Sample records for background eeg activity

  1. Automatic classification of background EEG activity in healthy and sick neonates

    NASA Astrophysics Data System (ADS)

    Löfhede, Johan; Thordstein, Magnus; Löfgren, Nils; Flisberg, Anders; Rosa-Zurera, Manuel; Kjellmer, Ingemar; Lindecrantz, Kaj

    2010-02-01

    The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.

  2. Time course of EEG background activity level before spontaneous awakening in infants.

    PubMed

    Zampi, Chiara; Fagioli, Igino; Salzarulo, Piero

    2002-12-01

    This research aimed to investigate the time course of the cortical activity level preceding spontaneous awakening as a function of age and state. Two groups of infants (1-4 and 9-14 weeks of age) were continuously monitored by polygraphic recording and behavioural observation during the night. The electroencephalographic (EEG) activity recorded by the C3-O1 lead was analysed through an automatic analysis method which provides, for each 30-s epoch, a single measure, time domain based, of the EEG synchronization. The EEG parameter values were computed in the 6 min preceding each awakening out of non-rapid eye movement (NREM) sleep and out of rapid eye movement (REM) sleep. The EEG background activity level did not change in the minutes preceding awakening out of REM sleep. Awakening out of NREM sleep was preceded by a change of EEG activity level in the direction of higher activation with different time course according to the age. Both REM and NREM sleep results suggest that a high level of EEG activity is a prerequisite for the occurrence of a spontaneous awakening.

  3. Xenon depresses aEEG background voltage activity whilst maintaining cardiovascular stability in sedated healthy newborn pigs.

    PubMed

    Sabir, Hemmen; Wood, Thomas; Gill, Hannah; Liu, Xun; Dingley, John; Thoresen, Marianne

    2016-04-15

    Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This study aimed to examine the effect of 50% inhaled Xenon on background amplitude-integrated EEG (aEEG) activity in sedated healthy newborn pigs. Five healthy newborn pigs, receiving intravenous fentanyl sedation, were ventilated for 24 h with 50%Xenon, 30%O2 and 20%N2 at normothermia. The upper and lower voltage-range of the aEEG was continuously monitored together with cardiovascular parameters throughout a 1 h baseline period with fentanyl sedation only, followed by 24 h of Xenon administration. The median (IQR) upper and lower aEEG voltage during 1 h baseline was 48.0 μV (46.0-50.0) and 25.0 μV (23.0-26.0), respectively. The median (IQR) aEEG upper and lower voltage ranges were significantly depressed to 21.5 μV (20.0-26.5) and 12.0 μV (12.0-16.5) from 10 min after the onset of 50% Xenon administration (p=0.002). After the initial Xenon induced depression in background aEEG voltage, no further aEEG changes were seen over the following 24h of ventilation with 50% xenon under fentanyl sedation. Mean arterial blood pressure and heart rate remained stable. Mean arterial blood pressure and heart rate were not significantly influenced by 24h Xenon ventilation. 50% Xenon rapidly depresses background aEEG voltage to a steady ~50% lower level in sedated healthy newborn pigs. Therefore, care must be taken when interpreting the background voltage in neonates also receiving Xenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Stability of Early EEG Background Patterns After Pediatric Cardiac Arrest.

    PubMed

    Abend, Nicholas S; Xiao, Rui; Kessler, Sudha Kilaru; Topjian, Alexis A

    2018-05-01

    We aimed to determine whether EEG background characteristics remain stable across discrete time periods during the acute period after resuscitation from pediatric cardiac arrest. Children resuscitated from cardiac arrest underwent continuous conventional EEG monitoring. The EEG was scored in 12-hour epochs for up to 72 hours after return of circulation by an electroencephalographer using a Background Category with 4 levels (normal, slow-disorganized, discontinuous/burst-suppression, or attenuated-featureless) or 2 levels (normal/slow-disorganized or discontinuous/burst-suppression/attenuated-featureless). Survival analyses and mixed-effects ordinal logistic regression models evaluated whether the EEG remained stable across epochs. EEG monitoring was performed in 89 consecutive children. When EEG was assessed as the 4-level Background Category, 30% of subjects changed category over time. Based on initial Background Category, one quarter of the subjects changed EEG category by 24 hours if the initial EEG was attenuated-featureless, by 36 hours if the initial EEG was discontinuous or burst-suppression, by 48 hours if the initial EEG was slow-disorganized, and never if the initial EEG was normal. However, regression modeling for the 4-level Background Category indicated that the EEG did not change over time (odds ratio = 1.06, 95% confidence interval = 0.96-1.17, P = 0.26). Similarly, when EEG was assessed as the 2-level Background Category, 8% of subjects changed EEG category over time. However, regression modeling for the 2-level category indicated that the EEG did not change over time (odds ratio = 1.02, 95% confidence interval = 0.91-1.13, P = 0.75). The EEG Background Category changes over time whether analyzed as 4 levels (30% of subjects) or 2 levels (8% of subjects), although regression analyses indicated that no significant changes occurred over time for the full cohort. These data indicate that the Background Category is often stable during the acute 72 hours

  5. Holistic approach for automated background EEG assessment in asphyxiated full-term infants

    NASA Astrophysics Data System (ADS)

    Matic, Vladimir; Cherian, Perumpillichira J.; Koolen, Ninah; Naulaers, Gunnar; Swarte, Renate M.; Govaert, Paul; Van Huffel, Sabine; De Vos, Maarten

    2014-12-01

    Objective. To develop an automated algorithm to quantify background EEG abnormalities in full-term neonates with hypoxic ischemic encephalopathy. Approach. The algorithm classifies 1 h of continuous neonatal EEG (cEEG) into a mild, moderate or severe background abnormality grade. These classes are well established in the literature and a clinical neurophysiologist labeled 272 1 h cEEG epochs selected from 34 neonates. The algorithm is based on adaptive EEG segmentation and mapping of the segments into the so-called segments’ feature space. Three features are suggested and further processing is obtained using a discretized three-dimensional distribution of the segments’ features represented as a 3-way data tensor. Further classification has been achieved using recently developed tensor decomposition/classification methods that reduce the size of the model and extract a significant and discriminative set of features. Main results. Effective parameterization of cEEG data has been achieved resulting in high classification accuracy (89%) to grade background EEG abnormalities. Significance. For the first time, the algorithm for the background EEG assessment has been validated on an extensive dataset which contained major artifacts and epileptic seizures. The demonstrated high robustness, while processing real-case EEGs, suggests that the algorithm can be used as an assistive tool to monitor the severity of hypoxic insults in newborns.

  6. EEG background activity is abnormal in the temporal and inferior parietal cortex in benign rolandic epilepsy of childhood: a LORETA study.

    PubMed

    Besenyei, M; Varga, E; Fekete, I; Puskás, S; Hollódy, K; Fogarasi, A; Emri, M; Opposits, G; Kis, S A; Clemens, B

    2012-01-01

    Benign rolandic epilepsy of childhood (BERS) is an epilepsy syndrome with presumably genetic-developmental etiology. The pathological basis of this syndrome is completely unknown. We postulated that a developmental abnormality presumably results in abnormal EEG background activity findings. 20 children with typical BERS and an age- and sex-matched group of healthy control children underwent EEG recording and analysis. 60×2 s epochs of waking EEG background activity (without epileptiform potentials and artifacts) were analyzed in the 1-25 Hz frequency range, in very narrow bands (VNB, 1 Hz bandwidth). LORETA (Low Resolution Electromagnetic Tomography) localized multiple distributed sources of EEG background activity in the Talairach space. LORETA activity (current source density) was computed for 2394 voxels and 25 VNBs. Normalized LORETA data were processed to voxel-wise comparison between the BERS and control groups. Bonferroni-corrected p<0.05 Student's t-values were accepted as statistically significant. Increased LORETA activity was found in the BERS group (as compared to the controls) in the left and right temporal lobes (fusiform gyri, posterior parts of the superior, middle and inferior temporal gyri) and in the angular gyri in the parietal lobes, in the 4-6 Hz VNBs, mainly at 5 Hz. (1) Areas of abnormal LORETA activity exactly correspond to the temporal and parietal cortical areas that are major components of the Mirsky attention model and also the perisylvian speech network. Thus the LORETA findings may correspond to impaired attention and speech in BERS patients. (2) The LORETA findings may contribute to delineating the epileptic network in BERS. The novel findings may contribute to investigating neuropsychological disturbances and organization of the epileptic network in BERS. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Rewarming affects EEG background in term newborns with hypoxic-ischemic encephalopathy undergoing therapeutic hypothermia.

    PubMed

    Birca, Ala; Lortie, Anne; Birca, Veronica; Decarie, Jean-Claude; Veilleux, Annie; Gallagher, Anne; Dehaes, Mathieu; Lodygensky, Gregory A; Carmant, Lionel

    2016-04-01

    To investigate how rewarming impacts the evolution of EEG background in neonates with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). We recruited a retrospective cohort of 15 consecutive newborns with moderate (9) and severe (6) HIE monitored with a continuous EEG during TH and at least 12h after its end. EEG background was analyzed using conventional visual and quantitative EEG analysis methods including EEG discontinuity, absolute and relative spectral magnitudes. One patient with seizures on rewarming was excluded from analyses. Visual and quantitative analyses demonstrated significant changes in EEG background from pre- to post-rewarming, characterized by an increased EEG discontinuity, more pronounced in newborns with severe compared to moderate HIE. Neonates with moderate HIE also had an increase in the relative magnitude of slower delta and a decrease in higher frequency theta and alpha waves with rewarming. Rewarming affects EEG background in HIE newborns undergoing TH, which may represent a transient adaptive response or reflect an evolving brain injury. EEG background impairment induced by rewarming may represent a biomarker of evolving encephalopathy in HIE newborns undergoing TH and underscores the importance of continuously monitoring the brain health in critically ill neonates. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Role of EEG background activity, seizure burden and MRI in predicting neurodevelopmental outcome in full-term infants with hypoxic-ischaemic encephalopathy in the era of therapeutic hypothermia.

    PubMed

    Weeke, Lauren C; Boylan, Geraldine B; Pressler, Ronit M; Hallberg, Boubou; Blennow, Mats; Toet, Mona C; Groenendaal, Floris; de Vries, Linda S

    2016-11-01

    To investigate the role of EEG background activity, electrographic seizure burden, and MRI in predicting neurodevelopmental outcome in infants with hypoxic-ischaemic encephalopathy (HIE) in the era of therapeutic hypothermia. Twenty-six full-term infants with HIE (September 2011-September 2012), who had video-EEG monitoring during the first 72 h, an MRI performed within the first two weeks and neurodevelopmental assessment at two years were evaluated. EEG background activity at age 24, 36 and 48 h, seizure burden, and severity of brain injury on MRI, were compared and related to neurodevelopmental outcome. EEG background activity was significantly associated with neurodevelopmental outcome at 36 h (p = 0.009) and 48 h after birth (p = 0.029) and with severity of brain injury on MRI at 36 h (p = 0.002) and 48 h (p = 0.018). All infants with a high seizure burden and moderate-severe injury on MRI had an abnormal outcome. The positive predictive value (PPV) of EEG for abnormal outcome was 100% at 36 h and 48 h and the negative predictive value (NPV) was 75% at 36 h and 69% at 48 h. The PPV of MRI was 100% and the NPV 85%. The PPV of seizure burden was 78% and the NPV 71%. Severely abnormal EEG background activity at 36 h and 48 h after birth was associated with severe injury on MRI and abnormal neurodevelopmental outcome. High seizure burden was only associated with abnormal outcome in combination with moderate-severe injury on MRI. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  9. Understanding perception of active noise control system through multichannel EEG analysis.

    PubMed

    Bagha, Sangeeta; Tripathy, R K; Nanda, Pranati; Preetam, C; Das, Debi Prasad

    2018-06-01

    In this Letter, a method is proposed to investigate the effect of noise with and without active noise control (ANC) on multichannel electroencephalogram (EEG) signal. The multichannel EEG signal is recorded during different listening conditions such as silent, music, noise, ANC with background noise and ANC with both background noise and music. The multiscale analysis of EEG signal of each channel is performed using the discrete wavelet transform. The multivariate multiscale matrices are formulated based on the sub-band signals of each EEG channel. The singular value decomposition is applied to the multivariate matrices of multichannel EEG at significant scales. The singular value features at significant scales and the extreme learning machine classifier with three different activation functions are used for classification of multichannel EEG signal. The experimental results demonstrate that, for ANC with noise and ANC with noise and music classes, the proposed method has sensitivity values of 75.831% ( p < 0.001 ) and 99.31% ( p < 0.001 ), respectively. The method has an accuracy value of 83.22% for the classification of EEG signal with music and ANC with music as stimuli. The important finding of this study is that by the introduction of ANC, music can be better perceived by the human brain.

  10. Comparative analysis of background EEG activity in childhood absence epilepsy during valproate treatment: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study.

    PubMed

    Shin, Jung-Hyun; Eom, Tae-Hoon; Kim, Young-Hoon; Chung, Seung-Yun; Lee, In-Goo; Kim, Jung-Min

    2017-07-01

    Valproate (VPA) is an antiepileptic drug (AED) used for initial monotherapy in treating childhood absence epilepsy (CAE). EEG might be an alternative approach to explore the effects of AEDs on the central nervous system. We performed a comparative analysis of background EEG activity during VPA treatment by using standardized, low-resolution, brain electromagnetic tomography (sLORETA) to explore the effect of VPA in patients with CAE. In 17 children with CAE, non-parametric statistical analyses using sLORETA were performed to compare the current density distribution of four frequency bands (delta, theta, alpha, and beta) between the untreated and treated condition. Maximum differences in current density were found in the left inferior frontal gyrus for the delta frequency band (log-F-ratio = -1.390, P > 0.05), the left medial frontal gyrus for the theta frequency band (log-F-ratio = -0.940, P > 0.05), the left inferior frontal gyrus for the alpha frequency band (log-F-ratio = -0.590, P > 0.05), and the left anterior cingulate for the beta frequency band (log-F-ratio = -1.318, P > 0.05). However, none of these differences were significant (threshold log-F-ratio = ±1.888, P < 0.01; threshold log-F-ratio = ±1.722, P < 0.05). Because EEG background is accepted as normal in CAE, VPA would not be expected to significantly change abnormal thalamocortical oscillations on a normal EEG background. Therefore, our results agree with currently accepted concepts but are not consistent with findings in some previous studies.

  11. Hypnagogic imagery and EEG activity.

    PubMed

    Hayashi, M; Katoh, K; Hori, T

    1999-04-01

    The relationships between hypnagogic imagery and EEG activity were studied. 7 subjects (4 women and 3 men) reported the content of hypnagogic imagery every minute and the hypnagogic EEGs were classified into 5 stages according to Hori's modified criteria. The content of the hypnagogic imagery changed as a function of the hypnagogic EEG stages.

  12. EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth.

    PubMed

    Hunold, A; Funke, M E; Eichardt, R; Stenroos, M; Haueisen, J

    2016-07-01

    Simultaneous electroencephalography (EEG) and magnetoencephalography (MEG) recordings of neuronal activity from epileptic patients reveal situations in which either EEG or MEG or both modalities show visible interictal spikes. While different signal-to-noise ratios (SNRs) of the spikes in EEG and MEG have been reported, a quantitative relation of spike source orientation and depth as well as the background brain activity to the SNR has not been established. We investigated this quantitative relationship for both dipole and patch sources in an anatomically realistic cortex model. Altogether, 5600 dipole and 3300 patch sources were distributed on the segmented cortical surfaces of two volunteers. The sources were classified according to their quantified depths and orientations, ranging from 20 mm to 60 mm below the skin surface and radial and tangential, respectively. The source time-courses mimicked an interictal spike, and the simulated background activity emulated resting activity. Simulations were conducted with individual three-compartment boundary element models. The SNR was evaluated for 128 EEG, 102 MEG magnetometer, and 204 MEG gradiometer channels. For superficial dipole and superficial patch sources, EEG showed higher SNRs for dominantly radial orientations, and MEG showed higher values for dominantly tangential orientations. Gradiometers provided higher SNR than magnetometers for superficial sources, particularly for those with dominantly tangential orientations. The orientation dependent difference in SNR in EEG and MEG gradually changed as the sources were located deeper, where the interictal spikes generated higher SNRs in EEG compared to those in MEG for all source orientations. With deep sources, the SNRs in gradiometers and magnetometers were of the same order. To better detect spikes, both EEG and MEG should be used.

  13. EEG activity during estral cycle in the rat.

    PubMed

    Corsi-Cabrera, M; Juárez, J; Ponce-de-León, M; Ramos, J; Velázquez, P N

    1992-10-01

    EEG activity was recorded from right and left parietal cortex in adult female rats daily during 6 days. Immediately after EEG recording vaginal smears were taken and were microscopically analyzed to determine the estral stage. Absolute and relative powers and interhemispheric correlation of EEG activity were calculated and compared between estral stages. Interhemispheric correlation was significantly lower during diestrous as compared to proestrous and estrous. Absolute and relative powers did not show significant differences between estral stages. Absolute powers of alpha1, alpha2, beta1 and beta2 bands were significantly higher at the right parietal cortex. Comparisons of the same EEG records with estral stages randomly grouped showed no significant differences for any of the EEG parameters. EEG activity is a sensitive tool to study functional changes related to the estral cycle.

  14. Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants.

    PubMed

    Meledin, Irina; Abu Tailakh, Muhammad; Gilat, Shlomo; Yogev, Hagai; Golan, Agneta; Novack, Victor; Shany, Eilon

    2017-03-01

    To compare amplitude-integrated EEG (aEEG) and conventional EEG (EEG) activity in premature neonates. Biweekly aEEG and EEG were simultaneously recorded in a cohort of infants born less than 34 weeks gestation. aEEG recordings were visually assessed for lower and upper border amplitude and bandwidth. EEG recordings were compressed for visual evaluation of continuity and assessed using a signal processing software for interburst intervals (IBI) and frequencies' amplitude. Ten-minute segments of aEEG and EEG indices were compared using regression analysis. A total of 189 recordings from 67 infants were made, from which 1697 aEEG/EEG pairs of 10-minute segments were assessed. Good concordance was found for visual assessment of continuity between the 2 methods. EEG IBI, alpha and theta frequencies' amplitudes were negatively correlated to the aEEG lower border while conceptional age (CA) was positively correlated to aEEG lower border ( P < .001). IBI and all frequencies' amplitude were positively correlated to the upper aEEG border ( P ≤ .001). CA was negatively correlated to aEEG span while IBI, alpha, beta, and theta frequencies' amplitude were positively correlated to the aEEG span. Important information is retained and integrated in the transformation of premature neonatal EEG to aEEG. aEEG recordings in high-risk premature neonates reflect reliably EEG background information related to continuity and amplitude.

  15. Synchronization of EEG activity in patients with bipolar disorder

    NASA Astrophysics Data System (ADS)

    Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu

    2015-12-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.

  16. Rett syndrome: EEG presentation.

    PubMed

    Robertson, R; Langill, L; Wong, P K; Ho, H H

    1988-11-01

    Rett syndrome, a degenerative neurological disorder of girls, has a classical presentation and typical EEG findings. The electroencephalograms (EEGs) of 7 girls whose records have been followed from the onset of symptoms to the age of 5 or more are presented. These findings are tabulated with the Clinical Staging System of Hagberg and Witt-Engerström (1986). The records show a progressive deterioration in background rhythms in waking and sleep. The abnormalities of the background activity may only become evident at 4-5 years of age or during stage 2--the Rapid Destructive Stage. The marked contrast between waking and sleep background may not occur until stage 3--the Pseudostationary Stage. In essence EEG changes appear to lag behind clinical symptomatology by 1-3 years. An unexpected, but frequent, abnormality was central spikes seen in 5 of 7 girls. They appeared to be age related and could be evoked by tactile stimulation in 2 patients. We hypothesize that the prominent 'hand washing' mannerism may be self-stimulating and related to the appearance of central spike discharges.

  17. Sleep EEG of Microcephaly in Zika Outbreak.

    PubMed

    Kanda, Paulo Afonso Medeiros; Aguiar, Aline de Almeida Xavier; Miranda, Jose Lucivan; Falcao, Alexandre Loverde; Andrade, Claudia Suenia; Reis, Luigi Neves Dos Santos; Almeida, Ellen White R Bacelar; Bello, Yanes Brum; Monfredinho, Arthur; Kanda, Rafael Guimaraes

    2018-01-01

    Microcephaly (MC), previously considered rare, is now a health emergency of international concern because of the devastating Zika virus pandemic outbreak of 2015. The authors describe the electroencephalogram (EEG) findings in sleep EEG of epileptic children who were born with microcephaly in areas of Brazil with active Zika virus transmission between 2014 and 2017. The authors reviewed EEGs from 23 children. Nine were females (39.2%), and the age distribution varied from 4 to 48 months. MC was associated with mother positive serology to toxoplasmosis (toxo), rubella (rub), herpes, and dengue (1 case); toxo (1 case); chikungunya virus (CHIKV) (1 case); syphilis (1 case); and Zika virus (ZIKV) (10 cases). In addition, 1 case was associated with perinatal hypoxia and causes of 9 cases remain unknown. The main background EEG abnormality was diffuse slowing (10 cases), followed by classic (3 cases) and modified (5 cases) hypsarrhythmia. A distinct EEG pattern was seen in ZIKV (5 cases), toxo (2 cases), and undetermined cause (1 case). It was characterized by runs of frontocentrotemporal 4.5-13 Hz activity (7 cases) or diffuse and bilateral runs of 18-24 Hz (1 case). In ZIKV, this rhythmic activity was associated with hypsarrhythmia or slow background. Further studies are necessary to determine if this association is suggestive of ZIKV infection. The authors believe that EEG should be included in the investigation of all newly diagnosed congenital MC, especially those occurring in areas of autochthonous transmission of ZIKV.

  18. Effects of CPAP-therapy on brain electrical activity in obstructive sleep apneic patients: a combined EEG study using LORETA and Omega complexity : reversible alterations of brain activity in OSAS.

    PubMed

    Toth, Marton; Faludi, Bela; Kondakor, Istvan

    2012-10-01

    Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporo-parietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long

  19. Amplitude-Integrated EEG and Range-EEG Modulation Associated with Pneumatic Orocutaneous Stimulation in Preterm Infants

    PubMed Central

    Barlow, Steven M; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Song, Dongli

    2013-01-01

    Background Controlled somatosensory stimulation strategies have demonstrated merit in developing oral feeding skills in premature infants who lack a functional suck, however, the effects of orosensory entrainment stimulation on electrocortical dynamics is unknown. Objective To determine the effects of servo-controlled pneumatic orocutaneous stimulation presented during gavage feedings on the modulation of aEEG and rEEG activity. Methods Two-channel EEG recordings were collected during 180 sessions that included orocutaneous stimulation and non-stimulation epochs among 22 preterm infants (mean gestational age = 28.56 weeks) who were randomized to treatment and control ‘sham’ conditions. The study was initiated at around 32 weeks post-menstrual age (PMA). The raw EEG was transformed into amplitude-integrated EEG (aEEG) margins, and range-EEG (rEEG) amplitude bands measured at 1-minute intervals and subjected to a mixed models statistical analysis. Results Multiple significant effects were observed in the processed EEG during and immediately following 3-minute periods of orocutaneous stimulation, including modulation of the upper and lower margins of the aEEG, and a reorganization of rEEG with an apparent shift from amplitude bands D and E to band C throughout the 23-minute recording period that followed the first stimulus block when compared to the sham condition. Cortical asymmetry also was apparent in both EEG measures. Conclusions Orocutaneous stimulation represents a salient trigeminal input which has both short- and long-term effects in modulating electrocortical activity, and thus, is hypothesized to represent a form of neural adaptation or plasticity that may benefit the preterm infant during this critical period of brain maturation. PMID:24310443

  20. An EEG Finger-Print of fMRI deep regional activation.

    PubMed

    Meir-Hasson, Yehudit; Kinreich, Sivan; Podlipsky, Ilana; Hendler, Talma; Intrator, Nathan

    2014-11-15

    This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Development of a novel robust measure for interhemispheric synchrony in the neonatal EEG: activation synchrony index (ASI).

    PubMed

    Räsänen, Okko; Metsäranta, Marjo; Vanhatalo, Sampsa

    2013-04-01

    The degree of interhemispheric synchrony in the neonatal EEG assessment refers to the co-occurrence of activity bouts during quiet sleep or burst suppression, and it has been widely considered as a key component in assessing background activity. However, no objective measures have been published for measuring it, and all conventionally used visual criteria suffer from significant ambiguities. Our present study aimed to develop such a quantitative measure of (a)synchrony, called activation synchrony index (ASI). We developed the ASI paradigm based on the testing of statistical independence between two quantized amplitude envelopes of wideband-filtered signals where higher frequencies had been pre-emphasized. The core parameter settings of ASI paradigm were defined using a smaller EEG dataset, and the final ASI paradigm was tested using a visually classified dataset of EEG records from 33 fullterm and 25 preterm babies, which showed varying grades of asynchrony. Our findings show that ASI could distinguish all EEG recordings with normal synchrony from those with modest or severe asynchrony at individual level, and there was a highly significant correlation (p<0.001) between ASI and the visually assessed grade of asynchrony. In addition, we showed that i) ASI is stable in recordings over several hours in duration, such as the typical neonatal brain monitoring, that ii) ASI values are sensitive to sleep stage, and that iii) they correlate with age in the preterm babies. Comparison of ASI to other three potential paradigms demonstrated a significant competitive advantage. Finally, ASI was found to be remarkably resistant to common artefacts as tested by adding significant level of real EEG artefacts from noisy recordings. An objective and reliable measure of (a)synchrony may open novel avenues for using ASI as a putative early functional biomarker in the neonatal brain, as well as for building proper automated classifiers of neonatal EEG background. Notably, the

  2. EEG alpha activity and hallucinatory experience during sensory deprivation.

    PubMed

    Hayashi, M; Morikawa, T; Hori, T

    1992-10-01

    The relationship between hallucinatory experiences under sensory deprivation and EEG alpha activities was studied. Each of seven male students lived alone in an air conditioned, soundproof dark room for 72 hours. When hallucinatory experiences occurred, the students pressed a button at once. If they could not press the button during the experience, they were required to press it two times when the hallucinatory experience was finished. Spectral analysis was performed on the consecutive EEG samples from just before button-presses to 10 min. before them, and the average alpha band amplitudes were obtained for the four epochs (0-.5, .5-2, 2-5, 5-10 min.). For the single button-presses, the amplitude of alpha band increased 2 min. before the button-presses. Right-hemisphere EEG activation was observed in the occipital area for the double button-presses. The results suggest an association between the hallucinatory experiences under sensory deprivation and the amount of EEG alpha activity.

  3. Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach.

    PubMed

    Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque; Amin, Hafeez Ullah; Hussain, Muhammad

    2017-01-01

    Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful. In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes. Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature. The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

  4. Phenobarbitone, neonatal seizures, and video-EEG

    PubMed Central

    Boylan, G; Rennie, J; Pressler, R; Wilson, G; Morton, M; Binnie, C

    2002-01-01

    Aims: To evaluate the effectiveness of phenobarbitone as an anticonvulsant in neonates. Methods: An observational study using video-EEG telemetry. Video-EEG was obtained before treatment was started, for an hour after treatment was given, two hours after treatment was given, and again between 12 and 24 hours after treatment was given. Patients were recruited from all babies who required phenobarbitone (20–40 mg/kg intravenously over 20 minutes) for suspected clinical seizures and had EEG monitoring one hour before and up to 24 hours after the initial dose. An EEG seizure discharge was defined as a sudden repetitive stereotyped discharge lasting for at least 10 seconds. Neonatal status epilepticus was defined as continuous seizure activity for at least 30 minutes. Seizures were categorised as EEG seizure discharges only (electrographic), or as EEG seizure discharges with accompanying clinical manifestations (electroclinical). Surviving babies were assessed at one year using the Griffiths neurodevelopmental score. Results: Fourteen babies were studied. Four responded to phenobarbitone; these had normal or moderately abnormal EEG background abnormalities and outcome was good. In the other 10 babies electrographic seizures increased after treatment, whereas electroclinical seizures reduced. Three babies were treated with second line anticonvulsants, of whom two responded. One of these had a normal neurodevelopmental score at one year, but the outcome for the remainder of the whole group was poor. Conclusion: Phenobarbitone is often ineffective as a first line anticonvulsant in neonates with seizures in whom the background EEG is significantly abnormal. PMID:11978746

  5. Heightened Background Cortical Synchrony in Patients With Epilepsy: EEG Phase Synchrony Analysis During Awake and Sleep Stages Using Novel Ensemble Measure.

    PubMed

    Nayak, Chetan S; Mariyappa, N; Majumdar, Kaushik K; Prasad, Pradeep D; Ravi, G S; Nagappa, M; Kandavel, Thennarasu; Taly, Arun B; Sinha, Sanjib

    2018-05-01

    Excessive cortical synchrony within neural ensembles has been implicated as an important mechanism driving epileptiform activity. The current study measures and compares background electroencephalographic (EEG) phase synchronization in patients having various types of epilepsies and healthy controls during awake and sleep stages. A total of 120 patients with epilepsy (PWE) subdivided into 3 groups (juvenile myoclonic epilepsy [JME], temporal lobe epilepsy [TLE], and extra-temporal lobe epilepsy [Ex-TLE]; n = 40 in each group) and 40 healthy controls were subjected to overnight polysomnography. EEG phase synchronization (SI) between the 8 EEG channels was assessed for delta, theta, alpha, sigma, and high beta frequency bands using ensemble measure on 10-second representative time windows and compared between patients and controls and also between awake and sleep stages. Mean ± SD of SI was compared using 2-way analysis of variance followed by pairwise comparison ( P ≤ .05). In both delta and theta bands, the SI was significantly higher in patients with JME, TLE, and Ex-TLE compared with controls, whereas in alpha, sigma, and high beta bands, SI was comparable between the groups. On comparison of SI between sleep stages, delta band: progressive increase in SI from wake ⇒ N1 ⇒ N2 ⇒ N3, whereas REM (rapid eye movement) was comparable to wake; theta band: decreased SI during N2 and increase during N3; alpha band: SI was highest in wake and lower in N1, N2, N3, and REM; and sigma and high beta bands: progressive increase in SI from wake ⇒ N1 ⇒ N2 ⇒ N3; however, sigma band showed lower SI during REM. This study found an increased background cortical synchronization in PWE compared with healthy controls in delta and theta bands during wake and sleep. This background hypersynchrony may be an important property of epileptogenic brain circuitry in PWE, which enables them to effortlessly generate a paroxysmal EEG depolarization shift.

  6. Demonstration of brain noise on human EEG signals in perception of bistable images

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  7. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study.

    PubMed

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Gratta, Cosimo Del

    2016-12-01

    Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  8. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    NASA Astrophysics Data System (ADS)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  9. Brain activity underlying auditory perceptual learning during short period training: simultaneous fMRI and EEG recording

    PubMed Central

    2013-01-01

    Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning. PMID:23316957

  10. Multifractal analysis of real and imaginary movements: EEG study

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Maksimenko, Vladimir A.; Runnova, Anastasiya E.; Khramova, Marina V.; Pisarchik, Alexander N.

    2018-04-01

    We study abilities of the wavelet-based multifractal analysis in recognition specific dynamics of electrical brain activity associated with real and imaginary movements. Based on the singularity spectra we analyze electroencephalograms (EEGs) acquired in untrained humans (operators) during imagination of hands movements, and show a possibility to distinguish between the related EEG patterns and the recordings performed during real movements or the background electrical brain activity. We discuss how such recognition depends on the selected brain region.

  11. Quantitative EEG analysis of the maturational changes associated with childhood absence epilepsy

    NASA Astrophysics Data System (ADS)

    Rosso, O. A.; Hyslop, W.; Gerlach, R.; Smith, R. L. L.; Rostas, J. A. P.; Hunter, M.

    2005-10-01

    This study aimed to examine the background electroencephalography (EEG) in children with childhood absence epilepsy, a condition whose presentation has strong developmental links. EEG hallmarks of absence seizure activity are widely accepted and there is recognition that the bulk of inter-ictal EEG in this group is normal to the naked eye. This multidisciplinary study aimed to use the normalized total wavelet entropy (NTWS) (Signal Processing 83 (2003) 1275) to examine the background EEG of those patients demonstrating absence seizure activity, and compare it with children without absence epilepsy. This calculation can be used to define the degree of order in a system, with higher levels of entropy indicating a more disordered (chaotic) system. Results were subjected to further statistical analyses of significance. Entropy values were calculated for patients versus controls. For all channels combined, patients with absence epilepsy showed (statistically significant) lower entropy values than controls. The size of the difference in entropy values was not uniform, with certain EEG electrodes consistently showing greater differences than others.

  12. Prolonged activation EEG differentiates dementia with and without delirium in frail elderly patients.

    PubMed

    Thomas, C; Hestermann, U; Walther, S; Pfueller, U; Hack, M; Oster, P; Mundt, C; Weisbrod, M

    2008-02-01

    Delirium in the elderly results in increased morbidity, mortality and functional decline. Delirium is underdiagnosed, particularly in dementia. To increase diagnostic accuracy, we investigated whether maintenance of activation assessed by EEG discriminates delirium in association with dementia (D+D) from dementia without delirium (DP) and cognitively unimpaired elderly subjects (CU). Routine and quantitative EEG (rEEG/qEEG) with additional prolonged activation (3 min eyes open period) were evaluated in hospitalised elderly patients with acute geriatric disease. Patients were assigned post hoc to three comparable groups (D+D/DP/CU) by expert consensus based on DSM-IV criteria. Dementia diagnosis was confirmed using cognitive and functional tests and caregiver rating (IQCODE, Informed Questionnaire of Cognitive Decline in the Elderly). While rEEG at rest showed low accuracy for a diagnosis of delirium, qEEG in DP and CU revealed a specific activation pattern of high significance found to be absent in the D+D group. Stepwise logistic regression confirmed that differentiation of D+D from DP was best resolved using activated upper alpha and delta power density which, compared with rEEG, enabled an 11% increase in diagnostic correctness to 83%, resulting in 67% sensitivity and 91% specificity. Among frail CU and D+D subjects, almost 90% were correctly classified. Dementia associated with delirium can be discriminated reliably from dementia alone in a meaningful clinical setting. Thus EEG evaluation in chronic encephalopathy should be optimised by a simple activation task and spectral analysis, particularly in the elderly with dementia.

  13. Comparison of background EEG activity of different groups of patients with idiopathic epilepsy using Shannon spectral entropy and cluster-based permutation statistical testing

    PubMed Central

    Artieda, Julio; Iriarte, Jorge

    2017-01-01

    Idiopathic epilepsy is characterized by generalized seizures with no apparent cause. One of its main problems is the lack of biomarkers to monitor the evolution of patients. The only tools they can use are limited to inspecting the amount of seizures during previous periods of time and assessing the existence of interictal discharges. As a result, there is a need for improving the tools to assist the diagnosis and follow up of these patients. The goal of the present study is to compare and find a way to differentiate between two groups of patients suffering from idiopathic epilepsy, one group that could be followed-up by means of specific electroencephalographic (EEG) signatures (intercritical activity present), and another one that could not due to the absence of these markers. To do that, we analyzed the background EEG activity of each in the absence of seizures and epileptic intercritical activity. We used the Shannon spectral entropy (SSE) as a metric to discriminate between the two groups and performed permutation-based statistical tests to detect the set of frequencies that show significant differences. By constraining the spectral entropy estimation to the [6.25–12.89) Hz range, we detect statistical differences (at below 0.05 alpha-level) between both types of epileptic patients at all available recording channels. Interestingly, entropy values follow a trend that is inversely related to the elapsed time from the last seizure. Indeed, this trend shows asymptotical convergence to the SSE values measured in a group of healthy subjects, which present SSE values lower than any of the two groups of patients. All these results suggest that the SSE, measured in a specific range of frequencies, could serve to follow up the evolution of patients suffering from idiopathic epilepsy. Future studies remain to be conducted in order to assess the predictive value of this approach for the anticipation of seizures. PMID:28922360

  14. Automatic reference selection for quantitative EEG interpretation: identification of diffuse/localised activity and the active earlobe reference, iterative detection of the distribution of EEG rhythms.

    PubMed

    Wang, Bei; Wang, Xingyu; Ikeda, Akio; Nagamine, Takashi; Shibasaki, Hiroshi; Nakamura, Masatoshi

    2014-01-01

    EEG (Electroencephalograph) interpretation is important for the diagnosis of neurological disorders. The proper adjustment of the montage can highlight the EEG rhythm of interest and avoid false interpretation. The aim of this study was to develop an automatic reference selection method to identify a suitable reference. The results may contribute to the accurate inspection of the distribution of EEG rhythms for quantitative EEG interpretation. The method includes two pre-judgements and one iterative detection module. The diffuse case is initially identified by pre-judgement 1 when intermittent rhythmic waveforms occur over large areas along the scalp. The earlobe reference or averaged reference is adopted for the diffuse case due to the effect of the earlobe reference depending on pre-judgement 2. An iterative detection algorithm is developed for the localised case when the signal is distributed in a small area of the brain. The suitable averaged reference is finally determined based on the detected focal and distributed electrodes. The presented technique was applied to the pathological EEG recordings of nine patients. One example of the diffuse case is introduced by illustrating the results of the pre-judgements. The diffusely intermittent rhythmic slow wave is identified. The effect of active earlobe reference is analysed. Two examples of the localised case are presented, indicating the results of the iterative detection module. The focal and distributed electrodes are detected automatically during the repeating algorithm. The identification of diffuse and localised activity was satisfactory compared with the visual inspection. The EEG rhythm of interest can be highlighted using a suitable selected reference. The implementation of an automatic reference selection method is helpful to detect the distribution of an EEG rhythm, which can improve the accuracy of EEG interpretation during both visual inspection and automatic interpretation. Copyright © 2013 IPEM

  15. Detection of artifacts from high energy bursts in neonatal EEG.

    PubMed

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the

  16. [Temporary disappearance of EEG activity during reversible respiratory failure in rabbits and cats].

    PubMed

    Jurco, M; Tomori, Z; Tkácová, R; Calfa, J

    1989-02-01

    The dynamics of changes of EEG activity was studied on the model of reversible respiratory failure in rabbits and cats in pentobarbital anesthesia. During N2 inhalation, apnea of 60 second duration, and subsequent resuscitation the electrocorticogram in bifrontal and bioccipital connection was recorded. Evaluation of 19 episodes of apnea in 7 rabbits and of 25 episodes in 8 cats yielded the following results: 1. During hyperventilation induced by N2 inhalation a certain activation of the EEG was observed (spindles more pronounced, increased occurrence rate of discharges of the reticular activation system). 2. At the onset of apnea the EEG was still distinct, suggesting that primary apnea is presumably not caused by anoxia and the accompanying electric silence of the structures that control respiration. 3. Disappearance of EEG occurred within 50 seconds from the onset of apnea in rabbits and within 30 seconds in cats. 4. After repeated episodes of apnea lasting for 60 sec., artificial ventilation mostly resulted in normalization of EEG.

  17. A Pharmacokinetics-Neural Mass Model (PK-NMM) for the Simulation of EEG Activity during Propofol Anesthesia

    PubMed Central

    Liang, Zhenhu; Duan, Xuejing; Su, Cui; Voss, Logan; Sleigh, Jamie; Li, Xiaoli

    2015-01-01

    Modeling the effects of anesthetic drugs on brain activity is very helpful in understanding anesthesia mechanisms. The aim of this study was to set up a combined model to relate actual drug levels to EEG dynamics and behavioral states during propofol-induced anesthesia. We proposed a new combined theoretical model based on a pharmacokinetics (PK) model and a neural mass model (NMM), which we termed PK-NMM—with the aim of simulating electroencephalogram (EEG) activity during propofol-induced general anesthesia. The PK model was used to derive propofol effect-site drug concentrations (C eff) based on the actual drug infusion regimen. The NMM model took C eff as the control parameter to produce simulated EEG-like (sEEG) data. For comparison, we used real prefrontal EEG (rEEG) data of nine volunteers undergoing propofol anesthesia from a previous experiment. To see how well the sEEG could describe the dynamic changes of neural activity during anesthesia, the rEEG data and the sEEG data were compared with respect to: power-frequency plots; nonlinear exponent (permutation entropy (PE)); and bispectral SynchFastSlow (SFS) parameters. We found that the PK-NMM model was able to reproduce anesthesia EEG-like signals based on the estimated drug concentration and patients’ condition. The frequency spectrum indicated that the frequency power peak of the sEEG moved towards the low frequency band as anesthesia deepened. Different anesthetic states could be differentiated by the PE index. The correlation coefficient of PE was 0.80±0.13 (mean±standard deviation) between rEEG and sEEG for all subjects. Additionally, SFS could track the depth of anesthesia and the SFS of rEEG and sEEG were highly correlated with a correlation coefficient of 0.77±0.13. The PK-NMM model could simulate EEG activity and might be a useful tool for understanding the action of propofol on brain activity. PMID:26720495

  18. Local and Widely Distributed EEG Activity in Schizophrenia With Prevalence of Negative Symptoms.

    PubMed

    Grin-Yatsenko, Vera A; Ponomarev, Valery A; Pronina, Marina V; Poliakov, Yury I; Plotnikova, Irina V; Kropotov, Juri D

    2017-09-01

    We evaluated EEG frequency abnormalities in resting state (eyes closed and eyes open) EEG in a group of chronic schizophrenia patients as compared with healthy subjects. The study included 3 methods of analysis of deviation of EEG characteristics: genuine EEG, current source density (CSD), and group independent component (gIC). All 3 methods have shown that the EEG in schizophrenia patients is characterized by enhanced low-frequency (delta and theta) and high-frequency (beta) activity in comparison with the control group. However, the spatial pattern of differences was dependent on the type of method used. Comparative analysis has shown that increased EEG power in schizophrenia patients apparently concerns both widely spatially distributed components and local components of signal. Furthermore, the observed differences in the delta and theta range can be described mainly by the local components, and those in the beta range mostly by spatially widely distributed ones. The possible nature of the widely distributed activity is discussed.

  19. Comparison of quantitative EEG characteristics of quiet and active sleep in newborns.

    PubMed

    Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil

    2003-11-01

    The aim of the present study was to verify whether the proposed method of computer-supported EEG analysis is able to differentiate the EEG activity in quiet sleep (QS) from that in active sleep (AS) in newborns. A quantitative description of the neonatal EEG may contribute to a more exact evaluation of the functional state of the brain, as well as to a refinement of diagnostics of brain dysfunction manifesting itself frequently as 'dysrhythmia' or 'dysmaturity'. Twenty-one healthy newborns (10 full-term and 11 pre-term) were examined polygraphically (EEG-eight channels, respiration, ECG, EOG and EMG) in the course of sleep. From each EEG record, two 5-min samples (one from QS and one from AS) were subject to an off-line computerized analysis. The obtained data were averaged with respect to the sleep state and to the conceptional age. The number of variables was reduced by means of factor analysis. All factors identified by factor analysis were highly significantly influenced by sleep states in both developmental periods. Likewise, a comparison of the measured variables between QS and AS revealed many statistically significant differences. The variables describing (a) the number and length of quasi-stationary segments, (b) voltage and (c) power in delta and theta bands contributed to the greatest degree to the differentiation of EEGs between both sleep states. The presented method of the computerized EEG analysis which has good discriminative potential is adequately sensitive and describes the neonatal EEG with convenient accuracy.

  20. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla

    PubMed Central

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B. W.; Pinborg, Lars H.; Kjær, Troels W.; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Posse, Stefan

    2017-01-01

    Purpose Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. Materials and methods The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18–70 years) and 13 patients with epilepsy (8 males, age range 21–67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). Results RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG

  1. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.

    PubMed

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan

    2017-01-01

    Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG

  2. Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG

    PubMed Central

    Krishnaswamy, Pavitra; Obregon-Henao, Gabriel; Ahveninen, Jyrki; Khan, Sheraz; Iglesias, Juan Eugenio; Hämäläinen, Matti S.; Purdon, Patrick L.

    2017-01-01

    Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain. PMID:29138310

  3. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  4. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses.

    PubMed

    Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn

    2018-03-01

    Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.

  5. Technical and clinical analysis of microEEG: a miniature wireless EEG device designed to record high-quality EEG in the emergency department

    PubMed Central

    2012-01-01

    Background We describe and characterize the performance of microEEG compared to that of a commercially available and widely used clinical EEG machine. microEEG is a portable, battery-operated, wireless EEG device, developed by Bio-Signal Group to overcome the obstacles to routine use of EEG in emergency departments (EDs). Methods The microEEG was used to obtain EEGs from healthy volunteers in the EEG laboratory and ED. The standard system was used to obtain EEGs from healthy volunteers in the EEG laboratory, and studies recorded from patients in the ED or ICU were also used for comparison. In one experiment, a signal splitter was used to record simultaneous microEEG and standard EEG from the same electrodes. Results EEG signal analysis techniques indicated good agreement between microEEG and the standard system in 66 EEGs recorded in the EEG laboratory and the ED. In the simultaneous recording the microEEG and standard system signals differed only in a smaller amount of 60 Hz noise in the microEEG signal. In a blinded review by a board-certified clinical neurophysiologist, differences in technical quality or interpretability were insignificant between standard recordings in the EEG laboratory and microEEG recordings from standard or electrode cap electrodes in the ED or EEG laboratory. The microEEG data recording characteristics such as analog-to-digital conversion resolution (16 bits), input impedance (>100MΩ), and common-mode rejection ratio (85 dB) are similar to those of commercially available systems, although the microEEG is many times smaller (88 g and 9.4 × 4.4 × 3.8 cm). Conclusions Our results suggest that the technical qualities of microEEG are non-inferior to a standard commercially available EEG recording device. EEG in the ED is an unmet medical need due to space and time constraints, high levels of ambient electrical noise, and the cost of 24/7 EEG technologist availability. This study suggests that using microEEG with an electrode cap

  6. Recording EEG in immature rats with a novel miniature telemetry system

    PubMed Central

    Zayachkivsky, A.; Lehmkuhle, M. J.; Fisher, J. H.; Ekstrand, J. J.

    2013-01-01

    Serial EEG recordings from immature rat pups are extremely difficult to obtain but important for analyzing animal models of neonatal seizures and other pediatric neurological conditions as well as normal physiology. In this report, we describe the features and applications of a novel miniature telemetry system designed to record EEG in rat pups as young as postnatal day 6 (P6). First, we have recorded electrographic seizure activity in two animal models of neonatal seizures, hypoxia- and kainate-induced seizures at P7. Second, we describe a viable approach for long-term continuous EEG monitoring of naturally reared rat pups implanted with EEG at P6. Third, we have used serial EEG recordings to record age-dependent changes in the background EEG signal as the animals matured from P7 to P11. The important advantages of using miniature wireless EEG technology are: 1) minimally invasive surgical implantation; 2) a device form-factor that is compatible with housing of rat pups with the dam and littermates; 3) serial recordings of EEG activity; and 4) low power consumption of the unit, theoretically allowing continuous monitoring for up to 2 yr without surgical reimplantation. The miniature EEG telemetry system provides a technical advance that allows researchers to record continuous and serial EEG recordings in neonatal rodent models of human neurological disorders, study the progression of the disease, and then assess possible therapies using quantitative EEG as an outcome measure. This new technical approach should improve animal models of human conditions that rely on EEG monitoring for diagnosis and therapy. PMID:23114207

  7. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    PubMed

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    2002-01-01

    The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.

  9. Patient prognosis based on feature extraction, selection and classification of EEG periodic activity.

    PubMed

    Sánchez-González, Alain; García-Zapirain, Begoña; Maestro Saiz, Iratxe; Yurrebaso Santamaría, Izaskun

    2015-01-01

    Periodic activity in electroencephalography (PA-EEG) is shown as comprising a series of repetitive wave patterns that may appear in different cerebral regions and are due to many different pathologies. The diagnosis based on PA-EEG is an arduous task for experts in Clinical Neurophysiology, being mainly based on other clinical features of patients. Considering this difficulty in the diagnosis it is also very complicated to establish the prognosis of patients who present PA-EEG. The goal of this paper is to propose a method capable of determining patient prognosis based on characteristics of the PA-EEG activity. The approach, based on a parallel classification architecture and a majority vote system has proven successful by obtaining a success rate of 81.94% in the classification of patient prognosis of our database.

  10. k-Nearest neighbour local linear prediction of scalp EEG activity during intermittent photic stimulation.

    PubMed

    Erla, Silvia; Faes, Luca; Tranquillini, Enzo; Orrico, Daniele; Nollo, Giandomenico

    2011-05-01

    The characterization of the EEG response to photic stimulation (PS) is an important issue with significant clinical relevance. This study aims to quantify and map the complexity of the EEG during PS, where complexity is measured as the degree of unpredictability resulting from local linear prediction. EEG activity was recorded with eyes closed (EC) and eyes open (EO) during resting and PS at 5, 10, and 15 Hz in a group of 30 healthy subjects and in a case-report of a patient suffering from cerebral ischemia. The mean squared prediction error (MSPE) resulting from k-nearest neighbour local linear prediction was calculated in each condition as an index of EEG unpredictability. The linear or nonlinear nature of the system underlying EEG activity was evaluated quantifying MSPE as a function of the neighbourhood size during local linear prediction, and by surrogate data analysis as well. Unpredictability maps were obtained for each subject interpolating MSPE values over a schematic head representation. Results on healthy subjects evidenced: (i) the prevalence of linear mechanisms in the generation of EEG dynamics, (ii) the lower predictability of EO EEG, (iii) the desynchronization of oscillatory mechanisms during PS leading to increased EEG complexity, (iv) the entrainment of alpha rhythm during EC obtained by 10 Hz PS, and (v) differences of EEG predictability among different scalp regions. Ischemic patient showed different MSPE values in healthy and damaged regions. The EEG predictability decreased moving from the early acute stage to a stage of partial recovery. These results suggest that nonlinear prediction can be a useful tool to characterize EEG dynamics during PS protocols, and may consequently constitute a complement of quantitative EEG analysis in clinical applications. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Gender differences in association between serotonin transporter gene polymorphism and resting-state EEG activity.

    PubMed

    Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V

    2015-01-22

    Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Serial EEG findings in anti-NMDA receptor encephalitis: correlation between clinical course and EEG.

    PubMed

    Ueda, Jun; Kawamoto, Michi; Hikiami, Ryota; Ishii, Junko; Yoshimura, Hajime; Matsumoto, Riki; Kohara, Nobuo

    2017-12-01

    Anti-NMDA receptor encephalitis is a paraneoplastic encephalitis characterised by psychiatric features, involuntary movement, and autonomic instability. Various EEG findings in patients with anti-NMDA receptor encephalitis have been reported, however, the correlation between the EEG findings and clinical course of anti-NMDA receptor encephalitis remains unclear. We describe a patient with anti-NMDA receptor encephalitis with a focus on EEG findings, which included: status epilepticus, generalised rhythmic delta activity, excess beta activity, extreme delta brush, and paroxysmal alpha activity upon arousal from sleep, which we term"arousal alpha pattern". Initially, status epilepticus was observed on the EEG when the patient was comatose with conjugate deviation. The EEG then indicated excess beta activity, followed by the emergence of continuous slow activity, including generalised rhythmic delta activity and extreme delta brush, in the most severe phase. Slow activity gradually faded in parallel with clinical amelioration. Excess beta activity persisted, even after the patient became almost independent in daily activities, and finally disappeared with full recovery. In summary, our patient with anti-NMDA receptor encephalitis demonstrated slow activity on the EEG, including extreme delta brush during the most severe phase, which gradually faded in parallel with clinical amelioration, with excess beta activity persisting into the recovery phase.

  13. Nonlinear Directed Interactions Between HRV and EEG Activity in Children With TLE.

    PubMed

    Schiecke, Karin; Pester, Britta; Piper, Diana; Benninger, Franz; Feucht, Martha; Leistritz, Lutz; Witte, Herbert

    2016-12-01

    Epileptic seizure activity influences the autonomic nervous system (ANS) in different ways. Heart rate variability (HRV) is used as indicator for alterations of the ANS. It was shown that linear, nondirected interactions between HRV and EEG activity before, during, and after epileptic seizure occur. Accordingly, investigations of directed nonlinear interactions are logical steps to provide, e.g., deeper insight into the development of seizure onsets. Convergent cross mapping (CCM) investigates nonlinear, directed interactions between time series by using nonlinear state space reconstruction. CCM is applied to simulated and clinically relevant data, i.e., interactions between HRV and specific EEG components of children with temporal lobe epilepsy (TLE). In addition, time-variant multivariate Autoregressive model (AR)-based estimation of partial directed coherence (PDC) was performed for the same data. Influence of estimation parameters and time-varying behavior of CCM estimation could be demonstrated by means of simulated data. AR-based estimation of PDC failed for the investigation of our clinical data. Time-varying interval-based application of CCM on these data revealed directed interactions between HRV and delta-related EEG activity. Interactions between HRV and alpha-related EEG activity were visible but less pronounced. EEG components mainly drive HRV. The interaction pattern and directionality clearly changed with onset of seizure. Statistical relevant interactions were quantified by bootstrapping and surrogate data approach. In contrast to AR-based estimation of PDC CCM was able to reveal time-courses and frequency-selective views of nonlinear interactions for the further understanding of complex interactions between the epileptic network and the ANS in children with TLE.

  14. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis

    PubMed Central

    Gajic, Dragoljub; Djurovic, Zeljko; Gligorijevic, Jovan; Di Gennaro, Stefano; Savic-Gajic, Ivana

    2015-01-01

    We present a new technique for detection of epileptiform activity in EEG signals. After preprocessing of EEG signals we extract representative features in time, frequency and time-frequency domain as well as using non-linear analysis. The features are extracted in a few frequency sub-bands of clinical interest since these sub-bands showed much better discriminatory characteristics compared with the whole frequency band. Then we optimally reduce the dimension of feature space to two using scatter matrices. A decision about the presence of epileptiform activity in EEG signals is made by quadratic classifiers designed in the reduced two-dimensional feature space. The accuracy of the technique was tested on three sets of electroencephalographic (EEG) signals recorded at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial EEG signals from the epilepsy patients during the seizure free interval from within the seizure focus and intracranial EEG signals of epileptic seizures also from within the seizure focus. An overall detection accuracy of 98.7% was achieved. PMID:25852534

  15. A statistically robust EEG re-referencing procedure to mitigate reference effect

    PubMed Central

    Lepage, Kyle Q.; Kramer, Mark A.; Chu, Catherine J.

    2014-01-01

    Background The electroencephalogram (EEG) remains the primary tool for diagnosis of abnormal brain activity in clinical neurology and for in vivo recordings of human neurophysiology in neuroscience research. In EEG data acquisition, voltage is measured at positions on the scalp with respect to a reference electrode. When this reference electrode responds to electrical activity or artifact all electrodes are affected. Successful analysis of EEG data often involves re-referencing procedures that modify the recorded traces and seek to minimize the impact of reference electrode activity upon functions of the original EEG recordings. New method We provide a novel, statistically robust procedure that adapts a robust maximum-likelihood type estimator to the problem of reference estimation, reduces the influence of neural activity from the re-referencing operation, and maintains good performance in a wide variety of empirical scenarios. Results The performance of the proposed and existing re-referencing procedures are validated in simulation and with examples of EEG recordings. To facilitate this comparison, channel-to-channel correlations are investigated theoretically and in simulation. Comparison with existing methods The proposed procedure avoids using data contaminated by neural signal and remains unbiased in recording scenarios where physical references, the common average reference (CAR) and the reference estimation standardization technique (REST) are not optimal. Conclusion The proposed procedure is simple, fast, and avoids the potential for substantial bias when analyzing low-density EEG data. PMID:24975291

  16. What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study

    NASA Astrophysics Data System (ADS)

    Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.

    2016-08-01

    Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the

  17. Relationship between speed and EEG activity during imagined and executed hand movements

    NASA Astrophysics Data System (ADS)

    Yuan, Han; Perdoni, Christopher; He, Bin

    2010-04-01

    The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.

  18. Regularized two-step brain activity reconstruction from spatiotemporal EEG data

    NASA Astrophysics Data System (ADS)

    Alecu, Teodor I.; Voloshynovskiy, Sviatoslav; Pun, Thierry

    2004-10-01

    We are aiming at using EEG source localization in the framework of a Brain Computer Interface project. We propose here a new reconstruction procedure, targeting source (or equivalently mental task) differentiation. EEG data can be thought of as a collection of time continuous streams from sparse locations. The measured electric potential on one electrode is the result of the superposition of synchronized synaptic activity from sources in all the brain volume. Consequently, the EEG inverse problem is a highly underdetermined (and ill-posed) problem. Moreover, each source contribution is linear with respect to its amplitude but non-linear with respect to its localization and orientation. In order to overcome these drawbacks we propose a novel two-step inversion procedure. The solution is based on a double scale division of the solution space. The first step uses a coarse discretization and has the sole purpose of globally identifying the active regions, via a sparse approximation algorithm. The second step is applied only on the retained regions and makes use of a fine discretization of the space, aiming at detailing the brain activity. The local configuration of sources is recovered using an iterative stochastic estimator with adaptive joint minimum energy and directional consistency constraints.

  19. Standardized Computer-based Organized Reporting of EEG: SCORE

    PubMed Central

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter

    2013-01-01

    The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make

  20. EEG Mu (µ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults.

    PubMed

    Saltuklaroglu, Tim; Harkrider, Ashley W; Thornton, David; Jenson, David; Kittilstved, Tiffani

    2017-06-01

    Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed from passive listening in noise and accurate (same/different) discrimination of tones or syllables in quiet and noisy backgrounds. Independent component analysis identified left and/or right μ rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-frequency differences were associated with noisy conditions only. PWS showed increased μ-β desynchronization when listening to noise and early in discrimination events, suggesting evidence of heightened motor activity that might be related to forward modeling deficits. PWS also showed reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to stuttering. More specifically, they can reveal stuttering-related sensorimotor processing differences in listening and auditory discrimination that also may be influenced by basal ganglia deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy.

    PubMed

    Vulliemoz, S; Rodionov, R; Carmichael, D W; Thornton, R; Guye, M; Lhatoo, S D; Michel, C M; Duncan, J S; Lemieux, L

    2010-02-15

    EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional < event-related > designs based solely on the visual identification of IED. Ten patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI. EEG Source Imaging (ESI) was performed on intra-fMRI averaged IED to identify the irritative zone. The continuous activity of this estimated IED source (cESI) over the entire recording was used for fMRI analysis (cESI model). The maps of BOLD signal changes explained by cESI were compared to results of the conventional IED-related model. ESI was concordant with non-invasive data in 13/15 different types of IED. The cESI model explained significant additional BOLD variance in regions concordant with video-EEG, structural MRI or, when available, intracranial EEG in 10/15 IED. The cESI model allowed better detection of the BOLD cluster, concordant with intracranial EEG in 4/7 IED, compared to the IED model. In 4 IED types, cESI-related BOLD signal changes were diffuse with a pattern suggestive of contamination of the source signal by artefacts, notably incompletely corrected motion and pulse artefact. In one IED type, there was no significant BOLD change with either model. Continuous EEG source imaging can improve the modelling of BOLD changes related to interictal epileptic activity and this may enhance the localisation of the irritative zone. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Amplitude-integrated EEG and the newborn infant.

    PubMed

    Shah, Divyen K; Mathur, Amit

    2014-01-01

    There is emerging recognition of the need for continuous long term electrographic monitoring of the encephalopathic neonate. While full-montage EEG with video remains the gold standard for monitoring, it is limited in application due to the complexity of lead application and specialized interpretation of results. Amplitude integrated EEG (aEEG) is derived from limited channels (usually C3-P3, C4-P4) and is filtered, rectified and time-compressed to serve as a bedside electrographic trend monitor. Its simple application and interpretation has resulted in increasing use in neonatal units across the world. Validation studies with full montage EEG have shown reliable results in interpretation of EEG background and electrographic seizures, especially when used with the simultaneously displayed raw EEG trace. Several aEEG monitors are commercially available and seizure algorithms are being developed for use on these monitors. These aEEG monitors, complement conventional EEG and offer a significant advance in the feasibility of long term electrographic monitoring of the encephalopathic neonate.

  3. A comparison of continuous video-EEG monitoring and 30-minute EEG in an ICU.

    PubMed

    Khan, Omar I; Azevedo, Christina J; Hartshorn, Alendia L; Montanye, Justin T; Gonzalez, Juan C; Natola, Mark A; Surgenor, Stephen D; Morse, Richard P; Nordgren, Richard E; Bujarski, Krzysztof A; Holmes, Gregory L; Jobst, Barbara C; Scott, Rod C; Thadani, Vijay M

    2014-12-01

    To determine whether there is added benefit in detecting electrographic abnormalities from 16-24 hours of continuous video-EEG in adult medical/surgical ICU patients, compared to a 30-minute EEG. This was a prospectively enroled non-randomized study of 130 consecutive ICU patients for whom EEG was requested. For 117 patients, a 30-minute EEG was requested for altered mental state and/or suspected seizures; 83 patients continued with continuous video-EEG for 16-24 hours and 34 patients had only the 30-minute EEG. For 13 patients with prior seizures, continuous video-EEG was requested and was carried out for 16-24 hours. We gathered EEG data prospectively, and reviewed the medical records retrospectively to assess the impact of continuous video-EEG. A total of 83 continuous video-EEG recordings were performed for 16-24 hours beyond 30 minutes of routine EEG. All were slow, and 34% showed epileptiform findings in the first 30 minutes, including 2% with seizures. Over 16-24 hours, 14% developed new or additional epileptiform abnormalities, including 6% with seizures. In 8%, treatment was changed based on continuous video-EEG. Among the 34 EEGs limited to 30 minutes, almost all were slow and 18% showed epileptiform activity, including 3% with seizures. Among the 13 patients with known seizures, continuous video-EEG was slow in all and 69% had epileptiform abnormalities in the first 30 minutes, including 31% with seizures. An additional 8% developed epileptiform abnormalities over 16-24 hours. In 46%, treatment was changed based on continuous video-EEG. This study indicates that if continuous video-EEG is not available, a 30-minute EEG in the ICU has a substantial diagnostic yield and will lead to the detection of the majority of epileptiform abnormalities. In a small percentage of patients, continuous video-EEG will lead to the detection of additional epileptiform abnormalities. In a sub-population, with a history of seizures prior to the initiation of EEG recording

  4. How Long Should Routine EEG Be Recorded to Get Relevant Information?

    PubMed

    Doudoux, Hannah; Skaare, Kristina; Geay, Thomas; Kahane, Philippe; Bosson, Jean L; Sabourdy, Cécile; Vercueil, Laurent

    2017-03-01

    The optimal duration of routine EEG (rEEG) has not been determined on a clinical basis. This study aims to determine the time required to obtain relevant information during rEEG with respect to the clinical request. All rEEGs performed over 3 months in unselected patients older than 14 years in an academic hospital were analyzed retrospectively. The latency required to obtain relevant information was determined for each rEEG by 2 independent readers blinded to the clinical data. EEG final diagnoses and latencies were analyzed with respect to the main clinical requests: subacute cognitive impairment, spells, transient focal neurologic manifestation or patients referred by epileptologists. From 430 rEEGs performed in the targeted period, 364 were analyzed: 92% of the pathological rEEGs were provided within the first 10 minutes of recording. Slowing background activity was diagnosed from the beginning, whereas interictal epileptiform discharges were recorded over time. Moreover, the time elapsed to demonstrate a pattern differed significantly in the clinical groups: in patients with subacute cognitive impairment, EEG abnormalities appeared within the first 10 minutes, whereas in the other groups, data could be provided over time. Patients with subacute cognitive impairment differed from those in the other groups significantly in the elapsed time required to obtain relevant information during rEEG, suggesting that 10-minute EEG recordings could be sufficient, arguing in favor of individualized rEEG. However, this conclusion does not apply to intensive care unit patients.

  5. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG

    PubMed Central

    Bleichner, Martin G.; Debener, Stefan

    2017-01-01

    Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG. PMID:28439233

  6. EEG in children with spelling disabilities.

    PubMed

    Byring, R F; Salmi, T K; Sainio, K O; Orn, H P

    1991-10-01

    A total of 23 13-year-old boys with spelling disabilities and 21 matched controls were studied. EEG was recorded for visual and quantitative analysis, including FFT band powers and normalized slope descriptors (NSD). Visual analysis showed general excess of slow activity, as well as an excess of temporal slow wave activity in the index group. Quantitative analysis showed low alpha and beta powers, and low "activity" and high "complexity" (NSD) in parieto-occipital derivations in the index group. Quantitative EEG (qEEG) parameter ratios between temporal and parieto-occipital derivations were increased in the index group, implying a lack of spatial differentiation in these EEGs. In covariance analysis the qEEG parameter differences between the index group and controls were partly explained by the neurotic traits made evident in psychological tests. This implies that psychopathological artifacts should be considered in qEEG examinations of children with cognitive handicaps. Differences in anterior/posterior qEEG ratios were, however, little affected by any confounding factors. Thus these qEEG ratios seem potentially useful in clinical assessments of children with learning disabilities.

  7. Prognostic EEG patterns in patients resuscitated from cardiac arrest with particular focus on Generalized Periodic Epileptiform Discharges (GPEDs).

    PubMed

    Milani, P; Malissin, I; Tran-Dinh, Y R; Deye, N; Baud, F; Lévy, B I; Kubis, N

    2014-04-01

    We assessed clinical and early electrophysiological characteristics, in particular Generalized Periodic Epileptiform Discharges (GPEDs) patterns, of consecutive patients during a 1-year period, hospitalized in the Intensive Care Unit (ICU) after resuscitation following cardiac arrest (CA). Consecutive patients resuscitated from cardiac arrest (CA) with first EEG recordings within 48hours were included. Clinical data were collected from hospital records, in particular therapeutic hypothermia. Electroencephalograms (EEGs) were re-analyzed retrospectively. Sixty-two patients were included. Forty-two patients (68%) were treated with therapeutic hypothermia according to international guidelines. Global mortality was 74% but not significantly different between patients who benefited from therapeutic hypothermia compared to those who did not. All the patients who did not have an initial background activity (36/62; 58%) died. By contrast, initial background activity was present in 26/62 (42%) and among these patients, 16/26 (61%) survived. Electroencephalography demonstrated GPEDs patterns in 5 patients, all treated by therapeutic hypothermia and antiepileptic drugs. One of these survived and showed persistent background activity with responsiveness to benzodiazepine intravenous injection. Patients presenting suppressed background activity, even when treated by hypothermia, have a high probability of poor outcome. Thorough analysis of EEG patterns might help to identify patients with a better chance of survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology.

    PubMed

    Xu, Jiawei; Mitra, Srinjoy; Van Hoof, Chris; Yazicioglu, Refet Firat; Makinwa, Kofi A A

    2017-01-01

    Active electrodes (AEs), i.e., electrodes with built-in readout circuitry, are increasingly being implemented in wearable healthcare and lifestyle applications due to AEs' robustness to environmental interference. An AE locally amplifies and buffers μV-level EEG signals before driving any cabling. The low output impedance of an AE mitigates cable motion artifacts, thus enabling the use of high-impedance dry electrodes for greater user comfort. However, developing a wearable EEG system, with medical grade signal quality on noise, electrode offset tolerance, common-mode rejection ratio, input impedance, and power dissipation, remains a challenging task. This paper reviews state-of-the-art bio-amplifier architectures and low-power analog circuits design techniques intended for wearable EEG acquisition, with a special focus on an AE system interfaced with dry electrodes.

  9. Characteristic changes in brain electrical activity due to chronic hypoxia in patients with obstructive sleep apnea syndrome (OSAS): a combined EEG study using LORETA and omega complexity.

    PubMed

    Toth, Marton; Faludi, Bela; Wackermann, Jiri; Czopf, Jozsef; Kondakor, Istvan

    2009-11-01

    EEG background activity of patients with obstructive sleep apnea syndrome (OSAS, N = 25) was compared to that of normal controls (N = 14) to reflect alterations of brain electrical activity caused by chronic intermittent hypoxia in OSAS. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Comparing patients to controls, lower Omega complexity was found globally and in the right hemisphere. Using LORETA, an increased medium frequency activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex. These findings indicate that alterations caused by chronic hypoxia in brain electrical activity in regions associated with influencing emotional regulation, long-term memory and the default mode network. Global synchronization (lower Omega complexity) may indicate a significantly reduced number of relatively independent, parallel neural processes due to chronic global hypoxic state in apneic patients as well as over the right hemisphere.

  10. Prognostic value of electroencephalography (EEG) after out-of-hospital cardiac arrest in successfully resuscitated patients used in daily clinical practice.

    PubMed

    Søholm, Helle; Kjær, Troels Wesenberg; Kjaergaard, Jesper; Cronberg, Tobias; Bro-Jeppesen, John; Lippert, Freddy K; Køber, Lars; Wanscher, Michael; Hassager, Christian

    2014-11-01

    Out-of-hospital cardiac arrest (OHCA) is associated with a poor prognosis and predicting outcome is complex with neurophysiological testing and repeated clinical neurological examinations as key components of the assessment. In this study we examine the association between different electroencephalography (EEG) patterns and mortality in a clinical cohort of OHCA-patients. From 2002 to 2011 consecutive patients were admitted to an intensive-care-unit after resuscitation from OHCA. Utstein-criteria for pre-hospital data and review of individual patients' charts for post-resuscitation care were used. EEG reports were analysed according to the 2012 American Clinical Neurophysiology Society's guidelines. A total of 1076 patients were included, and EEG was performed in 20% (n=219) with a median of 3(IQR 2-4) days after OHCA. Rhythmic Delta Activity (RDA) was found in 71 patients (36%) and Periodic Discharges (PD) in 100 patients (45%). Background EEG frequency of Alpha+ or Theta was noted in 107 patients (49%), and change in cerebral EEG activity to stimulation (reactivity) was found in 38 patients (17%). Suppression (all activity <10 μV) was found in 26 (12%) and burst-suppression in 17 (8%) patients. A favourable EEG pattern (reactivity, favourable background frequency and RDA) was independently associated with reduced mortality with hazard ratio (HR) 0.43 (95%CI: 0.24-0.76), p=0.004 (false positive rate: 31%) and a non-favourable EEG pattern (no reactivity, unfavourable background frequency, and PD, suppressed voltage or burst-suppression) was associated with higher mortality (HR=1.62(1.09-2.41), p=0.02) after adjustment for known prognostic factors (false positive rate: 9%). EEG may be useful in work-up in prognostication of patients with OHCA. Findings such as Rhythmic Delta Activity (RDA) seem to be associated with a better prognosis, whereas suppressed voltage and burst-suppression patterns were associated with poor prognosis. Copyright © 2014 Elsevier Ireland

  11. Emotion processing biases and resting EEG activity in depressed adolescents

    PubMed Central

    Auerbach, Randy P.; Stewart, Jeremy G.; Stanton, Colin H.; Mueller, Erik M.; Pizzagalli, Diego A.

    2015-01-01

    Background While theorists have posited that adolescent depression is characterized by emotion processing biases (greater propensity to identify sad than happy facial expressions), findings have been mixed. Additionally, the neural correlates associated with putative emotion processing biases remain largely unknown. Our aim was to identify emotion processing biases in depressed adolescents and examine neural abnormalities related to these biases using high-density resting EEG and source localization. Methods Healthy (n = 36) and depressed (n = 23) female adolescents, aged 13–18 years, completed a facial recognition task in which they identified happy, sad, fear, and angry expressions across intensities from 10% (low) to 100% (high). Additionally, 128-channel resting (i.e., task-free) EEG was recorded and analyzed using a distributed source localization technique (LORETA). Given research implicating the dorsolateral prefrontal cortex (DLPFC) in depression and emotion processing, analyses focused on this region. Results Relative to healthy youth, depressed adolescents were more accurate for sad and less accurate for happy, particularly low-intensity happy faces. No differences emerged for fearful or angry facial expressions. Further, LORETA analyses revealed greater theta and alpha current density (i.e., reduced brain activity) in depressed versus healthy adolescents, particularly in the left DLPFC (BA9/BA46). Theta and alpha current density were positively correlated, and greater current density predicted reduced accuracy for happy faces. Conclusion Depressed female adolescents were characterized by emotion processing biases in favor of sad emotions and reduced recognition of happiness, especially when cues of happiness were subtle. Blunted recognition of happy was associated with left DLPFC resting hypoactivity. PMID:26032684

  12. Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG.

    PubMed

    Fu, Yunfa; Xiong, Xin; Jiang, Changhao; Xu, Baolei; Li, Yongcheng; Li, Hongyi

    2017-09-01

    Simultaneous acquisition of brain activity signals from the sensorimotor area using NIRS combined with EEG, imagined hand clenching force and speed modulation of brain activity, as well as 6-class classification of these imagined motor parameters by NIRS-EEG were explored. Near infrared probes were aligned with C3 and C4, and EEG electrodes were placed midway between the NIRS probes. NIRS and EEG signals were acquired from six healthy subjects during six imagined hand clenching force and speed tasks involving the right hand. The results showed that NIRS combined with EEG is effective for simultaneously measuring brain activity of the sensorimotor area. The study also showed that in the duration of (0, 10) s for imagined force and speed of hand clenching, HbO first exhibited a negative variation trend, which was followed by a negative peak. After the negative peak, it exhibited a positive variation trend with a positive peak about 6-8 s after termination of imagined movement. During (-2, 1) s, the EEG may have indicated neural processing during the preparation, execution, and monitoring of a given imagined force and speed of hand clenching. The instantaneous phase, frequency, and amplitude feature of the EEG were calculated by Hilbert transform; HbO and the difference between HbO and Hb concentrations were extracted. The features of NIRS and EEG were combined to classify three levels of imagined force [at 20/50/80% MVGF (maximum voluntary grip force)] and speed (at 0.5/1/2 Hz) of hand clenching by SVM. The average classification accuracy of the NIRS-EEG fusion feature was 0.74 ± 0.02. These results may provide increased control commands of force and speed for a brain-controlled robot based on NIRS-EEG.

  13. Localized Fluctuant Oscillatory Activity by Working Memory Load: A Simultaneous EEG-fMRI Study.

    PubMed

    Zhao, Xiaojie; Li, Xiaoyun; Yao, Li

    2017-01-01

    Working memory (WM) is a resource-limited memory system for temporary storage and processing of brain information during the execution of cognitive tasks. Increased WM load will increase the amount and difficulty of memory information. Several studies have used electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) to explore load-dependent cognition processing according to the time courses of electrophysiological activity or the spatial pattern of blood oxygen metabolic activity. However, the relationships between these two activities and the underlying neural mechanism are still unclear. In this study, using simultaneously collected EEG and fMRI data under an n-back verbal WM task, we modeled the spectral perturbation of EEG oscillation and fMRI activation through joint independent component analysis (JICA). Multi-channel oscillation features were also introduced into the JICA model for further analysis. The results showed that time-locked activity of theta and beta were modulated by memory load in the early stimuli evaluation stage, corresponding to the enhanced activation in the frontal and parietal lobe, which were involved in stimulus discrimination, information encoding and delay-period activity. In the late response selection stage, alpha and gamma activity changes dependent on the load correspond to enhanced activation in the areas of frontal, temporal and parietal lobes, which played important roles in attention, information extraction and memory retention. These findings suggest that the increases in memory load not only affect the intensity and time course of the EEG activities, but also lead to the enhanced activation of brain regions which plays different roles during different time periods of cognitive process of WM.

  14. Long-Range Correlation in alpha-Wave Predominant EEG in Human

    NASA Astrophysics Data System (ADS)

    Sharif, Asif; Chyan Lin, Der; Kwan, Hon; Borette, D. S.

    2004-03-01

    The background noise in the alpha-predominant EEG taken from eyes-open and eyes-closed neurophysiological states is studied. Scale-free characteristic is found in both cases using the wavelet approach developed by Simonsen and Nes [1]. The numerical results further show the scaling exponent during eyes-closed is consistently lower than eyes-open. We conjecture the origin of this difference is related to the temporal reconfiguration of the neural network in the brain. To further investigate the scaling structure of the EEG background noise, we extended the second order statistics to higher order moments using the EEG increment process. We found that the background fluctuation in the alpha-predominant EEG is predominantly monofractal. Preliminary results are given to support this finding and its implication in brain functioning is discussed. [1] A.H. Simonsen and O.M. Nes, Physical Review E, 58, 2779¡V2748 (1998).

  15. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

    PubMed

    Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C

    2017-08-15

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation

    PubMed Central

    Dmochowski, Jacek P.; Koessler, Laurent; Norcia, Anthony M.; Bikson, Marom; Parra, Lucas C.

    2018-01-01

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4–7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. PMID:28578130

  17. Analysis of spontaneous EEG activity in Alzheimer's disease using cross-sample entropy and graph theory.

    PubMed

    Gomez, Carlos; Poza, Jesus; Gomez-Pilar, Javier; Bachiller, Alejandro; Juan-Cruz, Celia; Tola-Arribas, Miguel A; Carreres, Alicia; Cano, Monica; Hornero, Roberto

    2016-08-01

    The aim of this pilot study was to analyze spontaneous electroencephalography (EEG) activity in Alzheimer's disease (AD) by means of Cross-Sample Entropy (Cross-SampEn) and two local measures derived from graph theory: clustering coefficient (CC) and characteristic path length (PL). Five minutes of EEG activity were recorded from 37 patients with dementia due to AD and 29 elderly controls. Our results showed that Cross-SampEn values were lower in the AD group than in the control one for all the interactions among EEG channels. This finding indicates that EEG activity in AD is characterized by a lower statistical dissimilarity among channels. Significant differences were found mainly for fronto-central interactions (p <; 0.01, permutation test). Additionally, the application of graph theory measures revealed diverse neural network changes, i.e. lower CC and higher PL values in AD group, leading to a less efficient brain organization. This study suggests the usefulness of our approach to provide further insights into the underlying brain dynamics associated with AD.

  18. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis.

    PubMed

    Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick

    2017-09-01

    Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Trait anxiety impact on posterior activation asymmetries at rest and during evoked negative emotions: EEG investigation.

    PubMed

    Aftanas, Ljubomir I; Pavlov, Sergey V

    2005-01-01

    The main objective of the present investigation was to examine how high trait anxiety would influence cortical EEG asymmetries under non-emotional conditions and while experiencing negative emotions. The 62-channel EEG was recorded in control (n=21) and high anxiety (HA, n=18) non-patient individuals. Results showed that in HA subjects, the lowest level of arousal (eyes closed) was associated with stronger right-sided parieto-temporal theta-1 (4-6 Hz) and beta-1 (12-18 Hz) activity, whereas increased non-emotional arousal (eyes open, viewing neutral movie clip) was marked by persisting favored right hemisphere beta-1 activity. In turn, viewing aversive movie clip by the HA group led to significant lateralized decrease of the right parieto-temporal beta-1 power, which was initially higher in the emotionally neutral conditions. The EEG data suggests that asymmetrical parieto-temporal theta-1 and beta-1 EEG activity might be better interpreted in terms of Gray's BAS and BIS theory.

  20. Assessing Human Mirror Activity With EEG Mu Rhythm: A Meta-Analysis

    PubMed Central

    Fox, Nathan A.; Bakermans-Kranenburg, Marian J.; Yoo, Kathryn H.; Bowman, Lindsay C.; Cannon, Erin N.; Vanderwert, Ross E.; Ferrari, Pier F.; van IJzendoorn, Marinus H.

    2016-01-01

    A fundamental issue in cognitive neuroscience is how the brain encodes others’ actions and intentions. In recent years, a potential advance in our knowledge on this issue is the discovery of mirror neurons in the motor cortex of the nonhuman primate. These neurons fire to both execution and observation of specific types of actions. Researchers use this evidence to fuel investigations of a human mirror system, suggesting a common neural code for perceptual and motor processes. Among the methods used for inferring mirror system activity in humans are changes in a particular frequency band in the electroencephalogram (EEG) called the mu rhythm. Mu frequency appears to decrease in amplitude (reflecting cortical activity) during both action execution and action observation. The current meta-analysis reviewed 85 studies (1,707 participants) of mu that infer human mirror system activity. Results demonstrated significant effect sizes for mu during execution (Cohen’s d = 0.46, N = 701) as well as observation of action (Cohen’s d = 0.31, N = 1,508), confirming a mirroring property in the EEG. A number of moderators were examined to determine the specificity of these effects. We frame these meta-analytic findings within the current discussion about the development and functions of a human mirror system, and conclude that changes in EEG mu activity provide a valid means for the study of human neural mirroring. Suggestions for improving the experimental and methodological approaches in using mu to study the human mirror system are offered. PMID:26689088

  1. Source-space EEG neurofeedback links subjective experience with brain activity during effortless awareness meditation

    PubMed Central

    van Lutterveld, Remko; Houlihan, Sean D.; Pal, Prasanta; Sacchet, Matthew D.; McFarlane-Blake, Cinque; Patel, Payal R.; Sullivan, John S.; Ossadtchi, Alex; Druker, Susan; Bauer, Clemens; Brewer, Judson A.

    2016-01-01

    Background Meditation is increasingly showing beneficial effects for psychiatric disorders. However, learning to meditate is not straightforward as there are no easily discernible outward signs of performance and thus no direct feedback is possible. As meditation has been found to correlate with posterior cingulate cortex (PCC) activity, we tested whether source-space EEG neurofeedback from the PCC followed the subjective experience of effortless awareness (a major component of meditation), and whether participants could volitionally control the signal. Methods Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators were briefly trained to perform a basic meditation practice to induce the subjective experience of effortless awareness in a progressively more challenging neurofeedback test-battery. Experienced meditators performed a self-selected meditation practice to induce this state in the same test-battery. Neurofeedback was provided based on gamma-band (40–57 Hz) PCC activity extracted using a beamformer algorithm. Associations between PCC activity and the subjective experience of effortless awareness were assessed by verbal probes. Results Both groups reported that decreased PCC activity corresponded with effortless awareness (P<0.0025 for each group), with high median confidence ratings (novices: 8 on a 0–10 Likert scale; experienced: 9). Both groups showed high moment-to-moment median correspondence ratings between PCC activity and subjective experience of effortless awareness (novices: 8, experienced: 9). Both groups were able to volitionally control the PCC signal in the direction associated with effortless awareness by practicing effortless awareness meditation (novices: median % of time =77.97, P=0.001; experienced: 89.83, P<0.0005). Conclusions These findings support the feasibility of using EEG neurofeedback to link an objective measure of brain activity with the subjective experience of effortless

  2. Stage 2 Sleep EEG Sigma Activity and Motor Learning in Childhood ADHD: A Pilot Study.

    PubMed

    Saletin, Jared M; Coon, William G; Carskadon, Mary A

    2017-01-01

    Attention deficit hyperactivity disorder (ADHD) is associated with deficits in motor learning and sleep. In healthy adults, overnight improvements in motor skills are associated with sleep spindle activity in the sleep electroencephalogram (EEG). This association is poorly characterized in children, particularly in pediatric ADHD. Polysomnographic sleep was monitored in 7 children with ADHD and 14 typically developing controls. All children were trained on a validated motor sequence task (MST) in the evening with retesting the following morning. Analyses focused on MST precision (speed-accuracy trade-off). NREM Stage 2 sleep EEG power spectral analyses focused on spindle-frequency EEG activity in the sigma (12-15 Hz) band. The ADHD group demonstrated a selective decrease in power within the sigma band. Evening MST precision was lower in ADHD, yet no difference in performance was observed following sleep. Moreover, ADHD status moderated the association between slow sleep spindle activity (12-13.5 Hz) and overnight improvement; spindle-frequency EEG activity was positively associated with performance improvements in children with ADHD but not in controls. These data highlight the importance of sleep in supporting next-day behavior in ADHD while indicating that differences in sleep neurophysiology may contribute to deficits in this population.

  3. Stage 2 Sleep EEG Sigma Activity and Motor Learning in Childhood ADHD: A Pilot Study

    PubMed Central

    Saletin, Jared M.; Coon, William G.; Carskadon, Mary A.

    2017-01-01

    Objective Attention deficit hyperactivity disorder (ADHD) is associated with deficits in motor learning and sleep. In healthy adults, overnight motor skill learning improvement is associated with sleep spindle activity in the sleep EEG. This association is poorly characterized in children, particularly in pediatric ADHD. Method Polysomnographic sleep was monitored in seven children with ADHD and fourteen typically developing controls. All children trained on a validated motor sequence task (MST) in the evening with retesting the following morning. Analyses focused on MST precision (speed-accuracy trade-off). NREM Stage 2 sleep EEG power spectral analyses focused on spindle-frequency EEG activity in the sigma (12–15 Hz) band. Results The ADHD group demonstrated a selective decrease in power within the sigma band. Evening MST precision was lower in ADHD, yet no difference in performance was observed following sleep. Moreover, ADHD-status moderated the association between slow sleep spindle activity (12–13.5 Hz) and overnight improvement; spindle-frequency EEG activity was positively associated with performance improvements in children with ADHD but not in controls. Conclusions These data highlight the importance of sleep in supporting next day behavior in ADHD, while indicating that differences in sleep neurophysiology may, in part, underlie cognitive deficits in this population. PMID:27267670

  4. Preterm EEG: a multimodal neurophysiological protocol.

    PubMed

    Stjerna, Susanna; Voipio, Juha; Metsäranta, Marjo; Kaila, Kai; Vanhatalo, Sampsa

    2012-02-18

    Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.

  5. Analysis of brain activity and response to colour stimuli during learning tasks: an EEG study

    NASA Astrophysics Data System (ADS)

    Folgieri, Raffaella; Lucchiari, Claudio; Marini, Daniele

    2013-02-01

    The research project intends to demonstrate how EEG detection through BCI device can improve the analysis and the interpretation of colours-driven cognitive processes through the combined approach of cognitive science and information technology methods. To this end, firstly it was decided to design an experiment based on comparing the results of the traditional (qualitative and quantitative) cognitive analysis approach with the EEG signal analysis of the evoked potentials. In our case, the sensorial stimulus is represented by the colours, while the cognitive task consists in remembering the words appearing on the screen, with different combination of foreground (words) and background colours. In this work we analysed data collected from a sample of students involved in a learning process during which they received visual stimuli based on colour variation. The stimuli concerned both the background of the text to learn and the colour of the characters. The experiment indicated some interesting results concerning the use of primary (RGB) and complementary (CMY) colours.

  6. Does power mobility training impact a child's mastery motivation and spectrum of EEG activity? An exploratory project.

    PubMed

    Kenyon, Lisa K; Farris, John P; Aldrich, Naomi J; Rhodes, Samhita

    2017-08-30

    The purposes of this exploratory project were: (1) to evaluate the impact of power mobility training with a child who has multiple, severe impairments and (2) to determine if the child's spectrum of electroencephalography (EEG) activity changed during power mobility training. A single-subject A-B-A-B research design was conducted with a four-week duration for each phase. Two target behaviours were explored: (1) mastery motivation assessed via the dimensions of mastery questionnaire (DMQ) and (2) EEG data collected under various conditions. Power mobility skills were also assessed. The participant was a three-year, two-month-old girl with spastic quadriplegic cerebral palsy, gross motor function classification system level V. Each target behaviour was measured weekly. During intervention phases, power mobility training was provided. Improvements were noted in subscale scores of the DMQ. Short-term and long-term EEG changes were also noted. Improvements were noted in power mobility skills. The participant in this exploratory project demonstrated improvements in power mobility skill and function. EEG data collection procedures and variability in an individual's EEG activity make it difficult to determine if the participant's spectrum of EEG activity actually changed in response to power mobility training. Additional studies are needed to investigate the impact of power mobility training on the spectrum of EEG activity in children who have multiple, severe impairments. Implications for Rehabilitation Power mobility training appeared to be beneficial for a child with multiple, severe impairments though the child may never become an independent, community-based power wheelchair user. Electroencephalography may be a valuable addition to the study of power mobility use in children with multiple, severe impairments. Power mobility training appeared to impact mastery motivation (the internal drive to solve complex problems and master new skills) in a child who has multiple

  7. Experienced Mindfulness Meditators Exhibit Higher Parietal-Occipital EEG Gamma Activity during NREM Sleep

    PubMed Central

    Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A.; Zennig, Corinna; Benca, Ruth M.; Lutz, Antoine; Davidson, Richard J.; Tononi, Giulio

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25–40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function. PMID:24015304

  8. Physiological artifacts in scalp EEG and ear-EEG.

    PubMed

    Kappel, Simon L; Looney, David; Mandic, Danilo P; Kidmose, Preben

    2017-08-11

    A problem inherent to recording EEG is the interference arising from noise and artifacts. While in a laboratory environment, artifacts and interference can, to a large extent, be avoided or controlled, in real-life scenarios this is a challenge. Ear-EEG is a concept where EEG is acquired from electrodes in the ear. We present a characterization of physiological artifacts generated in a controlled environment for nine subjects. The influence of the artifacts was quantified in terms of the signal-to-noise ratio (SNR) deterioration of the auditory steady-state response. Alpha band modulation was also studied in an open/closed eyes paradigm. Artifacts related to jaw muscle contractions were present all over the scalp and in the ear, with the highest SNR deteriorations in the gamma band. The SNR deterioration for jaw artifacts were in general higher in the ear compared to the scalp. Whereas eye-blinking did not influence the SNR in the ear, it was significant for all groups of scalps electrodes in the delta and theta bands. Eye movements resulted in statistical significant SNR deterioration in both frontal, temporal and ear electrodes. Recordings of alpha band modulation showed increased power and coherence of the EEG for ear and scalp electrodes in the closed-eyes periods. Ear-EEG is a method developed for unobtrusive and discreet recording over long periods of time and in real-life environments. This study investigated the influence of the most important types of physiological artifacts, and demonstrated that spontaneous activity, in terms of alpha band oscillations, could be recorded from the ear-EEG platform. In its present form ear-EEG was more prone to jaw related artifacts and less prone to eye-blinking artifacts compared to state-of-the-art scalp based systems.

  9. Integrating EEG and fMRI in epilepsy.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Bertoldo, Alessandra; Manganotti, Paolo; Fiaschi, Antonio; Toffolo, Gianna Maria

    2011-02-14

    Integrating electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies enables to non-invasively investigate human brain function and to find the direct correlation of these two important measures of brain activity. Presurgical evaluation of patients with epilepsy is one of the areas where EEG and fMRI integration has considerable clinical relevance for localizing the brain regions generating interictal epileptiform activity. The conventional analysis of EEG-fMRI data is based on the visual identification of the interictal epileptiform discharges (IEDs) on scalp EEG. The convolution of these EEG events, represented as stick functions, with a model of the fMRI response, i.e. the hemodynamic response function, provides the regressor for general linear model (GLM) analysis of fMRI data. However, the conventional analysis is not automatic and suffers of some subjectivity in IEDs classification. Here, we present an easy-to-use and automatic approach for combined EEG-fMRI analysis able to improve IEDs identification based on Independent Component Analysis and wavelet analysis. EEG signal due to IED is reconstructed and its wavelet power is used as a regressor in GLM. The method was validated on simulated data and then applied on real data set consisting of 2 normal subjects and 5 patients with partial epilepsy. In all continuous EEG-fMRI recording sessions a good quality EEG was obtained allowing the detection of spontaneous IEDs and the analysis of the related BOLD activation. The main clinical finding in EEG-fMRI studies of patients with partial epilepsy is that focal interictal slow-wave activity was invariably associated with increased focal BOLD responses in a spatially related brain area. Our study extends current knowledge on epileptic foci localization and confirms previous reports suggesting that BOLD activation associated with slow activity might have a role in localizing the epileptogenic region even in the absence of clear

  10. Effects of Marijuana on Ictal and Interictal EEG Activities in Idiopathic Generalized Epilepsy.

    PubMed

    Sivakumar, Sanjeev; Zutshi, Deepti; Seraji-Bozorgzad, Navid; Shah, Aashit K

    2017-01-01

    Marijuana-based treatment for refractory epilepsy shows promise in surveys, case series, and clinical trials. However, literature on their EEG effects is sparse. Our objective is to analyze the effect of marijuana on EEG in a 24-year-old patient with idiopathic generalized epilepsy treated with cannabis. We blindly reviewed 3 long-term EEGs-a 24-hour study while only on antiepileptic drugs, a 72-hour EEG with Cannabis indica smoked on days 1 and 3 in addition to antiepileptic drugs, and a 48-hour EEG with combination C indica/sativa smoked on day 1 plus antiepileptic drugs. Generalized spike-wave discharges and diffuse paroxysmal fast activity were categorized as interictal and ictal, based on duration of less than 10 seconds or greater, respectively. Data from three studies concatenated into contiguous time series, with usage of marijuana modeled as time-dependent discrete variable while interictal and ictal events constituted dependent variables. Analysis of variance as initial test for significance followed by time series analysis using Generalized Autoregressive Conditional Heteroscedasticity model was performed. Statistical significance for lower interictal events (analysis of variance P = 0.001) was seen during C indica use, but not for C indica/sativa mixture (P = 0.629) or ictal events (P = 0.087). However, time series analysis revealed a significant inverse correlation between marijuana use, with interictal (P < 0.0004) and ictal (P = 0.002) event rates. Using a novel approach to EEG data, we demonstrate a decrease in interictal and ictal electrographic events during marijuana use. Larger samples of patients and EEG, with standardized cannabinoid formulation and dosing, are needed to validate our findings.

  11. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields.

    PubMed

    Henz, Diana; Schöllhorn, Wolfgang I; Poeggeler, Burkhard

    2018-01-01

    Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was

  12. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields

    PubMed Central

    Henz, Diana; Schöllhorn, Wolfgang I.; Poeggeler, Burkhard

    2018-01-01

    Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was

  13. Source localization of rhythmic ictal EEG activity: a study of diagnostic accuracy following STARD criteria.

    PubMed

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana; Åkeson, Per; Pedersen, Birthe; Pinborg, Lars H; Ziebell, Morten; Jespersen, Bo; Fuglsang-Frederiksen, Anders

    2013-10-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal EEG activity using a distributed source model. Source localization of rhythmic ictal scalp EEG activity was performed in 42 consecutive cases fulfilling inclusion criteria. The study was designed according to recommendations for studies on diagnostic accuracy (STARD). The initial ictal EEG signals were selected using a standardized method, based on frequency analysis and voltage distribution of the ictal activity. A distributed source model-local autoregressive average (LAURA)-was used for the source localization. Sensitivity, specificity, and measurement of agreement (kappa) were determined based on the reference standard-the consensus conclusion of the multidisciplinary epilepsy surgery team. Predictive values were calculated from the surgical outcome of the operated patients. To estimate the clinical value of the ictal source analysis, we compared the likelihood ratios of concordant and discordant results. Source localization was performed blinded to the clinical data, and before the surgical decision. Reference standard was available for 33 patients. The ictal source localization had a sensitivity of 70% and a specificity of 76%. The mean measurement of agreement (kappa) was 0.61, corresponding to substantial agreement (95% confidence interval (CI) 0.38-0.84). Twenty patients underwent resective surgery. The positive predictive value (PPV) for seizure freedom was 92% and the negative predictive value (NPV) was 43%. The likelihood ratio was nine times higher for the concordant results, as compared with the discordant ones. Source localization of rhythmic ictal activity using a distributed source model (LAURA) for the ictal EEG signals selected with a standardized method

  14. Association of Electroencephalography (EEG) Power Spectra with Corneal Nerve Fiber Injury in Retinoblastoma Patients.

    PubMed

    Liu, Jianliang; Sun, Juanjuan; Diao, Yumei; Deng, Aijun

    2016-09-04

    BACKGROUND In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. MATERIAL AND METHODS Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. RESULTS The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (P<0.01) and significant decrease of theta power P<0.05). Corneal nerves were damaged in corneas of retinoblastoma patients. Corneal nerve injury was positively correlated with delta EEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. CONCLUSIONS Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands.

  15. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression

    PubMed Central

    Zotev, Vadim; Yuan, Han; Misaki, Masaya; Phillips, Raquel; Young, Kymberly D.; Feldner, Matthew T.; Bodurka, Jerzy

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging approach for studies and novel treatments of major depressive disorder (MDD). EEG performed simultaneously with an rtfMRI-nf procedure allows an independent evaluation of rtfMRI-nf brain modulation effects. Frontal EEG asymmetry in the alpha band is a widely used measure of emotion and motivation that shows profound changes in depression. However, it has never been directly related to simultaneously acquired fMRI data. We report the first study investigating electrophysiological correlates of the rtfMRI-nf procedure, by combining the rtfMRI-nf with simultaneous and passive EEG recordings. In this pilot study, MDD patients in the experimental group (n = 13) learned to upregulate BOLD activity of the left amygdala using an rtfMRI-nf during a happy emotion induction task. MDD patients in the control group (n = 11) were provided with a sham rtfMRI-nf. Correlations between frontal EEG asymmetry in the upper alpha band and BOLD activity across the brain were examined. Average individual changes in frontal EEG asymmetry during the rtfMRI-nf task for the experimental group showed a significant positive correlation with the MDD patients' depression severity ratings, consistent with an inverse correlation between the depression severity and frontal EEG asymmetry at rest. The average asymmetry changes also significantly correlated with the amygdala BOLD laterality. Temporal correlations between frontal EEG asymmetry and BOLD activity were significantly enhanced, during the rtfMRI-nf task, for the amygdala and many regions associated with emotion regulation. Our findings demonstrate an important link between amygdala BOLD activity and frontal EEG asymmetry during emotion regulation. Our EEG asymmetry results indicate that the rtfMRI-nf training targeting the amygdala is beneficial to MDD patients. They further suggest that EEG-nf based on frontal EEG asymmetry in the alpha band would be compatible with the amygdala

  16. Effect of bright light on EEG activities and subjective sleepiness to mental task during nocturnal sleep deprivation.

    PubMed

    Yokoi, Mari; Aoki, Ken; Shimomura, Yoshihiro; Iwanaga, Koichi; Katsuura, Tetsuo; Shiomura, Yoshihiro

    2003-11-01

    The purpose of this study was to investigate the effect of the exposure to bright light on EEG activity and subjective sleepiness at rest and at the mental task during nocturnal sleep deprivation. Eight male subjects lay awake in semi-supine in a reclining seat from 21:00 to 04:30 under the bright (BL; >2500 lux) or the dim (DL; <150 lux) light conditions. During the sleep deprivation, the mental task (Stroop color-word conflict test: CWT) was performed each 15 min in one hour. EEG, subjective sleepiness, rectal and mean skin temperatures and urinary melatonin concentrations were measured. The subjective sleepiness increased with time of sleep deprivation during both rest and CWT under the DL condition. The exposure to bright light delayed for 2 hours the increase in subjective sleepiness at rest and suppressed the increase in that during CWT. The bright light exposure also delayed the increase in the theta and alpha wave activities in EEG at rest. In contrast, the effect of the bright light exposure on the theta and alpha wave activities disappeared by CWT. Additionally, under the BL condition, the entire theta activity during CWT throughout nocturnal sleep deprivation increased significantly from that in a rest condition. Our results suggest that the exposure to bright light throughout nocturnal sleep deprivation influences the subjective sleepiness during the mental task and the EEG activity, as well as the subjective sleepiness at rest. However, the effect of the bright light exposure on the EEG activity at the mental task diminishes throughout nocturnal sleep deprivation.

  17. Simultaneous recording of EEG and electromyographic polygraphy increases the diagnostic yield of video-EEG monitoring.

    PubMed

    Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya

    2014-06-01

    To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.

  18. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  19. Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis

    PubMed Central

    Aydin, Ümit; Vorwerk, Johannes; Dümpelmann, Matthias; Küpper, Philipp; Kugel, Harald; Heers, Marcel; Wellmer, Jörg; Kellinghaus, Christoph; Haueisen, Jens; Rampp, Stefan; Stefan, Hermann; Wolters, Carsten H.

    2015-01-01

    We investigated two important means for improving source reconstruction in presurgical epilepsy diagnosis. The first investigation is about the optimal choice of the number of epileptic spikes in averaging to (1) sufficiently reduce the noise bias for an accurate determination of the center of gravity of the epileptic activity and (2) still get an estimation of the extent of the irritative zone. The second study focuses on the differences in single modality EEG (80-electrodes) or MEG (275-gradiometers) and especially on the benefits of combined EEG/MEG (EMEG) source analysis. Both investigations were validated with simultaneous stereo-EEG (sEEG) (167-contacts) and low-density EEG (ldEEG) (21-electrodes). To account for the different sensitivity profiles of EEG and MEG, we constructed a six-compartment finite element head model with anisotropic white matter conductivity, and calibrated the skull conductivity via somatosensory evoked responses. Our results show that, unlike single modality EEG or MEG, combined EMEG uses the complementary information of both modalities and thereby allows accurate source reconstructions also at early instants in time (epileptic spike onset), i.e., time points with low SNR, which are not yet subject to propagation and thus supposed to be closer to the origin of the epileptic activity. EMEG is furthermore able to reveal the propagation pathway at later time points in agreement with sEEG, while EEG or MEG alone reconstructed only parts of it. Subaveraging provides important and accurate information about both the center of gravity and the extent of the epileptogenic tissue that neither single nor grand-averaged spike localizations can supply. PMID:25761059

  20. Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards.

    PubMed

    Pornpattananangkul, Narun; Nusslock, Robin

    2016-10-01

    While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals first completed a behavioral delay-discounting task. Then reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this EEG task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and reward-outcome (including, feedback-locked delta, theta and beta power) stages. Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials, as reflected by stronger 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta, was associated with a greater preference for larger-but-delayed rewards in a separate, behavioral delay-discounting task. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward

  1. The effect of alpha rhythm sleep on EEG activity and individuals' attention.

    PubMed

    Kim, Seon Chill; Lee, Myoung Hee; Jang, Chel; Kwon, Jung Won; Park, Joo Wan

    2013-12-01

    [Purpose] This study examined whether the alpha rhythm sleep alters the EEG activity and response time in the attention and concentration tasks. [Subjects and Methods] The participants were 30 healthy university students, who were randomly and equally divided into two groups, the experimental and control groups. They were treated using the Happy-sleep device or a sham device, respectively. All participants had a one-week training period. Before and after training sessions, a behavioral task test was performed and EEG alpha waves were measured to confirm the effectiveness of training on cognitive function. [Results] In terms of the behavioral task test, reaction time (RT) variations in the experimental group were significantly larger than in the control group for the attention item. Changes in the EEG alpha power in the experimental group were also significantly larger than those of the control group. [Conclusions] These findings suggest that sleep induced using the Happy-sleep device modestly enhances the ability to pay attention and focus during academic learning.

  2. Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy

    PubMed Central

    2013-01-01

    Background Amplitude-integrated electroencephalography (aEEG) is a useful tool to determine the severity of neonatal hypoxic-ischemic encephalopathy (HIE). Our aim was to assess the prevalence and study the origin of false normal aEEG recordings based on 85 aEEG recordings registered before six hours of age. Methods Raw EEG recordings were reevaluated retrospectively with Fourier analysis to identify and describe the frequency patterns of the raw EEG signal, in cases with inconsistent aEEG recordings and clinical symptoms. Power spectral density curves, power (P) and median frequency (MF) were determined using the raw EEG. In 7 patients non-depolarizing muscle relaxant (NDMR) exposure was found. The EEG sections were analyzed and compared before and after NDMR administration. Results The reevaluation found that the aEEG was truly normal in 4 neonates. In 3 neonates, high voltage electrocardiographic (ECG) artifacts were found with flat trace on raw EEG. High frequency component (HFC) was found as a cause of normal appearing aEEG in 10 neonates. HFC disappeared while P and MF decreased significantly upon NDMR administration in each observed case. Conclusion Occurrence of false normal aEEG background pattern is relatively high in neonates with HIE and hypothermia. High frequency EEG artifacts suggestive of shivering were found to be the most common cause of false normal aEEG in hypothermic neonates while high voltage ECG artifacts are less common. PMID:24268061

  3. EEG artifact removal-state-of-the-art and guidelines.

    PubMed

    Urigüen, Jose Antonio; Garcia-Zapirain, Begoña

    2015-06-01

    This paper presents an extensive review on the artifact removal algorithms used to remove the main sources of interference encountered in the electroencephalogram (EEG), specifically ocular, muscular and cardiac artifacts. We first introduce background knowledge on the characteristics of EEG activity, of the artifacts and of the EEG measurement model. Then, we present algorithms commonly employed in the literature and describe their key features. Lastly, principally on the basis of the results provided by various researchers, but also supported by our own experience, we compare the state-of-the-art methods in terms of reported performance, and provide guidelines on how to choose a suitable artifact removal algorithm for a given scenario. With this review we have concluded that, without prior knowledge of the recorded EEG signal or the contaminants, the safest approach is to correct the measured EEG using independent component analysis-to be precise, an algorithm based on second-order statistics such as second-order blind identification (SOBI). Other effective alternatives include extended information maximization (InfoMax) and an adaptive mixture of independent component analyzers (AMICA), based on higher order statistics. All of these algorithms have proved particularly effective with simulations and, more importantly, with data collected in controlled recording conditions. Moreover, whenever prior knowledge is available, then a constrained form of the chosen method should be used in order to incorporate such additional information. Finally, since which algorithm is the best performing is highly dependent on the type of the EEG signal, the artifacts and the signal to contaminant ratio, we believe that the optimal method for removing artifacts from the EEG consists in combining more than one algorithm to correct the signal using multiple processing stages, even though this is an option largely unexplored by researchers in the area.

  4. The urban brain: analysing outdoor physical activity with mobile EEG.

    PubMed

    Aspinall, Peter; Mavros, Panagiotis; Coyne, Richard; Roe, Jenny

    2015-02-01

    Researchers in environmental psychology, health studies and urban design are interested in the relationship between the environment, behaviour settings and emotions. In particular, happiness, or the presence of positive emotional mindsets, broadens an individual's thought-action repertoire with positive benefits to physical and intellectual activities, and to social and psychological resources. This occurs through play, exploration or similar activities. In addition, a body of restorative literature focuses on the potential benefits to emotional recovery from stress offered by green space and 'soft fascination'. However, access to the cortical correlates of emotional states of a person actively engaged within an environment has not been possible until recently. This study investigates the use of mobile electroencephalography (EEG) as a method to record and analyse the emotional experience of a group of walkers in three types of urban environment including a green space setting. Using Emotiv EPOC, a low-cost mobile EEG recorder, participants took part in a 25 min walk through three different areas of Edinburgh. The areas (of approximately equal length) were labelled zone 1 (urban shopping street), zone 2 (path through green space) and zone 3 (street in a busy commercial district). The equipment provided continuous recordings from five channels, labelled excitement (short-term), frustration, engagement, long-term excitement (or arousal) and meditation. A new form of high-dimensional correlated component logistic regression analysis showed evidence of lower frustration, engagement and arousal, and higher meditation when moving into the green space zone; and higher engagement when moving out of it. Systematic differences in EEG recordings were found between three urban areas in line with restoration theory. This has implications for promoting urban green space as a mood-enhancing environment for walking or for other forms of physical or reflective activity. Published

  5. The additional lateralizing and localizing value of the postictal EEG in frontal lobe epilepsy.

    PubMed

    Whitehead, Kimberley; Gollwitzer, Stephanie; Millward, Helen; Wehner, Tim; Scott, Catherine; Diehl, Beate

    2016-03-01

    The aim of this study was to describe the additional lateralizing and localizing value of the postictal EEG in frontal lobe epilepsy (FLE). The ictal EEG in FLE is frequently challenging to localize. We identified patients investigated for epilepsy surgery with unilateral FLE based on consistent semiology, a clear lesion and/or with frontal onset on intracranial EEG. A one hour section of postictal EEG was analyzed by two raters for new or activated EEG features and it was assessed whether these features offered additional information when compared to the ictal EEG. Postictal features assessed included asymmetrical return of the posterior dominant rhythm and potentiated lateralized or regional frontal slowing, spikes or sharp waves. Thirty-eight patients were included who had a combined total of ninety-six seizures. 47/96 (49%) postictal periods contained correctly lateralizing or localizing information. The sensitivity for asymmetrical return of the posterior dominant rhythm was 24%. The sensitivity for regional frontal slow and frontal spikes was 23% and 20% respectively. Further analysis showed that in 14/38 (39%) patients, at least one seizure with an unhelpful ictal EEG was followed by postictal EEG features that added new localizing or lateralizing information. A subgroup of 11 patients who were ⩾1 year seizure-free (ILAE class 1) and thus classified as having a 'gold-standard' FLE diagnosis were analyzed separately and it was found that 14/30 of their seizures (47%) had extra postictal information. The new postictal information was always concordant with the ultimate diagnosis, except for asymmetric postictal return of background activity ipsilateral to the epileptogenic zone in three patients. This study shows that a close examination of the postictal EEG can offer additional information which can contribute to the identification of a potentially resectable epileptogenic zone. Copyright © 2015 International Federation of Clinical Neurophysiology

  6. Fractal Dimension of EEG Activity Senses Neuronal Impairment in Acute Stroke

    PubMed Central

    Zappasodi, Filippo; Olejarczyk, Elzbieta; Marzetti, Laura; Assenza, Giovanni; Pizzella, Vittorio; Tecchio, Franca

    2014-01-01

    The brain is a self-organizing system which displays self-similarities at different spatial and temporal scales. Thus, the complexity of its dynamics, associated to efficient processing and functional advantages, is expected to be captured by a measure of its scale-free (fractal) properties. Under the hypothesis that the fractal dimension (FD) of the electroencephalographic signal (EEG) is optimally sensitive to the neuronal dysfunction secondary to a brain lesion, we tested the FD’s ability in assessing two key processes in acute stroke: the clinical impairment and the recovery prognosis. Resting EEG was collected in 36 patients 4–10 days after a unilateral ischemic stroke in the middle cerebral artery territory and 19 healthy controls. National Health Institute Stroke Scale (NIHss) was collected at T0 and 6 months later. Highuchi FD, its inter-hemispheric asymmetry (FDasy) and spectral band powers were calculated for EEG signals. FD was smaller in patients than in controls (1.447±0.092 vs 1.525±0.105) and its reduction was paired to a worse acute clinical status. FD decrease was associated to alpha increase and beta decrease of oscillatory activity power. Larger FDasy in acute phase was paired to a worse clinical recovery at six months. FD in our patients captured the loss of complexity reflecting the global system dysfunction resulting from the structural damage. This decrease seems to reveal the intimate nature of structure-function unity, where the regional neural multi-scale self-similar activity is impaired by the anatomical lesion. This picture is coherent with neuronal activity complexity decrease paired to a reduced repertoire of functional abilities. FDasy result highlights the functional relevance of the balance between homologous brain structures’ activities in stroke recovery. PMID:24967904

  7. Fractal dimension of EEG activity senses neuronal impairment in acute stroke.

    PubMed

    Zappasodi, Filippo; Olejarczyk, Elzbieta; Marzetti, Laura; Assenza, Giovanni; Pizzella, Vittorio; Tecchio, Franca

    2014-01-01

    The brain is a self-organizing system which displays self-similarities at different spatial and temporal scales. Thus, the complexity of its dynamics, associated to efficient processing and functional advantages, is expected to be captured by a measure of its scale-free (fractal) properties. Under the hypothesis that the fractal dimension (FD) of the electroencephalographic signal (EEG) is optimally sensitive to the neuronal dysfunction secondary to a brain lesion, we tested the FD's ability in assessing two key processes in acute stroke: the clinical impairment and the recovery prognosis. Resting EEG was collected in 36 patients 4-10 days after a unilateral ischemic stroke in the middle cerebral artery territory and 19 healthy controls. National Health Institute Stroke Scale (NIHss) was collected at T0 and 6 months later. Highuchi FD, its inter-hemispheric asymmetry (FDasy) and spectral band powers were calculated for EEG signals. FD was smaller in patients than in controls (1.447±0.092 vs 1.525±0.105) and its reduction was paired to a worse acute clinical status. FD decrease was associated to alpha increase and beta decrease of oscillatory activity power. Larger FDasy in acute phase was paired to a worse clinical recovery at six months. FD in our patients captured the loss of complexity reflecting the global system dysfunction resulting from the structural damage. This decrease seems to reveal the intimate nature of structure-function unity, where the regional neural multi-scale self-similar activity is impaired by the anatomical lesion. This picture is coherent with neuronal activity complexity decrease paired to a reduced repertoire of functional abilities. FDasy result highlights the functional relevance of the balance between homologous brain structures' activities in stroke recovery.

  8. Scalp EEG Ictal Gamma and Beta Activity during Infantile Spasms: Evidence of Focality

    PubMed Central

    Nariai, Hiroki; Beal, Jules; Galanopoulou, Aristea S.; Mowrey, Wenzhu B.; Bickel, Stephan; Sogawa, Yoshimi; Jehle, Rana; Shinnar, Shlomo; Moshé, Solomon L.

    2017-01-01

    Objective We investigated temporal and spatial characteristics of ictal gamma and beta activity on scalp EEG during spasms in patients with West syndrome (WS) to evaluate potential focal cortical onset. Methods A total of 1033 spasms from 34 patients with WS of various etiologies were analyzed in video-EEG using time-frequency analysis. Ictal gamma (35–90 Hz) and beta (15–30 Hz) activities were correlated with visual symmetry of spasms, objective EMG (electromyography) analysis, and etiology of WS. Results Prior to the ictal motor manifestation, focal ictal gamma activity emerged from one hemisphere (71%, 24/34) or from midline (26%, 9/34), and was rarely simultaneously bilateral (3%, 1/34). Focal ictal beta activity emerged from either one hemisphere (68%, 23/34) or from midline (32%, 11/34). Onsets of focal ictal gamma and beta activity were most commonly observed around the parietal areas. Focal ictal gamma activity propagated faster than ictal beta activity to adjacent electrodes (median: 65 vs. 170 ms, p<0.01), and to contralateral hemisphere (median: 100 vs. 170 ms, p=0.01). Asymmetric peak amplitude of ictal gamma activity in the centroparietal areas (C3-P3 vs. C4-P4) correlated with asymmetric semiology. On the other hand, the majority of visually symmetric spasms showed asymmetry in peak amplitude and interhemispheric onset latency difference in both ictal gamma and beta activity. Significance Spasms may be a seizure with focal electrographic onset regardless of visual symmetry. Asymmetric involvement of ictal gamma activity to the centroparietal areas may determine the motor manifestations in WS. Scalp EEG ictal gamma and beta activity may be useful to demonstrate localized seizure onset in infants with WS. PMID:28397999

  9. Stimulus-dependent spiking relationships with the EEG

    PubMed Central

    Snyder, Adam C.

    2015-01-01

    The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954

  10. Adolescent Changes in Homeostatic Regulation of EEG Activity in the Delta and Theta Frequency Bands during NREM Sleep

    PubMed Central

    Campbell, Ian G.; Darchia, Nato; Higgins, Lisa M.; Dykan, Igor V.; Davis, Nicole M.; de Bie, Evan; Feinberg, Irwin

    2011-01-01

    Study Objectives: Slow wave EEG activity in NREM sleep decreases by more than 60% between ages 10 and 20 years. Slow wave EEG activity also declines across NREM periods (NREMPs) within a night, and this decline is thought to represent the dynamics of sleep homeostasis. We used longitudinal data to determine whether these homeostatic dynamics change across adolescence. Design: All-night sleep EEG was recorded semiannually for 6 years. Setting: EEG was recorded with ambulatory recorders in the subjects' homes. Participants: Sixty-seven subjects in 2 cohorts, one starting at age 9 and one starting at age 12 years. Measurements and Results: For NREM delta (1-4 Hz) and theta (4-8 Hz) EEG, we tested whether the proportion of spectral energy contained in the first NREMP changes with age. We also tested for age changes in the parameters of the process S exponential decline. For both delta and theta, the proportion of energy in the first NREMP declined significantly across ages 9 to 18 years. Process S parameters SWA0 and TWA0, respectively, represent slow wave (delta) activity and theta wave activity at the beginning of the night. SWA0 and TWA0 declined significantly (P < 0.0001) across ages 9 to 18. Conclusions: These declines indicate that the intensity of the homeostatic or restorative processes at the beginning of sleep diminished across adolescence. We propose that this change in sleep regulation is caused by the synaptic pruning that occurs during adolescent brain maturation. Citation: Campbell IG; Darchia N; Higgins LM; Dykan IV; Davis NM; de Bie E; Feinberg I. Adolescent changes in homeostatic regulation of EEG activity in the delta and theta frequency bands during NREM sleep. SLEEP 2011;34(1):83-91. PMID:21203377

  11. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper

    PubMed Central

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio; Soekadar, Surjo R.; Brittain, John-Stuart; Valero-Cabré, Antoni; Sack, Alexander; Miniussi, Carlo; Antal, Andrea; Siebner, Hartwig Roman; Ziemann, Ulf; Herrmann, Christoph S.

    2017-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges. PMID:28233641

  12. Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia.

    PubMed

    Nevalainen, Päivi; Marchi, Viviana; Metsäranta, Marjo; Lönnqvist, Tuula; Toiviainen-Salo, Sanna; Vanhatalo, Sampsa; Lauronen, Leena

    2017-07-01

    To evaluate the added value of somatosensory (SEPs) and visual evoked potentials (VEPs) recorded simultaneously with routine EEG in early outcome prediction of newborns with hypoxic-ischemic encephalopathy under modern intensive care. We simultaneously recorded multichannel EEG, median nerve SEPs, and flash VEPs during the first few postnatal days in 50 term newborns with hypoxic-ischemic encephalopathy. EEG background was scored into five grades and the worst two grades were considered to indicate poor cerebral recovery. Evoked potentials were classified as absent or present. Clinical outcome was determined from the medical records at a median age of 21months. Unfavorable outcome included cerebral palsy, severe mental retardation, severe epilepsy, or death. The accuracy of outcome prediction was 98% with SEPs compared to 90% with EEG. EEG alone always predicted unfavorable outcome when it was inactive (n=9), and favorable outcome when it was normal or only mildly abnormal (n=17). However, newborns with moderate or severe EEG background abnormality could have either favorable or unfavorable outcome, which was correctly predicted by SEP in all but one newborn (accuracy in this subgroup 96%). Absent VEPs were always associated with an inactive EEG, and an unfavorable outcome. However, presence of VEPs did not guarantee a favorable outcome. SEPs accurately predict clinical outcomes in newborns with hypoxic-ischemic encephalopathy and improve the EEG-based prediction particularly in those newborns with severely or moderately abnormal EEG findings. SEPs should be added to routine EEG recordings for early bedside assessment of newborns with hypoxic-ischemic encephalopathy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Scalp EEG does not predict hemispherectomy outcome

    PubMed Central

    Greiner, Hansel M.; Park, Yong D.; Holland, Katherine; Horn, Paul S.; Byars, Anna W.; Mangano, Francesco T.; Smith, Joseph R.; Lee, Mark R.; Lee, Ki-Hyeong

    2012-01-01

    Background Functional hemispherectomy is effective in carefully selected patients, resulting in a reduction of seizure burden up to complete resolution, improvement of intellectual development, and developmental benefit despite possible additional neurological deficit. Despite apparent hemispheric pathology on brain magnetic resonance imaging (MRI) or other imaging tests, scalp electroencephalography (EEG) could be suggestive of bilateral ictal onset or even ictal onset contralateral to the dominant imaging abnormality. We aimed to investigate the role of scalp EEG lateralization pre-operatively in predicting outcome. Methods We retrospectively reviewed 54 patients who underwent hemispherectomy between 1991 and 2009 at Medical College of Georgia (1991–2006) and Cincinnati Children’s Hospital Medical Center (2006–2009) and had at least one year post-operative follow-up. All preoperative EEGs were reviewed, and classified as either lateralizing or nonlateralizing, for both ictal and interictal EEG recordings. Results Of 54 patients, 42 (78%) became seizure free. Twenty-four (44%) of 54 had a nonlateralizing ictal or interictal EEG. Further analysis was based on etiology of epilepsy, including malformation of cortical development (MCD), Rasmussen syndrome (RS), and stroke (CVA). EEG nonlateralization did not predict poor outcome in any of the etiology groups evaluated. Conclusion Scalp EEG abnormalities in contralateral or bilateral hemispheres do not, in isolation, predict a poor outcome from hemispherectomy. Results of other non-invasive and invasive evaluations should be used to determine candidacy. PMID:21813300

  14. Simultaneous trimodal PET-MR-EEG imaging: Do EEG caps generate artefacts in PET images?

    PubMed

    Rajkumar, Ravichandran; Rota Kops, Elena; Mauler, Jörg; Tellmann, Lutz; Lerche, Christoph; Herzog, Hans; Shah, N Jon; Neuner, Irene

    2017-01-01

    Trimodal simultaneous acquisition of positron emission tomography (PET), magnetic resonance imaging (MRI), and electroencephalography (EEG) has become feasible due to the development of hybrid PET-MR scanners. To capture the temporal dynamics of neuronal activation on a millisecond-by-millisecond basis, an EEG system is appended to the quantitative high resolution PET-MR imaging modality already established in our institute. One of the major difficulties associated with the development of simultaneous trimodal acquisition is that the components traditionally used in each modality can cause interferences in its counterpart. The mutual interferences of MRI components and PET components on PET and MR images, and the influence of EEG electrodes on functional MRI images have been studied and reported on. Building on this, this study aims to investigate the influence of the EEG cap on the quality and quantification of PET images acquired during simultaneous PET-MR measurements. A preliminary transmission scan study on the ECAT HR+ scanner, using an Iida phantom, showed visible attenuation effect due to the EEG cap. The BrainPET-MR emission images of the Iida phantom with [18F]Fluordeoxyglucose, as well as of human subjects with the EEG cap, did not show significant effects of the EEG cap, even though the applied attenuation correction did not take into account the attenuation of the EEG cap itself.

  15. Gamma band activity associated with BCI performance: simultaneous MEG/EEG study.

    PubMed

    Ahn, Minkyu; Ahn, Sangtae; Hong, Jun H; Cho, Hohyun; Kim, Kiwoong; Kim, Bong S; Chang, Jin W; Jun, Sung C

    2013-01-01

    While brain computer interface (BCI) can be employed with patients and healthy subjects, there are problems that must be resolved before BCI can be useful to the public. In the most popular motor imagery (MI) BCI system, a significant number of target users (called "BCI-Illiterates") cannot modulate their neuronal signals sufficiently to use the BCI system. This causes performance variability among subjects and even among sessions within a subject. The mechanism of such BCI-Illiteracy and possible solutions still remain to be determined. Gamma oscillation is known to be involved in various fundamental brain functions, and may play a role in MI. In this study, we investigated the association of gamma activity with MI performance among subjects. Ten simultaneous MEG/EEG experiments were conducted; MI performance for each was estimated by EEG data, and the gamma activity associated with BCI performance was investigated with MEG data. Our results showed that gamma activity had a high positive correlation with MI performance in the prefrontal area. This trend was also found across sessions within one subject. In conclusion, gamma rhythms generated in the prefrontal area appear to play a critical role in BCI performance.

  16. Topographic EEG activations during timbre and pitch discrimination tasks using musical sounds.

    PubMed

    Auzou, P; Eustache, F; Etevenon, P; Platel, H; Rioux, P; Lambert, J; Lechevalier, B; Zarifian, E; Baron, J C

    1995-01-01

    Successive auditory stimulation sequences were presented binaurally to 18 young normal volunteers. Five conditions were investigated: two reference tasks, assumed to involve passive listening to couples of musical sounds, and three discrimination tasks, one dealing with pitch, and two with timbre (either with or without the attack). A symmetrical montage of 16 EEG channels was recorded for each subject across the different conditions. Two quantitative parameters of EEG activity were compared among the different sequences within five distinct frequency bands. As compared to a rest (no stimulation) condition, both passive listening conditions led to changes in primary auditory cortex areas. Both discrimination tasks for pitch and timbre led to right hemisphere EEG changes, organized in two poles: an anterior one and a posterior one. After discussing the electrophysiological aspects of this work, these results are interpreted in terms of a network including the right temporal neocortex and the right frontal lobe to maintain the acoustical information in an auditory working memory necessary to carry out the discrimination task.

  17. Effects of oral amines on the EEG.

    PubMed

    Scott, D F; Moffett, A M; Swash, M

    1977-02-01

    Oral tyramine activated pre-existing episodic EEG abnormalities--namely, sharp waves, spike and wave, and localised theta activity--in epileptic patients. Little change was found in the EEGs of migrainous subjects after chocolate or beta-phenylethylamine. The implications of the findings with tyramine are discussed.

  18. Willing to Wait: Elevated Reward-Processing EEG Activity Associated with a Greater Preference for Larger-But-Delayed Rewards

    PubMed Central

    Pornpattananangkul, Narun; Nusslock, Robin

    2016-01-01

    While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals completed a behavioral delay-discounting task. Reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation stage (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and at the reward-outcome stage (including, feedback-locked delta, theta and beta power). Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials for 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta was associated with a greater preference for larger-but-delayed rewards. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these

  19. EEG activity evoked in preparation for multi-talker listening by adults and children.

    PubMed

    Holmes, Emma; Kitterick, Padraig T; Summerfield, A Quentin

    2016-06-01

    Selective attention is critical for successful speech perception because speech is often encountered in the presence of other sounds, including the voices of competing talkers. Faced with the need to attend selectively, listeners perceive speech more accurately when they know characteristics of upcoming talkers before they begin to speak. However, the neural processes that underlie the preparation of selective attention for voices are not fully understood. The current experiments used electroencephalography (EEG) to investigate the time course of brain activity during preparation for an upcoming talker in young adults aged 18-27 years with normal hearing (Experiments 1 and 2) and in typically-developing children aged 7-13 years (Experiment 3). Participants reported key words spoken by a target talker when an opposite-gender distractor talker spoke simultaneously. The two talkers were presented from different spatial locations (±30° azimuth). Before the talkers began to speak, a visual cue indicated either the location (left/right) or the gender (male/female) of the target talker. Adults evoked preparatory EEG activity that started shortly after (<50 ms) the visual cue was presented and was sustained until the talkers began to speak. The location cue evoked similar preparatory activity in Experiments 1 and 2 with different samples of participants. The gender cue did not evoke preparatory activity when it predicted gender only (Experiment 1) but did evoke preparatory activity when it predicted the identity of a specific talker with greater certainty (Experiment 2). Location cues evoked significant preparatory EEG activity in children but gender cues did not. The results provide converging evidence that listeners evoke consistent preparatory brain activity for selecting a talker by their location (regardless of their gender or identity), but not by their gender alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm.

    PubMed

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy

    2018-02-01

    Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.

  1. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    PubMed

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  2. Resting and reactive frontal brain electrical activity (EEG) among a non-clinical sample of socially anxious adults: Does concurrent depressive mood matter?

    PubMed Central

    Beaton, Elliott A; Schmidt, Louis A; Ashbaugh, Andrea R; Santesso, Diane L; Antony, Martin M; McCabe, Randi E

    2008-01-01

    A number of studies have noted that the pattern of resting frontal brain electrical activity (EEG) is related to individual differences in affective style in healthy infants, children, and adults and some clinical populations when symptoms are reduced or in remission. We measured self-reported trait shyness and sociability, concurrent depressive mood, and frontal brain electrical activity (EEG) at rest and in anticipation of a speech task in a non-clinical sample of healthy young adults selected for high and low social anxiety. Although the patterns of resting and reactive frontal EEG asymmetry did not distinguish among individual differences in social anxiety, the pattern of resting frontal EEG asymmetry was related to trait shyness after controlling for concurrent depressive mood. Individuals who reported a higher degree of shyness were likely to exhibit greater relative right frontal EEG activity at rest. However, trait shyness was not related to frontal EEG asymmetry measured during the speech-preparation task, even after controlling for concurrent depressive mood. These findings replicate and extend prior work on resting frontal EEG asymmetry and individual differences in affective style in adults. Findings also highlight the importance of considering concurrent emotional states of participants when examining psychophysiological correlates of personality. PMID:18728822

  3. Reduction of EEG Theta Power and Changes in Motor Activity in Rats Treated with Ceftriaxone

    PubMed Central

    Bellesi, Michele; Vyazovskiy, Vladyslav V.; Tononi, Giulio; Cirelli, Chiara; Conti, Fiorenzo

    2012-01-01

    The glutamate transporter GLT-1 is responsible for the largest proportion of total glutamate transport. Recently, it has been demonstrated that ceftriaxone (CEF) robustly increases GLT-1 expression. In addition, physiological studies have shown that GLT-1 up-regulation strongly affects synaptic plasticity, and leads to an impairment of the prepulse inhibition, a simple form of information processing, thus suggesting that GLT-1 over-expression may lead to dysfunctions of large populations of neurons. To test this possibility, we assessed whether CEF affects cortical electrical activity by using chronic electroencephalographic (EEG) recordings in male WKY rats. Spectral analysis showed that 8 days of CEF treatment resulted in a delayed reduction in EEG theta power (7–9 Hz) in both frontal and parietal derivations. This decrease peaked at day 10, i.e., 2 days after the end of treatment, and disappeared by day 16. In addition, we found that the same CEF treatment increased motor activity, especially when EEG changes are more prominent. Taken together, these data indicate that GLT-1 up-regulation, by modulating glutamatergic transmission, impairs the activity of widespread neural circuits. In addition, the increased motor activity and prepulse inhibition alterations previously described suggest that neural circuits involved in sensorimotor control are particularly sensitive to GLT-1 up-regulation. PMID:22479544

  4. Reduction of EEG theta power and changes in motor activity in rats treated with ceftriaxone.

    PubMed

    Bellesi, Michele; Vyazovskiy, Vladyslav V; Tononi, Giulio; Cirelli, Chiara; Conti, Fiorenzo

    2012-01-01

    The glutamate transporter GLT-1 is responsible for the largest proportion of total glutamate transport. Recently, it has been demonstrated that ceftriaxone (CEF) robustly increases GLT-1 expression. In addition, physiological studies have shown that GLT-1 up-regulation strongly affects synaptic plasticity, and leads to an impairment of the prepulse inhibition, a simple form of information processing, thus suggesting that GLT-1 over-expression may lead to dysfunctions of large populations of neurons. To test this possibility, we assessed whether CEF affects cortical electrical activity by using chronic electroencephalographic (EEG) recordings in male WKY rats. Spectral analysis showed that 8 days of CEF treatment resulted in a delayed reduction in EEG theta power (7-9 Hz) in both frontal and parietal derivations. This decrease peaked at day 10, i.e., 2 days after the end of treatment, and disappeared by day 16. In addition, we found that the same CEF treatment increased motor activity, especially when EEG changes are more prominent. Taken together, these data indicate that GLT-1 up-regulation, by modulating glutamatergic transmission, impairs the activity of widespread neural circuits. In addition, the increased motor activity and prepulse inhibition alterations previously described suggest that neural circuits involved in sensorimotor control are particularly sensitive to GLT-1 up-regulation.

  5. Post-task Effects on EEG Brain Activity Differ for Various Differential Learning and Contextual Interference Protocols

    PubMed Central

    Henz, Diana; John, Alexander; Merz, Christian; Schöllhorn, Wolfgang I.

    2018-01-01

    A large body of research has shown superior learning rates in variable practice compared to repetitive practice. More specifically, this has been demonstrated in the contextual interference (CI) and in the differential learning (DL) approach that are both representatives of variable practice. Behavioral studies have indicate different learning processes in CI and DL. Aim of the present study was to examine immediate post-task effects on electroencephalographic (EEG) brain activation patterns after CI and DL protocols that reveal underlying neural processes at the early stage of motor consolidation. Additionally, we tested two DL protocols (gradual DL, chaotic DL) to examine the effect of different degrees of stochastic fluctuations within the DL approach with a low degree of fluctuations in gradual DL and a high degree of fluctuations in chaotic DL. Twenty-two subjects performed badminton serves according to three variable practice protocols (CI, gradual DL, chaotic DL), and a repetitive learning protocol in a within-subjects design. Spontaneous EEG activity was measured before, and immediately after each 20-min practice session from 19 electrodes. Results showed distinguishable neural processes after CI, DL, and repetitive learning. Increases in EEG theta and alpha power were obtained in somatosensory regions (electrodes P3, P7, Pz, P4, P8) in both DL conditions compared to CI, and repetitive learning. Increases in theta and alpha activity in motor areas (electrodes C3, Cz, C4) were found after chaotic DL compared to gradual DL, and CI. Anterior areas (electrodes F3, F7, Fz, F4, F8) showed increased activity in the beta and gamma bands after CI. Alpha activity was increased in occipital areas (electrodes O1, O2) after repetitive learning. Post-task EEG brain activation patterns suggest that DL stimulates the somatosensory and motor system, and engages more regions of the cortex than repetitive learning due to a tighter stimulation of the motor and somatosensory

  6. Effects of oral amines on the EEG.

    PubMed Central

    Scott, D F; Moffett, A M; Swash, M

    1977-01-01

    Oral tyramine activated pre-existing episodic EEG abnormalities--namely, sharp waves, spike and wave, and localised theta activity--in epileptic patients. Little change was found in the EEGs of migrainous subjects after chocolate or beta-phenylethylamine. The implications of the findings with tyramine are discussed. Images PMID:864482

  7. Déjà vu phenomenon-related EEG pattern. Case report☆

    PubMed Central

    Vlasov, P.N.; Chervyakov, A.V.; Gnezditskii, V.V.

    2013-01-01

    Background Déjà vu (DV, from French déjà vu — “already seen”) is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known. Objective This study aimed to record the EEG pattern of déjà vu. Methods The subjects participated in a survey concerning déjà vu characteristics and underwent ambulatory EEG monitoring (12–16 h). Results In patients with epilepsy, DV episodes began with polyspike activity in the right temporal lobe region and, in some cases, ended with slow-wave theta–delta activity over the right hemisphere. There were no epileptic discharges in healthy respondents during DV. Conclusion Two types of déjà vu are suggested to exist: “pathological-epileptic” déjà vu, characteristic of patients with epilepsy and equivalent to an epileptic seizure, and “nonpathological-nonepileptic” déjà vu, which is characteristic of healthy people and psychological phenomenon. PMID:25667847

  8. Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges.

    PubMed

    Koren, J; Herta, J; Draschtak, S; Pötzl, G; Pirker, S; Fürbass, F; Hartmann, M; Kluge, T; Baumgartner, C

    2015-08-01

    Continuous EEG (cEEG) is necessary to document nonconvulsive seizures (NCS), nonconvulsive status epilepticus (NCSE), as well as rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' (RPPIIU) including periodic discharges, rhythmic delta activity, and spike-and-wave complexes in neurological intensive care patients. However, cEEG is associated with significant recording and analysis efforts. Therefore, predictors from short-term routine EEG with a reasonably high yield are urgently needed in order to select patients for evaluation with cEEG. The aim of this study was to assess the prognostic significance of early epileptiform discharges (i.e., within the first 30 min of EEG recording) on the following: (1) incidence of ictal EEG patterns and RPPIIU on subsequent cEEG, (2) occurrence of acute convulsive seizures during the ICU stay, and (3) functional outcome after 6 months of follow-up. We conducted a separate analysis of the first 30 min and the remaining segments of prospective cEEG recordings according to the ACNS Standardized Critical Care EEG Terminology as well as NCS criteria and review of clinical data of 32 neurological critical care patients. In 17 patients with epileptiform discharges within the first 30 min of EEG (group 1), electrographic seizures were observed in 23.5% (n = 4), rhythmic or periodic EEG patterns of 'ictal-interictal uncertainty' in 64.7% (n = 11), and neither electrographic seizures nor RPPIIU in 11.8% (n = 2). In 15 patients with no epileptiform discharges in the first 30 min of EEG (group 2), no electrographic seizures were recorded on subsequent cEEG, RPPIIU were seen in 26.7% (n = 4), and neither electrographic seizures nor RPPIIU in 73.3% (n = 11). The incidence of EEG patterns on cEEG was significantly different between the two groups (p = 0.008). Patients with early epileptiform discharges developed acute seizures more frequently than patients without early epileptiform discharges (p = 0.009). Finally, functional

  9. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease.

    PubMed

    Case, Michelle; Zhang, Huishi; Mundahl, John; Datta, Yvonne; Nelson, Stephen; Gupta, Kalpna; He, Bin

    2017-01-01

    Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.

  10. Frontal EEG and emotion regulation: electrocortical activity in response to emotional film clips is associated with reduced mood induction and attention interference effects.

    PubMed

    Dennis, Tracy A; Solomon, Beylul

    2010-12-01

    Frontal EEG activity is thought to reflect affective dispositions, but may also reflect the emotional demands of a specific context combined with the capability to regulate emotions in that context. The present study examined this hypothesis by testing whether frontal EEG activity during mood inductions versus a resting baseline predicted emotion regulation. EEG was recorded while participants (N=66, 40 females) received a fearful, sad, or neutral mood induction. Emotion regulation was measured following the mood inductions as self-reported change in negative mood and as attention interference in a task with mood-congruent emotional distracters. Greater frontal EEG activity during the mood inductions versus baseline was associated with more effective emotion regulation: less post-induction sadness and anxiety and reduced mood-congruent attention interference effects. Effects did not differ between the left and right hemispheres. Results support the hypothesis that frontal EEG activity reflects both emotional context and emotion-regulatory capabilities. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. EEG Frequency Changes Prior to Making Errors in an Easy Stroop Task

    PubMed Central

    Atchley, Rachel; Klee, Daniel; Oken, Barry

    2017-01-01

    Background: Mind-wandering is a form of off-task attention that has been associated with negative affect and rumination. The goal of this study was to assess potential electroencephalographic markers of task-unrelated thought, or mind-wandering state, as related to error rates during a specialized cognitive task. We used EEG to record frontal frequency band activity while participants completed a Stroop task that was modified to induce boredom, task-unrelated thought, and therefore mind-wandering. Methods: A convenience sample of 27 older adults (50–80 years) completed a computerized Stroop matching task. Half of the Stroop trials were congruent (word/color match), and the other half were incongruent (mismatched). Behavioral data and EEG recordings were assessed. EEG analysis focused on the 1-s epochs prior to stimulus presentation in order to compare trials followed by correct versus incorrect responses. Results: Participants made errors on 9% of incongruent trials. There were no errors on congruent trials. There was a decrease in alpha and theta band activity during the epochs followed by error responses. Conclusion: Although replication of these results is necessary, these findings suggest that potential mind-wandering, as evidenced by errors, can be characterized by a decrease in alpha and theta activity compared to on-task, accurate performance periods. PMID:29163101

  12. A close look at EEG in subacute sclerosing panencephalitis.

    PubMed

    Demir, Nurhak; Cokar, Ozlem; Bolukbasi, Feray; Demirbilek, Veysi; Yapici, Zuhal; Yalcinkaya, Cengiz; Direskeneli, Guher Saruhan; Yentur, Sibel; Onal, Emel; Yilmaz, Gulden; Dervent, Aysin

    2013-08-01

    To define atypical clinical and EEG features of patients with subacute sclerosing panencephalitis that may require an overview of differential diagnosis. A total of 66 EEGs belonging to 53 (17 females and 36 males) consecutive patients with serologically confirmed subacute sclerosing panencephalitis were included in this study. Patient files and EEG data were evaluated retrospectively. EEGs included in the study were sleep-waking EEGs and/or sleep-waking video-EEG records with at least 2 hours duration. Cranial MRIs of the patients taken 2 months before or after the EEG records were included. Age range at the onset of the disease was 15 to 192 months (mean age: 80.02 months). Epilepsy was diagnosed in 21 (43%) patients. Among epileptic seizures excluding myoclonic jerks, generalized tonic-clonic type constituted the majority (58%). Tonic seizures were documented during the video-EEG recordings in four patients. Epileptogenic activities were found in 56 (83%) EEG recordings. They were localized mainly in frontal (58%), posterior temporal, parietal, occipital (26%), and centrotemporal (8%) regions. Multiple foci were detected in 26 recordings (39%). Epileptiform activities in the 39 (59%) EEGs appeared as unilateral or bilateral diffuse paroxysmal discharges. Recognition of uncommon clinical and EEG findings of subacute sclerosing panencephalitis, especially in countries where subacute sclerosing panencephalitis has not been eliminated yet, could be helpful in prevention of misdiagnosis and delay in the management of improvable conditions.

  13. EEG Beta Power but Not Background Music Predicts the Recall Scores in a Foreign-Vocabulary Learning Task.

    PubMed

    Küssner, Mats B; de Groot, Annette M B; Hofman, Winni F; Hillen, Marij A

    2016-01-01

    As tantalizing as the idea that background music beneficially affects foreign vocabulary learning may seem, there is-partly due to a lack of theory-driven research-no consistent evidence to support this notion. We investigated inter-individual differences in the effects of background music on foreign vocabulary learning. Based on Eysenck's theory of personality we predicted that individuals with a high level of cortical arousal should perform worse when learning with background music compared to silence, whereas individuals with a low level of cortical arousal should be unaffected by background music or benefit from it. Participants were tested in a paired-associate learning paradigm consisting of three immediate word recall tasks, as well as a delayed recall task one week later. Baseline cortical arousal assessed with spontaneous EEG measurement in silence prior to the learning rounds was used for the analyses. Results revealed no interaction between cortical arousal and the learning condition (background music vs. silence). Instead, we found an unexpected main effect of cortical arousal in the beta band on recall, indicating that individuals with high beta power learned more vocabulary than those with low beta power. To substantiate this finding we conducted an exact replication of the experiment. Whereas the main effect of cortical arousal was only present in a subsample of participants, a beneficial main effect of background music appeared. A combined analysis of both experiments suggests that beta power predicts the performance in the word recall task, but that there is no effect of background music on foreign vocabulary learning. In light of these findings, we discuss whether searching for effects of background music on foreign vocabulary learning, independent of factors such as inter-individual differences and task complexity, might be a red herring. Importantly, our findings emphasize the need for sufficiently powered research designs and exact replications

  14. EEG Beta Power but Not Background Music Predicts the Recall Scores in a Foreign-Vocabulary Learning Task

    PubMed Central

    de Groot, Annette M. B.; Hofman, Winni F.; Hillen, Marij A.

    2016-01-01

    As tantalizing as the idea that background music beneficially affects foreign vocabulary learning may seem, there is—partly due to a lack of theory-driven research—no consistent evidence to support this notion. We investigated inter-individual differences in the effects of background music on foreign vocabulary learning. Based on Eysenck’s theory of personality we predicted that individuals with a high level of cortical arousal should perform worse when learning with background music compared to silence, whereas individuals with a low level of cortical arousal should be unaffected by background music or benefit from it. Participants were tested in a paired-associate learning paradigm consisting of three immediate word recall tasks, as well as a delayed recall task one week later. Baseline cortical arousal assessed with spontaneous EEG measurement in silence prior to the learning rounds was used for the analyses. Results revealed no interaction between cortical arousal and the learning condition (background music vs. silence). Instead, we found an unexpected main effect of cortical arousal in the beta band on recall, indicating that individuals with high beta power learned more vocabulary than those with low beta power. To substantiate this finding we conducted an exact replication of the experiment. Whereas the main effect of cortical arousal was only present in a subsample of participants, a beneficial main effect of background music appeared. A combined analysis of both experiments suggests that beta power predicts the performance in the word recall task, but that there is no effect of background music on foreign vocabulary learning. In light of these findings, we discuss whether searching for effects of background music on foreign vocabulary learning, independent of factors such as inter-individual differences and task complexity, might be a red herring. Importantly, our findings emphasize the need for sufficiently powered research designs and exact

  15. Nonlinear analysis of EEG in major depression with fractal dimensions.

    PubMed

    Akar, Saime A; Kara, Sadik; Agambayev, Sumeyra; Bilgic, Vedat

    2015-01-01

    Major depressive disorder (MDD) is a psychiatric mood disorder characterized by cognitive and functional impairments in attention, concentration, learning and memory. In order to investigate and understand its underlying neural activities and pathophysiology, EEG methodologies can be used. In this study, we estimated the nonlinearity features of EEG in MDD patients to assess the dynamical properties underlying the frontal and parietal brain activity. EEG data were obtained from 16 patients and 15 matched healthy controls. A wavelet-chaos methodology was used for data analysis. First, EEGs of subjects were decomposed into 5 EEG sub-bands by discrete wavelet transform. Then, both the Katz's and Higuchi's fractal dimensions (KFD and HFD) were calculated as complexity measures for full-band and sub-bands EEGs. Last, two-way analyses of variances were used to test EEG complexity differences on each fractality measures. As a result, a significantly increased complexity was found in both parietal and frontal regions of MDD patients. This significantly increased complexity was observed not only in full-band activity but also in beta and gamma sub-bands of EEG. The findings of the present study indicate the possibility of using the wavelet-chaos methodology to discriminate the EEGs of MDD patients from healthy controls.

  16. Changes in cortical activity measured with EEG during a high-intensity cycling exercise

    PubMed Central

    Cortese, Filomeno; Maurer, Christian; Baltich, Jennifer; Protzner, Andrea B.; Nigg, Benno M.

    2015-01-01

    This study investigated the effects of a high-intensity cycling exercise on changes in spectral and temporal aspects of electroencephalography (EEG) measured from 10 experienced cyclists. Cyclists performed a maximum aerobic power test on the first testing day followed by a time-to-exhaustion trial at 85% of their maximum power output on 2 subsequent days that were separated by ∼48 h. EEG was recorded using a 64-channel system at 500 Hz. Independent component (IC) analysis parsed the EEG scalp data into maximal ICs. An equivalent current dipole model was calculated for each IC, and results were clustered across subjects. A time-frequency analysis of the identified electrocortical clusters was performed to investigate the magnitude and timing of event-related spectral perturbations. Significant changes (P < 0.05) in electrocortical activity were found in frontal, supplementary motor and parietal areas of the cortex. Overall, there was a significant increase in EEG power as fatigue developed throughout the exercise. The strongest increase was found in the frontal area of the cortex. The timing of event-related desynchronization within the supplementary motor area corresponds with the onset of force production and the transition from flexion to extension in the pedaling cycle. The results indicate an involvement of the cerebral cortex during the pedaling task that most likely involves executive control function, as well as motor planning and execution. PMID:26538604

  17. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    PubMed Central

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-01-01

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver’s vigilance level . Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model. PMID:26907278

  18. EEG-fMRI evaluation of patients with mesial temporal lobe sclerosis.

    PubMed

    Avesani, Mirko; Giacopuzzi, Silvia; Bongiovanni, Luigi Giuseppe; Borelli, Paolo; Cerini, Roberto; Pozzi Mucelli, Roberto; Fiaschi, Antonio

    2014-02-01

    This preliminary study sought more information on blood oxygen level dependent (BOLD) activation, especially contralateral temporal/extratemporal spread, during continuous EEG-fMRI recordings in four patients with mesial temporal sclerosis (MTS). In two patients, EEG showed unilateral focal activity during the EEG-fMRI session concordant with the interictal focus previously identified with standard and video-poly EEG. In the other two patients EEG demonstrated a contralateral diffusion of the irritative focus. In the third patient (with the most drug-resistant form and also extratemporal clinical signs), there was an extratemporal diffusion over frontal regions, ipsilateral to the irritative focus. fMRI analysis confirmed a single activation in the mesial temporal region in two patients whose EEG showed unilateral focal activity, while it demonstrated a bilateral activation in the mesial temporal regions in the other two patients. In the third patient, fMRI demonstrated an activation in the supplementary motxor area. This study confirms the most significant activation with a high firing rate of the irritative focus, but also suggests the importance of using new techniques (such as EEG-fMRI to examine cerebral blood flow) to identify the controlateral limbic activation, and any other extratemporal activations, possible causes of drug resistance in MTS that may require a more precise pre-surgical evaluation with invasive techniques.

  19. EEG-fMRI Evaluation of Patients with Mesial Temporal Lobe Sclerosis

    PubMed Central

    Avesani, Mirko; Giacopuzzi, Silvia; Bongiovanni, Luigi Giuseppe; Borelli, Paolo; Cerini, Roberto; Pozzi Mucelli, Roberto; Fiaschi, Antonio

    2014-01-01

    Summary This preliminary study sought more information on blood oxygen level dependent (BOLD) activation, especially contralateral temporal/extratemporal spread, during continuous EEG-fMRI recordings in four patients with mesial temporal sclerosis (MTS). In two patients, EEG showed unilateral focal activity during the EEG-fMRI session concordant with the interictal focus previously identified with standard and video-poly EEG. In the other two patients EEG demonstrated a contralateral diffusion of the irritative focus. In the third patient (with the most drug-resistant form and also extratemporal clinical signs), there was an extratemporal diffusion over frontal regions, ipsilateral to the irritative focus. fMRI analysis confirmed a single activation in the mesial temporal region in two patients whose EEG showed unilateral focal activity, while it demonstrated a bilateral activation in the mesial temporal regions in the other two patients. In the third patient, fMRI demonstrated an activation in the supplementary motxor area. This study confirms the most significant activation with a high firing rate of the irritative focus, but also suggests the importance of using new techniques (such as EEG-fMRI to examine cerebral blood flow) to identify the controlateral limbic activation, and any other extratemporal activations, possible causes of drug resistance in MTS that may require a more precise pre-surgical evaluation with invasive techniques. PMID:24571833

  20. EEG in Sarcoidosis Patients Without Neurological Findings.

    PubMed

    Bilgin Topçuoğlu, Özgür; Kavas, Murat; Öztaş, Selahattin; Arınç, Sibel; Afşar, Gülgün; Saraç, Sema; Midi, İpek

    2017-01-01

    Sarcoidosis is a multisystem granulomatous disease affecting nervous system in 5% to 10% of patients. Magnetic resonance imaging (MRI) is accepted as the most sensitive method for detecting neurosarcoidosis. However, the most common findings in MRI are the nonspecific white matter lesions, which may be unrelated to sarcoidosis and can occur because of hypertension, diabetes mellitus, smoking, and other inflammatory or infectious disorders, as well. Autopsy studies report more frequent neurological involvement than the ante mortem studies. The aim of this study is to assess electroencephalography (EEG) in sarcoidosis patients without neurological findings in order to display asymptomatic neurological dysfunction. We performed EEG on 30 sarcoidosis patients without diagnosis of neurosarcoidosis or prior neurological comorbidities. Fourteen patients (46.7%) showed intermittant focal and/or generalized slowings while awake and not mentally activated. Seven (50%) of these 14 patients with EEG slowings had nonspecific white matter changes while the other half showed EEG slowings in the absence of MRI changes. We conclude that EEG slowings, when normal variants (psychomotor variant, temporal theta of elderly, frontal theta waves) are eliminated, may be an indicator of dysfunction in brain activity even in the absence of MRI findings. Hence, EEG may contribute toward detecting asymptomatic neurological dysfunction or probable future neurological involvement in sarcoidosis patients. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  1. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

    PubMed

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2018-01-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

  2. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Foy, R.; Dijk, D. J.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The effect of sleep deprivation (40 h) on topographic and temporal aspects of electroencephalographic (EEG) activity during sleep was investigated by all night spectral analysis in six young volunteers. The sleep-deprivation-induced increase of EEG power density in the delta and theta frequencies (1-7 Hz) during nonREM sleep, assessed along the antero-posterior axis (midline: Fz, Cz, Pz, Oz), was significantly larger in the more frontal derivations (Fz, Cz) than in the more parietal derivations (Pz, Oz). This frequency-specific frontal predominance was already present in the first 30 min of recovery sleep, and dissipated in the course of the 8-h sleep episode. The data demonstrate that the enhancement of slow wave EEG activity during sleep following extended wakefulness is most pronounced in frontal cortical areas.

  3. Temporal lobe deficits in murderers: EEG findings undetected by PET.

    PubMed

    Gatzke-Kopp, L M; Raine, A; Buchsbaum, M; LaCasse, L

    2001-01-01

    This study evaluates electroencephalography (EEG) and positron emission tomography (PET) in the same subjects. Fourteen murderers were assessed by using both PET (while they were performing the continuous performance task) and EEG during a resting state. EEG revealed significant increases in slow-wave activity in the temporal, but not frontal, lobe in murderers, in contrast to prior PET findings that showed reduced prefrontal, but not temporal, glucose metabolism. Results suggest that resting EEG shows empirical utility distinct from PET activation findings.

  4. Correlation of invasive EEG and scalp EEG.

    PubMed

    Ramantani, Georgia; Maillard, Louis; Koessler, Laurent

    2016-10-01

    Ever since the implementation of invasive EEG recordings in the clinical setting, it has been perceived that a considerable proportion of epileptic discharges present at a cortical level are missed by routine scalp EEG recordings. Several in vitro, in vivo, and simulation studies have been performed in the past decades aiming to clarify the interrelations of cortical sources with their scalp and invasive EEG correlates. The amplitude ratio of cortical potentials to their scalp EEG correlates, the extent of the cortical area involved in the discharge, as well as the localization of the cortical source and its geometry have been each independently linked to the recording of the cortical discharge with scalp electrodes. The need to elucidate these interrelations has been particularly imperative in the field of epilepsy surgery with its rapidly growing EEG-based localization technologies. Simultaneous multiscale EEG recordings with scalp, subdural and/or depth electrodes, applied in presurgical epilepsy workup, offer an excellent opportunity to shed some light to this fundamental issue. Whereas past studies have considered predominantly neocortical sources in the context of temporal lobe epilepsy, current investigations have included deep sources, as in mesial temporal epilepsy, as well as extratemporal sources. Novel computational tools may serve to provide surrogates for the shortcomings of EEG recording methodology and facilitate further developments in modern electrophysiology. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  5. Resting state EEG correlates of memory consolidation.

    PubMed

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (<1Hz), in concert with reduced alpha (8-12Hz) activity. Mindwandering during the retention interval was also associated with improved memory. These observations suggest that a short period of quiet rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

    PubMed

    Grova, Christophe; Aiguabella, Maria; Zelmann, Rina; Lina, Jean-Marc; Hall, Jeffery A; Kobayashi, Eliane

    2016-05-01

    Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Improved EEG Event Classification Using Differential Energy.

    PubMed

    Harati, A; Golmohammadi, M; Lopez, S; Obeid, I; Picone, J

    2015-12-01

    Feature extraction for automatic classification of EEG signals typically relies on time frequency representations of the signal. Techniques such as cepstral-based filter banks or wavelets are popular analysis techniques in many signal processing applications including EEG classification. In this paper, we present a comparison of a variety of approaches to estimating and postprocessing features. To further aid in discrimination of periodic signals from aperiodic signals, we add a differential energy term. We evaluate our approaches on the TUH EEG Corpus, which is the largest publicly available EEG corpus and an exceedingly challenging task due to the clinical nature of the data. We demonstrate that a variant of a standard filter bank-based approach, coupled with first and second derivatives, provides a substantial reduction in the overall error rate. The combination of differential energy and derivatives produces a 24 % absolute reduction in the error rate and improves our ability to discriminate between signal events and background noise. This relatively simple approach proves to be comparable to other popular feature extraction approaches such as wavelets, but is much more computationally efficient.

  8. The role of resting-state EEG localized activation and central nervous system arousal in executive function performance in children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Zhang, Da-Wei; Johnstone, Stuart J; Roodenrys, Steven; Luo, Xiangsheng; Li, Hui; Wang, Encong; Zhao, Qihua; Song, Yan; Liu, Lu; Qian, Qiujin; Wang, Yufeng; Sun, Li

    2018-06-01

    This study explored the relationships between resting-state electroencephalogram (RS-EEG) localized activation and two important types of executive functions (EF) to extend the prognostic utilization of RS-EEG in children with Attention-Deficit/Hyperactivity Disorder (AD/HD). Also, the role of central nervous system (CNS) arousal in the relationships was examined. Fifty-eight children with AD/HD participated in the study. RS-EEG localized activation was derived from spectral power differences between EEG in eyes-closed and eyes-open conditions. CNS arousal was measured based on alpha band power. Common and everyday EF scores were obtained as EF outcomes. Frontal delta activation predicted common EF ability and posterior alpha activation predicted everyday EF. A serial mediation analysis found that lower CNS baseline arousal was related to greater arousal and delta activation in series, which in turn related to worse common EF. A follow-up study found that baseline arousal was related to larger interference cost. RS-EEG is indicative of individual differences in two important types of EF in children with AD/HD. Lower CNS arousal may be a driving force for the poorer common EF performance. The current study supports prognostic utilization of RS-EEG and AD/HD models that take resting brain activity into consideration in children with AD/HD. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Effect of low-level laser stimulation on EEG.

    PubMed

    Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan

    2012-01-01

    Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  10. Inflammatory and vascular placental lesions are associated with neonatal amplitude integrated EEG recording in early premature neonates

    PubMed Central

    Goshen, Sharon; Richardson, Justin; Drunov, VIadimir; Staretz Chacham, Orna; Shany, Eilon

    2017-01-01

    Introduction Placental histologic examination can assist in revealing the mechanism leading to preterm birth. Accumulating evidence suggests an association between intrauterine pathological processes, morbidity and mortality of premature infants, and their long term outcome. Neonatal brain activity is increasingly monitored in neonatal intensive care units by amplitude integrated EEG (aEEG) and indices of background activity and sleep cycling patterns were correlated with long term outcome. We hypothesized an association between types of placental lesions and abnormal neonatal aEEG patterns. Objective To determine the association between the placental lesions observed in extreme preterm deliveries, and their neonatal aEEG patterns and survival. Patients and methods This prospective cohort study included extreme premature infants, who were born ≤ 28 weeks of gestation, their placentas were available for histologic examination, and had a continues aEEG, soon after birth)n = 34). Infants and maternal clinical data were collected. aEEG data was assessed for percentage of depressed daily activity in the first 3 days of life and for sleep cycling. Associations of placental histology with clinical findings and aEEG activity were explored using parametric and non-parametric statistics. Results Twenty two out of the 34 newborns survived to discharge. Preterm prelabor rupture of membranes (PPROM) or chorioamnionitis were associated with placental lesions consistent with fetal amniotic fluid infection (AFI) or maternal under perfusion (MUP) (P < 0.05). Lesions consistent with fetal response to AFI were associated with absence of SWC pattern during the 1st day of life. Fetal-vascular-thrombo-occlusive lesions of inflammatory type were negatively associated with depressed cerebral activity during the 1st day of life, and with aEEG cycling during the 2nd day of life (P<0.05). Placental lesions associated with MUP were associated with depressed neonatal cerebral activity during

  11. EEG-based emotion recognition in music listening.

    PubMed

    Lin, Yuan-Pin; Wang, Chi-Hong; Jung, Tzyy-Ping; Wu, Tien-Lin; Jeng, Shyh-Kang; Duann, Jeng-Ren; Chen, Jyh-Horng

    2010-07-01

    Ongoing brain activity can be recorded as electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study applied machine-learning algorithms to categorize EEG dynamics according to subject self-reported emotional states during music listening. A framework was proposed to optimize EEG-based emotion recognition by systematically 1) seeking emotion-specific EEG features and 2) exploring the efficacy of the classifiers. Support vector machine was employed to classify four emotional states (joy, anger, sadness, and pleasure) and obtained an averaged classification accuracy of 82.29% +/- 3.06% across 26 subjects. Further, this study identified 30 subject-independent features that were most relevant to emotional processing across subjects and explored the feasibility of using fewer electrodes to characterize the EEG dynamics during music listening. The identified features were primarily derived from electrodes placed near the frontal and the parietal lobes, consistent with many of the findings in the literature. This study might lead to a practical system for noninvasive assessment of the emotional states in practical or clinical applications.

  12. Reduced event-related low frequency EEG activity in patients with early onset schizophrenia and their unaffected siblings.

    PubMed

    Simmonite, Molly; Bates, Alan Thomas; Groom, Madeleine; Hollis, Chris; Liddle, Peter Francis

    2015-04-30

    Low-frequency oscillations in the electroencephalogram (EEG) have been found to be abnormal in patients with schizophrenia. It is unclear, however, whether these abnormalities are related to severity of illness or are a marker for risk. This study investigated total and evoked theta and delta activity in schizophrenia patients, unaffected siblings, and healthy controls (HCs). EEG data were recorded whilst 24 individuals with schizophrenia, 26 unaffected siblings of individuals with schizophrenia and 26 healthy control participants completed a Go/No-Go task. Event-related total activity and evoked theta and delta activity were calculated for correct hits (CH), failed inhibitions (FI) and correct inhibitions (CI) trials. Patients displayed significantly less total delta, evoked delta, total theta and evoked theta activity when compared with healthy controls. Unaffected siblings displayed abnormalities of evoked delta, but other measures were similar to those in control participants. The findings of this study add to evidence that abnormal low-frequency EEG oscillations contribute to impairments in information processing seen in schizophrenia. These findings also suggest abnormal evoked delta oscillations are associated with an increased familial risk of developing the disorder. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Individual variation in circadian rhythms of sleep, EEG, temperature, and activity among monkeys - Implications for regulatory mechanisms.

    NASA Technical Reports Server (NTRS)

    Crowley, T. J.; Halberg, F.; Kripke, D. F.; Pegram, G. V.

    1971-01-01

    Investigation of circadian rhythms in a number of variables related to sleep, EEG, temperature, and motor activity in rhesus monkeys on an LD 12:12 schedule. Circadian rhythms were found to appear in each of 15 variables investigated. Statistical procedures assessed the variables for evidence of common regulation in these aspects of their circadian rhythms: acrophase (timing), amplitude (extent of change), and level (24-hr mean value). Patterns appearing in the data suggested that the circadian rhythms of certain variables are regulated in common. The circadian modulation of activity in the beta and sigma frequency bands of the EEG was correlated with statistical significance in acrophase, level, and amplitude. The delta frequency band appeared to be under circadian rhythm regulation distinct from that of the other bands. The circadian rhythm of REM stage sleep was like that of beta activity in level and amplitude. The data indicate that REM stage may share some common regulation of circadian timing with both stage 3-4 sleep and with temperature. Generally, however, the circadian rhythm of temperature appeared to bear little relation to the circadian rhythms of motor activity, EEG, or sleep.

  14. Sleep Dysfunction and EEG Alterations in Mice Overexpressing Alpha-Synuclein

    PubMed Central

    McDowell, Kimberly A.; Shin, David; Roos, Kenneth P.; Chesselet, Marie-Françoise

    2018-01-01

    Background: Sleep disruptions occur early and frequently in Parkinson’s disease (PD). PD patients also show a slowing of resting state activity. Alpha-synuclein is causally linked to PD and accumulates in sleep-related brain regions. While sleep problems occur in over 75% of PD patients and severely impact the quality of life of patients and caregivers, their study is limited by a paucity of adequate animal models. Objective: The objective of this study was to determine whether overexpression of wildtype alpha-synuclein could lead to alterations in sleep patterns reminiscent of those observed in PD by measuring sleep/wake activity with rigorous quantitative methods in a well-characterized genetic mouse model. Methods: At 10 months of age, mice expressing human wildtype alpha-synuclein under the Thy-1 promoter (Thy1-aSyn) and wildtype littermates underwent the subcutaneous implantation of a telemetry device (Data Sciences International) for the recording of electromyograms (EMG) and electroencephalograms (EEG) in freely moving animals. Surgeries and data collection were performed without knowledge of mouse genotype. Results: Thy1-aSyn mice showed increased non-rapid eye movement sleep during their quiescent phase, increased active wake during their active phase, and decreased rapid eye movement sleep over a 24-h period, as well as a shift in the density of their EEG power spectra toward lower frequencies with a significant decrease in gamma power during wakefulness. Conclusions: Alpha-synuclein overexpression in mice produces sleep disruptions and altered oscillatory EEG activity reminiscent of PD, and this model provides a novel platform to assess mechanisms and therapeutic strategies for sleep dysfunction in PD. PMID:24867919

  15. Seizures and EEG features in 74 patients with genetic-dysmorphic syndromes.

    PubMed

    Alfei, Enrico; Raviglione, Federico; Franceschetti, Silvana; D'Arrigo, Stefano; Milani, Donatella; Selicorni, Angelo; Riva, Daria; Zuffardi, Orsetta; Pantaleoni, Chiara; Binelli, Simona

    2014-12-01

    Epilepsy is one of the most common findings in chromosome aberrations. Types of seizures and severity may significantly vary both between different conditions and within the same aberration. Hitherto specific seizures and EEG patterns are identified for only few syndromes. We studied 74 patients with defined genetic-dysmorphic syndromes with and without epilepsy in order to assess clinical and electroencephalographic features, to compare our observation with already described electro-clinical phenotypes, and to identify putative electroencephalographic and/or seizure characteristics useful to address the diagnosis. In our population, 10 patients had chromosomal disorders, 19 microdeletion or microduplication syndromes, and 32 monogenic syndromes. In the remaining 13, syndrome diagnosis was assessed on clinical grounds. Our study confirmed the high incidence of epilepsy in genetic-dysmorphic syndromes. Moreover, febrile seizures and neonatal seizures had a higher incidence compared to general population. In addition, more than one third of epileptic patients had drug-resistant epilepsy. EEG study revealed poor background organization in 42 patients, an excess of diffuse rhythmic activities in beta, alpha or theta frequency bands in 34, and epileptiform patterns in 36. EEG was completely normal only in 20 patients. No specific electro-clinical pattern was identified, except for inv-dup15, Angelman, and Rett syndromes. Nevertheless some specific conditions are described in detail, because of notable differences from what previously reported. Regarding the diagnostic role of EEG, we found that--even without any epileptiform pattern--the generation of excessive rhythmic activities in different frequency bandwidths might support the diagnosis of a genetic syndrome. © 2014 Wiley Periodicals, Inc.

  16. EEG source imaging during two Qigong meditations.

    PubMed

    Faber, Pascal L; Lehmann, Dietrich; Tei, Shisei; Tsujiuchi, Takuya; Kumano, Hiroaki; Pascual-Marqui, Roberto D; Kochi, Kieko

    2012-08-01

    Experienced Qigong meditators who regularly perform the exercises "Thinking of Nothing" and "Qigong" were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during "Qigong" than "Thinking of Nothing," forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during "Thinking of Nothing" than "Qigong," forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial-final no-task resting, "Qigong" showed activation in posterior areas whereas "Thinking of Nothing" showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during "Qigong" and anterior (left) prefrontal areas during "Thinking of Nothing" may reflect a predominance of self-reference, attention and input-centered processing in the "Qigong" meditation, and of control-centered processing in the "Thinking of Nothing" meditation.

  17. Wireless and wearable EEG system for evaluating driver vigilance.

    PubMed

    Lin, Chin-Teng; Chuang, Chun-Hsiang; Huang, Chih-Sheng; Tsai, Shu-Fang; Lu, Shao-Wei; Chen, Yen-Hsuan; Ko, Li-Wei

    2014-04-01

    Brain activity associated with attention sustained on the task of safe driving has received considerable attention recently in many neurophysiological studies. Those investigations have also accurately estimated shifts in drivers' levels of arousal, fatigue, and vigilance, as evidenced by variations in their task performance, by evaluating electroencephalographic (EEG) changes. However, monitoring the neurophysiological activities of automobile drivers poses a major measurement challenge when using a laboratory-oriented biosensor technology. This work presents a novel dry EEG sensor based mobile wireless EEG system (referred to herein as Mindo) to monitor in real time a driver's vigilance status in order to link the fluctuation of driving performance with changes in brain activities. The proposed Mindo system incorporates the use of a wireless and wearable EEG device to record EEG signals from hairy regions of the driver conveniently. Additionally, the proposed system can process EEG recordings and translate them into the vigilance level. The study compares the system performance between different regression models. Moreover, the proposed system is implemented using JAVA programming language as a mobile application for online analysis. A case study involving 15 study participants assigned a 90 min sustained-attention driving task in an immersive virtual driving environment demonstrates the reliability of the proposed system. Consistent with previous studies, power spectral analysis results confirm that the EEG activities correlate well with the variations in vigilance. Furthermore, the proposed system demonstrated the feasibility of predicting the driver's vigilance in real time.

  18. Evaluation of acute ischemic stroke using quantitative EEG: a comparison with conventional EEG and CT scan.

    PubMed

    Murri, L; Gori, S; Massetani, R; Bonanni, E; Marcella, F; Milani, S

    1998-06-01

    The sensitivity of quantitative electroencephalogram (EEG) was compared with that of conventional EEG in patients with acute ischaemic stroke. In addition, a correlation between quantitative EEG data and computerized tomography (CT) scan findings was carried out for all the areas of lesion in order to reassess the actual role of EEG in the evaluation of stroke. Sixty-five patients were tested with conventional and quantitative EEG within 24 h from the onset of neurological symptoms, whereas CT scan was performed within 4 days from the onset of stroke. EEG was recorded from 19 electrodes placed upon the scalp according to the International 10-20 System. Spectral analysis was carried out on 30 artefact-free 4-sec epochs. For each channel absolute and relative power were calculated for the delta, theta, alpha and beta frequency bands and such data were successively represented in colour-coded maps. Ten patients with extensive lesions documented by CT scan were excluded. The results indicated that conventional EEG revealed abnormalities in 40 of 55 cases, while EEG mapping showed abnormalities in 46 of 55 cases: it showed focal abnormalities in five cases and nonfocal abnormalities in one of six cases which had appeared to be normal according to visual inspection of EEG. In a further 11 cases, where the conventional EEG revealed abnormalities in one hemisphere, the quantitative EEG and maps allowed to further localize abnormal activity in a more localized way. The sensitivity of both methods was higher for frontocentral, temporal and parieto-occipital cortical-subcortical infarctions than for basal ganglia and internal capsule lesions; however, quantitative EEG was more efficient for all areas of lesion in detecting cases that had appeared normal by visual inspection and was clearly superior in revealing focal abnormalities. When we considered the electrode related to which the maximum power of the delta frequency band is recorded, a fairly close correlation was found

  19. Hyperventilation revisited: physiological effects and efficacy on focal seizure activation in the era of video-EEG monitoring.

    PubMed

    Guaranha, Mirian S B; Garzon, Eliana; Buchpiguel, Carlos A; Tazima, Sérgio; Yacubian, Elza M T; Sakamoto, Américo C

    2005-01-01

    Hyperventilation is an activation method that provokes physiological slowing of brain rhythms, interictal discharges, and seizures, especially in generalized idiopathic epilepsies. In this study we assessed its effectiveness in inducing focal seizures during video-EEG monitoring. We analyzed the effects of hyperventilation (HV) during video-EEG monitoring (video-EEG) of patients with medically intractable focal epilepsies. We excluded children younger than 10 years, mentally retarded patients, and individuals with frequent seizures. We analyzed 97 patients; 24 had positive seizure activation (PSA), and 73 had negative seizure activation (NSA). No differences were found between groups regarding sex, age, age at epilepsy onset, duration of epilepsy, frequency of seizures, and etiology. Temporal lobe epilepsies were significantly more activated than frontal lobe epilepsies. Spontaneous and activated seizures did not differ in terms of their clinical characteristics, and the activation did not affect the performance of ictal single-photon emission computed tomography (SPECT). HV is a safe and effective method of seizure activation during monitoring. It does not modify any of the characteristics of the seizures and allows the obtaining of valuable ictal SPECTs. This observation is clinically relevant and suggests the effectiveness and the potential of HV in shortening the presurgical evaluation, especially of temporal lobe epilepsy patients, consequently reducing its costs and increasing the number of candidates for epilepsy surgery.

  20. Classification of EEG abnormalities in partial epilepsy with simultaneous EEG-fMRI recordings.

    PubMed

    Pedreira, C; Vaudano, A E; Thornton, R C; Chaudhary, U J; Vulliemoz, S; Laufs, H; Rodionov, R; Carmichael, D W; Lhatoo, S D; Guye, M; Quian Quiroga, R; Lemieux, L

    2014-10-01

    Scalp EEG recordings and the classification of interictal epileptiform discharges (IED) in patients with epilepsy provide valuable information about the epileptogenic network, particularly by defining the boundaries of the "irritative zone" (IZ), and hence are helpful during pre-surgical evaluation of patients with severe refractory epilepsies. The current detection and classification of epileptiform signals essentially rely on expert observers. This is a very time-consuming procedure, which also leads to inter-observer variability. Here, we propose a novel approach to automatically classify epileptic activity and show how this method provides critical and reliable information related to the IZ localization beyond the one provided by previous approaches. We applied Wave_clus, an automatic spike sorting algorithm, for the classification of IED visually identified from pre-surgical simultaneous Electroencephalogram-functional Magnetic Resonance Imagining (EEG-fMRI) recordings in 8 patients affected by refractory partial epilepsy candidate for surgery. For each patient, two fMRI analyses were performed: one based on the visual classification and one based on the algorithmic sorting. This novel approach successfully identified a total of 29 IED classes (compared to 26 for visual identification). The general concordance between methods was good, providing a full match of EEG patterns in 2 cases, additional EEG information in 2 other cases and, in general, covering EEG patterns of the same areas as expert classification in 7 of the 8 cases. Most notably, evaluation of the method with EEG-fMRI data analysis showed hemodynamic maps related to the majority of IED classes representing improved performance than the visual IED classification-based analysis (72% versus 50%). Furthermore, the IED-related BOLD changes revealed by using the algorithm were localized within the presumed IZ for a larger number of IED classes (9) in a greater number of patients than the expert

  1. The Track of Brain Activity during the Observation of TV Commercials with the High-Resolution EEG Technology

    PubMed Central

    Astolfi, Laura; Vecchiato, Giovanni; De Vico Fallani, Fabrizio; Salinari, Serenella; Cincotti, Febo; Aloise, Fabio; Mattia, Donatella; Marciani, Maria Grazia; Bianchi, Luigi; Soranzo, Ramon; Babiloni, Fabio

    2009-01-01

    We estimate cortical activity in normal subjects during the observation of TV commercials inserted within a movie by using high-resolution EEG techniques. The brain activity was evaluated in both time and frequency domains by solving the associate inverse problem of EEG with the use of realistic head models. In particular, we recover statistically significant information about cortical areas engaged by particular scenes inserted within the TV commercial proposed with respect to the brain activity estimated while watching a documentary. Results obtained in the population investigated suggest that the statistically significant brain activity during the observation of the TV commercial was mainly concentrated in frontoparietal cortical areas, roughly coincident with the Brodmann areas 8, 9, and 7, in the analyzed population. PMID:19584910

  2. Towards the utilization of EEG as a brain imaging tool.

    PubMed

    Michel, Christoph M; Murray, Micah M

    2012-06-01

    Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    PubMed Central

    Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Conclusions

  4. Event-related wave activity in the EEG provides new marker of ADHD.

    PubMed

    Alexander, David M; Hermens, Daniel F; Keage, Hannah A D; Clark, C Richard; Williams, Leanne M; Kohn, Michael R; Clarke, Simon D; Lamb, Chris; Gordon, Evian

    2008-01-01

    This study examines the utility of new measures of event-related spatio-temporal waves in the EEG as a marker of ADHD, previously shown to be closely related to the P3 ERP in an adult sample. Wave activity in the EEG was assessed during both an auditory Oddball and a visual continuous performance task (CPT) for an ADHD group ranging in age from 6 to 18 years and comprising mostly Combined and Inattentive subtypes, and for an age and gender matched control group. The ADHD subjects had less wave activity at low frequencies ( approximately 1 Hz) during both tasks. For auditory Oddball targets, this effect was shown to be related to smaller P3 ERP amplitudes. During CPT, the approximately 1 Hz wave activity in the ADHD subjects was inversely related to clinical and behavioral measures of hyperactivity and impulsivity. CPT wave activity at approximately 1 Hz was seen to "normalise" following treatment with stimulant medication. The results identify a deficit in low frequency wave activity as a new marker for ADHD associated with levels of hyperactivity and impulsivity. The marker is evident across a range of tasks and may be specific to ADHD. While lower approximately 1 Hz activity partly accounts for reduced P3 ERPs in ADHD, the effect also arises for tasks that do not elicit a P3. Deficits in behavioral inhibition are hypothesized to arise from underlying dysregulation of cortical inhibition.

  5. Progress in EEG-Based Brain Robot Interaction Systems

    PubMed Central

    Li, Mengfan; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe

    2017-01-01

    The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques. PMID:28484488

  6. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording.

    PubMed

    Perentos, N; Nicol, A U; Martins, A Q; Stewart, J E; Taylor, P; Morton, A J

    2017-03-01

    Large mammals with complex central nervous systems offer new possibilities for translational research into basic brain function. Techniques for monitoring brain activity in large mammals, however, are not as well developed as they are in rodents. We have developed a method for chronic monitoring of electroencephalographic (EEG) activity in unrestrained sheep. We describe the methods for behavioural training prior to implantation, surgical procedures for implantation, a protocol for reliable anaesthesia and recovery, methods for EEG data collection, as well as data pertaining to suitability and longevity of different types of electrodes. Sheep tolerated all procedures well, and surgical complications were minimal. Electrode types used included epidural and subdural screws, intracortical needles and subdural disk electrodes, with the latter producing the best and most reliable results. The implants yielded longitudinal EEG data of consistent quality for periods of at least a year, and in some cases up to 2 years. This is the first detailed methodology to be described for chronic brain function monitoring in freely moving unrestrained sheep. The developed method will be particularly useful in chronic investigations of brain activity during normal behaviour that can include sleep, learning and memory. As well, within the context of disease, the method can be used to monitor brain pathology or the progress of therapeutic trials in transgenic or natural disease models in sheep. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. EEG datasets for motor imagery brain-computer interface.

    PubMed

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  8. Beware: Recruitment of Muscle Activity by the EEG-Neurofeedback Trainings of High Frequencies

    PubMed Central

    Paluch, Katarzyna; Jurewicz, Katarzyna; Rogala, Jacek; Krauz, Rafał; Szczypińska, Marta; Mikicin, Mirosław; Wróbel, Andrzej; Kublik, Ewa

    2017-01-01

    EEG-neurofeedback (NFB) became a very popular method aimed at improving cognitive and behavioral performance. However, the EMG frequency spectrum overlies the higher EEG oscillations and the NFB trainings focusing on these frequencies is hindered by the problem of EMG load in the information fed back to the subjects. In such a complex signal, it is highly probable that the most controllable component will form the basis for operant conditioning. This might cause different effects in the case of various training protocols and therefore needs to be carefully assessed before designing training protocols and algorithms. In the current experiment a group of healthy adults (n = 14) was trained by professional trainers to up-regulate their beta1 (15–22 Hz) band for eight sessions. The control group (n = 18) underwent the same training regime but without rewards for increasing beta. In half of the participants trained to up-regulate beta1 band (n = 7) a systematic increase in tonic EMG activity was identified offline, implying that muscle activity became a foundation for reinforcement in the trainings. The remaining participants did not present any specific increase of the trained beta1 band amplitude. The training was perceived effective by both trainers and the trainees in all groups. These results indicate the necessity of proper control of muscle activity as a requirement for the genuine EEG-NFB training, especially in protocols that do not aim at the participants’ relaxation. The specificity of the information fed back to the participants should be of highest interest to all therapists and researchers, as it might irreversibly alter the results of the training. PMID:28373836

  9. Impact of Transient Acute Hypoxia on the Developing Mouse EEG

    PubMed Central

    Zanelli, S.; Goodkin, H.P.; Kowalski, S.; Kapur, J.

    2015-01-01

    Hypoxemic events are common in sick preterm and term infants and represent the most common cause of seizures in the newborn period. Neonatal seizures often lack clinical correlates and are only recognized by electroencephalogram (EEG). The mechanisms leading from a hypoxic/ischemic insult to acute seizures in neonates remain poorly understood. Further, the effects of hypoxia on EEG at various developmental stages have not been fully characterized in neonatal animals, in part due to technical challenges. We evaluated the impact of hypoxia on neonatal mouse EEG to define periods of increased susceptibility to seizures during postnatal development. Hippocampal and cortical electrodes were implanted stereotaxically in C57BL/6 mice from postnatal age 3 (P3) to P15. Following recovery, EEG recording were obtained during baseline, acute hypoxia (4% FiO2 for 4 min) and reoxygenation. In baseline recordings, maturation of EEG was characterized by the appearance of a more continuous background pattern that replaced alternating high and low amplitude activity. Clinical seizures during hypoxia were observed more frequently in younger animals (100% P3-4, 87.5% P5-6, 93% P7-8, 83% P9-10, 33% P11-12, 17% P15, r2=0.81) and also occurred at higher FiO2 in younger animals (11.2±1.1% P3-P6 vs. 8.9±0.8% P7-12, p<0.05). Background attenuation followed the initial hypoxemic seizure; progressive return to baseline during reoxygenation was observed in survivors. Electrographic seizures without clinical manifestations were observed during reoxygenation, again more commonly in younger animals (83% P3-4, 86% P5-6, 75% P7-8, 71% P9-10, 20% P11-12, r2=0.82). All P15 animals died with this duration and degree of hypoxia. Post-ictal abnormalities included burst attenuation and post-anoxic myoclonus and were more commonly seen in older animals. In summary, neonatal mice exposed to brief and severe hypoxia followed by rapid reoxygenation reliably develop seizures and the response to hypoxia

  10. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research

    PubMed Central

    Lachaux, Jean-Philippe; Axmacher, Nikolai; Mormann, Florian; Halgren, Eric; Crone, Nathan E.

    2013-01-01

    Human intracranial EEG (iEEG) recordings are primarily performed in epileptic patients for presurgical mapping. When patients perform cognitive tasks, iEEG signals reveal high-frequency neural activities (HFA, between around 40 Hz and 150 Hz) with exquisite anatomical, functional and temporal specificity. Such HFA were originally interpreted in the context of perceptual or motor binding, in line with animal studies on gamma-band (‘40Hz’) neural synchronization. Today, our understanding of HFA has evolved into a more general index of cortical processing: task-induced HFA reveals, with excellent spatial and time resolution, the participation of local neural ensembles in the task-at-hand, and perhaps the neural communication mechanisms allowing them to do so. This review promotes the claim that studying HFA with iEEG provides insights into the neural bases of cognition that cannot be derived as easily from other approaches, such as fMRI. We provide a series of examples supporting that claim, drawn from studies on memory, language and default-mode networks, and successful attempts of real-time functional mapping. These examples are followed by several guidelines for HFA research, intended for new groups interested by this approach. Overall, iEEG research on HFA should play an increasing role in cognitive neuroscience in humans, because it can be explicitly linked to basic research in animals. We conclude by discussing the future evolution of this field, which might expand that role even further, for instance through the use of multi-scale electrodes and the fusion of iEEG with MEG and fMRI. PMID:22750156

  11. Multi-modal Patient Cohort Identification from EEG Report and Signal Data

    PubMed Central

    Goodwin, Travis R.; Harabagiu, Sanda M.

    2016-01-01

    Clinical electroencephalography (EEG) is the most important investigation in the diagnosis and management of epilepsies. An EEG records the electrical activity along the scalp and measures spontaneous electrical activity of the brain. Because the EEG signal is complex, its interpretation is known to produce moderate inter-observer agreement among neurologists. This problem can be addressed by providing clinical experts with the ability to automatically retrieve similar EEG signals and EEG reports through a patient cohort retrieval system operating on a vast archive of EEG data. In this paper, we present a multi-modal EEG patient cohort retrieval system called MERCuRY which leverages the heterogeneous nature of EEG data by processing both the clinical narratives from EEG reports as well as the raw electrode potentials derived from the recorded EEG signal data. At the core of MERCuRY is a novel multimodal clinical indexing scheme which relies on EEG data representations obtained through deep learning. The index is used by two clinical relevance models that we have generated for identifying patient cohorts satisfying the inclusion and exclusion criteria expressed in natural language queries. Evaluations of the MERCuRY system measured the relevance of the patient cohorts, obtaining MAP scores of 69.87% and a NDCG of 83.21%. PMID:28269938

  12. Understanding the pathophysiology of reflex epilepsy using simultaneous EEG-fMRI.

    PubMed

    Sandhya, Manglore; Bharath, Rose Dawn; Panda, Rajanikant; Chandra, S R; Kumar, Naveen; George, Lija; Thamodharan, A; Gupta, Arun Kumar; Satishchandra, P

    2014-03-01

    Measuring neuro-haemodynamic correlates in the brain of epilepsy patients using EEG-fMRI has opened new avenues in clinical neuroscience, as these are two complementary methods for understanding brain function. In this study, we investigated three patients with drug-resistant reflex epilepsy using EEG-fMRI. Different types of reflex epilepsy such as eating, startle myoclonus, and hot water epilepsy were included in the study. The analysis of EEG-fMRI data was based on the visual identification of interictal epileptiform discharges on scalp EEG. The convolution of onset time and duration of these epilepsy spikes was estimated, and using these condition-specific effects in a general linear model approach, we evaluated activation of fMRI. Patients with startle myoclonus epilepsy experienced epilepsy in response to sudden sound or touch, in association with increased delta and theta activity with a spike-and-slow-wave pattern of interictal epileptiform discharges on EEG and fronto-parietal network activation pattern on SPECT and EEG-fMRI. Eating epilepsy was triggered by sight or smell of food and fronto-temporal discharges were noted on video-EEG (VEEG). Similarly, fronto-temporo-parietal involvement was noted on SPECT and EEG-fMRI. Hot water epilepsy was triggered by contact with hot water either in the bath or by hand immersion, and VEEG showed fronto-parietal involvement. SPECT and EEG fMRI revealed a similar fronto-parietal-occipital involvement. From these results, we conclude that continuous EEG recording can improve the modelling of BOLD changes related to interictal epileptic activity and this can thus be used to understand the neuro-haemodynamic substrates involved in reflex epilepsy.

  13. Using robust principal component analysis to alleviate day-to-day variability in EEG based emotion classification.

    PubMed

    Ping-Keng Jao; Yuan-Pin Lin; Yi-Hsuan Yang; Tzyy-Ping Jung

    2015-08-01

    An emerging challenge for emotion classification using electroencephalography (EEG) is how to effectively alleviate day-to-day variability in raw data. This study employed the robust principal component analysis (RPCA) to address the problem with a posed hypothesis that background or emotion-irrelevant EEG perturbations lead to certain variability across days and somehow submerge emotion-related EEG dynamics. The empirical results of this study evidently validated our hypothesis and demonstrated the RPCA's feasibility through the analysis of a five-day dataset of 12 subjects. The RPCA allowed tackling the sparse emotion-relevant EEG dynamics from the accompanied background perturbations across days. Sequentially, leveraging the RPCA-purified EEG trials from more days appeared to improve the emotion-classification performance steadily, which was not found in the case using the raw EEG features. Therefore, incorporating the RPCA with existing emotion-aware machine-learning frameworks on a longitudinal dataset of each individual may shed light on the development of a robust affective brain-computer interface (ABCI) that can alleviate ecological inter-day variability.

  14. Music therapy modulates fronto-temporal activity in rest-EEG in depressed clients.

    PubMed

    Fachner, Jörg; Gold, Christian; Erkkilä, Jaakko

    2013-04-01

    Fronto-temporal areas process shared elements of speech and music. Improvisational psychodynamic music therapy (MT) utilizes verbal and musical reflection on emotions and images arising from clinical improvisation. Music listening is shifting frontal alpha asymmetries (FAA) in depression, and increases frontal midline theta (FMT). In a two-armed randomized controlled trial (RCT) with 79 depressed clients (with comorbid anxiety), we compared standard care (SC) versus MT added to SC at intake and after 3 months. We found that MT significantly reduced depression and anxiety symptoms. The purpose of this study is to test whether or not MT has an impact on anterior fronto-temporal resting state alpha and theta oscillations. Correlations between anterior EEG, Montgomery-Åsberg Depression Rating Scale (MADRS) and the Hospital Anxiety and Depression Scale-Anxiety Subscale (HADS-A), power spectral analysis (topography, means, asymmetry) and normative EEG database comparisons were explored. After 3 month of MT, lasting changes in resting EEG were observed, i.e., significant absolute power increases at left fronto-temporal alpha, but most distinct for theta (also at left fronto-central and right temporoparietal leads). MT differed to SC at F7-F8 (z scored FAA, p < .03) and T3-T4 (theta, p < .005) asymmetry scores, pointing towards decreased relative left-sided brain activity after MT; pre/post increased FMT and decreased HADS-A scores (r = .42, p < .05) indicate reduced anxiety after MT. Verbal reflection and improvising on emotions in MT may induce neural reorganization in fronto-temporal areas. Alpha and theta changes in fronto-temporal and temporoparietal areas indicate MT action and treatment effects on cortical activity in depression, suggesting an impact of MT on anxiety reduction.

  15. Mobile Collection and Automated Interpretation of EEG Data

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick; Moynihan, Philip

    2007-01-01

    A system that would comprise mobile and stationary electronic hardware and software subsystems has been proposed for collection and automated interpretation of electroencephalographic (EEG) data from subjects in everyday activities in a variety of environments. By enabling collection of EEG data from mobile subjects engaged in ordinary activities (in contradistinction to collection from immobilized subjects in clinical settings), the system would expand the range of options and capabilities for performing diagnoses. Each subject would be equipped with one of the mobile subsystems, which would include a helmet that would hold floating electrodes (see figure) in those positions on the patient s head that are required in classical EEG data-collection techniques. A bundle of wires would couple the EEG signals from the electrodes to a multi-channel transmitter also located in the helmet. Electronic circuitry in the helmet transmitter would digitize the EEG signals and transmit the resulting data via a multidirectional RF patch antenna to a remote location. At the remote location, the subject s EEG data would be processed and stored in a database that would be auto-administered by a newly designed relational database management system (RDBMS). In this RDBMS, in nearly real time, the newly stored data would be subjected to automated interpretation that would involve comparison with other EEG data and concomitant peer-reviewed diagnoses stored in international brain data bases administered by other similar RDBMSs.

  16. Effect of essential oil and supercritical carbon dioxide extract from the root of Angelica gigas on human EEG activity.

    PubMed

    Sowndhararajan, Kandhasamy; Seo, Min; Kim, Minju; Kim, Heeyeon; Kim, Songmun

    2017-08-01

    The present study aimed to investigate the effect of inhalation of essential oil (EO) and supercritical carbon dioxide extract (SC-CO 2 ) from the root of A. gigas on human electroencephalographic (EEG) activity. For this purpose, the EO was obtained from the root of A. gigas by steam distillation and SC-CO 2 was obtained at 50 °C and 400 bar for 1 h. The EEG readings were recorded using the QEEG-8 system from 8 electrode sites according to the International 10-20 system. In the EEG study, the absolute low beta (left temporal and left parietal) activity significantly increased during the inhalation of EO. In the case of SC-CO 2 inhalation, there was no significant change in absolute waves. The results revealed that the EO of A. gigas root produced significant changes in the absolute low beta activity and these changes may enhance the language learning abilities of human brain. Copyright © 2017. Published by Elsevier Ltd.

  17. Artifact removal from EEG data with empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Efremova, Tatyana Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we propose the novel method for dealing with the physiological artifacts caused by intensive activity of facial and neck muscles and other movements in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We introduce the mathematical algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from movement artifacts and show high efficiency of the method.

  18. Seizure classification in EEG signals utilizing Hilbert-Huang transform

    PubMed Central

    2011-01-01

    Background Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Method Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. Results The t-test results in a P-value < 0.02 and the clustering leads to accurate (94%) and specific (96%) results. The proposed method is also contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison results strengthen the contribution of this paper not only from the accuracy point of view but also with respect to its fast response and ease to use. Conclusion An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing

  19. Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model

    PubMed Central

    Aydin, Ümit; Vorwerk, Johannes; Küpper, Philipp; Heers, Marcel; Kugel, Harald; Galka, Andreas; Hamid, Laith; Wellmer, Jörg; Kellinghaus, Christoph; Rampp, Stefan; Wolters, Carsten Hermann

    2014-01-01

    To increase the reliability for the non-invasive determination of the irritative zone in presurgical epilepsy diagnosis, we introduce here a new experimental and methodological source analysis pipeline that combines the complementary information in EEG and MEG, and apply it to data from a patient, suffering from refractory focal epilepsy. Skull conductivity parameters in a six compartment finite element head model with brain anisotropy, constructed from individual MRI data, are estimated in a calibration procedure using somatosensory evoked potential (SEP) and field (SEF) data. These data are measured in a single run before acquisition of further runs of spontaneous epileptic activity. Our results show that even for single interictal spikes, volume conduction effects dominate over noise and need to be taken into account for accurate source analysis. While cerebrospinal fluid and brain anisotropy influence both modalities, only EEG is sensitive to skull conductivity and conductivity calibration significantly reduces the difference in especially depth localization of both modalities, emphasizing its importance for combining EEG and MEG source analysis. On the other hand, localization differences which are due to the distinct sensitivity profiles of EEG and MEG persist. In case of a moderate error in skull conductivity, combined source analysis results can still profit from the different sensitivity profiles of EEG and MEG to accurately determine location, orientation and strength of the underlying sources. On the other side, significant errors in skull modeling are reflected in EEG reconstruction errors and could reduce the goodness of fit to combined datasets. For combined EEG and MEG source analysis, we therefore recommend calibrating skull conductivity using additionally acquired SEP/SEF data. PMID:24671208

  20. Topographical characteristics and principal component structure of the hypnagogic EEG.

    PubMed

    Tanaka, H; Hayashi, M; Hori, T

    1997-07-01

    The purpose of the present study was to identify the dominant topographic components of electroencephalographs (EEG) and their behavior during the waking-sleeping transition period. Somnography of nocturnal sleep was recorded on 10 male subjects. Each recording, from "lights-off" to 5 minutes after the appearance of the first sleep spindle, was analyzed. The typical EEG patterns during hypnagogic period were classified into nine EEG stages. Topographic maps demonstrated that the dominant areas of alpha-band activity moved from the posterior areas to anterior areas along the midline of the scalp. In delta-, theta-, and sigma-band activities, the differences of EEG amplitude between the focus areas (the dominant areas) and the surrounding areas increased as a function of EEG stage. To identify the dominant topographic components, a principal component analysis was carried out on a 12-channel EEG data set for each of six frequency bands. The dominant areas of alpha 2- (9.6-11.4 Hz) and alpha 3- (11.6-13.4 Hz) band activities moved from the posterior to anterior areas, respectively. The distribution of alpha 2-band activity on the scalp clearly changed just after EEG stage 3 (alpha intermittent, < 50%). On the other hand, alpha 3-band activity became dominant in anterior areas after the appearance of vertex sharp-wave bursts (EEG stage 7). For the sigma band, the amplitude of extensive areas from the frontal pole to the parietal showed a rapid rise after the onset of stage 7 (the appearance of vertex sharp-wave bursts). Based on the results, sleep onset process probably started before the onset of sleep stage 1 in standard criteria. On the other hand, the basic sleep process may start before the onset of sleep stage 2 or the manually scored spindles.

  1. Quantitative analysis of sleep EEG microstructure in the time-frequency domain.

    PubMed

    De Carli, Fabrizio; Nobili, Lino; Beelke, Manolo; Watanabe, Tsuyoshi; Smerieri, Arianna; Parrino, Liborio; Terzano, Mario Giovanni; Ferrillo, Franco

    2004-06-30

    A number of phasic events influence sleep quality and sleep macrostructure. The detection of arousals and the analysis of cyclic alternating patterns (CAP) support the evaluation of sleep fragmentation and instability. Sixteen polygraphic overnight recordings were visually inspected for conventional Rechtscaffen and Kales scoring, while arousals were detected following the criteria of the American Sleep Disorders Association (ASDA). Three electroencephalograph (EEG) segments were associated to each event, corresponding to background activity, pre-arousal period and arousal. The study was supplemented by the analysis of time-frequency distribution of EEG within each subtype of phase A in the CAP. The arousals were characterized by the increase of alpha and beta power with regard to background. Within NREM sleep most of the arousals were preceded by a transient increase of delta power. The time-frequency evolution of the phase A of the CAP sequence showed a strong prevalence of delta activity during the whole A1, but high amplitude delta waves were found also in the first 2/3 s of A2 and A3, followed by desynchronization. Our results underline the strict relationship between the ASDA arousals, and the subtype A2 and A3 within the CAP: in both the association between a short sequence of transient slow waves and the successive increase of frequency and decrease of amplitude characterizes the arousal response.

  2. Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs.

    PubMed

    Badcock, Nicholas A; Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants - particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC(®), www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC(®)). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks

  3. EEG correlates of social interaction at distance

    PubMed Central

    Giroldini, William; Pederzoli, Luciano; Bilucaglia, Marco; Caini, Patrizio; Ferrini, Alessandro; Melloni, Simone; Prati, Elena; Tressoldi, Patrizio

    2016-01-01

    This study investigated EEG correlates of social interaction at distance between twenty-five pairs of participants who were not connected by any traditional channels of communication. Each session involved the application of 128 stimulations separated by intervals of random duration ranging from 4 to 6 seconds. One of the pair received a one-second stimulation from a light signal produced by an arrangement of red LEDs, and a simultaneous 500 Hz sinusoidal audio signal of the same length. The other member of the pair sat in an isolated sound-proof room, such that any sensory interaction between the pair was impossible. An analysis of the Event-Related Potentials associated with sensory stimulation using traditional averaging methods showed a distinct peak at approximately 300 ms, but only in the EEG activity of subjects who were directly stimulated. However, when a new algorithm was applied to the EEG activity based on the correlation between signals from all active electrodes, a weak but robust response was also detected in the EEG activity of the passive member of the pair, particularly within 9 – 10 Hz in the Alpha range. Using the Bootstrap method and the Monte Carlo emulation, this signal was found to be statistically significant. PMID:26966513

  4. EEG Brain Wave Activity at Rest and during Evoked Attention in Children with Attention-Deficit/Hyperactivity Disorder and Effects of Methylphenidate.

    PubMed

    Thomas, Bianca Lee; Viljoen, Margaretha

    2016-01-01

    The aim of this study was to assess baseline EEG brain wave activity in children with attention-deficit/hyperactivity disorder (ADHD) and to examine the effects of evoked attention and methylphenidate on this activity. Children with ADHD (n = 19) were tested while they were stimulant free and during a period in which they were on stimulant (methylphenidate) medication. Control subjects (n = 18) were tested once. EEG brain wave activity was tested both at baseline and during focussed attention. Attention was evoked and EEG brain wave activity was determined by means of the BioGraph Infiniti biofeedback apparatus. The main finding of this study was that control subjects and stimulant-free children with ADHD exhibited the expected reactivity in high alpha-wave activity (11-12 Hz) from baseline to focussed attention; however, methylphenidate appeared to abolish this reactivity. Methylphenidate attenuates the normal cortical response to a cognitive challenge. © 2016 S. Karger AG, Basel.

  5. Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task.

    PubMed

    Perronnet, Lorraine; Lécuyer, Anatole; Mano, Marsel; Bannier, Elise; Lotte, Fabien; Clerc, Maureen; Barillot, Christian

    2017-01-01

    Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D). Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback.

  6. Quantitative change of EEG and respiration signals during mindfulness meditation

    PubMed Central

    2014-01-01

    Background This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. Methods EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Results Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Conclusion Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies. PMID:24939519

  7. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    PubMed Central

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  8. Going local: insights from EEG and stereo-EEG studies of the human sleep-wake cycle.

    PubMed

    Ferrara, Michele; De Gennaro, Luigi

    2011-01-01

    In the present paper, we reviewed a large body of evidence, mainly from quantitative EEG studies of our laboratory, supporting the notion that sleep is a local and use-dependent process. Quantitative analyses of sleep EEG recorded from multiple cortical derivations clearly indicate that every sleep phenomenon, from sleep onset to the awakening, is strictly local in nature. Sleep onset first occurs in frontal areas, and a frontal predominance of low-frequency power persists in the first part of the night, when the homeostatic processes mainly occur, and then it vanishes. Upon awakening, we showed an asynchronous EEG activation of different cortical areas, the more anterior ones being the first to wake up. During extended periods of wakefulness, the increase of sleepiness-related low-EEG frequencies is again evident over the frontal derivations. Similarly, experimental manipulations of sleep length by total sleep deprivation, partial sleep curtailment or even selective slow-wave sleep deprivation lead to a slow-wave activity rebound localized especially on the anterior derivations. Thus, frontal areas are crucially involved in sleep homeostasis. According to the local use-dependent theory, this would derive from a higher sleep need of the frontal cortex, which in turn is due to its higher levels of activity during wakefulness. The fact that different brain regions can simultaneously exhibit different sleep intensities indicates that sleep is not a spatially global and uniform state, as hypothesized in the theory. We have also reviewed recent evidence of localized effects of learning and plasticity on EEG sleep measures. These studies provide crucial support to a key concept in the theory, the one claiming that local sleep characteristics should be use-dependent. Finally, we have reported data corroborating the notion that sleep is not necessarily present simultaneously in the entire brain. Our stereo-EEG recordings clearly indicate that sleep and wakefulness can co

  9. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children.

    PubMed

    Badcock, Nicholas A; Preece, Kathryn A; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve

    2015-01-01

    Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under "passive" and "active" listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of 'high' (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children's late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component.

  10. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    NASA Technical Reports Server (NTRS)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or

  11. Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG.

    PubMed

    Vaudano, Anna Elisabetta; Avanzini, Pietro; Tassi, Laura; Ruggieri, Andrea; Cantalupo, Gaetano; Benuzzi, Francesca; Nichelli, Paolo; Lemieux, Louis; Meletti, Stefano

    2013-01-01

    Accurate localization of the Seizure Onset Zone (SOZ) is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI) has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical work-up. However, fMRI maps related to interictal epileptiform activities (IED) often show multiple regions of signal change, or "networks," rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modeling (DCM) applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here, we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of blood oxygenation level dependent (BOLD) signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favored a model corresponding to the left dorso-lateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a) the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI), and "psycho-physiological interaction" analysis; (b) the failure of a first surgical intervention limited to the fronto-polar region; (c) the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.

  12. Data acquisition instrument for EEG based on embedded system

    NASA Astrophysics Data System (ADS)

    Toresano, La Ode Husein Z.; Wijaya, Sastra Kusuma; Prawito, Sudarmaji, Arief; Syakura, Abdan; Badri, Cholid

    2017-02-01

    An electroencephalogram (EEG) is a device for measuring and recording the electrical activity of brain. The EEG data of signal can be used as a source of analysis for human brain function. The purpose of this study was to design a portable multichannel EEG based on embedded system and ADS1299. The ADS1299 is an analog front-end to be used as an Analog to Digital Converter (ADC) to convert analog signal of electrical activity of brain, a filter of electrical signal to reduce the noise on low-frequency band and a data communication to the microcontroller. The system has been tested to capture brain signal within a range of 1-20 Hz using the NETECH EEG simulator 330. The developed system was relatively high accuracy of more than 82.5%. The EEG Instrument has been successfully implemented to acquire the brain signal activity using a PC (Personal Computer) connection for displaying the recorded data. The final result of data acquisition has been processed using OpenBCI GUI (Graphical User Interface) based through real-time process for 8-channel signal acquisition, brain-mapping and power spectral decomposition signal using the standard FFT (Fast Fourier Transform) algorithm.

  13. Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb.

    PubMed

    Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong

    2016-02-01

    A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement.

  14. Human cortical activity related to unilateral movements. A high resolution EEG study.

    PubMed

    Urbano, A; Babiloni, C; Onorati, P; Babiloni, F

    1996-12-20

    In the present study a modern high resolution electroencephalography (EEG) technique was used to investigate the dynamic functional topography of human cortical activity related to simple unilateral internally triggered finger movements. The sensorimotor area (M1-S1) contralateral to the movement as well as the supplementary motor area (SMA) and to a lesser extent the ipsilateral M1-S1 were active during the preparation and execution of these movements. These findings suggest that both hemispheres may cooperate in both planning and production of simple unilateral volitional acts.

  15. EEG Brain Activity in Dynamic Health Qigong Training: Same Effects for Mental Practice and Physical Training?

    PubMed

    Henz, Diana; Schöllhorn, Wolfgang I

    2017-01-01

    In recent years, there has been significant uptake of meditation and related relaxation techniques, as a means of alleviating stress and fostering an attentive mind. Several electroencephalogram (EEG) studies have reported changes in spectral band frequencies during Qigong meditation indicating a relaxed state. Much less is reported on effects of brain activation patterns induced by Qigong techniques involving bodily movement. In this study, we tested whether (1) physical Qigong training alters EEG theta and alpha activation, and (2) mental practice induces the same effect as a physical Qigong training. Subjects performed the dynamic Health Qigong technique Wu Qin Xi (five animals) physically and by mental practice in a within-subjects design. Experimental conditions were randomized. Two 2-min (eyes-open, eyes-closed) EEG sequences under resting conditions were recorded before and immediately after each 15-min exercise. Analyses of variance were performed for spectral power density data. Increased alpha power was found in posterior regions in mental practice and physical training for eyes-open and eyes-closed conditions. Theta power was increased after mental practice in central areas in eyes-open conditions, decreased in fronto-central areas in eyes-closed conditions. Results suggest that mental, as well as physical Qigong training, increases alpha activity and therefore induces a relaxed state of mind. The observed differences in theta activity indicate different attentional processes in physical and mental Qigong training. No difference in theta activity was obtained in physical and mental Qigong training for eyes-open and eyes-closed resting state. In contrast, mental practice of Qigong entails a high degree of internalized attention that correlates with theta activity, and that is dependent on eyes-open and eyes-closed resting state.

  16. Validation of a low-cost EEG device for mood induction studies.

    PubMed

    Rodríguez, Alejandro; Rey, Beatriz; Alcañiz, Mariano

    2013-01-01

    New electroencephalography (EEG) devices, more portable and cheaper, are appearing on the market. Studying the reliability of these EEG devices for emotional studies would be interesting, as these devices could be more economical and compatible with Virtual Reality (VR) settings. Therefore, the aim in this work was to validate a low-cost EEG device (Emotiv Epoc) to monitor brain activity during a positive emotional induction procedure. Emotional pictures (IAPS) were used to induce a positive mood in sixteen participants. Changes in the brain activity of subjects were compared between positive induction and neutral conditions. Obtained results were in accordance with previous scientific literature regarding frontal EEG asymmetry, which supports the possibility of using this low-cost EEG device in future mood induction studies combined with VR.

  17. EEG, evoked potentials and pulsed Doppler in asphyxiated term infants.

    PubMed

    Julkunen, Mia K; Himanen, Sari-Leena; Eriksson, Kai; Janas, Martti; Luukkaala, Tiina; Tammela, Outi

    2014-09-01

    To evaluate electroencephalograms (EEG), evoked potentials (EPs) and Doppler findings in the cerebral arteries as predictors of a 1-year outcome in asphyxiated newborn infants. EEG and EPs (brain stem auditory (BAEP), somatosensory (SEP), visual (VEP) evoked potentials) were assessed in 30 asphyxiated and 30 healthy term infants during the first days (range 1-8). Cerebral blood flow velocities (CBFV) were measured from the cerebral arteries using pulsed Doppler at ∼24h of age. EEG, EPs, Doppler findings, symptoms of hypoxic ischemic encephalopathy (HIE) and their combination were evaluated in predicting a 1-year outcome. An abnormal EEG background predicted poor outcome in the asphyxia group with a sensitivity of 67% and 81% specificity, and an abnormal SEP with 75% and 79%, respectively. Combining increased systolic CBFV (mean+3SD) with abnormal EEG or SEP improved the specificity, but not the sensitivity. The predictive values of abnormal BAEP and VEP were poor. Normal EEG and SEP predicted good outcome in the asphyxia group with sensitivities from 79% to 81%. The combination of normal EEG, normal SEP and systolic CBFV<3SD predicted good outcome with a sensitivity of 74% and 100% specificity. Combining abnormal EEG or EPs findings with increased systolic CBFV did not improve prediction of a poor 1-year outcome of asphyxiated infants. Normal EEG and normal SEP combined with systolic CBFV<3SD at about 24 h can be valuable in the prediction of normal 1-year outcome. Combining systolic CBFV at 24 h with EEG and SEP examinations can be of use in the prediction of normal 1-year outcome among asphyxiated infants. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants

    PubMed Central

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Background Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcome. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency, fc=90% (SEF-90) derived from EEG recordings in preterm infants. Methods Twenty two preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at around 32 weeks postmenstrual age (PMA). The SEF-90 was derived from 2-channel EEG recordings. Results Compared to the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (p = 0.005) and right (p < 0.0001) hemispheres. Notably, the left and right hemisphere showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short term cortical adaptation and a long term neural adaptation manifest as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. Conclusion This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants. PMID:24129553

  19. PyEEG: an open source Python module for EEG/MEG feature extraction.

    PubMed

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.

  20. PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction

    PubMed Central

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction. PMID:21512582

  1. Is EEG-biofeedback an effective treatment in autism spectrum disorders? A randomized controlled trial.

    PubMed

    Kouijzer, Mirjam E J; van Schie, Hein T; Gerrits, Berrie J L; Buitelaar, Jan K; de Moor, Jan M H

    2013-03-01

    EEG-biofeedback has been reported to reduce symptoms of autism spectrum disorders (ASD) in several studies. However, these studies did not control for nonspecific effects of EEG-biofeedback and did not distinguish between participants who succeeded in influencing their own EEG activity and participants who did not. To overcome these methodological shortcomings, this study evaluated the effects of EEG-biofeedback in ASD in a randomized pretest-posttest control group design with blinded active comparator and six months follow-up. Thirty-eight participants were randomly allocated to the EEG-biofeedback, skin conductance (SC)-biofeedback or waiting list group. EEG- and SC-biofeedback sessions were similar and participants were blinded to the type of feedback they received. Assessments pre-treatment, post-treatment, and after 6 months included parent ratings of symptoms of ASD, executive function tasks, and 19-channel EEG recordings. Fifty-four percent of the participants significantly reduced delta and/or theta power during EEG-biofeedback sessions and were identified as EEG-regulators. In these EEG-regulators, no statistically significant reductions of symptoms of ASD were observed, but they showed significant improvement in cognitive flexibility as compared to participants who managed to regulate SC. EEG-biofeedback seems to be an applicable tool to regulate EEG activity and has specific effects on cognitive flexibility, but it did not result in significant reductions in symptoms of ASD. An important finding was that no nonspecific effects of EEG-biofeedback were demonstrated.

  2. Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task

    PubMed Central

    Perronnet, Lorraine; Lécuyer, Anatole; Mano, Marsel; Bannier, Elise; Lotte, Fabien; Clerc, Maureen; Barillot, Christian

    2017-01-01

    Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D). Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback. PMID:28473762

  3. Evidence of Neurotoxicity of Ecstasy: Sustained Effects on Electroencephalographic Activity in Polydrug Users

    PubMed Central

    Adamaszek, Michael; Khaw, Alexander V.; Buck, Ulrike; Andresen, Burghard; Thomasius, Rainer

    2010-01-01

    Objective According to previous EEG reports of indicative disturbances in Alpha and Beta activities, a systematic search for distinct EEG abnormalities in a broader population of Ecstasy users may especially corroborate the presumed specific neurotoxicity of Ecstasy in humans. Methods 105 poly-drug consumers with former Ecstasy use and 41 persons with comparable drug history without Ecstasy use, and 11 drug naives were investigated for EEG features. Conventional EEG derivations of 19 electrodes according to the 10-20-system were conducted. Besides standard EEG bands, quantitative EEG analyses of 1-Hz-subdivided power ranges of Alpha, Theta and Beta bands have been considered. Results Ecstasy users with medium and high cumulative Ecstasy doses revealed an increase in Theta and lower Alpha activities, significant increases in Beta activities, and a reduction of background activity. Ecstasy users with low cumulative Ecstasy doses showed a significant Alpha activity at 11 Hz. Interestingly, the spectral power of low frequencies in medium and high Ecstasy users was already significantly increased in the early phase of EEG recording. Statistical analyses suggested the main effect of Ecstasy to EEG results. Conclusions Our data from a major sample of Ecstasy users support previous data revealing alterations of EEG frequency spectrum due rather to neurotoxic effects of Ecstasy on serotonergic systems in more detail. Accordingly, our data may be in line with the observation of attentional and memory impairments in Ecstasy users with moderate to high misuse. Despite the methodological problem of polydrug use also in our approach, our EEG results may be indicative of the neuropathophysiological background of the reported memory and attentional deficits in Ecstasy abusers. Overall, our findings may suggest the usefulness of EEG in diagnostic approaches in assessing neurotoxic sequela of this common drug abuse. PMID:21124854

  4. Mapping perception to action in piano practice: a longitudinal DC-EEG study

    PubMed Central

    Bangert, Marc; Altenmüller, Eckart O

    2003-01-01

    Background Performing music requires fast auditory and motor processing. Regarding professional musicians, recent brain imaging studies have demonstrated that auditory stimulation produces a co-activation of motor areas, whereas silent tapping of musical phrases evokes a co-activation in auditory regions. Whether this is obtained via a specific cerebral relay station is unclear. Furthermore, the time course of plasticity has not yet been addressed. Results Changes in cortical activation patterns (DC-EEG potentials) induced by short (20 minute) and long term (5 week) piano learning were investigated during auditory and motoric tasks. Two beginner groups were trained. The 'map' group was allowed to learn the standard piano key-to-pitch map. For the 'no-map' group, random assignment of keys to tones prevented such a map. Auditory-sensorimotor EEG co-activity occurred within only 20 minutes. The effect was enhanced after 5-week training, contributing elements of both perception and action to the mental representation of the instrument. The 'map' group demonstrated significant additional activity of right anterior regions. Conclusion We conclude that musical training triggers instant plasticity in the cortex, and that right-hemispheric anterior areas provide an audio-motor interface for the mental representation of the keyboard. PMID:14575529

  5. Content-specific coordination of listeners' to speakers' EEG during communication.

    PubMed

    Kuhlen, Anna K; Allefeld, Carsten; Haynes, John-Dylan

    2012-01-01

    Cognitive neuroscience has recently begun to extend its focus from the isolated individual mind to two or more individuals coordinating with each other. In this study we uncover a coordination of neural activity between the ongoing electroencephalogram (EEG) of two people-a person speaking and a person listening. The EEG of one set of twelve participants ("speakers") was recorded while they were narrating short stories. The EEG of another set of twelve participants ("listeners") was recorded while watching audiovisual recordings of these stories. Specifically, listeners watched the superimposed videos of two speakers simultaneously and were instructed to attend either to one or the other speaker. This allowed us to isolate neural coordination due to processing the communicated content from the effects of sensory input. We find several neural signatures of communication: First, the EEG is more similar among listeners attending to the same speaker than among listeners attending to different speakers, indicating that listeners' EEG reflects content-specific information. Secondly, listeners' EEG activity correlates with the attended speakers' EEG, peaking at a time delay of about 12.5 s. This correlation takes place not only between homologous, but also between non-homologous brain areas in speakers and listeners. A semantic analysis of the stories suggests that listeners coordinate with speakers at the level of complex semantic representations, so-called "situation models". With this study we link a coordination of neural activity between individuals directly to verbally communicated information.

  6. Content-specific coordination of listeners' to speakers' EEG during communication

    PubMed Central

    Kuhlen, Anna K.; Allefeld, Carsten; Haynes, John-Dylan

    2012-01-01

    Cognitive neuroscience has recently begun to extend its focus from the isolated individual mind to two or more individuals coordinating with each other. In this study we uncover a coordination of neural activity between the ongoing electroencephalogram (EEG) of two people—a person speaking and a person listening. The EEG of one set of twelve participants (“speakers”) was recorded while they were narrating short stories. The EEG of another set of twelve participants (“listeners”) was recorded while watching audiovisual recordings of these stories. Specifically, listeners watched the superimposed videos of two speakers simultaneously and were instructed to attend either to one or the other speaker. This allowed us to isolate neural coordination due to processing the communicated content from the effects of sensory input. We find several neural signatures of communication: First, the EEG is more similar among listeners attending to the same speaker than among listeners attending to different speakers, indicating that listeners' EEG reflects content-specific information. Secondly, listeners' EEG activity correlates with the attended speakers' EEG, peaking at a time delay of about 12.5 s. This correlation takes place not only between homologous, but also between non-homologous brain areas in speakers and listeners. A semantic analysis of the stories suggests that listeners coordinate with speakers at the level of complex semantic representations, so-called “situation models”. With this study we link a coordination of neural activity between individuals directly to verbally communicated information. PMID:23060770

  7. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies.

    PubMed

    Puce, Aina; Hämäläinen, Matti S

    2017-05-31

    Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.

  8. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies

    PubMed Central

    Puce, Aina; Hämäläinen, Matti S.

    2017-01-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed. PMID:28561761

  9. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation

    PubMed Central

    White, David J.; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID

  10. Evaluation of Dry Sensors for Neonatal EEG recordings

    PubMed Central

    Fridman, Igor; Cordeiro, Malaika; Rais-Bahrami, Khodayar; McDonald, Neil J.; Reese, James J.; Massaro, An N.; Conry, Joan A.; Chang, Taeun; Soussou, Walid; Tsuchida, Tammy N.

    2015-01-01

    Introduction Neonatal seizures are a common neurologic diagnosis in Neonatal Intensive Care Units (NICUs), occurring in approximately 14,000 newborns annually in the US. While the only reliable means of detecting and treating neonatal seizures is with an EEG recording, many neonates do not get an EEG or experience delays in getting them. Barriers to obtaining neonatal EEGs include: 1) lack of skilled EEG technologists to apply conventional wet electrodes to delicate neonatal skin, 2) poor signal quality due to improper skin preparation and artifact, 3) extensive time needed to apply electrodes. Dry sensors have the potential to overcome these obstacles but have not been previously evaluated on neonates. Methods Sequential and simultaneous recordings with wet and dry sensors were performed for one hour on 27 neonates from 35-42.5 weeks postmenstrual age. Recordings were analyzed for correlation and amplitude, and were reviewed by neurophysiologists. Performance of dry sensors on simulated vernix was examined. Results Analysis of dry and wet signals showed good time-domain correlation (reaching >0.8) given the non-superimposed sensor positions, and similar power spectral density curves. Neurophysiologist reviews showed no statistically significant difference between dry and wet data on most clinically-relevant EEG background and seizure patterns. There was no skin injury after 1 hr of dry sensor recordings. In contrast to wet electrodes, impedance and electrical artifact of dry sensors were largely unaffected by simulated vernix. Conclusions Dry sensors evaluated in this study have the potential to provide high-quality, timely EEG recordings on neonates with less risk of skin injury. PMID:26562208

  11. Evaluation of Dry Sensors for Neonatal EEG Recordings.

    PubMed

    Fridman, Igor; Cordeiro, Malaika; Rais-Bahrami, Khodayar; McDonald, Neil J; Reese, James J; Massaro, An N; Conry, Joan A; Chang, Taeun; Soussou, Walid; Tsuchida, Tammy N

    2016-04-01

    Neonatal seizures are a common neurologic diagnosis in neonatal intensive care units, occurring in approximately 14,000 newborns annually in the United States. Although the only reliable means of detecting and treating neonatal seizures is with an electroencephalography (EEG) recording, many neonates do not receive an EEG or experience delays in getting them. Barriers to obtaining neonatal EEGs include (1) lack of skilled EEG technologists to apply conventional wet electrodes to delicate neonatal skin, (2) poor signal quality because of improper skin preparation and artifact, and (3) extensive time needed to apply electrodes. Dry sensors have the potential to overcome these obstacles but have not previously been evaluated on neonates. Sequential and simultaneous recordings with wet and dry sensors were performed for 1 hour on 27 neonates from 35 to 42.5 weeks postmenstrual age. Recordings were analyzed for correlation and amplitude and were reviewed by neurophysiologists. Performance of dry sensors on simulated vernix was examined. Analysis of dry and wet signals showed good time-domain correlation (reaching >0.8), given the nonsuperimposed sensor positions and similar power spectral density curves. Neurophysiologist reviews showed no statistically significant difference between dry and wet data on most clinically relevant EEG background and seizure patterns. There was no skin injury after 1 hour of dry sensor recordings. In contrast to wet electrodes, impedance and electrical artifact of dry sensors were largely unaffected by simulated vernix. Dry sensors evaluated in this study have the potential to provide high-quality, timely EEG recordings on neonates with less risk of skin injury.

  12. Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis.

    PubMed

    Al-Qazzaz, Noor Kamal; Ali, Sawal Hamid Bin Mohd; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier

    2018-01-01

    Stroke survivors are more prone to developing cognitive impairment and dementia. Dementia detection is a challenge for supporting personalized healthcare. This study analyzes the electroencephalogram (EEG) background activity of 5 vascular dementia (VaD) patients, 15 stroke-related patients with mild cognitive impairment (MCI), and 15 control healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the discrimination of VaD, stroke-related MCI patients, and control subjects using fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR); second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. Nineteen channels were recorded and analyzed using the independent component analysis and wavelet analysis (ICA-WT) denoising technique. Using ANOVA, linear spectral power including relative powers (RP) and power ratio were calculated to test whether the EEG dominant frequencies were slowed down in VaD and stroke-related MCI patients. Non-linear features including permutation entropy (PerEn) and fractal dimension (FD) were used to test the degree of irregularity and complexity, which was significantly lower in patients with VaD and stroke-related MCI than that in control subjects (ANOVA; p ˂ 0.05). This study is the first to use fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR) dimensionality reduction technique with EEG background activity of dementia patients. The impairment of post-stroke patients was detected using support vector machine (SVM) and k-nearest neighbors (kNN) classifiers. A comparative study has been performed to check the effectiveness of using FNPAQR dimensionality reduction technique with the SVM and kNN classifiers. FNPAQR with SVM and kNN obtained 91.48 and 89.63% accuracy, respectively, whereas without using the FNPAQR exhibited 70 and 67.78% accuracy for SVM and k

  13. Correlates of a single cortical action potential in the epidural EEG

    PubMed Central

    Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel

    2015-01-01

    To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430

  14. Assessing the depth of hypnosis of xenon anaesthesia with the EEG.

    PubMed

    Stuttmann, Ralph; Schultz, Arthur; Kneif, Thomas; Krauss, Terence; Schultz, Barbara

    2010-04-01

    Xenon was approved as an inhaled anaesthetic in Germany in 2005 and in other countries of the European Union in 2007. Owing to its low blood/gas partition coefficient, xenons effects on the central nervous system show a fast onset and offset and, even after long xenon anaesthetics, the wake-up times are very short. The aim of this study was to examine which electroencephalogram (EEG) stages are reached during xenon application and whether these stages can be identified by an automatic EEG classification. Therefore, EEG recordings were performed during xenon anaesthetics (EEG monitor: Narcotrend®). A total of 300 EEG epochs were assessed visually with regard to the EEG stages. These epochs were also classified automatically by the EEG monitor Narcotrend® using multivariate algorithms. There was a high correlation between visual and automatic classification (Spearman's rank correlation coefficient r=0.957, prediction probability Pk=0.949). Furthermore, it was observed that very deep stages of hypnosis were reached which are characterised by EEG activity in the low frequency range (delta waves). The burst suppression pattern was not seen. In deep hypnosis, in contrast to the xenon EEG, the propofol EEG was characterised by a marked superimposed higher frequency activity. To ensure an optimised dosage for the single patient, anaesthetic machines for xenon should be combined with EEG monitoring. To date, only a few anaesthetic machines for xenon are available. Because of the high price of xenon, new and further developments of machines focus on optimizing xenon consumption.

  15. Reproducibility of EEG-fMRI results in a patient with fixation-off sensitivity.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Bongiovanni, Luigi Giuseppe; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2014-07-01

    Blood oxygenation level-dependent (BOLD) activation associated with interictal epileptiform discharges in a patient with fixation-off sensitivity (FOS) was studied using a combined electroencephalography-functional magnetic resonance imaging (EEG-fMRI) technique. An automatic approach for combined EEG-fMRI analysis and a subject-specific hemodynamic response function was used to improve general linear model analysis of the fMRI data. The EEG showed the typical features of FOS, with continuous epileptiform discharges during elimination of central vision by eye opening and closing and fixation; modification of this pattern was clearly visible and recognizable. During all 3 recording sessions EEG-fMRI activations indicated a BOLD signal decrease related to epileptiform activity in the parietal areas. This study can further our understanding of this EEG phenomenon and can provide some insight into the reliability of the EEG-fMRI technique in localizing the irritative zone.

  16. Statistical features of hypnagogic EEG measured by a new scoring system.

    PubMed

    Tanaka, H; Hayashi, M; Hori, T

    1996-11-01

    The purpose of this study was to examine the durations of individual occurrences of each of nine hypnagogic electroencephalographic (EEG) stages and the interchange relationship among these stages. Most of the alpha patterns (stages 1, 2, and 3), ripples (stage 5), and spindles (stage 9) tended to last > 2 minutes. On the other hand, histograms of the durations of time in EEG flattening (stage 4) and vertex sharp wave (stages 6, 7, and 8) patterns had peaks that lasted < 30 seconds. Analysis of the sequences of EEG stage changes demonstrated that shifts to adjacent stages were most common for all stages. A smooth change in EEG stage occurred in the downward or upward direction in the hypnagogic state. This was especially true for the first five stages. EEG stages with vertex sharp waves (stages 6, 7, and 8), however, showed less-smooth changes, with approximately 20% of all changes involving a jump of more than one stage. These results show that the basic EEG activities in the sleep onset period are the alpha, theta, and sleep spindles activities, whereas the activities of vertex sharp waves seem to have a secondary or enhancing role, instead of independent characteristics.

  17. Ballistocardiogram Artifact Removal with a Reference Layer and Standard EEG Cap

    PubMed Central

    Luo, Qingfei; Huang, Xiaoshan; Glover, Gary H.

    2014-01-01

    Background In simultaneous EEG-fMRI, the EEG recordings are severely contaminated by ballistocardiogram (BCG) artifacts, which are caused by cardiac pulsations. To reconstruct and remove the BCG artifacts, one promising method is to measure the artifacts in the absence of EEG signal by placing a group of electrodes (BCG electrodes) on a conductive layer (reference layer) insulated from the scalp. However, current BCG reference layer (BRL) methods either use a customized EEG cap composed of electrode pairs, or need to construct the custom reference layer through additional model-building experiments for each EEG-fMRI experiment. These requirements have limited the versatility and efficiency of BRL. The aim of this study is to propose a more practical and efficient BRL method and compare its performance with the most popular BCG removal method, the optimal basis sets (OBS) algorithm. New Method By designing the reference layer as a permanent and reusable cap, the new BRL method is able to be used with a standard EEG cap, and no extra experiments and preparations are needed to use the BRL in an EEG-fMRI experiment. Results The BRL method effectively removed the BCG artifacts from both oscillatory and evoked potential scalp recordings and recovered the EEG signal. Comparison with Existing Method Compared to the OBS, this new BRL method improved the contrast-to-noise ratios of the alpha-wave, visual, and auditory evoked potential signals by 101%, 76%, and 75% respectively, employing 160 BCG electrodes. Using only 20 BCG electrodes, the BRL improved the EEG signal by 74%/26%/41% respectively. Conclusion The proposed method can substantially improve the EEG signal quality compared with traditional methods. PMID:24960423

  18. Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.

    PubMed

    Ding, Lei; Yuan, Han

    2013-04-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitivities to differently configured brain activations, making them complimentary in providing independent information for better detection and inverse reconstruction of brain sources. In the present study, we developed an integrative approach, which integrates a novel sparse electromagnetic source imaging method, i.e., variation-based cortical current density (VB-SCCD), together with the combined use of EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of multimodal data, we proposed to normalize EEG and MEG signals according to their individual noise levels to create unit-free measures. Our Monte Carlo simulations demonstrated that this integrative approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously activated and randomly located sources). Results from experimental data showed that complex brain activations evoked in a face recognition task were successfully reconstructed using the integrative approach, which were consistent with other research findings and validated by independent data from functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain activations from both simulations and experimental data provided precise source localizations as well as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone, the performance of cortical source reconstructions using combined EEG and MEG was significantly improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG and MEG data could accurately probe spatiotemporal processes of complex human brain activations. This is promising for noninvasively studying large-scale brain networks of high clinical and scientific significance. Copyright © 2011 Wiley Periodicals, Inc.

  19. Research on the relation of EEG signal chaos characteristics with high-level intelligence activity of human brain

    PubMed Central

    2010-01-01

    Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract. PMID:20420714

  20. Research on the relation of EEG signal chaos characteristics with high-level intelligence activity of human brain.

    PubMed

    Wang, Xingyuan; Meng, Juan; Tan, Guilin; Zou, Lixian

    2010-04-27

    Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.

  1. Wireless system for long-term EEG monitoring of absence epilepsy

    NASA Astrophysics Data System (ADS)

    Whitchurch, Ashwin K.; Ashok, B. H.; Kumaar, R. V.; Saurkesi, K.; Varadan, Vijay K.

    2002-11-01

    Absence epilepsy is a form of epilepsy common mostly in children. The most common manifestations of Absence epilepsy are staring and transient loss of responsiveness. Also, subtle motor activities may occur. Due to the subtle nature of these symptoms, episodes of absence epilepsy may often go unrecognized for long periods of time or be mistakenly attributed to attention deficit disorder or daydreaming. Spells of absence epilepsy may last about 10 seconds and occur hundreds of times each day. Patients have no recollections of the events that occurred during those seizures and will resume normal activity without any postictal symptoms. The EEG during such episodes of Absence epilepsy shows intermittent activity of 3 Hz generalized spike and wave complexes. As EEG is the only way of detecting such symptoms, it is required to monitor the EEG of the patient for a long time and thus remain only in bed. So, effectively the EEG is being monitored only when the patient is stationary. The wireless monitoring sys tem described in this paper aims at eliminating this constraint and enables the physicial to monitor the EEG when the patient resumes his normal activities. This approach could even help the doctor identify possible triggers of absence epilepsy.

  2. Long-Term Clinical and Electroencephalography (EEG) Consequences of Idiopathic Partial Epilepsies.

    PubMed

    Dörtcan, Nimet; Tekin Guveli, Betul; Dervent, Aysin

    2016-05-03

    BACKGROUND Idiopathic partial epilepsies of childhood (IPE) affect a considerable proportion of children. Three main electroclinical syndromes of IPE are the Benign Childhood Epilepsy with Centro-temporal Spikes (BECTS), Panayiotopoulos Syndrome (PS), and Childhood Epilepsy with Occipital Paroxysms (CEOP). In this study we investigated the long-term prognosis of patients with IPE and discussed the semiological and electroencephalography (EEG) data in terms of syndromic characteristics. MATERIAL AND METHODS This study included a group of consecutive patients with IPE who had been followed since 1990. Demographic and clinical variables were investigated. Patients were divided into 3 groups - A: Cases suitable for a single IPE (BECTS, PS and CEOP); B: cases with intermediate characteristics within IPEs; and C: cases with both IPE and IGE characteristics. Long-term data regarding the individual seizure types and EEG findings were re-evaluated. RESULTS A total of 61 patients were included in the study. Mean follow-up duration was 7.8 ± 4.50 years. The mean age at onset of seizures was 7.7 years. There were 40 patients in group A 40, 14 in group B, and 7 in group C. Seizure and EEG characteristics were also explored independently from the syndromic approach. Incidence of autonomic seizures is considerably high at 2-5 years and incidence of oromotor seizures is high at age 9-11 years. The EEG is most abnormal at 6-8 years. The vast majority (86%) of epileptic activity (EA) with parietooccipital is present at 2-5 years, whereas EA with fronto-temporal or multiple sites become more abundant between ages 6 and 11. CONCLUSIONS Results of the present study provide support for the age-related characteristics of the seizures and EEGs in IPE syndromes. Acknowledgement of those phenomena may improve the management of IPEs and give a better estimate of the future consequences.

  3. Brain Functional Connectivity in MS: An EEG-NIRS Study

    DTIC Science & Technology

    2015-10-01

    electrical (EEG) and blood volume and blood oxygen-based (NIRS and fMRI ) signals, and to use the results to help optimize blood oxygen level...dependent (BOLD) fMRI analyses of brain activity. Participants will be patients with MS (n=25) and healthy demographically matched controls (n=25) who will...undergo standardized evaluations and imaging using combined EEG-NIRS- fMRI . EEG-NIRS data will be used to construct maps of neurovascular coupling

  4. EEG frequency tagging using ultra-slow periodic heat stimulation of the skin reveals cortical activity specifically related to C fiber thermonociceptors

    PubMed Central

    Colon, Elisabeth; Liberati, Giulia; Mouraux, André

    2017-01-01

    The recording of event-related brain potentials triggered by a transient heat stimulus is used extensively to study nociception and diagnose lesions or dysfunctions of the nociceptive system in humans. However, these responses are related exclusively to the activation of a specific subclass of nociceptive afferents: quickly-adapting thermonociceptors. In fact, except if the activation of Aδ fibers is avoided or if A fibers are blocked, these responses specifically reflect activity triggered by the activation of Type 2 quickly-adapting A fiber mechano-heat nociceptors (AMH-2). Here, we propose a novel method to isolate, in the human electroencephalogram (EEG), cortical activity related to the sustained periodic activation of heat-sensitive thermonociceptors, using very slow (0.2 Hz) and long-lasting (75 s) sinusoidal heat stimulation of the skin between baseline and 50°C. In a first experiment, we show that when such long-lasting thermal stimuli are applied to the hand dorsum of healthy volunteers, the slow rises and decreases of skin temperature elicit a consistent periodic EEG response at 0.2 Hz and its harmonics, as well as a periodic modulation of the magnitude of theta, alpha and beta band EEG oscillations. In a second experiment, we demonstrate using an A fiber block that these EEG responses are predominantly conveyed by unmyelinated C fiber nociceptors. The proposed approach constitutes a novel mean to study C fiber function in humans, and to explore the cortical processing of tonic heat pain in physiological and pathological conditions. PMID:27871921

  5. EEG and Coma.

    PubMed

    Ardeshna, Nikesh I

    2016-03-01

    Coma is defined as a state of extreme unresponsiveness, in which a person exhibits no voluntary movement or behavior even to painful stimuli. The utilization of EEG for patients in coma has increased dramatically over the last few years. In fact, many institutions have set protocols for continuous EEG (cEEG) monitoring for patients in coma due to potential causes such as subarachnoid hemorrhage or cardiac arrest. Consequently, EEG plays an important role in diagnosis, managenent, and in some cases even prognosis of coma patients.

  6. Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.

    PubMed

    Feige, Bernd; Spiegelhalder, Kai; Kiemen, Andrea; Bosch, Oliver G; Tebartz van Elst, Ludger; Hennig, Jürgen; Seifritz, Erich; Riemann, Dieter

    2017-01-15

    Functional activation as evidenced by blood oxygen level-dependent (BOLD) functional MRI changes or event-related EEG is known to closely follow patterns of stimulation or self-paced action. Any lags are compatible with axonal conduction velocities and neural integration times. The important analysis of resting state networks is generally based on the assumption that these principles also hold for spontaneous fluctuations in brain activity. Previous observations using simultaneous EEG and fMRI indicate that slower processes, with delays in the seconds range, determine at least part of the relationship between spontaneous EEG and fMRI. To assess this relationship systematically, we used deconvolution analysis of EEG-fMRI during the resting state, assessing the relationship between EEG frequency bands and fMRI BOLD across the whole brain while allowing for time lags of up to 10.5s. Cluster analysis, identifying similar BOLD time courses in relation to EEG band power peaks, showed a clear segregation of functional subsystems of the brain. Our analysis shows that fMRI BOLD increases commonly precede EEG power increases by seconds. Most zero-lag correlations, on the other hand, were negative. This indicates two main distinct neuromodulatory mechanisms: an "idling" mechanism of simultaneous electric and metabolic network anticorrelation and a "regulatory" mechanism in which metabolic network activity precedes increased EEG power by some seconds. This has to be taken into consideration in further studies which address the causal and functional relationship of metabolic and electric brain activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Quantitative EEG patterns of differential in-flight workload

    NASA Technical Reports Server (NTRS)

    Sterman, M. B.; Mann, C. A.; Kaiser, D. A.

    1993-01-01

    Four test pilots were instrumented for in-flight EEG recordings using a custom portable recording system. Each flew six, two minute tracking tasks in the Calspan NT-33 experimental trainer at Edwards AFB. With the canopy blacked out, pilots used a HUD display to chase a simulated aircraft through a random flight course. Three configurations of flight controls altered the flight characteristics to achieve low, moderate, and high workload, as determined by normative Cooper-Harper ratings. The test protocol was administered by a command pilot in the back seat. Corresponding EEG and tracking data were compared off-line. Tracking performance was measured as deviation from the target aircraft and combined with control difficulty to achieve an estimate of 'cognitive workload'. Trended patterns of parietal EEG activity at 8-12 Hz were sorted according to this classification. In all cases, high workload produced a significantly greater suppression of 8-12 Hz activity than low workload. Further, a clear differentiation of EEG trend patterns was obtained in 80 percent of the cases. High workload produced a sustained suppression of 8-12 Hz activity, while moderate workload resulted in an initial suppression followed by a gradual increment. Low workload was associated with a modulated pattern lacking any periods of marked or sustained suppression. These findings suggest that quantitative analysis of appropriate EEG measures may provide an objective and reliable in-flight index of cognitive effort that could facilitate workload assessment.

  8. Comparison of a single-channel EEG sleep study to polysomnography

    PubMed Central

    Lucey, Brendan P.; McLeland, Jennifer S.; Toedebusch, Cristina D.; Boyd, Jill; Morris, John C.; Landsness, Eric C.; Yamada, Kelvin; Holtzman, David M.

    2016-01-01

    Summary An accurate home sleep study to assess electroencephalography (EEG)-based sleep stages and EEG power would be advantageous for both clinical and research purposes, such as for longitudinal studies measuring changes in sleep stages over time. The purpose of this study was to compare sleep scoring of a single-channel EEG recorded simultaneously on the forehead against attended polysomnography. Participants were recruited from both a clinical sleep center and a longitudinal research study investigating cognitively-normal aging and Alzheimer's disease. Analysis for overall epoch-by-epoch agreement found strong and substantial agreement between the single-channel EEG compared to polysomnography (kappa=0.67). Slow wave activity in the frontal regions was also similar when comparing the single-channel EEG device to polysomnography. As expected, stage N1 showed poor agreement (sensitivity 0.2) due to lack of occipital electrodes. Other sleep parameters such as sleep latency and REM onset latency had decreased agreement. Participants with disrupted sleep consolidation, such as from obstructive sleep apnea, also had poor agreement. We suspect that disagreement in sleep parameters between the single-channel EEG and polysomnography is partially due to altered waveform morphology and/or poorer signal quality in the single-channel derivation. Our results show that single-channel EEG provides comparable results to polysomnography in assessing REM, combined stages N2 and N3 sleep, and several other parameters including frontal slow wave activity. The data establish that single-channel EEG can be a useful research tool. PMID:27252090

  9. Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.

    PubMed

    Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L

    2017-10-01

    The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic

  10. Short-Term EEG Spectral Pattern as a Single Event in EEG Phenomenology

    PubMed Central

    Fingelkurts, Al. A; Fingelkurts, An. A

    2010-01-01

    Spectral decomposition, to this day, still remains the main analytical paradigm for the analysis of EEG oscillations. However, conventional spectral analysis assesses the mean characteristics of the EEG power spectra averaged out over extended periods of time and/or broad frequency bands, thus resulting in a “static” picture which cannot reflect adequately the underlying neurodynamic. A relatively new promising area in the study of EEG is based on reducing the signal to elementary short-term spectra of various types in accordance with the number of types of EEG stationary segments instead of using averaged power spectrum for the whole EEG. It is suggested that the various perceptual and cognitive operations associated with a mental or behavioural condition constitute a single distinguishable neurophysiological state with a distinct and reliable spectral pattern. In this case, one type of short-term spectral pattern may be considered as a single event in EEG phenomenology. To support this assumption the following issues are considered in detail: (a) the relations between local EEG short-term spectral pattern of particular type and the actual state of the neurons in underlying network and a volume conduction; (b) relationship between morphology of EEG short-term spectral pattern and the state of the underlying neurodynamical system i.e. neuronal assembly; (c) relation of different spectral pattern components to a distinct physiological mechanism; (d) relation of different spectral pattern components to different functional significance; (e) developmental changes of spectral pattern components; (f) heredity of the variance in the individual spectral pattern and its components; (g) intra-individual stability of the sets of EEG short-term spectral patterns and their percent ratio; (h) discrete dynamics of EEG short-term spectral patterns. Functional relevance (consistency) of EEG short-term spectral patterns in accordance with the changes of brain functional state

  11. Bluetooth Communication Interface for EEG Signal Recording in Hyperbaric Chambers.

    PubMed

    Pastena, Lucio; Formaggio, Emanuela; Faralli, Fabio; Melucci, Massimo; Rossi, Marco; Gagliardi, Riccardo; Ricciardi, Lucio; Storti, Silvia F

    2015-07-01

    Recording biological signals inside a hyperbaric chamber poses technical challenges (the steel walls enclosing it greatly attenuate or completely block the signals as in a Faraday cage), practical (lengthy cables creating eddy currents), and safety (sparks hazard from power supply to the electronic apparatus inside the chamber) which can be overcome with new wireless technologies. In this technical report we present the design and implementation of a Bluetooth system for electroencephalographic (EEG) recording inside a hyperbaric chamber and describe the feasibility of EEG signal transmission outside the chamber. Differently from older systems, this technology allows the online recording of amplified signals, without interference from eddy currents. In an application of this technology, we measured EEG activity in professional divers under three experimental conditions in a hyperbaric chamber to determine how oxygen, assumed at a constant hyperbaric pressure of 2.8 ATA , affects the bioelectrical activity. The EEG spectral power estimated by fast Fourier transform and the cortical sources of the EEG rhythms estimated by low-resolution brain electromagnetic analysis were analyzed in three different EEG acquisitions: breathing air at sea level; breathing oxygen at a simulated depth of 18 msw, and breathing air at sea level after decompression.

  12. Functional neurotoxicity evaluation of noribogaine using video-EEG in cynomolgus monkeys.

    PubMed

    Authier, Simon; Accardi, Michael V; Paquette, Dominique; Pouliot, Mylène; Arezzo, Joseph; Stubbs, R John; Gerson, Ronald J; Friedhoff, Lawrence T; Weis, Holger

    2016-01-01

    Continuous video-electroencephalographic (EEG) monitoring remains the gold standard for seizure liability assessments in preclinical drug safety assessments. EEG monitored by telemetry was used to assess the behavioral and EEG effects of noribogaine hydrochloride (noribogaine) in cynomolgus monkeys. Noribogaine is an iboga alkaloid being studied for the treatment of opioid dependence. Six cynomolgus monkeys (3 per gender) were instrumented with EEG telemetry transmitters. Noribogaine was administered to each monkey at both doses (i.e., 160 and 320mg/kg, PO) with an interval between dosing of at least 6days, and the resulting behavioral and EEG effects were evaluated. IV pentylenetetrazol (PTZ), served as a positive control for induced seizures. The administration of noribogaine at either of the doses evaluated was not associated with EEG evidence of seizure or with EEG signals known to be premonitory signs of increased seizure risk (e.g., sharp waves, unusual synchrony, shifts to high-frequency patterns). Noribogaine was associated with a mild reduction in activity levels, increased scratching, licking and chewing, and some degree of poor coordination and related clinical signs. A single monkey exhibited brief myoclonic movements that increased in frequency at the high dose, but which did not appear to generalize, cluster or to be linked with EEG abnormalities. Noribogaine was also associated with emesis and partial anorexia. In contrast, PTZ was associated with substantial pre-ictal EEG patterns including large amplitude, repetitive sharp waves leading to generalized seizures and to typical post-ictal EEG frequency attenuation. EEG patterns were within normal limits following administration of noribogaine at doses up to 320mg/kg with concurrent clinical signs that correlated with plasma exposures and resolved by the end of the monitoring period. PTZ was invariably associated with EEG paroxysmal activity leading to ictal EEG. In the current study, a noribogaine

  13. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI.

    PubMed

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2017-04-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG

  14. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.

    2017-04-01

    Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We

  15. Somatosensory-evoked spikes on electroencephalography (EEG): longitudinal clinical and EEG aspects in 313 children.

    PubMed

    Fonseca, Lineu Corrêa; Tedrus, Gloria M A S

    2012-01-01

    Somatosensory-evoked spikes (ESp) are high-voltage potentials registered on the EEG, which accompany each of the percussions on the feet or hands. The objective of this research was to study the longitudinal clinical and EEG aspects of children with ESp. A total of 313 children, 53.7% male, showing ESp on the EEG and with an average initial age of 6.82 (range from 2 to 14 years) were followed for a mean period of 35.7 months. In the initial evaluation, 118 (37.7%) had a history of nonfebrile epileptic seizures (ES). Epileptiform activity (EA) was observed on the EEG in 61% and showed a significantly greater occurrence in children with ES than in those without (P = .000). Of the 118 showing seizures from the start, 53 (44.9%) continued to have seizures; of the 195 without seizures at the start, only 13 (6.67%) developed them. Thus, only 66 (21.1%) children showed ES during the follow-up. ESp disappeared in 237 (75.7%) cases and EA in 221 (70.6%). In the children with ES, it was found that the presence of EA on the first EEG did not indicate continuation of the ES throughout the remaining period, while the 13 children who presented their first ES in a later period showed a greater occurrence of EA on the initial EEG than those who did not develop ES (P = .001). Evidence of brain injury was observed in 43 (13.7%) children and was associated with a greater continuity of the ES during the study (P = .018). ESp, EA, and ES tend to disappear, suggesting an age-dependent phenomenon. The finding of ESp, particularly in the absence of any evidence of brain injury, indicates a low association with ES and benign outcome.

  16. Ethanol modulates cortical activity: direct evidence with combined TMS and EEG.

    PubMed

    Kähkönen, S; Kesäniemi, M; Nikouline, V V; Karhu, J; Ollikainen, M; Holi, M; Ilmoniemi, R J

    2001-08-01

    The motor cortex of 10 healthy subjects was stimulated by transcranial magnetic stimulation (TMS) before and after ethanol challenge (0.8 g/kg resulting in blood concentration of 0.77 +/- 0.14 ml/liter). The electrical brain activity resulting from the brief electromagnetic pulse was recorded with high-resolution electroencephalography (EEG) and located using inversion algorithms. Focal magnetic pulses to the left motor cortex were delivered with a figure-of-eight coil at the random interstimulus interval of 1.5-2.5 s. The stimulation intensity was adjusted to the motor threshold of abductor digiti minimi. Two conditions before and after ethanol ingestion (30 min) were applied: (1) real TMS, with the coil pressed against the scalp; and (2) control condition, with the coil separated from the scalp by a 2-cm-thick piece of plastic. A separate EMG control recording of one subject during TMS was made with two bipolar platinum needle electrodes inserted to the left temporal muscle. In each condition, 120 pulses were delivered. The EEG was recorded from 60 scalp electrodes. A peak in the EEG signals was observed at 43 ms after the TMS pulse in the real-TMS condition but not in the control condition or in the control scalp EMG. Potential maps before and after ethanol ingestion were significantly different from each other (P = 0.01), but no differences were found in the control condition. Ethanol changed the TMS-evoked potentials over right frontal and left parietal areas, the underlying effect appearing to be largest in the right prefrontal area. Our findings suggest that ethanol may have changed the functional connectivity between prefrontal and motor cortices. This new noninvasive method provides direct evidence about the modulation of cortical connectivity after ethanol challenge. Copyright 2001 Academic Press.

  17. EEG power during waking and NREM sleep in primary insomnia.

    PubMed

    Wu, You Meme; Pietrone, Regina; Cashmere, J David; Begley, Amy; Miewald, Jean M; Germain, Anne; Buysse, Daniel J

    2013-10-15

    Pathophysiological models of insomnia invoke the concept of 24-hour hyperarousal, which could lead to symptoms and physiological findings during waking and sleep. We hypothesized that this arousal could be seen in the waking electroencephalogram (EEG) of individuals with primary insomnia (PI), and that waking EEG power would correlate with non-REM (NREM) EEG. Subjects included 50 PI and 32 good sleeper controls (GSC). Five minutes of eyes closed waking EEG were collected at subjects' usual bedtimes, followed by polysomnography (PSG) at habitual sleep times. An automated algorithm and visual editing were used to remove artifacts from waking and sleep EEGs, followed by power spectral analysis to estimate power from 0.5-32 Hz. We did not find significant differences in waking or NREM EEG spectral power of PI and GSC. Significant correlations between waking and NREM sleep power were observed across all frequency bands in the PI group and in most frequency bands in the GSC group. The absence of significant differences between groups in waking or NREM EEG power suggests that our sample was not characterized by a high degree of cortical arousal. The consistent correlations between waking and NREM EEG power suggest that, in samples with elevated NREM EEG beta activity, waking EEG power may show a similar pattern.

  18. Quantitative topographic differentiation of the neonatal EEG.

    PubMed

    Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil

    2006-09-01

    To test the discriminatory topographic potential of a new method of the automatic EEG analysis in neonates. A quantitative description of the neonatal EEG can contribute to the objective assessment of the functional state of the brain, and may improve the precision of diagnosing cerebral dysfunctions manifested by 'disorganization', 'dysrhythmia' or 'dysmaturity'. 21 healthy, full-term newborns were examined polygraphically during sleep (EEG-8 referential derivations, respiration, ECG, EOG, EMG). From each EEG record, two 5-min samples (one from the middle of quiet sleep, the other from the middle of active sleep) were subject to subsequent automatic analysis and were described by 13 variables: spectral features and features describing shape and variability of the signal. The data from individual infants were averaged and the number of variables was reduced by factor analysis. All factors identified by factor analysis were statistically significantly influenced by the location of derivation. A large number of statistically significant differences were also established when comparing the effects of individual derivations on each of the 13 measured variables. Both spectral features and features describing shape and variability of the signal are largely accountable for the topographic differentiation of the neonatal EEG. The presented method of the automatic EEG analysis is capable to assess the topographic characteristics of the neonatal EEG, and it is adequately sensitive and describes the neonatal electroencephalogram with sufficient precision. The discriminatory capability of the used method represents a promise for their application in the clinical practice.

  19. EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures.

    PubMed

    Wang, Lei; Long, Xi; Arends, Johan B A M; Aarts, Ronald M

    2017-10-01

    The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed. A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG. A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD t /h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD t /h of 1.4s). The proposed VGS-based features can help improve seizure detection for ID patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Interhemispheric Asymmetries and Theta Activity in the Rostral Anterior Cingulate Cortex as EEG Signature of HIV-Related Depression: Gender Matters.

    PubMed

    Kremer, Heidemarie; Lutz, Franz P C; McIntosh, Roger C; Dévieux, Jessy G; Ironson, Gail

    2016-04-01

    Resting EEGs of 40 people living with HIV (PLWH) on long-term antiretroviral treatment were examined for z-scored deviations from a healthy control (normative database) to examine the main and interaction effects of depression and gender. Regions of interest were frontal (alpha) and central (all bands) for interhemispheric asymmetries in quantitative EEGs and theta in the rostral anterior cingulate cortex (rACC) in low-resolution electromagnetic tomography (LORETA). Z-scored normed deviations of depressed PLWH, compared with nondepressed, showed right-dominant interhemispheric asymmetries in all regions. However, after adjusting for multiple testing, significance remained only central for theta, alpha, and beta. Reversed (left-dominant) frontal alpha asymmetry is a potential EEG marker of depression in the HIV negative population that was not reversed in depressive PLWH; however, corresponding with extant literature, gender had an effect on the size of frontal alpha asymmetry. The LORETA analysis revealed a trending interactional effect of depression and gender on theta activity in the rACC in Brodmann area 32. We found that compared to men, women had greater right-dominant frontal alpha-asymmetry and elevated theta activity in voxels of the rACC, which may indicate less likelihood of depression and a higher likelihood of response to antidepressants. In conclusion, subtle EEG deviations, such as right-dominant central theta, alpha, and beta asymmetries and theta activity in the rACC may mark HIV-related depressive symptoms and may predict the likelihood of response to antidepressants but gender effects need to be taken into account. Although this study introduced the use of LORETA to examine the neurophysiological correlates of negative affect in PLWH, further research is needed to assess the utility of this tool in diagnostics and treatment monitoring of depression in PLWH. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  1. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children

    PubMed Central

    Preece, Kathryn A.; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve

    2015-01-01

    Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under “passive” and “active” listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of ‘high’ (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children’s late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component. PMID:25922794

  2. The effects of increased fluid viscosity on stationary characteristics of EEG signal in healthy adults

    PubMed Central

    Jestrović, I.; Coyle, J. L.

    2014-01-01

    Electroencephalography (EEG) systems can enable us to study cerebral activation patterns during performance of swallowing tasks and possibly infer about the nature of abnormal neurological conditions causing swallowing difficulties. While it is well known that EEG signals are non-stationary, there are still open questions regarding the stationarity of EEG during swallowing activities and how the EEG stationarity is affected by different viscosities of the fluids that are swallowed by subjects during these swallowing activities. In the present study, we investigated the EEG signal collected during swallowing tasks by collecting data from 55 healthy adults (ages 18–65). Each task involved the deliberate swallowing of boluses of fluids of different viscosities. Using time-frequency tests with surrogates, we showed that the EEG during swallowing tasks could be considered non-stationary. Furthermore, the statistical tests and linear regression showed that the parameters of fluid viscosity, sex, and different brain regions significantly influenced the index of non-stationarity values. Therefore, these parameters should be considered in future investigations which use EEG during swallowing activities. PMID:25245522

  3. Short and long-term effects of sham-controlled prefrontal EEG-neurofeedback training in healthy subjects.

    PubMed

    Engelbregt, H J; Keeser, D; van Eijk, L; Suiker, E M; Eichhorn, D; Karch, S; Deijen, J B; Pogarell, O

    2016-04-01

    In this study we evaluated long-term effects of frontal beta EEG-neurofeedback training (E-NFT) on healthy subjects. We hypothesized that E-NFT can change frontal beta activity in the long-term and that changes in frontal beta EEG activity are accompanied by altered cognitive performance. 25 healthy subjects were included and randomly assigned to active or sham E-NFT. On average the subjects underwent 15 E-NFT training sessions with a training duration of 45 min. Resting-state EEG was recorded prior to E-NFT training (t1) and in a 3-year follow-up (t3). Compared to sham E-NFT, which was used for the control group, real E-NFT increased beta activity in a predictable way. This increase was maintained over a period of three years post training. However, E-NFT did not result in significantly improved cognitive performance. Based on our results, we conclude that EEG-NFT can selectively modify EEG beta activity both in short and long-term. This is a sham controlled EEG neurofeedback study demonstrating long-term effects in resting state EEG. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity.

    PubMed

    Franken, P; Lopez-Molina, L; Marcacci, L; Schibler, U; Tafti, M

    2000-01-15

    Albumin D-binding protein (DBP) is a PAR leucine zipper transcription factor that is expressed according to a robust circadian rhythm in the suprachiasmatic nuclei, harboring the circadian master clock, and in most peripheral tissues. Mice lacking DBP display a shorter circadian period in locomotor activity and are less active. Thus, although DBP is not essential for circadian rhythm generation, it does modulate important clock outputs. We studied the role of DBP in the circadian and homeostatic aspects of sleep regulation by comparing DBP deficient mice (dbp-/-) with their isogenic controls (dbp+/+) under light-dark (LD) and constant-dark (DD) baseline conditions, as well as after sleep loss. Whereas total sleep duration was similar in both genotypes, the amplitude of the circadian modulation of sleep time, as well as the consolidation of sleep episodes, was reduced in dbp-/- under both LD and DD conditions. Quantitative EEG analysis demonstrated a marked reduction in the amplitude of the sleep-wake-dependent changes in slow-wave sleep delta power and an increase in hippocampal theta peak frequency in dbp-/- mice. The sleep deprivation-induced compensatory rebound of EEG delta power was similar in both genotypes. In contrast, the rebound in paradoxical sleep was significant in dbp+/+ mice only. It is concluded that the transcriptional regulatory protein DBP modulates circadian and homeostatic aspects of sleep regulation.

  5. No effects of a single 3G UMTS mobile phone exposure on spontaneous EEG activity, ERP correlates, and automatic deviance detection.

    PubMed

    Trunk, Attila; Stefanics, Gábor; Zentai, Norbert; Kovács-Bálint, Zsófia; Thuróczy, György; Hernádi, István

    2013-01-01

    Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone-like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event-related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double-blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency-deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN. Copyright © 2012 Wiley Periodicals, Inc.

  6. Spatiotemporal source analysis in scalp EEG vs. intracerebral EEG and SPECT: a case study in a 2-year-old child.

    PubMed

    Aarabi, A; Grebe, R; Berquin, P; Bourel Ponchel, E; Jalin, C; Fohlen, M; Bulteau, C; Delalande, O; Gondry, C; Héberlé, C; Moullart, V; Wallois, F

    2012-06-01

    This case study aims to demonstrate that spatiotemporal spike discrimination and source analysis are effective to monitor the development of sources of epileptic activity in time and space. Therefore, they can provide clinically useful information allowing a better understanding of the pathophysiology of individual seizures with time- and space-resolved characteristics of successive epileptic states, including interictal, preictal, postictal, and ictal states. High spatial resolution scalp EEGs (HR-EEG) were acquired from a 2-year-old girl with refractory central epilepsy and single-focus seizures as confirmed by intracerebral EEG recordings and ictal single-photon emission computed tomography (SPECT). Evaluation of HR-EEG consists of the following three global steps: (1) creation of the initial head model, (2) automatic spike and seizure detection, and finally (3) source localization. During the source localization phase, epileptic states are determined to allow state-based spike detection and localization of underlying sources for each spike. In a final cluster analysis, localization results are integrated to determine the possible sources of epileptic activity. The results were compared with the cerebral locations identified by intracerebral EEG recordings and SPECT. The results obtained with this approach were concordant with those of MRI, SPECT and distribution of intracerebral potentials. Dipole cluster centres found for spikes in interictal, preictal, ictal and postictal states were situated an average of 6.3mm from the intracerebral contacts with the highest voltage. Both amplitude and shape of spikes change between states. Dispersion of the dipoles was higher in the preictal state than in the postictal state. Two clusters of spikes were identified. The centres of these clusters changed position periodically during the various epileptic states. High-resolution surface EEG evaluated by an advanced algorithmic approach can be used to investigate the

  7. EEG power as a biomarker to predict the outcome after cardiac arrest and cardiopulmonary resuscitation induced global ischemia.

    PubMed

    Weitzel, Lindsay-Rae; Sampath, Dayalan; Shimizu, Kaori; White, Andrew M; Herson, Paco S; Raol, Yogendra H

    2016-11-15

    Cardiac arrest (CA) is a major cause of mortality and survivors often develop neurologic deficits. The objective of this study was to determine the effect of CA and cardiopulmonary resuscitation (CPR) in mice on the EEG and neurologic outcomes, and identify biomarkers that can prognosticate poor outcomes. Video-EEG records were obtained at various periods following CA-CPR and examined manually to determine the presence of spikes and sharp-waves, and seizures. EEG power was calculated using a fast Fourier transform (FFT) algorithm. Fifty percent mice died within 72h following CA and successful CPR. Universal suppression of the background EEG was observed in all mice following CA-CPR, however, a more severe and sustained reduction in EEG power occurred in the mice that did not survive beyond 72h than those that survived until sacrificed. Spikes and sharp wave activity appeared in the cortex and hippocampus of all mice, but only one out of eight mice developed a purely electrographic seizure in the acute period after CA-CPR. Interestingly, none of the mice that died experienced any acute seizures. At 10days after the CA-CPR, 25% of the mice developed spontaneous convulsive and nonconvulsive seizures that remained restricted to the hippocampus. The frequency of nonconvulsive seizures was higher than that of convulsive seizures. A strong association between changes in EEG power and mortality following CA-CPR were observed in our study. Therefore, we suggest that the EEG power can be used to prognosticate mortality following CA-CPR induced global ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients

    PubMed Central

    2010-01-01

    Background The physiopathological mechanism underlying the tinnitus phenomenon is still the subject of an ongoing debate. Since oscillatory EEG activity is increasingly recognized as a fundamental hallmark of cortical integrative functions, this study investigates deviations from the norm of different resting EEG parameters in patients suffering from chronic tinnitus. Results Spectral parameters of resting EEG of male tinnitus patients (n = 8, mean age 54 years) were compared to those of age-matched healthy males (n = 15, mean age 58.8 years). On average, the patient group exhibited higher spectral power over the frequency range of 2-100 Hz. Using LORETA source analysis, the generators of delta, theta, alpha and beta power increases were localized dominantly to left auditory (Brodmann Areas (BA) 41,42, 22), temporo-parietal, insular posterior, cingulate anterior and parahippocampal cortical areas. Conclusions Tinnitus patients show a deviation from the norm of different resting EEG parameters, characterized by an overproduction of resting state delta, theta and beta brain activities, providing further support for the microphysiological and magnetoencephalographic evidence pointing to a thalamocortical dysrhythmic process at the source of tinnitus. These results also provide further confirmation that reciprocal involvements of both auditory and associative/paralimbic areas are essential in the generation of tinnitus. PMID:20334674

  9. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    PubMed

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  10. Proepileptic patterns in EEG of WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Yu.; Nedaivozov, Vladimir O.; Koronovskii, Alexey A.

    2018-04-01

    In this paper we study specific oscillatory patterns on EEG signals of WAG/Rij rats. These patterns are known as proepileptic because they occur in time period during the development of absence-epilepsy before fully-formed epileptic seizures. In the paper we analyze EEG signals of WAG/Rij rats with continuous wavelet transform and empirical mode decomposition in order to find particular features of epileptic spike-wave discharges and nonepileptic sleep spindles. Then we introduce proepileptic activity as patterns that combine features of epileptic and non-epileptic activity. We analyze proepileptic activity in order to specify its features and time-frequency structure.

  11. Continuous EEG-fMRI in Pre-Surgical Evaluation of a Patient with Symptomatic Seizures: Bold Activation Linked to Interictal Epileptic Discharges Caused by Cavernoma.

    PubMed

    Avesani, M; Formaggio, E; Milanese, F; Baraldo, A; Gasparini, A; Cerini, R; Bongiovanni, L G; Pozzi Mucelli, R; Fiaschi, A; Manganotti, P

    2008-04-07

    We used continuous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to identify the linkage between the "epileptogenic" and the "irritative" area in a patient with symptomatic epilepsy (cavernoma, previously diagnosed and surgically treated), i.e. a patient with a well known "epileptogenic area", and to increase the possibility of a non invasive pre-surgical evaluation of drug-resistant epilepsies. A compatible MRI system was used (EEG with 29 scalp electrodes and two electrodes for ECG and EMG) and signals were recorded with a 1.5 Tesla MRI scanner. After the recording session and MRI artifact removal, EEG data were analyzed offline and used as paradigms in fMRI study. Activation (EEG sequences with interictal slow-spiked-wave activity) and rest (sequences of normal EEG) conditions were compared to identify the potential resulting focal increase in BOLD signal and to consider if this is spatially linked to the interictal focus used as a paradigm and to the lesion. We noted an increase in the BOLD signal in the left neocortical temporal region, laterally and posteriorly to the poro-encephalic cavity (residual of cavernoma previously removed), that is around the "epileptogenic area". In our study "epileptogenic" and "irritative" areas were connected with each other. Combined EEG-fMRI may become routine in clinical practice for a better identification of an irritative and lesional focus in patients with symptomatic drug-resistant epilepsy.

  12. Effect of the Anti-depressant Sertraline, the Novel Anti-seizure Drug Vinpocetine and Several Conventional Antiepileptic Drugs on the Epileptiform EEG Activity Induced by 4-Aminopyridine.

    PubMed

    Sitges, Maria; Aldana, Blanca Irene; Reed, Ronald Charles

    2016-06-01

    Seizures are accompanied by an exacerbated activation of cerebral ion channels. 4-aminopyridine (4-AP) is a pro-convulsive agent which mechanism of action involves activation of Na(+) and Ca(2+) channels, and several antiepileptic drugs control seizures by reducing these channels permeability. The antidepressant, sertraline, and the anti-seizure drug vinpocetine are effective inhibitors of cerebral presynaptic Na(+) channels. Here the effectiveness of these compounds to prevent the epileptiform EEG activity induced by 4-AP was compared with the effectiveness of seven conventional antiepileptic drugs. For this purpose, EEG recordings before and at three intervals within the next 30 min following 4-AP (2.5 mg/kg, i.p.) were taken in anesthetized animals; and the EEG-highest peak amplitude values (HPAV) calculated. In control animals, the marked increase in the EEG-HPAV observed near 20 min following 4-AP reached its maximum at 30 min. Results show that this epileptiform EEG activity induced by 4-AP is prevented by sertraline and vinpocetine at a dose of 2.5 mg/kg, and by carbamazepine, phenytoin, lamotrigine and oxcarbazepine at a higher dose (25 mg/kg). In contrast, topiramate (25 mg/kg), valproate (100 mg/kg) and levetiracetam (100 mg/kg) failed to prevent the epileptiform EEG activity induced by 4-AP. It is concluded that 4-AP is a useful tool to elicit the mechanism of action of anti-seizure drugs at clinical meaningful doses. The particular efficacy of sertraline and vinpocetine to prevent seizures induced by 4-AP is explained by their high effectiveness to reduce brain presynaptic Na(+) and Ca(2+) channels permeability.

  13. Smart Helmet: Wearable Multichannel ECG and EEG

    PubMed Central

    Chanwimalueang, Theerasak; Goverdovsky, Valentin; Looney, David; Sharp, David; Mandic, Danilo P.

    2016-01-01

    Modern wearable technologies have enabled continuous recording of vital signs, however, for activities such as cycling, motor-racing, or military engagement, a helmet with embedded sensors would provide maximum convenience and the opportunity to monitor simultaneously both the vital signs and the electroencephalogram (EEG). To this end, we investigate the feasibility of recording the electrocardiogram (ECG), respiration, and EEG from face-lead locations, by embedding multiple electrodes within a standard helmet. The electrode positions are at the lower jaw, mastoids, and forehead, while for validation purposes a respiration belt around the thorax and a reference ECG from the chest serve as ground truth to assess the performance. The within-helmet EEG is verified by exposing the subjects to periodic visual and auditory stimuli and screening the recordings for the steady-state evoked potentials in response to these stimuli. Cycling and walking are chosen as real-world activities to illustrate how to deal with the so-induced irregular motion artifacts, which contaminate the recordings. We also propose a multivariate R-peak detection algorithm suitable for such noisy environments. Recordings in real-world scenarios support a proof of concept of the feasibility of recording vital signs and EEG from the proposed smart helmet. PMID:27957405

  14. Characterizing the EEG correlates of exploratory behavior.

    PubMed

    Bourdaud, Nicolas; Chavarriaga, Ricardo; Galan, Ferran; Millan, José Del R

    2008-12-01

    This study aims to characterize the electroencephalography (EEG) correlates of exploratory behavior. Decision making in an uncertain environment raises a conflict between two opposing needs: gathering information about the environment and exploiting this knowledge in order to optimize the decision. Exploratory behavior has already been studied using functional magnetic resonance imaging (fMRI). Based on a usual paradigm in reinforcement learning, this study has shown bilateral activation in the frontal and parietal cortex. To our knowledge, no previous study has been done on it using EEG. The study of the exploratory behavior using EEG signals raises two difficulties. First, the labels of trial as exploitation or exploration cannot be directly derived from the subject action. In order to access this information, a model of how the subject makes his decision must be built. The exploration related information can be then derived from it. Second, because of the complexity of the task, its EEG correlates are not necessarily time locked with the action. So the EEG processing methods used should be designed in order to handle signals that shift in time across trials. Using the same experimental protocol as the fMRI study, results show that the bilateral frontal and parietal areas are also the most discriminant. This strongly suggests that the EEG signal also conveys information about the exploratory behavior.

  15. Modulation of induced gamma band activity in the human EEG by attention and visual information processing.

    PubMed

    Müller, M M; Gruber, T; Keil, A

    2000-12-01

    Here we present a series of four studies aimed to investigate the link between induced gamma band activity in the human EEG and visual information processing. We demonstrated and validated the modulation of spectral gamma band power by spatial selective visual attention. When subjects attended to a certain stimulus, spectral power was increased as compared to when the same stimulus was ignored. In addition, we showed a shift in spectral gamma band power increase to the contralateral hemisphere when subjects shifted their attention to one visual hemifield. The following study investigated induced gamma band activity and the perception of a Gestalt. Ambiguous rotating figures were used to operationalize the law of good figure (gute Gestalt). We found increased gamma band power at posterior electrode sites when subjects perceived an object. In the last experiment we demonstrated a differential hemispheric gamma band activation when subjects were confronted with emotional pictures. Results of the present experiments in combination with other studies presented in this volume are supportive for the notion that induced gamma band activity in the human EEG is closely related to visual information processing and attentional perceptual mechanisms.

  16. EEG - A Valuable Biomarker of Brain Injury in Preterm Infants.

    PubMed

    Pavlidis, Elena; Lloyd, Rhodri O; Boylan, Geraldine B

    2017-01-01

    This review focuses on the role of electroencephalography (EEG) in monitoring abnormalities of preterm brain function. EEG features of the most common developmental brain injuries in preterm infants, including intraventricular haemorrhage, periventricular leukomalacia, and perinatal asphyxia, are described. We outline the most common EEG biomarkers associated with these injuries, namely seizures, positive rolandic sharp waves, EEG suppression/increased interburst intervals, mechanical delta brush activity, and other deformed EEG waveforms, asymmetries, and asynchronies. The increasing survival rate of preterm infants, in particular those that are very and extremely preterm, has led to a growing demand for a specific and shared characterization of the patterns related to adverse outcome in this unique population. This review includes abundant high-quality images of the EEG patterns seen in premature infants and will provide a valuable resource for everyone working in developmental neuroscience. © 2017 S. Karger AG, Basel.

  17. The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG.

    PubMed

    Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio

    2018-06-01

    Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. EEG-based time and spatial interpretation of activation areas for relaxation and words writing between poor and capable dyslexic children.

    PubMed

    Mohamad, N B; Lee, Khuan Y; Mansor, W; Mahmoodin, Z; Fadzal, C W N F C W; Amirin, S

    2015-01-01

    Symptoms of dyslexia such as difficulties with accurate and/or fluent word recognition, and/or poor spelling as well as decoding abilities, are easily misinterpreted as laziness and defiance amongst school children. Indeed, 37.9% of 699 school dropouts and failures are diagnosed as dyslexic. Currently, Screening for dyslexia relies heavily on therapists, whom are few and subjective, yet objective methods are still unavailable. EEG has long been a popular method to study the cognitive processes in human such as language processing and motor activity. However, its interpretation is limited to time and frequency domain, without visual information, which is still useful. Here, our research intends to illustrate an EEG-based time and spatial interpretation of activated brain areas for the poor and capable dyslexic during the state of relaxation and words writing, being the first attempt ever reported. From the 2D distribution of EEG spectral at the activation areas and its progress with time, it is observed that capable dyslexics are able to relax compared to poor dyslexics. During the state of words writing, neural activities are found higher on the right hemisphere than the left hemisphere of the capable dyslexics, which suggests a neurobiological compensation pathway in the right hemisphere, during reading and writing, which is not observed in the poor dyslexics.

  19. Recording event-related activity under hostile magnetic resonance environment: Is multimodal EEG/ERP-MRI recording possible?

    PubMed

    Karakaş, H M; Karakaş, S; Ozkan Ceylan, A; Tali, E T

    2009-08-01

    Event-related potentials (ERPs) have high temporal resolution, but insufficient spatial resolution; the converse is true for the functional imaging techniques. The purpose of the study was to test the utility of a multimodal EEG/ERP-MRI technique which combines electroencephalography (EEG) and magnetic resonance imaging (MRI) for a simultaneously high temporal and spatial resolution. The sample consisted of 32 healthy young adults of both sexes. Auditory stimuli were delivered according to the active and passive oddball paradigms in the MRI environment (MRI-e) and in the standard conditions of the electrophysiology laboratory environment (Lab-e). Tasks were presented in a fixed order. Participants were exposed to the recording environments in a counterbalanced order. EEG data were preprocessed for MRI-related artifacts. Source localization was made using a current density reconstruction technique. The ERP waveforms for the MRI-e were morphologically similar to those for the Lab-e. The effect of the recording environment, experimental paradigm and electrode location were analyzed using a 2x2x3 analysis of variance for repeated measures. The ERP components in the two environments showed parametric variations and characteristic topographical distributions. The calculated sources were in line with the related literature. The findings indicated effortful cognitive processing in MRI-e. The study provided preliminary data on the feasibility of the multimodal EEG/ERP-MRI technique. It also indicated lines of research that are to be pursued for a decisive testing of this technique and its implementation to clinical practice.

  20. Deep Neural Architectures for Mapping Scalp to Intracranial EEG.

    PubMed

    Antoniades, Andreas; Spyrou, Loukianos; Martin-Lopez, David; Valentin, Antonio; Alarcon, Gonzalo; Sanei, Saeid; Took, Clive Cheong

    2018-03-19

    Data is often plagued by noise which encumbers machine learning of clinically useful biomarkers and electroencephalogram (EEG) data is no exemption. Intracranial EEG (iEEG) data enhances the training of deep learning models of the human brain, yet is often prohibitive due to the invasive recording process. A more convenient alternative is to record brain activity using scalp electrodes. However, the inherent noise associated with scalp EEG data often impedes the learning process of neural models, achieving substandard performance. Here, an ensemble deep learning architecture for nonlinearly mapping scalp to iEEG data is proposed. The proposed architecture exploits the information from a limited number of joint scalp-intracranial recording to establish a novel methodology for detecting the epileptic discharges from the sEEG of a general population of subjects. Statistical tests and qualitative analysis have revealed that the generated pseudo-intracranial data are highly correlated with the true intracranial data. This facilitated the detection of IEDs from the scalp recordings where such waveforms are not often visible. As a real-world clinical application, these pseudo-iEEGs are then used by a convolutional neural network for the automated classification of intracranial epileptic discharges (IEDs) and non-IED of trials in the context of epilepsy analysis. Although the aim of this work was to circumvent the unavailability of iEEG and the limitations of sEEG, we have achieved a classification accuracy of 68% an increase of 6% over the previously proposed linear regression mapping.

  1. EEG-LORETA endophenotypes of the common idiopathic generalized epilepsy syndromes.

    PubMed

    Clemens, B; Puskás, S; Besenyei, M; Emri, M; Opposits, G; Kis, S A; Hollódy, K; Fogarasi, A; Kondákor, I; Füle, K; Bense, K; Fekete, I

    2012-05-01

    We tested the hypothesis that the cortical areas with abnormal local EEG synchronization are dissimilar in the three common idiopathic generalized epilepsy (IGE) phenotypes: IGE patients with absence seizures (ABS), juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures exclusively (EGTCS). Groups of unmedicated ABS, JME and EGTCS patients were investigated. Waking EEG background activity (without any epileptiform potentials) was analyzed by a source localization method, LORETA (Low Resolution Electromagnetic Tomography). Each patient group was compared to a separate, age-matched group of healthy control persons. Voxel-based, normalized broad-band (delta, theta, alpha, and beta) and very narrow band (VNB, 1Hz bandwidth, from 1 to 25Hz) LORETA activity (=current source density, A/m(2)) were computed for each person. Group comparison included subtraction (average patient data minus average control data) and group statistics (multiple t-tests, where Bonferroni-corrected p<0.05 values were accepted as statistically significant). Statistically not significant main findings were: overall increased delta and theta broad band activity in the ABS and JME groups; decrease of alpha and beta activity in the EGTCS group. Statistically significant main findings were as follows. JME group: bilaterally increased theta activity in posterior (temporal, parietal, and occipital) cortical areas; bilaterally increased activity in the medial and basal prefrontal area in the 8Hz VNB; bilaterally decreased activity in the precuneus, posterior cingulate and superior parietal lobule in the 11Hz and 21-22Hz VNBs. ABS group: bilaterally increased theta activity emerged in the basal prefrontal and medial temporal limbic areas. Decreased activity was found at 19-21Hz in the right postcentral gyrus and parts of the right superior and medial temporal gyri. EGTCS group: decreased activity was found in the frontal cortex and the postcentral gyrus at 10-11Hz, increased

  2. Neural network classifications and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube.

    PubMed

    Gaetz, M; Weinberg, H; Rzempoluck, E; Jantzen, K J

    1998-04-01

    It has recently been suggested that reentrant connections are essential in systems that process complex information [A. Damasio, H. Damasio, Cortical systems for the retrieval of concrete knowledge: the convergence zone framework, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 61-74; G. Edelman, The Remembered Present, Basic Books, New York, 1989; M.I. Posner, M. Rothbart, Constructing neuronal theories of mind, in: C. Koch, J.L. Davis (Eds.), Large Scale Neuronal Theories of the Brain, The MIT Press, Cambridge, 1995, pp. 183-199; C. von der Malsburg, W. Schneider, A neuronal cocktail party processor, Biol. Cybem., 54 (1986) 29-40]. Reentry is not feedback, but parallel signalling in the time domain between spatially distributed maps, similar to a process of correlation between distributed systems. Accordingly, it was expected that during spontaneous reversals of the Necker cube, complex patterns of correlations between distributed systems would be present in the cortex. The present study included EEG (n=4) and MEG recordings (n=5). Two experimental questions were posed: (1) Can distributed cortical patterns present during perceptual reversals be classified differently using a generalised regression neural network (GRNN) compared to processing of a two-dimensional figure? (2) Does correlated cortical activity increase significantly during perception of a Necker cube reversal? One-second duration single trials of EEG and MEG data were analysed using the GRNN. Electrode/sensor pairings based on cortico-cortical connections were selected to assess correlated activity in each condition. The GRNN significantly classified single trials recorded during Necker cube reversals as different from single trials recorded during perception of a two-dimensional figure for both EEG and MEG. In addition, correlated cortical activity increased significantly in the Necker cube reversal condition for EEG and MEG compared

  3. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study.

    PubMed

    Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo

    2014-10-01

    The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Sustained Attention in Real Classroom Settings: An EEG Study.

    PubMed

    Ko, Li-Wei; Komarov, Oleksii; Hairston, W David; Jung, Tzyy-Ping; Lin, Chin-Teng

    2017-01-01

    Sustained attention is a process that enables the maintenance of response persistence and continuous effort over extended periods of time. Performing attention-related tasks in real life involves the need to ignore a variety of distractions and inhibit attention shifts to irrelevant activities. This study investigates electroencephalography (EEG) spectral changes during a sustained attention task within a real classroom environment. Eighteen healthy students were instructed to recognize as fast as possible special visual targets that were displayed during regular university lectures. Sorting their EEG spectra with respect to response times, which indicated the level of visual alertness to randomly introduced visual stimuli, revealed significant changes in the brain oscillation patterns. The results of power-frequency analysis demonstrated a relationship between variations in the EEG spectral dynamics and impaired performance in the sustained attention task. Across subjects and sessions, prolongation of the response time was preceded by an increase in the delta and theta EEG powers over the occipital region, and decrease in the beta power over the occipital and temporal regions. Meanwhile, implementation of the complex attention task paradigm into a real-world classroom setting makes it possible to investigate specific mutual links between brain activities and factors that cause impaired behavioral performance, such as development and manifestation of classroom mental fatigue. The findings of the study set a basis for developing a system capable of estimating the level of visual attention during real classroom activities by monitoring changes in the EEG spectra.

  5. Sustained Attention in Real Classroom Settings: An EEG Study

    PubMed Central

    Ko, Li-Wei; Komarov, Oleksii; Hairston, W. David; Jung, Tzyy-Ping; Lin, Chin-Teng

    2017-01-01

    Sustained attention is a process that enables the maintenance of response persistence and continuous effort over extended periods of time. Performing attention-related tasks in real life involves the need to ignore a variety of distractions and inhibit attention shifts to irrelevant activities. This study investigates electroencephalography (EEG) spectral changes during a sustained attention task within a real classroom environment. Eighteen healthy students were instructed to recognize as fast as possible special visual targets that were displayed during regular university lectures. Sorting their EEG spectra with respect to response times, which indicated the level of visual alertness to randomly introduced visual stimuli, revealed significant changes in the brain oscillation patterns. The results of power-frequency analysis demonstrated a relationship between variations in the EEG spectral dynamics and impaired performance in the sustained attention task. Across subjects and sessions, prolongation of the response time was preceded by an increase in the delta and theta EEG powers over the occipital region, and decrease in the beta power over the occipital and temporal regions. Meanwhile, implementation of the complex attention task paradigm into a real-world classroom setting makes it possible to investigate specific mutual links between brain activities and factors that cause impaired behavioral performance, such as development and manifestation of classroom mental fatigue. The findings of the study set a basis for developing a system capable of estimating the level of visual attention during real classroom activities by monitoring changes in the EEG spectra. PMID:28824396

  6. Daytime Effect of Monochromatic Blue Light on EEG Activity Depends on Duration and Timing of Exposure in Young Men

    PubMed Central

    Iskra-Golec, Irena; Golonka, Krystyna; Wyczesany, Miroslaw; Smith, Lawrence; Siemiginowska, Patrycja; Wątroba, Joanna

    2017-01-01

    Growing evidence suggests an alerting effect of monochromatic blue light on brain activity. Little is known about the moderation of those effects by timing and duration of exposure. The present electroencephalography (EEG ) study examined such moderations on delta, theta, alpha1, alpha2, and beta EEG bands. A counterbalanced repeated-measures design was applied. The 16-hr daytime period was divided into three sessions: 07:00-12:20, 12:20-17:40, and 17:40-23:00 (timing of exposure). Two light conditions comparable in luminance but differing in wavelength were applied, namely polychromatic white light and monochromatic blue light (460 nm). There were two durations of exposure—the shorter one lasting 30 min and the longer one lasting 4 hrs. Thirty male students participated in the study. Four factors analyses of variance (ANOV As, for light conditions, timing of exposure, duration of exposure, and brain area) were performed on each EEG band. Results indicated an alerting effect of short exposure to monochromatic blue light at midday and in the evening, which was demonstrated by a decrease in lower frequency bands (alpha1, delta, and theta, respectively). Long exposure to blue light may have a reverse effect, especially in the morning and at midday, when increases in lower frequency bands (theta in the morning and theta and alpha1 at midday) were observed. It can be concluded that the daytime effect of monochromatic blue light on EEG activity depends on timing and duration of exposure. PMID:29062437

  7. EEG seizure detection and prediction algorithms: a survey

    NASA Astrophysics Data System (ADS)

    Alotaiby, Turkey N.; Alshebeili, Saleh A.; Alshawi, Tariq; Ahmad, Ishtiaq; Abd El-Samie, Fathi E.

    2014-12-01

    Epilepsy patients experience challenges in daily life due to precautions they have to take in order to cope with this condition. When a seizure occurs, it might cause injuries or endanger the life of the patients or others, especially when they are using heavy machinery, e.g., deriving cars. Studies of epilepsy often rely on electroencephalogram (EEG) signals in order to analyze the behavior of the brain during seizures. Locating the seizure period in EEG recordings manually is difficult and time consuming; one often needs to skim through tens or even hundreds of hours of EEG recordings. Therefore, automatic detection of such an activity is of great importance. Another potential usage of EEG signal analysis is in the prediction of epileptic activities before they occur, as this will enable the patients (and caregivers) to take appropriate precautions. In this paper, we first present an overview of seizure detection and prediction problem and provide insights on the challenges in this area. Second, we cover some of the state-of-the-art seizure detection and prediction algorithms and provide comparison between these algorithms. Finally, we conclude with future research directions and open problems in this topic.

  8. Towards deep brain monitoring with superficial EEG sensors plus neuromodulatory focused ultrasound

    PubMed Central

    Darvas, F; Mehić, E; Caler, CJ; Ojemann, JG; Mourad, PD

    2017-01-01

    Noninvasive recordings of electrophysiological activity have limited anatomical specificity and depth. We hypothesized that spatially tagging a small volume of brain with a unique electroencephalogram (EEG) signal induced by pulsed focused ultrasound (pFU) could overcome those limitations. As a first step towards testing this hypothesis, we applied transcranial ultrasound (2 MHz, 200 microsecond-long pulses applied at 1050 Hz for one second at a spatial peak temporal average intensity of 1.4 W/cm2) to the brains of anesthetized rats while simultaneously recording EEG signals. We observed a significant 1050 Hz electrophysiological signal only when ultrasound was applied to living brain. Moreover, amplitude demodulation of the EEG signal at 1050 Hz yielded measurement of gamma band (>30 Hz) brain activity consistent with direct measurements of that activity. These results represent preliminary support for use of pFU as a spatial tagging mechanism for non-invasive EEG-based mapping of deep brain activity with high spatial resolution. PMID:27181686

  9. Effects of Fipronil on the EEG of Long Evans Rats

    EPA Science Inventory

    We have reported that the non-stimulus driven EEG is differentially altered by deltamethrin or permethrin (Lyke and Herr, Toxicologist, 114(S-1):265, 2010). In the current study, we examined the ability to detect changes in EEG activity produced by fipronil, a phenylpyrazole pest...

  10. Psychogenic seizures and frontal disconnection: EEG synchronisation study.

    PubMed

    Knyazeva, Maria G; Jalili, Mahdi; Frackowiak, Richard S; Rossetti, Andrea O

    2011-05-01

    Psychogenic non-epileptic seizures (PNES) are paroxysmal events that, in contrast to epileptic seizures, are related to psychological causes without the presence of epileptiform EEG changes. Recent models suggest a multifactorial basis for PNES. A potentially paramount, but currently poorly understood factor is the interplay between psychiatric features and a specific vulnerability of the brain leading to a clinical picture that resembles epilepsy. Hypothesising that functional cerebral network abnormalities may predispose to the clinical phenotype, the authors undertook a characterisation of the functional connectivity in PNES patients. The authors analysed the whole-head surface topography of multivariate phase synchronisation (MPS) in interictal high-density EEG of 13 PNES patients as compared with 13 age- and sex-matched controls. MPS mapping reduces the wealth of dynamic data obtained from high-density EEG to easily readable synchronisation maps, which provide an unbiased overview of any changes in functional connectivity associated with distributed cortical abnormalities. The authors computed MPS maps for both Laplacian and common-average-reference EEGs. In a between-group comparison, only patchy, non-uniform changes in MPS survived conservative statistical testing. However, against the background of these unimpressive group results, the authors found widespread inverse correlations between individual PNES frequency and MPS within the prefrontal and parietal cortices. PNES appears to be associated with decreased prefrontal and parietal synchronisation, possibly reflecting dysfunction of networks within these regions.

  11. Developmental trajectories of EEG sleep slow wave activity as a marker for motor skill development during adolescence: a pilot study.

    PubMed

    Lustenberger, Caroline; Mouthon, Anne-Laure; Tesler, Noemi; Kurth, Salome; Ringli, Maya; Buchmann, Andreas; Jenni, Oskar G; Huber, Reto

    2017-01-01

    Reliable markers for brain maturation are important to identify neural deviations that eventually predict the development of mental illnesses. Recent studies have proposed topographical EEG-derived slow wave activity (SWA) during NREM sleep as a mirror of cortical development. However, studies about the longitudinal stability as well as the relationship with behavioral skills are needed before SWA topography may be considered such a reliable marker. We examined six subjects longitudinally (over 5.1 years) using high-density EEG and a visuomotor learning task. All subjects showed a steady increase of SWA at a frontal electrode and a decrease in central electrodes. Despite these large changes in EEG power, SWA topography was relatively stable within each subject during development indicating individual trait-like characteristics. Moreover, the SWA changes in the central cluster were related to the development of specific visuomotor skills. Taken together with the previous work in this domain, our results suggest that EEG sleep SWA represents a marker for motor skill development and further supports the idea that SWA mirrors cortical development during childhood and adolescence. © 2016 Wiley Periodicals, Inc.

  12. Sleepwalking episodes are preceded by arousal-related activation in the cingulate motor area: EEG current density imaging.

    PubMed

    Januszko, Piotr; Niemcewicz, Szymon; Gajda, Tomasz; Wołyńczyk-Gmaj, Dorota; Piotrowska, Anna Justyna; Gmaj, Bartłomiej; Piotrowski, Tadeusz; Szelenberger, Waldemar

    2016-01-01

    To investigate local arousal fluctuations in adults who received ICSD-2 diagnosis of somnambulism. EEG neuroimaging (eLORETA) was utilized to compare current density distribution for 4s epochs immediately preceding sleepwalking episode (from -4.0 s to 0 s) to the distribution during earlier 4s epochs (from -8.0 s to -4.0 s) in 20 EEG segments from 15 patients. Comparisons between eLORETA images revealed significant (t>4.52; p<0.05) brain activations before onset of sleepwalking, with greater current density within beta 3 frequency range (24-30 Hz) in Brodmann areas 33 and 24. Sleepwalking motor events are associated with arousal-related activation of cingulate motor area. These results support the notion of blurred boundaries between wakefulness and NREM sleep in sleepwalking. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Negligible Motion Artifacts in Scalp Electroencephalography (EEG) During Treadmill Walking.

    PubMed

    Nathan, Kevin; Contreras-Vidal, Jose L

    2015-01-01

    Recent mobile brain/body imaging (MoBI) techniques based on active electrode scalp electroencephalogram (EEG) allow the acquisition and real-time analysis of brain dynamics during active unrestrained motor behavior involving whole body movements such as treadmill walking, over-ground walking and other locomotive and non-locomotive tasks. Unfortunately, MoBI protocols are prone to physiological and non-physiological artifacts, including motion artifacts that may contaminate the EEG recordings. A few attempts have been made to quantify these artifacts during locomotion tasks but with inconclusive results due in part to methodological pitfalls. In this paper, we investigate the potential contributions of motion artifacts in scalp EEG during treadmill walking at three different speeds (1.5, 3.0, and 4.5 km/h) using a wireless 64 channel active EEG system and a wireless inertial sensor attached to the subject's head. The experimental setup was designed according to good measurement practices using state-of-the-art commercially available instruments, and the measurements were analyzed using Fourier analysis and wavelet coherence approaches. Contrary to prior claims, the subjects' motion did not significantly affect their EEG during treadmill walking although precaution should be taken when gait speeds approach 4.5 km/h. Overall, these findings suggest how MoBI methods may be safely deployed in neural, cognitive, and rehabilitation engineering applications.

  14. Effects of green and black tea consumption on brain wave activities in healthy volunteers as measured by a simplified Electroencephalogram (EEG): A feasibility study.

    PubMed

    Okello, Edward J; Abadi, Awatf M; Abadi, Saad A

    2016-06-01

    Tea has been associated with many mental benefits, such as attention enhancement, clarity of mind, and relaxation. These psychosomatic states can be measured in terms of brain activity using an electroencephalogram (EEG). Brain activity can be assessed either during a state of passive activity or when performing attention tasks and it can provide useful information about the brain's state. This study investigated the effects of green and black consumption on brain activity as measured by a simplified EEG, during passive activity. Eight healthy volunteers participated in the study. The EEG measurements were performed using a two channel EEG brain mapping instrument - HeadCoach™. Fast Fourier transform algorithm and EEGLAB toolbox using the Matlab software were used for data processing and analysis. Alpha, theta, and beta wave activities were all found to increase after 1 hour of green and black tea consumption, albeit, with very considerable inter-individual variations. Our findings provide further evidence for the putative beneficial effects of tea. The highly significant increase in theta waves (P < 0.004) between 30 minutes and 1 hour post-consumption of green tea may be an indication of its putative role in cognitive function, specifically alertness and attention. There were considerable inter-individual variations in response to the two teas which may be due genetic polymorphisms in metabolism and/or influence of variety/blend, dose and content of the selected products whose chemistry and therefore efficacy will have been influenced by 'from field to shelf practices'.

  15. Instantaneous frequency based newborn EEG seizure characterisation

    NASA Astrophysics Data System (ADS)

    Mesbah, Mostefa; O'Toole, John M.; Colditz, Paul B.; Boashash, Boualem

    2012-12-01

    The electroencephalogram (EEG), used to noninvasively monitor brain activity, remains the most reliable tool in the diagnosis of neonatal seizures. Due to their nonstationary and multi-component nature, newborn EEG seizures are better represented in the joint time-frequency domain than in either the time domain or the frequency domain. Characterising newborn EEG seizure nonstationarities helps to better understand their time-varying nature and, therefore, allow developing efficient signal processing methods for both modelling and seizure detection and classification. In this article, we used the instantaneous frequency (IF) extracted from a time-frequency distribution to characterise newborn EEG seizures. We fitted four frequency modulated (FM) models to the extracted IFs, namely a linear FM, a piecewise-linear FM, a sinusoidal FM, and a hyperbolic FM. Using a database of 30-s EEG seizure epochs acquired from 35 newborns, we were able to show that, depending on EEG channel, the sinusoidal and piecewise-linear FM models best fitted 80-98% of seizure epochs. To further characterise the EEG seizures, we calculated the mean frequency and frequency span of the extracted IFs. We showed that in the majority of the cases (>95%), the mean frequency resides in the 0.6-3 Hz band with a frequency span of 0.2-1 Hz. In terms of the frequency of occurrence of the four seizure models, the statistical analysis showed that there is no significant difference( p = 0.332) between the two hemispheres. The results also indicate that there is no significant differences between the two hemispheres in terms of the mean frequency ( p = 0.186) and the frequency span ( p = 0.302).

  16. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data.

    PubMed

    Kim, Hyun-Chul; Yoo, Seung-Schik; Lee, Jong-Hwan

    2015-01-01

    Electroencephalography (EEG) data simultaneously acquired with functional magnetic resonance imaging (fMRI) data are preprocessed to remove gradient artifacts (GAs) and ballistocardiographic artifacts (BCAs). Nonetheless, these data, especially in the gamma frequency range, can be contaminated by residual artifacts produced by mechanical vibrations in the MRI system, in particular the cryogenic pump that compresses and transports the helium that chills the magnet (the helium-pump). However, few options are available for the removal of helium-pump artifacts. In this study, we propose a recursive approach of EEG-segment-based principal component analysis (rsPCA) that enables the removal of these helium-pump artifacts. Using the rsPCA method, feature vectors representing helium-pump artifacts were successfully extracted as eigenvectors, and the reconstructed signals of the feature vectors were subsequently removed. A test using simultaneous EEG-fMRI data acquired from left-hand (LH) and right-hand (RH) clenching tasks performed by volunteers found that the proposed rsPCA method substantially reduced helium-pump artifacts in the EEG data and significantly enhanced task-related gamma band activity levels (p=0.0038 and 0.0363 for LH and RH tasks, respectively) in EEG data that have had GAs and BCAs removed. The spatial patterns of the fMRI data were estimated using a hemodynamic response function (HRF) modeled from the estimated gamma band activity in a general linear model (GLM) framework. Active voxel clusters were identified in the post-/pre-central gyri of motor area, only from the rsPCA method (uncorrected p<0.001 for both LH/RH tasks). In addition, the superior temporal pole areas were consistently observed (uncorrected p<0.001 for the LH task and uncorrected p<0.05 for the RH task) in the spatial patterns of the HRF model for gamma band activity when the task paradigm and movement were also included in the GLM. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Rapidly Learned Identification of Epileptic Seizures from Sonified EEG

    PubMed Central

    Loui, Psyche; Koplin-Green, Matan; Frick, Mark; Massone, Michael

    2014-01-01

    Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient’s electroencephalogram (EEG). However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here, we describe an algorithm that we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determined whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures from non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy. PMID:25352802

  18. How to write an EEG report

    PubMed Central

    Benbadis, Selim R.

    2013-01-01

    The EEG report is structured to include demographics of the patient studied and reason for the EEG; specifics of the EEG techniques used; a description of the patterns, frequencies, voltages, and progression of the EEG pattern that were recorded; and finally a clinical impression of the EEG significance. The interpretation should be concise, clear and to the point, avoid jargon and EEG specifics, and should be understandable by any health care practitioner. PMID:23267044

  19. A three domain covariance framework for EEG/MEG data.

    PubMed

    Roś, Beata P; Bijma, Fetsje; de Gunst, Mathisca C M; de Munck, Jan C

    2015-10-01

    In this paper we introduce a covariance framework for the analysis of single subject EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. Our covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, like in combined EEG-fMRI experiments in which the correlation between EEG and fMRI signals is investigated. We use a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. We apply our method to real EEG and MEG data sets. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A preliminary study of muscular artifact cancellation in single-channel EEG.

    PubMed

    Chen, Xun; Liu, Aiping; Peng, Hu; Ward, Rabab K

    2014-10-01

    Electroencephalogram (EEG) recordings are often contaminated with muscular artifacts that strongly obscure the EEG signals and complicates their analysis. For the conventional case, where the EEG recordings are obtained simultaneously over many EEG channels, there exists a considerable range of methods for removing muscular artifacts. In recent years, there has been an increasing trend to use EEG information in ambulatory healthcare and related physiological signal monitoring systems. For practical reasons, a single EEG channel system must be used in these situations. Unfortunately, there exist few studies for muscular artifact cancellation in single-channel EEG recordings. To address this issue, in this preliminary study, we propose a simple, yet effective, method to achieve the muscular artifact cancellation for the single-channel EEG case. This method is a combination of the ensemble empirical mode decomposition (EEMD) and the joint blind source separation (JBSS) techniques. We also conduct a study that compares and investigates all possible single-channel solutions and demonstrate the performance of these methods using numerical simulations and real-life applications. The proposed method is shown to significantly outperform all other methods. It can successfully remove muscular artifacts without altering the underlying EEG activity. It is thus a promising tool for use in ambulatory healthcare systems.

  1. EEG-confirmed epileptic activity in a cat with VGKC-complex/LGI1 antibody-associated limbic encephalitis.

    PubMed

    Pakozdy, Akos; Glantschnigg, Ursula; Leschnik, Michael; Hechinger, Harald; Moloney, Teresa; Lang, Bethan; Halasz, Peter; Vincent, Angela

    2014-03-01

    A 5-year-old, female client-owned cat presented with acute onset of focal epileptic seizures with orofacial twitching and behavioural changes. Magnetic resonance imaging showed bilateral temporal lobe hyperintensities and the EEG was consistent with ictal epileptic seizure activity. After antiepileptic and additional corticosteroid treatment, the cat recovered and by 10 months of follow-up was seizure-free without any problem. Retrospectively, antibodies to LGI1, a component of the voltage-gated potassium channel-complex, were identified. Feline focal seizures with orofacial involvement have been increasingly recognised in client-owned cats, and autoimmune limbic encephalitis was recently suggested as a possible aetiology. This is the first report of EEG, MRI and long-term follow-up of this condition in cats which is similar to human limbic encephalitis.

  2. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of EEG desynchronization and EMG activation following intravenous administration in freely moving rats

    PubMed Central

    Smirnov, Michael S.; Kiyatkin, Eugene A.

    2009-01-01

    Many important physiological, behavioral and subjective effects of intravenous (iv) cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed EEG and EMG recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of iv COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by iv COC methiodide, a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC methiodide had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by iv procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, iv saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, iv COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such an action might play a crucial role in the

  3. A Within-subjects Experimental Protocol to Assess the Effects of Social Input on Infant EEG.

    PubMed

    St John, Ashley M; Kao, Katie; Chita-Tegmark, Meia; Liederman, Jacqueline; Grieve, Philip G; Tarullo, Amanda R

    2017-05-03

    Despite the importance of social interactions for infant brain development, little research has assessed functional neural activation while infants socially interact. Electroencephalography (EEG) power is an advantageous technique to assess infant functional neural activation. However, many studies record infant EEG only during one baseline condition. This protocol describes a paradigm that is designed to comprehensively assess infant EEG activity in both social and nonsocial contexts as well as tease apart how different types of social inputs differentially relate to infant EEG. The within-subjects paradigm includes four controlled conditions. In the nonsocial condition, infants view objects on computer screens. The joint attention condition involves an experimenter directing the infant's attention to pictures. The joint attention condition includes three types of social input: language, face-to-face interaction, and the presence of joint attention. Differences in infant EEG between the nonsocial and joint attention conditions could be due to any of these three types of input. Therefore, two additional conditions (one with language input while the experimenter is hidden behind a screen and one with face-to-face interaction) were included to assess the driving contextual factors in patterns of infant neural activation. Representative results demonstrate that infant EEG power varied by condition, both overall and differentially by brain region, supporting the functional nature of infant EEG power. This technique is advantageous in that it includes conditions that are clearly social or nonsocial and allows for examination of how specific types of social input relate to EEG power. This paradigm can be used to assess how individual differences in age, affect, socioeconomic status, and parent-infant interaction quality relate to the development of the social brain. Based on the demonstrated functional nature of infant EEG power, future studies should consider the role

  4. Characterization of EEG signals revealing covert cognition in the injured brain.

    PubMed

    Curley, William H; Forgacs, Peter B; Voss, Henning U; Conte, Mary M; Schiff, Nicholas D

    2018-05-01

    to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.

  5. EEG in connection with coma.

    PubMed

    Wilson, John A; Nordal, Helge J

    2013-01-08

    Coma is a dynamic condition that may have various causes. Important changes may take place rapidly, often with consequences for treatment. The purpose of this article is to provide a brief overview of EEG patterns in comas with various causes, and indicate how EEG contributes in an assessment of the prognosis for coma patients. The article is based on many years of clinical and research-based experience of EEG used for patients in coma. A self-built reference database was supplemented by searches for relevant articles in PubMed. EEG reveals immediate changes in coma, and can provide early information on cause and prognosis. It is the only diagnostic tool for detecting a non-convulsive epileptic status. Locked-in- syndrome may be overseen without EEG. Repeated EEG scans increase diagnostic certainty and make it possible to monitor the development of coma. EEG reflects brain function continuously and therefore holds a key place in the assessment and treatment of coma.

  6. Frontal brain electrical activity (EEG) and heart rate in response to affective infant-directed (ID) speech in 9-month-old infants.

    PubMed

    Santesso, Diane L; Schmidt, Louis A; Trainor, Laurel J

    2007-10-01

    Many studies have shown that infants prefer infant-directed (ID) speech to adult-directed (AD) speech. ID speech functions to aid language learning, obtain and/or maintain an infant's attention, and create emotional communication between the infant and caregiver. We examined psychophysiological responses to ID speech that varied in affective content (i.e., love/comfort, surprise, fear) in a group of typically developing 9-month-old infants. Regional EEG and heart rate were collected continuously during stimulus presentation. We found the pattern of overall frontal EEG power was linearly related to affective intensity of the ID speech, such that EEG power was greatest in response to fear, than surprise than love/comfort; this linear pattern was specific to the frontal region. We also noted that heart rate decelerated to ID speech independent of affective content. As well, infants who were reported by their mothers as temperamentally distressed tended to exhibit greater relative right frontal EEG activity during baseline and in response to affective ID speech, consistent with previous work with visual stimuli and extending it to the auditory modality. Findings are discussed in terms of how increases in frontal EEG power in response to different affective intensity may reflect the cognitive aspects of emotional processing across sensory domains in infancy.

  7. Resting EEG deficits in accused murderers with schizophrenia.

    PubMed

    Schug, Robert A; Yang, Yaling; Raine, Adrian; Han, Chenbo; Liu, Jianghong; Li, Liejia

    2011-10-31

    Empirical evidence continues to suggest a biologically distinct violent subtype of schizophrenia. The present study examined whether murderers with schizophrenia would demonstrate resting EEG deficits distinguishing them from both non-violent schizophrenia patients and murderers without schizophrenia. Resting EEG data were collected from five diagnostic groups (normal controls, non-murderers with schizophrenia, murderers with schizophrenia, murderers without schizophrenia, and murderers with psychiatric conditions other than schizophrenia) at a brain hospital in Nanjing, China. Murderers with schizophrenia were characterized by increased left-hemispheric fast-wave EEG activity relative to non-violent schizophrenia patients, while non-violent schizophrenia patients instead demonstrated increased diffuse slow-wave activity compared to all other groups. Results are discussed within the framework of a proposed left-hemispheric over-processing hypothesis specific to violent individuals with schizophrenia, involving left hemispheric hyperarousal deficits, which may lead to a homicidally violent schizophrenia outcome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Quantitative EEG analysis in minimally conscious state patients during postural changes.

    PubMed

    Greco, A; Carboncini, M C; Virgillito, A; Lanata, A; Valenza, G; Scilingo, E P

    2013-01-01

    Mobilization and postural changes of patients with cognitive impairment are standard clinical practices useful for both psychic and physical rehabilitation process. During this process, several physiological signals, such as Electroen-cephalogram (EEG), Electrocardiogram (ECG), Photopletysmography (PPG), Respiration activity (RESP), Electrodermal activity (EDA), are monitored and processed. In this paper we investigated how quantitative EEG (qEEG) changes with postural modifications in minimally conscious state patients. This study is quite novel and no similar experimental data can be found in the current literature, therefore, although results are very encouraging, a quantitative analysis of the cortical area activated in such postural changes still needs to be deeply investigated. More specifically, this paper shows EEG power spectra and brain symmetry index modifications during a verticalization procedure, from 0 to 60 degrees, of three patients in Minimally Consciousness State (MCS) with focused region of impairment. Experimental results show a significant increase of the power in β band (12 - 30 Hz), commonly associated to human alertness process, thus suggesting that mobilization and postural changes can have beneficial effects in MCS patients.

  9. Tele-transmission of EEG recordings.

    PubMed

    Lemesle, M; Kubis, N; Sauleau, P; N'Guyen The Tich, S; Touzery-de Villepin, A

    2015-03-01

    EEG recordings can be sent for remote interpretation. This article aims to define the tele-EEG procedures and technical guidelines. Tele-EEG is a complete medical act that needs to be carried out with the same quality requirements as a local one in terms of indications, formulation of the medical request and medical interpretation. It adheres to the same quality requirements for its human resources and materials. It must be part of a medical organization (technical and medical network) and follow all rules and guidelines of good medical practices. The financial model of this organization must include costs related to performing the EEG recording, operating and maintenance of the tele-EEG network and medical fees of the physician interpreting the EEG recording. Implementing this organization must be detailed in a convention between all parties involved: physicians, management of the healthcare structure, and the company providing the tele-EEG service. This convention will set rules for network operation and finance, and also the continuous training of all staff members. The tele-EEG system must respect all rules for safety and confidentiality, and ensure the traceability and storing of all requests and reports. Under these conditions, tele-EEG can optimize the use of human resources and competencies in its zone of utilization and enhance the organization of care management. Copyright © 2015. Published by Elsevier SAS.

  10. Modulation of the COMT Val(158)Met polymorphism on resting-state EEG power.

    PubMed

    Solís-Ortiz, Silvia; Pérez-Luque, Elva; Gutiérrez-Muñoz, Mayra

    2015-01-01

    The catechol-O-methyltransferase (COMT) Val(158)Met polymorphism impacts cortical dopamine (DA) levels and may influence cortical electrical activity in the human brain. This study investigated whether COMT genotype influences resting-state electroencephalogram (EEG) power in the frontal, parietal and midline regions in healthy volunteers. EEG recordings were conducted in the resting-state in 13 postmenopausal healthy woman carriers of the Val/Val genotype and 11 with the Met/Met genotype. The resting EEG spectral absolute power in the frontal (F3, F4, F7, F8, FC3 and FC4), parietal (CP3, CP4, P3 and P4) and midline (Fz, FCz, Cz, CPz, Pz and Oz) was analyzed during the eyes-open and eyes-closed conditions. The frequency bands considered were the delta, theta, alpha1, alpha2, beta1 and beta2. EEG data of the Val/Val and Met/Met genotypes, brain regions and conditions were analyzed using a general linear model analysis. In the individuals with the Met/Met genotype, delta activity was increased in the eyes-closed condition, theta activity was increased in the eyes-closed and in the eyes-open conditions, and alpha1 band, alpha2 band and beta1band activity was increased in the eyes-closed condition. A significant interaction between COMT genotypes and spectral bands was observed. Met homozygote individuals exhibited more delta, theta and beta1 activity than individuals with the Val/Val genotype. No significant interaction between COMT genotypes and the resting-state EEG regional power and conditions were observed for the three brain regions studied. Our findings indicate that the COMT Val(158)Met polymorphism does not directly impact resting-state EEG regional power, but instead suggest that COMT genotype can modulate resting-state EEG spectral power in postmenopausal healthy women.

  11. Modulation of the COMT Val158Met polymorphism on resting-state EEG power

    PubMed Central

    Solís-Ortiz, Silvia; Pérez-Luque, Elva; Gutiérrez-Muñoz, Mayra

    2015-01-01

    The catechol-O-methyltransferase (COMT) Val158Met polymorphism impacts cortical dopamine (DA) levels and may influence cortical electrical activity in the human brain. This study investigated whether COMT genotype influences resting-state electroencephalogram (EEG) power in the frontal, parietal and midline regions in healthy volunteers. EEG recordings were conducted in the resting-state in 13 postmenopausal healthy woman carriers of the Val/Val genotype and 11 with the Met/Met genotype. The resting EEG spectral absolute power in the frontal (F3, F4, F7, F8, FC3 and FC4), parietal (CP3, CP4, P3 and P4) and midline (Fz, FCz, Cz, CPz, Pz and Oz) was analyzed during the eyes-open and eyes-closed conditions. The frequency bands considered were the delta, theta, alpha1, alpha2, beta1 and beta2. EEG data of the Val/Val and Met/Met genotypes, brain regions and conditions were analyzed using a general linear model analysis. In the individuals with the Met/Met genotype, delta activity was increased in the eyes-closed condition, theta activity was increased in the eyes-closed and in the eyes-open conditions, and alpha1 band, alpha2 band and beta1band activity was increased in the eyes-closed condition. A significant interaction between COMT genotypes and spectral bands was observed. Met homozygote individuals exhibited more delta, theta and beta1 activity than individuals with the Val/Val genotype. No significant interaction between COMT genotypes and the resting-state EEG regional power and conditions were observed for the three brain regions studied. Our findings indicate that the COMT Val158Met polymorphism does not directly impact resting-state EEG regional power, but instead suggest that COMT genotype can modulate resting-state EEG spectral power in postmenopausal healthy women. PMID:25883560

  12. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.

    PubMed

    Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling

    2017-07-01

    Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.

  13. The study of brain activity during the observation of commercial advertising by using high resolution EEG techniques.

    PubMed

    Vecchiato, Giovanni; Astolfi, Laura; De Vico Fallani, Fabrizio; Salinari, Serenella; Cincotti, Febo; Aloise, Fabio; Mattia, Donatella; Marciani, Maria Grazia; Bianchi, Luigi; Soranzo, Ramon; Babiloni, Fabio

    2009-01-01

    In this paper we illustrate the capability of tracking brain activity during the observation of commercial TV spots by using advanced high resolution EEG statistical techniques in time and frequency domains. In particular, we analyzed the statistically significant cortical spectral power activity in different frequency bands during the observation of a commercial video clip related to the use of a beer in a group of 13 normal subjects. In addition, a TV speech of the prime minister of Italy was analyzed in two groups of swing and "supporter" voters. Results suggested that the cortical activity during the observation of commercial spots could vary consistently across the spot. This fact suggest the possibility to remove the part of the spot that are not particularly attractive by using those cerebral indexes. The cortical activity during the observation of the political speech indicated a major cortical activity in the supporters group when compared to the swing voters. In this case, it is possible to conclude that the communication proposed has failed to raise attention or interest on swing voters. In conclusions, high resolution EEG have been proved able to generate useful insights about the particular fruition of TV messages, related to both commercial as well as political fields.

  14. Design of a Wireless EEG System for Point-of-Care Applications.

    PubMed

    Jia, Wenyan; Bai, Yicheng; Sun, Mingui; Sclabassi, Robert J

    2013-04-01

    This study aims to develop a wireless EEG system to provide critical point-of-care information about brain electrical activity. A novel dry electrode, which can be installed rapidly, is used to acquire EEG from the scalp. A wireless data link between the electrode and a data port (i.e., a smartphone) is established based on the Bluetooth technology. A prototype of this system has been implemented and its performance in acquiring EEG has been evaluated.

  15. Length matters: Improved high field EEG-fMRI recordings using shorter EEG cables.

    PubMed

    Assecondi, Sara; Lavallee, Christina; Ferrari, Paolo; Jovicich, Jorge

    2016-08-30

    The use of concurrent EEG-fMRI recordings has increased in recent years, allowing new avenues of medical and cognitive neuroscience research; however, currently used setups present problems with data quality and reproducibility. We propose a compact experimental setup for concurrent EEG-fMRI at 4T and compare it to a more standard reference setup. The compact setup uses short EEG cables connecting to the amplifiers, which are placed right at the back of the head RF coil on a form-fitting extension force-locked to the patient MR bed. We compare the two setups in terms of sensitivity to MR-room environmental noise, interferences between measuring devices (EEG or fMRI), and sensitivity to functional responses in a visual stimulation paradigm. The compact setup reduces the system sensitivity to both external noise and MR-induced artefacts by at least 60%, with negligible EEG noise induced from the mechanical vibrations of the cryogenic cooling compression pump. The compact setup improved EEG data quality and the overall performance of MR-artifact correction techniques. Both setups were similar in terms of the fMRI data, with higher reproducibility for cable placement within the scanner in the compact setup. This improved compact setup may be relevant to MR laboratories interested in reducing the sensitivity of their EEG-fMRI experimental setup to external noise sources, setting up an EEG-fMRI workplace for the first time, or for creating a more reproducible configuration of equipment and cables. Implications for safety and ergonomics are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Wearable ear EEG for brain interfacing

    NASA Astrophysics Data System (ADS)

    Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.

    2017-02-01

    Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.

  17. Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG.

    PubMed

    Shafi, Mouhsin M; Westover, M Brandon; Cole, Andrew J; Kilbride, Ronan D; Hoch, Daniel B; Cash, Sydney S

    2012-10-23

    To determine whether the absence of early epileptiform abnormalities predicts absence of later seizures on continuous EEG monitoring of hospitalized patients. We retrospectively reviewed 242 consecutive patients without a prior generalized convulsive seizure or active epilepsy who underwent continuous EEG monitoring lasting at least 18 hours for detection of nonconvulsive seizures or evaluation of unexplained altered mental status. The findings on the initial 30-minute screening EEG, subsequent continuous EEG recordings, and baseline clinical data were analyzed. We identified early EEG findings associated with absence of seizures on subsequent continuous EEG. Seizures were detected in 70 (29%) patients. A total of 52 patients had their first seizure in the initial 30 minutes of continuous EEG monitoring. Of the remaining 190 patients, 63 had epileptiform discharges on their initial EEG, 24 had triphasic waves, while 103 had no epileptiform abnormalities. Seizures were later detected in 22% (n = 14) of studies with epileptiform discharges on their initial EEG, vs 3% (n = 3) of the studies without epileptiform abnormalities on initial EEG (p < 0.001). In the 3 patients without epileptiform abnormalities on initial EEG but with subsequent seizures, the first epileptiform discharge or electrographic seizure occurred within the first 4 hours of recording. In patients without epileptiform abnormalities during the first 4 hours of recording, no seizures were subsequently detected. Therefore, EEG features early in the recording may indicate a low risk for seizures, and help determine whether extended monitoring is necessary.

  18. Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG

    PubMed Central

    Westover, M. Brandon; Cole, Andrew J.; Kilbride, Ronan D.; Hoch, Daniel B.; Cash, Sydney S.

    2012-01-01

    Objective: To determine whether the absence of early epileptiform abnormalities predicts absence of later seizures on continuous EEG monitoring of hospitalized patients. Methods: We retrospectively reviewed 242 consecutive patients without a prior generalized convulsive seizure or active epilepsy who underwent continuous EEG monitoring lasting at least 18 hours for detection of nonconvulsive seizures or evaluation of unexplained altered mental status. The findings on the initial 30-minute screening EEG, subsequent continuous EEG recordings, and baseline clinical data were analyzed. We identified early EEG findings associated with absence of seizures on subsequent continuous EEG. Results: Seizures were detected in 70 (29%) patients. A total of 52 patients had their first seizure in the initial 30 minutes of continuous EEG monitoring. Of the remaining 190 patients, 63 had epileptiform discharges on their initial EEG, 24 had triphasic waves, while 103 had no epileptiform abnormalities. Seizures were later detected in 22% (n = 14) of studies with epileptiform discharges on their initial EEG, vs 3% (n = 3) of the studies without epileptiform abnormalities on initial EEG (p < 0.001). In the 3 patients without epileptiform abnormalities on initial EEG but with subsequent seizures, the first epileptiform discharge or electrographic seizure occurred within the first 4 hours of recording. Conclusions: In patients without epileptiform abnormalities during the first 4 hours of recording, no seizures were subsequently detected. Therefore, EEG features early in the recording may indicate a low risk for seizures, and help determine whether extended monitoring is necessary. PMID:23054233

  19. Muscle and eye movement artifact removal prior to EEG source localization.

    PubMed

    Hallez, Hans; Vergult, Anneleen; Phlypo, Ronald; Van Hese, Peter; De Clercq, Wim; D'Asseler, Yves; Van de Walle, Rik; Vanrumste, Bart; Van Paesschen, Wim; Van Huffel, Sabine; Lemahieu, Ignace

    2006-01-01

    Muscle and eye movement artifacts are very prominent in the ictal EEG of patients suffering from epilepsy, thus making the dipole localization of ictal activity very unreliable. Recently, two techniques (BSS-CCA and pSVD) were developed to remove those artifacts. The purpose of this study is to assess whether the removal of muscle and eye movement artifacts improves the EEG dipole source localization. We used a total of 8 EEG fragments, each from another patient, first unfiltered, then filtered by the BSS-CCA and pSVD. In both the filtered and unfiltered EEG fragments we estimated multiple dipoles using RAP-MUSIC. The resulting dipoles were subjected to a K-means clustering algorithm, to extract the most prominent cluster. We found that the removal of muscle and eye artifact results to tighter and more clear dipole clusters. Furthermore, we found that localization of the filtered EEG corresponded with the localization derived from the ictal SPECT in 7 of the 8 patients. Therefore, we can conclude that the BSS-CCA and pSVD improve localization of ictal activity, thus making the localization more reliable for the presurgical evaluation of the patient.

  20. [EEG features during olfactory stimulation in drug dependence persons].

    PubMed

    Batukhtina, E I; Nevidimova, T I; Vetlugina, T P; Kokorina, N P; Bokhan, N A

    2013-01-01

    Power spectra analysis EEG was used for baseline interval and during olfactory stimulation in drug dependence and healthy persons. Intergroup differences of EEG spectra were related with enhancement of cortex biopotential power in narcological patients at parietal and temporal sites. Interhemispheres features of frequency bands contribution in EEG spectra were identified. Increased biopotential power in drug dependence persons was observed at left temporal hemisphere in high-frequency bands in baseline interval and during olfactory stimulation. Increased power of alpha activity was typical for right temporal hemisphere in narcological patients as compare to healthy persons. Detected neurophysiological patterns may be related with psychological and behavioral features of addictive disorders.

  1. Source-space EEG neurofeedback links subjective experience with brain activity during effortless awareness meditation.

    PubMed

    van Lutterveld, Remko; Houlihan, Sean D; Pal, Prasanta; Sacchet, Matthew D; McFarlane-Blake, Cinque; Patel, Payal R; Sullivan, John S; Ossadtchi, Alex; Druker, Susan; Bauer, Clemens; Brewer, Judson A

    2017-05-01

    Meditation is increasingly showing beneficial effects for psychiatric disorders. However, learning to meditate is not straightforward as there are no easily discernible outward signs of performance and thus no direct feedback is possible. As meditation has been found to correlate with posterior cingulate cortex (PCC) activity, we tested whether source-space EEG neurofeedback from the PCC followed the subjective experience of effortless awareness (a major component of meditation), and whether participants could volitionally control the signal. Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators were briefly trained to perform a basic meditation practice to induce the subjective experience of effortless awareness in a progressively more challenging neurofeedback test-battery. Experienced meditators performed a self-selected meditation practice to induce this state in the same test-battery. Neurofeedback was provided based on gamma-band (40-57Hz) PCC activity extracted using a beamformer algorithm. Associations between PCC activity and the subjective experience of effortless awareness were assessed by verbal probes. Both groups reported that decreased PCC activity corresponded with effortless awareness (P<0.0025 for each group), with high median confidence ratings (novices: 8 on a 0-10 Likert scale; experienced: 9). Both groups showed high moment-to-moment median correspondence ratings between PCC activity and subjective experience of effortless awareness (novices: 8, experienced: 9). Both groups were able to volitionally control the PCC signal in the direction associated with effortless awareness by practicing effortless awareness meditation (novices: median % of time=77.97, P=0.001; experienced: 89.83, P<0.0005). These findings support the feasibility of using EEG neurofeedback to link an objective measure of brain activity with the subjective experience of effortless awareness, and suggest potential utility of

  2. Linking EEG signals, brain functions and mental operations: Advantages of the Laplacian transformation.

    PubMed

    Vidal, Franck; Burle, Boris; Spieser, Laure; Carbonnell, Laurence; Meckler, Cédric; Casini, Laurence; Hasbroucq, Thierry

    2015-09-01

    Electroencephalography (EEG) is a very popular technique for investigating brain functions and/or mental processes. To this aim, EEG activities must be interpreted in terms of brain and/or mental processes. EEG signals being a direct manifestation of neuronal activity it is often assumed that such interpretations are quite obvious or, at least, straightforward. However, they often rely on (explicit or even implicit) assumptions regarding the structures supposed to generate the EEG activities of interest. For these assumptions to be used appropriately, reliable links between EEG activities and the underlying brain structures must be established. Because of volume conduction effects and the mixture of activities they induce, these links are difficult to establish with scalp potential recordings. We present different examples showing how the Laplacian transformation, acting as an efficient source separation method, allowed to establish more reliable links between EEG activities and brain generators and, ultimately, with mental operations. The nature of those links depends on the depth of inferences that can vary from weak to strong. Along this continuum, we show that 1) while the effects of experimental manipulation can appear widely distributed with scalp potentials, Laplacian transformation allows to reveal several generators contributing (in different manners) to these modulations, 2) amplitude variations within the same set of generators can generate spurious differences in scalp potential topographies, often interpreted as reflecting different source configurations. In such a case, Laplacian transformation provides much more similar topographies, evidencing the same generator(s) set, and 3) using the LRP as an index of response activation most often produces ambiguous results, Laplacian-transformed response-locked ERPs obtained over motor areas allow resolving these ambiguities. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Rummel, C.; Abela, E.; Hauf, M.; Wiest, R.; Schindler, K.

    2013-06-01

    Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMRI.

  4. Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses

    PubMed Central

    Riera, J; Aubert, E; Iwata, K; Kawashima, R; Wan, X; Ozaki, T

    2005-01-01

    The elucidation of the complex machinery used by the human brain to segregate and integrate information while performing high cognitive functions is a subject of imminent future consequences. The most significant contributions to date in this field, known as cognitive neuroscience, have been achieved by using innovative neuroimaging techniques, such as electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), which measure variations in both the time and the space of some interpretable physical magnitudes. Extraordinary maps of cerebral activation involving function-restricted brain areas, as well as graphs of the functional connectivity between them, have been obtained from EEG and fMRI data by solving some spatio-temporal inverse problems, which constitutes a top-down approach. However, in many cases, a natural bridge between these maps/graphs and the causal physiological processes is lacking, leading to some misunderstandings in their interpretation. Recent advances in the comprehension of the underlying physiological mechanisms associated with different cerebral scales have provided researchers with an excellent scenario to develop sophisticated biophysical models that permit an integration of these neuroimage modalities, which must share a common aetiology. This paper proposes a bottom-up approach, involving physiological parameters in a specific mesoscopic dynamic equations system. Further observation equations encapsulating the relationship between the mesostates and the EEG/fMRI data are obtained on the basis of the physical foundations of these techniques. A methodology for the estimation of parameters from fused EEG/fMRI data is also presented. In this context, the concepts of activation and effective connectivity are carefully revised. This new approach permits us to examine and discuss some future prospects for the integration of multimodal neuroimages. PMID:16087446

  5. Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia

    PubMed Central

    Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y.; Ievins, Aiva; McLean, Merritt A.; Niell, Cristopher M.; Chau, Vann; Wong, Peter K. H.; Glass, Hannah C.; Sullivan, Joseph

    2015-01-01

    Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a “precritical period” of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic–ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia–ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral

  6. Spatial and temporal EEG dynamics of dual-task driving performance

    PubMed Central

    2011-01-01

    Background Driver distraction is a significant cause of traffic accidents. The aim of this study is to investigate Electroencephalography (EEG) dynamics in relation to distraction during driving. To study human cognition under a specific driving task, simulated real driving using virtual reality (VR)-based simulation and designed dual-task events are built, which include unexpected car deviations and mathematics questions. Methods We designed five cases with different stimulus onset asynchrony (SOA) to investigate the distraction effects between the deviations and equations. The EEG channel signals are first converted into separated brain sources by independent component analysis (ICA). Then, event-related spectral perturbation (ERSP) changes of the EEG power spectrum are used to evaluate brain dynamics in time-frequency domains. Results Power increases in the theta and beta bands are observed in relation with distraction effects in the frontal cortex. In the motor area, alpha and beta power suppressions are also observed. All of the above results are consistently observed across 15 subjects. Additionally, further analysis demonstrates that response time and multiple cortical EEG power both changed significantly with different SOA. Conclusions This study suggests that theta power increases in the frontal area is related to driver distraction and represents the strength of distraction in real-life situations. PMID:21332977

  7. High density scalp EEG in frontal lobe epilepsy.

    PubMed

    Feyissa, Anteneh M; Britton, Jeffrey W; Van Gompel, Jamie; Lagerlund, Terrance L; So, Elson; Wong-Kisiel, Lilly C; Cascino, Gregory C; Brinkman, Benjamin H; Nelson, Cindy L; Watson, Robert; Worrell, Gregory A

    2017-01-01

    Localization of seizures in frontal lobe epilepsy using the 10-20 system scalp EEG is often challenging because neocortical seizure can spread rapidly, significant muscle artifact, and the suboptimal spatial resolution for seizure generators involving mesial frontal lobe cortex. Our aim in this study was to determine the value of visual interpretation of 76 channel high density EEG (hdEEG) monitoring (10-10 system) in patients with suspected frontal lobe epilepsy, and to evaluate concordance with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional EEG, and intracranial EEG (iEEG). We performed a retrospective cohort study of 14 consecutive patients who underwent hdEEG monitoring for suspected frontal lobe seizures. The gold standard for localization was considered to be iEEG. Concordance of hdEEG findings with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional 10-20 EEG, and iEEG as well as correlation of hdEEG localization with surgical outcome were examined. hdEEG localization was concordant with iEEG in 12/14 and was superior to conventional EEG 3/14 (p<0.01) and SISCOM 3/12 (p<0.01). hdEEG correctly lateralized seizure onset in 14/14 cases, compared to 9/14 (p=0.04) cases with conventional EEG. Seven patients underwent surgical resection, of whom five were seizure free. hdEEG monitoring should be considered in patients with suspected frontal epilepsy requiring localization of epileptogenic brain. hdEEG may assist in developing a hypothesis for iEEG monitoring and could potentially augment EEG source localization. Published by Elsevier B.V.

  8. Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios

    2017-09-01

    Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Corrected Four-Sphere Head Model for EEG Signals.

    PubMed

    Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K

    2017-01-01

    The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.

  10. Corrected Four-Sphere Head Model for EEG Signals

    PubMed Central

    Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V.; Dale, Anders M.; Einevoll, Gaute T.; Wójcik, Daniel K.

    2017-01-01

    The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations. PMID:29093671

  11. EEG entropy measures indicate decrease of cortical information processing in Disorders of Consciousness.

    PubMed

    Thul, Alexander; Lechinger, Julia; Donis, Johann; Michitsch, Gabriele; Pichler, Gerald; Kochs, Eberhard F; Jordan, Denis; Ilg, Rüdiger; Schabus, Manuel

    2016-02-01

    Clinical assessments that rely on behavioral responses to differentiate Disorders of Consciousness are at times inapt because of some patients' motor disabilities. To objectify patients' conditions of reduced consciousness the present study evaluated the use of electroencephalography to measure residual brain activity. We analyzed entropy values of 18 scalp EEG channels of 15 severely brain-damaged patients with clinically diagnosed Minimally-Conscious-State (MCS) or Unresponsive-Wakefulness-Syndrome (UWS) and compared the results to a sample of 24 control subjects. Permutation entropy (PeEn) and symbolic transfer entropy (STEn), reflecting information processes in the EEG, were calculated for all subjects. Participants were tested on a modified active own-name paradigm to identify correlates of active instruction following. PeEn showed reduced local information content in the EEG in patients, that was most pronounced in UWS. STEn analysis revealed altered directed information flow in the EEG of patients, indicating impaired feed-backward connectivity. Responses to auditory stimulation yielded differences in entropy measures, indicating reduced information processing in MCS and UWS. Local EEG information content and information flow are affected in Disorders of Consciousness. This suggests local cortical information capacity and feedback information transfer as neural correlates of consciousness. The utilized EEG entropy analyses were able to relate to patient groups with different Disorders of Consciousness. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Khalsa, S. B.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    1999-01-01

    The aim of this study was to quantify the associations between slow eye movements (SEMs), eye blink rate, waking electroencephalogram (EEG) power density, neurobehavioral performance, and the circadian rhythm of plasma melatonin in a cohort of 10 healthy men during up to 32 h of sustained wakefulness. The time course of neurobehavioral performance was characterized by fairly stable levels throughout the first 16 h of wakefulness followed by deterioration during the phase of melatonin secretion. This deterioration was closely associated with an increase in SEMs. Frontal low-frequency EEG activity (1-7 Hz) exhibited a prominent increase with time awake and little circadian modulation. EEG alpha activity exhibited circadian modulation. The dynamics of SEMs and EEG activity were phase locked to changes in neurobehavioral performance and lagged the plasma melatonin rhythm. The data indicate that frontal areas of the brain are more susceptible to sleep loss than occipital areas. Frontal EEG activity and ocular parameters may be used to monitor and predict changes in neurobehavioral performance associated with sleep loss and circadian misalignment.

  13. Non-restraining EEG Radiotelemetry: Epidural and Deep Intracerebral Stereotaxic EEG Electrode Placement.

    PubMed

    Papazoglou, Anna; Lundt, Andreas; Wormuth, Carola; Ehninger, Dan; Henseler, Christina; Soós, Julien; Broich, Karl; Weiergräber, Marco

    2016-06-25

    Implantable EEG radiotelemetry is of central relevance in the neurological characterization of transgenic mouse models of neuropsychiatric and neurodegenerative diseases as well as epilepsies. This powerful technique does not only provide valuable insights into the underlying pathophysiological mechanisms, i.e., the etiopathogenesis of CNS related diseases, it also facilitates the development of new translational, i.e., therapeutic approaches. Whereas competing techniques that make use of recorder systems used in jackets or tethered systems suffer from their unphysiological restraining to semi-restraining character, radiotelemetric EEG recordings overcome these disadvantages. Technically, implantable EEG radiotelemetry allows for precise and highly sensitive measurement of epidural and deep, intracerebral EEGs under various physiological and pathophysiological conditions. First, we present a detailed protocol of a straight forward, successful, quick and efficient technique for epidural (surface) EEG recordings resulting in high-quality electrocorticograms. Second, we demonstrate how to implant deep, intracerebral EEG electrodes, e.g., in the hippocampus (electrohippocampogram). For both approaches, a computerized 3D stereotaxic electrode implantation system is used. The radiofrequency transmitter itself is implanted into a subcutaneous pouch in both mice and rats. Special attention also has to be paid to pre-, peri- and postoperative treatment of the experimental animals. Preoperative preparation of mice and rats, suitable anesthesia as well as postoperative treatment and pain management are described in detail.

  14. Methodological aspects of EEG and body dynamics measurements during motion

    PubMed Central

    Reis, Pedro M. R.; Hebenstreit, Felix; Gabsteiger, Florian; von Tscharner, Vinzenz; Lochmann, Matthias

    2014-01-01

    EEG involves the recording, analysis, and interpretation of voltages recorded on the human scalp which originate from brain gray matter. EEG is one of the most popular methods of studying and understanding the processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements that are performed in response to the environment. However, there are methodological difficulties which can occur when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions on how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics, and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determinating real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks. PMID:24715858

  15. Goal-directed EEG activity evoked by discriminative stimuli in reinforcement learning.

    PubMed

    Luque, David; Morís, Joaquín; Rushby, Jacqueline A; Le Pelley, Mike E

    2015-02-01

    In reinforcement learning (RL), discriminative stimuli (S) allow agents to anticipate the value of a future outcome, and the response that will produce that outcome. We examined this processing by recording EEG locked to S during RL. Incentive value of outcomes and predictive value of S were manipulated, allowing us to discriminate between outcome-related and response-related activity. S predicting the correct response differed from nonpredictive S in the P2. S paired with high-value outcomes differed from those paired with low-value outcomes in a frontocentral positivity and in the P3b. A slow negativity then distinguished between predictive and nonpredictive S. These results suggest that, first, attention prioritizes detection of informative S. Activation of mental representations of these informative S then retrieves representations of outcomes, which in turn retrieve representations of responses that previously produced those outcomes. © 2014 Society for Psychophysiological Research.

  16. Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study.

    PubMed

    De Ridder, Dirk; Vanneste, Sven; Kovacs, Silvia; Sunaert, Stefan; Dom, Geert

    2011-05-27

    It has recently become clear that alcohol addiction might be related to a brain dysfunction, in which a genetic background and environmental factors shape brain mechanisms involved with alcohol consumption. Craving, a major component determining relapses in alcohol abuse has been linked to abnormal activity in the orbitofrontal cortex, dorsal anterior cingulated cortex (dACC) and amygdala. We report the results of a patient who underwent rTMS targeting the dACC using a double cone coil in an attempt to suppress very severe intractable alcohol craving. Functional imaging studies consisting of fMRI and resting state EEG were performed before rTMS, after successful rTMS and after unsuccessful rTMS with relapse. Craving was associated with EEG beta activity and connectivity between the dACC and PCC in the patient in comparison to a healthy population, which disappeared after successful rTMS. Cue induced worsening of craving pre-rTMS activated the ACC-vmPFC and PCC on fMRI, as well as the nucleus accumbens area, and lateral frontoparietal areas. The nucleus accumbens, ACC-vmPFC and PCC activation disappeared on fMRI following successful rTMS. Relapse was associated with recurrence of ACC and PCC EEG activity, but in gamma band, in comparison to a healthy population. On fMRI nucleus accumbens, ACC and PCC activation returned to the initial activation pattern. A pathophysiological approach is described to suppress alcohol craving temporarily by rTMS directed at the anterior cingulate. Linking functional imaging changes to craving intensity suggests this approach warrants further exploration. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  17. The standardized EEG electrode array of the IFCN.

    PubMed

    Seeck, Margitta; Koessler, Laurent; Bast, Thomas; Leijten, Frans; Michel, Christoph; Baumgartner, Christoph; He, Bin; Beniczky, Sándor

    2017-10-01

    Standardized EEG electrode positions are essential for both clinical applications and research. The aim of this guideline is to update and expand the unifying nomenclature and standardized positioning for EEG scalp electrodes. Electrode positions were based on 20% and 10% of standardized measurements from anatomical landmarks on the skull. However, standard recordings do not cover the anterior and basal temporal lobes, which is the most frequent source of epileptogenic activity. Here, we propose a basic array of 25 electrodes including the inferior temporal chain, which should be used for all standard clinical recordings. The nomenclature in the basic array is consistent with the 10-10-system. High-density scalp EEG arrays (64-256 electrodes) allow source imaging with even sub-lobar precision. This supplementary exam should be requested whenever necessary, e.g. search for epileptogenic activity in negative standard EEG or for presurgical evaluation. In the near future, nomenclature for high density electrodes arrays beyond the 10-10 system needs to be defined, to allow comparison and standardized recordings across centers. Contrary to the established belief that smaller heads needs less electrodes, in young children at least as many electrodes as in adults should be applied due to smaller skull thickness and the risk of spatial aliasing. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Dynamics of convulsive seizure termination and postictal generalized EEG suppression

    PubMed Central

    Bauer, Prisca R.; Thijs, Roland D.; Lamberts, Robert J.; Velis, Demetrios N.; Visser, Gerhard H.; Tolner, Else A.; Sander, Josemir W.; Lopes da Silva, Fernando H.; Kalitzin, Stiliyan N.

    2017-01-01

    Abstract It is not fully understood how seizures terminate and why some seizures are followed by a period of complete brain activity suppression, postictal generalized EEG suppression. This is clinically relevant as there is a potential association between postictal generalized EEG suppression, cardiorespiratory arrest and sudden death following a seizure. We combined human encephalographic seizure data with data of a computational model of seizures to elucidate the neuronal network dynamics underlying seizure termination and the postictal generalized EEG suppression state. A multi-unit computational neural mass model of epileptic seizure termination and postictal recovery was developed. The model provided three predictions that were validated in EEG recordings of 48 convulsive seizures from 48 subjects with refractory focal epilepsy (20 females, age range 15–61 years). The duration of ictal and postictal generalized EEG suppression periods in human EEG followed a gamma probability distribution indicative of a deterministic process (shape parameter 2.6 and 1.5, respectively) as predicted by the model. In the model and in humans, the time between two clonic bursts increased exponentially from the start of the clonic phase of the seizure. The terminal interclonic interval, calculated using the projected terminal value of the log-linear fit of the clonic frequency decrease was correlated with the presence and duration of postictal suppression. The projected terminal interclonic interval explained 41% of the variation in postictal generalized EEG suppression duration (P < 0.02). Conversely, postictal generalized EEG suppression duration explained 34% of the variation in the last interclonic interval duration. Our findings suggest that postictal generalized EEG suppression is a separate brain state and that seizure termination is a plastic and autonomous process, reflected in increased duration of interclonic intervals that determine the duration of postictal

  19. EEG during pedaling: Evidence for cortical control of locomotor tasks

    PubMed Central

    Jain, Sanket; Gourab, Krishnaj; Schindler-Ivens, Sheila; Schmit, Brian D.

    2014-01-01

    Objective This study characterized the brain electrical activity during pedaling, a locomotor-like task, in humans. We postulated that phasic brain activity would be associated with active pedaling, consistent with a cortical role in locomotor tasks. Methods Sixty four channels of electroencephalogram (EEG) and 10 channels of electromyogram (EMG) data were recorded from 10 neurologically-intact volunteers while they performed active and passive (no effort) pedaling on a custom-designed stationary bicycle. Ensemble averaged waveforms, 2 dimensional topographic maps and amplitude of the β (13–35 Hz) frequency band were analyzed and compared between active and passive trials. Results The peak-to-peak amplitude (peak positive–peak negative) of the EEG waveform recorded at the Cz electrode was higher in the passive than the active trials (p < 0.01). β-band oscillations in electrodes overlying the leg representation area of the cortex were significantly desynchronized during active compared to the passive pedaling (p < 0.01). A significant negative correlation was observed between the average EEG waveform for active trials and the composite EMG (summated EMG from both limbs for each muscle) of the rectus femoris (r = −0.77, p < 0.01) the medial hamstrings (r = −0.85, p < 0.01) and the tibialis anterior (r = −0.70, p < 0.01) muscles. Conclusions These results demonstrated that substantial sensorimotor processing occurs in the brain during pedaling in humans. Further, cortical activity seemed to be greatest during recruitment of the muscles critical for transitioning the legs from flexion to extension and vice versa. Significance This is the first study demonstrating the feasibility of EEG recording during pedaling, and owing to similarities between pedaling and bipedal walking, may provide valuable insight into brain activity during locomotion in humans. PMID:23036179

  20. Presleep relaxed 7-8 Hz EEG from left frontal region: marker of localised neuropsychological performance?

    PubMed

    Anderson, Clare; Horne, James A

    2004-06-01

    Others have shown that frontally dominant EEG activity of around 7-8 Hz is linked to ongoing cognitive performance. Interestingly, we have found that this EEG activity is particularly evident during the relatively artefact-free period following "lights out" at bedtime when people report "thinking" when lying relaxed in their own beds prior to the appearance of EEG-determined sleepiness. Here, we explore the extent to which this localised activity is indicative of 'trait' performance on left frontal neuropsychological tasks, as well as with less localised, more general tasks. Twelve right-handed young adults (mean age: 21.3 years) and 12 right-handed older adults (mean age: 67.2 years) underwent (i) morning, laboratory-based, waking EEGs comprising (eyes closed) contrived thinking tasks, and (ii) a home-based wake EEG at bedtime. EEGs divided the cortex into the four comparable quadrants: Fp1-F3; Fp2-F4; O1-P3; and O2-P4. From a wide frequency band of 3-10 Hz analysed in 1-Hz bins, only 7-8 Hz was associated with the neuropsychological performance (nonverbal planning, verbal fluency) for both younger and older participants. This was most evident during relaxed waking after 'lights out,' and from the left frontal EEG. Such associations were not apparent for the other EEG channels or for the nonspecific tasks. Laboratory-based daytime, frontal EEG recordings are problematic because of eye movement artefact and when participants are not fully relaxed. In contrast, the nighttime data are almost artefact-free and from fully relaxed participants. This particular EEG is useful for assessing cortically localised behaviour and indicates that a more traditional approach of using large bandwidths (e.g., the whole of "alpha" or "theta" ranges) may mask subfrequencies of functional importance.

  1. The Utility of EEG in Attention Deficit Hyperactivity Disorder: A Replication Study.

    PubMed

    Swatzyna, Ronald J; Tarnow, Jay D; Roark, Alexandra; Mardick, Jacob

    2017-07-01

    The routine use of stimulants in pediatrics has increased dramatically over the past 3 decades and the long-term consequences have yet to be fully studied. Since 1978 there have been 7 articles identifying electroencephalogram (EEG) abnormalities, particularly epileptiform discharges in children with attention deficit hyperactivity disorder (ADHD). Many have studied the prevalence of these discharges in this population with varying results. An article published in 2011 suggests that EEG technology should be considered prior to prescribing stimulants to children diagnosed with ADHD due to a high prevalence of epileptiform discharges. The 2011 study found a higher prevalence (26%) of epileptiform discharges when using 23-hour and sleep-deprived EEGs in comparison with other methods of activation (hyperventilation or photostimulation) and conventional EEG. We sought to replicate the 2011 results using conventional EEG with the added qEEG technologies of automatic spike detection and low-resolution electromagnetic tomography analysis (LORETA) brain mapping. Our results showed 32% prevalence of epileptiform discharges, which suggests that an EEG should be considered prior to prescribing stimulant medications.

  2. [EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone].

    PubMed

    Bazanova, O M; Kondratenko, A V; Kuz'minova, O I; Muravleva, K B; Petrova, S E

    2014-01-01

    The effects of the neurohumoral status on the EEG alpha - activity indices were studied in a within-subject design with 78 women aged 18-27 years during 1-2 menstrual cycle. Psychometric and EEG indices of alpha waves basal body temperature, saliva progesterone and cortisol level were monitored every 2-3 days. Menstrual and follicular recording sessions occurred before the ovulatory temperature rise, luteal recording session--after increasing progesterone level more than 20% respect to previous day and premenstrual sessions after decreasing progesterone level more that 20% respect to previous day. The design consisted of rest and task periods EEG, EMG and ECG recordings. Half the subjects began during their menstrual phase and half began during their luteal phase. All 5 phases were compared for differences between psychometric features EEG alpha activity, EMG and ECG baseline resting levels, as well as for reactivity to cognitive task. The results showed menstrual phase differences in all psychometric and alpha EEG indices. The cognitive fluency, alpha peak frequency, alpha band width, power in alpha-2 frequency range are maximal at luteal, alpha visual activation and reactivity to cognitive task performance--at follicular phase. The hypothesis that the EEG alpha activity depends on the hormonal status supported by the positive association salivary progesterone level with the alpha peak frequency, power in the alpha-2 band and negative--with the power of the alpha-1 band. According these results, we conclude that psycho-physiological recording sessions with women might be provided with a glance to phase of menstrual cycle.

  3. Detection of EEG-patterns associated with real and imaginary movements using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Runnova, Anastasiya E.; Maksimenko, Vladimir A.; Grishina, Daria S.; Hramov, Alexander E.

    2018-02-01

    Authentic recognition of specific patterns of electroencephalograms (EEGs) associated with real and imagi- nary movements is an important stage for the development of brain-computer interfaces. In experiments with untrained participants, the ability to detect the motor-related brain activity based on the multichannel EEG processing is demonstrated. Using the detrended fluctuation analysis, changes in the EEG patterns during the imagination of hand movements are reported. It is discussed how the ability to recognize brain activity related to motor executions depends on the electrode position.

  4. Anterior EEG asymmetries and opponent process theory.

    PubMed

    Kline, John P; Blackhart, Ginette C; Williams, William C

    2007-03-01

    The opponent process theory of emotion [Solomon, R.L., and Corbit, J.D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81, 119-143.] predicts a temporary reversal of emotional valence during the recovery from emotional stimulation. We hypothesized that this affective contrast would be apparent in asymmetrical activity patterns in the frontal lobes, and would be more apparent for left frontally active individuals. The present study tested this prediction by examining EEG asymmetries during and after blocked presentations of aversive pictures selected from the International Affective Picture System (IAPS). 12 neutral images, 12 aversive images, and 24 neutral images were presented in blocks. Participants who were right frontally active at baseline did not show changes in EEG asymmetry while viewing aversive slides or after cessation. Participants left frontally active at baseline, however, exhibited greater relative left frontal activity after aversive stimulation than before stimulation. Asymmetrical activity patterns in the frontal lobes may relate to affect regulatory processes, including contrasting opponent after-reactions to aversive stimuli.

  5. Methods and utility of EEG-fMRI in epilepsy

    PubMed Central

    Lemieux, Louis; Chaudhary, Umair Javaid

    2015-01-01

    Brain activity data in general and more specifically in epilepsy can be represented as a matrix that includes measures of electrophysiology, anatomy and behaviour. Each of these sub-matrices has a complex interaction depending upon the brain state i.e., rest, cognition, seizures and interictal periods. This interaction presents significant challenges for interpretation but also potential for developing further insights into individual event types. Successful treatments in epilepsy hinge on unravelling these complexities, and also on the sensitivity and specificity of methods that characterize the nature and localization of underlying physiological and pathological networks. Limitations of pharmacological and surgical treatments call for refinement and elaboration of methods to improve our capability to localise the generators of seizure activity and our understanding of the neurobiology of epilepsy. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI), by potentially circumventing some of the limitations of EEG in terms of sensitivity, can allow the mapping of haemodynamic networks over the entire brain related to specific spontaneous and triggered epileptic events in humans, and thereby provide new localising information. In this work we review the published literature, and discuss the methods and utility of EEG-fMRI in localising the generators of epileptic activity. We draw on our experience and that of other groups, to summarise the spectrum of information provided by an increasing number of EEG-fMRI case-series, case studies and group studies in patients with epilepsy, for its potential role to elucidate epileptic generators and networks. We conclude that EEG-fMRI provides a multidimensional view that contributes valuable clinical information to localize the epileptic focus with potential important implications for the surgical treatment of some patients with drug-resistant epilepsy, and insights into the resting state and

  6. 3D Printed Dry EEG Electrodes

    PubMed Central

    Krachunov, Sammy; Casson, Alexander J.

    2016-01-01

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise. PMID:27706094

  7. 3D Printed Dry EEG Electrodes.

    PubMed

    Krachunov, Sammy; Casson, Alexander J

    2016-10-02

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  8. Prediction of subjective ratings of emotional pictures by EEG features

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Parvaz, Muhammad A.; Sarnacki, William A.; Goldstein, Rita Z.; Wolpaw, Jonathan R.

    2017-02-01

    Objective. Emotion dysregulation is an important aspect of many psychiatric disorders. Brain-computer interface (BCI) technology could be a powerful new approach to facilitating therapeutic self-regulation of emotions. One possible BCI method would be to provide stimulus-specific feedback based on subject-specific electroencephalographic (EEG) responses to emotion-eliciting stimuli. Approach. To assess the feasibility of this approach, we studied the relationships between emotional valence/arousal and three EEG features: amplitude of alpha activity over frontal cortex; amplitude of theta activity over frontal midline cortex; and the late positive potential over central and posterior mid-line areas. For each feature, we evaluated its ability to predict emotional valence/arousal on both an individual and a group basis. Twenty healthy participants (9 men, 11 women; ages 22-68) rated each of 192 pictures from the IAPS collection in terms of valence and arousal twice (96 pictures on each of 4 d over 2 weeks). EEG was collected simultaneously and used to develop models based on canonical correlation to predict subject-specific single-trial ratings. Separate models were evaluated for the three EEG features: frontal alpha activity; frontal midline theta; and the late positive potential. In each case, these features were used to simultaneously predict both the normed ratings and the subject-specific ratings. Main results. Models using each of the three EEG features with data from individual subjects were generally successful at predicting subjective ratings on training data, but generalization to test data was less successful. Sparse models performed better than models without regularization. Significance. The results suggest that the frontal midline theta is a better candidate than frontal alpha activity or the late positive potential for use in a BCI-based paradigm designed to modify emotional reactions.

  9. The Effect of Electroencephalogram (EEG) Reference Choice on Information-Theoretic Measures of the Complexity and Integration of EEG Signals

    PubMed Central

    Trujillo, Logan T.; Stanfield, Candice T.; Vela, Ruben D.

    2017-01-01

    Converging evidence suggests that human cognition and behavior emerge from functional brain networks interacting on local and global scales. We investigated two information-theoretic measures of functional brain segregation and integration—interaction complexity CI(X), and integration I(X)—as applied to electroencephalographic (EEG) signals and how these measures are affected by choice of EEG reference. CI(X) is a statistical measure of the system entropy accounted for by interactions among its elements, whereas I(X) indexes the overall deviation from statistical independence of the individual elements of a system. We recorded 72 channels of scalp EEG from human participants who sat in a wakeful resting state (interleaved counterbalanced eyes-open and eyes-closed blocks). CI(X) and I(X) of the EEG signals were computed using four different EEG references: linked-mastoids (LM) reference, average (AVG) reference, a Laplacian (LAP) “reference-free” transformation, and an infinity (INF) reference estimated via the Reference Electrode Standardization Technique (REST). Fourier-based power spectral density (PSD), a standard measure of resting state activity, was computed for comparison and as a check of data integrity and quality. We also performed dipole source modeling in order to assess the accuracy of neural source CI(X) and I(X) estimates obtained from scalp-level EEG signals. CI(X) was largest for the LAP transformation, smallest for the LM reference, and at intermediate values for the AVG and INF references. I(X) was smallest for the LAP transformation, largest for the LM reference, and at intermediate values for the AVG and INF references. Furthermore, across all references, CI(X) and I(X) reliably distinguished between resting-state conditions (larger values for eyes-open vs. eyes-closed). These findings occurred in the context of the overall expected pattern of resting state PSD. Dipole modeling showed that simulated scalp EEG-level CI(X) and I

  10. Prognostic value of EEG in different etiological types of coma.

    PubMed

    Khaburzania, M; Beridze, M

    2013-06-01

    Study aimed at evaluation of prognostic value of standard EEG in different etiology of coma and the influence of etiological factor on the EEG patterns and coma outcome. Totally 175 coma patients were investigated. Patients were evaluated by Glasgow Coma Scale (GCS), clinically and by 16 channel electroencephalography. Auditory evoked potentials studied by EEG -regime for evoked potentials in patients with vegetative state (VS). Patients divided in 8 groups according to coma etiology. All patients were studied for photoreaction, brainstem reflexes, localization of sound and pain, length of coma state and outcome. Brain injury visualized by conventional CT. Outcome defined as death, VS, recovery with disability and without disability. Disability was rated by Disability Rating Scale (DRS). Recovered patients assessed by Mini Mental State Examination (MMSE) scale. Statistics performed by SPSS-11.0. From 175 coma patients 55 patients died, 23 patients found in VS, 97 patients recovered with and without disability. In all etiological groups of coma the background EEG patterns were established. Correspondence analysis of all investigated factors revealed that sound localization had the significant association with EEG delta and theta rhythms and with recovery from coma state (Chi-sqr. =31.10493; p= 0.000001). Among 23 VS patients 9 patients had the signs of MCS and showed the long latency waves (p300) after binaural stimulation. The high amplitude theta frequencies in frontal and temporal lobes significantly correlated with prolongation of latency of cognitive evoked potentials (r=+0.47; p<0.01). Etiological factor had the significant effect on EEG patterns' association with coma outcome only in hemorrhagic and traumatic coma (chi-sqr.=12.95; p<0.005; chi-sqr.=7.92; p<0.03 respectively). Significant correlations established between the delta and theta EEG patterns and coma outcome. Low amplitude decreased power delta and theta frequencies correlated with SND in survived

  11. Continuous EEG monitoring in the intensive care unit.

    PubMed

    Scheuer, Mark L

    2002-01-01

    Continuous EEG (CEEG) monitoring allows uninterrupted assessment of cerebral cortical activity with good spatial resolution and excellent temporal resolution. Thus, this procedure provides a means of constantly assessing brain function in critically ill obtunded and comatose patients. Recent advances in digital EEG acquisition, storage, quantitative analysis, and transmission have made CEEG monitoring in the intensive care unit (ICU) technically feasible and useful. This article summarizes the indications and methodology of CEEG monitoring in the ICU, and discusses the role of some quantitative EEG analysis techniques in near real-time remote observation of CEEG recordings. Clinical examples of CEEG use, including monitoring of status epilepticus, assessment of ongoing therapy for treatment of seizures in critically ill patients, and monitoring for cerebral ischemia, are presented. Areas requiring further development of CEEG monitoring techniques and indications are discussed.

  12. Test-retest reliability of cognitive EEG

    NASA Technical Reports Server (NTRS)

    McEvoy, L. K.; Smith, M. E.; Gevins, A.

    2000-01-01

    OBJECTIVE: Task-related EEG is sensitive to changes in cognitive state produced by increased task difficulty and by transient impairment. If task-related EEG has high test-retest reliability, it could be used as part of a clinical test to assess changes in cognitive function. The aim of this study was to determine the reliability of the EEG recorded during the performance of a working memory (WM) task and a psychomotor vigilance task (PVT). METHODS: EEG was recorded while subjects rested quietly and while they performed the tasks. Within session (test-retest interval of approximately 1 h) and between session (test-retest interval of approximately 7 days) reliability was calculated for four EEG components: frontal midline theta at Fz, posterior theta at Pz, and slow and fast alpha at Pz. RESULTS: Task-related EEG was highly reliable within and between sessions (r0.9 for all components in WM task, and r0.8 for all components in the PVT). Resting EEG also showed high reliability, although the magnitude of the correlation was somewhat smaller than that of the task-related EEG (r0.7 for all 4 components). CONCLUSIONS: These results suggest that under appropriate conditions, task-related EEG has sufficient retest reliability for use in assessing clinical changes in cognitive status.

  13. Separation and reconstruction of BCG and EEG signals during continuous EEG and fMRI recordings

    PubMed Central

    Xia, Hongjing; Ruan, Dan; Cohen, Mark S.

    2014-01-01

    Despite considerable effort to remove it, the ballistocardiogram (BCG) remains a major artifact in electroencephalographic data (EEG) acquired inside magnetic resonance imaging (MRI) scanners, particularly in continuous (as opposed to event-related) recordings. In this study, we have developed a new Direct Recording Prior Encoding (DRPE) method to extract and separate the BCG and EEG components from contaminated signals, and have demonstrated its performance by comparing it quantitatively to the popular Optimal Basis Set (OBS) method. Our modified recording configuration allows us to obtain representative bases of the BCG- and EEG-only signals. Further, we have developed an optimization-based reconstruction approach to maximally incorporate prior knowledge of the BCG/EEG subspaces, and of the signal characteristics within them. Both OBS and DRPE methods were tested with experimental data, and compared quantitatively using cross-validation. In the challenging continuous EEG studies, DRPE outperforms the OBS method by nearly sevenfold in separating the continuous BCG and EEG signals. PMID:25002836

  14. EEG signatures of arm isometric exertions in preparation, planning and execution.

    PubMed

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction

  15. Simultaneous EEG and diffuse optical imaging of seizure-related hemodynamic activity in the newborn infant brain

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Cooper, Robert J.; Gibson, Adam; Everdell, Nick; Austin, Topun

    2012-06-01

    An optical imaging system has been developed which uses measurements of diffusely reflected near-infrared light to produce maps of changes in blood flow and oxygenation occurring within the cerebral cortex. Optical sources and detectors are coupled to the head via an array of optical fibers, on a probe held in contact with the scalp, and data is collected at a rate of 10 Hz. A clinical electroencephalography (EEG) system has been integrated with the optical system to enable simultaneous observation of electrical and hemodynamic activity in the cortex of neurologically compromised newborn infants diagnosed with seizures. Studies have made a potentially critically important discovery of previously unknown transient hemodynamic events in infants treated with anticonvulsant medication. We observed repeated episodes of small increases in cortical oxyhemoglobin concentration followed by a profound decrease in 3 of 4 infants studied, each with cerebral injury who presented with neonatal seizures. This was not accompanied by clinical or EEG seizure activity and was not present in nineteen matched controls. The underlying cause of these changes is currently unknown. We tentatively suggest that our results may be associated with a phenomenon known as cortical spreading depolarization, not previously observed in the infant brain.

  16. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - A comparison with scalp EEG monitoring.

    PubMed

    Zibrandtsen, I C; Kidmose, P; Christensen, C B; Kjaer, T W

    2017-12-01

    Ear-EEG is recording of electroencephalography from a small device in the ear. This is the first study to compare ictal and interictal abnormalities recorded with ear-EEG and simultaneous scalp-EEG in an epilepsy monitoring unit. We recorded and compared simultaneous ear-EEG and scalp-EEG from 15 patients with suspected temporal lobe epilepsy. EEGs were compared visually by independent neurophysiologists. Correlation and time-frequency analysis was used to quantify the similarity between ear and scalp electrodes. Spike-averages were used to assess similarity of interictal spikes. There were no differences in sensitivity or specificity for seizure detection. Mean correlation coefficient between ear-EEG and nearest scalp electrode was above 0.6 with a statistically significant decreasing trend with increasing distance away from the ear. Ictal morphology and frequency dynamics can be observed from visual inspection and time-frequency analysis. Spike averages derived from ear-EEG electrodes yield a recognizable spike appearance. Our results suggest that ear-EEG can reliably detect electroencephalographic patterns associated with focal temporal lobe seizures. Interictal spike morphology from sufficiently large temporal spike sources can be sampled using ear-EEG. Ear-EEG is likely to become an important tool in clinical epilepsy monitoring and diagnosis. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Classification and evaluation of the pharmacodynamics of psychotropic drugs by single-lead pharmaco-EEG, EEG mapping and tomography (LORETA).

    PubMed

    Saletu, B; Anderer, P; Saletu-Zyhlarz, G M; Arnold, O; Pascual-Marqui, R D

    2002-01-01

    Utilizing computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (EEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ: the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG profiles and maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described in this paper. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects, therapeutic efficacy and pharmacokinetic and pharmacodynamic data will be discussed. In recent times, imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be demonstrated for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently.

  18. The localizing value of ictal EEG in focal epilepsy.

    PubMed

    Foldvary, N; Klem, G; Hammel, J; Bingaman, W; Najm, I; Lüders, H

    2001-12-11

    To investigate the lateralization and localization of ictal EEG in focal epilepsy. A total of 486 ictal EEG of 72 patients with focal epilepsy arising from the mesial temporal, neocortical temporal, mesial frontal, dorsolateral frontal, parietal, and occipital regions were analyzed. Surface ictal EEG was adequately localized in 72% of cases, more often in temporal than extratemporal epilepsy. Localized ictal onsets were seen in 57% of seizures and were most common in mesial temporal lobe epilepsy (MTLE), lateral frontal lobe epilepsy (LFLE), and parietal lobe epilepsy, whereas lateralized onsets predominated in neocortical temporal lobe epilepsy and generalized onsets in mesial frontal lobe epilepsy (MFLE) and occipital lobe epilepsy. Approximately two-thirds of seizures were localized, 22% generalized, 4% lateralized, and 6% mislocalized/lateralized. False localization/lateralization occurred in 28% of occipital and 16% of parietal seizures. Rhythmic temporal theta at ictal onset was seen exclusively in temporal lobe seizures, whereas localized repetitive epileptiform activity was highly predictive of LFLE. Seizures arising from the lateral convexity and mesial regions were differentiated by a high incidence of repetitive epileptiform activity at ictal onset in the former and rhythmic theta activity in the latter. With the exception of mesial frontal lobe epilepsy, ictal recordings are very useful in the localization/lateralization of focal seizures. Some patterns are highly accurate in localizing the epileptogenic lobe. One limitation of ictal EEG is the potential for false localization/lateralization in occipital and parietal lobe epilepsies.

  19. Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats.

    PubMed

    Ouyang, Gaoxiang; Li, Xiaoli; Dang, Chuangyin; Richards, Douglas A

    2008-08-01

    Understanding the transition of brain activity towards an absence seizure is a challenging task. In this paper, we use recurrence quantification analysis to indicate the deterministic dynamics of EEG series at the seizure-free, pre-seizure and seizure states in genetic absence epilepsy rats. The determinism measure, DET, based on recurrence plot, was applied to analyse these three EEG datasets, each dataset containing 300 single-channel EEG epochs of 5-s duration. Then, statistical analysis of the DET values in each dataset was carried out to determine whether their distributions over the three groups were significantly different. Furthermore, a surrogate technique was applied to calculate the significance level of determinism measures in EEG recordings. The mean (+/-SD) DET of EEG was 0.177+/-0.045 in pre-seizure intervals. The DET values of pre-seizure EEG data are significantly higher than those of seizure-free intervals, 0.123+/-0.023, (P<0.01), but lower than those of seizure intervals, 0.392+/-0.110, (P<0.01). Using surrogate data methods, the significance of determinism in EEG epochs was present in 25 of 300 (8.3%), 181 of 300 (60.3%) and 289 of 300 (96.3%) in seizure-free, pre-seizure and seizure intervals, respectively. Results provide some first indications that EEG epochs during pre-seizure intervals exhibit a higher degree of determinism than seizure-free EEG epochs, but lower than those in seizure EEG epochs in absence epilepsy. The proposed methods have the potential of detecting the transition between normal brain activity and the absence seizure state, thus opening up the possibility of intervention, whether electrical or pharmacological, to prevent the oncoming seizure.

  20. Use of EEG Monitoring and Management of Non-Convulsive Seizures in Critically Ill Patients: A Survey of Neurologists

    PubMed Central

    Abend, Nicholas S.; Dlugos, Dennis J.; Hahn, Cecil D.; Hirsch, Lawrence J.; Herman, Susan T.

    2010-01-01

    Background Continuous EEG monitoring (cEEG) of critically ill patients is frequently utilized to detect non-convulsive seizures (NCS) and status epilepticus (NCSE). The indications for cEEG, as well as when and how to treat NCS, remain unclear. We aimed to describe the current practice of cEEG in critically ill patients to define areas of uncertainty that could aid in designing future research. Methods We conducted an international survey of neurologists focused on cEEG utilization and NCS management. Results Three-hundred and thirty physicians completed the survey. 83% use cEEG at least once per month and 86% manage NCS at least five times per year. The use of cEEG in patients with altered mental status was common (69%), with higher use if the patient had a prior convulsion (89%) or abnormal eye movements (85%). Most respondents would continue cEEG for 24 h. If NCS or NCSE is identified, the most common anticonvulsants administered were phenytoin/fosphenytoin, lorazepam, or levetiracetam, with slightly more use of levetiracetam for NCS than NCSE. Conclusions Continuous EEG monitoring (cEEG) is commonly employed in critically ill patients to detect NCS and NCSE. However, there is substantial variability in current practice related to cEEG indications and duration and to management of NCS and NCSE. The fact that such variability exists in the management of this common clinical problem suggests that further prospective study is needed. Multiple points of uncertainty are identified that require investigation. PMID:20198513

  1. EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers.

    PubMed

    Wilson, V E; Dikman, Z; Bird, E I; Williams, J M; Harmison, R; Shaw-Thornton, L; Schwartz, G E

    2016-03-01

    This study investigated differences in QEEG measures between kinesthetic and visual imagery of a 100-m swim in 36 elite competitive swimmers. Background information and post-trial checks controlled for the modality of imagery, swimming skill level, preferred imagery style, intensity of image and task equality. Measures of EEG relative magnitude in theta, low (7-9 Hz) and high alpha (8-10 Hz), and low and high beta were taken from 19 scalp sites during baseline, visual, and kinesthetic imagery. QEEG magnitudes in the low alpha band during the visual and kinesthetic conditions were attenuated from baseline in low band alpha but no changes were seen in any other bands. Swimmers produced more low alpha EEG magnitude during visual versus kinesthetic imagery. This was interpreted as the swimmers having a greater efficiency at producing visual imagery. Participants who reported a strong intensity versus a weaker feeling of the image (kinesthetic) had less low alpha magnitude, i.e., there was use of more cortical resources, but not for the visual condition. These data suggest that low band (7-9 Hz) alpha distinguishes imagery modalities from baseline, visual imagery requires less cortical resources than kinesthetic imagery, and that intense feelings of swimming requires more brain activity than less intense feelings.

  2. Taking off the training wheels: Measuring auditory P3 during outdoor cycling using an active wet EEG system.

    PubMed

    Scanlon, Joanna E M; Townsend, Kimberley A; Cormier, Danielle L; Kuziek, Jonathan W P; Mathewson, Kyle E

    2017-12-14

    Mobile EEG allows the investigation of brain activity in increasingly complex environments. In this study, EEG equipment was adapted for use and transportation in a backpack while cycling. Participants performed an auditory oddball task while cycling outside and sitting in an isolated chamber inside the lab. Cycling increased EEG noise and marginally diminished alpha amplitude. However, this increased noise did not influence the ability to measure reliable event related potentials (ERP). The P3 was similar in topography, and morphology when outside on the bike, with a lower amplitude in the outside cycling condition. There was only a minor decrease in the statistical power to measure reliable ERP effects. Unexpectedly, when biking outside significantly decreased P2 and increased N1 amplitude were observed when evoked by both standards and targets compared with sitting in the lab. This may be due to attentional processes filtering the overlapping sounds between the tones used and similar environmental frequencies. This study established methods for mobile recording of ERP signals. Future directions include investigating auditory P2 filtering inside the laboratory. Copyright © 2017. Published by Elsevier B.V.

  3. The Role of Hemispheral Asymmetry and Regional Activity of Quantitative EEG in Children with Stuttering

    ERIC Educational Resources Information Center

    Ozge, Aynur; Toros, Fevziye; Comelekoglu, Ulku

    2004-01-01

    We investigated the role of delayed cerebral maturation, hemisphere asymmetry and regional differences in children with stuttering and healthy controls during resting state and hyperventilation, using conventional EEG techniques and quantitative EEG (QEEG) analysis. This cross-sectional case control study included 26 children with stuttering and…

  4. Combining EEG and eye movement recording in free viewing: Pitfalls and possibilities.

    PubMed

    Nikolaev, Andrey R; Meghanathan, Radha Nila; van Leeuwen, Cees

    2016-08-01

    Co-registration of EEG and eye movement has promise for investigating perceptual processes in free viewing conditions, provided certain methodological challenges can be addressed. Most of these arise from the self-paced character of eye movements in free viewing conditions. Successive eye movements occur within short time intervals. Their evoked activity is likely to distort the EEG signal during fixation. Due to the non-uniform distribution of fixation durations, these distortions are systematic, survive across-trials averaging, and can become a source of confounding. We illustrate this problem with effects of sequential eye movements on the evoked potentials and time-frequency components of EEG and propose a solution based on matching of eye movement characteristics between experimental conditions. The proposal leads to a discussion of which eye movement characteristics are to be matched, depending on the EEG activity of interest. We also compare segmentation of EEG into saccade-related epochs relative to saccade and fixation onsets and discuss the problem of baseline selection and its solution. Further recommendations are given for implementing EEG-eye movement co-registration in free viewing conditions. By resolving some of the methodological problems involved, we aim to facilitate the transition from the traditional stimulus-response paradigm to the study of visual perception in more naturalistic conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and Bayesian classification.

    PubMed

    LeVan, P; Urrestarazu, E; Gotman, J

    2006-04-01

    To devise an automated system to remove artifacts from ictal scalp EEG, using independent component analysis (ICA). A Bayesian classifier was used to determine the probability that 2s epochs of seizure segments decomposed by ICA represented EEG activity, as opposed to artifact. The classifier was trained using numerous statistical, spectral, and spatial features. The system's performance was then assessed using separate validation data. The classifier identified epochs representing EEG activity in the validation dataset with a sensitivity of 82.4% and a specificity of 83.3%. An ICA component was considered to represent EEG activity if the sum of the probabilities that its epochs represented EEG exceeded a threshold predetermined using the training data. Otherwise, the component represented artifact. Using this threshold on the validation set, the identification of EEG components was performed with a sensitivity of 87.6% and a specificity of 70.2%. Most misclassified components were a mixture of EEG and artifactual activity. The automated system successfully rejected a good proportion of artifactual components extracted by ICA, while preserving almost all EEG components. The misclassification rate was comparable to the variability observed in human classification. Current ICA methods of artifact removal require a tedious visual classification of the components. The proposed system automates this process and removes simultaneously multiple types of artifacts.

  6. Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets

    NASA Astrophysics Data System (ADS)

    Grubov, V. V.; Sitnikova, E.; Pavlov, A. N.; Koronovskii, A. A.; Hramov, A. E.

    2017-11-01

    Epileptic activity in the form of spike-wave discharges (SWD) appears in the electroencephalogram (EEG) during absence seizures. This paper evaluates two approaches for detecting stereotypic rhythmic activities in EEG, i.e., the continuous wavelet transform (CWT) and the empirical mode decomposition (EMD). The CWT is a well-known method of time-frequency analysis of EEG, whereas EMD is a relatively novel approach for extracting signal's waveforms. A new method for pattern recognition based on combination of CWT and EMD is proposed. It was found that this combined approach resulted to the sensitivity of 86.5% and specificity of 92.9% for sleep spindles and 97.6% and 93.2% for SWD, correspondingly. Considering strong within- and between-subjects variability of sleep spindles, the obtained efficiency in their detection was high in comparison with other methods based on CWT. It is concluded that the combination of a wavelet-based approach and empirical modes increases the quality of automatic detection of stereotypic patterns in rat's EEG.

  7. Convergence of EEG and fMRI measures of reward anticipation.

    PubMed

    Gorka, Stephanie M; Phan, K Luan; Shankman, Stewart A

    2015-12-01

    Deficits in reward anticipation are putative mechanisms for multiple psychopathologies. Research indicates that these deficits are characterized by reduced left (relative to right) frontal electroencephalogram (EEG) activity and blood oxygenation level-dependent (BOLD) signal abnormalities in mesolimbic and prefrontal neural regions during reward anticipation. Although it is often assumed that these two measures capture similar mechanisms, no study to our knowledge has directly examined the convergence between frontal EEG alpha asymmetry and functional magnetic resonance imaging (fMRI) during reward anticipation in the same sample. Therefore, the aim of the current study was to investigate if and where in the brain frontal EEG alpha asymmetry and fMRI measures were correlated in a sample of 40 adults. All participants completed two analogous reward anticipation tasks--once during EEG data collection and the other during fMRI data collection. Results indicated that the two measures do converge and that during reward anticipation, increased relative left frontal activity is associated with increased left anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC) and left orbitofrontal cortex (OFC) activation. This suggests that the two measures may similarly capture PFC functioning, which is noteworthy given the role of these regions in reward processing and the pathophysiology of disorders such as depression and schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. EEG dynamical correlates of focal and diffuse causes of coma.

    PubMed

    Kafashan, MohammadMehdi; Ryu, Shoko; Hargis, Mitchell J; Laurido-Soto, Osvaldo; Roberts, Debra E; Thontakudi, Akshay; Eisenman, Lawrence; Kummer, Terrance T; Ching, ShiNung

    2017-11-15

    Rapidly determining the causes of a depressed level of consciousness (DLOC) including coma is a common clinical challenge. Quantitative analysis of the electroencephalogram (EEG) has the potential to improve DLOC assessment by providing readily deployable, temporally detailed characterization of brain activity in such patients. While used commonly for seizure detection, EEG-based assessment of DLOC etiology is less well-established. As a first step towards etiological diagnosis, we sought to distinguish focal and diffuse causes of DLOC through assessment of temporal dynamics within EEG signals. We retrospectively analyzed EEG recordings from 40 patients with DLOC with consensus focal or diffuse culprit pathology. For each recording, we performed a suite of time-series analyses, then used a statistical framework to identify which analyses (features) could be used to distinguish between focal and diffuse cases. Using cross-validation approaches, we identified several spectral and non-spectral EEG features that were significantly different between DLOC patients with focal vs. diffuse etiologies, enabling EEG-based classification with an accuracy of 76%. Our findings suggest that DLOC due to focal vs. diffuse injuries differ along several electrophysiological parameters. These results may form the basis of future classification strategies for DLOC and coma that are more etiologically-specific and therefore therapeutically-relevant.

  9. Electroencephalograph (EEG) study on self-contemplating image formation

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2016-05-01

    Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.

  10. Abnormal EEG Power Spectra in Acute Transient Global Amnesia: A Quantitative EEG Study.

    PubMed

    Imperatori, Claudio; Farina, Benedetto; Todini, Federico; Di Blasi, Chiara; Mazzucchi, Edoardo; Brunetti, Valerio; Della Marca, Giacomo

    2018-06-01

    Transient global amnesia (TGA) is a clinical syndrome characterized by retrograde and anterograde amnesia without other neurological deficits. Although electroencephalography (EEG) methods are commonly used in both clinical and research setting with TGA patients, few studies have investigated neurophysiological pattern in TGA using quantitative EEG (qEEG). The main aim of the present study was to extend these previous findings by exploring EEG power spectra differences between patients with acute TGA and healthy controls using the exact low-resolution brain electromagnetic tomography software (eLORETA). EEG was recorded during 5 minutes of resting state. Sixteen patients (mean age: 66.81 ± 7.94 years) during acute TGA and 16 healthy subjects were enrolled. All patients showed hippocampal or parahippocampal signal abnormalities in diffusion-weighted magnetic resonance imaging performed from 2 to 5 days after the onset of TGA. Compared with healthy controls, TGA patients showed a decrease of theta power localized in the temporal lobe (Brodmann areas, BAs 21-22-38) and frontal lobe (BAs 8-9-44-45). A decrease of EEG beta power in the bilateral precuneus (BA 7) and in the bilateral postcentral gyrus (BAs 3-4-5) was also observed in TGA individuals. Taken together, our results could reflect the neurophysiological substrate of the severe impairment of both episodic memory and autobiographical memory which affect TGA patients during the acute phase.

  11. EEG Alpha Synchronization Is Related to Top-Down Processing in Convergent and Divergent Thinking

    ERIC Educational Resources Information Center

    Benedek, Mathias; Bergner, Sabine; Konen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.

    2011-01-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing…

  12. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison

    NASA Astrophysics Data System (ADS)

    Bleichner, Martin G.; Mirkovic, Bojana; Debener, Stefan

    2016-12-01

    Objective. This study presents a direct comparison of a classical EEG cap setup with a new around-the-ear electrode array (cEEGrid) to gain a better understanding of the potential of ear-centered EEG. Approach. Concurrent EEG was recorded from a classical scalp EEG cap and two cEEGrids that were placed around the left and the right ear. Twenty participants performed a spatial auditory attention task in which three sound streams were presented simultaneously. The sound streams were three seconds long and differed in the direction of origin (front, left, right) and the number of beats (3, 4, 5 respectively), as well as the timbre and pitch. The participants had to attend to either the left or the right sound stream. Main results. We found clear attention modulated ERP effects reflecting the attended sound stream for both electrode setups, which agreed in morphology and effect size. A single-trial template matching classification showed that the direction of attention could be decoded significantly above chance (50%) for at least 16 out of 20 participants for both systems. The comparably high classification results of the single trial analysis underline the quality of the signal recorded with the cEEGrids. Significance. These findings are further evidence for the feasibility of around the-ear EEG recordings and demonstrate that well described ERPs can be measured. We conclude that concealed behind-the-ear EEG recordings can be an alternative to classical cap EEG acquisition for auditory attention monitoring.

  13. Identifying auditory attention with ear-EEG: cEEGrid versus high-density cap-EEG comparison.

    PubMed

    Bleichner, Martin G; Mirkovic, Bojana; Debener, Stefan

    2016-12-01

    This study presents a direct comparison of a classical EEG cap setup with a new around-the-ear electrode array (cEEGrid) to gain a better understanding of the potential of ear-centered EEG. Concurrent EEG was recorded from a classical scalp EEG cap and two cEEGrids that were placed around the left and the right ear. Twenty participants performed a spatial auditory attention task in which three sound streams were presented simultaneously. The sound streams were three seconds long and differed in the direction of origin (front, left, right) and the number of beats (3, 4, 5 respectively), as well as the timbre and pitch. The participants had to attend to either the left or the right sound stream. We found clear attention modulated ERP effects reflecting the attended sound stream for both electrode setups, which agreed in morphology and effect size. A single-trial template matching classification showed that the direction of attention could be decoded significantly above chance (50%) for at least 16 out of 20 participants for both systems. The comparably high classification results of the single trial analysis underline the quality of the signal recorded with the cEEGrids. These findings are further evidence for the feasibility of around the-ear EEG recordings and demonstrate that well described ERPs can be measured. We conclude that concealed behind-the-ear EEG recordings can be an alternative to classical cap EEG acquisition for auditory attention monitoring.

  14. Use of EEG to Diagnose ADHD

    PubMed Central

    Lenartowicz, Agatha; Loo, Sandra K.

    2015-01-01

    Electroencephalography (EEG) has, historically, played a focal role in the assessment of neural function in children with attention deficit hyperactivity disorder (ADHD). We review here the most recent developments in the utility of EEG in the diagnosis of ADHD, with emphasis on the most commonly used and emerging EEG metrics and their reliability in diagnostic classification. Considering the clinical heterogeneity of ADHD and the complexity of information available from the EEG signals, we suggest that considerable benefits are to be gained from multivariate analyses and a focus towards understanding of the neural generators of EEG. We conclude that while EEG cannot currently be used as a diagnostic tool, vast developments in analytical and technological tools in its domain anticipate future progress in its utility in the clinical setting. PMID:25234074

  15. Electroencephalogram (EEG) (For Parents)

    MedlinePlus

    ... Most EEGs are done to diagnose and monitor seizure disorders. EEGs also can identify causes of other problems, ... are very safe. If your child has a seizure disorder, your doctor might want to stimulate and record ...

  16. Quantitative EEG Monitoring of Vigilance: Effects of Sleep Deprivation, Circadian Phase and Sympathetic Activation

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan

    1999-01-01

    Shuttle astronauts typically sleep only 6 to 6.5 hours per day while in orbit. This sleep loss is related to recurrent sleep cycle shifting--due to mission-dependent orbital mechanics and mission duration requirements-- and associated circadian displacement of sleep, the operational demands of space flight, noise and space motion sickness. Such sleep schedules are known to produce poor subjective sleep quality, daytime sleepiness, reduced attention, negative mood, slower reaction times, and impaired daytime alertness. Countermeasures to allow crew members to obtain an adequate amount of sleep and maintain adequate levels of neurobehavioral performance are being developed and investigated. However, it is necessary to develop methods that allow effective and attainable in-flight monitoring of vigilance to evaluate the effectiveness of these countermeasures and to detect and predict online critical decrements in alertness/performance. There is growing evidence to indicate that sleep loss and associated decrements in neurobehavioral function are reflected in the spectral composition of the electroencephalogram (EEG) during wakefulness as well as in the incidence of slow eye movements recorded by the electro-oculogram (EOG). Further-more, our preliminary data indicated that these changes in the EEG during wakefulness are more pronounced when subjects are in a supine posture, which mimics some of the physiologic effects of microgravity. Therefore, we evaluate the following hypotheses: (1) that during a 40-hour period of wakefulness (i.e., one night of total sleep deprivation) neurobehavioral function deteriorates, the incidence of slow eye-movements and EEG power density in the theta frequencies increases especially in frontal areas of the brain; (2) that the sleep deprivation induced deterioration of neurobehavioral function and changes in the incidence of slow eye movements and the spectral composition of the EEG are more pronounced when subjects are in a supine

  17. The impact of hyperoxia on brain activity: A resting-state and task-evoked electroencephalography (EEG) study.

    PubMed

    Sheng, Min; Liu, Peiying; Mao, Deng; Ge, Yulin; Lu, Hanzhang

    2017-01-01

    A better understanding of the effect of oxygen on brain electrophysiological activity may provide a more mechanistic insight into clinical studies that use oxygen treatment in pathological conditions, as well as in studies that use oxygen to calibrate functional magnetic resonance imaging (fMRI) signals. This study applied electroencephalography (EEG) in healthy subjects and investigated how high a concentration of oxygen in inhaled air (i.e., normobaric hyperoxia) alters brain activity under resting-state and task-evoked conditions. Study 1 investigated its impact on resting EEG and revealed that hyperoxia suppressed α (8-13Hz) and β (14-35Hz) band power (by 15.6±2.3% and 14.1±3.1%, respectively), but did not change the δ (1-3Hz), θ (4-7Hz), and γ (36-75Hz) bands. Sham control experiments did not result in such changes. Study 2 reproduced these findings, and, furthermore, examined the effect of hyperoxia on visual stimulation event-related potentials (ERP). It was found that the main peaks of visual ERP, specifically N1 and P2, were both delayed during hyperoxia compared to normoxia (P = 0.04 and 0.02, respectively). In contrast, the amplitude of the peaks did not show a change. Our results suggest that hyperoxia has a pronounced effect on brain neural activity, for both resting-state and task-evoked potentials.

  18. The impact of hyperoxia on brain activity: A resting-state and task-evoked electroencephalography (EEG) study

    PubMed Central

    Sheng, Min; Liu, Peiying; Mao, Deng; Ge, Yulin

    2017-01-01

    A better understanding of the effect of oxygen on brain electrophysiological activity may provide a more mechanistic insight into clinical studies that use oxygen treatment in pathological conditions, as well as in studies that use oxygen to calibrate functional magnetic resonance imaging (fMRI) signals. This study applied electroencephalography (EEG) in healthy subjects and investigated how high a concentration of oxygen in inhaled air (i.e., normobaric hyperoxia) alters brain activity under resting-state and task-evoked conditions. Study 1 investigated its impact on resting EEG and revealed that hyperoxia suppressed α (8-13Hz) and β (14-35Hz) band power (by 15.6±2.3% and 14.1±3.1%, respectively), but did not change the δ (1-3Hz), θ (4-7Hz), and γ (36-75Hz) bands. Sham control experiments did not result in such changes. Study 2 reproduced these findings, and, furthermore, examined the effect of hyperoxia on visual stimulation event-related potentials (ERP). It was found that the main peaks of visual ERP, specifically N1 and P2, were both delayed during hyperoxia compared to normoxia (P = 0.04 and 0.02, respectively). In contrast, the amplitude of the peaks did not show a change. Our results suggest that hyperoxia has a pronounced effect on brain neural activity, for both resting-state and task-evoked potentials. PMID:28464001

  19. Acute effects of exercise on mood and EEG activity in healthy young subjects: a systematic review.

    PubMed

    Lattari, Eduardo; Portugal, Eduardo; Moraes, Helena; Machado, Sérgio; Santos, Tony M; Deslandes, Andrea C

    2014-01-01

    Electroencephalography has been used to establish the relationship among cortical activity, exercise and mood, such as asymmetry, absolute and relative power. The purpose of this study was to systematically review the influence of cortical activity on mood state induced by exercise. The Preferred Reporting Items in Systematic reviews and Meta-Analyses was followed in this study. The studies were retrieved from MEDLINE/PubMed, ISI Web of Knowledge and SciELO. Search was conducted in all databases using the following terms: EEG asymmetry, sLORETA, exercise, with affect, mood and emotions. Based on the defined criteria, a total of 727 articles were found in the search conducted in the literature (666 in Pubmed, 54 in ISI Web of Science, 2 in SciELO and 5 in other data sources). Total of 11 studies were selected which properly met the criteria for this review. Nine out of 11 studies used the frontal asymmetry, four used absolute and relative power and one used sLORETA. With regard to changes in cortical activity and mood induced by exercise, six studies attributed this result to different intensities, one to duration, one to type of exercise and one to fitness level. In general, EEG measures showed contradictory evidence of its ability to predict or modulate psychological mood states through exercise intervention.

  20. EEG microstates of wakefulness and NREM sleep.

    PubMed

    Brodbeck, Verena; Kuhn, Alena; von Wegner, Frederic; Morzelewski, Astrid; Tagliazucchi, Enzo; Borisov, Sergey; Michel, Christoph M; Laufs, Helmut

    2012-09-01

    classes in all NREM sleep stages might speak in favor of an in principle maintained large scale spatial brain organization from wakeful rest to NREM sleep. In N1 and N3 sleep, despite spectral EEG differences, the microstate maps and characteristics were surprisingly close to wakefulness. This supports the notion that EEG microstates might reflect a large scale resting state network architecture similar to preserved fMRI resting state connectivity. We speculate that the incisive functional alterations which can be observed during the transition to deep sleep might be driven by changes in the level and timing of activity within this architecture. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Preoperative EEG predicts memory and selective cognitive functions after temporal lobe surgery.

    PubMed Central

    Tuunainen, A; Nousiainen, U; Hurskainen, H; Leinonen, E; Pilke, A; Mervaala, E; Vapalahti, M; Partanen, J; Riekkinen, P

    1995-01-01

    Preoperative and postoperative cognitive and memory functions, psychiatric outcome, and EEGs were evaluated in 32 epileptic patients who underwent temporal lobe surgery. The presence and location of preoperative slow wave focus in routine EEG predicted memory functions of the non-resected side after surgery. Neuropsychological tests of the function of the frontal lobes also showed improvement. Moreover, psychiatric ratings showed that seizure free patients had significantly less affective symptoms postoperatively than those who were still exhibiting seizures. After temporal lobectomies, successful outcome in postoperative memory functions can be achieved in patients with unilateral slow wave activity in preoperative EEGs. This study suggests a new role for routine EEG in preoperative evaluation of patients with temporal lobe epilepsy. PMID:7608663

  2. Epileptic seizure detection in EEG signal using machine learning techniques.

    PubMed

    Jaiswal, Abeg Kumar; Banka, Haider

    2018-03-01

    Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern correlation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross validation. The classification results of the proposed approaches have been compared with the results of some of existing techniques proposed in the literature to establish the claim.

  3. Confused or not Confused?: Disentangling Brain Activity from EEG Data Using Bidirectional LSTM Recurrent Neural Networks.

    PubMed

    Ni, Zhaoheng; Yuksel, Ahmet Cem; Ni, Xiuyan; Mandel, Michael I; Xie, Lei

    2017-08-01

    Brain fog, also known as confusion, is one of the main reasons for low performance in the learning process or any kind of daily task that involves and requires thinking. Detecting confusion in a human's mind in real time is a challenging and important task that can be applied to online education, driver fatigue detection and so on. In this paper, we apply Bidirectional LSTM Recurrent Neural Networks to classify students' confusion in watching online course videos from EEG data. The results show that Bidirectional LSTM model achieves the state-of-the-art performance compared with other machine learning approaches, and shows strong robustness as evaluated by cross-validation. We can predict whether or not a student is confused in the accuracy of 73.3%. Furthermore, we find the most important feature to detecting the brain confusion is the gamma 1 wave of EEG signal. Our results suggest that machine learning is a potentially powerful tool to model and understand brain activity.

  4. Using the nonlinear control of anaesthesia-induced hypersensitivity of EEG at burst suppression level to test the effects of radiofrequency radiation on brain function

    PubMed Central

    Lipping, Tarmo; Rorarius, Michael; Jäntti, Ville; Annala, Kari; Mennander, Ari; Ferenets, Rain; Toivonen, Tommi; Toivo, Tim; Värri, Alpo; Korpinen, Leena

    2009-01-01

    Background In this study, investigating the effects of mobile phone radiation on test animals, eleven pigs were anaesthetised to the level where burst-suppression pattern appears in the electroencephalogram (EEG). At this level of anaesthesia both human subjects and animals show high sensitivity to external stimuli which produce EEG bursts during suppression. The burst-suppression phenomenon represents a nonlinear control system, where low-amplitude EEG abruptly switches to very high amplitude bursts. This switching can be triggered by very minor stimuli and the phenomenon has been described as hypersensitivity. To test if also radio frequency (RF) stimulation can trigger this nonlinear control, the animals were exposed to pulse modulated signal of a GSM mobile phone at 890 MHz. In the first phase of the experiment electromagnetic field (EMF) stimulation was randomly switched on and off and the relation between EEG bursts and EMF stimulation onsets and endpoints were studied. In the second phase a continuous RF stimulation at 31 W/kg was applied for 10 minutes. The ECG, the EEG, and the subcutaneous temperature were recorded. Results No correlation between the exposure and the EEG burst occurrences was observed in phase I measurements. No significant changes were observed in the EEG activity of the pigs during phase II measurements although several EEG signal analysis methods were applied. The temperature measured subcutaneously from the pigs' head increased by 1.6°C and the heart rate by 14.2 bpm on the average during the 10 min exposure periods. Conclusion The hypothesis that RF radiation would produce sensory stimulation of somatosensory, auditory or visual system or directly affect the brain so as to produce EEG bursts during suppression was not confirmed. PMID:19615084

  5. EEG analysis of the brain activity during the observation of commercial, political, or public service announcements.

    PubMed

    Vecchiato, Giovanni; Astolfi, Laura; Tabarrini, Alessandro; Salinari, Serenella; Mattia, Donatella; Cincotti, Febo; Bianchi, Luigi; Sorrentino, Domenica; Aloise, Fabio; Soranzo, Ramon; Babiloni, Fabio

    2010-01-01

    The use of modern brain imaging techniques could be useful to understand what brain areas are involved in the observation of video clips related to commercial advertising, as well as for the support of political campaigns, and also the areas of Public Service Announcements (PSAs). In this paper we describe the capability of tracking brain activity during the observation of commercials, political spots, and PSAs with advanced high-resolution EEG statistical techniques in time and frequency domains in a group of normal subjects. We analyzed the statistically significant cortical spectral power activity in different frequency bands during the observation of a commercial video clip related to the use of a beer in a group of 13 normal subjects. In addition, a TV speech of the Prime Minister of Italy was analyzed in two groups of swing and "supporter" voters. Results suggested that the cortical activity during the observation of commercial spots could vary consistently across the spot. This fact suggest the possibility to remove the parts of the spot that are not particularly attractive by using those cerebral indexes. The cortical activity during the observation of the political speech indicated a major cortical activity in the supporters group when compared to the swing voters. In this case, it is possible to conclude that the communication proposed has failed to raise attention or interest on swing voters. In conclusions, high-resolution EEG statistical techniques have been proved to able to generate useful insights about the particular fruition of TV messages, related to both commercial as well as political fields.

  6. EEG Analysis of the Brain Activity during the Observation of Commercial, Political, or Public Service Announcements

    PubMed Central

    Vecchiato, Giovanni; Astolfi, Laura; Tabarrini, Alessandro; Salinari, Serenella; Mattia, Donatella; Cincotti, Febo; Bianchi, Luigi; Sorrentino, Domenica; Aloise, Fabio; Soranzo, Ramon; Babiloni, Fabio

    2010-01-01

    The use of modern brain imaging techniques could be useful to understand what brain areas are involved in the observation of video clips related to commercial advertising, as well as for the support of political campaigns, and also the areas of Public Service Announcements (PSAs). In this paper we describe the capability of tracking brain activity during the observation of commercials, political spots, and PSAs with advanced high-resolution EEG statistical techniques in time and frequency domains in a group of normal subjects. We analyzed the statistically significant cortical spectral power activity in different frequency bands during the observation of a commercial video clip related to the use of a beer in a group of 13 normal subjects. In addition, a TV speech of the Prime Minister of Italy was analyzed in two groups of swing and “supporter” voters. Results suggested that the cortical activity during the observation of commercial spots could vary consistently across the spot. This fact suggest the possibility to remove the parts of the spot that are not particularly attractive by using those cerebral indexes. The cortical activity during the observation of the political speech indicated a major cortical activity in the supporters group when compared to the swing voters. In this case, it is possible to conclude that the communication proposed has failed to raise attention or interest on swing voters. In conclusions, high-resolution EEG statistical techniques have been proved to able to generate useful insights about the particular fruition of TV messages, related to both commercial as well as political fields. PMID:20069055

  7. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    PubMed Central

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  8. Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction

    NASA Technical Reports Server (NTRS)

    Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.

    2001-01-01

    Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.

  9. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans.

    PubMed

    Schreckenberger, Mathias; Lange-Asschenfeldt, Christian; Lange-Asschenfeld, Christian; Lochmann, Matthias; Mann, Klaus; Siessmeier, Thomas; Buchholz, Hans-Georg; Bartenstein, Peter; Gründer, Gerhard

    2004-06-01

    Purpose of this study was to investigate the functional relationship between electroencephalographic (EEG) alpha power and cerebral glucose metabolism before and after pharmacological alpha suppression by lorazepam. Ten healthy male volunteers were examined undergoing two F18-fluorodeoxyglucose (18-FDG) positron emission tomography (PET) scans with simultaneous EEG recording: 1x placebo, 1x lorazepam. EEG power spectra were computed by means of Fourier analysis. The PET data were analyzed using SPM99, and the correlations between metabolism and alpha power were calculated for both conditions. The comparison lorazepam versus placebo revealed reduced glucose metabolism of the bilateral thalamus and adjacent subthalamic areas, the occipital cortex and temporo-insular areas (P < 0.001). EEG alpha power was reduced in all derivations (P < 0.001). Under placebo, there was a positive correlation between alpha power and metabolism of the bilateral thalamus and the occipital and adjacent parietal cortex (P < 0.001). Under lorazepam, the thalamic and parietal correlations were maintained, whereas the occipital correlation was no longer detectable (P < 0.001). The correlation analysis of the difference lorazepam-placebo showed the alpha power exclusively correlated with the thalamic activity (P < 0.0001). These results support the hypothesis of a close functional relationship between thalamic activity and alpha rhythm in humans mediated by corticothalamic loops which are independent of sensory afferences. The study paradigm could be a promising approach for the investigation of cortico-thalamo-cortical feedback loops in neuropsychiatric diseases.

  10. Auto-correlation in the motor/imaginary human EEG signals: A vision about the FDFA fluctuations.

    PubMed

    Zebende, Gilney Figueira; Oliveira Filho, Florêncio Mendes; Leyva Cruz, Juan Alberto

    2017-01-01

    In this paper we analyzed, by the FDFA root mean square fluctuation (rms) function, the motor/imaginary human activity produced by a 64-channel electroencephalography (EEG). We utilized the Physionet on-line databank, a publicly available database of human EEG signals, as a standardized reference database for this study. Herein, we report the use of detrended fluctuation analysis (DFA) method for EEG analysis. We show that the complex time series of the EEG exhibits characteristic fluctuations depending on the analyzed channel in the scalp-recorded EEG. In order to demonstrate the effectiveness of the proposed technique, we analyzed four distinct channels represented here by F332, F637 (frontal region of the head) and P349, P654 (parietal region of the head). We verified that the amplitude of the FDFA rms function is greater for the frontal channels than for the parietal. To tabulate this information in a better way, we define and calculate the difference between FDFA (in log scale) for the channels, thus defining a new path for analysis of EEG signals. Finally, related to the studied EEG signals, we obtain the auto-correlation exponent, αDFA by DFA method, that reveals self-affinity at specific time scale. Our results shows that this strategy can be applied to study the human brain activity in EEG processing.

  11. The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study

    PubMed Central

    Werner, Cornelius J.; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N. Jon

    2014-01-01

    Electroencephalography (EEG) frequencies have been linked to specific functions as an “electrophysiological signature” of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the “status quo” in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed “ongoing activity” during “resting state” in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific

  12. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI

    PubMed Central

    Chaudhary, Umair J.; Centeno, Maria; Thornton, Rachel C.; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W.; Diehl, Beate; Walker, Matthew C.; Duncan, John S.; Carmichael, David W.; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as ‘ON’ blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial

  13. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.

    PubMed

    Chaudhary, Umair J; Centeno, Maria; Thornton, Rachel C; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Carmichael, David W; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and

  14. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.

    PubMed

    Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan

    2018-01-01

    The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.

  15. Independent EEG Sources Are Dipolar

    PubMed Central

    Delorme, Arnaud; Palmer, Jason; Onton, Julie; Oostenveld, Robert; Makeig, Scott

    2012-01-01

    Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition ‘dipolarity’ defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison). PMID:22355308

  16. Monitoring alert and drowsy states by modeling EEG source nonstationarity

    NASA Astrophysics Data System (ADS)

    Hsu, Sheng-Hsiou; Jung, Tzyy-Ping

    2017-10-01

    Objective. As a human brain performs various cognitive functions within ever-changing environments, states of the brain characterized by recorded brain activities such as electroencephalogram (EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals include finding neurocognitive sources that underlie different brain states and using EEG data to quantitatively assess the state changes. Approach. This study hypothesizes that brain activities under different states, e.g. levels of alertness, can be modeled as distinct compositions of statistically independent sources using independent component analysis (ICA). This study presents a framework to quantitatively assess the EEG source nonstationarity and estimate levels of alertness. The framework was tested against EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator. Main results. Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI), we found that MDIs were significantly correlated with the reaction speeds (r  =  -0.390 with alertness models and r  =  0.449 with drowsiness models) and the opposite correlations indicated that the two models accounted for sources in the alert and drowsy states, respectively. Based on the observed source nonstationarity, this study also proposes an online framework using a subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For classification of alert against drowsy states, the proposed online framework achieved an averaged area-under-curve of 0.745 and compared favorably with a classic power-based approach. Significance. This ICA-based framework provides a new way to study changes of brain states and can be applied to

  17. Dynamical complexity in a mean-field model of human EEG

    NASA Astrophysics Data System (ADS)

    Frascoli, Federico; Dafilis, Mathew P.; van Veen, Lennaert; Bojak, Ingo; Liley, David T. J.

    2008-12-01

    A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.

  18. [Individual Types Reactivity of EEG Oscillations in Effective Heart Rhythm Biofeedback Parameters in Adolescents and Young People in the North].

    PubMed

    Krivonogova, E V; Poskotinova, L V; Demin, D B

    2015-01-01

    A single session of heart rate variability (HRV) biofeedback in apparently healthy young people and adolescents aged 14-17 years in order to increase vagal effects on heart rhythm and also electroencephalograms were carried out. Different variants of EEG spectral power during the successful HRV biofeedback session were identified. In the case of I variant of EEG activity the increase of power spectrum of alpha-, betal-, theta-components takes place in all parts of the brain. In the case of II variant of EEG activity the reduction of power spectrum of alpha-, betal-, theta-activity in all parts of the brain was observed. I and II variants of EEG activity cause more intensive regime of cortical-subcortical interactions. During the III variant of EEG activity the successful biofeedback is accompanied by increase of alpha activity in the central, front and anteriofrontal brain parts and so indicates the formation of thalamocortical relations of neural network in order to optimize the vegetal regulation of heart function. There was an increase in alpha- and beta1-activity in the parietal, central, frontal and temporal brain parts during the IV variant of EEG activity and so that it provides the relief of neural networks communication for information processing. As a result of V variance of EEG activity there was the increase of power spectrum of theta activity in the central and frontal parts of both cerebral hemispheres, so it was associated with the cortical-hippocampal interactions to achieve a successful biofeedback.

  19. The FNS-based analyzing the EEG to diagnose the bipolar affective disorder

    NASA Astrophysics Data System (ADS)

    Panischev, Yu; Panischeva, S. N.; Demin, S. A.

    2015-11-01

    Here we demonstrate a capability of method based on the Flicker-Noise Spectroscopy (FNS) in analyzing the manifestation bipolar affective disorder (BAD) in EEG. Generally EEG from BAD patient does not show the visual differences from healthy EEG. Analyzing the behavior of FNS-parameters and the structure of 3D-cross correlators allows to discover the differential characteristics of BAD. The cerebral cortex electric activity of BAD patients have a specific collective dynamics and configuration of the FNS-characteristics in comparison with healthy subjects.

  20. Effects of Drawing on Alpha Activity: A Quantitative EEG Study with Implications for Art Therapy

    ERIC Educational Resources Information Center

    Belkofer, Christopher M.; Van Hecke, Amy Vaughan; Konopka, Lukasz M.

    2014-01-01

    Little empirical evidence exists as to how materials used in art therapy affect the brain and its neurobiological functioning. This pre/post within-groups study utilized the quantitative electroencephalogram (qEEG) to measure residual effects in the brain after 20 minutes of drawing. EEG recordings were conducted before and after participants (N =…

  1. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior.

    PubMed

    Hansen, Sofie Therese; Hansen, Lars Kai

    2017-03-01

    Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging connections exist in the brain than long ranging, arguing for spatially focal sources. Additionally, recent work (Delorme et al., 2012) argues that EEG can be decomposed into components having sparse source distributions. On the temporal side both short and long term stationarity of brain activation are seen. We summarize these insights in an inverse solver, the so-called "Variational Garrote" (Kappen and Gómez, 2013). Using a Markov prior we can incorporate flexible degrees of temporal stationarity. Through spatial basis functions spatially smooth distributions are obtained. Sparsity of these are inherent to the Variational Garrote solver. We name our method the MarkoVG and demonstrate its ability to adapt to the temporal smoothness and spatial sparsity in simulated EEG data. Finally a benchmark EEG dataset is used to demonstrate MarkoVG's ability to recover non-stationary brain dynamics. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.

    PubMed

    Sawan, Mohamad; Salam, Muhammad T; Le Lan, Jérôme; Kassab, Amal; Gelinas, Sébastien; Vannasing, Phetsamone; Lesage, Frédéric; Lassonde, Maryse; Nguyen, Dang K

    2013-04-01

    In this paper, we present the design and implementation of a wireless wearable electronic system dedicated to remote data recording for brain monitoring. The reported wireless recording system is used for a) simultaneous near-infrared spectrometry (NIRS) and scalp electro-encephalography (EEG) for noninvasive monitoring and b) intracerebral EEG (icEEG) for invasive monitoring. Bluetooth and dual radio links were introduced for these recordings. The Bluetooth-based device was embedded in a noninvasive multichannel EEG-NIRS system for easy portability and long-term monitoring. On the other hand, the 32-channel implantable recording device offers 24-bit resolution, tunable features, and a sampling frequency up to 2 kHz per channel. The analog front-end preamplifier presents low input-referred noise of 5 μ VRMS and a signal-to-noise ratio of 112 dB. The communication link is implemented using a dual-band radio frequency transceiver offering a half-duplex 800 kb/s data rate, 16.5 mW power consumption and less than 10(-10) post-correction Bit-Error Rate (BER). The designed system can be accessed and controlled by a computer with a user-friendly graphical interface. The proposed wireless implantable recording device was tested in vitro using real icEEG signals from two patients with refractory epilepsy. The wirelessly recorded signals were compared to the original signals recorded using wired-connection, and measured normalized root-mean square deviation was under 2%.

  3. Comparison of two common aEEG classifications for the prediction of neurodevelopmental outcome in preterm infants.

    PubMed

    Bruns, Nora; Dransfeld, Frauke; Hüning, Britta; Hobrecht, Julia; Storbeck, Tobias; Weiss, Christel; Felderhoff-Müser, Ursula; Müller, Hanna

    2017-02-01

    Neurodevelopmental outcome after prematurity is crucial. The aim was to compare two amplitude-integrated EEG (aEEG) classifications (Hellström-Westas (HW), Burdjalov) for outcome prediction. We recruited 65 infants ≤32 weeks gestational age with aEEG recordings within the first 72 h of life and Bayley testing at 24 months corrected age or death. Statistical analyses were performed for each 24 h section to determine whether very immature/depressed or mature/developed patterns predict survival/neurological outcome and to find predictors for mental development index (MDI) and psychomotor development index (PDI) at 24 months corrected age. On day 2, deceased infants showed no cycling in 80% (HW, p = 0.0140) and 100% (Burdjalov, p = 0.0041). The Burdjalov total score significantly differed between groups on day 2 (p = 0.0284) and the adapted Burdjalov total score on day 2 (p = 0.0183) and day 3 (p = 0.0472). Cycling on day 3 (HW; p = 0.0059) and background on day 3 (HW; p = 0.0212) are independent predictors for MDI (p = 0.0016) whereas no independent predictor for PDI was found (multiple regression analyses). Cycling in both classifications is a valuable tool to assess chance of survival. The classification by HW is also associated with long-term mental outcome. What is Known: •Neurodevelopmental outcome after preterm birth remains one of the major concerns in neonatology. •aEEG is used to measure brain activity and brain maturation in preterm infants. What is New: •The two common aEEG classifications and scoring systems described by Hellström-Westas and Burdjalov are valuable tools to predict neurodevelopmental outcome when performed within the first 72 h of life. •Both aEEG classifications are useful to predict chance of survival. The classification by Hellström-Westas can also predict long-term outcome at corrected age of 2 years.

  4. Propofol Anesthesia and Sleep: A High-Density EEG Study

    PubMed Central

    Murphy, Michael; Bruno, Marie-Aurelie; Riedner, Brady A.; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C.; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Melanie

    2011-01-01

    Study Objectives: The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. Design: 256-channel EEG recordings in humans during propofol anesthesia. Setting: Hospital operating room. Patients or Participants: 8 healthy subjects (4 males) Interventions: N/A Measurements and Results: Initially, propofol induced increases in EEG power from 12–25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25–40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Conclusions: Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity. Citation: Murphy M; Bruno MA; Riedner BA; Boveroux P; Noirhomme Q; Landsness EC; Brichant JF; Phillips C; Massimini M; Laureys S; Tononi G; Boly M. Propofol anesthesia and sleep: a high-density EEG study. SLEEP 2011;34(3):283-291. PMID:21358845

  5. Effect of stimulus type and temperature on EEG reactivity in cardiac arrest.

    PubMed

    Fantaneanu, Tadeu A; Tolchin, Benjamin; Alvarez, Vincent; Friolet, Raymond; Avery, Kathleen; Scirica, Benjamin M; O'Brien, Molly; Henderson, Galen V; Lee, Jong Woo

    2016-11-01

    Electroencephalogram (EEG) background reactivity is a reliable outcome predictor in cardiac arrest patients post therapeutic hypothermia. However, there is no consensus on modality testing and prior studies reveal only fair to moderate agreement rates. The aim of this study was to explore different stimulus modalities and report interrater agreements. We studied a multicenter, prospectively collected cohort of cardiac arrest patients who underwent therapeutic hypothermia between September 2014 and December 2015. We identified patients with reactivity data and evaluated interrater agreements of different stimulus modalities tested in hypothermia and normothermia. Of the 60 patients studied, agreement rates were moderate to substantial during hypothermia and fair to moderate during normothermia. Bilateral nipple pressure is more sensitive (80%) when compared to other modalities in eliciting a reactive background in hypothermia. Auditory, nasal tickle, nailbed pressure and nipple pressure reactivity were associated with good outcomes in both hypothermia and normothermia. EEG reactivity varies depending on the stimulus testing modality as well as the temperature during which stimulation is performed, with nipple pressure emerging as the most sensitive during hypothermia for reactivity and outcome determination. This highlights the importance of multiple stimulus testing modalities in EEG reactivity determination to reduce false negatives and optimize prognostication. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    PubMed Central

    Wang, Yao; Sokhadze, Estate M.; El-Baz, Ayman S.; Li, Xiaoli; Sears, Lonnie; Casanova, Manuel F.; Tasman, Allan

    2016-01-01

    Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism. PMID:26834615

  7. Automated Classification and Removal of EEG Artifacts With SVM and Wavelet-ICA.

    PubMed

    Sai, Chong Yeh; Mokhtar, Norrima; Arof, Hamzah; Cumming, Paul; Iwahashi, Masahiro

    2018-05-01

    Brain electrical activity recordings by electroencephalography (EEG) are often contaminated with signal artifacts. Procedures for automated removal of EEG artifacts are frequently sought for clinical diagnostics and brain-computer interface applications. In recent years, a combination of independent component analysis (ICA) and discrete wavelet transform has been introduced as standard technique for EEG artifact removal. However, in performing the wavelet-ICA procedure, visual inspection or arbitrary thresholding may be required for identifying artifactual components in the EEG signal. We now propose a novel approach for identifying artifactual components separated by wavelet-ICA using a pretrained support vector machine (SVM). Our method presents a robust and extendable system that enables fully automated identification and removal of artifacts from EEG signals, without applying any arbitrary thresholding. Using test data contaminated by eye blink artifacts, we show that our method performed better in identifying artifactual components than did existing thresholding methods. Furthermore, wavelet-ICA in conjunction with SVM successfully removed target artifacts, while largely retaining the EEG source signals of interest. We propose a set of features including kurtosis, variance, Shannon's entropy, and range of amplitude as training and test data of SVM to identify eye blink artifacts in EEG signals. This combinatorial method is also extendable to accommodate multiple types of artifacts present in multichannel EEG. We envision future research to explore other descriptive features corresponding to other types of artifactual components.

  8. [Detection of constitutional types of EEG using the orthogonal decomposition method].

    PubMed

    Kuznetsova, S M; Kudritskaia, O V

    1987-01-01

    The authors present an algorithm of investigation into the processes of brain bioelectrical activity with the help of an orthogonal decomposition device intended for the identification of constitutional types of EEGs. The method has helped to effectively solve the task of the diagnosis of constitutional types of EEGs, which are determined by a variable degree of hereditary predisposition for longevity or cerebral stroke.

  9. Effects of action observation therapy on hand dexterity and EEG-based cortical activation patterns in patients with post-stroke hemiparesis.

    PubMed

    Kuk, Eun-Ju; Kim, Jong-Man; Oh, Duck-Won; Hwang, Han-Jeong

    2016-10-01

    Previous reports have suggested that action observation training (AOT) is beneficial in enhancing the early learning of new motor tasks; however, EEG-based investigation has received little attention for AOT. The purpose of this study was to illustrate the effects of AOT on hand dexterity and cortical activation in patients with post-stroke hemiparesis. Twenty patients with post-stroke hemiparesis were randomly divided into either the experimental group (EG) or control group (CG), with 10 patients in each group. Prior to the execution of motor tasks (carrying wooden blocks from one box to another), subjects in the EG and CG observed a video clip displaying the execution of the same motor task and pictures showing landscapes, respectively. Outcome measures included the box and block test (BBT) to evaluate hand dexterity and EEG-based brain mapping to detect changes in cortical activation. The BBT scores (EG: 20.50 ± 6.62 at pre-test and 24.40 ± 5.42 at post-test; CG: 20.20 ± 6.12 at pre-test and 20.60 ± 7.17 at post-test) revealed significant main effects for the time and group and significant time-by-group interactions (p < 0.05). For the subjects in the EG, topographical representations obtained with the EEG-based brain mapping system were different in each session of the AOT and remarkable changes occurred from the 2nd session of AOT. Furthermore, the middle frontal gyrus was less active at post-test than at pre-test. These findings support that AOT may be beneficial in altering cortical activation patterns and hand dexterity.

  10. The use of EEG Biofeedback/Neurofeedback in psychiatric rehabilitation.

    PubMed

    Markiewcz, Renata

    2017-12-30

    The aim of the systematic review was to evaluate the use of EEG Biofeedback/Neurofeedback in patients treated for mental disorders. The review covered publications analyzing influences and effects of therapy in patients receiving psychiatric treatment based on EEG Biofeedback/Neurofeedback. Selection of publications was made by searching PubMed and Scopus databases. 328 records concerning applications of the presented method were identified in total, including 84 records for patients diagnosed with mental disorders. The analysis of studies indicates that EEG Biofeedback/Neurofeedback is used for treatment of neurological, somatic and mental disorders. Its psychiatric applications for clinically diagnosed disorders include treatmentof depression, anorexia, dyslexia, dysgraphia, ADD, ADHD, schizophrenia, abuse of substances, neuroses, PTSD, and Alzheimer's disease. Research results imply that the neuromodulating effect of the therapy positively influences cognitive processes, mood, and anxiety levels. Positive effects of EEG Biofeedback confirm usefulness of this method as a main or auxiliary method in treatment of people with mental disorders. On the basis of conducted studies, it is worthwhile to consider inclusion of this method into the comprehensive neurorehabilitation activities.

  11. Different quantitative EEG alterations induced by TBI among patients with different APOE genotypes.

    PubMed

    Jiang, Li; Yin, Xiaohong; Yin, Cheng; Zhou, Shuai; Dan, Wei; Sun, Xiaochuan

    2011-11-14

    Although several studies have revealed the EEG alterations in AD and TBI patients, the influence of APOE (apolipoprotein E) genotype in EEG at the early stage of TBI has not been reported yet. We have previously studied EEG alterations caused by TBI among different APOE genotype carriers. In this study, we firstly investigated the relationship between APOE polymorphisms and quantitative EEG (QEEG) changes after TBI. A total of 118 consecutive TBI patients with a Glasgow Coma Scale (GCS) of 9 or higher were recruited, and 40 normal adults were also included as a control group. APOE genotype was determined by PCR-RFLP for each subject, and QEEG recordings were performed in rest, relaxed, awake and with eyes closed in normal subjects and TBI patients during 1-3 days after TBI. In the normal control group, both APOEɛ4 carriers and non-carriers had normal EEG, and no significant difference of QEEG data was found between APOEɛ4 carriers and non-carriers. But in the TBI group, APOEɛ4 carriers had more focal or global irregular slow wave activities than APOEɛ4 non-carriers. APOE gene did not influence brain electrical activity under normal conditions, but TBI can induce different alterations among different APOE gene carriers, and APOEɛ4 allele enhances the EEG abnormalities at the early stage of TBI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Does EEG-Neurofeedback Improve Neurocognitive Functioning in Children with Attention-Deficit/Hyperactivity Disorder? A Systematic Review and a Double-Blind Placebo-Controlled Study

    ERIC Educational Resources Information Center

    Vollebregt, Madelon A.; van Dongen-Boomsma, Martine; Buitelaar, Jan K.; Slaats-Willemse, Dorine

    2014-01-01

    Background: The number of placebo-controlled randomized studies relating to EEG-neurofeedback and its effect on neurocognition in attention-deficient/hyperactivity disorder (ADHD) is limited. For this reason, a double blind, randomized, placebo-controlled study was designed to assess the effects of EEG-neurofeedback on neurocognitive functioning…

  13. Visualization of Whole-Night Sleep EEG From 2-Channel Mobile Recording Device Reveals Distinct Deep Sleep Stages with Differential Electrodermal Activity.

    PubMed

    Onton, Julie A; Kang, Dae Y; Coleman, Todd P

    2016-01-01

    Brain activity during sleep is a powerful marker of overall health, but sleep lab testing is prohibitively expensive and only indicated for major sleep disorders. This report demonstrates that mobile 2-channel in-home electroencephalogram (EEG) recording devices provided sufficient information to detect and visualize sleep EEG. Displaying whole-night sleep EEG in a spectral display allowed for quick assessment of general sleep stability, cycle lengths, stage lengths, dominant frequencies and other indices of sleep quality. By visualizing spectral data down to 0.1 Hz, a differentiation emerged between slow-wave sleep with dominant frequency between 0.1-1 Hz or 1-3 Hz, but rarely both. Thus, we present here the new designations, Hi and Lo Deep sleep, according to the frequency range with dominant power. Simultaneously recorded electrodermal activity (EDA) was primarily associated with Lo Deep and very rarely with Hi Deep or any other stage. Therefore, Hi and Lo Deep sleep appear to be physiologically distinct states that may serve unique functions during sleep. We developed an algorithm to classify five stages (Awake, Light, Hi Deep, Lo Deep and rapid eye movement (REM)) using a Hidden Markov Model (HMM), model fitting with the expectation-maximization (EM) algorithm, and estimation of the most likely sleep state sequence by the Viterbi algorithm. The resulting automatically generated sleep hypnogram can help clinicians interpret the spectral display and help researchers computationally quantify sleep stages across participants. In conclusion, this study demonstrates the feasibility of in-home sleep EEG collection, a rapid and informative sleep report format, and novel deep sleep designations accounting for spectral and physiological differences.

  14. Automatic Identification of Artifact-Related Independent Components for Artifact Removal in EEG Recordings.

    PubMed

    Zou, Yuan; Nathan, Viswam; Jafari, Roozbeh

    2016-01-01

    Electroencephalography (EEG) is the recording of electrical activity produced by the firing of neurons within the brain. These activities can be decoded by signal processing techniques. However, EEG recordings are always contaminated with artifacts which hinder the decoding process. Therefore, identifying and removing artifacts is an important step. Researchers often clean EEG recordings with assistance from independent component analysis (ICA), since it can decompose EEG recordings into a number of artifact-related and event-related potential (ERP)-related independent components. However, existing ICA-based artifact identification strategies mostly restrict themselves to a subset of artifacts, e.g., identifying eye movement artifacts only, and have not been shown to reliably identify artifacts caused by nonbiological origins like high-impedance electrodes. In this paper, we propose an automatic algorithm for the identification of general artifacts. The proposed algorithm consists of two parts: 1) an event-related feature-based clustering algorithm used to identify artifacts which have physiological origins; and 2) the electrode-scalp impedance information employed for identifying nonbiological artifacts. The results on EEG data collected from ten subjects show that our algorithm can effectively detect, separate, and remove both physiological and nonbiological artifacts. Qualitative evaluation of the reconstructed EEG signals demonstrates that our proposed method can effectively enhance the signal quality, especially the quality of ERPs, even for those that barely display ERPs in the raw EEG. The performance results also show that our proposed method can effectively identify artifacts and subsequently enhance the classification accuracies compared to four commonly used automatic artifact removal methods.

  15. Automatic Identification of Artifact-related Independent Components for Artifact Removal in EEG Recordings

    PubMed Central

    Zou, Yuan; Nathan, Viswam; Jafari, Roozbeh

    2017-01-01

    Electroencephalography (EEG) is the recording of electrical activity produced by the firing of neurons within the brain. These activities can be decoded by signal processing techniques. However, EEG recordings are always contaminated with artifacts which hinder the decoding process. Therefore, identifying and removing artifacts is an important step. Researchers often clean EEG recordings with assistance from Independent Component Analysis (ICA), since it can decompose EEG recordings into a number of artifact-related and event related potential (ERP)-related independent components (ICs). However, existing ICA-based artifact identification strategies mostly restrict themselves to a subset of artifacts, e.g. identifying eye movement artifacts only, and have not been shown to reliably identify artifacts caused by non-biological origins like high-impedance electrodes. In this paper, we propose an automatic algorithm for the identification of general artifacts. The proposed algorithm consists of two parts: 1) an event-related feature based clustering algorithm used to identify artifacts which have physiological origins and 2) the electrode-scalp impedance information employed for identifying non-biological artifacts. The results on EEG data collected from 10 subjects show that our algorithm can effectively detect, separate, and remove both physiological and non-biological artifacts. Qualitative evaluation of the reconstructed EEG signals demonstrates that our proposed method can effectively enhance the signal quality, especially the quality of ERPs, even for those that barely display ERPs in the raw EEG. The performance results also show that our proposed method can effectively identify artifacts and subsequently enhance the classification accuracies compared to four commonly used automatic artifact removal methods. PMID:25415992

  16. Epileptic seizures, coma and EEG burst-suppression from suicidal bupropion intoxication.

    PubMed

    Noda, Anna Hiro; Schu, Ulrich; Maier, Tanja; Knake, Susanne; Rosenow, Felix

    2017-03-01

    Bupropion, an amphetamine-like dual mechanism drug, is approved and increasingly used for the treatment of major depression, and its use is associated with a dose-dependent risk of epileptic seizures. Suicide attempts are frequent in major depression and often an overdose of the drugs available is ingested. Therefore, it is important to be aware of the clinical course, including EEG and neurological symptoms, as well as treatment and prognosis of bupropion intoxication. We report on the clinical and EEG course of a women who ingested 27 g of bupropion in a suicide attempt. Myoclonic seizures were followed by generalized tonic-clonic seizures and coma associated with EEG burst-suppression and brief tonic seizures. Active carbon and neuro-intensive care treatment, including respiratory support, were given. Within three days, the patient returned to a stable clinical condition with a mildly encephalopathic EEG. In conclusion, bupropion intoxication requires acute intensive care treatment and usually has a good prognosis, however, misinterpretation of the clinical and EEG presentation may lead to errors in management.

  17. A multimodal approach to estimating vigilance using EEG and forehead EOG.

    PubMed

    Zheng, Wei-Long; Lu, Bao-Liang

    2017-04-01

    Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.

  18. A multimodal approach to estimating vigilance using EEG and forehead EOG

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-Long; Lu, Bao-Liang

    2017-04-01

    Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.

  19. Functional coupling of sensorimotor and associative areas during a catching ball task: a qEEG coherence study

    PubMed Central

    2012-01-01

    Background Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. Methods Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. Results Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. Conclusion It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object. PMID:22364485

  20. Measurement and modification of the EEG and related behavior

    NASA Technical Reports Server (NTRS)

    Sterman, M. B.

    1991-01-01

    Electrophysiological changes in the sensorimotor pathways were found to accompany the effect of rhythmic EEG patterns in the sensorimotor cortex. Additionally, several striking behavioral changes were seen, including in particular an enhancement of sleep and an elevation of seizure threshold to epileptogenic agents. This raised the possibility that human seizure disorders might be influenced therapeutically by similar training. Our objective in human EEG feedback training became not only the facilitation of normal rhythmic patterns, but also the suppression of abnormal activity, thus requiring complex contingencies directed to the normalization of the sensorimotor EEG. To achieve this, a multicomponent frequency analysis was developed to extract and separate normal and abnormal elements of the EEG signal. Each of these elements was transduced to a specific component of a visual display system, and these were combined through logic circuits to present the subject with a symbolic display. Variable criteria provided for the gradual shaping of EEG elements towards the desired normal pattern. Some 50-70% of patients with poorly controlled seizure disorders experienced therapeutic benefits from this approach in our laboratory, and subsequently in many others. A more recent application of this approach to the modification of human brain function in our lab has been directed to the dichotomous problems of task overload and underload in the contemporary aviation environment. At least 70% of all aviation accidents have been attributed to the impact of these kinds of problems on crew performance. The use of EEG in this context has required many technical innovations and the application of the latest advances in EEG signal analysis. Our first goal has been the identification of relevant EEG characteristics. Additionally, we have developed a portable recording and analysis system for application in this context. Findings from laboratory and in-flight studies suggest that we

  1. The Oft-Neglected Role of Parietal EEG Asymmetry and Risk for Major Depressive Disorder

    PubMed Central

    Stewart, Jennifer L.; Towers, David N.; Coan, James A.; Allen, John J.B.

    2010-01-01

    Relatively less right parietal activity may reflect reduced arousal and signify risk for major depressive disorder (MDD). Inconsistent findings with parietal electroencephalographic (EEG) asymmetry, however, suggest issues such as anxiety comorbidity and sex differences have yet to be resolved. Resting parietal EEG asymmetry was assessed in 306 individuals (31% male) with (n = 143) and without (n = 163) a DSM-IV diagnosis of lifetime MDD and no comorbid anxiety disorders. Past MDD+ women displayed relatively less right parietal activity than current MDD+ and MDD- women, replicating prior work. Recent caffeine intake, an index of arousal, moderated the relationship between depression and EEG asymmetry for women and men. Findings suggest that sex differences and arousal should be examined in studies of depression and regional brain activity. PMID:20525011

  2. Sleep and EEG Spectra in Rats Recorded via Telemetry during Surgical Recovery

    PubMed Central

    Tang, Xiangdong; Yang, Linghui; Sanford, Larry D.

    2007-01-01

    Study Objective: To determine sleep and EEG spectra in rats during surgical recovery. Design: Sleep, activity, and EEG spectral power were examined in rats via telemetry on days 1, 2, 3, 7, 14, and 15 after implantation surgery. Results: NREM sleep and total sleep were increased on days 1 and 2 compared to later days. REM sleep was decreased on days 2 and 3 compared to days 14 and 15, and activity was decreased on days 1 and 2 compared to later days. EEG power (0.5–5 Hz for NREM and wakefulness, and 5.5–10 Hz for REM and wakefulness) was increased on days 1–3 compared to days 7, 14, and 15. Conclusion: The results are discussed in terms of their implications for post-surgery stabilization of sleep and potential relevance for sleep after injury. Citation: Tang X; Yang L; Sanford LD. Sleep and EEG spectra in rats recorded via telemetry during surgical recovery. SLEEP 2007;30(8):1057-1061. PMID:17702276

  3. Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes.

    PubMed

    Matthews, R; Turner, P J; McDonald, N J; Ermolaev, K; Manus, T; Shelby, R A; Steindorf, M

    2008-01-01

    This paper describes a compact, lightweight and ultra-low power ambulatory wireless EEG system based upon QUASAR's innovative noninvasive bioelectric sensor technologies. The sensors operate through hair without skin preparation or conductive gels. Mechanical isolation built into the harness permits the recording of high quality EEG data during ambulation. Advanced algorithms developed for this system permit real time classification of workload during subject motion. Measurements made using the EEG system during ambulation are presented, including results for real time classification of subject workload.

  4. Correlation of EEG with neuropsychological status in children with epilepsy.

    PubMed

    Hsu, David A; Rayer, Katherine; Jackson, Daren C; Stafstrom, Carl E; Hsu, Murielle; Ferrazzano, Peter A; Dabbs, Kevin; Worrell, Gregory A; Jones, Jana E; Hermann, Bruce P

    2016-02-01

    To determine correlations of the EEG frequency spectrum with neuropsychological status in children with idiopathic epilepsy. Forty-six children ages 8-18 years old with idiopathic epilepsy were retrospectively identified and analyzed for correlations between EEG spectra and neuropsychological status using multivariate linear regression. In addition, the theta/beta ratio, which has been suggested as a clinically useful EEG marker of attention-deficit hyperactivity disorder (ADHD), and an EEG spike count were calculated for each subject. Neuropsychological status was highly correlated with posterior alpha (8-15 Hz) EEG activity in a complex way, with both positive and negative correlations at lower and higher alpha frequency sub-bands for each cognitive task in a pattern that depends on the specific cognitive task. In addition, the theta/beta ratio was a specific but insensitive indicator of ADHD status in children with epilepsy; most children both with and without epilepsy have normal theta/beta ratios. The spike count showed no correlations with neuropsychological status. (1) The alpha rhythm may have at least two sub-bands which serve different purposes. (2) The theta/beta ratio is not a sensitive indicator of ADHD status in children with epilepsy. (3) The EEG frequency spectrum correlates more robustly with neuropsychological status than spike count analysis in children with idiopathic epilepsy. (1) The role of posterior alpha rhythms in cognition is complex and can be overlooked if EEG spectral resolution is too coarse or if neuropsychological status is assessed too narrowly. (2) ADHD in children with idiopathic epilepsy may involve different mechanisms from those in children without epilepsy. (3) Reliable correlations with neuropsychological status require longer EEG samples when using spike count analysis than when using frequency spectra. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

  5. Epileptic Discharges Affect the Default Mode Network – fMRI and Intracerebral EEG Evidence

    PubMed Central

    Fahoum, Firas; Zelmann, Rina; Tyvaert, Louise; Dubeau, François; Gotman, Jean

    2013-01-01

    Functional neuroimaging studies of epilepsy patients often show, at the time of epileptic activity, deactivation in default mode network (DMN) regions, which is hypothesized to reflect altered consciousness. We aimed to study the metabolic and electrophysiological correlates of these changes in the DMN regions. We studied six epilepsy patients that underwent scalp EEG-fMRI and later stereotaxic intracerebral EEG (SEEG) sampling regions of DMN (posterior cingulate cortex, Pre-cuneus, inferior parietal lobule, medial prefrontal cortex and dorsolateral frontal cortex) as well as non-DMN regions. SEEG recordings were subject to frequency analyses comparing sections with interictal epileptic discharges (IED) to IED-free baselines in the IED-generating region, DMN and non-DMN regions. EEG-fMRI and SEEG were obtained at rest. During IEDs, EEG-fMRI demonstrated deactivation in various DMN nodes in 5 of 6 patients, most frequently the pre-cuneus and inferior parietal lobule, and less frequently the other DMN nodes. SEEG analyses demonstrated decrease in gamma power (50–150 Hz), and increase in the power of lower frequencies (<30 Hz) at times of IEDs, in at least one DMN node in all patients. These changes were not apparent in the non-DMN regions. We demonstrate that, at the time of IEDs, DMN regions decrease their metabolic demand and undergo an EEG change consisting of decreased gamma and increased lower frequencies. These findings, specific to DMN regions, confirm in a pathological condition a direct relationship between DMN BOLD activity and EEG activity. They indicate that epileptic activity affects the DMN, and therefore may momentarily reduce the consciousness level and cognitive reserve. PMID:23840805

  6. Graph theoretical analysis of EEG functional connectivity during music perception.

    PubMed

    Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle

    2012-11-05

    The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study.

    PubMed

    Imperatori, Claudio; Brunetti, Riccardo; Farina, Benedetto; Speranza, Anna Maria; Losurdo, Anna; Testani, Elisa; Contardi, Anna; Della Marca, Giacomo

    2014-08-01

    The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19-30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta1 (13-17.5 Hz); beta2 (18-30 Hz); gamma (30.5-60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.

  8. EEG spectral analysis in primary insomnia: NREM period effects and sex differences.

    PubMed

    Buysse, Daniel J; Germain, Anne; Hall, Martica L; Moul, Douglas E; Nofzinger, Eric A; Begley, Amy; Ehlers, Cindy L; Thompson, Wesley; Kupfer, David J

    2008-12-01

    To compare NREM EEG power in primary insomnia (PI) and good sleeper controls (GSC), examining both sex and NREM period effects; to examine relationships between EEG power, clinical characteristics, and self-reports of sleep. Overnight polysomnographic study. Sleep laboratory. PI (n=48; 29 women) and GSC (n=25; 15 women). None. EEG power from 1-50 Hz was computed for artifact-free sleep epochs across four NREM periods. Repeated measures mixed effect models contrasted differences between groups, EEG frequency bands, and NREM periods. EEG power-frequency curves were modeled using regressions with fixed knot splines. Mixed models showed no significant group (PI vs. GSC) differences; marginal sex differences (delta and theta bands); significant differences across NREM periods; and group*sex and group*NREM period interactions, particularly in beta and gamma bands. Modeled power-frequency curves showed no group difference in whole-night NREM, but PI had higher power than GSC from 18-40 Hz in the first NREM period. Among women, PI had higher 16 to 44-Hz power than GSC in the first 3 NREM periods, and higher 3 to 5-Hz power across all NREM periods. PI and GSC men showed no consistent differences in EEG power. High-frequency EEG power was not related to clinical or subjective sleep ratings in PI. Women with PI, but not men, showed increased high-frequency and low-frequency EEG activity during NREM sleep compared to GSC, particularly in early NREM periods. Sex and NREM period may moderate quantitative EEG differences between PI and GSC.

  9. Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment.

    PubMed

    Brayet, Pauline; Petit, Dominique; Frauscher, Birgit; Gagnon, Jean-François; Gosselin, Nadia; Gagnon, Katia; Rouleau, Isabelle; Montplaisir, Jacques

    2016-04-01

    The basal forebrain cholinergic system, which is impaired in early Alzheimer's disease, is more crucial for the activation of rapid-eye-movement (REM) sleep electroencephalogram (EEG) than it is for wakefulness. Quantitative EEG from REM sleep might thus provide an earlier and more accurate marker of the development of Alzheimer's disease in subjects with mild cognitive impairment (MCI) subjects than that from wakefulness. To assess the superiority of the REM sleep EEG as a screening tool for preclinical Alzheimer's disease, 22 subjects with amnestic MCI (a-MCI; 63.9±7.7 years), 10 subjects with nonamnestic MCI (na-MCI; 64.1±4.5 years) and 32 controls (63.7±6.6 years) participated in the study. Spectral analyses of the waking EEG and REM sleep EEG were performed and the [(delta+theta)/(alpha+beta)] ratio was used to assess between-group differences in EEG slowing. The a-MCI subgroup showed EEG slowing in frontal lateral regions compared to both na-MCI and control groups. This EEG slowing was present in wakefulness (compared to controls) but was much more prominent in REM sleep. Moreover, the comparison between amnestic and nonamnestic subjects was found significant only for the REM sleep EEG. There was no difference in EEG power ratio between na-MCI and controls for any of the 7 cortical regions studied. These findings demonstrate the superiority of the REM sleep EEG in the discrimination between a-MCI and both na-MCI and control subjects. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  10. EEG Changes Due to Experimentally Induced 3G Mobile Phone Radiation

    PubMed Central

    Roggeveen, Suzanne; van Os, Jim; Viechtbauer, Wolfgang; Lousberg, Richel

    2015-01-01

    The aim of this study was to investigate whether a 15-minute placement of a 3G dialing mobile phone causes direct changes in EEG activity compared to the placement of a sham phone. Furthermore, it was investigated whether placement of the mobile phone on the ear or the heart would result in different outcomes. Thirty-one healthy females participated. All subjects were measured twice: on one of the two days the mobile phone was attached to the ear, the other day to the chest. In this single-blind, cross-over design, assessments in the sham phone condition were conducted directly preceding and following the mobile phone exposure. During each assessment, EEG activity and radiofrequency radiation were recorded jointly. Delta, theta, alpha, slowbeta, fastbeta, and gamma activity was computed. The association between radiation exposure and the EEG was tested using multilevel random regression analyses with radiation as predictor of main interest. Significant radiation effects were found for the alpha, slowbeta, fastbeta, and gamma bands. When analyzed separately, ear location of the phone was associated with significant results, while chest placement was not. The results support the notion that EEG alterations are associated with mobile phone usage and that the effect is dependent on site of placement. Further studies are required to demonstrate the physiological relevance of these findings. PMID:26053854

  11. EEG Changes Due to Experimentally Induced 3G Mobile Phone Radiation.

    PubMed

    Roggeveen, Suzanne; van Os, Jim; Viechtbauer, Wolfgang; Lousberg, Richel

    2015-01-01

    The aim of this study was to investigate whether a 15-minute placement of a 3G dialing mobile phone causes direct changes in EEG activity compared to the placement of a sham phone. Furthermore, it was investigated whether placement of the mobile phone on the ear or the heart would result in different outcomes. Thirty-one healthy females participated. All subjects were measured twice: on one of the two days the mobile phone was attached to the ear, the other day to the chest. In this single-blind, cross-over design, assessments in the sham phone condition were conducted directly preceding and following the mobile phone exposure. During each assessment, EEG activity and radiofrequency radiation were recorded jointly. Delta, theta, alpha, slowbeta, fastbeta, and gamma activity was computed. The association between radiation exposure and the EEG was tested using multilevel random regression analyses with radiation as predictor of main interest. Significant radiation effects were found for the alpha, slowbeta, fastbeta, and gamma bands. When analyzed separately, ear location of the phone was associated with significant results, while chest placement was not. The results support the notion that EEG alterations are associated with mobile phone usage and that the effect is dependent on site of placement. Further studies are required to demonstrate the physiological relevance of these findings.

  12. Kohlbergian Cosmic Perspective Responses, EEG Coherence and the TM and TM-Sidhi Programme.

    ERIC Educational Resources Information Center

    Nidich, Sanford I.; And Others

    1983-01-01

    This study compared the brain wave activity (EEG) of people who responded to the question "Why be moral?" with answers indicating a belief in the wholeness of man and nature with respondents who did not show a cosmic orientation. Results showed differences in EEG scores between groups. (Author/IS)

  13. Specificity of spontaneous EEG associated with different levels of cognitive and communicative dysfunctions in children.

    PubMed

    Kozhushko, Nadezhda Ju; Nagornova, Zhanna V; Evdokimov, Sergey A; Shemyakina, Natalia V; Ponomarev, Valery A; Tereshchenko, Ekaterina P; Kropotov, Jury D

    2018-06-01

    This study aimed to reveal electrophysiological markers of communicative and cognitive dysfunctions of different severity in children with autism spectrum disorder (ASD). Eyes-opened electroencephalograms (EEGs) of 42 children with ASD, divided into two groups according to the severity of their communicative and cognitive dysfunctions (24 with severe and 18 children with less severe ASD), and 70 age-matched controls aged 4-9 years were examined by means of spectral and group independent component (gIC) analyses. A predominance of theta and beta EEG activity in both groups of children with ASD compared to the activity in the control group was found in the global gIC together with a predominance of beta EEG activity in the right occipital region. The quantity of local gICs with enhanced slow and high-frequency EEG activity (within the frontal, temporal, and parietal cortex areas) in children 4-9 years of age might be considered a marker of cognitive and communicative dysfunction severity. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Quantitative EEG during REM and NREM sleep in combat-exposed veterans with and without Posttraumatic Stress Disorder

    PubMed Central

    Cohen, Daniel J.; Begley, Amy; Alman, Jennie J.; Cashmere, J. David; Pietrone, Regina N.; Seres, Robert J.; Germain, Anne

    2012-01-01

    Summary Sleep disturbances are a hallmark feature of posttraumatic stress disorder (PTSD), and associated with poor clinical outcomes. Few studies have examined sleep quantitative electroencephalography (qEEG), a technique able to detect subtle differences polysomnography does not capture. We hypothesized greater high-frequency qEEG would reflect “hyperarousal” in in combat veterans with PTSD (n=16) compared to veterans without PTSD (n=13). EEG power in traditional EEG frequency bands was computed for artifact-free sleep epochs across an entire night. Correlations were performed between qEEG and ratings of PTSD symptoms and combat exposure. The groups did not differ significantly in whole night qEEG measures for either REM or NREM. Non-significant medium effect sizes suggest less REM beta (opposite to our hypothesis), less REM and NREM sigma, and more NREM gamma in combat veterans with PTSD. Positive correlations were found between combat exposure and NREM beta (PTSD group only), and REM and NREM sigma (non-PTSD group only). Results did not support global hyperarousal in PTSD as indexed by increased beta qEEG activity. The correlation of sigma activity with combat exposure in those without PTSD, and the non-significant trend towards less sigma activity during both REM and NREM sleep in combat veterans with PTSD suggests that differential information processing during sleep may characterize combat-exposed military veterans with and without PTSD. PMID:22845675

  15. EEG Oscillatory States: Universality, Uniqueness and Specificity across Healthy-Normal, Altered and Pathological Brain Conditions

    PubMed Central

    Fingelkurts, Alexander A.; Fingelkurts, Andrew A.

    2014-01-01

    For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations’ functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal. PMID:24505292

  16. Decoding of intentional actions from scalp electroencephalography (EEG) in freely-behaving infants.

    PubMed

    Hernandez, Zachery R; Cruz-Garza, Jesus; Tse, Teresa; Contreras-Vidal, Jose L

    2014-01-01

    The mirror neuron system (MNS) in humans is thought to enable an individual's understanding of the meaning of actions performed by others and the potential imitation and learning of those actions. In humans, electroencephalographic (EEG) changes in sensorimotor a-band at central electrodes, which desynchronizes both during execution and observation of goal-directed actions (i.e., μ suppression), have been considered an analog to MNS function. However, methodological and developmental issues, as well as the nature of generalized μ suppression to imagined, observed, and performed actions, have yet to provide a mechanistic relationship between EEG μ-rhythm and MNS function, and the extent to which EEG can be used to infer intent during MNS tasks remains unknown. In this study we present a novel methodology using active EEG and inertial sensors to record brain activity and behavioral actions from freely-behaving infants during exploration, imitation, attentive rest, pointing, reaching and grasping, and interaction with an actor. We used 5-band (1-4Hz) EEG as input to a dimensionality reduction algorithm (locality-preserving Fisher's discriminant analysis, LFDA) followed by a neural classifier (Gaussian mixture models, GMMs) to decode the each MNS task performed by freely-behaving 6-24 month old infants during interaction with an adult actor. Here, we present results from a 20-month male infant to illustrate our approach and show the feasibility of EEG-based classification of freely occurring MNS behaviors displayed by an infant. These results, which provide an alternative to the μ-rhythm theory of MNS function, indicate the informative nature of EEG in relation to intentionality (goal) for MNS tasks which may support action-understanding and thus bear implications for advancing the understanding of MNS function.

  17. Analyzing large data sets acquired through telemetry from rats exposed to organophosphorous compounds: an EEG study.

    PubMed

    de Araujo Furtado, Marcio; Zheng, Andy; Sedigh-Sarvestani, Madineh; Lumley, Lucille; Lichtenstein, Spencer; Yourick, Debra

    2009-10-30

    The organophosphorous compound soman is an acetylcholinesterase inhibitor that causes damage to the brain. Exposure to soman causes neuropathology as a result of prolonged and recurrent seizures. In the present study, long-term recordings of cortical EEG were used to develop an unbiased means to quantify measures of seizure activity in a large data set while excluding other signal types. Rats were implanted with telemetry transmitters and exposed to soman followed by treatment with therapeutics similar to those administered in the field after nerve agent exposure. EEG, activity and temperature were recorded continuously for a minimum of 2 days pre-exposure and 15 days post-exposure. A set of automatic MATLAB algorithms have been developed to remove artifacts and measure the characteristics of long-term EEG recordings. The algorithms use short-time Fourier transforms to compute the power spectrum of the signal for 2-s intervals. The spectrum is then divided into the delta, theta, alpha, and beta frequency bands. A linear fit to the power spectrum is used to distinguish normal EEG activity from artifacts and high amplitude spike wave activity. Changes in time spent in seizure over a prolonged period are a powerful indicator of the effects of novel therapeutics against seizures. A graphical user interface has been created that simultaneously plots the raw EEG in the time domain, the power spectrum, and the wavelet transform. Motor activity and temperature are associated with EEG changes. The accuracy of this algorithm is also verified against visual inspection of video recordings up to 3 days after exposure.

  18. Methods for artifact detection and removal from scalp EEG: A review.

    PubMed

    Islam, Md Kafiul; Rastegarnia, Amir; Yang, Zhi

    2016-11-01

    Electroencephalography (EEG) is the most popular brain activity recording technique used in wide range of applications. One of the commonly faced problems in EEG recordings is the presence of artifacts that come from sources other than brain and contaminate the acquired signals significantly. Therefore, much research over the past 15 years has focused on identifying ways for handling such artifacts in the preprocessing stage. However, this is still an active area of research as no single existing artifact detection/removal method is complete or universal. This article presents an extensive review of the existing state-of-the-art artifact detection and removal methods from scalp EEG for all potential EEG-based applications and analyses the pros and cons of each method. First, a general overview of the different artifact types that are found in scalp EEG and their effect on particular applications are presented. In addition, the methods are compared based on their ability to remove certain types of artifacts and their suitability in relevant applications (only functional comparison is provided not performance evaluation of methods). Finally, the future direction and expected challenges of current research is discussed. Therefore, this review is expected to be helpful for interested researchers who will develop and/or apply artifact handling algorithm/technique in future for their applications as well as for those willing to improve the existing algorithms or propose a new solution in this particular area of research. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Directed Motor-Auditory EEG Connectivity Is Modulated by Music Tempo.

    PubMed

    Nicolaou, Nicoletta; Malik, Asad; Daly, Ian; Weaver, James; Hwang, Faustina; Kirke, Alexis; Roesch, Etienne B; Williams, Duncan; Miranda, Eduardo R; Nasuto, Slawomir J

    2017-01-01

    Beat perception is fundamental to how we experience music, and yet the mechanism behind this spontaneous building of the internal beat representation is largely unknown. Existing findings support links between the tempo (speed) of the beat and enhancement of electroencephalogram (EEG) activity at tempo-related frequencies, but there are no studies looking at how tempo may affect the underlying long-range interactions between EEG activity at different electrodes. The present study investigates these long-range interactions using EEG activity recorded from 21 volunteers listening to music stimuli played at 4 different tempi (50, 100, 150 and 200 beats per minute). The music stimuli consisted of piano excerpts designed to convey the emotion of "peacefulness". Noise stimuli with an identical acoustic content to the music excerpts were also presented for comparison purposes. The brain activity interactions were characterized with the imaginary part of coherence (iCOH) in the frequency range 1.5-18 Hz (δ, θ, α and lower β) between all pairs of EEG electrodes for the four tempi and the music/noise conditions, as well as a baseline resting state (RS) condition obtained at the start of the experimental task. Our findings can be summarized as follows: (a) there was an ongoing long-range interaction in the RS engaging fronto-posterior areas; (b) this interaction was maintained in both music and noise, but its strength and directionality were modulated as a result of acoustic stimulation; (c) the topological patterns of iCOH were similar for music, noise and RS, however statistically significant differences in strength and direction of iCOH were identified; and (d) tempo had an effect on the direction and strength of motor-auditory interactions. Our findings are in line with existing literature and illustrate a part of the mechanism by which musical stimuli with different tempi can entrain changes in cortical activity.

  20. Directed Motor-Auditory EEG Connectivity Is Modulated by Music Tempo

    PubMed Central

    Nicolaou, Nicoletta; Malik, Asad; Daly, Ian; Weaver, James; Hwang, Faustina; Kirke, Alexis; Roesch, Etienne B.; Williams, Duncan; Miranda, Eduardo R.; Nasuto, Slawomir J.

    2017-01-01

    Beat perception is fundamental to how we experience music, and yet the mechanism behind this spontaneous building of the internal beat representation is largely unknown. Existing findings support links between the tempo (speed) of the beat and enhancement of electroencephalogram (EEG) activity at tempo-related frequencies, but there are no studies looking at how tempo may affect the underlying long-range interactions between EEG activity at different electrodes. The present study investigates these long-range interactions using EEG activity recorded from 21 volunteers listening to music stimuli played at 4 different tempi (50, 100, 150 and 200 beats per minute). The music stimuli consisted of piano excerpts designed to convey the emotion of “peacefulness”. Noise stimuli with an identical acoustic content to the music excerpts were also presented for comparison purposes. The brain activity interactions were characterized with the imaginary part of coherence (iCOH) in the frequency range 1.5–18 Hz (δ, θ, α and lower β) between all pairs of EEG electrodes for the four tempi and the music/noise conditions, as well as a baseline resting state (RS) condition obtained at the start of the experimental task. Our findings can be summarized as follows: (a) there was an ongoing long-range interaction in the RS engaging fronto-posterior areas; (b) this interaction was maintained in both music and noise, but its strength and directionality were modulated as a result of acoustic stimulation; (c) the topological patterns of iCOH were similar for music, noise and RS, however statistically significant differences in strength and direction of iCOH were identified; and (d) tempo had an effect on the direction and strength of motor-auditory interactions. Our findings are in line with existing literature and illustrate a part of the mechanism by which musical stimuli with different tempi can entrain changes in cortical activity. PMID:29093672

  1. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.

    PubMed

    Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Plichta, Michael M; Rechtsteiner, Stefanie; Zangl, Maria; Ruf, Matthias; Holz, Nathalie; Boecker, Regina; Meyer-Lindenberg, Andreas; Holtmann, Martin; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel

    2014-07-01

    Inhibitory response control has been extensively investigated in both electrophysiological (ERP) and hemodynamic (fMRI) studies. However, very few multimodal results address the coupling of these inhibition markers. In fMRI, response inhibition has been most consistently linked to activation of the anterior insula and inferior frontal cortex (IFC), often also the anterior cingulate cortex (ACC). ERP work has established increased N2 and P3 amplitudes during NoGo compared to Go conditions in most studies. Previous simultaneous EEG-fMRI imaging reported association of the N2/P3 complex with activation of areas like the anterior midcingulate cortex (aMCC) and anterior insula. In this study we investigated inhibitory control in 23 healthy young adults (mean age=24.7, n=17 for EEG during fMRI) using a combined Flanker/NoGo task during simultaneous EEG and fMRI recording. Separate fMRI and ERP analysis yielded higher activation in the anterior insula, IFG and ACC as well as increased N2 and P3 amplitudes during NoGo trials in accordance with the literature. Combined analysis modelling sequential N2 and P3 effects through joint parametric modulation revealed correlation of higher N2 amplitude with deactivation in parts of the default mode network (DMN) and the cingulate motor area (CMA) as well as correlation of higher central P3 amplitude with activation of the left anterior insula, IFG and posterior cingulate. The EEG-fMRI results resolve the localizations of these sequential activations. They suggest a general role for allocation of attentional resources and motor inhibition for N2 and link memory recollection and internal reflection to P3 amplitude, in addition to previously described response inhibition as reflected by the anterior insula. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy

    PubMed Central

    Gu, Ying; Cleeren, Evy; Dan, Jonathan; Claes, Kasper; Hunyadi, Borbála

    2017-01-01

    A wearable electroencephalogram (EEG) device for continuous monitoring of patients suffering from epilepsy would provide valuable information for the management of the disease. Currently no EEG setup is small and unobtrusive enough to be used in daily life. Recording behind the ear could prove to be a solution to a wearable EEG setup. This article examines the feasibility of recording epileptic EEG from behind the ear. It is achieved by comparison with scalp EEG recordings. Traditional scalp EEG and behind-the-ear EEG were simultaneously acquired from 12 patients with temporal, parietal, or occipital lobe epilepsy. Behind-the-ear EEG consisted of cross-head channels and unilateral channels. The analysis on Electrooculography (EOG) artifacts resulting from eye blinking showed that EOG artifacts were absent on cross-head channels and had significantly small amplitudes on unilateral channels. Temporal waveform and frequency content during seizures from behind-the-ear EEG visually resembled that from scalp EEG. Further, coherence analysis confirmed that behind-the-ear EEG acquired meaningful epileptic discharges similarly to scalp EEG. Moreover, automatic seizure detection based on support vector machine (SVM) showed that comparable seizure detection performance can be achieved using these two recordings. With scalp EEG, detection had a median sensitivity of 100% and a false detection rate of 1.14 per hour, while, with behind-the-ear EEG, it had a median sensitivity of 94.5% and a false detection rate of 0.52 per hour. These findings demonstrate the feasibility of detecting seizures from EEG recordings behind the ear for patients with focal epilepsy. PMID:29295522

  3. Improved epileptic seizure detection combining dynamic feature normalization with EEG novelty detection.

    PubMed

    Bogaarts, J G; Hilkman, D M W; Gommer, E D; van Kranen-Mastenbroek, V H J M; Reulen, J P H

    2016-12-01

    Continuous electroencephalographic monitoring of critically ill patients is an established procedure in intensive care units. Seizure detection algorithms, such as support vector machines (SVM), play a prominent role in this procedure. To correct for inter-human differences in EEG characteristics, as well as for intra-human EEG variability over time, dynamic EEG feature normalization is essential. Recently, the median decaying memory (MDM) approach was determined to be the best method of normalization. MDM uses a sliding baseline buffer of EEG epochs to calculate feature normalization constants. However, while this method does include non-seizure EEG epochs, it also includes EEG activity that can have a detrimental effect on the normalization and subsequent seizure detection performance. In this study, EEG data that is to be incorporated into the baseline buffer are automatically selected based on a novelty detection algorithm (Novelty-MDM). Performance of an SVM-based seizure detection framework is evaluated in 17 long-term ICU registrations using the area under the sensitivity-specificity ROC curve. This evaluation compares three different EEG normalization methods, namely a fixed baseline buffer (FB), the median decaying memory (MDM) approach, and our novelty median decaying memory (Novelty-MDM) method. It is demonstrated that MDM did not improve overall performance compared to FB (p < 0.27), partly because seizure like episodes were included in the baseline. More importantly, Novelty-MDM significantly outperforms both FB (p = 0.015) and MDM (p = 0.0065).

  4. ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.

    PubMed

    Wu, Wei; Keller, Corey J; Rogasch, Nigel C; Longwell, Parker; Shpigel, Emmanuel; Rolle, Camarin E; Etkin, Amit

    2018-04-01

    Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal brain dynamics in humans. However, in addition to the common artifacts in standard EEG data, spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges to the extraction of neural information. Typically, neural signals are analyzed after a manual time-intensive and often subjective process of artifact rejection. Here we describe a fully automated algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier to automatically identify artifact components based on knowledge of the spatio-temporal profile of both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy referenced to expert artifact rejection performance, and does so across a large number of spTMS-EEG data sets (n = 90 stimulation sites), retains high accuracy across stimulation sites/subjects/populations/montages, and outperforms current automated algorithms. Moreover, the algorithm was superior to the artifact rejection performance of relatively novice individuals, who would be the likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings. © 2018 Wiley Periodicals, Inc.

  5. EEG

    MedlinePlus

    ... injuries Infections Tumors EEG is also used to: Evaluate problems with sleep ( sleep disorders ) Monitor the brain ... Tissue death due to a blockage in blood flow (cerebral infarction) Drug or alcohol abuse Head injury ...

  6. A capability model of individual differences in frontal EEG asymmetry.

    PubMed

    Coan, James A; Allen, John J B; McKnight, Patrick E

    2006-05-01

    Researchers interested in measuring individual differences in affective style via asymmetries in frontal brain activity have depended almost exclusively upon the resting state for EEG recording. This reflects an implicit conceptualization of affective style as a response predisposition that is manifest in frontal EEG asymmetry, with the goal to describe individuals in terms of their general approach or withdrawal tendencies. Alternatively, the response capability conceptualization seeks to identify individual capabilities for approach versus withdrawal responses during emotionally salient events. The capability approach confers a variety of advantages to the study of affective style and personality, and suggests new possibilities for the approach/withdrawal motivational model of frontal EEG asymmetry and emotion. Logical as well as empirical arguments supportive of this conclusion are presented.

  7. Mapping interictal epileptic discharges using mutual information between concurrent EEG and fMRI.

    PubMed

    Caballero-Gaudes, César; Van de Ville, Dimitri; Grouiller, Frédéric; Thornton, Rachel; Lemieux, Louis; Seeck, Margitta; Lazeyras, François; Vulliemoz, Serge

    2013-03-01

    The mapping of haemodynamic changes related to interictal epileptic discharges (IED) in simultaneous electroencephalography (EEG) and functional MRI (fMRI) studies is usually carried out by means of EEG-correlated fMRI analyses where the EEG information specifies the model to test on the fMRI signal. The sensitivity and specificity critically depend on the accuracy of EEG detection and the validity of the haemodynamic model. In this study we investigated whether an information theoretic analysis based on the mutual information (MI) between the presence of epileptic activity on EEG and the fMRI data can provide further insights into the haemodynamic changes related to interictal epileptic activity. The important features of MI are that: 1) both recording modalities are treated symmetrically; 2) no requirement for a-priori models for the haemodynamic response function, or assumption of a linear relationship between the spiking activity and BOLD responses, and 3) no parametric model for the type of noise or its probability distribution is necessary for the computation of MI. Fourteen patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI and intracranial EEG and/or surgical resection with positive postoperative outcome (seizure freedom or considerable reduction in seizure frequency) was available in 7/14 patients. We used nonparametric statistical assessment of the MI maps based on a four-dimensional wavelet packet resampling method. The results of MI were compared to the statistical parametric maps obtained with two conventional General Linear Model (GLM) analyses based on the informed basis set (canonical HRF and its temporal and dispersion derivatives) and the Finite Impulse Response (FIR) models. The MI results were concordant with the electro-clinically or surgically defined epileptogenic area in 8/14 patients and showed the same degree of concordance as the results obtained with the GLM-based methods in 12 patients (7 concordant and 5 discordant). In

  8. Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns

    PubMed Central

    Lee, You-Yun; Hsieh, Shulan

    2014-01-01

    This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity provides a useful tool for studying the relationship between brain activity and emotional states. PMID:24743695

  9. Individual musical tempo preference correlates with EEG beta rhythm.

    PubMed

    Bauer, Anna-Katharina R; Kreutz, Gunter; Herrmann, Christoph S

    2015-04-01

    Every individual has a preferred musical tempo, which peaks slightly above 120 beats per minute and is subject to interindividual variation. The preferred tempo is believed to be associated with rhythmic body movements as well as motor cortex activity. However, a long-standing question is whether preferred tempo is determined biologically. To uncover the neural correlates of preferred tempo, we first determined an individual's preferred tempo using a multistep procedure. Subsequently, we correlated the preferred tempo with a general EEG timing parameter as well as perceptual and motor EEG correlates-namely, individual alpha frequency, auditory evoked gamma band response, and motor beta activity. Results showed a significant relation between preferred tempo and the frequency of motor beta activity. These findings suggest that individual tempo preferences result from neural activity in the motor cortex, explaining the interindividual variation. Copyright © 2014 Society for Psychophysiological Research.

  10. Contralateral interictal and ictal EEG epileptiform activity accentuate memory impairment in unilateral mesial temporal sclerosis patients.

    PubMed

    Pinto, Lecio F; Adda, Carla C; Silva, Liliane C A; Banaskiwitz, Natalie H C; Passarelli, Valmir; Jorge, Carmen L; Valerio, Rosa M; Castro, Luiz H

    2017-03-01

    Memory impairment is a recognized complication of mesial temporal sclerosis (MTS). Epileptiform activity may negatively impact on cognition. We evaluated the impact of contralateral EEG involvement on memory in unilateral MTS (uMTS) patients. Retrospective review of 121 right-handed uMTS patients (69 left) evaluated with prolonged video-EEG and verbal and nonverbal memory tests (Rey Auditory Verbal Learning Test and Rey-Osterrieth Complex figure), with additional very delayed trials. Patients were classified according to ictal/interictal EEG findings and MTS side as left or right concordant or discordant. Thirty-nine normal individuals who underwent the same neuropsychological battery served as controls. Demographic, disease, and treatment features did not differ among groups. On the 7-day verbal memory free recall, left discordant performed significantly worse than controls and right concordant, recognized fewer words, and had more recognition errors than all other groups, including left concordant. For nonverbal memory, right discordant performed significantly worse than controls on delayed recall, and attained lower scores than other groups on immediate and 7-day recall, but this difference did not reach statistical significance. Left discordant had higher scores of memory complaints than controls and disclosed a trend toward accentuated memory impairment compared with the other groups over time. Our results suggest that contralateral electrographic involvement in uMTS was associated with more pronounced memory impairment for verbal material in left discordant patients, and to a lesser extent, for nonverbal material in right discordant patients. Left discordant group also had increased memory complaints. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Automatic EEG artifact removal: a weighted support vector machine approach with error correction.

    PubMed

    Shao, Shi-Yun; Shen, Kai-Quan; Ong, Chong Jin; Wilder-Smith, Einar P V; Li, Xiao-Ping

    2009-02-01

    An automatic electroencephalogram (EEG) artifact removal method is presented in this paper. Compared to past methods, it has two unique features: 1) a weighted version of support vector machine formulation that handles the inherent unbalanced nature of component classification and 2) the ability to accommodate structural information typically found in component classification. The advantages of the proposed method are demonstrated on real-life EEG recordings with comparisons made to several benchmark methods. Results show that the proposed method is preferable to the other methods in the context of artifact removal by achieving a better tradeoff between removing artifacts and preserving inherent brain activities. Qualitative evaluation of the reconstructed EEG epochs also demonstrates that after artifact removal inherent brain activities are largely preserved.

  12. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.

    PubMed

    Mannan, Malik M Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M Ahmad

    2016-02-19

    Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data.

  13. Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications.

    PubMed

    Stone, David B; Tamburro, Gabriella; Fiedler, Patrique; Haueisen, Jens; Comani, Silvia

    2018-01-01

    Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate these interferences are often the behaviors under investigation. Therefore, there is a need to develop effective and efficient methods to identify physiological artifacts in EEG recordings during sports applications so that they can be isolated from cerebral activity related to the activities of interest. We have developed an EEG artifact detection model, the Fingerprint Method, which identifies different spatial, temporal, spectral, and statistical features indicative of physiological artifacts and uses these features to automatically classify artifactual independent components in EEG based on a machine leaning approach. Here, we optimized our method using artifact-rich training data and a procedure to determine which features were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then applied our model to an experimental dataset collected during endurance cycling. Results reveal that unique sets of features are suitable for the detection of distinct types of artifacts and that the Optimized Fingerprint Method was able to correctly identify over 90% of the artifactual components with physiological origin present in the experimental data. These results represent a significant advancement in the search for effective means to address artifact contamination in EEG sports science applications.

  14. Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering

    PubMed Central

    Huang, Chih-Sheng; Yang, Wen-Yu; Chuang, Chun-Hsiang; Wang, Yu-Kai

    2018-01-01

    Electroencephalogram (EEG) signals are usually contaminated with various artifacts, such as signal associated with muscle activity, eye movement, and body motion, which have a noncerebral origin. The amplitude of such artifacts is larger than that of the electrical activity of the brain, so they mask the cortical signals of interest, resulting in biased analysis and interpretation. Several blind source separation methods have been developed to remove artifacts from the EEG recordings. However, the iterative process for measuring separation within multichannel recordings is computationally intractable. Moreover, manually excluding the artifact components requires a time-consuming offline process. This work proposes a real-time artifact removal algorithm that is based on canonical correlation analysis (CCA), feature extraction, and the Gaussian mixture model (GMM) to improve the quality of EEG signals. The CCA was used to decompose EEG signals into components followed by feature extraction to extract representative features and GMM to cluster these features into groups to recognize and remove artifacts. The feasibility of the proposed algorithm was demonstrated by effectively removing artifacts caused by blinks, head/body movement, and chewing from EEG recordings while preserving the temporal and spectral characteristics of the signals that are important to cognitive research. PMID:29599950

  15. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral

  16. Resting State EEG in Children With Learning Disabilities: An Independent Component Analysis Approach.

    PubMed

    Jäncke, Lutz; Alahmadi, Nsreen

    2016-01-01

    In this study, the neurophysiological underpinnings of learning disabilities (LD) in children are examined using resting state EEG. We were particularly interested in the neurophysiological differences between children with learning disabilities not otherwise specified (LD-NOS), learning disabilities with verbal disabilities (LD-Verbal), and healthy control (HC) children. We applied 2 different approaches to examine the differences between the different groups. First, we calculated theta/beta and theta/alpha ratios in order to quantify the relationship between slow and fast EEG oscillations. Second, we used a recently developed method for analyzing spectral EEG, namely the group independent component analysis (gICA) model. Using these measures, we identified substantial differences between LD and HC children and between LD-NOS and LD-Verbal children in terms of their spectral EEG profiles. We obtained the following findings: (a) theta/beta and theta/alpha ratios were substantially larger in LD than in HC children, with no difference between LD-NOS and LD-Verbal children; (b) there was substantial slowing of EEG oscillations, especially for gICs located in frontal scalp positions, with LD-NOS children demonstrating the strongest slowing; (c) the estimated intracortical sources of these gICs were mostly located in brain areas involved in the control of executive functions, attention, planning, and language; and (d) the LD-Verbal children demonstrated substantial differences in EEG oscillations compared with LD-NOS children, and these differences were localized in language-related brain areas. The general pattern of atypical neurophysiological activation found in LD children suggests that they suffer from neurophysiological dysfunction in brain areas involved with the control of attention, executive functions, planning, and language functions. LD-Verbal children also demonstrate atypical activation, especially in language-related brain areas. These atypical

  17. EEG error potentials detection and classification using time-frequency features for robot reinforcement learning.

    PubMed

    Boubchir, Larbi; Touati, Youcef; Daachi, Boubaker; Chérif, Arab Ali

    2015-08-01

    In thought-based steering of robots, error potentials (ErrP) can appear when the action resulting from the brain-machine interface (BMI) classifier/controller does not correspond to the user's thought. Using the Steady State Visual Evoked Potentials (SSVEP) techniques, ErrP, which appear when a classification error occurs, are not easily recognizable by only examining the temporal or frequency characteristics of EEG signals. A supplementary classification process is therefore needed to identify them in order to stop the course of the action and back up to a recovery state. This paper presents a set of time-frequency (t-f) features for the detection and classification of EEG ErrP in extra-brain activities due to misclassification observed by a user exploiting non-invasive BMI and robot control in the task space. The proposed features are able to characterize and detect ErrP activities in the t-f domain. These features are derived from the information embedded in the t-f representation of EEG signals, and include the Instantaneous Frequency (IF), t-f information complexity, SVD information, energy concentration and sub-bands' energies. The experiment results on real EEG data show that the use of the proposed t-f features for detecting and classifying EEG ErrP achieved an overall classification accuracy up to 97% for 50 EEG segments using 2-class SVM classifier.

  18. EEG and Neuronal Activity Topography analysis can predict effectiveness of shunt operation in idiopathic normal pressure hydrocephalus patients.

    PubMed

    Aoki, Yasunori; Kazui, Hiroaki; Tanaka, Toshihisa; Ishii, Ryouhei; Wada, Tamiki; Ikeda, Shunichiro; Hata, Masahiro; Canuet, Leonides; Musha, Toshimitsu; Matsuzaki, Haruyasu; Imajo, Kaoru; Yoshiyama, Kenji; Yoshida, Tetsuhiko; Shimizu, Yoshiro; Nomura, Keiko; Iwase, Masao; Takeda, Masatoshi

    2013-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is a neuropsychiatric syndrome characterized by gait disturbance, cognitive impairment and urinary incontinence that affect elderly individuals. These symptoms can potentially be reversed by cerebrospinal fluid (CSF) drainage or shunt operation. Prior to shunt operation, drainage of a small amount of CSF or "CSF tapping" is usually performed to ascertain the effect of the operation. Unfortunately, conventional neuroimaging methods such as single photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI), as well as electroencephalogram (EEG) power analysis seem to have failed to detect the effect of CSF tapping on brain function. In this work, we propose the use of Neuronal Activity Topography (NAT) analysis, which calculates normalized power variance (NPV) of EEG waves, to detect cortical functional changes induced by CSF tapping in iNPH. Based on clinical improvement by CSF tapping and shunt operation, we classified 24 iNPH patients into responders (N = 11) and nonresponders (N = 13), and performed both EEG power analysis and NAT analysis. We also assessed correlations between changes in NPV and changes in functional scores on gait and cognition scales before and after CSF tapping. NAT analysis showed that after CSF tapping there was a significant decrease in alpha NPV at the medial frontal cortex (FC) (Fz) in responders, while nonresponders exhibited an increase in alpha NPV at the right dorsolateral prefrontal cortex (DLPFC) (F8). Furthermore, we found correlations between cortical functional changes and clinical symptoms. In particular, delta and alpha NPV changes in the left-dorsal FC (F3) correlated with changes in gait status, while alpha and beta NPV changes in the right anterior prefrontal cortex (PFC) (Fp2) and left DLPFC (F7) as well as alpha NPV changes in the medial FC (Fz) correlated with changes in gait velocity. In addition, alpha NPV changes in the right DLPFC (F

  19. Speech Presentation Cues Moderate Frontal EEG Asymmetry in Socially Withdrawn Young Adults

    PubMed Central

    Cole, Claire; Zapp, Daniel J.; Nelson, S. Katherine; Pérez-Edgar, Koraly

    2011-01-01

    Socially withdrawn individuals display solitary behavior across wide contexts with both unfamiliar and familiar peers. This tendency to withdraw may be driven by either past or anticipated negative social encounters. In addition, socially withdrawn individuals often exhibit right frontal electroencephalogram (EEG) asymmetry at baseline and when under stress. In the current study we examined shifts in frontal EEG activity in young adults (N=41) at baseline, as they viewed either an anxiety-provoking or a benign speech video, and as they subsequently prepared for their own speech. Results indicated that right frontal EEG activity increased, relative to the left, only for socially withdrawn participants exposed to the anxious video. These results suggest that contextual affective cues may prime an individual’s response to stress, particularly if they illustrate or substantiate an anticipated negative event. PMID:22169714

  20. Analysis of EEG Related Saccadic Eye Movement

    NASA Astrophysics Data System (ADS)

    Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru

    Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.

  1. Robust power spectral estimation for EEG data

    PubMed Central

    Melman, Tamar; Victor, Jonathan D.

    2016-01-01

    Background Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. New method Using the multitaper method[1] as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Results Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. Comparison to existing method The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. Conclusion In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. PMID:27102041

  2. Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts

    PubMed Central

    PONTIFEX, MATTHEW B.; GWIZDALA, KATHRYN L.; PARKS, ANDREW C.; BILLINGER, MARTIN; BRUNNER, CLEMENS

    2017-01-01

    Despite the growing use of independent component analysis (ICA) algorithms for isolating and removing eyeblink-related activity from EEG data, we have limited understanding of how variability associated with ICA uncertainty may be influencing the reconstructed EEG signal after removing the eyeblink artifact components. To characterize the magnitude of this ICA uncertainty and to understand the extent to which it may influence findings within ERP and EEG investigations, ICA decompositions of EEG data from 32 college-aged young adults were repeated 30 times for three popular ICA algorithms. Following each decomposition, eyeblink components were identified and removed. The remaining components were back-projected, and the resulting clean EEG data were further used to analyze ERPs. Findings revealed that ICA uncertainty results in variation in P3 amplitude as well as variation across all EEG sampling points, but differs across ICA algorithms as a function of the spatial location of the EEG channel. This investigation highlights the potential of ICA uncertainty to introduce additional sources of variance when the data are back-projected without artifact components. Careful selection of ICA algorithms and parameters can reduce the extent to which ICA uncertainty may introduce an additional source of variance within ERP/EEG studies. PMID:28026876

  3. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man

    PubMed Central

    Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.

    2016-01-01

    Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987

  4. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

    PubMed

    Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M

    2016-07-01

    Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.

  5. Independent component analysis separates spikes of different origin in the EEG.

    PubMed

    Urrestarazu, Elena; Iriarte, Jorge; Artieda, Julio; Alegre, Manuel; Valencia, Miguel; Viteri, César

    2006-02-01

    Independent component analysis (ICA) is a novel system that finds independent sources in recorded signals. Its usefulness in separating epileptiform activity of different origin has not been determined. The goal of this study was to demonstrate that ICA is useful for separating different spikes using samples of EEG of patients with focal epilepsy. Digital EEG samples from four patients with focal epilepsy were included. The patients had temporal (n = 2), centrotemporal (n = 1) or frontal spikes (n = 1). Twenty-six samples with two (or more) spikes from two different patients were created. The selection of the two spikes for each mixed EEG was performed randomly, trying to have all the different combinations and rejecting the mixture of two spikes from the same patient. Two different examiners studied the EEGs using ICA with JADE paradigm in Matlab platform, trying to separate and to identify the spikes. They agreed in the correct separation of the spikes in 24 of the 26 samples, classifying the spikes as frontal, temporal or centrotemporal, left or right sided. The demonstration of the possibility of detecting different artificially mixed spikes confirms that ICA may be useful in separating spikes or other elements in real EEGs.

  6. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    PubMed

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  7. Adaptive shut-down of EEG activity predicts critical acidemia in the near-term ovine fetus.

    PubMed

    Frasch, Martin G; Durosier, Lucien Daniel; Gold, Nathan; Cao, Mingju; Matushewski, Brad; Keenliside, Lynn; Louzoun, Yoram; Ross, Michael G; Richardson, Bryan S

    2015-07-01

    In fetal sheep, the electrocorticogram (ECOG) recorded directly from the cortex during repetitive heart rate (FHR) decelerations induced by umbilical cord occlusions (UCO) predictably correlates with worsening hypoxic-acidemia. In human fetal monitoring during labor, the equivalent electroencephalogram (EEG) can be recorded noninvasively from the scalp. We tested the hypothesis that combined fetal EEG - FHR monitoring allows for early detection of worsening hypoxic-acidemia similar to that shown for ECOG-FHR monitoring. Near-term fetal sheep (n = 9) were chronically instrumented with arterial and venous catheters, ECG, ECOG, and EEG electrodes and umbilical cord occluder, followed by 4 days of recovery. Repetitive UCOs of 1 min duration and increasing strength (with regard to the degree of reduction in umbilical blood flow) were induced each 2.5 min until pH dropped to <7.00. Repetitive UCOs led to marked acidosis (arterial pH 7.35 ± 0.01 to 7.00 ± 0.03). At pH of 7.22 ± 0.03 (range 7.32-7.07), and 45 ± 9 min (range 1 h 33 min-20 min) prior to attaining pH < 7.00, both ECOG and EEG amplitudes began to decrease ~fourfold during each FHR deceleration in a synchronized manner. Confirming our hypothesis, these findings support fetal EEG as a useful adjunct to FHR monitoring during human labor for early detection of incipient fetal acidemia. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces

    NASA Astrophysics Data System (ADS)

    Gutiérrez, David

    2008-08-01

    Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEG data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.

  9. EEG patterns associated with nitrogen narcosis (breathing air at 9 ATA).

    PubMed

    Pastena, Lucio; Faralli, Fabio; Mainardi, Giovanni; Gagliardi, Riccardo

    2005-11-01

    The narcotic effect of nitrogen impairs diver performance and limits dive profiles, especially for deep dives using compressed air. It would be helpful to establish measurable correlates of nitrogen narcosis. The authors observed the electroencephalogram (EEG) of 10 subjects, ages 22-27 yr, who breathed air during a 3-min compression to a simulated depth of 80 msw (9 ATA). The EEG from a 19-electrode cap was recorded for 20 min while the subject reclined on a cot with eyes closed, first at 1 ATA before the dive and again at 9 ATA. Signals were analyzed using Fast Fourier Transform and brain mapping for frequency domains 0-4 Hz, 4-7 Hz, 7-12 Hz, and 12-15 Hz. Student's paired t-test and correlation tests were used to compare results for the two conditions. Two EEG patterns were observed. The first was an increase in delta and theta activity in all cortical regions that appeared in the first 2 min at depth and was related to exposure time. The second was an increase in delta and theta activity and shifting of alpha activity to the frontal regions at minute 6 of breathing air at 9 ATA and was related to the narcotic effects of nitrogen. If confirmed by studies with larger case series, this EEG pattern could be used to identify nitrogen narcosis for various gas mixtures and prevent the dangerous impact of nitrogen on diver performance.

  10. Plastic changes following imitation-based speech and language therapy for aphasia: a high-density sleep EEG study.

    PubMed

    Sarasso, Simone; Määttä, Sara; Ferrarelli, Fabio; Poryazova, Rositsa; Tononi, Giulio; Small, Steven L

    2014-02-01

    BACKGROUND OBJECTIVE: measurement of plastic brain changes induced by a novel rehabilitative approach is a key requirement for validating its biological rationale linking the potential therapeutic gains to the changes in brain physiology. Based on an emerging notion linking cortical plastic changes to EEG sleep slow-wave activity (SWA) regulation, we aimed to assess the acute plastic changes induced by an imitation-based speech therapy in individuals with aphasia by comparing sleep SWA changes before and after therapy. A total of 13 left-hemispheric stroke patients underwent language assessment with the Western Aphasia Battery (WAB) before and after 2 consecutive high-density (hd) EEG sleep recordings interleaved by a daytime session of imitation-based speech therapy (Intensive Mouth Imitation and Talking for Aphasia Therapeutic Effects [IMITATE]). This protocol is thought to stimulate bilateral connections between the inferior parietal lobule and the ventral premotor areas. A single exposure to IMITATE resulted in increases in local EEG SWA during subsequent sleep over the same regions predicted by the therapeutic rationale, particularly over the right hemisphere (unaffected by the lesion). Furthermore, changes in SWA over the left-precentral areas predicted changes in WAB repetition scores in our group, supporting the role of perilesional areas in predicting positive functional responses. Our results suggest that SWA changes occurring in brain areas activated during imitation-based aphasia therapy may reflect the acute plastic changes induced by this intervention. Further testing will be needed to evaluate SWA as a non-invasive assessment of changes induced by the therapy and as a predictor of positive long-term clinical outcome.

  11. Classification of independent components of EEG into multiple artifact classes.

    PubMed

    Frølich, Laura; Andersen, Tobias S; Mørup, Morten

    2015-01-01

    In this study, we aim to automatically identify multiple artifact types in EEG. We used multinomial regression to classify independent components of EEG data, selecting from 65 spatial, spectral, and temporal features of independent components using forward selection. The classifier identified neural and five nonneural types of components. Between subjects within studies, high classification performances were obtained. Between studies, however, classification was more difficult. For neural versus nonneural classifications, performance was on par with previous results obtained by others. We found that automatic separation of multiple artifact classes is possible with a small feature set. Our method can reduce manual workload and allow for the selective removal of artifact classes. Identifying artifacts during EEG recording may be used to instruct subjects to refrain from activity causing them. Copyright © 2014 Society for Psychophysiological Research.

  12. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.

    PubMed

    Slobounov, Semyon M; Ray, William; Johnson, Brian; Slobounov, Elena; Newell, Karl M

    2015-03-01

    There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. COMPARISON OF EEG CHANGES PRODUCED BY CARBARYL (CARBAMATE), PERMETHRIN (TYPE I PYRETHROID), AND DELTAMETHRIN (TYPE II PYRETHROID)

    EPA Science Inventory

    We have reported that treatment with carbaryl may alter Theta activity in the EEG (Lyke et al., Toxicologist, 108(S-1):441, 2009). In this study, we examined the ability to detect changes in EEG activity produced by pesticides with different modes of action. Long Evans rats were ...

  14. Feature Extraction with GMDH-Type Neural Networks for EEG-Based Person Identification.

    PubMed

    Schetinin, Vitaly; Jakaite, Livija; Nyah, Ndifreke; Novakovic, Dusica; Krzanowski, Wojtek

    2018-08-01

    The brain activity observed on EEG electrodes is influenced by volume conduction and functional connectivity of a person performing a task. When the task is a biometric test the EEG signals represent the unique "brain print", which is defined by the functional connectivity that is represented by the interactions between electrodes, whilst the conduction components cause trivial correlations. Orthogonalization using autoregressive modeling minimizes the conduction components, and then the residuals are related to features correlated with the functional connectivity. However, the orthogonalization can be unreliable for high-dimensional EEG data. We have found that the dimensionality can be significantly reduced if the baselines required for estimating the residuals can be modeled by using relevant electrodes. In our approach, the required models are learnt by a Group Method of Data Handling (GMDH) algorithm which we have made capable of discovering reliable models from multidimensional EEG data. In our experiments on the EEG-MMI benchmark data which include 109 participants, the proposed method has correctly identified all the subjects and provided a statistically significant ([Formula: see text]) improvement of the identification accuracy. The experiments have shown that the proposed GMDH method can learn new features from multi-electrode EEG data, which are capable to improve the accuracy of biometric identification.

  15. EEG potentials predict upcoming emergency brakings during simulated driving

    NASA Astrophysics Data System (ADS)

    Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin

    2011-10-01

    Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.

  16. EEG potentials predict upcoming emergency brakings during simulated driving.

    PubMed

    Haufe, Stefan; Treder, Matthias S; Gugler, Manfred F; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin

    2011-10-01

    Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h(-1) driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.

  17. Contribution of EEG in transient neurological deficits.

    PubMed

    Lozeron, Pierre; Tcheumeni, Nadine Carole; Turki, Sahar; Amiel, Hélène; Meppiel, Elodie; Masmoudi, Sana; Roos, Caroline; Crassard, Isabelle; Plaisance, Patrick; Benbetka, Houria; Guichard, Jean-Pierre; Houdart, Emmanuel; Baudoin, Hélène; Kubis, Nathalie

    2018-01-01

    Identification of stroke mimics and 'chameleons' among transient neurological deficits (TND) is critical. Diagnostic workup consists of a brain imaging study, for a vascular disease or a brain tumour and EEG, for epileptiform discharges. The precise role of EEG in this diagnostic workup has, however, never been clearly delineated. However, this could be crucial in cases of atypical or incomplete presentation with consequences on disease management and treatment. We analysed the EEG patterns on 95 consecutive patients referred for an EEG within 7 days of a TND with diagnostic uncertainty. Patients were classified at the discharge or the 3-month follow-up visit as: 'ischemic origin', 'migraine aura', 'focal seizure', and 'other'. All patients had a brain imaging study. EEG characteristics were correlated to the TND symptoms, imaging study, and final diagnosis. Sixty four (67%) were of acute onset. Median symptom duration was 45 min. Thirty two % were 'ischemic', 14% 'migraine aura', 19% 'focal seizure', and 36% 'other' cause. EEGs were recorded with a median delay of 1.6 day after symptoms onset. Forty EEGs (42%) were abnormal. Focal slow waves were the most common finding (43%), also in the ischemic group (43%), whether patients had a typical presentation or not. Epileptiform discharges were found in three patients, one with focal seizure and two with migraine aura. Non-specific EEG focal slowing is commonly found in TND, and may last several days. We found no difference in EEG presentation between stroke mimics and stroke chameleons, and between other diagnoses.

  18. Frontal EEG Asymmetry and Temperament Across Infancy and Early Childhood: An Exploration of Stability and Bidirectional Relations

    PubMed Central

    Howarth, Grace Z.; Fettig, Nicole B.; Curby, Timothy W.; Bell, Martha Ann

    2015-01-01

    The stability of frontal electroencephalogram (EEG) asymmetry, temperamental activity level and fear, as well as bidirectional relations between asymmetry and temperament across the first four years of life were examined in a sample of 183 children. Children participated in annual lab visits through 48 months, providing EEG and maternal report of temperament. EEG asymmetry showed moderate stability between 10 and 24 months. Analyses revealed that more left asymmetry predicted later activity level across the first three years. Conversely, asymmetry did not predict fear. Rather, fear at 36 months predicted more right asymmetry at 48 months. Results highlight the need for additional longitudinal research of infants and children to increase understanding of bidirectional relations between EEG and temperament in typically developing populations. PMID:26659466

  19. Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days.

    PubMed

    Cannon, Rex L; Baldwin, Debora R; Shaw, Tiffany L; Diloreto, Dominic J; Phillips, Sherman M; Scruggs, Annie M; Riehl, Timothy C

    2012-06-14

    There is a growing interest for using quantitative EEG and LORETA current source density in clinical and research settings. Importantly, if these indices are to be employed in clinical settings then the reliability of these measures is of great concern. Neuroguide (Applied Neurosciences) is sophisticated software developed for the analyses of power, and connectivity measures of the EEG as well as LORETA current source density. To date there are relatively few data evaluating topographical EEG reliability contrasts for all 19 channels and no studies have evaluated reliability for LORETA calculations. We obtained 4 min eyes-closed and eyes-opened EEG recordings at 30-day intervals. The EEG was analyzed in Neuroguide and FFT power, coherence and phase was computed for traditional frequency bands (delta, theta, alpha and beta) and LORETA current source density was calculated in 1 Hz increments and summed for total power in eight regions of interest (ROI). In order to obtain a robust measure of reliability we utilized a random effects model with an absolute agreement definition. The results show very good reproducibility for total absolute power and coherence. Phase shows lower reliability coefficients. LORETA current source density shows very good reliability with an average 0.81 for ECB and 0.82 for EOB. Similarly, the eight regions of interest show good to very good agreement across time. Implications for future directions and use of qEEG and LORETA in clinical populations are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Design and validation of a wearable "DRL-less" EEG using a novel fully-reconfigurable architecture.

    PubMed

    Mahajan, Ruhi; Morshed, Bashir I; Bidelman, Gavin M

    2016-08-01

    The conventional EEG system consists of a driven-right-leg (DRL) circuit, which prohibits modularization of the system. We propose a Lego-like connectable fully reconfigurable architecture of wearable EEG that can be easily customized and deployed at naturalistic settings for collecting neurological data. We have designed a novel Analog Front End (AFE) that eliminates the need for DRL while maintaining a comparable signal quality of EEG. We have prototyped this AFE for a single channel EEG, referred to as Smart Sensing Node (SSN), that senses brain signals and sends it to a Command Control Node (CCN) via an I2C bus. The AFE of each SSN (referential-montage) consists of an off-the-shelf instrumentation amplifier (gain=26), an active notch filter fc = 60Hz), 2nd-order active Butterworth low-pass filter followed by a passive low pass filter (fc = 47.5 Hz, gain = 1.61) and a passive high pass filter fc = 0.16 Hz, gain = 0.83). The filtered signals are digitized using a low-power microcontroller (MSP430F5528) with a 12-bit ADC at 512 sps, and transmitted to the CCN every 1 s at a bus rate of 100 kbps. The CCN can further transmit this data wirelessly using Bluetooth to the paired computer at a baud rate of 115.2 kbps. We have compared temporal and frequency-domain EEG signals of our system with a research-grade EEG. Results show that the proposed reconfigurable EEG captures comparable signals, and is thus promising for practical routine neurological monitoring in non-clinical settings where a flexible number of EEG channels are needed.

  1. Regional Reductions in Sleep Electroencephalography Power in Obstructive Sleep Apnea: A High-Density EEG Study

    PubMed Central

    Jones, Stephanie G.; Riedner, Brady A.; Smith, Richard F.; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.

    2014-01-01

    Study Objectives: Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Design: Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Setting: Sleep laboratory. Patients or Participants: Nine subjects with AHI > 10 and nine matched controls. Interventions: N/A. Measurements and Results: Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. Conclusion: This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process. Citation: Jones SG; Riedner BA; Smith RF; Ferrarelli F; Tononi G; Davidson RJ; Benca RM. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study. SLEEP 2014;37(2):399-407. PMID:24497668

  2. The effect of hypobaric hypoxia on multichannel EEG signal complexity.

    PubMed

    Papadelis, Christos; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Maglaveras, Nikos; Pappas, Konstantinos

    2007-01-01

    The objective of this study was the development and evaluation of nonlinear electroencephalography parameters which assess hypoxia-induced EEG alterations, and describe the temporal characteristics of different hypoxic levels' residual effect upon the brain electrical activity. Multichannel EEG, pO2, pCO2, ECG, and respiration measurements were recorded from 10 subjects exposed to three experimental conditions (100% oxygen, hypoxia, recovery) at three-levels of reduced barometric pressure. The mean spectral power of EEG under each session and altitude were estimated for the standard bands. Approximate Entropy (ApEn) of EEG segments was calculated, and the ApEn's time-courses were smoothed by a moving average filter. On the smoothed diagrams, parameters were defined. A significant increase in total power and power of theta and alpha bands was observed during hypoxia. Visual interpretation of ApEn time-courses revealed a characteristic pattern (decreasing during hypoxia and recovering after oxygen re-administration). The introduced qEEG parameters S1 and K1 distinguished successfully the three hypoxic conditions. The introduced parameters based on ApEn time-courses are assessing reliably and effectively the different hypoxic levels. ApEn decrease may be explained by neurons' functional isolation due to hypoxia since decreased complexity corresponds to greater autonomy of components, although this interpretation should be further supported by electrocorticographic animal studies. The introduced qEEG parameters seem to be appropriate for assessing the hypoxia-related neurophysiological state of patients in the hyperbaric chambers in the treatment of decompression sickness, carbon dioxide poisoning, and mountaineering.

  3. Detection and description of non-linear interdependence in normal multichannel human EEG data.

    PubMed

    Breakspear, M; Terry, J R

    2002-05-01

    This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex.

  4. High-resolution EEG techniques for brain-computer interface applications.

    PubMed

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Astolfi, Laura; De Vico Fallani, Fabrizio; Tocci, Andrea; Bianchi, Luigi; Marciani, Maria Grazia; Gao, Shangkai; Millan, Jose; Babiloni, Fabio

    2008-01-15

    High-resolution electroencephalographic (HREEG) techniques allow estimation of cortical activity based on non-invasive scalp potential measurements, using appropriate models of volume conduction and of neuroelectrical sources. In this study we propose an application of this body of technologies, originally developed to obtain functional images of the brain's electrical activity, in the context of brain-computer interfaces (BCI). Our working hypothesis predicted that, since HREEG pre-processing removes spatial correlation introduced by current conduction in the head structures, by providing the BCI with waveforms that are mostly due to the unmixed activity of a small cortical region, a more reliable classification would be obtained, at least when the activity to detect has a limited generator, which is the case in motor related tasks. HREEG techniques employed in this study rely on (i) individual head models derived from anatomical magnetic resonance images, (ii) distributed source model, composed of a layer of current dipoles, geometrically constrained to the cortical mantle, (iii) depth-weighted minimum L(2)-norm constraint and Tikhonov regularization for linear inverse problem solution and (iv) estimation of electrical activity in cortical regions of interest corresponding to relevant Brodmann areas. Six subjects were trained to learn self modulation of sensorimotor EEG rhythms, related to the imagination of limb movements. Off-line EEG data was used to estimate waveforms of cortical activity (cortical current density, CCD) on selected regions of interest. CCD waveforms were fed into the BCI computational pipeline as an alternative to raw EEG signals; spectral features are evaluated through statistical tests (r(2) analysis), to quantify their reliability for BCI control. These results are compared, within subjects, to analogous results obtained without HREEG techniques. The processing procedure was designed in such a way that computations could be split into a

  5. Amplitude-integrated EEG colored according to spectral edge frequency.

    PubMed

    Kobayashi, Katsuhiro; Mimaki, Nobuyoshi; Endoh, Fumika; Inoue, Takushi; Yoshinaga, Harumi; Ohtsuka, Yoko

    2011-10-01

    To improve the interpretability of figures containing an amplitude-integrated electroencephalogram (aEEG), we devised a color scale that allows us to incorporate spectral edge frequency (SEF) information into aEEG figures. Preliminary clinical assessment of this novel technique, which we call aEEG/SEF, was performed using neonatal and early infantile seizure data. We created aEEG, color density spectral array (DSA), and aEEG/SEF figures for focal seizures recorded in seven infants. Each seizure was paired with an interictal period from the same patient. After receiving instructions on how to interpret the figures, eight test reviewers examined each of the 72 figures displaying compressed data in aEEG, DSA, or aEEG/SEF form (12 seizures and 12 corresponding interictal periods) and attempted to identify each as a seizure or otherwise. They were not provided with any information regarding the original record. The median number of correctly identified seizures, out of a total of 12, was 7 (58.3%) for aEEG figures, 8 (66.7%) for DSA figures and 10 (83.3%) for aEEG/SEF figures; the differences among these are statistically significant (p=0.011). All reviewers concluded that aEEG/SEF figures were the easiest to interpret. The aEEG/SEF data presentation technique is a valid option in aEEG recordings of seizures. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications

    PubMed Central

    Stone, David B.; Tamburro, Gabriella; Fiedler, Patrique; Haueisen, Jens; Comani, Silvia

    2018-01-01

    Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate these interferences are often the behaviors under investigation. Therefore, there is a need to develop effective and efficient methods to identify physiological artifacts in EEG recordings during sports applications so that they can be isolated from cerebral activity related to the activities of interest. We have developed an EEG artifact detection model, the Fingerprint Method, which identifies different spatial, temporal, spectral, and statistical features indicative of physiological artifacts and uses these features to automatically classify artifactual independent components in EEG based on a machine leaning approach. Here, we optimized our method using artifact-rich training data and a procedure to determine which features were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then applied our model to an experimental dataset collected during endurance cycling. Results reveal that unique sets of features are suitable for the detection of distinct types of artifacts and that the Optimized Fingerprint Method was able to correctly identify over 90% of the artifactual components with physiological origin present in the experimental data. These results represent a significant advancement in the search for effective means to address artifact contamination in EEG sports science applications. PMID:29618975

  7. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study.

    PubMed

    Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M

    2014-02-01

    Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.

  8. Neural activity based biofeedback therapy for Autism spectrum disorder through wearable wireless textile EEG monitoring system

    NASA Astrophysics Data System (ADS)

    Sahi, Ahna; Rai, Pratyush; Oh, Sechang; Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.

    2014-04-01

    Mu waves, also known as mu rhythms, comb or wicket rhythms are synchronized patterns of electrical activity involving large numbers of neurons, in the part of the brain that controls voluntary functions. Controlling, manipulating, or gaining greater awareness of these functions can be done through the process of Biofeedback. Biofeedback is a process that enables an individual to learn how to change voluntary movements for purposes of improving health and performance through the means of instruments such as EEG which rapidly and accurately 'feedback' information to the user. Biofeedback is used for therapeutic purpose for Autism Spectrum Disorder (ASD) by focusing on Mu waves for detecting anomalies in brain wave patterns of mirror neurons. Conventional EEG measurement systems use gel based gold cup electrodes, attached to the scalp with adhesive. It is obtrusive and wires sticking out of the electrodes to signal acquisition system make them impractical for use in sensitive subjects like infants and children with ASD. To remedy this, sensors can be incorporated with skull cap and baseball cap that are commonly used for infants and children. Feasibility of Textile based Sensor system has been investigated here. Textile based multi-electrode EEG, EOG and EMG monitoring system with embedded electronics for data acquisition and wireless transmission has been seamlessly integrated into fabric of these items for continuous detection of Mu waves. Textile electrodes were placed on positions C3, CZ, C4 according to 10-20 international system and their capability to detect Mu waves was tested. The system is ergonomic and can potentially be used for early diagnosis in infants and planning therapy for ASD patients.

  9. Effects of nootropics on the EEG in conscious rats and their modification by glutamatergic inhibitors.

    PubMed

    Vorobyov, Vasily; Kaptsov, Vladimir; Kovalev, Georgy; Sengpiel, Frank

    2011-05-30

    To study the effects of acute and repeated injections of nootropics and to learn how glutamate receptors might be involved in their mediation, the frequency spectra of cortical and hippocampal electroencephalogram (EEG) were analyzed in non-narcotized rats subcutaneously injected repeatedly with Piracetam (400mg/kg) or its analogue, Noopept (0.2mg/kg), after intracerebroventricular infusions of saline (5 μl) or the antagonists of NMDA and quisqualate/AMPA receptors: CPP (0.1 nmol) and GDEE (1 μmol), respectively. Piracetam increased alpha/beta1 EEG activity in the left frontal cortex, and alpha activity in both the right cortex and hippocampus, with a 10-min latency and 40-min duration. Noopept increased alpha/beta1 activity, with 30-min latency and 40-min duration in all brain areas. CPP pretreatment eliminated Piracetam EEG effects; reduced Noopept effects in the cortex and completely suppressed them in the hippocampus. After four injections of Piracetam, EEG effects were very small in the cortex, and completely lacking in the hippocampus, while GDEE pretreatment partially recovered them. The effect of Noopept in the alpha/beta1 ranges was replaced by increased beta2 activity after the eighth injection, while no effects were observed after the ninth one. GDEE pretreatment restored the effect of Noopept in the beta2 frequency range. These results demonstrate similarities in EEG effects and their mediatory mechanisms for Piracetam and its much more effective analogue, Noopept. Activation of NMDA receptors is involved in the effects of a single injection of the nootropics, whereas activation of quisqualate/AMPA receptors is associated with the decrease in their efficacy after repeated use. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Investigating social cognition in infants and adults using dense array electroencephalography ((d)EEG).

    PubMed

    Akano, Adekemi J; Haley, David W; Dudek, Joanna

    2011-06-27

    Dense array electroencephalography ((d)EEG), which provides a non-invasive window for measuring brain activity and a temporal resolution unsurpassed by any other current brain imaging technology¹, ² is being used increasingly in the study of social cognitive functioning in infants and adults. While (d)EEG is enabling researchers to examine brain activity patterns with unprecedented levels of sensitivity, conventional EEG recording systems continue to face certain limitations, including 1) poor spatial resolution and source localization³,⁴2) the physical discomfort for test subjects of enduring the individual application of numerous electrodes to the surface of the scalp, and 3) the complexity for researchers of learning to use multiple software packages to collect and process data. Here we present an overview of an established methodology that represents a significant improvement on conventional methodologies for studying EEG in infants and adults. Although several analytical software techniques can be used to establish indirect indices of source localization to improve the spatial resolution of (d)EEG, the HydroCel Geodesic Sensor Net (HCGSN) by Electrical Geodesics, Inc. (EGI), a dense sensory array that maintains equal distances among adjacent recording electrodes on all surfaces of the scalp, further enhances spatial resolution⁴,⁵(,)⁶ compared to standard (d)EEG systems. The sponge-based HCGSN can be applied rapidly and without scalp abrasion, making it ideal for use with adults⁷,⁸ children⁹,¹⁰, ¹¹,¹² and infants¹², in both research and clinical ⁴,⁵,⁶,¹³,¹⁴,¹⁵settings. This feature allows for considerable cost and time savings by decreasing the average net application time compared to other (d)EEG systems. Moreover, the HCGSN includes unified, seamless software applications for all phases of data, greatly simplifying the collection, processing, and analysis of (d)EEG data. The HCGSN features a low-profile electrode

  11. Microstates in Resting-State EEG: Current Status and Future Directions

    PubMed Central

    Khanna, Arjun; Pascual-Leone, Alvaro; Michel, Christoph M.; Farzan, Faranak

    2015-01-01

    Electroencephalography (EEG) is a powerful method of studying the electrophysiology of the brain with high temporal resolution. Several analytical approaches to extract information from the EEG signal have been proposed. One method, termed microstate analysis, considers the multichannel EEG recording as a series of quasi-stable “microstates” that are each characterized by a unique topography of electric potentials over the entire channel array. Because this technique simultaneously considers signals recorded from all areas of the cortex, it is capable of assessing the function of large-scale brain networks whose disruption is associated with several neuropsychiatric disorders. In this review, we first introduce the method of EEG microstate analysis. We then review studies that have discovered significant changes in the resting-state microstate series in a variety of neuropsychiatric disorders and behavioral states. We discuss the potential utility of this method in detecting neurophysiological impairments in disease and monitoring neurophysiological changes in response to an intervention. Finally, we discuss how the resting-state microstate series may reflect rapid switching among neural networks while the brain is at rest, which could represent activity of resting-state networks described by other neuroimaging modalities. We conclude by commenting on the current and future status of microstate analysis, and suggest that EEG microstates represent a promising neurophysiological tool for understanding and assessing brain network dynamics on a millisecond timescale in health and disease. PMID:25526823

  12. Automatic burst detection for the EEG of the preterm infant.

    PubMed

    Jennekens, Ward; Ruijs, Loes S; Lommen, Charlotte M L; Niemarkt, Hendrik J; Pasman, Jaco W; van Kranen-Mastenbroek, Vivianne H J M; Wijn, Pieter F F; van Pul, Carola; Andriessen, Peter

    2011-10-01

    To aid with prognosis and stratification of clinical treatment for preterm infants, a method for automated detection of bursts, interburst-intervals (IBIs) and continuous patterns in the electroencephalogram (EEG) is developed. Results are evaluated for preterm infants with normal neurological follow-up at 2 years. The detection algorithm (MATLAB®) for burst, IBI and continuous pattern is based on selection by amplitude, time span, number of channels and numbers of active electrodes. Annotations of two neurophysiologists were used to determine threshold values. The training set consisted of EEG recordings of four preterm infants with postmenstrual age (PMA, gestational age + postnatal age) of 29-34 weeks. Optimal threshold values were based on overall highest sensitivity. For evaluation, both observers verified detections in an independent dataset of four EEG recordings with comparable PMA. Algorithm performance was assessed by calculation of sensitivity and positive predictive value. The results of algorithm evaluation are as follows: sensitivity values of 90% ± 6%, 80% ± 9% and 97% ± 5% for burst, IBI and continuous patterns, respectively. Corresponding positive predictive values were 88% ± 8%, 96% ± 3% and 85% ± 15%, respectively. In conclusion, the algorithm showed high sensitivity and positive predictive values for bursts, IBIs and continuous patterns in preterm EEG. Computer-assisted analysis of EEG may allow objective and reproducible analysis for clinical treatment.

  13. Beamformer source analysis and connectivity on concurrent EEG and MEG data during voluntary movements.

    PubMed

    Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan

    2014-01-01

    Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2-4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG.

  14. Attachment classification, psychophysiology and frontal EEG asymmetry across the lifespan: a review

    PubMed Central

    Gander, Manuela; Buchheim, Anna

    2015-01-01

    In recent years research on physiological response and frontal electroencephalographic (EEG) asymmetry in different patterns of infant and adult attachment has increased. We review research findings regarding associations between attachment classifications and frontal EEG asymmetry, the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenocortical axis (HPA). Studies indicate that insecure attachment is related to a heightened adrenocortical activity, heart rate and skin conductance in response to stress, which is consistent with the hypothesis that attachment insecurity leads to impaired emotion regulation. Research on frontal EEG asymmetry also shows a clear difference in the emotional arousal between the attachment groups evidenced by specific frontal asymmetry changes. Furthermore, we discuss neurophysiological evidence of attachment organization and present up-to-date findings of EEG-research with adults. Based on the overall patterns of results presented in this article we identify some major areas of interest and directions for future research. PMID:25745393

  15. The effect of pre- vs. post-reward attainment on EEG asymmetry in melancholic depression.

    PubMed

    Shankman, Stewart A; Sarapas, Casey; Klein, Daniel N

    2011-02-01

    Clinical investigators have long theorized about the role of reward processing and positive affect in depression. One theory posits that compared to nonmelancholic depressives, melancholic depressives experience less consummatory (i.e., post-reward), but comparably low anticipatory (prior to reward), positive affect. We tested whether frontal EEG asymmetry, a putative marker of the anticipatory reward system, is present only before an individual receives a reward or also after receiving a reward (i.e., during consummatory reward processing). We also examined whether melancholic depression, a condition characterized by a deficit in consummatory reward processing, is associated with abnormal EEG asymmetries in alpha band power. Effects in other frequency bands (delta, theta, or beta) were also explored. EEG was recorded in 34 controls, 48 nonmelancholic depressives, and 17 melancholic depressives during a slot machine task designed to elicit anticipatory and consummatory reward processing. Results indicated that, for alpha, the frontal EEG asymmetry of greater relative left activity was specific to anticipatory reward processing. During the consummatory phase, individuals with melancholic depression exhibited different posterior EEG asymmetries than individuals with nonmelancholic depression (and controls at a trend level). This second finding was largely due to melancholics exhibiting relatively lower right posterior activity and nonmelancholics exhibiting relatively lower left activity. These results suggest that a posterior asymmetry may be a marker for melancholic depression and aberrant consummatory reward processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Automated Identification of Abnormal Adult EEGs

    PubMed Central

    López, S.; Suarez, G.; Jungreis, D.; Obeid, I.; Picone, J.

    2016-01-01

    The interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiners. Though interrater agreement on critical events such as seizures is high, it is much lower on subtler events (e.g., when there are benign variants). The process used by an expert to interpret an EEG is quite subjective and hard to replicate by machine. The performance of machine learning technology is far from human performance. We have been developing an interpretation system, AutoEEG, with a goal of exceeding human performance on this task. In this work, we are focusing on one of the early decisions made in this process – whether an EEG is normal or abnormal. We explore two baseline classification algorithms: k-Nearest Neighbor (kNN) and Random Forest Ensemble Learning (RF). A subset of the TUH EEG Corpus was used to evaluate performance. Principal Components Analysis (PCA) was used to reduce the dimensionality of the data. kNN achieved a 41.8% detection error rate while RF achieved an error rate of 31.7%. These error rates are significantly lower than those obtained by random guessing based on priors (49.5%). The majority of the errors were related to misclassification of normal EEGs. PMID:27195311

  17. A comparison between EEG source localization and fMRI during the processing of emotional visual stimuli

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Tian, Jie; Pan, Xiaohong; Liu, Jiangang

    2007-03-01

    The purpose of this paper is to compare between EEG source localization and fMRI during emotional processing. 108 pictures for EEG (categorized as positive, negative and neutral) and 72 pictures for fMRI were presented to 24 healthy, right-handed subjects. The fMRI data were analyzed using statistical parametric mapping with SPM2. LORETA was applied to grand averaged ERP data to localize intracranial sources. Statistical analysis was implemented to compare spatiotemporal activation of fMRI and EEG. The fMRI results are in accordance with EEG source localization to some extent, while part of mismatch in localization between the two methods was also observed. In the future we should apply the method for simultaneous recording of EEG and fMRI to our study.

  18. Algorithm based on the short-term Rényi entropy and IF estimation for noisy EEG signals analysis.

    PubMed

    Lerga, Jonatan; Saulig, Nicoletta; Mozetič, Vladimir

    2017-01-01

    Stochastic electroencephalogram (EEG) signals are known to be nonstationary and often multicomponential. Detecting and extracting their components may help clinicians to localize brain neurological dysfunctionalities for patients with motor control disorders due to the fact that movement-related cortical activities are reflected in spectral EEG changes. A new algorithm for EEG signal components detection from its time-frequency distribution (TFD) has been proposed in this paper. The algorithm utilizes the modification of the Rényi entropy-based technique for number of components estimation, called short-term Rényi entropy (STRE), and upgraded by an iterative algorithm which was shown to enhance existing approaches. Combined with instantaneous frequency (IF) estimation, the proposed method was applied to EEG signal analysis both in noise-free and noisy environments for limb movements EEG signals, and was shown to be an efficient technique providing spectral description of brain activities at each electrode location up to moderate additive noise levels. Furthermore, the obtained information concerning the number of EEG signal components and their IFs show potentials to enhance diagnostics and treatment of neurological disorders for patients with motor control illnesses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation

    PubMed Central

    Palma Orozco, Rosaura

    2018-01-01

    Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. PMID:29568310

  20. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery.

    PubMed

    Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu

    2013-04-01

    Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely

  1. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording

    NASA Astrophysics Data System (ADS)

    Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie

    2017-06-01

    Objective. Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Approach. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys  +  EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. Main results. The Open Ephys  +  EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys  +  EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Significance. Open Ephys  +  EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.

  2. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording.

    PubMed

    Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie

    2017-06-01

    Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys  +  EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. The Open Ephys  +  EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys  +  EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Open Ephys  +  EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.

  3. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.

    PubMed

    Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S

    2014-01-01

    Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.

  4. Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications

    PubMed Central

    2013-01-01

    Background Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification in brain-computer interface (BCI) applications. Methods To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman filter/smoother provides accurate time-frequency decomposition of the bandlimited signal. Results The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI Competition data IV for ERD detection in comparison with existing methods. Conclusions Results show that the proposed algorithm can provide optimal time-frequency resolution as compared to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low computational requirement. PMID:24274109

  5. Distinct iEEG activity patterns in temporal-limbic and prefrontal sites induced by emotional intentionality.

    PubMed

    Singer, Neomi; Podlipsky, Ilana; Esposito, Fabrizio; Okon-Singer, Hadas; Andelman, Fani; Kipervasser, Svetlana; Neufeld, Miri Y; Goebel, Rainer; Fried, Itzhak; Hendler, Talma

    2014-11-01

    Our emotions tend to be directed towards someone or something. Such emotional intentionality calls for the integration between two streams of information; abstract hedonic value and its associated concrete content. In a previous functional magnetic resonance imaging (fMRI) study we found that the combination of these two streams, as modeled by short emotional music excerpts and neutral film clips, was associated with synergistic activation in both temporal-limbic (TL) and ventral-lateral PFC (vLPFC) regions. This additive effect implies the integration of domain-specific 'affective' and 'cognitive' processes. Yet, the low temporal resolution of the fMRI limits the characterization of such cross-domain integration. To this end, we complemented the fMRI data with intracranial electroencephalogram (iEEG) recordings from twelve patients with intractable epilepsy. As expected, the additive fMRI activation in the amygdala and vLPFC was associated with distinct spatio-temporal iEEG patterns among electrodes situated within the vicinity of the fMRI activation foci. On the one hand, TL channels exhibited a transient (0-500 msec) increase in gamma power (61-69 Hz), possibly reflecting initial relevance detection or hedonic value tagging. On the other hand, vLPFC channels showed sustained (1-12 sec) suppression of low frequency power (2.3-24 Hz), possibly mediating changes in gating, enabling an on-going readiness for content-based processing of emotionally tagged signals. Moreover, an additive effect in delta-gamma phase-amplitude coupling (PAC) was found among the TL channels, possibly reflecting the integration between distinct domain specific processes. Together, this study provides a multi-faceted neurophysiological signature for computations that possibly underlie emotional intentionality in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Distinct iEEG activity patterns in temporal-limbic and prefrontal sites induced by emotional intentionality

    PubMed Central

    Singer, Neomi; Podlipsky, Ilana; Esposito, Fabrizio; Okon-Singer, Hadas; Andelman, Fani; Kipervasser, Svetlana; Neufeld, Miri Y.; Goebel, Rainer; Fried, Itzhak; Hendler, Talma

    2015-01-01

    Our emotions tend to be directed towards someone or something. Such emotional intentionality calls for the integration between two streams of information; abstract hedonic value and its associated concrete content. In a previous functional magnetic resonance imaging (fMRI) study we found that the combination of these two streams, as modeled by short emotional music excerpts and neutral film clips, was associated with synergistic activation in both temporal-limbic (TL) and ventral-lateral PFC (vLPFC) regions. This additive effect implies the integration of domain-specific ‘affective’ and ‘cognitive’ processes. Yet, the low temporal resolution of the fMRI limits the characterization of such cross-domain integration. To this end, we complemented the fMRI data with intracranial electroencephalogram (iEEG) recordings from twelve patients with intractable epilepsy. As expected, the additive fMRI activation in the amygdala and vLPFC was associated with distinct spatio-temporal iEEG patterns among electrodes situated within the vicinity of the fMRI activation foci. On the one hand, TL channels exhibited a transient (0–500 msec) increase in gamma power (61–69 Hz), possibly reflecting initial relevance detection or hedonic value tagging. On the other hand, vLPFC channels showed sustained (1–12 sec) suppression of low frequency power (2.3–24 Hz), possibly mediating changes in gating, enabling an on-going readiness for content-based processing of emotionally tagged signals. Moreover, an additive effect in delta-gamma phase-amplitude coupling (PAC) was found among the TL channels, possibly reflecting the integration between distinct domain specific processes. Together, this study provides a multi-faceted neurophysiological signature for computations that possibly underlie emotional intentionality in humans. PMID:25288171

  7. EEG and Neuronal Activity Topography analysis can predict effectiveness of shunt operation in idiopathic normal pressure hydrocephalus patients☆

    PubMed Central

    Aoki, Yasunori; Kazui, Hiroaki; Tanaka, Toshihisa; Ishii, Ryouhei; Wada, Tamiki; Ikeda, Shunichiro; Hata, Masahiro; Canuet, Leonides; Musha, Toshimitsu; Matsuzaki, Haruyasu; Imajo, Kaoru; Yoshiyama, Kenji; Yoshida, Tetsuhiko; Shimizu, Yoshiro; Nomura, Keiko; Iwase, Masao; Takeda, Masatoshi

    2013-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is a neuropsychiatric syndrome characterized by gait disturbance, cognitive impairment and urinary incontinence that affect elderly individuals. These symptoms can potentially be reversed by cerebrospinal fluid (CSF) drainage or shunt operation. Prior to shunt operation, drainage of a small amount of CSF or “CSF tapping” is usually performed to ascertain the effect of the operation. Unfortunately, conventional neuroimaging methods such as single photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI), as well as electroencephalogram (EEG) power analysis seem to have failed to detect the effect of CSF tapping on brain function. In this work, we propose the use of Neuronal Activity Topography (NAT) analysis, which calculates normalized power variance (NPV) of EEG waves, to detect cortical functional changes induced by CSF tapping in iNPH. Based on clinical improvement by CSF tapping and shunt operation, we classified 24 iNPH patients into responders (N = 11) and nonresponders (N = 13), and performed both EEG power analysis and NAT analysis. We also assessed correlations between changes in NPV and changes in functional scores on gait and cognition scales before and after CSF tapping. NAT analysis showed that after CSF tapping there was a significant decrease in alpha NPV at the medial frontal cortex (FC) (Fz) in responders, while nonresponders exhibited an increase in alpha NPV at the right dorsolateral prefrontal cortex (DLPFC) (F8). Furthermore, we found correlations between cortical functional changes and clinical symptoms. In particular, delta and alpha NPV changes in the left-dorsal FC (F3) correlated with changes in gait status, while alpha and beta NPV changes in the right anterior prefrontal cortex (PFC) (Fp2) and left DLPFC (F7) as well as alpha NPV changes in the medial FC (Fz) correlated with changes in gait velocity. In addition, alpha NPV changes in the right

  8. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-01-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the Dist

  9. Pharmaco-EEG: A Study of Individualized Medicine in Clinical Practice.

    PubMed

    Swatzyna, Ronald J; Kozlowski, Gerald P; Tarnow, Jay D

    2015-07-01

    Pharmaco-electroencephalography (Pharmaco-EEG) studies using clinical EEG and quantitative EEG (qEEG) technologies have existed for more than 4 decades. This is a promising area that could improve psychotropic intervention using neurological data. One of the objectives in our clinical practice has been to collect EEG and quantitative EEG (qEEG) data. In the past 5 years, we have identified a subset of refractory cases (n = 386) found to contain commonalities of a small number of electrophysiological features in the following diagnostic categories: mood, anxiety, autistic spectrum, and attention deficit disorders, Four abnormalities were noted in the majority of medication failure cases and these abnormalities did not appear to significantly align with their diagnoses. Those were the following: encephalopathy, focal slowing, beta spindles, and transient discharges. To analyze the relationship noted, they were tested for association with the assigned diagnoses. Fisher's exact test and binary logistics regression found very little (6%) association between particular EEG/qEEG abnormalities and diagnoses. Findings from studies of this type suggest that EEG/qEEG provides individualized understanding of pharmacotherapy failures and has the potential to improve medication selection. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  10. Complexity of EEG-signal in Time Domain - Possible Biomedical Application

    NASA Astrophysics Data System (ADS)

    Klonowski, Wlodzimierz; Olejarczyk, Elzbieta; Stepien, Robert

    2002-07-01

    Human brain is a highly complex nonlinear system. So it is not surprising that in analysis of EEG-signal, which represents overall activity of the brain, the methods of Nonlinear Dynamics (or Chaos Theory as it is commonly called) can be used. Even if the signal is not chaotic these methods are a motivating tool to explore changes in brain activity due to different functional activation states, e.g. different sleep stages, or to applied therapy, e.g. exposure to chemical agents (drugs) and physical factors (light, magnetic field). The methods supplied by Nonlinear Dynamics reveal signal characteristics that are not revealed by linear methods like FFT. Better understanding of principles that govern dynamics and complexity of EEG-signal can help to find `the signatures' of different physiological and pathological states of human brain, quantitative characteristics that may find applications in medical diagnostics.

  11. Multi-feature classifiers for burst detection in single EEG channels from preterm infants

    NASA Astrophysics Data System (ADS)

    Navarro, X.; Porée, F.; Kuchenbuch, M.; Chavez, M.; Beuchée, Alain; Carrault, G.

    2017-08-01

    Objective. The study of electroencephalographic (EEG) bursts in preterm infants provides valuable information about maturation or prognostication after perinatal asphyxia. Over the last two decades, a number of works proposed algorithms to automatically detect EEG bursts in preterm infants, but they were designed for populations under 35 weeks of post menstrual age (PMA). However, as the brain activity evolves rapidly during postnatal life, these solutions might be under-performing with increasing PMA. In this work we focused on preterm infants reaching term ages (PMA  ⩾36 weeks) using multi-feature classification on a single EEG channel. Approach. Five EEG burst detectors relying on different machine learning approaches were compared: logistic regression (LR), linear discriminant analysis (LDA), k-nearest neighbors (kNN), support vector machines (SVM) and thresholding (Th). Classifiers were trained by visually labeled EEG recordings from 14 very preterm infants (born after 28 weeks of gestation) with 36-41 weeks PMA. Main results. The most performing classifiers reached about 95% accuracy (kNN, SVM and LR) whereas Th obtained 84%. Compared to human-automatic agreements, LR provided the highest scores (Cohen’s kappa  =  0.71) using only three EEG features. Applying this classifier in an unlabeled database of 21 infants  ⩾36 weeks PMA, we found that long EEG bursts and short inter-burst periods are characteristic of infants with the highest PMA and weights. Significance. In view of these results, LR-based burst detection could be a suitable tool to study maturation in monitoring or portable devices using a single EEG channel.

  12. Study on bayes discriminant analysis of EEG data.

    PubMed

    Shi, Yuan; He, DanDan; Qin, Fang

    2014-01-01

    In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions. In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%. Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data.

  13. A method for detecting nonlinear determinism in normal and epileptic brain EEG signals.

    PubMed

    Meghdadi, Amir H; Fazel-Rezai, Reza; Aghakhani, Yahya

    2007-01-01

    A robust method of detecting determinism for short time series is proposed and applied to both healthy and epileptic EEG signals. The method provides a robust measure of determinism through characterizing the trajectories of the signal components which are obtained through singular value decomposition. Robustness of the method is shown by calculating proposed index of determinism at different levels of white and colored noise added to a simulated chaotic signal. The method is shown to be able to detect determinism at considerably high levels of additive noise. The method is then applied to both intracranial and scalp EEG recordings collected in different data sets for healthy and epileptic brain signals. The results show that for all of the studied EEG data sets there is enough evidence of determinism. The determinism is more significant for intracranial EEG recordings particularly during seizure activity.

  14. Decoding attended information in short-term memory: an EEG study.

    PubMed

    LaRocque, Joshua J; Lewis-Peacock, Jarrod A; Drysdale, Andrew T; Oberauer, Klaus; Postle, Bradley R

    2013-01-01

    For decades it has been assumed that sustained, elevated neural activity--the so-called active trace--is the neural correlate of the short-term retention of information. However, a recent fMRI study has suggested that this activity may be more related to attention than to retention. Specifically, a multivariate pattern analysis failed to find evidence that information that was outside the focus of attention, but nonetheless in STM, was retained in an active state. Here, we replicate and extend this finding by querying the neural signatures of attended versus unattended information within STM with electroencephalograpy (EEG), a method sensitive to oscillatory neural activity to which the previous fMRI study was insensitive. We demonstrate that in the delay-period EEG activity, there is information only about memory items that are also in the focus of attention. Information about items outside the focus of attention is not detectable. This result converges with the fMRI findings to suggest that, contrary to conventional wisdom, an active memory trace may be unnecessary for the short-term retention of information.

  15. EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN

    PubMed Central

    AlSharabi, Khalil; Ibrahim, Sutrisno; Alsuwailem, Abdullah

    2017-01-01

    Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with core impairments in the social relationships, communication, imagination, or flexibility of thought and restricted repertoire of activity and interest. In this work, a new computer aided diagnosis (CAD) of autism ‎based on electroencephalography (EEG) signal analysis is investigated. The proposed method is based on discrete wavelet transform (DWT), entropy (En), and artificial neural network (ANN). DWT is used to decompose EEG signals into approximation and details coefficients to obtain EEG subbands. The feature vector is constructed by computing Shannon entropy values from each EEG subband. ANN classifies the corresponding EEG signal into normal or autistic based on the extracted features. The experimental results show the effectiveness of the proposed method for assisting autism diagnosis. A receiver operating characteristic (ROC) curve metric is used to quantify the performance of the proposed method. The proposed method obtained promising results tested using real dataset provided by King Abdulaziz Hospital, Jeddah, Saudi Arabia. PMID:28484720

  16. Clozapine-induced EEG abnormalities and clinical response to clozapine.

    PubMed

    Risby, E D; Epstein, C M; Jewart, R D; Nguyen, B V; Morgan, W N; Risch, S C; Thrivikraman, K V; Lewine, R L

    1995-01-01

    The authors hypothesized that patients who develop gross EEG abnormalities during clozapine treatment would have a less favorable outcome than patients who did not develop abnormal EEGs. The clinical EEGs and the Brief Psychiatric Rating Scale (BPRS) scores of 12 patients with schizophrenia and 4 patients with schizoaffective disorder were compared before and during treatment with clozapine. Eight patients developed significant EEG abnormalities on clozapine; 1 showed worsening of an abnormal pre-clozapine EEG; none of these subjects had clinical seizures. BPRS scores improved significantly in the group of patients who developed abnormal EEGs but not in the group who did not. Findings are consistent with previous reports of a high incidence of clozapine-induced EEG abnormalities and a positive association between these abnormalities and clinical improvement.

  17. Prospective Cohort Study Evaluating the Prognostic Value of Simple EEG Parameters in Postanoxic Coma.

    PubMed

    Azabou, Eric; Fischer, Catherine; Mauguiere, François; Vaugier, Isabelle; Annane, Djillali; Sharshar, Tarek; Lofaso, Fréderic

    2016-01-01

    We prospectively studied early bedside standard EEG characteristics in 61 acute postanoxic coma patients. Five simple EEG features, namely, isoelectric, discontinuous, nonreactive to intense auditory and nociceptive stimuli, dominant delta frequency, and occurrence of paroxysms were classified yes or no. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC) of each of these variables for predicting an unfavorable outcome, defined as death, persistent vegetative state, minimally conscious state, or severe neurological disability, as assessed 1 year after coma onset were computed as well as Synek's score. The outcome was unfavorable in 56 (91.8%) patients. Sensitivity, specificity, PPV, NPV, and AUC of nonreactive EEG for predicting an unfavorable outcome were 84%, 80%, 98%, 31%, and 0.82, respectively; and were all very close to the ones of Synek score>3, which were 82%, 80%, 98%, 29%, and 0.81, respectively. Specificities for predicting an unfavorable outcome were 100% for isoelectric, discontinuous, or dominant delta activity EEG. These 3 last features were constantly associated to unfavorable outcome. Absent EEG reactivity strongly predicted an unfavorable outcome in postanoxic coma, and performed as accurate as a Synek score>3. Analyzing characteristics of some simple EEG features may easily help nonneurophysiologist physicians to investigate prognostic issue of postanoxic coma patient. In this study (a) discontinuous, isoelectric, or delta-dominant EEG were constantly associated with unfavorable outcome and (b) nonreactive EEG performed prognostic as accurate as a Synek score>3. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  18. Exploration of Lower Frequency EEG Dynamics and Cortical Alpha Asymmetry in Long-term Rajyoga Meditators

    PubMed Central

    Sharma, Kanishka; Chandra, Sushil; Dubey, Ashok Kumar

    2018-01-01

    Background: Rajyoga meditation is taught by Prajapita Brahmakumaris World Spiritual University (Brahmakumaris) and has been followed by more than one million followers across the globe. However, rare studies were conducted on physiological aspects of rajyoga meditation using electroencephalography (EEG). Band power and cortical asymmetry were not studied with Rajyoga meditators. Aims: This study aims to investigate the effect of regular meditation practice on EEG brain dynamics in low-frequency bands of long-term Rajyoga meditators. Settings and Design: Subjects were matched for age in both groups. Lower frequency EEG bands were analyzed in resting and during meditation. Materials and Methods: Twenty-one male long-term meditators (LTMs) and same number of controls were selected to participate in study as par inclusion criteria. Semi high-density EEG was recorded before and during meditation in LTM group and resting in control group. The main outcome of the study was spectral power of alpha and theta bands and cortical (hemispherical) asymmetry calculated using band power. Statistical Analysis: One-way ANOVA was performed to find the significant difference between EEG spectral properties of groups. Pearson's Chi-square test was used to find difference among demographics data. Results: Results reveal high-band power in alpha and theta spectra in meditators. Cortical asymmetry calculated through EEG power was also found to be high in frontal as well as parietal channels. However, no correlation was seen between the experience of meditation (years, hours) practice and EEG indices. Conclusion: Overall findings indicate contribution of smaller frequencies (alpha and theta) while maintaining meditative experience. This suggests a positive impact of meditation on frontal and parietal areas of brain, involved in the processes of regulation of selective and sustained attention as well as provide evidence about their involvement in emotion and cognitive processing. PMID

  19. Diet and gender are important factors modulating low frequency EEG activity during processing of language sounds in 3 month old infants

    USDA-ARS?s Scientific Manuscript database

    Little is known about how early postnatal diet affects brain processes related to cognitive function in healthy infants. To address this question we examined EEG activity recorded from 3 month old infants [breastfed (BF: n = 104, 55 males), milk-based formula fed (MF: n = 114, 57 males) or soy for...

  20. Attention-Induced Deactivations in Very Low Frequency EEG Oscillations: Differential Localisation According to ADHD Symptom Status

    PubMed Central

    Broyd, Samantha J.; Helps, Suzannah K.; Sonuga-Barke, Edmund J. S.

    2011-01-01

    Background The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. Methodology/Principal Findings DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. Conclusions/Significance Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in