, Tomer; Benvenuto, Omar; Fuller, Jim; Nazé, Yaël; Hoffman, Jennifer L.; Miroshnichenko, Anatoly; Maíz Apellániz, Jesús; Evans, Nancy; Eversberg, Thomas; Gayley, Ken; Gull, Ted; Hamaguchi, Kenji; Hamann, Wolf-Rainer; Henrichs, Huib; Hole, Tabetha; Ignace, Richard; Iping, Rosina; Lauer, Jennifer; Leutenegger, Maurice; Lomax, Jamie; Nichols, Joy; Oskinova, Lida; Owocki, Stan; Pollock, Andy; Russell, Christopher M. P.; Waldron, Wayne; Buil, Christian; Garrel, Thierry; Graham, Keith; Heathcote, Bernard; Lemoult, Thierry; Li, Dong; Mauclaire, Benjamin; Potter, Mike; Ribeiro, Jose; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner
2015-08-01
We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system δ Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P\\gt 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.
The nature of EU Pegasi: An Algol-type binary with a δ Scuti-type component
NASA Astrophysics Data System (ADS)
Yang, Yuangui; Yuan, Huiyu; Dai, Haifeng; Zhang, Xiliang
2018-03-01
The comprehensive photometry and spectroscopy for the neglected eclipsing binary EU Pegasi are presented. We determine its spectral type to be A3V. With the W-D program, the photometric solution was deduced from the four-color light curves. The results imply that EU Peg is a detached binary with a mass ratio of q = 0.3105(± 0.0011), whose components nearly fill their Roche lobes. The low-amplitude pulsation occurs around the secondary eclipse, which may be attributed to the more massive component. Three frequencies are preliminarily explored by the Fourier analysis. The pulsating frequency at f1 = 34.1 c d-1 is a p-mode pulsation. The orbital period may be undergoing a secular decrease, superimposed by a cyclic variation. The period decreases at a rate of dP/dt = -7.34 ± 1.06 d yr-1, which may be attributed to mass loss from the system due to stellar wind. The cyclic oscillation, with Pmod = 31.0 ± 1.4 yr and A = 0.0054 ± 0.0010 d, may be caused by the light-time effect due to the assumed third body. With its evolution, the pulsating binary EU Peg will evolve from the detached configuration to the semi-detached case.
Stellar background observation during Total Solar Eclipse March 9th 2016
NASA Astrophysics Data System (ADS)
Mumtahana, Farahhati; Timur Jaelani, Anton; Muhamad, Johan; Sutastio, Heri
2016-11-01
We report observation and an early analysis of stellar background from total solar eclipse in Ternate, Indonesia. The eclipse phenomena which occurred on March, 9th 2016 was observed with certain portable instruments in order to obtain the stars behind the Sun in particular field of view and resolution. From our observation site in Ternate city, solar eclipse occurred in the late morning when the weather was unfortunately cloudy. However, during the darkness of totality, we obtained several point source objects between the gaps of the moving clouds and we suspected them as very faint stars due to their appearance in several frames. Those so called stars have been identified and measured with respect to their positions toward the center of the Sun. The main purpose of this research is to revisit strong lensing calculation of the Sun during total solar eclipse by measuring the deflection angle of the background stars as it had been calculated by Einstein and proved by Eddington at a total solar eclipse in 1919. To accomplish this aim, we need to conduct another observation to measure position of the same stars in the next period when those stars appear in the night sky.
Ultraviolet photometry of the eclipsing variable CW Cephei
NASA Technical Reports Server (NTRS)
Sobieski, S.
1972-01-01
A series of photometric observations was made of the eclipsing variable CW Cephei on the OAO 2. Approximate elements were derived from the eclipse depths and shape of the secondary. Persistent asymmetries and anomalous light variations, larger than the expected experimental error, were also found, subsequent ground-based observations show H alpha entirely in emission, indicating the presence of an extended gaseous system surrounding one or both components. A detailed comparison was made of the flux distribution of the binary relative to that for the nominally unreddened stars delta Pic, BlIII, and eta Aur, B3V, to investigate the effects of interstellar extinction. The resultant extinction curves, normalized at a wavelength of 3330 A, show a relatively smooth increase with decreasing wavelength.
NASA Astrophysics Data System (ADS)
Turner, Rebecca; Price, A.; Henden, A.
2009-05-01
The IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists is planning a multi-year project involving the bright star Eps Aur. The project will go beyond simple observing and also include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. It begins with a 10 Star Training Program of several types of binary and transient variable stars that are easy to observe from suburban locations with the naked eye. Participants will be trained both in observing and also in basic data analysis of photometric datasets (light curve and period analysis). Eventually it will lead to a capstone project: monitoring the rare and mysterious 2009-2011 eclipse of Epsilon Aurigae. In the summer of IYA 2009, third-magnitude Eps Aur will experience its next eclipse, which occurs every 27.1 years and lasts 714 days, nearly two years. The star is bright enough to be seen with the naked eye from most urban areas. If fully funded, the project will also involve two public workshops on observing and data analysis in the summers of 2009 and 2010, respectively.
Formation of a 'planet' by rapid evaporation of a pulsar's companion
NASA Technical Reports Server (NTRS)
Rasio, F. A.; Shapiro, S. L.; Teukolsky, S. A.
1992-01-01
A model based on the binary configuration of the PSR1829-10 pulsar (Bailes et al., 1991) is used to show that the formation of a binary pulsar with a planet-size companion, large original separation, and small eccentricity could result from the rapid evaporation of a much more massive binary companion by the pulsar's radiation. Such an evaporation process is known to be taking place in at least two other binary pulsars: PSR1957 + 20 (Fruchter et al., 1990; Ryba and Taylor, 1991) and PSR1744 - 24A (Lyne et al., 1990). It is shown here that, about one million years ago, the companion mass and binary separation could have been comparable to those currently observed in the eclipsing binary pulsar PSR1957 + 20.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Górski, Marek; Gieren, Wolfgang; Catelan, Márcio
2016-06-01
We present a precise optical and near-infrared determination of the tip of the red giant branch (TRGB) brightness in the Large and Small Magellanic Clouds (respectively, LMC and SMC). The commonly used calibrations of the absolute magnitude of the TRGB lead to an overestimation of the distance to the LMC and SMC in the K band, and an underestimation of the distance in the optical I band for both galaxies. Reported discrepancies are at the level of 0.2 mag, with respect to the very accurate distance determinations to both MCs based on late-type eclipsing binaries. The differential distances between themore » LMC and SMC obtained in the J and K bands, and for the bolometric brightness are consistent with each other, and with the results obtained from eclipsing binaries and other distance indicators.« less
VizieR Online Data Catalog: Galactic bulge eclipsing & ellipsoidal binaries (Soszynski+, 2016)
NASA Astrophysics Data System (ADS)
Soszynski, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymanski, M. K.; Wyrzykowski, L.; Ulaczyk, K.; Poleski, R.; Kozlowski, S.; Skowron, D. M.; Skowron, J.; Mroz, P.; Hamanowicz, A.
2018-04-01
Our collection of binary systems in the Galactic bulge is based on the photometric data collected by the OGLE survey between 1997 and 2015 at Las Campanas Observatory, Chile, with the 1.3-m Warsaw Telescope. The observatory is operated by the Carnegie Institution for Science. In 1997-2000, during the OGLE-II stage, about 30 million stars in the area of 11 square degrees in the central parts of the Milky Way were constantly monitored. In 2001, with the beginning of the OGLE-III survey, the sky coverage was extended to nearly 69 square degrees and the number of monitored stars increased to 200 million. Finally, from 2010 until today the OGLE-IV project regularly observes about 400 million stars in 182 square degrees of the densest regions of the Galactic bulge. Our search for eclipsing variables was based primarily on the OGLE-IV data. (4 data files).
NASA Technical Reports Server (NTRS)
Eaton, J. E.; Cherepashchuk, A. M.; Khaliullin, K. F.
1982-01-01
The 1200-1900 angstrom region and fine error sensor observations in the optical for V444 Cyg were continuously observed. More than half of a primary minimum and almost a complete secondary minimum were observed. It is found that the time of minimum for the secondary eclipse is consistent with that for primary eclipse, and the ultraviolet times of minimum are consistent with the optical ones. The spectrum shows a considerable amount of phase dependence. The general shaps and depths of the light curves for the FES signal and the 1565-1900 angstrom continuum are similar to those for the blue continuum. The FES, however, detected an atmospheric eclipse in line absorption at about the phase the NIV absorption was strongest. It is suggested that there is a source of continuum absorption shortward of 1460 angstrom which exists throughout a large part of the extended atmosphere and which, by implication, must redden considerably the ultraviolet continuua of WN stars. A fairly high degree of ionization for the inner part of the WN star a atmosphere is implied.
McDonald 2.1-m and CRTS Photometry of Eclipsing Polars
NASA Astrophysics Data System (ADS)
Wells, Natalie; Mason, Paul
2018-01-01
We present broadband optical photometry of five polars made using the 2.1-m telescope of McDonald Observatory. Four of the polars are eclipsing (EP Dra, FL Cet, V2301 Oph, and a Catalina Sky Survey (CSS) polar candidate). In addition, a pre-polar (MQ Dra) was observed. Typical integration times were 1-3 seconds with no dead time. At this time resolution, eclipse structure can be seen in both one- and two-pole accretors. McDonald 2.1-m data over several years is phased together with CSS photometry covering up to 7 years, in search of indications of period variation. Combining the high-resolution, high-speed photometry obtained using the ProEm camera on the McDonald 2.1-m with the sparse, but high-quality multi-year baseline photometry of the CSS places strong constraints on the time variability of the eclipse periods in these binary systems. In most cases, eclipse variations do not perfectly fit a linear ephemeris. We investigate the source of variations using standard O-C diagram techniques and period search algorithms.
The ultraviolet spectrum of the eclipsing binary IM Aurigae
NASA Technical Reports Server (NTRS)
Bruhweiler, F. C.; Feibelman, W. A.; Kondo, Y.
1986-01-01
Low dispersion IUE spectra have been obtained at primary and secondary minima, together with a high dispersion spectrum near maximum, for the eclipsing Algol-type IM Aurigae system. The weak, sharp absorption features noted at two distinct velocities in the high dispersion data are attributed to circumbinary gaseous shells and/or gas streams between the stellar components. The implications of these results for the recently observed increase in O-C values of the primary minimum, which prompted this UV spectral search for evidence of a recent mass-loss event, are discussed.
X-rays from the eclipsing pulsar 1957+20
NASA Technical Reports Server (NTRS)
Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.
1992-01-01
The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.
NASA Astrophysics Data System (ADS)
Milone, E. F.; Munari, U.; Marrese, P. M.; Williams, M. D.; Zwitter, T.; Kallrath, J.; Tomov, T.
2005-10-01
This is the fourth in a series of papers that aim both to provide reasonable orbits for a number of eclipsing binaries and to evaluate the expected performance of Gaia of these objects and the accuracy that is achievable in the determination of such fundamental stellar parameters as mass and radius. In this paper, we attempt to derive the orbits and physical parameters for three eclipsing binaries in the mid-F to mid-G spectral range. As for previous papers, only the H_P, V_T, BT photometry from the Hipparcos/Tycho mission and ground-based radial velocities from spectroscopy in the region 8480-8740 Å are used in the analyses. These data sets simulate the photometric and spectroscopic data that are expected to be obtained by Gaia, the approved ESA Cornerstone mission to be launched in 2011. The systems targeted in this paper are SV Cam, BS Dra and HP Dra. SV Cam and BS Dra have been studied previously, allowing comparisons of the derived parameters with those from full scale and devoted ground-based investigations. HP Dra has no published orbital solution. SV Cam has a β Lyrae type light curve and the others have Algol-like light curves. SV Cam has the complication of light curve anomalies, usually attributed to spots; BS Dra has non-solar metallicity, and HP Dra appears to have a small eccentricity and a sizeable time derivative in the argument of the periastron. Thus all three provide interesting and different test cases.
NASA Astrophysics Data System (ADS)
Elgueta, S. S.; Graczyk, D.; Gieren, W.; Pietrzyński, G.; Thompson, I. B.; Konorski, P.; Pilecki, B.; Villanova, S.; Udalski, A.; Soszyński, I.; Suchomska, K.; Karczmarek, P.; Górski, M.; Wielgórski, P.
2016-08-01
We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud (LMC). The system consists of two late G-type giant stars on an eccentric orbit with an orbital period of ˜200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson-Devinney code. We derived orbital and physical parameters of the binary with a high precision of \\lt 1%. The masses and surface metallicities of the components are virtually the same and equal to 2.23+/- 0.02 {M}⊙ and [{Fe}/{{H}}]\\=\\-0.63+/- 0.10 dex. However, their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M)\\=\\18.452+/- 0.023 (statistical) ± 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter, we applied a geometrical correction for its position in the LMC disk using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is {d}{{LMC}}\\=\\50.30+/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzyński et al.
2010-12-01
Mathematics and Astronomy , 105-24 California Institute of Technology, Pasadena, CA 91125, USA 6 Nicolaus Copernicus Astronomical Center, Polish Academy of...Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA 10 Department of Astronomy , University of California...PHASES is funded in part by the California Institute of Technology Astronomy Department and by the National Aeronautics and Space Administration under
Orbital Period Increase in ES Ceti
NASA Astrophysics Data System (ADS)
de Miguel, Enrique; Patterson, Joseph; Kemp, Jonathan; Myers, Gordon; Rea, Robert; Krajci, Thomas; Monard, Berto; Cook, Lewis M.
2018-01-01
We report a long-term study of the eclipse times in the 10 minute helium binary ES Ceti. The binary period increases rapidly, with P/\\dot{P}=6.2× {10}6 years. This is consistent with the assumption that gravitational radiation (GR) drives the mass transfer, and it appears to be the first dynamical evidence that GR is indeed the driver of evolution in this class of very old cataclysmic variables—the AM Canum Venaticorum stars.
The Cluster AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster M22
NASA Astrophysics Data System (ADS)
Rozyczka, M.; Thompson, I. B.; Pych, W.; Narloch, W.; Poleski, R.; Schwarzenberg-Czerny, A.
2017-09-01
The field of the globular cluster M22 (NGC 6656) was monitored between 2000 and 2008 in a search for variable stars. BV light curves were obtained for 359 periodic, likely periodic, and long-term variables, 238 of which are new detections. 39 newly detected variables, and 63 previously known ones are members or likely members of the cluster, including 20 SX Phe, 10 RRab and 16 RRc type pulsators, one BL Her type pulsator, 21 contact binaries, and 9 detached or semi-detached eclipsing binaries. The most interesting among the identified objects are V112 - a bright multimode SX Phe pulsator, V125 - a β Lyr type binary on the blue horizontal branch, V129 - a blue/yellow straggler with a W UMa-like light curve, located halfway between the extreme horizontal branch and red giant branch, and V134 - an extreme horizontal branch object with P=2.33 d and a nearly sinusoidal light curve. All four of them are proper motion members of the cluster. Among nonmembers, a P=2.83 d detached eclipsing binary hosting a δ Sct type pulsator was found, and a peculiar P=0.93 d binary with ellipsoidal modulation and narrow minimum in the middle of one of the descending shoulders of the sinusoid. We also collected substantial new data for previously known variables. In particular we revise the statistics of the occurrence of the Blazhko effect in RR Lyr type variables of M22.
NASA Astrophysics Data System (ADS)
Oelkers, Ryan J.; Macri, Lucas M.; Marshall, Jennifer L.; DePoy, Darren L.; Lambas, Diego G.; Colazo, Carlos; Stringer, Katelyn
2016-09-01
The past two decades have seen a significant advancement in the detection, classification, and understanding of exoplanets and binaries. This is due, in large part, to the increase in use of small-aperture telescopes (<20 cm) to survey large areas of the sky to milli-mag precision with rapid cadence. The vast majority of the planetary and binary systems studied to date consists of main-sequence or evolved objects, leading to a dearth of knowledge of properties at early times (<50 Myr). Only a dozen binaries and one candidate transiting Hot Jupiter are known among pre-main-sequence objects, yet these are the systems that can provide the best constraints on stellar formation and planetary migration models. The deficiency in the number of well characterized systems is driven by the inherent and aperiodic variability found in pre-main-sequence objects, which can mask and mimic eclipse signals. Hence, a dramatic increase in the number of young systems with high-quality observations is highly desirable to guide further theoretical developments. We have recently completed a photometric survey of three nearby (<150 pc) and young (<50 Myr) moving groups with a small-aperture telescope. While our survey reached the requisite photometric precision, the temporal coverage was insufficient to detect Hot Jupiters. Nevertheless, we discovered 346 pre-main-sequence binary candidates, including 74 high-priority objects for further study. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.
New inclination changing eclipsing binaries in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.
2018-01-01
Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our work, only one such system was well characterized outside the Milky Way galaxy. Therefore, we increased this sample in a significant way. These data may provide important clues about stellar formation mechanisms for objects with different metalicity than found in our galactic neighborhood. Full Table 4 and the light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A46
NASA Astrophysics Data System (ADS)
Lillo-Box, J.; Barrado, D.; Mancini, L.; Henning, Th.; Figueira, P.; Ciceri, S.; Santos, N.
2015-04-01
Context. The Kepler mission has searched for planetary transits in more than two hundred thousand stars by obtaining very accurate photometric data over a long period of time. Among the thousands of detected candidates, the planetary nature of around 15% has been established or validated by different techniques. But additional data are needed to characterize the rest of the candidates and reject other possible configurations. Aims: We started a follow-up program to validate, confirm, and characterize some of the planet candidates. In this paper we present the radial velocity analysis of those that present large variations, which are compatible with being eclipsing binaries. We also study those showing high rotational velocities, which prevents us from reaching the necessary precision to detect planetary-like objects. Methods: We present new radial velocity results for 13 Kepler objects of interest (KOIs) obtained with the CAFE spectrograph at the Calar Alto Observatory and analyze their high-spatial resolution (lucky) images obtained with AstraLux and the Kepler light curves of some interesting cases. Results: We have found five spectroscopic and eclipsing binaries (group A). Among them, the case of KOI-3853 is of particular interest. This system is a new example of the so-called heartbeat stars, showing dynamic tidal distortions in the Kepler light curve. We have also detected duration and depth variations of the eclipse. We suggest possible scenarios to explain such an effect, including the presence of a third substellar body possibly detected in our radial velocity analysis. We also provide upper mass limits to the transiting companions of six other KOIs with high rotational velocities (group B). This property prevents the radial velocity method from achieving the necessary precision to detect planetary-like masses. Finally, we analyze the large radial velocity variations of two other KOIs, which are incompatible with the presence of planetary-mass objects (group C).These objects are likely to be stellar binaries. However, a longer timespan is needed to complete their characterization. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck Institut fur Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Appendix A is available in electronic form at http://www.aanda.org
How Accurately Can We Predict Eclipses for Algol? (Poster abstract)
NASA Astrophysics Data System (ADS)
Turner, D.
2016-06-01
(Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?
NASA Astrophysics Data System (ADS)
Walker, Gary E.
2015-01-01
We observe the long period (5.6 years) Eclipsing Binary Variable Star EE Cep during it's 2014 eclipse. It was observed on every clear night from the Maria Mitchell Observatory as well as remote sites for a total of 25 nights. Each night consisted of a detailed time series in BVRI looking for short term variations for a total of >9000 observations. The data was transformed to the Standard System. In addition, a time series was captured during the night of the eclipse. This data provides an alternate method to determine Time of Minimum than traditionally performed. The TOM varied with color. Several strong correlations are seen between colors substantiating the detection of variations on a time scale of hours. The long term light curve shows 5 interesting and different Phases with different characteristics.
NASA Astrophysics Data System (ADS)
Samadi Ghadim, A.; Lampens, P.; Jassur, M.
2018-03-01
The A-F-type stars and pulsators (δ Scuti-γ Dor) are in a critical regime where they experience a transition from radiative to convective transport of energy in their envelopes. Such stars can pulsate in both gravity and acoustic modes. Hence, the knowledge of their fundamental parameters along with their observed pulsation characteristics can help in improving the stellar models. When residing in a binary system, these pulsators provide more accurate and less model-dependent stellar parameters than in the case of their single counterparts. We present a light-curve model for the eclipsing system KIC 6048106 based on the Kepler photometry and the code PHOEBE. We aim to obtain accurate physical parameters and tough constraints for the stellar modelling of this intermediate-mass hybrid pulsator. We performed a separate modelling of three light-curve segments which show a distinct behaviour due to a difference in activity. We also analysed the Kepler Eclipse Time Variations (ETVs). KIC 6048106 is an Algol-type binary with F5-K5 components, a near-circular orbit and a 1.56-d period undergoing variations of the order of Δ P/P˜eq 3.60× 10^{-7} in 287 ± 7 d. The primary component is a main-sequence star with M1 = 1.55 ± 0.11 M⊙, R1 = 1.57 ± 0.12 R⊙. The secondary is a much cooler subgiant with M2 = 0.33 ± 0.07 M⊙, R2 = 1.77 ± 0.16 R⊙. Many small near-polar spots are active on its surface. The second quadrature phase shows a brightness modulation on a time-scale 290 ± 7 d, in good agreement with the ETV modulation. This study reveals a stable binary configuration along with clear evidence of a long-term activity of the secondary star.
V342 Andromedae B is an eccentric-orbit eclipsing binary
NASA Astrophysics Data System (ADS)
Dimitrov, W.; Kamiński, K.; Lehmann, H.; Ligęza, P.; Fagas, M.; Bagińska, P.; Kwiatkowski, T.; Bąkowska, K.; Kowalczyk, A.; Polińska, M.; Bartczak, P.; Przybyszewska, A.; Kruszewski, A.; Kurzawa, K.; Schwarzenberg-Czerny, A.
2015-03-01
We present a photometric and spectroscopic study of the visual binary V342 Andromedae. Visual components of the system have angular separations of 3 arcseconds. We obtained two spectroscopic data sets. An examination of both the A and B component spectra reveals that the B component is a spectroscopic binary with an eccentric orbit. The orbital period, taken from the Hipparcos Catalog, agrees with the orbital period of the B component measured spectroscopically. We also collected a new set of photometric measurements. The argument of periastron is close to 270° and the orbit eccentricity is not seen in our photometric data. About five years after the first spectroscopic observations, a new set of spectroscopic data was obtained. We analysed the apsidal motion, but we did not find any significant changes in the orbital orientation. A Wilson-Devinney model was calculated based on the photometric and the radial velocity curves. The result shows two very similar stars with masses M1 = 1.27 ± 0.01 M⊙, M2 = 1.28 ± 0.01 M⊙, respectively. The radii are R1 = 1.21 ± 0.01 R⊙, R2 = 1.25 ± 0.01 R⊙, respectively. Radial velocity measurements of component A, the most luminous star in the system, reveal no significant periodic variations. We calculated the time of the eclipsing binary orbit's circularization, which is about two orders of magnitude shorter than the estimated age of the system. The discrepancies in the age estimation can be explained by the Kozai effect induced by the visual component A. The atmospheric parameters and the chemical abundances for the eclipsing pair, as well as the LSD profiles for both visual components, were calculated from two high-resolution, well-exposed spectra obtained on the 2-m class telescope. Based on spectroscopy obtained at the David Dunlap Observatory, University of Toronto, Canada, Poznań Spectroscopic Telescope 1, Poland and Thüringer Landessternwarte, Tautenburg, Germany.
A Comprehensive Stellar Astrophysical Study of the Old Open Cluster M67 with Kepler
NASA Astrophysics Data System (ADS)
Mathieu, Robert D.; Vanderburg, Andrew; K2 M67 Team
2016-06-01
M67 is among the best studied of all star clusters. Being at an age and metallicity very near solar, at an accessible distance of 850 pc with low reddening, and rich in content (over 1000 members including main-sequence dwarfs, a well populated subgiant branch and red giant branch, white dwarfs, blue stragglers, sub-subgiants, X-ray sources and CVs), M67 is a cornerstone of stellar astrophysics.The K2 mission (Campaign 5) has obtained long-cadence observations for 2373 stars, both within an optimized central superaperture and as specified targets outside the superaperture. 1,432 of these stars are likely cluster members based on kinematic and photometric criteria.We have extracted light curves and corrected for K2 roll systematics, producing light curves with noise characteristics qualitatively similar to Kepler light curves of stars of similar magnitudes. The data quality is slightly poorer than for field stars observed by K2 due to crowding near the cluster core, but the data are of sufficient quality to detect seismic oscillations, binary star eclipses, flares, and candidate transit events. We are in the process of uploading light curves and various diagnostic files to MAST; light curves and supporting data will also be made available on ExoFOP.Importantly, several investigators within the M67 K2 team are independently doing light curve extractions and analyses for confirmation of science results. We also are adding extensive ground-based supporting data, including APOGEE near-infrared spectra, TRES and WIYN optical spectra, LCOGT photometry, and more.Our science goals encompass asteroseismology and stellar evolution, alternative stellar evolution pathways in binary stars, stellar rotation and angular momentum evolution, stellar activity, eclipsing binaries and beaming, and exoplanets. We will present early science results as available by the time of the meeting, and certainly including asteroseismology, blue stragglers and sub-subgiants, and newly discovered eclipsing binaries.This work is supported by NASA grant NNX15AW24A to the University of Wisconsin - Madison.
NASA Astrophysics Data System (ADS)
Rucinski, Slavek M.; Maceroni, Carla
2001-01-01
Thirty-eight long-period (P>10 days) apparently contact binary stars discovered by the OGLE-II project in the SMC show EB-type light curves and an ``inverted'' period-color relation with longer orbital periods for redder systems. The strong light variations between eclipses can be explained within a semidetached model in which ellipsoidal variations of a large, evolved, Roche lobe-filling component dominates over eclipse effects in the systemic light changes. The model requires further spectroscopic and color-curve support before it can be fully accepted. It is noted that the dominant role of the Roche lobe-filling component in the total systemic luminosity can explain the new period-luminosity-color (PLC) relation, which has been established for the long-period EB (LP-EB) systems. We call it the PLC-β relation, to distinguish it from the Cepheid relation. Two versions of the PLC-β relation-based on the (B-V)0 or (V-I)0 color indices-have been calibrated for 33 systems with (V-I)0>0.25 spanning the orbital period range of 11 to 181 days (it was found that blue systems with (V-I)0<=0.25 do not follow the same calibration). The relations can provide maximum-light, absolute-magnitude estimates accurate to ɛMV~=0.35 mag within the approximate range -3
High-level magnetic activity nature of the eclipsing binary KIC 12418816
NASA Astrophysics Data System (ADS)
Dal, H. A.; Özdarcan, O.
2018-02-01
We present comprehensive spectroscopic and photometric analysis of the detached eclipsing binary KIC 12418816, which is composed of two very similar and young main-sequence stars of spectral type K0 on a circular orbit. Combining spectroscopic and photometric modelling, we find masses and radii of the components of 0.88 ± 0.06 M⊙ and 0.85 ± 0.02 R⊙ for the primary and 0.84 ± 0.05 M⊙ and 0.84 ± 0.02 R⊙ for the secondary. Both components exhibit narrow emission features superposed on the cores of the Ca II H and K lines, while H α and H β photospheric absoprtion is more completely infilled by broader emission. Very high precision Kepler photometry reveals remarkable sinusoidal light variation at out-of-eclipse phases, indicating strong spot activity, presumably on the surface of the secondary component. Spots on the secondary component appear to migrate towards decreasing orbital phase with a migration period of 0.72 ± 0.05 yr. Besides the sinusoidal variation, we detect 81 flares and find that both components possess flare activity. Our analysis shows that 25 flares out of 81 exhibit very high energies together with lower frequency, while the rest of them are very frequent but with lower energies.
HS 0705+6700: a New Eclipsing sdB Binary
NASA Astrophysics Data System (ADS)
Drechsel, H.; Heber, U.; Napiwotzki, R.; Ostensen, R.; Solheim, J.-E.; Deetjen, J.; Schuh, S.
HS 0705+6700 is a newly discovered eclipsing sdB binary system consisting of an sdB primary and a cool secondary main sequence star. CCD photometry obtained in October and November 2000 with the 2.5m Nordic (NOT) telescope (La Palma, Tenerife) in the B passband and with the 2.2m Calar Alto telescope (CAFOS, R filter) yielded eclipse light curves with complete orbital phase coverage at high time resolution. A periodogram analysis of 12 primary minimum times distributed over the time span from October 2000 to March 2001 allowed to derive the following exact period and linear ephemeris: prim. min. = HJD 2451822.759782(22) + 0.09564665(39) ṡ E A total of 15 spectra taken with the 3.5m Calar Alto telescope (TWIN spectrograph) on March 11-12, 2001, were used to establish the radial velocity curve of the primary star (K1 = 85.8 km/s) , and to determine its basic atmospheric parameters (Teff = 29300 K, log g = 5.47). The B and R light curves were solved using our Wilson-Devinney based light curve analysis code MORO (Drechsel et al. 1995, A&A 294, 723). The best fit solution yielded exact system parameters consistent with the spectroscopic results. Detailed results will be published elsewhere (Drechsel et al. 2001, A&A, in preparation).
The Kepler Mission and Eclipsing Binaries
NASA Technical Reports Server (NTRS)
Koch, David; Borucki, William; Lissauer, J.; Basri, Gibor; Brown, Timothy; Caldwell, Douglas; Cochran, William; Jenkins, Jon; Dunham, Edward; Gautier, Nick
2006-01-01
The Kepler Mission is a photometric mission with a precision of 14 ppm (at R=12) that is designed to continuously observe a single field of view (FOV) of greater 100 sq deg in the Cygnus-Lyra region for four or more years. The primary goal of the mission is to monitor greater than 100,000 stars for transits of Earth-size and smaller planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected and light curves produced. To enhance and optimize the mission results, the stellar characteristics for all the stars in the FOV with R less than 16 will have been determined prior to launch. As part of the verification process, stars with transit candidates will have radial velocity follow-up observations performed to determine the component masses and thereby separate eclipses caused by stellar companions from transits caused by planets. The result will be a rich database on EBs. The community will have access to the archive for further analysis, such as, for EB modeling of the high-precision light curves. A guest observer program is also planned to allow for photometric observations of objects not on the target list but within the FOV, since only the pixels of interest from those stars monitored will be transmitted to the ground.
KOI-1003: A New Spotted, Eclipsing RS CVn Binary in the Kepler Field
NASA Astrophysics Data System (ADS)
Roettenbacher, Rachael M.; Kane, Stephen R.; Monnier, John D.; Harmon, Robert O.
2016-12-01
Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by systematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star—the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the system’s primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the system’s orbital and rotation periods indicates the orbit and primary star’s rotation are nearly synchronized ({P}{orb}=8.360613+/- 0.000003 {days}; {P}{rot}˜ 8.23 {days}). By assuming the secondary star is on the main sequence, we suggest the system consists of a {1.45}-0.19+0.11 {M}⊙ subgiant primary and a {0.59}-0.04+0.03 {M}⊙ main-sequence companion. Our work gives a distance of 4400 ± 600 pc and an age of t={3.0}+2.0-0.5 {Gyr}, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.
NASA Technical Reports Server (NTRS)
Applegate, James H.; Shaham, Jacob
1994-01-01
Recent observations indicate that the eclipsing pulsar binary PSR B1957+20 undergoes alternating epochs of orbital period increase and decrease. We apply a model developed to explain orbital period changes of alternating sign in other binaries to the PSR B1957+20 system and find that it fits the pulsars observations well. The novel feature of the PSR B1957+20 system is that the energy flow in the companion needed to power the orbital period change mechanism can be supplied by tidal dissipation, making the companion the first identified tidally powered star. The flow of energy in the companion drives magnetic activity, which underlies the observed orbital period variations. The magnetic activity and the wind driven by the pulsar irradiation results in a torque on the spin of the companion. This torque holds the companion out of synchronous rotation, causing tidal dissipation of energy. We propose that the progenitor had a approximately 2 hr orbital period and a companion mass of 0.1-0.2 solar mass, and the system is evolving to longer orbital periods by mass and angular momentum loss on a timescale of 10(exp 8) yr.
NASA Astrophysics Data System (ADS)
Liakos, A.; Niarchos, P.; Soydugan, E.; Zasche, P.
2012-05-01
CCD observations of 68 eclipsing binary systems, candidates for containing δ Scuti components, were obtained. Their light curves are analysed using the PERIOD04 software for possible pulsational behaviour. For the systems QY Aql, CZ Aqr, TY Cap, WY Cet, UW Cyg, HL Dra, HZ Dra, AU Lac, CL Lyn and IO UMa, complete light curves were observed due to the detection of a pulsating component. All of them, except QY Aql and IO UMa, are analysed with modern astronomical softwares in order to determine their geometrical and pulsational characteristics. Spectroscopic observations of WY Cet and UW Cyg were used to estimate the spectral class of their primary components, while for HZ Dra radial velocities of its primary were measured. O - C diagram analysis was performed for the cases showing peculiar orbital period variations, namely CZ Aqr, TY Cap, WY Cet and UW Cyg, with the aim of obtaining a comprehensive picture of these systems. An updated catalogue of 74 close binaries including a δ Scuti companion is presented. Moreover, a connection between orbital and pulsation periods, as well as a correlation between evolutionary status and dominant pulsation frequency for these systems, is discussed.
An Atlas of O-C Diagrams of Eclipsing Binary Stars
NASA Astrophysics Data System (ADS)
Kreiner, Jerzy M.; Kim, Chun-Hwey; Nha, Il-Seong
The Atlas contains data for 1,138 eclipsing binaries represented by 91,798 minima timings, collected from the usual international and local journals, observatory publications and unpublished minima. Among this source material there is a considerable representation of amateur astronomers. Some timings were found in the card-index catalogue of the Astronomical Observatory of the Jagiellonian University, Cracow. Stars were included in the Atlas provided that they satisfied 3 criteria: (1) at least 20 minima had been times; (2) these minima spanned at least 2,500 cycles; and (3) the 2,500 cycles represented no fewer than 40 years. Some additional stars not strictly satisfying these criteria were also included if useful information was available. For each star, the Atlas contains the (O-C) diagram calculated by the authors and a table of general information containing: binary characteristics; assorted catalogue numbers; the statistics of the collected minima timings; the light elements (light ephemeris); comments and literature references. All of the data and diagrams in the Atlas are also available in electronic form on the Internet at http://www.as.ap.krakow.pl/o- c".
The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster M12
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Thompson, I. B.; Narloch, W.; Pych, W.; Rozyczka, M.
2015-09-01
The field of the globular cluster M12 (NGC 6218) was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for thirty-six periodic or likely periodic variable stars. Thirty-four of these are new detections. Among the latter we identified twenty proper-motion members of the cluster: six detached or semi-detached eclipsing binaries, five contact binaries, five SX Phe pulsators, and three yellow stragglers. Two of the eclipsing binaries are located in the turnoff region, one on the lower main sequence and the remaining three among the blue stragglers. Two contact systems are blue stragglers, and the remaining three reside in the turnoff region. In the blue straggler region a total of 103 objects were found, of which 42 are proper motion members of M12, and another four are field stars. 55 of the remaining objects are located within two core radii from the center of the cluster, and as such they are likely genuine blue stragglers. We also report the discoveries of a radial color gradient of M12, and the shortest period among contact systems in globular clusters in general.
The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 6362
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Thompson, I. B.; Rozyczka, M.; Pych, W.; Narloch, W.
2014-12-01
The field of the globular cluster NGC 6362 was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for 69 periodic variable stars including 34 known RR Lyr stars, 10 known objects of other types and 25 newly detected variable stars. Among the latter we identified 18 proper-motion members of the cluster: seven detached eclipsing binaries (DEBs), six SX Phe stars, two W UMa binaries, two spotted red giants, and a very interesting eclipsing binary composed of two red giants - the first example of such a system found in a globular cluster. Five of the DEBs are located at the turnoff region, and the remaining two are redward of the lower main sequence. Eighty-four objects from the central 9×9 arcmin2 of the cluster were found in the region of cluster blue stragglers. Of these 70 are proper motion (PM) members of NGC 6362 (including all SX Phe and two W UMa stars), and five are field stars. The remaining nine objects lacking PM information are located at the very core of the cluster, and as such they are likely genuine blue stragglers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, Brad N.; Wade, Richard A.; Liss, Sandra E.
The eclipsing binary system 2M 1938+4603 consists of a pulsating hot subdwarf B star and a cool M dwarf companion in an effectively circular three-hour orbit. The light curve shows both primary and secondary eclipses, along with a strong reflection effect from the cool companion. Here, we present constraints on the component masses and eccentricity derived from the Romer delay of the secondary eclipse. Using six months of publicly available Kepler photometry obtained in short-cadence mode, we fit model profiles to the primary and secondary eclipses to measure their centroid values. We find that the secondary eclipse arrives on averagemore » 2.06 {+-} 0.12 s after the midpoint between primary eclipses. Under the assumption of a circular orbit, we calculate from this time delay a mass ratio of q = 0.2691 {+-} 0.0018 and individual masses of M{sub sd} = 0.372 {+-} 0.024 M{sub Sun} and M{sub c} = 0.1002 {+-} 0.0065 M{sub Sun} for the sdB and M dwarf, respectively. These results differ slightly from those of a previously published light-curve modeling solution; this difference, however, may be reconciled with a very small eccentricity, ecos {omega} Almost-Equal-To 0.00004. We also report a decrease in the orbital period of P-dot = (-1.23 {+-} 0.07) Multiplication-Sign 10{sup -10}.« less
HATS-36b and 24 Other Transiting/Eclipsing Systems from the HATSouth-K2 Campaign 7 Program
NASA Astrophysics Data System (ADS)
Bayliss, D.; Hartman, J. D.; Zhou, G.; Bakos, G. Á.; Vanderburg, A.; Bento, J.; Mancini, L.; Ciceri, S.; Brahm, R.; Jordán, A.; Espinoza, N.; Rabus, M.; Tan, T. G.; Penev, K.; Bhatti, W.; de Val-Borro, M.; Suc, V.; Csubry, Z.; Henning, Th.; Sarkis, P.; Lázár, J.; Papp, I.; Sári, P.
2018-03-01
We report on the result of a campaign to monitor 25 HATSouth candidates using the Kepler space telescope during Campaign 7 of the K2 mission. We discover HATS-36b (EPIC 215969174b, K2-145b), an eccentric (e=0.105+/- 0.028) hot Jupiter with a mass of 3.216+/- 0.062 {M}{{J}} and a radius of 1.235+/- 0.043 {R}{{J}}, which transits a solar-type G0V star (V = 14.386) in a 4.1752-day period. We also refine the properties of three previously discovered HATSouth transiting planets (HATS-9b, HATS-11b, and HATS-12b) and search the K2 data for TTVs and additional transiting planets in these systems. In addition, we also report on a further three systems that remain as Jupiter-radius transiting exoplanet candidates. These candidates do not have determined masses, however pass all of our other vetting observations. Finally, we report on the 18 candidates that we are now able to classify as eclipsing binary or blended eclipsing binary systems based on a combination of the HATSouth data, the K2 data, and follow-up ground-based photometry and spectroscopy. These range in periods from 0.7 day to 16.7 days, and down to 1.5 mmag in eclipse depths. Our results show the power of combining ground-based imaging and spectroscopy with higher precision space-based photometry, and serve as an illustration as to what will be possible when combining ground-based observations with TESS data.
NASA Astrophysics Data System (ADS)
Sheets, Holly A.; Deming, Drake
2017-10-01
We present the results of our work to determine the average albedo for small, close-in planets in the Kepler candidate catalog. We have adapted our method of averaging short-cadence light curves of multiple Kepler planet candidates to long-cadence data, in order to detect an average albedo for the group of candidates. Long-cadence data exist for many more candidates than the short-cadence data, and so we separate the candidates into smaller radius bins than in our previous work: 1-2 {R}\\oplus , 2-4 {R}\\oplus , and 4-6 {R}\\oplus . We find that, on average, all three groups appear darker than suggested by the short-cadence results, but not as dark as many hot Jupiters. The average geometric albedos for the three groups are 0.11 ± 0.06, 0.05 ± 0.04, and 0.23 ± 0.11, respectively, for the case where heat is uniformly distributed about the planet. If heat redistribution is inefficient, the albedos are even lower, since there will be a greater thermal contribution to the total light from the planet. We confirm that newly identified false-positive Kepler Object of Interest (KOI) 1662.01 is indeed an eclipsing binary at twice the period listed in the planet candidate catalog. We also newly identify planet candidate KOI 4351.01 as an eclipsing binary, and we report a secondary eclipse measurement for Kepler-4b (KOI 7.01) of ˜7.50 ppm at a phase of ˜0.7, indicating that the planet is on an eccentric orbit.
Coordinated XTE/EUVE Observations of Algol
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1997-01-01
EUVE, ASCA, and XTE observed the eclipsing binary Algol (Beta Per) from 1-7 Feb. 96. The coordinated observation covered approximately 2 binary orbits of the system, with a net exposure of approximately 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointing), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the Fe abundance in the Algol system.
Coronal Structures in Cool Stars
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.
2004-01-01
Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. In addition we are exploring the effects of coronas on the He I 1083081 transition that is observed in the infrared. Highlights of these are summarized below including publications during this reporting period and presentations. Ground-based magnetic Doppler imaging of cool stars suggests that active stars have active regions located at high latitudes on their surface. We have performed similar imaging in X-ray to locate the sites of enhanced activity using Chandra spectra. Chandra HETG observations of the bright eclipsing contact binary 44i Boo and Chandra LETG observations for the eclipsing binary VW Cep show X-ray line profiles that are Doppler-shifted by orbital motion. After careful analysis of the spectrum of each binary, a composite line-profile is constructed by adding the individual spectral lines. This high signal-to-noise ratio composite line-profile yields orbital velocities for these binaries that are accurate to 30 km/sec and allows their orbital motion to be studied at higher time resolutions. In conjunction with X-ray lightcurves, the phase-binned composite line-profiles constrain coronal structures to be small and located at high latitudes. These observations and techniques show the power of the Doppler Imaging Technique applied to X-ray line emission.
The Three-body System δ Circini
NASA Astrophysics Data System (ADS)
Mayer, Pavel; Harmanec, Petr; Sana, Hugues; Le Bouquin, Jean-Baptiste
2014-12-01
Delta Cir is known as an O7.5 III eclipsing and spectroscopic binary with an eccentric orbit. Penny et al. discovered the presence of a third component in the IUE spectra. The eclipsing binary and the third body revolve around a common center of gravity with a period of 1644 days in an eccentric orbit with a semimajor axis of 10 AU. We demonstrate the presence of apsidal-line rotation with a period of ≈141 yr, which is considerably longer than its theoretically predicted value, based on the published radii of the binary components derived from the Hipparchos H p light curve. However, our new solution of the same light curve resulted in smaller radii and better agreement between the observed and predicted period of the apsidal-line advance. There are indications that the third body is a binary. The object was resolved by VLTI using the PIONIER combiner; in 2012 June, the separation was 3.78 mas with magnitude difference in the H region 1.ͫ75. This result means that (assuming a distance of 770 pc) the inclination of the long orbit is 87.°7. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programs ID 65.N-0577, 67.B-0504, 074D-0300, 178.D-0361, 182.D-0356, 083.D-0589, 185.D-0056, 086.D-0997, and 087D-0946.
KIC 4150611: a rare multi-eclipsing quintuple with a hybrid pulsator
NASA Astrophysics Data System (ADS)
Hełminiak, K. G.; Ukita, N.; Kambe, E.; Kozłowski, S. K.; Pawłaszek, R.; Maehara, H.; Baranec, C.; Konacki, M.
2017-06-01
Aims: We aim to analyse KIC 4150611 (HD 181469) - an interesting, bright quintuple system that includes a hybrid δ Sct/γ Dor pulsator. Four periods of eclipses - 94.2, 8.65, 1.52 and 1.43 d - have been observed by the Kepler satellite, and three point sources (A, B, and C) are seen in high angular resolution images. Methods: From spectroscopic observations made with the HIDES spectrograph attached to the 1.88-m telescope of the Okayama Astrophysical Observatory (OAO), we have calculated for the first time radial velocities (RVs) of the component B - a pair of G-type stars - and combined them with Kepler photometry in order to obtain absolute physical parameters of this pair. We also managed to directly measure RVs of the pulsator, for the first time. Additionally, we modelled the light curves of the 1.52 and 1.43-day pairs, and measured their eclipse timing variations (ETVs). We also performed relative astrometry and photometry of three sources seen on the images taken with the NIRC2 camera of the Keck II telescope. Finally, we compared our results with theoretical isochrones. Results: The brightest component Aa is the hybrid pulsator, transited every 94.2 days by a pair of K/M-type stars (Ab1+Ab2), which themselves form a 1.52-day eclipsing binary. The components Ba and Bb are late G-type stars, forming another eclipsing pair with a 8.65 day period. Their masses and radii are MBa = 0.894 ± 0.010 M⊙, RBa = 0.802 ± 0.044 R⊙ for the primary, and MBb = 0.888 ± 0.010 M⊙, RBb = 0.856 ± 0.038 R⊙ for the secondary. The remaining period of 1.43 days is possibly related to a faint third star C, which itself is most likely a background object. The system's properties are well-represented by a 35 Myr isochrone, basing on which the masses of the pulsator and the 1.52-day pair are MAa = 1.64(6) M⊙, and MAb,tot = 0.90(13) M⊙, respectively. There are also suggestions of additional bodies in the system.
Discovery of four new low-mass white-dwarf companions in the Kepler data
NASA Astrophysics Data System (ADS)
Faigler, Simchon; Kull, Ilya; Mazeh, Tsevi; Kiefer, Flavien; Latham, David W.; Bloemen, Steven
2015-12-01
We report the discovery of four new short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white-dwarf (WD) secondary (dA+WD) - KIC 4169521, KOI-3818, KIC 2851474 and KIC 9285587. These add to the 6 Kepler, and 19 non-Kepler, previously known short-period eclipsing dA+WD binaries.The discoveries were made through searching the light curves of bright Kepler stars for BEaming, Ellipsoidal and Reflection (BEER) modulations that are consistent with a compact companion, using the BEER search algorithm. This was followed by inspection of the search top hits, looking for eclipsing systems with a secondary eclipse deeper than the primary one, as expected for a WD that is hotter than the primary star. Follow-up spectroscopic radial-velocity (RV) observations confirmed the binarity of the systems. We derive the systems' parameters through analyses of the light curves' eclipses and phase modulations, combined with RV orbital solutions and stellar evolution models.The four systems' orbital periods of 1.17-3.82 days and WD masses of 0.19-0.22 Msun are similar to those reported for the previously known systems. These values are consistent with evolution models of such systems, that undergo a stable mass transfer from the WD progenitor to the current A star.For KIC 4169521 we derive a bloated WD radius of 0.09 Rsun that is well within the WD radius range of 0.04-0.43 Rsun of the known systems. For the remaining three systems we report WD radii of 0.026-0.035 Rsun, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries.As suggested before, the previously known systems, together with KIC 4169521, all with hot and bloated WD secondaries, represent young systems probably at a proto-WD, or initial WD cooling track stage. The other three new systems - KOI-3818, KIC 2851474, and KIC 9285587, are probably positioned further along the WD cooling track, and extend the known population to older systems with cooler and smaller WD secondaries.
The Eclipsing System EP Andromedae and Its Circumbinary Companions
NASA Astrophysics Data System (ADS)
Lee, Jae Woo; Hinse, Tobias Cornelius; Park, Jang-Ho
2013-04-01
We present new long-term CCD photometry for EP And acquired during the period 2007-2012. The light curves display total eclipses at primary minima and season-to-season light variability. Our synthesis for all available light curves indicates that the eclipsing pair is a W-type overcontact binary with parameters of q = 2.578, i = 83.°3, ΔT = 27 K, f = 28%, and l 3 = 2%-3%. The asymmetric light curves in 2007 were satisfactorily modeled by a cool spot on either of the eclipsing components from a magnetic dynamo. Including our 95 timing measurements, a total of 414 times of minimum light spanning about 82 yr was used for a period study. A detailed analysis of the eclipse timing diagram revealed that the orbital period of EP And has varied as a combination of an upward-opening parabola and two periodic variations, with cycle lengths of P 3 = 44.6 yr and P 4 = 1.834 yr and semi-amplitudes of K 3 = 0.0100 days and K 4 = 0.0039 days, respectively. The observed period increase at a fractional rate of +1.39 × 10-10 is in excellent agreement with that calculated from the W-D code and can be plausibly explained by some combination of mass transfer from the primary to the secondary star and angular momentum loss due to magnetic braking. The most reasonable explanation for both cycles is a pair of light-travel-time effects driven by the possible existence of a third and fourth component with projected masses of M 3 = 0.25 M ⊙ and M 4 = 0.90 M ⊙. The more massive companion could be revealed using high-resolution spectroscopic data extending over the course of a few years and could also be a binary itself. It is possible that the circumbinary objects may have played an important role in the formation and evolution of the eclipsing pair, which would cause it to have a short initial orbital period and thus evolve into an overcontact configuration by angular momentum loss.
MESA models for the evolutionary status of the epsilon Aurigae disk-eclipsed binary system
NASA Astrophysics Data System (ADS)
Stencel, Robert E.; Gibson, Justus
2018-06-01
The brightest member of the class of disk-eclipsed binary stars is the Algol-like long-period binary, epsilon Aurigae (HD 31964, F0Iap + disk, http://adsabs.harvard.edu/abs/2016SPIE.9907E..17S ). Using MESA (Modules for Experiments in Stellar Astrophysics, version 9575), we have made an evaluation of its evolutionary state. We sought to satisfy several observational constraints, including: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C / 13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 solar masses, with a 100 day initial period, produces a 1.2 + 10.6 solar masses result having a 547 day period, plus a single digit 12C / 13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long period binary stars. This report has been submitted to MNRAS, along with a parallel investigation of mass transfer stream and disk sub-structure. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver.
On the optical search for Centaurus X-3.
NASA Technical Reports Server (NTRS)
Brucato, R. J.; Kristian, J.; Westphal, J. A.
1972-01-01
Elimination of the optical eclipsing binary LR Cen as a candidate for Cen X-3 on the basis of a real discrepancy of orbital periods. It is believed that the position coincidence of Wray 795 with Cen X-3 is not statistically significant.
Observation of Young Stars at the University Observatory Jena
NASA Astrophysics Data System (ADS)
Berndt, A.; Errmann, R.; Maciejewski, G.; Raetz, St.; Marka, C.; Ginski, Ch.; Mugrauer, M.; Schmidt, T. O. B.; Neuhäuser, R.; Seeliger, M.; Moualla, M.; Pribulla, T.; Hohle, M. M.; Tetzlaff, N.; Adam, Ch.; Eisenbeiss, T.; YETI Team
2011-12-01
We report on observation and determination of rotational and orbital periods of young stars and eclipsing binaries in the young open cluster Trumpler 37. Observations were carried out with the "Schmidt-Teleskop-Kamera" (STK) at University Observatory Jena in 2009 and 2010.
Have Observatory, Will Travel.
ERIC Educational Resources Information Center
White, James C., II
1996-01-01
Describes several of the labs developed by Project CLEA (Contemporary Laboratory Experiences in Astronomy). The computer labs cover simulated spectrometer use, investigating the moons of Jupiter, radar measurements, energy flow out of the sun, classifying stellar spectra, photoelectric photometry, Doppler effect, eclipsing binary stars, and lunar…
The EB factory project. II. Validation with the Kepler field in preparation for K2 and TESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parvizi, Mahmoud; Paegert, Martin; Stassun, Keivan G., E-mail: mahmoud.parvizi@vanderbilt.edu
Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical “by eye” human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline—the Eclipsing Binary Factory (EBF)—that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performancemore » of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler “Q3” Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ∼2600 EBs. When we require EB classification with ⩾90% confidence, we find that the EBF correctly identifies and classifies eclipsing contact (EC), eclipsing semi-detached (ESD), and eclipsing detached (ED) systems with a false positive rate of only 4%, 4%, and 8%, while complete to 64%, 46%, and 32%, respectively. When classification confidence is relaxed, the EBF identifies and classifies ECs, ESDs, and EDs with a slightly higher false positive rate of 6%, 16%, and 8%, while much more complete to 86%, 74%, and 62%, respectively. Through our processing of the entire Kepler “Q3” data set, we also identify 68 new candidate EBs that may have been missed by the human generated Kepler EB Catalog. We discuss the EBF's potential application to light curve classification for periodic variable stars more generally for current and upcoming surveys like K2 and the Transiting Exoplanet Survey Satellite.« less
The Eb Factory Project. Ii. Validation With the Kepler Field in Preparation for K2 and Tess
NASA Astrophysics Data System (ADS)
Parvizi, Mahmoud; Paegert, Martin; Stassun, Keivan G.
2014-12-01
Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical “by eye” human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline—the Eclipsing Binary Factory (EBF)—that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performance of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler “Q3” Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ˜ 2600 EBs. When we require EB classification with ≥slant 90% confidence, we find that the EBF correctly identifies and classifies eclipsing contact (EC), eclipsing semi-detached (ESD), and eclipsing detached (ED) systems with a false positive rate of only 4%, 4%, and 8%, while complete to 64%, 46%, and 32%, respectively. When classification confidence is relaxed, the EBF identifies and classifies ECs, ESDs, and EDs with a slightly higher false positive rate of 6%, 16%, and 8%, while much more complete to 86%, 74%, and 62%, respectively. Through our processing of the entire Kepler “Q3” data set, we also identify 68 new candidate EBs that may have been missed by the human generated Kepler EB Catalog. We discuss the EBF's potential application to light curve classification for periodic variable stars more generally for current and upcoming surveys like K2 and the Transiting Exoplanet Survey Satellite.
Kepler Observations of V447 Lyr: an Eclipsing U Gem Cataclysmic Variable
NASA Technical Reports Server (NTRS)
Ramsay, Gavin; Cannizzo, John K.; Howell, Steve B.; Wood, Matt A.; Still, Martin; Barclay, Thomas; Smale, Alan
2012-01-01
We present the results of an analysis of Kepler data covering 1.5 yr of the dwarf nova V447 Lyr. We detect eclipses of the accretion disc by the mass donating secondary star every 3.74 h which is the binary orbital period. V447 Lyr is therefore the first dwarf nova in the Kepler field to show eclipses.We also detect five long outbursts and six short outbursts showing V447 Lyr is a U Gem-type dwarf nova. We show that the orbital phase of the mid-eclipse occurs earlier during outbursts compared to quiescence and that the width of the eclipse is greater during outburst. This suggests that the bright spot is more prominent during quiescence and that the disc is larger during outburst than quiescence. This is consistent with an expansion of the outer disc radius due to the presence of high viscosity material associated with the outburst, followed by a contraction in quiescence due to the accretion of low angular momentum material. We note that the long outbursts appear to be triggered by a short outburst, which is also observed in the super-outbursts of SU UMa dwarf novae as observed using Kepler.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Sweta; Nelemans, Gijs, E-mail: s.shah@astro.ru.nl
The discovery of the most compact detached white dwarf (WD) binary SDSS J065133.33+284423.3 has been discussed in terms of probing the tidal effects in WDs. This system is also a verification source for the space-based gravitational wave (GW) detector, eLISA, or the evolved Laser Interferometer Space Antenna, which will observe short-period compact Galactic binaries with P {sub orb} ≲ 5 hr. We address the prospects of performing tidal studies using eLISA binaries by showing the fractional uncertainties in the orbital decay rate, f-dot , and the rate of that decay, f{sup ¨} expected from both the GW and electromagnetic (EM)more » data for some of the high-f binaries. We find that f-dot and f{sup ¨} can be measured using GW data only for the most massive WD binaries observed at high frequencies. From timing the eclipses for ∼10 yr, we find that f-dot can be known to ∼0.1% for J0651. We find that from GW data alone, measuring the effects of tides in binaries is (almost) impossible. We also investigate the improvement in the knowledge of the binary parameters by combining the GW amplitude and inclination with EM data with and without f-dot . In our previous work, we found that EM data on distance constrained the 2σ uncertainty in chirp mass to 15%-25% whereas adding f-dot reduces it to 0.11%. EM data on f-dot also constrain the 2σ uncertainty in distance to 35%-19%. EM data on primary mass constrain the secondary mass m {sub 2} to factors of two to ∼40% whereas adding f-dot reduces this to 25%. Finally, using single-line spectroscopic data constrains 2σ uncertainties in both the m {sub 2}, d to factors of two to ∼40%. Adding EM data on f-dot reduces these 2σ uncertainties to ≤25% and 6%-19%, respectively. Thus we find that EM measurements of f-dot and radial velocity are valuable in constraining eLISA binary parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Eunkyu; Muirhead, Philip S.; Swift, Jonathan J.
Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius ofmore » the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.« less
Is There a Circumbinary Planet around NSVS 14256825?
NASA Astrophysics Data System (ADS)
Nasiroglu, Ilham; Goździewski, Krzysztof; Słowikowska, Aga; Krzeszowski, Krzysztof; Żejmo, Michał; Zola, Staszek; Er, Huseyin; Ogłoza, Waldemar; Dróżdż, Marek; Koziel-Wierzbowska, Dorota; Debski, Bartlomiej; Karaman, Nazli
2017-03-01
The cyclic behavior of (O-C) residuals of eclipse timings in the sdB+M eclipsing binary NSVS 14256825 was previously attributed to one or two Jovian-type circumbinary planets. We report 83 new eclipse timings that not only fill in the gaps in those already published but also extend the time span of the (O-C) diagram by three years. Based on the archival and our new data spanning over more than 17 years, we re-examined the up-to-date system (O-C). The data revealed a systematic, quasi-sinusoidal variation deviating from an older linear ephemeris by about 100 s. It also exhibits a maximum in the (O-C) near JD 2,456,400 that was previously unknown. We consider two most credible explanations of the (O-C) variability: the light propagation time due to the presence of an invisible companion in a distant circumbinary orbit, and magnetic cycles reshaping one of the binary components, known as the Applegate or Lanza-Rodonó effect. We found that the latter mechanism is unlikely due to the insufficient energy budget of the M-dwarf secondary. In the framework of the third-body hypothesis, we obtained meaningful constraints on the Keplerian parameters of a putative companion and its mass. Our best-fitting model indicates that the observed quasi-periodic (O-C) variability can be explained by the presence of a brown dwarf with the minimal mass of 15 Jupiter masses rather than a planet, orbiting the binary in a moderately elliptical orbit (e≃ 0.175) with a period of ˜10 years. Our analysis rules out the two-planet model proposed earlier.
WIYN OPEN CLUSTER STUDY. XXXVI. SPECTROSCOPIC BINARY ORBITS IN NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.
2009-04-15
We present 98 spectroscopic binary orbits resulting from our ongoing radial velocity survey of the old (7 Gyr) open cluster NGC 188. All but 13 are high-probability cluster members based on both radial velocity and proper motion membership analyses. Fifteen of these member binaries are double lined. Our stellar sample spans a magnitude range of 10.8 {<=}V{<=} 16.5 (1.14-0.92 M {sub sun}) and extends spatially to 17 pc ({approx}13 core radii). All of our binary orbits have periods ranging from a few days to on the order of 10{sup 3} days, and thus are hard binaries that dynamically power themore » cluster. For each binary, we present the orbital solutions and place constraints on the component masses. Additionally, we discuss a few binaries of note from our sample, identifying a likely blue straggler-blue straggler binary system (7782), a double-lined binary with a secondary star which is underluminous for its mass (5080), two potential eclipsing binaries (4705 and 5762), and two binaries which are likely members of a quadruple system (5015a and 5015b)« less
NASA Astrophysics Data System (ADS)
Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne
2018-07-01
AX J1745.6-2901 is an eclipsing low-mass X-ray binary in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust-scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line of sight (LOS). The apparent dependence on the instruments is caused by different instrumental point spread functions. Our results can be used to assess the influence of dust-scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust-scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to the Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disc in-between.
Keck spectroscopy of millisecond pulsar J2215+5135: a moderate-M
Romani, Roger W.; Graham, Melissa L.; Filippenko, Alexei V.; ...
2015-08-07
We present Keck spectroscopic measurements of the millisecond pulsar binary J2215+5135. These data indicate a neutron-star (NS) massmore » $${M}_{\\mathrm{NS}}=1.6\\;{M}_{\\odot }$$, much less than previously estimated. The pulsar heats the companion face to $${T}_{D}\\approx 9000$$ K; the large heating efficiency may be mediated by the intrabinary shock dominating the X-ray light curve. At the best-fit inclination i = 88 $$^o\\atop{.}$$ 8, the pulsar should be eclipsed. Here, we find weak evidence for such eclipses in the pulsed gamma-rays; an improved radio ephemeris allows use of up to five times more Fermi-Large Area Telescope gamma-ray photons for a definitive test of this picture. If confirmed, the gamma-ray eclipse provides a novel probe of the dense companion wind and the pulsar magnetosphere.« less
EE Cep Winks in Full Color (Abstract)
NASA Astrophysics Data System (ADS)
Walker, G.
2015-06-01
(Abstract only) We observe the long period (5.6 years) Eclipsing Binary Variable Star EE Cep during its 2014 eclipse. It was observed on every clear night from the Maria Mitchell Observatory as well as remote sites for a total of 25 nights. Each night consisted of a detailed time series in BVRI looking for short term variations for a total of >10,000 observations. The data was transformed to the Standard System. In addition, a time series was captured during the night of the eclipse. This data provides an alternate method to determine Time of Minimum than traditionally performed. The TOM varied with color. Several strong correlations are seen between colors substantiating the detection of variations on a time scale of hours. The long term light curve shows five interesting and different Phases with different characteristics.
Imaging Stellar Surface with The CHARA Array
NASA Astrophysics Data System (ADS)
Schaefer, Gail
2018-04-01
I will provide an overview of results on imaging stellar surfaces with the CHARA Array. These include imaging gravity darkening on rapid rotators, starspots on magnetically active stars, convective cells on red supergiants, and stellar winds from massive stars. In binary systems, the CHARA Array has been used to observe tidal distortions from Roche lobe filling in interactive binaries, transiting companions as they move through eclipse, and the angular expansion of novae explosions. I will discuss the impact of these results in an astrophysical context.
A search for Lyman-alpha emission in beta Lyrae from Copernicus
NASA Technical Reports Server (NTRS)
Kondo, Y.; Mccluskey, G. E., Jr.
1974-01-01
High-resolution (0.2 A) spectrophotometric observations of the complex eclipsing binary beta Lyrae were obtained with the Princeton Telescope Spectrometer on the Copernicus satellite. We discuss the search for L-alpha emission in beta Lyrae and compare the Copernicus results with the OAO-2 observations of the same binary system. The possible L-alpha emission features observed from OAO-2 are identified as blends of the emission lines of other elements in the vicinity of L-alpha.
Campaign for a New Eclipsing Cepheid
NASA Astrophysics Data System (ADS)
Henden, Arne; Welch, Doug; Terrell, Dirk
2007-06-01
ASAS 182611+1212.6, discovered by Pojmanski et al. during the ASAS survey, independently discovered by Antipin at al. on Moscow archive plates, and found in the NSVS (Wozniak et al. 2004, AJ 127, 2436), was initially classified as a typical Type II Cepheid with a period of 4.1523 days. However, scatter in the light curve indicated possible multiperiodic behavior. After 3 years of CCD observations by Antipin, the system was seen to exhibit eclipses of period 51.38 days and amplitude about 0.3 mag (primary) and possibly about 0.2 mag (secondary). This is the first known glactic eclipsing binary Cepheid. The AAVSO is conducting a campaign to study this star via high-precision, multicolor photometry obtained over several eclipse cycles. Observers are requested to obtain multicolor photometry with a S/N=100 or better on every image. Time resolution of one hour is adequate, so cycling through the filters need not be rushed. Apply transformation coefficients when possible. For calculating ephemerides, the pulsational maximum occurred on HJD 2453196.529 with a period of 4.1523 days; the eclipse primary minimum occurred on HJD 2453571.36 with a period of 51.38 days. The next primary eclipse will occur around July 9, but these eclipses are several days wide. A finding chart may be found at http://www.aavso.org/observing/charts/vsp (enter ASAS182612 for its name, or use the coordinates) with suitable comparison stars marked. Report/upload observations to the AAVSO.
New Spectroscopic Solution of the Eclipsing Binary HX Vel A
NASA Astrophysics Data System (ADS)
Sürgit, D.; Erdem, A.; Özkardeş, B.; Butland, R.; Budding, E.
2015-07-01
We present a preliminary analysis of new spectroscopic observations of the southern binary HX Vel A. High-resolution spectroscopic observations were made at the Mt. John University Observatory in 2014. Radial velocities for HX Vel A were determined from the Gaussian profile-fitting method. The Keplerian radial velocity model gives the close binary mass ratio as 0.57±0.06. The resulting orbital elements are a1sin i=0.0086 ±0.0003 au, a2sin i=0.0151 ±0.0003 au, M1 sin3i =0.887 ±0.046 M⊙, and M2 sin3i =0.504 ±0.032 M⊙.
NASA Technical Reports Server (NTRS)
Bernacca, P. L.
1971-01-01
The correlation between the equatorial velocities of the components of double stars is studied from a statistical standpoint. A theory of rotational correlation is developed and discussed with regard to its applicability to existing observations. The theory is then applied to a sample of visual binaries which are the least studied for rotational coupling. Consideration of eclipsing systems and spectroscopic binaries is limited to show how the degrees of freedom in the spin parallelism problem can be reduced. The analysis lends support to the existence of synchronism in closely spaced binaries.
Twelve years of IUE spectra of the interacting binary VV Cephei
NASA Technical Reports Server (NTRS)
Bauer, W. H.; Stencel, R. E.; Neff, D. H.
1991-01-01
All well-exposed high-resolution IUE spectra obtained of the eclipsing binary system VV Cephei (M2Iabep + B) are examined. High-temperature absorption features attributable to the hot companion were detected, indicating that the companion (or the inner regions of its accretion disk) are not as hot as a B1-B2 star. Doubling of Fe II (UV 1) lines, with an additional narrow component redshifted by about 60 km/sec, occurs only when the B star is behind the plane of the sky containing the M supergiant, suggesting the existence of mass transfer from the red to the blue star. Absorption features from neutral elements weaken dramatically during egress, while those from ionized elements remain at nearly constant strength. During egress from primary eclipse, the Mg II resonance doublet shows asymmetric double-peaked emission indicative of formation in an expanding chromosphere. It is concluded that the outer atmosphere of the M supergiant is highly clumped.
The hot subdwarf in the eclipsing binary HD 185510
NASA Technical Reports Server (NTRS)
Jeffery, C. S.; Simon, Theodore; Evans, T. L.
1992-01-01
High-resolution spectroscopic measurements of radial velocity are employed to characterize the eclipsing binary HD 185510 in terms of masses and evolutionary status. The IUE is used to obtain the radial velocities which indicate a large mass ratio Mp/Ms of 7.45 +/- 0.15, and Teff is given at 25,000 +/- 1000 K based on Ly alpha and UV spectrophotometry. Photometric observations are used to give an orbital inclination of between 90 and 70 deg inclusive, leading to masses of 0.31-0.37 and 2.3-2.8 solar mass for the hot star and the K star, respectively. The surface gravity of HD 185510B is shown to be higher than those values for sdB stars suggesting that the object is a low-mass white dwarf that has not reached its fully degenerate configuration. The object is theorized to be a low-mass helium main-sequence star or a nascent helium degenerate in a post-Algol system.
Doppler Imaging with FUSE: The Partially Eclipsing Binary VW Cep
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Brickhouse, Nancy
2003-01-01
This report covers the FUSE Guest Observer program. This project involves the study of emission line profiles for the partially eclipsing, rapidly rotating binary system VW Cep. Active regions on the surface of the star(s) produce observable line shifts as the stars move with respect to the observer. By studying the time-dependence of the line profile changes and centroid shifts, one can determine the location of the activity. FUSE spectra were obtained by the P.I. 27 Sept 2002 and data reduction is in progress. Since we are interested in line profile analysis, we are now investigating the wavelength scale calibration in some detail. We have also obtained and are analyzing Chandra data in order to compare the X-ray velocities with the FUV velocities. A complementary project comparing X-ray and Far UltraViolet (FUV) emission for the similar system 44i Boo is also underway. Postdoctoral fellow Ronnie Hoogerwerf has joined the investigation team and will perform the data analysis, once the calibration is optimized.
Kepler eclipsing binaries with δ Scuti components and tidally induced heartbeat stars
NASA Astrophysics Data System (ADS)
Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.
δ Scuti stars are generally fast rotators and their pulsations are not in the asymptotic regime, so the interpretation of their pulsation spectra is a very difficult task. Binary stars, especially eclipsing systems, offer us the opportunity to constrain the space of fundamental stellar parameters. Firstly, we show the results of KIC9851944 and KIC4851217 as two case studies. We found the signature of the large frequency separation in the pulsational spectrum of both stars. The observed mean stellar density and the large frequency separation obey the linear relation in the log-log space as found by Suarez et al. (2014) and García Hernández et al. (2015). Second, we apply the simple `one-layer model' of Moreno & Koenigsberger (1999) to the prototype heartbeat star KOI-54. The model naturally reproduces the tidally induced high frequency oscillations and their frequencies are very close to the observed frequency at 90 and 91 times the orbital frequency.
VizieR Online Data Catalog: Detection of Kepler multiple M-star systems (Rappaport+, 2014)
NASA Astrophysics Data System (ADS)
Rappaport, S.; Swift, J.; Levine, A.; Joss, M.; Sanchis-Ojeda, R.; Barclay, T.; Still, M.; Handler, G.; Olah, K.; Muirhead, P. S.; Huber, D.; Vida, K.
2017-07-01
In all, we find 297 of the 3897 targets exhibit the requisite significant Fourier transform (FT) signal comprising a base frequency plus its harmonic, with the base frequency exceeding 0.5 cycles/day (i.e., Prot<2 days). We believe that the majority of these periodicities are likely to be due to stellar rotation manifested via starspots, but a significant number may be due to planet transits and binary eclipses. The individual FTs for these systems were further examined to eliminate those which were clearly not due to rotating starspots. In all cases we folded the data modulo the detected fundamental period, and were readily able to rule out cases due to transiting planets since their well-known sharp, relatively rectangular dipping profiles are characteristic. Of course, we also checked the KOI list for matches. Any of the objects that appear in the Kepler eclipsing binary ("EB") star catalog (e.g., Matijevic et al. 2012AJ....143..123M) were likewise eliminated. (2 data files).
NASA Astrophysics Data System (ADS)
Hubrig, S.; Savanov, I.; Ilyin, I.; González, J. F.; Korhonen, H.; Lehmann, H.; Schöller, M.; Granzer, T.; Weber, M.; Strassmeier, K. G.; Hartmann, M.; Tkachenko, A.
2010-10-01
The system ARAur is a young late B-type double-lined eclipsing binary with a primary star of HgMn peculiarity. We applied the Doppler imaging method to reconstruct the distribution of Fe and Y over the surface of the primary using spectroscopic time series obtained in 2005 and from 2008 October to 2009 February. The results show a remarkable evolution of the element distribution and overabundances. Measurements of the magnetic field with the moment technique using several elements reveal the presence of a longitudinal magnetic field of the order of a few hundred gauss in both stellar components and a quadratic field of the order of 8kG on the surface of the primary star. Based on observations obtained at the 2.56-m Nordic Optical Telescope on La Palma, the Karl-Schwarzschild-Observatorium in Tautenburg and the STELLA robotic telescope on Tenerife. E-mail: shubrig@aip.de
Star-spot distributions and chromospheric activity on the RS CVn type eclipsing binary SV Cam
NASA Astrophysics Data System (ADS)
Şenavcı, H. V.; Bahar, E.; Montes, D.; Zola, S.; Hussain, G. A. J.; Frasca, A.; Işık, E.; Yörükoǧlu, O.
2018-06-01
Using a time series of high-resolution spectra and high-quality multi-colour photometry, we reconstruct surface maps of the primary component of the RS CVn type rapidly rotating eclipsing binary, SV Cam (F9V + K4V). We measure a mass ratio, q, of 0.641(2) using our highest quality spectra and obtain surface brightness maps of the primary component, which exhibit predominantly high-latitude spots located between 60° - 70° latitudes with a mean filling factor of ˜35%. This is also indicated by the R-band light curve inversion, subjected to rigourous numerical tests. The spectral subtraction of the Hα line reveals strong activity of the secondary component. The excess Hα absorption detected near the secondary minimum hints to the presence of cool material partially obscuring the primary star. The flux ratios of Ca II IRT excess emission indicate that the contribution of chromospheric plage regions associated with star-spots is dominant, even during the passage of the filament-like absorption feature.
KOI-3278: a self-lensing binary star system.
Kruse, Ethan; Agol, Eric
2014-04-18
Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.
Survival of planets around shrinking stellar binaries
Muñoz, Diego J.; Lai, Dong
2015-01-01
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412
Survival of planets around shrinking stellar binaries.
Muñoz, Diego J; Lai, Dong
2015-07-28
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.
NASA Astrophysics Data System (ADS)
Brogaard, K.; Hansen, C. J.; Miglio, A.; Slumstrup, D.; Frandsen, S.; Jessen-Hansen, J.; Lund, M. N.; Bossini, D.; Thygesen, A.; Davies, G. R.; Chaplin, W. J.; Arentoft, T.; Bruntt, H.; Grundahl, F.; Handberg, R.
2018-05-01
We aim to establish and improve the accuracy level of asteroseismic estimates of mass, radius, and age of giant stars. This can be achieved by measuring independent, accurate, and precise masses, radii, effective temperatures and metallicities of long period eclipsing binary stars with a red giant component that displays solar-like oscillations. We measured precise properties of the three eclipsing binary systems KIC 7037405, KIC 9540226, and KIC 9970396 and estimated their ages be 5.3 ± 0.5, 3.1 ± 0.6, and 4.8 ± 0.5 Gyr. The measurements of the giant stars were compared to corresponding measurements of mass, radius, and age using asteroseismic scaling relations and grid modelling. We found that asteroseismic scaling relations without corrections to Δν systematically overestimate the masses of the three red giants by 11.7 per cent, 13.7 per cent, and 18.9 per cent, respectively. However, by applying theoretical correction factors fΔν according to Rodrigues et al. (2017), we reached general agreement between dynamical and asteroseismic mass estimates, and no indications of systematic differences at the precision level of the asteroseismic measurements. The larger sample investigated by Gaulme et al. (2016) showed a much more complicated situation, where some stars show agreement between the dynamical and corrected asteroseismic measures while others suggest significant overestimates of the asteroseismic measures. We found no simple explanation for this, but indications of several potential problems, some theoretical, others observational. Therefore, an extension of the present precision study to a larger sample of eclipsing systems is crucial for establishing and improving the accuracy of asteroseismology of giant stars.
NASA Astrophysics Data System (ADS)
Torres, Guillermo; Mader, Jeff A.; Marschall, Laurence A.; Neuhäuser, Ralph; Duffy, Alaine S.
2003-06-01
We present new photometric observations in the BVRI bands of the double-lined eclipsing binary BD +05°706 conducted over three observing seasons, as well as new X-ray observations obtained with ROSAT covering a full orbital cycle (P=18.9 days). A detailed light-curve analysis of the optical data shows the system to be semidetached, confirming indications from an earlier analysis by Torres et al. (published in 1998), with the less massive and cooler star filling its Roche lobe. The system is a member of the rare class of cool Algol systems, which are different from the ``classical'' Algol systems in that the mass-gaining component is also a late-type star rather than a B- or A-type star. By combining the new photometry with a reanalysis of the spectroscopic observations reported by Torres et al., we derive accurate absolute masses for the components of M1=2.633+/-0.028 Msolar and M2=0.5412+/-0.0093 Msolar, radii of R1=7.55+/-0.20 Rsolar and R2=11.02+/-0.21 Rsolar, as well as effective temperatures of 5000+/-100 and 4640+/-150 K, for the primary and secondary, respectively. There are obvious signs of activity (spottedness) in the optical light curve of the binary. Our X-ray light curve clearly shows the primary eclipse but not the secondary eclipse, suggesting that the primary star is the dominant source of the activity in the system. The depth and duration of the eclipse allow us to infer some of the properties of the X-ray-emitting region around that star.
Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026
NASA Astrophysics Data System (ADS)
Devasia, Jincy; Paul, Biswajit
2018-02-01
We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ˜ 87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence during this observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the 1.0-10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellar absorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5-10.5 keV energy band which revealed significant variations in the spectral parameters, especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.
NASA Astrophysics Data System (ADS)
Alton, K. B.
2018-06-01
Abstract TYC 2058-753-1 (NSVS 7903497; ASAS 165139+2255.7) is a W UMa binary system (P = 0.353205 d) which has not been rigorously studied since first being detected nearly 15 years ago by the ROTSE-I telescope. Other than the unfiltered ROTSE-I and monochromatic All Sky Automated Survey (ASAS) survey data, no multi-colored light curves (LC) have been published. Photometric data collected in three bandpasses (B, V, and Ic) at Desert Bloom Observatory in June 2017 produced six times-of-minimum for TYC 2058-753-1 which were used to establish a linear ephemeris from the first directly measured Min I epoch (HJD0). No published radial velocity data are available for this system, however, since this W UMa binary undergoes a very obvious total eclipse, Roche modeling produced a well-constrained photometric value for the mass ratio (qph = 0.103 ± 0.001). This low-mass ratio binary star system also exhibits a high degree of contact (f > 56%). There is a suggestion from the ROTSE-I and ASAS survey data as well as from the new LCs reported herein that maximum light during quadrature (Max I and Max II) is often not equal. As a result, Roche modeling of the TYC 2058-753-1 LCs was investigated with and without surface spots to address this asymmetry as well as a diagonally-aligned flat bottom during Min I that was observed in 2017.
A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.
Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi
2007-10-18
Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.
We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less
Multi-color light curves and orbital period research of eclipsing binary V1073 Cyg
NASA Astrophysics Data System (ADS)
Tian, Xiao-Man; Zhu, Li-Ying; Qian, Sheng-Bang; Li, Lin-Jia; Jiang, Lin-Qiao
2018-02-01
New multi-color BV RcIc photometric observations are presented for the W UMa type eclipsing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of this system, showing that V1073 Cyg is a shallow contact binary system with a fill-out factor f = 0.124(±0.011). We collected all available times of light minima spanning 119 yr, including CCD data to construct the O ‑ C curve, and performed detailed O ‑ C analysis. The O ‑ C diagram shows that the period change is complex. A long-term continuous decrease and a cyclic variation exist. The period is decreasing at a rate of Ṗ = ‑1.04(±0.18) × 10‑10 d cycle‑1 and, with the period decrease, V1073 Cyg will evolve to the deep contact stage. The cyclic variation with a period of P 3 = 82.7(±3.6) yr and an amplitude of A = 0.028(±0.002)d may be explained by magnetic activity of one or both components or the light travel time effect caused by a distant third companion with M 3(i‧ = 90°) = 0.511 M⊙.
The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 3201
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Rozyczka, M.; Thompson, I. B.; Narloch, W.; Mazur, B.; Pych, W.; Schwarzenberg-Czerny, A.
2016-01-01
The field of the globular cluster NGC 3201 was monitored between 1998 and 2009 in a search for variable stars. BV light curves were obtained for 152 periodic or likely periodic variables, fifty-seven of which are new detections. Thirty-seven newly detected variables are proper motion members of the cluster. Among them we found seven detached or semi-detached eclipsing binaries, four contact binaries, and eight SX Phe pulsators. Four of the eclipsing binaries are located in the turnoff region, one on the lower main sequence and the remaining two slightly above the subgiant branch. Two contact systems are blue stragglers, and another two reside in the turnoff region. In the blue straggler region a total of 266 objects were found, of which 140 are proper motion (PM) members of NGC 3201, and another nineteen are field stars. Seventy-eight of the remaining objects for which we do not have PM data are located within the half-light radius from the center of the cluster, and most of them are likely genuine blue stragglers. Four variable objects in our field of view were found to coincide with X-ray sources: three chromospherically active stars and a quasar at a redshift z≍0.5.
NASA Astrophysics Data System (ADS)
Bonanos, A. Z.; Stanek, K. Z.; Udalski, A.; Wyrzykowski, L.; Żebruń, K.; Kubiak, M.; Szymański, M. K.; Szewczyk, O.; Pietrzyński, G.; Soszyński, I.
2004-08-01
We present a high-precision I-band light curve for the Wolf-Rayet binary WR 20a, obtained as a subproject of the Optical Gravitational Lensing Experiment. Rauw et al. have recently presented spectroscopy for this system, strongly suggesting extremely large minimum masses of 70.7+/-4.0 and 68.8+/-3.8 Msolar for the component stars of the system, with the exact values depending strongly on the period of the system. We detect deep eclipses of about 0.4 mag in the light curve of WR 20a, confirming and refining the suspected period of P=3.686 days and deriving an inclination angle of i=74.5d+/-2.0d. Using these photometric data and the radial velocity data of Rauw et al., we derive the masses for the two components of WR 20a to be 83.0+/-5.0 and 82.0+/-5.0 Msolar. Therefore, WR 20a is confirmed to consist of two extremely massive stars and to be the most massive binary known with an accurate mass determination. Based on observations obtained with the 1.3 m Warsaw telescope at Las Campanas Observatory, which is operated by the Carnegie Institute of Washington.
VizieR Online Data Catalog: BVIc light curves of SZ Cam (Tamajo+, 2012)
NASA Astrophysics Data System (ADS)
Tamajo, E.; Munari, U.; Siviero, A.; Tomasella, L.; Dallaporta, S.
2012-01-01
We present a spectroscopic and photometric analysis of the multiple system and early-type eclipsing binary SZ Cam (O9 IV + B0.5 V), which consists of an eclipsing SB2 pair of orbital period P=2.7-days in a long orbit (~55yrs) around a non-eclipsing SB1 pair of orbital period P=2.8-days. We have reconstructed the spectra of the individual components of SZ Cam from the observed composite spectra using the technique of spectral disentangling. We used them together with extensive and accurate BV IC CCD photometry to obtain an orbital solution. Our photometry revealed the presence of a beta Cep variable in the SZ Cam hierarchical system, probably located within the non-eclipsing SB1 pair. The pulsation period is 0.33265+/-0.00005-days and the observed total amplitude in the B band is 0.0105+/-0.0005mag. NLTE analysis of the disentangled spectra provided atmospheric parameters for all three components, consistent with those derived from orbital solution. (1 data file).
Planet Hunters: New Kepler Planet Candidates from Analysis of Quarter 2
NASA Astrophysics Data System (ADS)
Lintott, Chris J.; Schwamb, Megan E.; Barclay, Thomas; Sharzer, Charlie; Fischer, Debra A.; Brewer, John; Giguere, Matthew; Lynn, Stuart; Parrish, Michael; Batalha, Natalie; Bryson, Steve; Jenkins, Jon; Ragozzine, Darin; Rowe, Jason F.; Schwainski, Kevin; Gagliano, Robert; Gilardi, Joe; Jek, Kian J.; Pääkkönen, Jari-Pekka; Smits, Tjapko
2013-06-01
We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R ⊕. The latter star has an additional known planet candidate with a radius of 5.05 R ⊕ and a period of 134.49 days, which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged. .
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-02-01
In KIC 9246715, two red-giant stars twins in nearly every way circle each other in a 171-day orbit. This binary pair may be a key to learning about masses and radii of stars with asteroseismology, the study of oscillations in the interiors of stars.Two Ways to MeasureIn order to understand a stars evolution, it is critical that we know its mass and radius. Unfortunately, these quantities are often difficult to pin down!One of the few cases in which we can directly measure stars masses and radii is in eclipsing binaries, wherein two stars eclipse each other as they orbit. If we have a well-sampled light curve for the binary, as well as radial velocities for both stars, then we can determine the stars complete orbital information, including their masses and radii.But there may be another way to obtain stellar mass and radius: asteroseismology. In asteroseismology, oscillations inside stars are used to characterize the stellar interiors. Conveniently, if a star with a convective envelope exhibits solar-like oscillations, these oscillations can be directly compared to those of the Sun. Mass and radius scaling relations which use the Sun as a benchmark and scale based on the stars temperature can then be used to derive the mass and radius of the star.Test Subjects from KeplerSolar-like oscillations from KIC 9246715 are shown in red across different resonant frequencies. The oscillations of a single red-giant star with similar properties are shown upside down in grey for reference. [Rawls et al. 2016]Of course, scaling relations are only useful if we can test them! A team of scientists including Meredith Rawls (New Mexico State University) has identified 18 red-giant eclipsing binaries in the Kepler field of view that also exhibit solar-like oscillations perfect for testing the scaling relations.In a recent study led by Rawls, the team analyzed the first of these binaries, KIC 9246715. Using the Kepler light curves in addition to radial velocity measurements from high-resolution ground-based spectroscopy at the Fred Lawrence Whipple Observatory and Apache Point Observatory, Rawls and collaborators established that the two stars have masses of 2.17 and 2.15 solar masses, and radii of 8.4 and 8.3 solar radii.Not Quite Twins?Intriguingly, when the authors measured the stellar oscillations from the binary, they were only able to pick out one signal. Using the scaling relations, their measurements reveal that the star producing the oscillations has a mass of 2.17 solar masses and radius of 8.3 radii consistent with both red giants in the system, within error bars. This provides excellent confirmation of the scaling relations for obtaining mass and radius, but it also raises a new question: why is only one star of this twin system producing oscillations?Rawls and collaborators have an idea: one star might be more magnetically active than the other, causing the suppression of oscillations in the more active star. The authors observations and detailed modeling support this idea, but similar analyses of the rest of the red-giant eclipsing binaries identified in the Kepler field will help to determine if KIC 9246715 is unusual, or if this behavior is common among such systems.CitationMeredith L. Rawls et al 2016 ApJ 818 108. doi:10.3847/0004-637X/818/2/108
2015-11-01
56862.52 0.0906 12.2 0.00127 1.41 Horch et al. (2015) 56862.52 0.0908 12.2 0.00127 1.41 Horch et al. (2015) 57038.4870368 0.04553 192.85 0.00081 1.02...from Speckle Interferometry (originally published in Horch et al. 2015, with uncertainties as assigned in that work, with the time in Modified Julian...G. 1989, AJ, 98, 1014 Hoffleit, D. 1996, JAVSO, 24, 105 Horch , E. P., van Altena, W. F., Demarque, P., et al. 2015, AJ, 149, 151 Mason, B. D., Wycoff
John Goodricke, Edward Pigott, and Their Study of Variable Stars
NASA Astrophysics Data System (ADS)
French, Linda M.
2012-06-01
John Goodricke and Edward Pigott, working in York, England, between 1781 and 1786, determined the periods of variation of eclipsing binaries such as Algol and Beta Lyrae and speculated that the eclipses of Algol might be caused by a "dark body," perhaps even a planet. They also determined the periods of variation of the first two known Cepheid variables, the stars whose period-luminosity relation today enables astronomers to determine distances to distant galaxies. Goodricke holds special interest because he was completely deaf and because he died at the age of 21. The lives and work of these two astronomers are described.
NASA Astrophysics Data System (ADS)
Pagel, Lienhard
2015-01-01
In the Kepler field is the eclipsing binary BR Cyg. He is a BAV program star. In the KIC (Kepler Input Catalogue) he is associated with the identifier kplr009899416 [1]. There have been determined 1084 minima and as many secondary minima. Acknowledgement: This paper makes use of data from the Kepler exoplanetarchive.
The Effects of Barycentric and Asymmetric Transverse Velocities on Eclipse and Transit Times
NASA Astrophysics Data System (ADS)
Conroy, Kyle E.; Prša, Andrej; Horvat, Martin; Stassun, Keivan G.
2018-02-01
It has long been recognized that the finite speed of light can affect the observed time of an event. For example, as a source moves radially toward or away from an observer, the path length and therefore the light travel time to the observer decreases or increases, causing the event to appear earlier or later than otherwise expected, respectively. This light travel time effect has been applied to transits and eclipses for a variety of purposes, including studies of eclipse timing variations and transit timing variations that reveal the presence of additional bodies in the system. Here we highlight another non-relativistic effect on eclipse or transit times arising from the finite speed of light—caused by an asymmetry in the transverse velocity of the two eclipsing objects, relative to the observer. This asymmetry can be due to a non-unity mass ratio or to the presence of external barycentric motion. Although usually constant, this barycentric and asymmetric transverse velocity (BATV) effect can vary between sequential eclipses if either the path length between the two objects or the barycentric transverse velocity varies in time. We discuss this BATV effect and estimate its magnitude for both time-dependent and time-independent cases. For the time-dependent cases, we consider binaries that experience a change in orbital inclination, eccentric systems with and without apsidal motion, and hierarchical triple systems. We also consider the time-independent case which, by affecting the primary and secondary eclipses differently, can influence the inferred system parameters, such as the orbital eccentricity.
UBV Photometry of Selected Eclipsing Binaries in the Magellanic Clouds.
NASA Astrophysics Data System (ADS)
Davidge, Timothy John
1987-12-01
UBV photoelectric observations of five eclipsing binaries in the Magellanic Clouds are presented and discussed in detail. The systems studied are HV162O and HV1669 in the Small Magellanic Cloud and HV2241, HV2765, and HV5943 in the Large Magellanic Cloud. Classification spectra indicate that the components of these systems are of spectral type late O or early B. The systems are located in moderately crowded areas. Therefore, CCD observations were used to construct models of the star fields around the variables. These were used to correct the photoelectric measurements for contamination. Light curve solutions were found with the Wilson -Devinney program. A two dimensional search of parameter space involving the mass ratio and the surface potential of the secondary component was employed. This procedure was tested by numerical simulation and was found to predict the light curve elements, including the mass ratios, within their estimated uncertainties. It appears likely that none of the systems are in contact, a surprising result considering the high frequency of early type contact binaries in the solar neighborhood. The light curve solutions were then used to compute the absolute dimensions of the components. Only one system, HV2241, has a radial velocity curve, allowing its absolute dimensions to be well established. Less accurate absolute dimensions were calculated for the remaining systems using photometric information. The components were then placed on H-R diagrams and compared with theoretical models of stellar evolution. The positions of the components on these diagrams appear to support the existence of convective core overshooting. The evolutionary status of the systems was also discussed. The system with the most accurately determined absolute dimensions, HV2241, appears to have undergone, or is nearing the end of, Case A mass transfer. Two other systems, HV1620 and HV1669, may also be involved in mass transfer. Finally, the use of eclipsing binaries as distance indicators was investigated. The distance modulus of the LMC was computed in two ways. One approach used the absolute dimensions found with the radial velocity data while the other employed the method of photometric parallaxes. The latter technique was also used to calculate the distance modulus of the SMC.
Coordinated ASCA/EUVE/XTE Observations of Algol
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1997-01-01
EUVE, Advanced Satellite for Cosmology and Astrophysics (ASCA), and X-ray Timing Explorer (XTE) observed the eclipsing binary Algol (Beta Per) from 1-7 Feb 1996. The coordinated observation covered approx. 2 binary orbits of the system, with a net exposure of approx. 160 ksec for EUVE, 40 ksec for ASCA (in 4 pointings), and 90 ksec for XTE (in 45 pointings). We discuss results of modeling the combined EUVE, ASCA, and XTE data using continuous differential emission measure distributions, and provide constraints on the abundance in the Algol system.
Orbits of Four Very Massive Binaries in the R136 Cluster
NASA Astrophysics Data System (ADS)
Penny, L. R.; Massey, P.; Vukovich, J.
2001-12-01
We present radial velocity and photometry for four early-type, massive double-lined spectroscopic binaries in the R136 cluster. Three of these systems are eclipsing, allowing orbital inclinations to be determined. One of these systems, R136-38 (O3 V + O6 V), has one of the highest masses ever measured, 57 Modot, for the primary. Comparison of our masses with those derived from standard evolutionary tracks shows excellent agreement. We also identify five other light variables in the R136 cluster worthy of follow-up study.
Eclipse studies of the dwarf nova EX Draconis
NASA Astrophysics Data System (ADS)
Baptista, R.; Catalán, M. S.; Costa, L.
2000-08-01
We report on V and R high-speed photometry of the dwarf nova EX Draconis (EX Dra) in quiescence and in outburst. The analysis of the outburst light curves indicates that the outbursts do not start in the outer disc regions. The disc expands during the rise to maximum and shrinks during decline and along the following quiescent period. The decrease in brightness at the later stages of the outburst is due to the fading of the light from the inner disc regions. At the end of two outbursts the system was seen to go through a phase of lower brightness, characterized by an out-of-eclipse level ~=15 per cent lower than the typical quiescent level and by the fairly symmetric eclipse of a compact source at disc centre with little evidence of a bright spot at disc rim. New eclipse timings were measured from the light curves taken in quiescence and a revised ephemeris was derived. The residuals with respect to the linear ephemeris are well described by a sinusoid of amplitude 1.2min and period ~=4yr and are possibly related to a solar-like magnetic activity cycle in the secondary star. Eclipse phases of the compact central source and of the bright spot were used to derive the geometry of the binary. By constraining the gas stream trajectory to pass through the observed position of the bright spot, we find q=0.72+/-0.06 and i85+3-2 degrees. The binary parameters were estimated by combining the measured mass ratio with the assumption that the secondary star obeys an empirical main-sequence mass-radius relation. We find M1=0.75+/-0.15Msolar and M2=0.54+/-0.10Msolar. The results indicate that the white dwarf at disc centre is surrounded by an extended and variable atmosphere or boundary layer of at least three times its radius and a temperature of T~=28000K. The fluxes at mid-eclipse yield an upper limit to the contribution of the secondary star and lead to a lower limit photometric parallax distance of D=290+/-80pc. The fluxes of the secondary star are well-matched by those of a M0+/-2 main-sequence star.
NASA Astrophysics Data System (ADS)
Guinan, Edward F.; Engle, Scott; Devinney, Edward J.
2012-04-01
Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT)), and space missions, such as the James Webb Space Telescope (JWST), the possible NASA Explorer Transiting Exoplanet Survey Satellite (TESS - recently approved for further study) and Gaia (due for launch during 2013) will all be discussed. Also highlighted are advances in interferometers (both on the ground and from space) and imaging now possible at sub-millimeter wavelengths from the Extremely Long Array (ELVA) and Atacama Large Millimeter Array (ALMA). High precision Doppler spectroscopy, for example with HARPS, HIRES and more recently the Carnegie Planet Finder Spectrograph, are currently returning RVs typically better than ~2-m/s for some brighter exoplanet systems. But soon it should be possible to measure Doppler shifts as small as ~10-cm/s - sufficiently sensitive for detecting Earth-size planets. Also briefly discussed is the impact these instruments will have on the study of eclipsing binaries, along with future possibilities of utilizing methods from the emerging field of Astroinformatics, including: the Virtual Observatory (VO) and the possibilities of analyzing these huge datasets using Neural Network (NN) and Artificial Intelligence (AI) technologies.
Physical properties and catalog of EW-type eclipsing binaries observed by LAMOST
NASA Astrophysics Data System (ADS)
Qian, Sheng-Bang; He, Jia-Jia; Zhang, Jia; Zhu, Li-Ying; Shi, Xiang-Dong; Zhao, Er-Gang; Zhou, Xiao
2017-08-01
EW-type eclipsing binaries (hereafter called EWs) are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope. Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index (VSX) by 2017 March 13. 7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified. Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations. In the paper, those EWs are cataloged and their properties are analyzed. The distributions of orbital period (P), effective temperature (T), gravitational acceleration (log(g)), metallicity ([Fe/H]) and radial velocity (RV) are presented for these observed EW-type systems. It is shown that about 80.6% of sample stars have metallicity below zero, indicating that EW-type systems are old stellar populations. This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years. The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems. The correlations between orbital period and effective temperature, gravitational acceleration and metallicity are presented and their scatters are mainly caused by (i) the presence of third bodies and (ii) sometimes wrongly determined periods. It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods. It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities. This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution aremainly driven by angular momentum loss via magnetic braking.
Period variation studies of six contact binaries in M4
NASA Astrophysics Data System (ADS)
Rukmini, Jagirdar; Shanti Priya, Devarapalli
2018-04-01
We present the first period study of six contact binaries in the closest globular cluster M4 the data collected from June 1995‑June 2009 and Oct 2012‑Sept 2013. New times of minima are determined for all the six variables and eclipse timing (O-C) diagrams along with the quadratic fit are presented. For all the variables, the study of (O-C) variations reveals changes in the periods. In addition, the fundamental parameters for four of the contact binaries obtained using the Wilson-Devinney code (v2003) are presented. Planned observations of these binaries using the 3.6-m Devasthal Optical Telescope (DOT) and the 4-m International Liquid Mirror Telescope (ILMT) operated by the Aryabhatta Research Institute of Observational Sciences (ARIES; Nainital) can throw light on their evolutionary status from long term period variation studies.
Assisted stellar suicide in V617 Sagittarii
NASA Astrophysics Data System (ADS)
Steiner, J. E.; Oliveira, A. S.; Cieslinski, D.; Ricci, T. V.
2006-02-01
Context: .V617 Sgr is a V Sagittae star - a group of binaries thought to be the galactic counterparts of the Compact Binary Supersoft X-ray Sources - CBSS. Aims: .To check this hypothesis, we measured the time derivative of its orbital period. Methods: .Observed timings of eclipse minima spanning over 30 000 orbital cycles are presented. Results: .We found that the orbital period evolves quite rapidly: P/dot{P} = 1.1×106 years. This is consistent with the idea that V617 Sgr is a wind driven accretion supersoft source. As the binary system evolves with a time-scale of about one million years, which is extremely short for a low mass evolved binary, it is likely that the system will soon end either by having its secondary completely evaporated or by the primary exploding as a supernova of type Ia. Conclusions: .
The Clusters AgeS Experiment (CASE). Variable stars in the field of the globular cluster NGC 362
NASA Astrophysics Data System (ADS)
Rozyczka, M.; Thompson, I. B.; Narloch, W.; Pych, W.; Schwarzenberg-Czerny, A.
2016-09-01
The field of the globular cluster NGC 362 was monitored between 1997 and 2015 in a search for variable stars. BV light curves were obtained for 151 periodic or likely periodic variable stars, over a hundred of which are new detections. Twelve newly detected variable stars are proper-motion members of the cluster: two SX Phe and two RR Lyr pulsators, one contact binary, three detached or semi-detached eclipsing binaries, and four spotted variable stars. The most interesting objects among these are the binary blue straggler V20 with an asymmetric light curve, and the 8.1 d semidetached binary V24 located on the red giant branch of NGC 362, which is a Chandra X-ray source. We also provide substantial new data for 24 previously known variable stars.
A Brief Glossary of Commonly Used Astronomical Terms.
ERIC Educational Resources Information Center
Harrington, Sherwood
A glossary of 50 astronimical terms is presented. Among terms included are: Asteroid; Big Bang; Binary Star; Black Hole; Comet; Constellation; Eclipse; Equinox; Galaxy; Globular Cluster; Local Group; Magellanic Clouds; Nebula; Neutron Star; Nova; Parsec; Quasar; Radio Astronomy; Red Giant; Red Shift; S.E.T.I.; Solstice; Supernova; and White Dwarf.…
VizieR Online Data Catalog: Radial velocities of 8 KOI eclipsing binaries (Lillo-Box+, 2015)
NASA Astrophysics Data System (ADS)
Lillo-Box, J.; Barrado, D.; Mancini, L.; Henning, T.; Figueira, P.; Ciceri, S.; Santos, N.
2015-06-01
We have obtained multi-epoch RV data for the 13 KOIs. We used the CAFE instrument mounted on the 2.2m telescope at Calar Alto Observatory (Almeria Spain) to obtain high-resolution spectra (R=59000-67000) in the optical range (4000-9000Å). (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fruth, T.; Cabrera, J.; Csizmadia, Sz.
2013-11-01
A photometric survey of three southern target fields with BEST II yielded the detection of 2406 previously unknown variable stars and an additional 617 stars with suspected variability. This study presents a catalog including their coordinates, magnitudes, light curves, ephemerides, amplitudes, and type of variability. In addition, the variability of 17 known objects is confirmed, thus validating the results. The catalog contains a number of known and new variables that are of interest for further astrophysical investigations, in order to, e.g., search for additional bodies in eclipsing binary systems, or to test stellar interior models. Altogether, 209,070 stars were monitoredmore » with BEST II during a total of 128 nights in 2009/2010. The overall variability fraction of 1.2%-1.5% in these target fields is well comparable to similar ground-based photometric surveys. Within the main magnitude range of R in [11, 17], we identify 0.67(3)% of all stars to be eclipsing binaries, which indicates a completeness of about one third for this particular type in comparison to space surveys.« less
NASA Astrophysics Data System (ADS)
Cargile, P. A.; Stassun, K. G.; Mathieu, R. D.
2008-02-01
We report the discovery of a pre-main-sequence (PMS), low-mass, double-lined, spectroscopic, eclipsing binary in the Orion star-forming region. We present our observations, including radial velocities derived from optical high-resolution spectroscopy, and present an orbit solution that permits the determination of precise empirical masses for both components of the system. We find that Par 1802 is composed of two equal-mass (0.39 +/- 0.03, 0.40 +/- 0.03 M⊙) stars in a circular, 4.7 day orbit. There is strong evidence, such as the system exhibiting strong Li lines and a center-of-mass velocity consistent with cluster membership, that this system is a member of the Orion star-forming region and quite possibly the Orion Nebula Cluster, and therefore has an age of only a few million years. As there are currently only a few empirical mass and radius measurements for low-mass, PMS stars, this system presents an interesting test for the predictions of current theoretical models of PMS stellar evolution.