Sample records for background entomopathogenic fungi

  1. Entomopathogen ID: a curated sequence resource for entomopathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    We report the development of a publicly accessible, curated database of Hypocrealean entomopathogenic fungi sequence data. The goal is to provide a platform for users to easily access sequence data from reference strains. The database can be used to accurately identify unknown entomopathogenic fungi...

  2. Entomopathogen ID: A multi-locus sequence alignment resource for entomopathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    The ability to correctly identify entomopathogenic fungi is an important step in developing biopesticides and effectively communicating research results. Over the years, identifying entomopathogenic fungi has evolved from a system based on diagnostic morphological and physiological characters to mol...

  3. Advances in Genomics of Entomopathogenic Fungi.

    PubMed

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Genetically Engineering Entomopathogenic Fungi.

    PubMed

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Evolution of entomopathogenicity in fungi.

    PubMed

    Humber, Richard A

    2008-07-01

    The recent completions of publications presenting the results of a comprehensive study on the fungal phylogeny and a new classification reflecting that phylogeny form a new basis to examine questions about the origins and evolutionary implications of such major habits among fungi as the use of living arthropods or other invertebrates as the main source of nutrients. Because entomopathogenicity appears to have arisen or, indeed, have lost multiple times in many independent lines of fungal evolution, some of the factors that might either define or enable entomopathogenicity are examined. The constant proximity of populations of potential new hosts seem to have been a factor encouraging the acquisition or loss of entomopathogenicity by a very diverse range of fungi, particularly when involving gregarious and immobile host populations of scales, aphids, and cicadas (all in Hemiptera). An underlying theme within the vast complex of pathogenic and parasitic ascomycetes in the Clavicipitaceae (Hypocreales) affecting plants and insects seems to be for interkingdom host-jumping by these fungi from plants to arthropods and then back to the plant or on to fungal hosts. Some genera of Entomophthorales suggest that the associations between fungal pathogens and their insect hosts appear to be shifting away from pathogenicity and towards nonlethal parasitism.

  6. Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi.

    PubMed

    Gómez-Vidal, S; Lopez-Llorca, L V; Jansson, H -B; Salinas, J

    2006-01-01

    Light and scanning electron microscopy together with fungal isolation techniques were used to detect entomopathogenic fungi within young and adult date palm (Phoenix dactylifera) petioles and to assess fungal survival in leaf tissues. The entomopathogenic fungi Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium c.f. psalliotae survived inside leaf tissues at least 30 days after inoculation. Entomopathogenic fungi colonized inoculated petioles endophytically and were recovered up to 3cm from the inoculation site. Fungi were detected inside the parenchyma and sparsely within vascular tissue using microscopy techniques. Our results show that the entomopathogenic fungi used in this study survived and colonized date palm tissues in bioassays both under laboratory and field experimental conditions with no evidence of significant damage.

  7. First record of entomopathogenic fungi on autumn leaf Caterpillar (Doleschallia bisaltide)

    NASA Astrophysics Data System (ADS)

    Dayanti, A. K.; Sholahuddin; Yunus, A.; Subositi, D.

    2018-03-01

    Caricature plant is one of the medicinal plants in Indonesia to cure hemorrhoids, menstruation, and others. The cultivation constraints of caricature plant is autumn leaf caterpillars (Doleschallia bisaltide). Utilization of synthetic insecticides is not allowed to avoid bioaccumulation of chemical residues. Entomopathogenic fungi is an alternative way to control D. bisaltide. The objective of the research was to obtain isolates of entomopathogenic fungi of D. bisaltide. The research conducted by two steps, which were exsploration of infecfted D. bisaltide. The second step was identification of the fungi. Exploration results of 16 pupae of D. Bisaltide were infected by fungi. Identification done by classify the mcroscopic and microscopic fungi isolate characteristic. One from five fungal isolates were entomopathogenic fungi from Verticillium genera.

  8. Interaction of entomopathogenic fungi with the host immune system.

    PubMed

    Qu, Shuang; Wang, Sibao

    2018-06-01

    Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Diversity of Entomopathogenic Fungi: Which Groups Conquered the Insect Body?

    PubMed

    Araújo, J P M; Hughes, D P

    2016-01-01

    The entomopathogenic fungi are organisms that evolved to exploit insects. They comprise a wide range of morphologically, phylogenetically, and ecologically diverse fungal species. Entomopathogenic fungi can be found distributed among five of the eight fungal phyla. Entomopathogens are also present among the ecologically similar but phylogenetically distinct Oomycota or water molds, which belong to a different kingdom, the Stramenopila. As a group of parasites, the entomopathogenic fungi and water molds infect a wide range of insect hosts, from aquatic larvae to adult insects from high canopies in tropical forests or even deserts. Their hosts are spread among 20 of the 31 orders of insects, in all developmental stages: eggs, larvae, pupae, nymphs, and adults. Such assortment of niches has resulted in these parasites evolving a considerable morphological diversity, resulting in enormous biodiversity, the majority of which remains unknown. Here we undertake a comprehensive survey of records of these entomopathogens in order to compare and contrast both their morphologies and their ecological traits. Our findings highlight a wide range of adaptations that evolved following the evolutionary transition by the fungi and water molds to infect the most diverse and widespread animals on Earth, the insects. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Entomopathogenic Fungi on Hemiberlesia pitysophila

    PubMed Central

    Lv, Chengqun; Huang, Baoling; Qiao, Mengji; Wei, Jiguang; Ding, Bo

    2011-01-01

    Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control. PMID:21901126

  11. Entomopathogenic fungi on Hemiberlesia pitysophila.

    PubMed

    Lv, Chengqun; Huang, Baoling; Qiao, Mengji; Wei, Jiguang; Ding, Bo

    2011-01-01

    Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.

  12. Microbial control of the invasive spiraling whitefly on cassava with entomopathogenic fungi.

    PubMed

    Boopathi, Thangavel; Karuppuchamy, Palaniappan; Singh, Soibam B; Kalyanasundaram, Manickavasagam; Mohankumar, S; Ravi, Madhaiyan

    2015-01-01

    The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, Lecanicillium lecanii and Isaria fumosorosea were tested for their efficacy in managing the exotic spiraling whitefly Aleurodicus dispersus (Hemiptera, Aleyrodidae) on cassava (Manihot esculenta) during 2 seasons (2011-2012 and 2012-2013). The fungi I. fumosorosea and L. lecanii exhibited promising levels of control (> 70% mortality of the A. dispersus population). The percent mortality increased over time in both seasons. Application of I. fumosorosea was highly pathogenic to A. dispersus in both seasons compared to the other entomopathogenic fungi. Analysis of the percent mortality in both seasons revealed differences in efficacy between 3 and 15 days after treatment. The season also influenced the effects of the fungi on the A. dispersus population. Thus, entomopathogenic fungi have the potential to manage A. dispersus infestation of cassava.

  13. Microbial control of the invasive spiraling whitefly on cassava with entomopathogenic fungi

    PubMed Central

    Boopathi, Thangavel; Karuppuchamy, Palaniappan; Singh, Soibam B.; Kalyanasundaram, Manickavasagam; Mohankumar, S.; Ravi, Madhaiyan

    2015-01-01

    Abstract The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, Lecanicillium lecanii and Isaria fumosorosea were tested for their efficacy in managing the exotic spiraling whitefly Aleurodicus dispersus (Hemiptera, Aleyrodidae) on cassava (Manihot esculenta) during 2 seasons (2011-2012 and 2012-2013). The fungi I. fumosorosea and L. lecanii exhibited promising levels of control (> 70% mortality of the A. dispersus population). The percent mortality increased over time in both seasons. Application of I. fumosorosea was highly pathogenic to A. dispersus in both seasons compared to the other entomopathogenic fungi. Analysis of the percent mortality in both seasons revealed differences in efficacy between 3 and 15 days after treatment. The season also influenced the effects of the fungi on the A. dispersus population. Thus, entomopathogenic fungi have the potential to manage A. dispersus infestation of cassava. PMID:26691465

  14. Selection of entomopathogenic fungi for aphid control.

    PubMed

    Vu, Van Hanh; Hong, Suk Il; Kim, Keun

    2007-12-01

    Twelve strains of entomopathogenic fungi such as Lecanicillium lecanii, Paecilomyces farinosus, Beauveria bassiana, Metarhizium anisopliae, Cordyceps scarabaeicola, and Nomuraea rileyi were screened for aphid control. At 25 degrees C and 75% relative humidity (RH), among tested entomopathogenic fungi, L. lecanii 41185 showed the highest virulent pathogenicity for both Myzus persicae and Aphis gossypii, and their control values were both nearly 100% 5 and 2 d after treatment, respectively. Moreover, at an RH of 45% and in a wide temperature range (20-30 degrees C), L. lecanii 41185 also exhibited the highest virulence to M. persicae. The control value of M. persicae and the 50% lethal time (LT50) decreased significantly as the applied conidial concentration increased. The 50% lethal concentration (LC50) of the conidial suspension of this fungus was determined to be 6.55x10(5) conidia/ml. The control values of M. persicae resulting from the application of 1x10(7) and 1x10(8) conidia/ml were nearly the same and were significantly higher than that of 1x10(6) conidia/ml. The tested entomopathogenic fungi grew in a broad temperature range (15-30 degrees C). Lecanicillium strains showed optimum growth at 25 degrees C. The aerial conidia of Lecanicillium strains also could germinate in a broad temperature range (15-30 degrees C) and L. lecanii 41185 was the only strain with conidial germination at 35 degrees C.

  15. Mass production of entomopathogenic fungi: state of the art

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic fungi for the management of insect pests have been steadily gaining popularity in the last 50 years. Each year, more and more fungi are being commercialized all over the world for inundative application as mycoinsecticides, and some developed for inoculative release, as appreciation...

  16. Isolation of entomopathogenic fungi from soils and Ixodes scapularis (Acari: Ixodidae) ticks: prevalence and methods.

    PubMed

    Tuininga, Amy R; Miller, Jessica L; Morath, Shannon U; Daniels, Thomas J; Falco, Richard C; Marchese, Michael; Sahabi, Sadia; Rosa, Dieshia; Stafford, Kirby C

    2009-05-01

    Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment.

  17. Isolation of Entomopathogenic Fungi From Soils and Ixodes scapularis (Acari: Ixodidae) Ticks: Prevalence and Methods

    PubMed Central

    Tuininga, Amy R.; Miller, Jessica L.; Morath, Shannon U.; Daniels, Thomas J.; Falco, Richard C.; Marchese, Michael; Sahabi, Sadia; Rosa, Dieshia; Stafford, Kirby C.

    2009-01-01

    Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment. PMID:19496427

  18. Entomopathogenic Fungi as Mortality Factors of Macadamia Felted Coccid, Eriococcus ironsidei(Hemiptera:Eriococcidae)in Hawai'i

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic fungi are considered to play a vital role as a biological control agent of insect populations, these fungi can kill an insect by attacking and infecting its insect host. Different Entomopathogenic fungi were observed infesting Eriococcus ironsidei in a macadamia nut orchard in Honok...

  19. Virulence of entomopathogenic hypocrealean fungi infecting Anoplophora glabripennis

    Treesearch

    Thomas Dubois; Jennifer Lund; Leah S. Bauer; Ann E. Hajek

    2008-01-01

    Twenty isolates of four species of entomopathogenic hypocrealean fungi (Beauveria bassiana, Beauveria brongniartii, Isaria farinosa, and Metarhizium anisopliae) were found to be pathogenic to adults of the Asian longhorned beetle, Anoplophora glabripennis. Survival times for 50% of the beetles tested (ST

  20. Invert emulsion: Method of preparation and application as proper formulation of entomopathogenic fungi.

    PubMed

    Batta, Yacoub A

    2016-01-01

    The present article describes the technique used for preparing the invert emulsion (water-in-oil type) then, selecting the most proper formulation of invert emulsion for being used as a carrier formulation of entomopathogenic fungi. It also describes the method used for testing the efficacy of the formulated fungi as biocontrol agents of targeted insects. Detailed examples demonstrating the efficacy of formulated strains of entomopathogenic fungi against certain species of insect pests were included in the present article. The techniques and methods described in this article are reproducible and helpful in enhancing the effectiveness of formulated fungi against wide range of targeted insects in comparison with the unformulated form of these fungi. Also, these techniques and methods can be used effectively in crop protection and in the integrated pest management programs. Finally, it is important to indicate that the ingredients used for preparation of the invert emulsion have no environmental side-effects or health risks since these ingredients are safe to use and can be used in manufacturing of cosmetics or as food additives.•Description of method used for preparation of invert emulsion (water-in-oil type) and selecting the most stable and non-viscous emulsion.•Description of technique used for introducing the entomopathogenic fungi into the selected stable and non-viscous invert emulsion.•Description of method for testing the efficacy of introduced entomopathogenic fungus into the selected invert emulsion against targeted insects with detailed examples on the efficacy testing.

  1. [Species diversity and temporal niche of entomopathogenic fungi in the extensively managed tea plantation soil].

    PubMed

    Guo, Xian-Jian; Shen, Wan-Fang; Liu, Yu-Jun; Chen, Ming-Jun

    2014-11-01

    The species diversity and temporal niche of entomopathogenic fungi community in the rhizosphere soil collected from the extensively managed Huangshan fuzz tip tea plantation were investigated. A total of 140 soil samples were collected at the location of Tangkou Town, Huangshan of Anhui Province during August, 2012 to June, 2013, and totally 1041 fungal isolates were obtained on selective medium with soil dilution plating. The results showed that the entomopathogenic fungi community in the tea plantation soil was diverse with 13 species in 6 genera. Purpureocillium lilacinum (309 strains), Beauveria bassiana (255 strains), and Metarhizium anisopliae (101 strains) were the dominant species accounting for 29.7%, 24.5% and 9.7% of the relative frequency, respectively. P. lilacinum had the widest temporal niche breadth among these dominant entomopathogenic fungi from the tea plantation soil, while B. bassiana had the narrowest. Among the entomopathogenic fungi, B. bassiana and B. brongniartii had the biggest temporal niche overlap of 1.965, while Isaria javanicus and B. bassiana had the smallest of 0.374.

  2. Naturally Occurring Entomopathogenic Fungi Infecting Stored Grain Insect Species in Punjab, Pakistan

    PubMed Central

    Wakil, Waqas; Usman Ghazanfar, Muhammad; Yasin, Muhammad

    2014-01-01

    Abstract The occurrence of entomopathogenic fungi isolated from stored grain insect pests sampled from various geographical regions of Punjab, Pakistan, was investigated. In total, 25,720 insects from six different species were evaluated, and 195 isolates from 24 different fungal species were recovered. These included the Ascomycetes Beauveria bassiana sensu lato (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) , Metarhizium anisopliae sensu lato (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae), Purpureocillium lilacinum (Thorn) Samson (Hypocreales: Ophiocordycipitaceae), and Lecanicillium attenuatum (Zare and W. Gams) (Hypocreales: Clavicipitaceae). The cadavers of red flour beetle Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae) were significantly infected with the fungi followed by rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae), lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), rusty grain beetle Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae), and cowpea weevil Callosobruchus maculatus (F.) (Coleoptera: Bruchidae); however, the least were recovered from khapra beetle Trogoderma granarium (Everts) (Coleoptera: Dermestidae). The geographical attributes (altitude, longitude, and latitude) greatly influenced the occurrence of entomopathogenic fungi with highest number of isolates found from >400 (m) altitude, 33°–34′ N latitude, and 73°–74′ E longitude. The findings of the current surveys clearly indicated that the entomopathogenic fungi are widely distributed in the insect cadavers, which may later be used in successful Integrated Pest Management programs. PMID:25480970

  3. Naturally occurring entomopathogenic fungi infecting stored grain insect species in Punjab, Pakistan.

    PubMed

    Wakil, Waqas; Usman Ghazanfar, Muhammad; Yasin, Muhammad

    2014-01-01

    The occurrence of entomopathogenic fungi isolated from stored grain insect pests sampled from various geographical regions of Punjab, Pakistan, was investigated. In total, 25,720 insects from six different species were evaluated, and 195 isolates from 24 different fungal species were recovered. These included the Ascomycetes Beauveria bassiana sensu lato (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae), Metarhizium anisopliae sensu lato (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae), Purpureocillium lilacinum (Thorn) Samson (Hypocreales: Ophiocordycipitaceae), and Lecanicillium attenuatum (Zare and W. Gams) (Hypocreales: Clavicipitaceae). The cadavers of red flour beetle Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae) were significantly infected with the fungi followed by rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae), lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), rusty grain beetle Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae), and cowpea weevil Callosobruchus maculatus (F.) (Coleoptera: Bruchidae); however, the least were recovered from khapra beetle Trogoderma granarium (Everts) (Coleoptera: Dermestidae). The geographical attributes (altitude, longitude, and latitude) greatly influenced the occurrence of entomopathogenic fungi with highest number of isolates found from >400 (m) altitude, 33°-34' N latitude, and 73°-74' E longitude. The findings of the current surveys clearly indicated that the entomopathogenic fungi are widely distributed in the insect cadavers, which may later be used in successful Integrated Pest Management programs. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  4. EFFECTS OF SOME BIOINSECTICIDES AND ENTOMOPATHOGENIC FUNGI ON COLORADO POTATO BEETLE (LEPTINOTARSA DECEMLINEATA L.).

    PubMed

    Öztürk, H E; Güven, Ö; Karaca, I

    2015-01-01

    In this study, biological activity of entomopathogenic fungi (4 strains) isolated from the Colorado potato beetle and the commercial biopesticides containing entomopathogenic fungi; Priority® (Paecilomyces fumosoroseus), Nibortem® (Verticillium lecanii), Nostalgist® (Beauveria bassiana), Bio-Magic* (Metarhizium anisopliae), Bio-Nematon* (Paeciliomyces sp.) and plant extracts; Nimbedicine EC* (Azadiractin) were determined against Leptinotarsa decemlineata under laboratory conditions. An Imidacloprid active ingredient commercial insecticide was also used to compare the insecticidal activity and distilled water was used as control. The biological control agents were applied to 2nd-3rd larval instars, 4th larval instars and adults with spray and leaf dipping methods. Single concentration (10⁸ conidia/mL⁻¹) of entomopathogenic fungi and recommended dose of bioinsecticides were prepared for application. The number of dead insects were determined at 3, 5, and 7 days after applications. Experiments were conducted at 25 ±1° C and 60% ± 5 relative humidity with 16:8 h light: dark conditions. Entomopathogenic fungi and bioinsecticides were found to be more effective on larval stage than 4th larval instars and adults. In spray methods, Bio-Magic®, Nibortem®, and Nostalgist® caused 96.4%, 92.9% and 82.1% mortality on 2nd larval instars and 20%, 36.7% and 33.3% mortality on adults, respectively. All local fungal isolates (B. bassiana) applied on 2nd and 4th larval instars caused 100% mortality. Adults showed 58.6-86.2% mortality.

  5. Control of Pyrethroid-Resistant Chagas Disease Vectors with Entomopathogenic Fungi

    PubMed Central

    Pedrini, Nicolás; Mijailovsky, Sergio J.; Girotti, Juan R.; Stariolo, Raúl; Cardozo, Rubén M.; Gentile, Alberto; Juárez, M. Patricia

    2009-01-01

    Background Triatoma infestans-mediated transmission of Tripanosoma cruzi, the causative agent of Chagas disease, remains as a major health issue in southern South America. Key factors of T. infestans prevalence in specific areas of the geographic Gran Chaco region—which extends through northern Argentina, Bolivia, and Paraguay—are both recurrent reinfestations after insecticide spraying and emerging pyrethroid-resistance over the past ten years. Among alternative control tools, the pathogenicity of entomopathogenic fungi against triatomines is already known; furthermore, these fungi have the ability to fully degrade hydrocarbons from T. infestans cuticle and to utilize them as fuel and for incorporation into cellular components. Methodology and Findings Here we provide evidence of resistance-related cuticle differences; capillary gas chromatography coupled to mass spectrometry analyses revealed that pyrethroid-resistant bugs have significantly larger amounts of surface hydrocarbons, peaking 56.2±6.4% higher than susceptible specimens. Also, a thicker cuticle was detected by scanning electron microscopy (32.1±5.9 µm and 17.8±5.4 µm for pyrethroid-resistant and pyrethroid-susceptible, respectively). In laboratory bioassays, we showed that the virulence of the entomopathogenic fungi Beauveria bassiana against T. infestans was significantly enhanced after fungal adaptation to grow on a medium containing insect-like hydrocarbons as the carbon source, regardless of bug susceptibility to pyrethroids. We designed an attraction-infection trap based on manipulating T. infestans behavior in order to facilitate close contact with B. bassiana. Field assays performed in rural village houses infested with pyrethroid-resistant insects showed 52.4% bug mortality. Using available mathematical models, we predicted that further fungal applications could eventually halt infection transmission. Conclusions This low cost, low tech, ecologically friendly methodology could help in

  6. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress.

    PubMed

    Azevedo, Rosana F F; Souza, Roberta K F; Braga, Gilberto U L; Rangel, Drauzio E N

    2014-12-01

    Entomopathogenic fungi are predisposed to ROS induced by heat and UV-A radiation when outside the insect host. When inside the host, they are subject to phagocytic cells that generate ROS to eliminate invading pathogens. The oxidative stress tolerance of the entomopathogenic fungi Aschersonia aleyrodis (ARSEF 430 and 10276), Aschersonia placenta (ARSEF 7637), Beauveria bassiana (ARSEF 252), Isaria fumosorosea (ARSEF 3889), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium acridum (ARSEF 324), Metarhizium anisopliae (ARSEF 5749), Metarhizium brunneum (ARSEF 1187 and ARSEF 5626), Metarhizium robertsii (ARSEF 2575), Tolypocladium cylindrosporum (ARSEF 3392), Tolypocladium inflatum (ARSEF 4877), and Simplicillium lanosoniveum (ARSEF 6430 and ARSEF 6651) was studied based on conidial germination on a medium supplemented with menadione. Conidial germination was evaluated 24 h after inoculation on potato dextrose agar (PDA) (control) or PDA supplemented with menadione. The two Aschersonia species (ARSEF 430, 7637, and 10276) were the most susceptible fungi, followed by the two Tolypocladium species (ARSEF 3392 and 4877) and the M. acridum (ARSEF 324). Metarhizium brunneum (ARSEF 5626) and M. anisopliae (ARSEF 5749) were the most tolerant isolates with MIC 0.28 mM. All fungal isolates, except ARSEF 5626 and ARSEF 5749, were not able to germinate at 0.20 mM. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Seeking stability for research and applied uses of entomopathogenic fungi as biological control agents

    USDA-ARS?s Scientific Manuscript database

    Future progress in research with entomopathogenic fungi depends on a number of diverse considerations that help to stabilize the state of knowledge while supporting research about the documentation of the biodiversity and systematics of these fungi as well as those studies about their actions as pat...

  8. Occurrence of entomopathogenic fungi in tejocote (Crataegus mexicana) orchard soils and their pathogenicity against Rhagoletis pomonella.

    PubMed

    Muñiz-Reyes, E; Guzmán-Franco, A W; Sánchez-Escudero, J; Nieto-Angel, R

    2014-11-01

    To determine the abundance and diversity of entomopathogenic fungi in tejocote orchard soils and evaluate their ability to infect Rhagoletis pomonella Walsh., the main pest of tejocote. Surveys were made in two locations in Mexico state and two in Puebla state. Soil from selected locations was baited for entomopathogenic fungi with Galleria mellonella (L.). All isolates were identified morphologically to genus level and to species level using Bloc and elongation factor 1-α gene sequence information, respectively; Beauveria bassiana ((Bals.-Criv.) Vuill.), B. pseudobassiana (S.A. Rehner & Humber) and Metarhizium robertsii (J.F. Bisch., Rehner & Humber) were found, with B. bassiana being the most abundant and widely distributed. Pathogenicity of five selected B. bassiana isolates and three M. robertsii isolates was evaluated against larvae and pupae of R. pomonella. All isolates infected larvae resulting in an average mortality of 35%. Pupae were not susceptible; however, adults emerging from inoculated pupae did die due to infection. At least three species of entomopathogenic fungi are present in the soil from tejocote orchards, with B. bassiana being the most abundant and widely distributed. Rhagoletis pomonella larvae were more susceptible to infection than pupae. Our study has produced new information about the distribution of entomopathogenic fungi in cultivated soils from this region of North America, contributing to a better understanding of their natural occurrence and underpinning the development of biological control approaches. © 2014 The Society for Applied Microbiology.

  9. Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons.

    PubMed

    Huarte-Bonnet, Carla; Juárez, M Patricia; Pedrini, Nicolás

    2015-08-01

    Entomopathogenic fungi mostly attack their insect hosts by penetration through the cuticle. The outermost insect surface is covered by a lipid-rich layer, usually composed of very long chain hydrocarbons. These fungi are apt to grow on straight chain hydrocarbons (alkanes) as the sole carbon source. Insect-like hydrocarbons are first hydroxylated by a microsomal P450 monooxygenase system, and then fully catabolized by peroxisomal β-oxidation reactions in Beauveria bassiana. In this review, we will discuss lipid metabolism adaptations in alkane-grown fungi, and how an oxidative stress scenario is established under these conditions. Fungi have to pay a high cost for hydrocarbon utilization; high levels of reactive oxygen species are produced and a concomitant antioxidant response is triggered in fungal cells to cope with this drawback.

  10. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii

    PubMed Central

    Cuthbertson, Andrew G. S.; Audsley, Neil

    2016-01-01

    Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B); Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p < 0.001) reduced population development of D. suzukii from infested berries. All nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed. PMID:27294962

  11. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii.

    PubMed

    Cuthbertson, Andrew G S; Audsley, Neil

    2016-06-09

    Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B); Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p < 0.001) reduced population development of D. suzukii from infested berries. All nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed.

  12. Entomopathogenic fungi for mosquito control: A review

    PubMed Central

    Scholte, Ernst-Jan; Knols, Bart G.J.; Samson, Robert A.; Takken, Willem

    2004-01-01

    Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti) curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis. PMID:15861235

  13. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation.

    PubMed

    Fernandes, Éverton K K; Rangel, Drauzio E N; Braga, Gilberto U L; Roberts, Donald W

    2015-08-01

    Ultraviolet radiation from sunlight is probably the most detrimental environmental factor affecting the viability of entomopathogenic fungi applied to solar-exposed sites (e.g., leaves) for pest control. Most entomopathogenic fungi are sensitive to UV radiation, but there is great inter- and intraspecies variability in susceptibility to UV. This variability may reflect natural adaptations of isolates to their different environmental conditions. Selecting strains with outstanding natural tolerance to UV is considered as an important step to identify promising biological control agents. However, reports on tolerance among the isolates used to date must be analyzed carefully due to considerable variations in the methods used to garner the data. The current review presents tables listing many studies in which different methods were applied to check natural and enhanced tolerance to UV stress of numerous entomopathogenic fungi, including several well-known isolates of these fungi. The assessment of UV tolerance is usually conducted with conidia using dose-response methods, wherein the UV dose is calculated simply by multiplying the total irradiance by the period (time) of exposure. Although irradiation from lamps seldom presents an environmentally realistic spectral distribution, laboratory tests circumvent the uncontrollable circumstances associated with field assays. Most attempts to increase field persistence of microbial agents have included formulating conidia with UV protectants; however, in many cases, field efficacy of formulated fungi is still not fully adequate for dependable pest control.

  14. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields

    USDA-ARS?s Scientific Manuscript database

    Terrestrial plants can harbor endophytic fungi that may induce changes in plants that in turn affect interactions with herbivorous insects attacking those plants. We evaluated whether the entomopathogenic fungi Beauveria bassiana and Metarhizium brunneum, applied to soybean seeds, could establish a...

  15. Differential immune responses of Monochamus alternatus against symbiotic and entomopathogenic fungi.

    PubMed

    Zhang, Wei; Meng, Jie; Ning, Jing; Qin, Peijun; Zhou, Jiao; Zou, Zhen; Wang, Yanhong; Jiang, Hong; Ahmad, Faheem; Zhao, Lilin; Sun, Jianghua

    2017-08-01

    Monochamus alternatus, the main vector beetles of invasive pinewood nematode, has established a symbiotic relationship with a native ectotrophic fungal symbiont, Sporothrix sp. 1, in China. The immune response of M. alternatus to S. sp. 1 in the coexistence of beetles and fungi is, however, unknown. Here, we report that immune responses of M. alternatus pupae to infection caused by ectotrophic symbiotic fungus S. sp. 1 and entomopathogenic fungus Beauveria bassiana differ significantly. The S. sp. 1 did not kill the beetles while B. bassiana killed all upon injection. The transcriptome results showed that the numbers of differentially expressed genes in M. alternatus infected with S. sp. 1 were 2-fold less than those infected with B. bassiana at 48 hours post infection. It was noticed that Toll and IMD pathways played a leading role in the beetle's immune system when infected by symbiotic fungus, but upon infection by entomopathogenic fungus, only the Toll pathway gets triggered actively. Furthermore, the beetles could tolerate the infection of symbiotic fungi by retracing their Toll and IMD pathways at 48 h. This study provided a comprehensive sequence resource of M. alternatus transcriptome for further study of the immune interactions between host and associated fungi.

  16. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters.

    PubMed

    Baral, Bikash

    2017-01-01

    The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    PubMed Central

    2010-01-01

    Background Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana, are promising bio-pesticides for application against adult malaria mosquito vectors. An understanding of the behavioural responses of mosquitoes towards these fungi is necessary to guide development of fungi beyond the 'proof of concept' stage and to design suitable intervention tools. Methods Here we tested whether oil-formulations of the two fungi could be detected and avoided by adult Anopheles gambiae s.s., Anopheles arabiensis and Culex quinquefasciatus. The bioassays used a glass chamber divided into three compartments (each 250 × 250 × 250 mm): release, middle and stimulus compartments. Netting with or without fungus was fitted in front of the stimulus compartment. Mosquitoes were released and the proportion that entered the stimulus compartment was determined and compared between treatments. Treatments were untreated netting (control 1), netting with mineral oil (control 2) and fungal conidia formulated in mineral oil evaluated at three different dosages (2 × 1010, 4 × 1010 and 8 × 1010 conidia m-2). Results Neither fungal strain was repellent as the mean proportion of mosquitoes collected in the stimulus compartment did not differ between experiments with surfaces treated with and without fungus regardless of the fungal isolate and mosquito species tested. Conclusion Our results indicate that mineral-oil formulations of M. anisopliae and B. bassiana were not repellent against the mosquito species tested. Therefore, both fungi are suitable candidates for the further development of tools that aim to control host-seeking or resting mosquitoes using entomopathogenic fungi. PMID:20799937

  18. Susceptibilities of Candidatus Liberibacter asiaticus-infected and noninfected Diaphorina citri to entomopathogenic fungi and their detoxification enzyme activities under different temperatures.

    PubMed

    Hussain, Mubasher; Akutse, Komivi Senyo; Lin, Yongwen; Chen, Shiman; Huang, Wei; Zhang, Jinguan; Idrees, Atif; Qiu, Dongliang; Wang, Liande

    2018-03-25

    Some entomopathogenic fungi species, Isaria fumosorosea, and Hirsutella citriformis were found to be efficient against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). However, the susceptibility to these fungi increases when the psyllid infected with Candidatus Liberibacter asiaticus (Las), which is transmitted by D. citri and causes citrus greening disease. In this study, we examined the Las-infected and Las-uninfected D. citri susceptibility to entomopathogenic fungi at different temperature regimes (5-40°C). When D. citri adults exposed to cold temperature (5°C), they showed less susceptibility to entomopathogenic fungi as compared with control (27°C). Irrespective of infection with Las, a significantly positive correlation was observed between temperature and percentage mortality caused by different isolates of I. fumosorosea, 3A Ifr, 5F Ifr, PS Ifr, and H. citriformis isolates, HC3D and 2H. In contrast, a significantly negative correlation was found between temperature and percentage mortality for 3A Ifr for both Las-infected and Las-uninfected psyllids. Detoxification enzymes, Glutathione S-transferase levels in D. citri showed a negative correlation, whereas cytochrome P450 and general esterase levels were not correlated with changes in temperature. These findings revealed that detoxification enzymes and general esterase levels are not correlated with altered susceptibility to entomopathogenic fungi at the different temperature regimes. Conclusively, temperature fluctuations tested appear to be a significant factor impacting the management strategies of D. citri using entomopathogenic fungi. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. The Role of Antennae in Removing Entomopathogenic Fungi from Cuticle of the Termite, Coptotermes formosanus

    PubMed Central

    Yanagawa, Aya; Yokohari, Fumio; Shimizu, Susumu

    2009-01-01

    Our previous research has shown that the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), protects itself from entomopathogenic fungi by mutual grooming behavior. The termite removes and discards foreign organisms, such as fungal conidia, from the body surface of its nestmates by mutual grooming behavior. The role of the antennae in detecting the condia was examind here. Three entomopathogenic fungi were used, Beauveria brongniartii 782 (Saccardo) (Hypocreales), Paecilomyces fumosoroseus K3 (Wize) (Hyphomycetes), and Metarhizium anisopliae 455 Sorokin (Hyphomycetes). Termites with antennae removed conidia more efficiently than termites without antennae. There were differences between termites with and without antennae in selection of sites to be groomed on nestmates, in the length of grooming and in occurrence of grooming. Electroantennogram (EAG) responses were recorded from termite antennae and the waveforms were rather specific to the kinds of fungi used as odor sources. Termites were able to distinguish between the tested fungi in feeding tests. These results show that the antennae play important roles in the mutual grooming behavior of the termite. PMID:19611249

  20. Pathogenicity, Ovicidal Action, and Median Lethal Concentrations (LC50) of Entomopathogenic Fungi against Exotic Spiralling Whitefly, Aleurodicus dispersus Russell

    PubMed Central

    Palaniappan, Karuppuchamy; Manickavasagam Pillai, Kalyanasundaram; Subbarayalu, Mohankumar; Madhaiyan, Ravi

    2013-01-01

    Biological control using entomopathogenic fungi could be a promising alternative to chemical control. Entomopathogenic fungi, Beauveria bassiana (Balsamo) Vuillemin, Metarhizium anisopliae (Metschnikoff) Sorokin, Lecanicillium lecanii (Zimmerm.) Zare and Gams, and Paecilomyces fumosoroseus (Wize) Brown and Smith, were tested for their pathogenicity, ovicidal effect, and median lethal concentrations (LC50) against exotic spiralling whitefly, Aleurodicus dispersus Russell. The applications were made at the rate of 2 × 109 conidia mL−1 for evaluating the pathogenicity and ovicidal effect of entomopathogenic fungi against A. dispersus. The results of pathogenicity test showed that P. fumosoroseus (P1 strain) was highly pathogenic to A. dispersus recording 100% mortality at 15 days after treatment (DAT). M. anisopliae (M2 strain) had more ovicidal effect causing 37.3% egg mortality at 8 DAT. However, L. lecanii (L1 strain) caused minimum egg hatchability (23.2%) at 10 DAT as compared to control (92.6%). The lowest LC50 produced by P. fumosoroseus (P1 strain) as 8.189 × 107 conidia mL−1 indicated higher virulence against A. dispersus. Hence, there is potential for use of entomopathogenic fungi in the field conditions as an alternate control method in combating the insect pests and other arthropod pests since they are considered natural mortality agents and are environmentally safe. PMID:24455279

  1. Association between entomopathogenic nematodes and fungi for control of Rhipicephalus microplus (Acari: Ixodidae).

    PubMed

    Monteiro, Caio Márcio Oliveira; Araújo, Laryssa Xavier; Matos, Renata Silva; da Silva Golo, Patrícia; Angelo, Isabele Costa; de Souza Perinotto, Wendell Marcelo; Coelho Rodrigues, Camila Aparecida; Furlong, John; Bittencourt, Vânia Rita Elias Pinheiro; Prata, Márcia Cristina Azevedo

    2013-10-01

    The aim of the study was to assess the effect of the association of entomopathogenic nematodes and fungi on Rhipicephalus microplus. The nematodes used were Heterorhabditis bacteriophora HP88 and Heterorhabditis indica LPP1 and the fungi were Metarhizium anisopliae IBCB 116 and Beauveria bassiana ESALQ 986. In the groups treated with the fungi, the females were immersed for 3 min in a conidial suspension, while in the groups treated with the nematodes, the ticks were exposed to infective juveniles. To evaluate the interaction between entomopathogens, the females were first immersed in a conidial suspension and then exposed to the nematodes. The egg mass weight and hatching percentage values of the groups treated with M. anisopliae IBCB 116 and B. bassiana ESALQ 986 in the two experiments were statistically similar (p > 0.05) to the values of the control group. In the groups treated only with nematodes, there was a significant reduction (p < 0.05) in the egg mass weight, a fact also observed for the hatching percentage of the group treated with H. indica LPP1. In all the groups treated with nematodes in association with fungi, there was a significant reduction (p < 0.05) in the egg mass weight and hatching percentage. The percentage of control of the groups treated with fungi alone varied from 31 to 55%. In the groups treated with nematodes associated or not with fungi, the control percentage was always greater than 90% and reached 100% in the group treated with H. bacteriophora HP88 associated with the fungus M. anisopliae IBCB 116.

  2. Unveiling the oxidative metabolism of Rhipicephalus microplus (Acari: Ixodidae) experimentally exposed to entomopathogenic fungi.

    PubMed

    Tunholi-Alves, Vinícius Menezes; Tunholi Alves, Victor Menezes; da Silva, Jairo Pinheiro; Nora Castro, Rosane; Salgueiro, Fernanda Barbosa; Perinotto, Wendell Marcelo de Souza; Gôlo, Patrícia Silva; Camargo, Mariana Guedes; Angelo, Isabele da Costa; Bittencourt, Vânia Rita Elias Pinheiro

    2016-10-01

    Rhipicephalus microplus is an important tick in tropical regions due to the high economic losses caused by its parasitism. Metarhizium anisopliae and Beauveria bassiana are well-known entomopathogenic fungi that can afflict R. microplus ticks. The development of new targets and strategies to control this parasite can be driven by studies of this tick's physiology. Recently, it was reported that when exposed to adverse physiological conditions, ticks can activate fermentative pathways, indicating transition from aerobic to anaerobic metabolism. Nevertheless, the precise mechanism by which entomopathogenic fungi influence R. microplus metabolism has not been clarified, limiting understanding of the tick-fungus association. Thus, the present study aimed to evaluate the effect of infection of ticks by M. anisopliae and B. bassiana on the amount of selected carboxylic acids present in the hemolymph, enabling increased understanding of changes previously reported. The results showed preservation in the concentrations of oxalic, lactic, and pyruvic acids in the hemolymph 24 and 48 h after dropping from cattle; while there were variations in the concentration of these carboxylic acids after infection of female ticks to M. anisopliae and B. bassiana. Significant increases were observed in the concentration of oxalic and lactic acids and significant reduction of pyruvic acid for both observation times (24 and 48 h) after infection by entomopathogenic fungi. These results indicate that B. bassiana and M. anisopliae infection alters the basal metabolism of R. microplus females, resulting in the activation of fermentative pathways.

  3. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi

    PubMed Central

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-01

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml−1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies. PMID:28079180

  4. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi

    NASA Astrophysics Data System (ADS)

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-01

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml-1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

  5. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi.

    PubMed

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-12

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml -1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

  6. In vivo interactions of entomopathogenic fungi, Beauveria spp. and Metarhizium anisopliae with selected opportunistic soil fungi of sugarcane ecosystem.

    PubMed

    Geetha, N; Preseetha, M; Hari, K; Santhalakshmi, G; Bai, K Subadra

    2012-07-01

    In the present study, the interactions of entomopathogenic fungi viz., Beauveria bassiana, Beauveria brongniartii and Metarhizium anisopliae among themselves and three other opportunistic soil fungi from the sugarcane ecosystem namely, Fusarium saachari, Aspergillus sp. and Penecillium sp. were assayed in vivo against Galleria mellonella larvae. The tested fungi were co-applied on IV instar G. mellonella @ 1 x 10(7) ml(-1), in combinations of two, at the interval of 24 hrs either preceding or succeeding each otherto assess their efficacy and sporulation rates. Results showed that often mortality rates did not correspond to the spore harvest of the mortality agent and presence of other fungus may be antagonistic. The efficacy of B. bassiana (90%) and B. brongniartii (100%) was not enhanced further but was negatively affected in most combinations with other fungi. In case of M. anisopliae compatibility was higher, resulting in higher mortality by application of B. bassiana before (100%) or after (83.3%) M. anisopliae than when it was applied alone (70%). During sporulation, B. bassiana faced the most intense competition from M. anisopliae (2.75 x 10(6) larva(-1)) and enhancement due to F sacchari irrespective of sequence of application. In case of B. brongniartii, sporulation was lowest in the combination of B. brongniartiipreceding M. anisopliae (1.83 x10(6) larva(-1)) and B. brongniartii succeeding B. bassiana (1.58 x 10(6) larva(-1)). Of all fungi tested, except F sacchari (65.33 x 10(6) larva(-1)) all the other species affected sporulation of M. ansiopliae with the least in treatment of B. bassiana application following M. anisopliae. Similar kind of interaction was observed during sporulation of soil fungi when combined with entomopathogenic fungi, though individually they could not cause mortality of larvae.

  7. Cover art complementing article: "secondary metabolites from entomopathogenic Hypocrealean fungi" by Istvan Molnar

    USDA-ARS?s Scientific Manuscript database

    This contribution is a set of three images of entomopathogenic fungi that were taken and composited by RA Humber from individual specimens. Each of these images is a montage of many individual planes of focus integrated by software and then adjusted for realistic color, to further sharpen the images...

  8. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae.

    PubMed

    Rännbäck, Linda-Marie; Cotes, Belen; Anderson, Peter; Rämert, Birgitta; Meyling, Nicolai V

    2015-01-01

    Biological control of pests in agroecosystems could be enhanced by combining multiple natural enemies. However, this approach might also compromise the control efficacy through intraguild predation (IGP) among the natural enemies. Parasitoids may be able to avoid the risk of unidirectional IGP posed by entomopathogenic fungi through selective oviposition behavior during host foraging. Trybliographa rapae is a larval parasitoid of the cabbage root fly, Delia radicum. Here we evaluated the susceptibility of D. radicum and T. rapae to two species of generalist entomopathogenic fungi, Metarhizium brunneum isolate KVL 04-57 and Beauveria bassiana isolate KVL 03-90. Furthermore, T. rapae oviposition behavior was assessed in the presence of these entomopathogenic fungi either as infected hosts or as infective propagules in the environment. Both fungi were pathogenic to D. radicum larvae and T. rapae adults, but with variable virulence. When host patches were inoculated with M. brunneum conidia in a no-choice situation, more eggs were laid by T. rapae in hosts of those patches compared to control and B. bassiana treated patches. Females that later succumbed to mycosis from either fungus laid significantly more eggs than non-mycosed females, indicating that resources were allocated to increased oviposition due to perceived decreased life expectancy. When presented with a choice between healthy and fungal infected hosts, T. rapae females laid more eggs in healthy larvae than in M. brunneum infected larvae. This was less pronounced for B. bassiana. Based on our results we propose that T. rapae can perceive and react towards IGP risk posed by M. brunneum but not B. bassiana to the foraging female herself and her offspring. Thus, M. brunneum has the potential to be used for biological control against D. radicum with a limited risk to T. rapae populations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Effect of Three Entomopathogenic Fungi on Three Species of Stingless Bees (Hymenoptera: Apidae) Under Laboratory Conditions.

    PubMed

    Toledo-Hernández, R A; Ruíz-Toledo, J; Toledo, J; Sánchez, D

    2016-05-04

    Development of alternative strategies for pest control with reduced effect on beneficial organisms is a priority given the increasing global loss of biodiversity. Biological control with entomopathogenic fungi arises as a viable option to control insect pests. However, few studies have focused on the consequences of using these organisms on pollinators other than the honey bee (Apis mellifera L.) or bumble bees (Bombus spp). We evaluated the pathogenicity of commercial formulations of three widely used entomopathogenic fungi, Metarhizium anisopliae (Metschnikoff) Sorokin, Beauveria bassiana Vuillemin, and Isaria fumosorosea (Wize), to three species of stingless bees: Tetragonisca angustula Latreille, Scaptotrigona mexicana Guérin-Meneville, and Melipona beecheii Bennett. Bioassays consisted of exposing groups of bees to the recommended field concentration of each fungus using a microspray tower under laboratory conditions. Susceptibility to fungi varied greatly among species. Isaria fumosorosea (strain Ifu-lu 01) and the two formulations of B. bassiana (Bea-TNK and BotanicGard) caused <30.3% mortality in all bee species. Metarhizium anisopliae (Meta-TNK and strain Ma-lu 01) was highly active against T. angustula (94.2% mortality) and moderately active against M. beecheii (53.0% mortality) and S. mexicana (38.9% mortality). Though our laboratory-derived results suggest a moderate to high impact of these entomopathogenic fungi on stingless bees, further field studies are required to support this finding. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Potential for entomopathogenic fungi to control Triatoma dimidiata (Hemiptera: Reduviidae), a vector of Chagas disease in Mexico.

    PubMed

    Vázquez-Martínez, María Guadalupe; Cirerol-Cruz, Blanca Elva; Torres-Estrada, José Luis; López, Mario Henry Rodríguez

    2014-01-01

    The use of entomopathogenic fungi to control disease vectors has become relevant because traditional chemical control methods have caused damage to the environment and led to the development of resistance among vectors. Thus, this study assessed the pathogenicity of entomopathogenic fungi in Triatoma dimidiata. Preparations of 108 conidia/ml of Gliocladium virens, Talaromyces flavus, Beauveria bassiana and Metarhizium anisopliae were applied topically on T. dimidiata nymphs and adults. Controls were treated with the 0.0001% Tween-80 vehicle. Mortality was evaluated and recorded daily for 30 days. The concentration required to kill 50% of T. dimidiata (LC50) was then calculated for the most pathogenic isolate. Pathogenicity in adults was similar among B. bassiana, G. virens and T. flavus (p>0.05) and differed from that in triatomine nymphs (p=0.009). The most entomopathogenic strains in adult triatomines were B. bassiana and G. virens, which both caused 100% mortality. In nymphs, the most entomopathogenic strain was B. bassiana, followed by G. virens. The native strain with the highest pathogenicity was G. virens, for which the LC50 for T. dimidiata nymphs was 1.98 x108 conidia/ml at 13 days after inoculation. Beauveria bassiana and G. virens showed entomopathogenic potential in T. dimidiata nymphs and adults. However, the native G. virens strain presents a higher probability of success in the field, and G. virens should thus be considered a potential candidate for the biological control of triatomine Chagas disease vectors.

  11. Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle

    PubMed Central

    Ortiz-Urquiza, Almudena; Keyhani, Nemat O.

    2013-01-01

    Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is “passaged” through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the “action on the surface” may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular

  12. Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle.

    PubMed

    Ortiz-Urquiza, Almudena; Keyhani, Nemat O

    2013-07-16

    Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is "passaged" through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the "action on the surface" may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms

  13. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields.

    PubMed

    Clifton, Eric H; Jaronski, Stefan T; Coates, Brad S; Hodgson, Erin W; Gassmann, Aaron J

    2018-01-01

    Terrestrial plants can harbor endophytic fungi that may induce changes in plant physiology that in turn affect interactions with herbivorous insects. We evaluated whether the application of entomopathogenic fungi Beauveria bassiana and Metarhizium brunneum to soybean seeds could become endophytic and affect interactions with soybean aphid (Aphis glycines Matsumura). It was found that A. glycines population sizes increased on plants with M. brunneum (strain F52) seed inoculum, but no significant effects were shown with analogous treatments with B. bassiana (strain GHA). Fungi recovered from soybean plant tissues indicate that endophytism was established, and that B. bassiana was more prevalent. Metarhizium brunneum was only recovered from stems, but B. bassiana was recovered from stems and leaves. This work confirms that some entomopathogenic fungi can be endophytic in soybean, however, some of these fungi may have a negative effect on the plants by increasing susceptibility of soybean to A. glycines. We also used DNA sequence data to identify species of Metarhizium obtained from agricultural fields in Iowa. Phylogenetic analyses, based on DNA sequence data, found that all isolates were Metarhizium robertsii, which is consistent with past studies indicating a cosmopolitan distribution and wide host range for this species. These results are important for understanding the dynamics of implementing environmentally sustainable measures for the control of pest insects.

  14. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins.

    PubMed

    Staats, Charley Christian; Junges, Angela; Guedes, Rafael Lucas Muniz; Thompson, Claudia Elizabeth; de Morais, Guilherme Loss; Boldo, Juliano Tomazzoni; de Almeida, Luiz Gonzaga Paula; Andreis, Fábio Carrer; Gerber, Alexandra Lehmkuhl; Sbaraini, Nicolau; da Paixão, Rana Louise de Andrade; Broetto, Leonardo; Landell, Melissa; Santi, Lucélia; Beys-da-Silva, Walter Orlando; Silveira, Carolina Pereira; Serrano, Thaiane Rispoli; de Oliveira, Eder Silva; Kmetzsch, Lívia; Vainstein, Marilene Henning; de Vasconcelos, Ana Tereza Ribeiro; Schrank, Augusto

    2014-09-29

    Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.

  15. Entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae)and compatibility with chemical insecticides

    USDA-ARS?s Scientific Manuscript database

    The objectives were to evaluate the efficiency of entomopathogenic fungi against Plutella xylostella (L.) and the compatibility of the most virulent isolates with some of the insecticides registered for use on cabbage crops. Pathogenicity tests used isolates of Beauveria bassiana, Metarhizium rileyi...

  16. Entomopathogenic fungi in cornfields and their potential to manage larval western corn rootworm Diabrotica virgifera virgifera

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic Ascomycete fungi are ubiquitous in soil and on phylloplanes, and are important natural enemies of many arthropods, including larval western corn rootworm, Diabrotica virgifera virgifera, which is a major pest of corn. We measured the prevalence of Beauveria bassiana and Metarhizium...

  17. Efficacy of entomopathogenic fungi in suppressing pecan weevil, Curculio caryae (Coleoptera: Curculionidae) in commercial pecan orchards

    USDA-ARS?s Scientific Manuscript database

    The pecan weevil, Curculio caryae (Horn), is a key pest of pecans. Here we report the efficacy of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae applied to trees in grower orchards at three locations. In Fort Valley, Georgia, treatments included B. bassiana applied to the tru...

  18. The effect of Mirabilis jalapa leaves biopesticide treatment on the mycelium growth of entomopathogenic fungi Beauveria bassiana inside the larvae body Crocidolomia binotalis

    NASA Astrophysics Data System (ADS)

    Pramita, Mia; Anggraeni, Tjandra

    2015-09-01

    Pest control with biological method (biopesticide and entomopathogenic fungi) is an alternative program to reduce application of chemical insecticide. Biopesticide of Mirabilis jalapa leaves has been discovered rich in secondary metabolites which has antifeedant activity that can provide physiological interference in insect larvae and the generation numbers[1]. Entomopathogenic fungi Beauveria bassiana has potential to control pest populations[2]. The growth of mycelium B. bassiana may interfere metabolism process inside the host body. Otherwise, B. bassiana produce toxins such as beauvericin that can increase mortality of pest. Combination of M. jalapa and B. bassiana reduce LT50 on C. binotalis larvae[3]. Thus, this study aims to determine influence of provision of biopesticide M. jalapa leaves on growth of mycelium entomopathogenic fungi B. bassiana inside larvae body C. binotalis and to detect the presence of beauvericin in vivo. Third instar larvae of C. binotalis were divided into a control, fungal and combination group. The combination group was given biopesticide and fungi. The concentration of biopesticide was 0.8% (w/v) and concentration of fungi spores was 107 spores/ml. Spores (vol. 5µl) done topically to larvae in interval 6 hours after treatment of biopesticide on non-pesticide cabbage leaves. Afterwards, histological observations performed at 24, 48, 72, 96 hours after treatment. The result show of emergence hyphae and mycelium growth inside lumen of larvae midgut on combination group faster than fungal group. This is thought to be caused by the influence of secondary metabolites of biopesticide M. jalapa leaves. In addition, beauviricin is detectable both of fungal and combination group. Thus, it can be concluded that treatment of biopesticide from M. jalapa leaves can accelerate on growth of mycelium entomopathogenic fungi B. bassiana inside the larvae body C. binotalis and toxic of B. bassiana such as beauvericin was detected on fungal and

  19. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control.

    PubMed

    Bueno-Pallero, Francisco Ángel; Blanco-Pérez, Rubén; Dionísio, Lídia; Campos-Herrera, Raquel

    2018-05-01

    Entomopathogenic nematodes (EPNs) and fungi (EPF) are well known biological control agents (BCAs) against insect pests. Similarly, the nematophagous fungi (NF) are considered good BCA candidates for controlling plant parasitic nematodes. Because NF can employ EPNs as food and interact with EPF, we speculate that the simultaneous application of EPNs and EPF might result in higher insect mortality, whereas the triple species combination with NF will reduce the EPN and EPF activity by predation or inhibition. Here we evaluated single, dual (EPN + EPF, EPF + NF, EPN + NF) and triple (EPN + EPF + NF) combinations of one EPN, Steinernema feltiae (Rhabditida: Steinernematidae), one EPF, Beauveria bassiana (Hypocreales: Clavicipitaceae), and two NF, Arthrobotrys musiformis (Orbiliales: Orbiliaceae) and Purpureocillium lilacinum (Hypocreales: Ophiocordycipitaceae) under laboratory conditions. First, we showed that EPF reduced the growth rate of NF and vice versa when combined in both rich and limiting media, suggesting a negative interaction when combining both fungi. Three different fungal applications (contact with mycelia-conidia, immersion in conidial suspension, and injection of conidial suspension) were tested in single, dual and triple species combinations, evaluating Galleria mellonella (Lepidoptera: Pyralidae) larval mortality and time to kill. When mycelia was presented, the EPF appeared to be the dominant in combined treatments, whereas in immersion exposure was the EPN. In both types of exposure, NF alone did not produce any effect on larvae. However, when A. musiformis was injected, it produced larval mortalities >70% in the same time span as EPN. Overall, additive effects dominated the dual and triple combinations, with the exception of injection method, where synergisms occurred for both NF species combined with EPN + EPF. This study illustrates how differences in species combination and timing of fungal arrival can modulate the action

  20. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    PubMed Central

    2010-01-01

    Background Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of Anopheles gambiae sensu stricto, and to test a potential field application method with respect to the viability and virulence of two fungal species Methods Pieces of white polyester netting were dipped in Metarhizium anisopliae ICIPE-30 or Beauveria bassiana IMI391510 mineral oil suspensions. These were kept at 27 ± 1°C, 80 ± 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER) and insecticide-susceptible (SKK) strains of An. gambiae s.s., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net. Results The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, B. bassiana was significantly more virulent than M. anisopliae for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension. Conclusions The insecticide-resistant mosquito strain was susceptible

  1. Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu.

    PubMed

    Pelizza, Sebastian A; Schalamuk, Santiago; Simón, María R; Stenglein, Sebastian A; Pacheco-Marino, Suani G; Scorsetti, Ana C

    Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) is one of the major lepidopteran pests defoliating soybeans (Glycine max Merrill) in Argentina. The combined use of chemical insecticides and entomopathogenic fungi is a promising pest-control option to minimize adverse chemical effects. In this work, we evaluated the interactions between five insecticides-two being considered biorational-and five fungal entomopathogenic strains under laboratory conditions in order to determine the possible usefulness of combinations of these agents against R. nu. The insecticides were tested for compatibility at four doses by in vitro bioassay and for the lethality of R. nu by inoculations at three doses. Fungal strains were applied at 1×10 8 , 1×10 6 , and 1×10 4 conidia/ml. The combinations of those insecticides with Beauveria bassiana (LPSc 1067, LPSc 1082, LPSc 1098), Metarhizium anisopliae (LPSc 907), and Metarhizium robertsii (LPSc 963) caused higher R. nu-larval mortalities than any of the individual agents alone. We observed significant differences in the in vitro conidial viability, vegetative growth, and conidia production of the five strains of entomopathogenic fungi exposed to different doses of the chemical insecticides. The combination gamma-cyhalothrin-LPSc-1067 caused the highest percent mortality of R. nu larvae, with synergism occurring between the two agents at 50% and 25% of the maximum field doses. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Preliminary survey for entomopathogenic fungi associated with Ixodes scapularis>/i> (Acari: Ixodidae) in southern New York and New England, USA

    USGS Publications Warehouse

    Zhioua, Elyes; Ginsberg, Howard S.; Humber, Richard A.; LeBrun, Roger A.

    1999-01-01

    Free-living larval, nymphal, and adult Ixodes scapularis Say were collected from scattered locales in southern New England and New York to determine infection rates with entomopathogenic fungi. Infection rates of larvae, nymphs, males, and females were 0% (571), 0% (272), 0% (57), and 4.3% (47), respectively. Two entomopathogenic fungi were isolated from field-collected I. scapularis females from Fire Island, NY. Isolates were identified as Verticillium lecanii (Zimmermann) Viegas and Verticillium sp. (a member of the Verticillium lecanii species complex).Ixodes scapularis Say is the principal vector of Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner (Burgdorfer et al. 1982, Johnson et al. 1984), the etiologic agent of Lyme disease in the northeastern and upper-midwestern United States. Control of I. scapularis is based on chemical treatment (Mather et al. 1987b; Schulze et al. 1987, 1991), environmental management (Wilson et al. 1988, Schulze et al. 1995), and habitat modification (Wilson 1986). These methods have shown variable success, and some potentially have negative environmental effects (Wilson and Deblinger 1993, Ginsberg 1994).Studies concerning natural predators, parasitoids, and pathogens of I. scapularis are rare. The use of ground-dwelling birds as tick predators has had only limited success (Duffy et al. 1992). Nymphal I. scapularis are often infected with the parasitic wasp Ixodiphagus hookeri (Howard) (Mather et al. 1987a, Hu et al. 1993, Stafford et al. 1996, Hu and Hyland 1997), but this wasp does not effectively control I. scapularis populations (Stafford et al. 1996). The entomopathogenic nematodes Steinernema carpocapsae (Weiser) and S. glaseri (Steiner) are pathogenic only to engorged female I. scapularis, and thus have limited applicability (Zhioua et al. 1995). In contrast, the entomogenous fungus Metarhizium anisopliae (Metschnikoff) Sorokin is highly pathogenic to all stages of I. scapularis, unfed as well as engorged

  3. Fungi Associated with the Hemlock Woolly Adelgid, Adelges tsugae, and Assessment of Entomopathogenic Isolates for Management

    PubMed Central

    Reid, W.R.; Parker, B.L.; Gouli, S.Y.; Skinner, M.; Gouli, V.V.; Teillon, H.B.

    2010-01-01

    Fungi associated with the hemlock wooly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), were collected throughout the eastern USA and southern China. Twenty fungal genera were identified, as were 79 entomopathogenic isolates, including: Lecanicillium lecanii (Zimmermann) (Hypocreales: Insertae sedis), Isaria farinosa (Holm: Fries.) (Cordycipitaceae), Beauveria bassiana (Balasamo) (Hyphomycetes), and Fusarium spp (Nectriaceae). The remaining fungal genera associated with insect cadavers were similar for both the USA and China collections, although the abundance of Acremonium (Hypocreaceae) was greater in China. The entomopathogenic isolates were assayed for efficacy against Myzus persicae (Sulzer) (Homoptera: Aphididae) and yielded mortality ranging from 3 to 92%. Ten isolates demonstrating the highest efficacy were further assessed for efficacy against field-collected A. tsugae under laboratory conditions. Overall, two B. bassiana, one L. lecanii, and a strain of Metarhizium anisopliae (Metchnikoff) (Hypocreales: Clavicipitaceae), demonstrated significantly higher efficacy against A. tsugae than the others. Isolates were further evaluated for conidial production, germination rate and colony growth at four temperatures representative of field conditions. All isolates were determined to be mesophiles with optimal temperature between 25–30° C. In general, conidial production increased with temperature, though two I. farinosa produced significantly more conidia at cooler temperatures. When efficacy values were compared with conidial production and temperature tolerances, Agricultural Research Service Collection of Entomopathogenic Fungi (ARSEF) 1080, 5170, and 5798 had characteristics comparable to the industrial B. bassiana strain GHA. PMID:20672977

  4. Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana.

    PubMed

    Mnyone, Ladslaus L; Koenraadt, Constantianus Jm; Lyimo, Issa N; Mpingwa, Monica W; Takken, Willem; Russell, Tanya L

    2010-08-27

    Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana, are promising bio-pesticides for application against adult malaria mosquito vectors. An understanding of the behavioural responses of mosquitoes towards these fungi is necessary to guide development of fungi beyond the 'proof of concept' stage and to design suitable intervention tools. Here we tested whether oil-formulations of the two fungi could be detected and avoided by adult Anopheles gambiae s.s., Anopheles arabiensis and Culex quinquefasciatus. The bioassays used a glass chamber divided into three compartments (each 250 × 250 × 250 mm): release, middle and stimulus compartments. Netting with or without fungus was fitted in front of the stimulus compartment. Mosquitoes were released and the proportion that entered the stimulus compartment was determined and compared between treatments. Treatments were untreated netting (control 1), netting with mineral oil (control 2) and fungal conidia formulated in mineral oil evaluated at three different dosages (2 × 1010, 4 × 1010 and 8 × 1010 conidia m-2). Neither fungal strain was repellent as the mean proportion of mosquitoes collected in the stimulus compartment did not differ between experiments with surfaces treated with and without fungus regardless of the fungal isolate and mosquito species tested. Our results indicate that mineral-oil formulations of M. anisopliae and B. bassiana were not repellent against the mosquito species tested. Therefore, both fungi are suitable candidates for the further development of tools that aim to control host-seeking or resting mosquitoes using entomopathogenic fungi.

  5. Survival and immune response of the Chagas vector Meccus pallidipennis (Hemiptera: Reduviidae) against two entomopathogenic fungi, Metarhizium anisopliae and Isaria fumosorosea.

    PubMed

    Flores-Villegas, A Laura; Cabrera-Bravo, Margarita; Toriello, Conchita; Bucio-Torres, Martha I; Salazar-Schettino, Paz María; Córdoba-Aguilar, Alex

    2016-03-24

    Chagas disease is a key health problem in Latin America and is caused and transmitted by Trypanosoma cruzi and triatomine bugs, respectively. Control of triatomines has largely relied on the use pyrethroids, which has proved to be ineffective in the long term. Alternatively, the use of entomopathogenic fungi has been implemented to control triatomine bugs. These fungi are highly efficient as they induce a reduction in immune response on insects. Meccus pallidipennis is the main triatomine vector of Chagas disease in Mexico. In this work we investigated the effects of two entomopathogenic fungi, Metarhizium anisopliae and Isaria fumosorosea, on M. pallidipennis nymphs in terms of insect survival and immune response. We had an infected and a control group for each fungal species and assessed: a) insect survival during 30 days; and, b) phenoloxidase (PO) and prophenoloxidase (proPO; two key traits in insect immune response) at 24, 48, 96 and 144 h. For survival we used Kaplan-Meier survival analysis while for immune response we used factorial, repeated-measures ANOVA for each fungal species. Animals treated with M. anisopliae died sooner than animals treated with I. fumosorosea. Infected animals showed lower PO and proPO values than sham individuals, with a clear decrease in these parameters at 24 h with no further changes after this time. Our study widens the possibility of entomopathogenic fungi being used for triatomine control. The negative effect on PO and proPO seems mediated by a down-regulation of the triatomine immune response.

  6. Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea

    PubMed Central

    Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young

    2017-01-01

    The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection. PMID:29138624

  7. Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea.

    PubMed

    Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young; Woo, Soo-Dong

    2017-09-01

    The green peach aphid ( Myzus persicae ), a plant pest, and gray mold disease, caused by Botrytis cinerea , affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae . Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.

  8. It’s a Jungle Out There! Abiotic and Biotic Factors That Affect Efficacy and Persistence of the Entomopathogenic Fungi

    USDA-ARS?s Scientific Manuscript database

    One might conclude the soil is a more congenial arena for using entomopathogenic fungi (EPF) than the phylloplane. No ultraviolet light, no rainfall washing conidia from foliage, no rapid attenuation of conidial deposits by rapid plant canopy expansion. The soil is cool, damp and dark – perfect fo...

  9. Fungal entomopathogens: new insights on their ecology

    USDA-ARS?s Scientific Manuscript database

    One important mechanism for insect pest control is the use of fungal entomopathogens. Even though these organisms have been studied for more than 100 years, their effective use in the field remains elusive. Recently, however, it has been discovered that many of these entomopathogenic fungi play addi...

  10. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    PubMed Central

    Lando, Gabriela Albara; Marconatto, Letícia; Schrank, Augusto; Vainstein, Marilene Henning

    2017-01-01

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management. PMID:28718785

  11. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi.

    PubMed

    Lando, Gabriela Albara; Marconatto, Letícia; Kessler, Felipe; Lopes, William; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2017-07-18

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae , when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  12. Effects of Steam-Distilled Shoot Extract of Mexican Marigold, Tagetes minuta (Asterales: Asterceae), and Entomopathogenic Fungi on Larval Tetanops myopaeformis (Roder)

    USDA-ARS?s Scientific Manuscript database

    Interactions of a formulation of steam distilled shoot extract of Mexican marigold, Tagetes minuta, and entomopathogenic fungi were evaluated for management of the sugarbeet root maggot, Tetanops myopaeformis (Röder). Shoot extract plus surfactant was used to test the hypothesis that this fungicidal...

  13. Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical Ophiocordyceps.

    PubMed

    Sanjuan, Tatiana I; Franco-Molano, Ana E; Kepler, Ryan M; Spatafora, Joseph W; Tabima, Javier; Vasco-Palacios, Aída M; Restrepo, Silvia

    2015-10-01

    The neotropical biogeographic zone is a 'hot spot' of global biodiversity, especially for insects. Fungal pathogens of insects appear to track this diversity. However, the integration of this unique component of fungal diversity into molecular phylogenetic analyses remains sparse. The entomopathogenic fungal genus Ophiocordyceps is species rich in this region with the first descriptions dating to the early nineteenth century. In this study, material from various ecosystems throughout Colombia and Ecuador was examined. Molecular phylogenetic analyses of five nuclear loci including SSU, LSU, TEF, RPB1, and RPB2 were conducted alongside a morphological evaluation. Thirty-five specimens were examined representing fifteen different species of Ophiocordyceps, and five new species, Ophiocordyceps blattarioides, Ophiocordyceps tiputini, Ophiocordyceps araracuarensis, Ophiocordyceps fulgoromorphila, and Ophiocordyceps evansii, were described. An accurate identification of the host allowed us to conclude that host identity and host habitat are positively correlated with phylogenetic species of Ophiocordyceps and are probably strong drivers for speciation of neotropical entomopathogenic fungi. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    PubMed

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Occurrence of Entomopathogenic Fungi from Agricultural and Natural Ecosystems in Saltillo, México, and their Virulence Towards Thrips and Whiteflies

    PubMed Central

    Sánchez-Peña, Sergio R.; Lara, Jorge San-Juan; Medina, Raúl F.

    2011-01-01

    Entomopathogenic fungi were collected from soil in four adjacent habitats (oak forest, agricultural soil, pine reforestation and chaparral habitat) in Saltillo, México using the insect bait method with Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) larvae as bait. Overall, of the larvae exposed to soil, 171 (20%) hosted Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), 25 (3%) hosted Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) and 1 (0.1%) hosted lsaria (=Paecilomyces) sp. (Hypocreales: Cordycipitaceae). B. bassiana was significantly more frequent on larvae exposed to oak forest soil. M. anisopliae was significantly more frequent on larvae exposed to agricultural soil. From the infected bait insects, 93 isolates of B. bassiana and 24 isolates of M. anisopliae were obtained. Strains were tested for their infectivity against Cuban laurel thrips, Gynaikothrips uzeli Zimmerman (Thysanoptera: Phlaeothripidae) and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). B. bassiana isolates caused the highest mortality on thrips (some causing 88% mortality after 6 days); both fungal species caused similarly high mortality levels against whiteflies (75%) after 6 days. Large amounts of germplasm of entomopathogenic fungi, fundamentally B. bassiana and M. anisopliae, exist in the habitats sampled; pathogenicity varied among strains, and some strains possessed significant virulence. Soils in these habitats are reservoirs of diverse strains with potential for use in biocontrol. PMID:21521145

  16. Entomopathogenic Fungi Associated with Exotic Invasive Insect Pests in Northeastern Forests of the USA

    PubMed Central

    Gouli, Vladimir; Gouli, Svetlana; Marcelino, José A. P.; Skinner, Margaret; Parker, Bruce L.

    2013-01-01

    Mycopathogens of economically important exotic invasive insects in forests of northeastern USA have been the subject of research at the Entomology Research Laboratory, University of Vermont, for the last 20 years. Elongate hemlock scale, European fruit lecanium, hemlock woolly adelgid and pear thrips were analyzed for the presence of mycopathogens, in order to consider the potential for managing these pests with biological control. Fungal cultures isolated from insects with signs of fungal infection were identified based on morphological characters and DNA profiling. Mycopathogens recovered from infected insects were subdivided into three groups, i.e., specialized entomopathogenic; facultative entomopathogens; ubiquitous opportunistic contaminants. Epizootics were caused by fungi in the specialized group with the exception of M. microspora, P. marquandii and I. farinosa. Inoculation of insects in laboratory and field conditions with B. bassiana, L. muscarium and Myriangium sp. caused insect mortality of 45 to 95%. Although pest populations in the field seemed severely compromised after treatment, the remnant populations re-established themselves after the winter. Although capable of inducing high mortality, a single localized aerial application of a soil-dwelling fungus does not maintain long-time suppression of pests. However, it can halt their range expansion and maintain populations below the economic threshold level without the use of expensive insecticides which have a negative impact on the environment. PMID:26462527

  17. Within-Host Competition between Two Entomopathogenic Fungi and a Granulovirus in Diatraea saccharalis (Lepidoptera: Crambidae).

    PubMed

    Pauli, Giuliano; Moura Mascarin, Gabriel; Eilenberg, Jørgen; Delalibera Júnior, Italo

    2018-06-13

    We provide insights into how the interactions of two entomopathogenic fungi and a virus play a role in virulence, disease development, and pathogen reproduction for an economically important insect crop pest, the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae). In our model system, we highlight the antagonistic effects of the co-inoculation of Beauveria bassiana and granulovirus (DisaGV) on virulence, compared to their single counterparts. By contrast, combinations of Metarhizium anisopliae and B. bassiana , or M. anisopliae and DisaGV, have resulted in additive effects against the insect. Intriguingly, most cadavers that were derived from dual or triple infections, produced signs/symptoms of only one species after the death of the infected host. In the combination of fungi and DisaGV, there was a trend where a higher proportion of viral infection bearing conspicuous symptoms occurred, except when the larvae were inoculated with M. anisopliae and DisaGV at the two highest inoculum rates. Co-infections with B. bassiana and M. anisopliae did not affect pathogen reproduction, since the sporulation from co-inoculated larvae did not differ from their single counterparts.

  18. Production of conidia by entomopathogenic fungi: from inoculants to final quality tests.

    PubMed

    Muñiz-Paredes, Facundo; Miranda-Hernández, Francisco; Loera, Octavio

    2017-03-01

    Demand for biopesticides is growing due to the increase of areas under integrated pest management worldwide. Conidia from entomopathogenic fungi play a major role as infective units in the current market of biopesticides. Success in a massive production of fungal conidia include the use of proper long-term conservation microbial methods, aimed at preserving the phenotypic traits of the strains. The development of suitable inoculants should also be considered since that favours a rapid germination and invasiveness of the substrate in solid state cultures (SSC). After the selection of a suitable fungal strain, proven optimization approaches for SSC mainly include the combination of substrates, moisture, texturizers, aeration and moderate stress to induce conidiation. Nonetheless, during storage and upon application in open fields, conidia either as free propagules or imbibed in formulations are subjected to stress due to abiotic factors, then quality should be preserved to resist such harsh conditions. All of these topics are analysed in this report.

  19. Pathogenicity of Three Entomopathogenic Fungi to Matsucoccus matsumurae

    PubMed Central

    Liu, Weimin; Xie, Yingping; Dong, Jing; Xue, Jiaoliang; Zhang, Yanfeng; Lu, Yaobin; Wu, Jun

    2014-01-01

    Matsucoccus matsumurae (Kuwana) (Hemiptera: Coccoidea: Matsucoccidae) is an invasive alien species and a destructive pest of two native Chinese pines, Pinus tabulaeformis Carr. and P. massoniana Lamb., throughout the eastern regions of China. The pathogenicity of three entomopathogenic fungi, Lecanicillium lecanii strain V3.4504 and V3.4505, Fusarium incarnatum-equiseti strain HEB01 and Lecanicillium fungicola strain HEB02, against M. matsumurae was tested in four instars, to evaluate their potential as a biological control agent. The results showed that the four strains caused disease and death of the scale insect, among which the L. lecanii strains V3.4504 and V3.4505 displayed stronger virulence than the F. incarnatum-equiseti strains HEB01 and L. fungicola strain HEB02 to M. matsumurae in the 2nd-instar nymphs and the adult females. Furthermore, L. lecanii V3.4505 was most virulent to M. matsumurae. The adult females and the male 3rd-instar nymphs of M. matsumurae were susceptible to L. lecanii V3.4505; the adult females were more susceptible at LT50 = 1.96 than the 3rd-instar nymphs at LT50 = 5.67. The body surface structure, cuticle thickness and wax secretions of M. matsumurae impacted the fungal infection. L. lecanii is a promising biocontrol agent, and newly emerged male 3rd-instar nymphs and adult females are a crucial period of the insect’s life cycle for M. matsumurae biocontrol. PMID:25068397

  20. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions.

    PubMed

    Butt, T M; Coates, C J; Dubovskiy, I M; Ratcliffe, N A

    2016-01-01

    Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Pathogenicity of three entomopathogenic fungi to Matsucoccus matsumurae.

    PubMed

    Liu, Weimin; Xie, Yingping; Dong, Jing; Xue, Jiaoliang; Zhang, Yanfeng; Lu, Yaobin; Wu, Jun

    2014-01-01

    Matsucoccus matsumurae (Kuwana) (Hemiptera: Coccoidea: Matsucoccidae) is an invasive alien species and a destructive pest of two native Chinese pines, Pinus tabulaeformis Carr. and P. massoniana Lamb., throughout the eastern regions of China. The pathogenicity of three entomopathogenic fungi, Lecanicillium lecanii strain V3.4504 and V3.4505, Fusarium incarnatum-equiseti strain HEB01 and Lecanicillium fungicola strain HEB02, against M. matsumurae was tested in four instars, to evaluate their potential as a biological control agent. The results showed that the four strains caused disease and death of the scale insect, among which the L. lecanii strains V3.4504 and V3.4505 displayed stronger virulence than the F. incarnatum-equiseti strains HEB01 and L. fungicola strain HEB02 to M. matsumurae in the 2nd-instar nymphs and the adult females. Furthermore, L. lecanii V3.4505 was most virulent to M. matsumurae. The adult females and the male 3rd-instar nymphs of M. matsumurae were susceptible to L. lecanii V3.4505; the adult females were more susceptible at LT50 = 1.96 than the 3rd-instar nymphs at LT50 = 5.67. The body surface structure, cuticle thickness and wax secretions of M. matsumurae impacted the fungal infection. L. lecanii is a promising biocontrol agent, and newly emerged male 3rd-instar nymphs and adult females are a crucial period of the insect's life cycle for M. matsumurae biocontrol.

  2. Entomopathogenic fungi from 'El Eden' Ecological Reserve, Quintana Roo, Mexico.

    PubMed

    Torres-Barragán; Anaya, Ana Luisa; Alatorre, Raquel; Toriello, Conchita

    2004-07-01

    Entomopathogenic fungi were isolated and identified from insects collected from the tropical forest and an agricultural area at El Eden Ecological Reserve, Quintana Roo, Mexico. These fungi were studied to determine their potential as biological control agents of greenhouse Trialeurodes vaporariorum (Homoptera: Aleyrodidae), and to contribute to the knowledge of biodiversity of this area. No pest insects were observed in the tropical forest. In contrast, all insects collected in the agricultural area were considered important pests by the local farmers, with the whitefly, as the most relevant, plentiful in Cucurbitaceae plants. From approximately 3400 collected insects in three different surveys, different anamorphic Ascomycetes were recovered. One isolate of Aspergillus sp., two of Penicillium sp., three of Paecilomyces marquandii, and three of Verticillium sp. out of 308 insects (2.9%) from three insect orders, Hymenoptera, Diptera and Isoptera in the tropical forest. In contrast, a higher number of fungal isolates were recovered from the agricultural area: three isolates from Aspergillus parasiticus, 100 of Fusarium moniliforme, one of Aschersonia sp., and 246 of Fusarium oxysporum out of 3100 insects (11.3%) from three insect orders, Homoptera, Coleoptera and Lepidoptera. The results of this study show Fusarium moniliforme and F oxysporum as highly virulent to infected insects in the agricultural area, with 100 and 246 isolates respectively, out of 350 infected insects of 3100 studied specimens. Laboratory whitefly nymph bioassays with isolates Ed29a of F. moniliforme, Ed322 of F. oxysporum, and Ed22 of P marquandii showed 96 to 97.5% insect mortality with no significant differences (P < 0.05) among them. F. oxysporum Ed322 produced no mortality when inoculated on tomato, bean, squash and maize seedlings (with and without injuries) compared to the 100% mortality caused by phytopathogenic strains, F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis

  3. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality

  4. Study of temperature-growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development.

    PubMed

    Davidson, G; Phelps, K; Sunderland, K D; Pell, J K; Ball, B V; Shaw, K E; Chandler, D

    2003-01-01

    To investigate the thermal biology of entomopathogenic fungi being examined as potential microbial control agents of Varroa destructor, an ectoparasite of the European honey bee Apis mellifera. Colony extension rates were measured at three temperatures (20, 30 and 35 degrees C) for 41 isolates of entomopathogenic fungi. All of the isolates grew at 20 and 30 degrees C but only 11 isolates grew at 35 degrees C. Twenty-two isolates were then selected on the basis of appreciable growth at 30-35 degrees C (the temperature range found within honey bee colonies) and/or infectivity to V. destructor, and their colony extension rates were measured at 10 temperatures (12.5-35 degrees C). This data were then fitted to Schoolfield et al. [J Theor Biol (1981)88:719-731] re-formulation of the Sharpe and DeMichele [J Theor Biol (1977)64:649-670] model of poikilotherm development. Overall, this model accounted for 87.6-93.9% of the data variance. Eleven isolates exhibited growth above 35 degrees C. The optimum temperatures for extension rate ranged from 22.9 to 31.2 degrees C. Only three isolates exhibited temperature optima above 30 degrees C. The super-optimum temperatures (temperature above the optimum at which the colony extension rate was 10% of the maximum rate) ranged from 31.9 to 43.2 degrees C. The thermal requirements of the isolates examined against V. destructor are well matched to the temperatures in the broodless areas of honey bee colonies, and a proportion of isolates, should also be able to function within drone brood areas. Potential exists for the control of V. destructor with entomopathogenic fungi in honey bee colonies. The methods employed in this study could be utilized in the selection of isolates for microbial control prior to screening for infectivity and could help in predicting the activity of a fungal control agent of V. destructor under fluctuating temperature conditions.

  5. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi.

    PubMed

    Palma-Guerrero, J; Jansson, H-B; Salinas, J; Lopez-Llorca, L V

    2008-02-01

    To investigate the toxic effect of chitosan on important root pathogenic and biocontrol fungi (nematophagous, entomopathogenic and mycoparasitic). We have used standard bioassays to investigate the effect of chitosan on colony growth and developed bioassays to test spore germination. The results showed that the root pathogenic and mycoparasitic fungi tested were more sensitive to chitosan than nematophagous and entomopathogenic fungi. Chitosanases (and perhaps related enzymes) are involved in the resistance to chitosan. Two fungi, one sensitive to chitosan, Fusarium oxysporum f. sp. radicis-lycopersici, and one less sensitive, Pochonia chlamydosporia, were selected for ultrastructural investigations. Transmission electron microscopy revealed differences in the ultrastructural alterations caused by chitosan in the spores of the plant pathogenic fungus and in those of the nematophagous fungus. Confocal laser microscopy showed that Rhodamine-labelled chitosan enters rapidly into conidia of both fungi, in an energy-dependent process. Nematophagous and entomopathogenic fungi are rather resistant to the toxic effect of chitosan. Resistance of nematophagous and entomopathogenic fungi to chitosan could be associated with their high extracellular chitosanolytic activity. Furthermore, ultrastructural damage is much more severe in the chitosan sensitive fungus. The results of this paper suggest that biocontrol fungi tested could be combined with chitosan for biological control of plant pathogens and pests.

  6. Viability, purity, and genetic stability of entomopathogenic fungi species using different preservation methods.

    PubMed

    Ayala-Zermeño, Miguel A; Gallou, Adrien; Berlanga-Padilla, Angélica M; Andrade-Michel, Gilda Y; Rodríguez-Rodríguez, José C; Arredondo-Bernal, Hugo C; Montesinos-Matías, Roberto

    2017-11-01

    Preservation methods for entomopathogenic fungi (EPF) require effective protocols to ensure uniform processes and to avoid alterations during storage. The aim of this study was to preserve Beauveria bassiana, Metarhizium acridum, M. anisopliae, M. rileyi, Isaria javanica, Hirsutella thompsonii, H. citriformis and Lecanicillium lecanii in mineral oil (MO), sterile water (SW), silica gel (SG), lyophilisation (L), ultracold-freezing at -70 °C, and cryopreservation at -196 °C. The viability and purity of the fungi were then verified: phenotypic characteristics were evaluated qualitatively at 6, 12 and 24 m. Genetic stability was tested by amplified fragment length polymorphisms (AFLP) analysis at 24 m. Of the eight species of EPF, three remained viable in SW, five in MO and L, six at -70 °C, seven in SG, and eight at -196 °C. No significant changes were observed in AFLP patterns at 24 m of storage. The most effective preservation methods for EPF were SG, L, -70 and -196 °C. Beauveria bassiana, M. acridum, M. anisopliae, M. rileyi and I. javanica remained stable with all methods, while the remaining species were less compatible. The optimisation of preservation methods for EPF facilitates the development of reliable protocols to ensure their inherent characteristics in culture collections. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. The effect of leaf biopesticide (Mirabilis jalapa) and entomopathogenic fungi (Beauveria bassiana) combinations to some physiological characters and histology of Crocidolomia pavonana (Lepidoptera: Pyralidae) larvae

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Nur Tasmiah; Anggraeni, Tjandra

    2014-03-01

    Crocidolomia pavonana is one of the most prominent pest that cause damage to vegetables especially Brassicaceae such us cabbage, broccoli, mustard greens and turnips, these vegetable have been widely consumed and cultivated in Indonesia. The invation of this pest might created high risk of cultivated failure. Enviromentally pest control efforts by utilizing biological control agents such us biopesticides of plants and entomopathogenic fungi have been carried out, but the work was relatively long and strongly influenced by environmental factors. The purpose of this study was to combine biopesticide of Mirabilis jalapa and entomopathogenic fungi Beauveria bassiana to look at mortality of C. pavonana larvae observing by histological incision and scanning electron microscope. Concentration treatments of extracts M. jalapa was (control; 0,1; 0,2; 0,4 and 0,8 gr/ml) and the result showed that the effective concentration was 0,8 g/ml which affect significantly (P<0,05) in reduce pupa weight, improve pupasi time, lowering percentage of emergence imago and improve the long phase of pupa which differ significantly with control. The combination of biopesticides proved to accelerate the mortality of larvae. Histological incision observed at hour 24, 48, 72 and 96, where the biggest damage occurred at hour 96. Observation by scanning electron microscope showed fungus spores that attach to the body surface of larvae subsequently penetrate into the body. Thus the combination use of biopesticides M. jalapa and fungi B. bassiana, can be used as an alternative pest control C. pavonana.

  8. Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana.

    PubMed

    Aranda-Martinez, Almudena; Naranjo Ortiz, Miguel Ángel; Abihssira García, Isabel Sofía; Zavala-Gonzalez, Ernesto A; Lopez-Llorca, Luis Vicente

    2017-11-01

    Chitin is the second most abundant biopolymer after cellulose and virtually unexplored as raw material for bioethanol production. In this paper, we investigate chitosan, the deacetylated form of chitin which is the main component of shellfish waste, as substrate for bioethanol production by fungi. Fungal parasites of invertebrates such as the nematophagous Pochonia chlamydosporia (Pc) or the entomopathogens Beauveria bassiana (Bb) and Metarhizium anisopliae (Ma) are biocontrol agents of plant parasitic nematodes (eg. Meloidogyne spp.) or insect pests such as the red palm weevil (Rhynchophorus ferrugineus). These fungi degrade chitin-rich barriers for host penetration. We have therefore tested the chitin/chitosanolytic capabilities of Pc, Bb and Ma for generating reducing sugars using chitosan as only nutrient. Among the microorganisms used in this study, Pc is the best chitosan degrader, even under anaerobic conditions. These fungi have alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) encoding genes in their genomes. We have therefore analyzed their ethanol production under anaerobic conditions using chitosan as raw material. P. chlamydosporia is the largest ethanol producer from chitosan. Our studies are a starting point to develop chitin-chitosan based biofuels. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Spatial relationships between entomopathogenic nematodes and nematophagous fungi in Florida citrus orchards.

    PubMed

    Pathak, Ekta; Campos-Herrera, Raquel; El-Borai, Fahiem E; Duncan, Larry W

    2017-03-01

    Relationships between entomopathogenic nematodes (EPNs), nematophagous fungi (NF) and soil physical and chemical properties were studied in a survey of 53 citrus orchards in central ridge and flatwoods ecoregions of Florida. Seven species of NF associated with nematodes were quantified directly using a real time qPCR assay. All nematophagous fungi studied except Arthrobotrys musiformis and Hirsutella rhossiliensis were frequently detected (24-56%) in both regions. Paecilomyces lilacinus and Gamsylella gephyropagumwere encountered more frequently in the flatwoods (P=0.03) and on the ridge (P=0.02), respectively. Redundancy analysis revealed seven abiotic and biotic factors as significantly related to the NF occurrence. Multiple regression of fungi on these variables explained 78%, 66%, 48%, 36%, 23% and 4% of the variation in Catenaria sp., A. musiformis, A. dactyloides, P. lilacinus, A. oligospora and G. gepharopagum, respectively. When the data from citrus were pooled with those reported previously from natural areas and subjected to principle component analysis, the first two principle components explained 43% of the variation in NF communities. The surveys (citrus vs natural areas) were discriminated by PC2 (P<0.001) and the ecoregion by PC1 (P<0.002), and all but one NF species were related (P<0.01) to one or both components. NF communities tended to have more species and greater diversity in the flatwoods, where EPN richness and diversity were the least. However, the strength of associations between individual EPN and NF species as measured by SADIE reflected the associations between each species and ground water depth, suggesting that ecoregion preferences affected the species associations. Within each ecoregion, significant relationships between the individual NF and EPN species measured by stepwise regression tended to be positive. The results did not support the hypothesis that NF modulate the spatial patterns of EPN species between or within these two

  10. Susceptibility of Diaphorina citri (Hemiptera: Liviidae) and Its Parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) to Entomopathogenic Fungi under Laboratory Conditions.

    PubMed

    Ibarra-Cortés, K H; Guzmán-Franco, A W; González-Hernández, H; Ortega-Arenas, L D; Villanueva-Jiménez, J A; Robles-Bermúdez, A

    2018-02-01

    Diaphorina citri (Kuwayama) is a global pest of citrus that transmits the bacteria associated with the disease, Huanglongbing. Entomopathogenic fungi and the parasitoid Tamarixia radiata (Waterston) are important biological control agents of this pest and likely to interact in D. citri populations. As a basis for interaction studies, we determined the susceptibility of nymphs and adults of D. citri and adults of the parasitoid T. radiata to six fungal isolates from the species Beauveria bassiana s.l. (Bals.-Criv.) Vuill. (isolates B1 and B3), Metarhizium anisopliae s.s. (Metsch.) (Ma129 and Ma65) and Isaria fumosorosea Wize (I2 and Pae). We conducted experiments evaluating infection levels in all three insect groups following inoculation with a series of conidial concentrations (1 × 10 4 -1 × 10 8 conidia mL -1 ). Results showed that D. citri nymphs and T. radiata were more susceptible to fungal isolates than D. citri adults. Overall, B. bassiana and M. anisopliae isolates caused the greatest infection compared with I. fumosorosea isolates in all three groups of insects. Isolates B1 (B. bassiana) and Ma129 (M. anisopliae) infected a greater proportion of adults and nymphs of D. citri, respectively. Both isolates of B. bassiana caused greater infection in T. radiata compared with isolates of the other fungal species. We propose that isolates B1 and Ma129 are the strongest candidates for control of D. citri. Our results represent the first report of entomopathogenic fungi infecting T. radiata, and the basis for future studies to design a biological control programme that uses both agents more efficiently against D. citri populations.

  11. Update on the Status of Bemisia tabaci in the UK and the Use of Entomopathogenic Fungi within Eradication Programmes

    PubMed Central

    Cuthbertson, Andrew G. S.

    2013-01-01

    The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) continues to be a serious threat to crops worldwide. The UK holds Protected Zone status against this pest and, as a result, B. tabaci entering on plant material is subjected to a policy of eradication. Both B and Q Bemisia biotypes are now regularly intercepted entering the UK. With increasing reports of neonicotinoid resistance in both these biotypes, it is becoming more problematic to control/eradicate. Therefore, alternative means of control are necessary. Entomopathogenic fungi (Lecanicilllium muscarium and Beauveria bassiana) offer much potential as control agents of B. tabaci within eradication programmes in the UK. PMID:26464385

  12. Investigating the potential of an autodissemination system for managing populations of vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) with entomopathogenic fungi.

    PubMed

    Pope, Tom W; Hough, Gemma; Arbona, Charlotte; Roberts, Harriet; Bennison, Jude; Buxton, John; Prince, Gill; Chandler, Dave

    2018-05-01

    Vine weevil, also known as black vine weevil, (Otiorhynchus sulcatus) is an economically important pest affecting soft fruit and nursery stock in temperate regions. We used laboratory and polytunnel experiments to investigate a novel control system based on autodissemination of spores of an entomopathogenic fungus to populations of adult vine weevils. The fungus was applied as a conidial powder, used on its own or formulated with talc, to a simple plastic refuge for vine weevils. The potential for adult weevils to disseminate the fungus was investigated first in polytunnel experiments using fluorescent powders applied to the refuge in lieu of fungal conidia. In this system, 88% of adult weevils came in contact with the powder within 48 h. When the powder was applied to five adult weevils that were then placed within a population of 35 potential recipients, it was transmitted on average to 75% of the recipient population within 7 days. Three isolates of entomopathogenic fungi (Beauveria bassiana isolate codes 433.99 and 1749.11 and Metarhizium brunneum isolate code 275.86), selected from a laboratory virulence screen. These three isolates were then investigated for efficacy when applied as conidial powders in artificial refuges placed among populations of adult weevils held in experimental boxes in the laboratory at 20 °C. Under this regime, the fungal isolates caused 70-90% mortality of adult weevils over 28 days. A final polytunnel experiment tested the efficacy of conidial powders of M. brunneum 275.86 placed in artificial refuges to increase vine weevil mortality. Overall weevil mortality was relatively low (26-41%) but was significantly higher in cages in which the conidial powders were placed in refuge traps than in cages with control traps. The lower weevil mortality recorded in the polytunnel experiment compared to the laboratory test was most likely a consequence of the greater amounts of inoculum required to kill adult weevils when conditions

  13. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi.

    PubMed

    Avery, Pasco B; Bojorque, Verónica; Gámez, Cecilia; Duncan, Rita E; Carrillo, Daniel; Cave, Ronald D

    2018-04-25

    Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF) are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus , and potential alternative vectors, Xylosandrus crassiusculus , Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae). Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus , X. volvulus and X. bispinatus. The specific objectives were to determine: (1) the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF ( Isaria fumosorosea , Metarhizium brunneum and Beauveria bassiana ); and (2) the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 10⁶ viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana , compared to the other fungal treatments. For X. volvulus , the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana . After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests) indicated an

  14. The effect of leaf biopesticide (Mirabilis jalapa) and entomopathogenic fungi (Beauveria bassiana) combinations to some physiological characters and histology of Crocidolomia pavonana (Lepidoptera: Pyralidae) larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirajuddin, Nur Tasmiah, E-mail: nurtasmiah@yahoo.com; Anggraeni, Tjandra, E-mail: nurtasmiah@yahoo.com

    Crocidolomia pavonana is one of the most prominent pest that cause damage to vegetables especially Brassicaceae such us cabbage, broccoli, mustard greens and turnips, these vegetable have been widely consumed and cultivated in Indonesia. The invation of this pest might created high risk of cultivated failure. Enviromentally pest control efforts by utilizing biological control agents such us biopesticides of plants and entomopathogenic fungi have been carried out, but the work was relatively long and strongly influenced by environmental factors. The purpose of this study was to combine biopesticide of Mirabilis jalapa and entomopathogenic fungi Beauveria bassiana to look at mortalitymore » of C. pavonana larvae observing by histological incision and scanning electron microscope. Concentration treatments of extracts M. jalapa was (control; 0,1; 0,2; 0,4 and 0,8 gr/ml) and the result showed that the effective concentration was 0,8 g/ml which affect significantly (P<0,05) in reduce pupa weight, improve pupasi time, lowering percentage of emergence imago and improve the long phase of pupa which differ significantly with control. The combination of biopesticides proved to accelerate the mortality of larvae. Histological incision observed at hour 24, 48, 72 and 96, where the biggest damage occurred at hour 96. Observation by scanning electron microscope showed fungus spores that attach to the body surface of larvae subsequently penetrate into the body. Thus the combination use of biopesticides M. jalapa and fungi B. bassiana, can be used as an alternative pest control C. pavonana.« less

  15. Molecular genetics of secondary chemistry in Metarhizium fungi

    USDA-ARS?s Scientific Manuscript database

    As with many microbes, entomopathogenic fungi from the genus Metarhizium produce a plethora of small molecule metabolites, often referred to as secondary metabolites. Although these intriguing compounds are a conspicuous feature of the biology of the producing fungi, their roles in pathogenicity and...

  16. Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii

    USDA-ARS?s Scientific Manuscript database

    Destruxins are among the most exhaustively researched secondary metabolites of entomopathogenic fungi, yet definitive evidence for their roles in pathogenicity and virulence has yet to be shown. To establish the genetic bases for the biosynthesis of this family of depsipeptides, we identified a 23,7...

  17. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi.

    PubMed

    Vongsangnak, Wanwipa; Raethong, Nachon; Mujchariyakul, Warasinee; Nguyen, Nam Ninh; Leong, Hon Wai; Laoteng, Kobkul

    2017-08-30

    The first genome-scale metabolic network of Cordyceps militaris (iWV1170) was constructed representing its whole metabolisms, which consisted of 894 metabolites and 1,267 metabolic reactions across five compartments, including the plasma membrane, cytoplasm, mitochondria, peroxisome and extracellular space. The iWV1170 could be exploited to explain its phenotypes of growth ability, cordycepin and other metabolites production on various substrates. A high number of genes encoding extracellular enzymes for degradation of complex carbohydrates, lipids and proteins were existed in C. militaris genome. By comparative genome-scale analysis, the adenine metabolic pathway towards putative cordycepin biosynthesis was reconstructed, indicating their evolutionary relationships across eleven species of entomopathogenic fungi. The overall metabolic routes involved in the putative cordycepin biosynthesis were also identified in C. militaris, including central carbon metabolism, amino acid metabolism (glycine, l-glutamine and l-aspartate) and nucleotide metabolism (adenosine and adenine). Interestingly, a lack of the sequence coding for ribonucleotide reductase inhibitor was observed in C. militaris that might contribute to its over-production of cordycepin. Copyright © 2017. Published by Elsevier B.V.

  18. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus.

    PubMed

    Guesmi-Jouini, J; Garrido-Jurado, I; López-Díaz, C; Ben Halima-Kamel, M; Quesada-Moraga, E

    2014-06-01

    Entomopathogenic fungi (EPF) are commonly found in diverse habitats and are known to cause mycoses in many different taxa of arthropods. Various unexpected roles have been recently reported for fungal entomopathogens, including their presence as fungal endophytes, plant disease antagonists, rhizosphere colonizers and plant growth promoting fungi. In Tunisia, a wide range of indigenous EPF isolates from different species, such as Beauveria bassiana and Bionectria ochroleuca, were found to occur in the soil, and to be pathogenic against the artichoke aphid Capitophorus elaeagni (Hemiptera: Aphididae). Since endophytic fungi are recently regarded as plant-defending mutualists and their presence in internal plant tissue has been discussed as an adaptive protection against insects, we were interested on elucidating the possible endophytic behavior of B. bassiana and B. ochroleuca on artichoke, Cynara scolymus, after foliar spraying tehcnique. The leaf spray inoculation method was effective in introducing the inoculated fungi into the plant tissues and showed, then, an endophytic activity on artichoke even 10 days later. According S-N-K test, there was significant differences between the two fungal treatments, B. ochroleuca (84% a) and B. bassiana (78% a), and controls (0% b). Likewise, the inoculated entomopathogenic fungi were also isolated from new leaves even though with significant differences respectively between controls (0% c), B. bassiana (56% b) and B. ochroleuca (78% a). These results reveals significant new data on the interaction of inoculated fungi with artichoke plant as ecological roles that can be exploited for the protection of plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles

    USDA-ARS?s Scientific Manuscript database

    Termites adjust their response to entomopathogenic fungi according to the profile of the fungal volatile organic compounds (VOCs). This study first demonstrated the pathogenicity of Metarhizium anisopliae, Beauveria bassiana and Isaria fumosorosea (=Paecilomyces fumosoroseus) towards the Formosan s...

  20. The isolation and identification of pathogenic fungi from Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae).

    PubMed

    Meng, Xiang; Hu, Junjie; Ouyang, Gecheng

    2017-01-01

    Litchi stink-bug, Tessaratoma papillosa Drury (Hemiptera: Tessaratomidae), is one of the most widespread and destructive pest species on Litchi chinensis Sonn and Dimocarpus longan Lour in Southern China. Inappropriate use of chemical pesticides has resulted in serious environmental problems and food pollution. Generating an improved Integrated Pest Management (IPM) strategy for litchi stink-bug in orchard farming requires development of an effective biological control agent. Entomopathogenic fungi are regarded as a vital ecological factor in the suppression of pest populations under field conditions. With few effective fungi and pathogenic strains available to control litchi stink-bug, exploration of natural resources for promising entomopathogenic fungi is warranted. In this study, two pathogenic fungi were isolated from cadavers of adult T. papillosa . They were identified as Paecilomyces lilacinus and Beauveria bassiana by morphological identification and rDNA-ITS homogeneous analysis. Infection of T. papillosa with B. bassiana and P. lilacinus occurred initially from the antennae, metameres, and inter-segmental membranes. Biological tests showed that the two entomopathogenic fungi induced high mortality in 2 nd and 5 th instar nymphs of T. papillosa . B. bassiana was highly virulent on 2 nd instar nymphs of T. papillosa , with values for cadaver rate, LC 50 and LT 50 of 88.89%, 1.92 × 10 7  conidia/mL and 4.34 days respectively. This study provides two valuable entomopathogenic fungi from T. papillosa . This finding suggests that the highly virulent P. lilacinus and B. bassiana play an important role in the biocontrol of T. papillosa in China. These pathogenic fungi had no pollution or residue risk, and could provide an alternative option for IPM of litchi stink-bug.

  1. Composition of entomopathogenic fungus and method of production and application for insect control

    USDA-ARS?s Scientific Manuscript database

    Microsclerotia of entomopathogenic fungi including Metarhizium and Lecanicillium species are produced using various production methods such as liquid culture fermentation. These microsclerotia can be dried with various agronomic carriers to produce viable, microsclerotia-containing compositions with...

  2. Use of light, scanning electron microscopy and bioassays to evaluate parasitism by entomopathogenic fungi of the red scale insect of palms (Phoenicococcus marlatti Ckll., 1899).

    PubMed

    Asensio, L; Lopez-Llorca, L V; López-Jiménez, J A

    2005-01-01

    We have evaluated the parasitism of the red scale insect of the date palm (Phoenicococcus marlatti) by entomopathogenic fungi, using light microscopy (LM), scanning electron microscopy (SEM) and low temperature scanning electron microscopy (LTSEM). Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium cf. psalliotae, were inoculated directly on the scale insects or on insect infested plant material. We found that L. dimorphum and L. cf. psalliotae developed on plant material and on scale insects, making infection structures. B. bassiana was a bad colonizer of date palm leaves (Phoenix dactylifera L.) and did not parasite the scale insects.

  3. Toxicity of entomopathogenic fungi, Beauveria bassiana and Lecanicillium muscarium against a field-collected strain of the German cockroach Blattella germanica (L.) (Dictyoptera: Blattellidae).

    PubMed

    Davari, B; Limoee, M; Khodavaisy, S; Zamini, G; Izadi, S

    2015-09-01

    The German cockroach, Blattella germanica (L.) has been recognized as a serious health problem throughout the world. Control failures due to insecticide resistance and chemical contamination of environment have led some researchers focus on the other alternative strategy controls. Microbial insecticides such as those containing entomo pathogenic fungi could be of high significance. Lecanicillium muscarium and Beauveria bassiana grow naturally in soils throughout the world and act as a parasite on various arthropod species, causing white muscardine disease. Thus, these two species could be considered as entomopathogenic fungi. The current study conducted to evaluate the toxicity of Beauveria bassiana and Lecanicillium muscarium against German cockroach, Blattella germanica. Conidial formulations of L. muscarium (PTCC 5184) and B. bassiana (PTCC5197) were prepared in aqueous suspensions with Tween 20. Bioassays were performed using two methods including submersion of cockroaches in conidial suspension and baiting. Data were analyzed by Probit program and LC50 and LC90 were estimated. The obtained results indicated that both fungi species were toxic against German cockroach however; Beauveria bassiana was significantly 4.8 fold more toxic than L. muscarium against German cockroach using submersion method.

  4. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.

    PubMed

    Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra

    2017-12-18

    Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.

  5. Evaluation of Entomopathogenic Fungi Against Chilli Thrips, Scirtothrips dorsalis

    PubMed Central

    Arthurs, Steven Paul; Aristizábal, Luis Fernando; Avery, Pasco Bruce

    2013-01-01

    Commercial strains of entomopathogenic fungi were evaluated for control of chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), an invasive pest of ornamental and vegetable plants in the Caribbean and southeastern United States. In laboratory assays, LC50 values against adult S. dorsalis were 5.1 × 104 CFU/mL for Beauveria bassiana GHA, with higher values 3.1 × 105 for Metarhizium brunneum F52 and 3.8 × 105 for Isaria fumosorosea Apopka 97. Second instars were comparatively less susceptible to all isolates, ostensibly due to moulting, with LC50 values of 1.1 × 108, 7.0 × 105, and 9.9 × 105 CFU/spores per mL for GHA, F52, and Apopka 97 strains, respectively. In greenhouse cages, compared with controls, three applications of mycoinsecticides and other biorational insecticides at 7 to 14 day intervals reduced overall S. dorsalis populations on pepper plants Capsicum annuum cv. California Wonder: spinosad reduced populations by 94–99%, M. brunneum F52 by 84–93%, B. bassiana GHA by 81–94%, I. fumosorosea PFR-97 by 62–66%, and different horticultural oils by 58–85%. The proportion of marketable fruit was significantly increased by M. brunneum F52, B. bassiana GHA, and 2% SuffOil-X treatments. Slightly lower levels of control were observed in nursery tests with ornamental rose shrubs, Rosa sp. Red Double Knock Out®, during hot sunny conditions. Four applications reduced thrips populations over 10 weeks: spinosad by an average of 91%, M. brunneum F52 by an average of 81%, B. bassiana GHA by an average of 62%, SuffOil-X by an average of 50%, and I. fumosorosea PFR-97 by an average of 44%. The data show that mycoinsecticides can be used in management strategies for low to moderate populations of S. dorsalis and provide resistance management tools for the limited number of insecticides that are effective against this pest. PMID:23895429

  6. Designing the ideal habitat for entomopathogen use in nursery production.

    PubMed

    Nielsen, Anne L; Lewis, Edwin E

    2012-07-01

    Greenhouse and nursery producers use entomopathogens (nematodes and fungi) to control soil pests. Although it is known that the physical and chemical properties of mineral soil significantly impact upon soil pathogens, the influence of soilless media used for plant production on entomopathogen performance is poorly understood. Survival and foraging distance were differently affected by sand:peat, bark and sawdust media for entomopathogenic nematodes, but not for the immobile fungus Metarhizium anisopliae. Redwood sawdust medium consistently had a negative impact upon entomopathogenic nematodes. Dividing media into individual components supported the hypothesis that redwood sawdust reduced foraging and infection abilities of S. riobrave and H. bacteriophora. Physically altering the components by adding sand significantly improved foraging and infection success for S. riobrave in media not optimum for foraging. This study is the first to highlight the importance of selecting the appropriate soilless media and pathogen species combinations to increase efficacy of biological control. H. bacteriophora was able to find hosts in a wider diversity of medium components than S. riobrave, although both nematode species performed well in peat moss and recycled plant material. These results suggest that peat moss, recycled plant material and hardwood bark are components amenable to EPN biological control programs. Copyright © 2012 Society of Chemical Industry.

  7. Development and applications of the EntomopathogenID MLSA database for use in agricultural systems

    USDA-ARS?s Scientific Manuscript database

    The current study reports the development and application of a publicly accessible, curated database of Hypocrealean entomopathogenic fungi sequence data. The goal was to provide a platform for users to easily access sequence data from reference strains. The database can be used to accurately identi...

  8. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies.

    PubMed

    Pedrini, Nicolás

    2018-06-01

    Entomopathogenic fungi of the order Hypocreales infect their insect hosts mainly by penetrating through the cuticle and colonize them by proliferating throughout the body cavity. In order to ensure a successful infection, fungi first produce a variety of degrading enzymes that help to breach the insect cuticle, and then secrete toxic secondary metabolites that facilitate fungal invasion of the hemolymph. In response, insect hosts activate their innate immune system by triggering both cellular and humoral immune reactions. As fungi are exposed to stress in both cuticle and hemolymph, several mechanisms are activated not only to deal with this situation but also to mimic host epitopes and evade the insect's immune response. In this review, several components involved in the molecular interaction between insects and fungal pathogens are described including chemical, metabolomics, and dual transcriptomics approaches; with emphasis in the involvement of cuticle surface components in (pre-) infection processes, and fungal secondary metabolite (non-ribosomally synthesized peptides and polyketides) analysis. Some of the mechanisms involved in such interaction are also discussed. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle

    PubMed Central

    Erler, Fedai; Ates, A. Ozgur

    2015-01-01

    The aim of this study was to evaluate the effectiveness of the entomopathogenic fungi (EPF), Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) strain PPRI 5339 [BroadBand, an emulsifiable spore concentrate (EC) formulation] and Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) strain F52 [Met52, both EC and granular (GR) formulations] against the larvae of Polyphylla fullo (L.) (Coleoptera: Scarabaeidae). Larvicidal bioassays were performed in foam boxes (100 by 75 by 50 cm; length by width by height), containing moist soil medium with some humus and potato tubers as food. Although the B. bassiana product (min. 4 × 109 conidia/ml) was applied at 100, 150, and 200 ml/100 l water; M. anisopliae strain F52 was applied at 500, 1,000, and 1,500 g/m3 of moist soil medium for GR (9 × 108 cfu/g) and 75, 100, and 125 ml/100 l water for EC (5.5 × 109 conidia/ml) formulation. Both fungi were pathogenic to larvae of the pest; however, young larvae (1st and 2nd instars) were more susceptible to infection than older ones (3rd instar). Mortality rates of young and older larvae varied with conidial concentration of both fungi and elapsed time after application. The B. bassiana product was more effective than both of the formulations of the M. anisopliae product, causing mortalities up to 79.8 and 71.6% in young and older larvae, respectively. The highest mortality rates of young and older larvae caused by the M. anisopliae product were 74.1 and 67.6% for the GR formulation, 70.2 and 61.8% for the EC formulation, respectively. These results may suggest that both fungi have potential to be used for management of P. fullo. PMID:25881632

  10. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    PubMed

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Paula, Adriano R; Carolino, Aline T; Paula, Cátia O; Samuels, Richard I

    2011-01-25

    Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 10(9) conidia mL(-1)). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality following relatively short

  12. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding.

    PubMed

    Paula, Adriano R; Carolino, Aline T; Silva, Carlos P; Samuels, Richard I

    2011-05-26

    The mosquito Aedes aegypti, vector of dengue fever, is a target for control by entomopathogenic fungi. Recent studies by our group have shown the susceptibility of adult A. aegypti to fungal infection by Metarhizium anisopliae. This fungus is currently being tested under field conditions. However, it is unknown whether blood-fed A. aegypti females are equally susceptible to infection by entomopathogenic fungi as sucrose fed females. Insect populations will be composed of females in a range of nutritional states. The fungus should be equally efficient at reducing survival of insects that rest on fungus impregnated surfaces following a blood meal as those coming into contact with fungi before host feeding. This could be an important factor when considering the behavior of A. aegypti females that can blood feed on multiple hosts over a short time period. Female A. aegypti of the Rockefeller strain and a wild strain were infected with two isolates of the entomopathogenic fungus M. anisopliae (LPP 133 and ESALQ 818) using an indirect contact bioassay at different times following blood feeding. Survival rates were monitored on a daily basis and one-way analysis of variance combined with Duncan's post-hoc test or Log-rank survival curve analysis were used for statistical comparisons of susceptibility to infection. Blood feeding rapidly reduced susceptibility to infection, determined by the difference in survival rates and survival curves, when females were exposed to either of the two M. anisopliae isolates. Following a time lag which probably coincided with digestion of the blood meal (96-120 h post-feeding), host susceptibility to infection returned to pre-blood fed (sucrose fed) levels. Reduced susceptibility of A. aegypti to fungi following a blood meal is of concern. Furthermore, engorged females seeking out intra-domicile resting places post-blood feeding, would be predicted to rest for prolonged periods on fungus impregnated black cloths, thus optimizing infection

  13. Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae) in the Americas

    PubMed Central

    Evans, Harry C; Elliot, Simon L; Barreto, Robert W

    2018-01-01

    Classical biological control has been used extensively for the management of exotic weeds and agricultural pests, but never for alien insect vectors of medical importance. This simple but elegant control strategy involves the introduction of coevolved natural enemies from the centre of origin of the target alien species. Aedes aegypti - the primary vector of the dengue, yellow fever and Zika flaviviruses - is just such an invasive alien in the Americas where it arrived accidentally from its West African home during the slave trade. Here, we introduce the concept of exploiting entomopathogenic fungi from Africa for the classical biological control of Ae. aegypti in the Americas. Fungal pathogens attacking arthropods are ubiquitous in tropical forests and are important components in the natural balance of arthropod populations. They can produce a range of specialised spore forms, as well as inducing a variety of bizarre behaviours in their hosts, in order to maximise infection. The fungal groups recorded as specialised pathogens of mosquito hosts worldwide are described and discussed. We opine that similar fungal pathogens will be found attacking and manipulating Ae. aegypti in African forests and that these could be employed for an economic, environmentally-safe and long-term solution to the flavivirus pandemics in the Americas. PMID:29412361

  14. Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae) in the Americas.

    PubMed

    Evans, Harry C; Elliot, Simon L; Barreto, Robert W

    2018-03-01

    Classical biological control has been used extensively for the management of exotic weeds and agricultural pests, but never for alien insect vectors of medical importance. This simple but elegant control strategy involves the introduction of coevolved natural enemies from the centre of origin of the target alien species. Aedes aegypti - the primary vector of the dengue, yellow fever and Zika flaviviruses - is just such an invasive alien in the Americas where it arrived accidentally from its West African home during the slave trade. Here, we introduce the concept of exploiting entomopathogenic fungi from Africa for the classical biological control of Ae. aegypti in the Americas. Fungal pathogens attacking arthropods are ubiquitous in tropical forests and are important components in the natural balance of arthropod populations. They can produce a range of specialised spore forms, as well as inducing a variety of bizarre behaviours in their hosts, in order to maximise infection. The fungal groups recorded as specialised pathogens of mosquito hosts worldwide are described and discussed. We opine that similar fungal pathogens will be found attacking and manipulating Ae. aegypti in African forests and that these could be employed for an economic, environmentally-safe and long-term solution to the flavivirus pandemics in the Americas.

  15. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle.

    PubMed

    Erler, Fedai; Ates, A Ozgur

    2015-01-01

    The aim of this study was to evaluate the effectiveness of the entomopathogenic fungi (EPF), Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) strain PPRI 5339 [BroadBand, an emulsifiable spore concentrate (EC) formulation] and Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) strain F52 [Met52, both EC and granular (GR) formulations] against the larvae of Polyphylla fullo (L.) (Coleoptera: Scarabaeidae). Larvicidal bioassays were performed in foam boxes (100 by 75 by 50 cm; length by width by height), containing moist soil medium with some humus and potato tubers as food. Although the B. bassiana product (min. 4 × 10(9) conidia/ml) was applied at 100, 150, and 200 ml/100 l water; M. anisopliae strain F52 was applied at 500, 1,000, and 1,500 g/m(3) of moist soil medium for GR (9 × 10(8) cfu/g) and 75, 100, and 125 ml/100 l water for EC (5.5 × 10(9) conidia/ml) formulation. Both fungi were pathogenic to larvae of the pest; however, young larvae (1st and 2nd instars) were more susceptible to infection than older ones (3rd instar). Mortality rates of young and older larvae varied with conidial concentration of both fungi and elapsed time after application. The B. bassiana product was more effective than both of the formulations of the M. anisopliae product, causing mortalities up to 79.8 and 71.6% in young and older larvae, respectively. The highest mortality rates of young and older larvae caused by the M. anisopliae product were 74.1 and 67.6% for the GR formulation, 70.2 and 61.8% for the EC formulation, respectively. These results may suggest that both fungi have potential to be used for management of P. fullo. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  16. First field trials with fungi against Anoplophora glabripennis

    Treesearch

    Thomas Dubois; Ann Hajek; Hu Jiafu; Zengzhi Li

    2003-01-01

    We have been evaluating the use of entomopathogenic fungi against A. glabripennis; so far, 20 strains have been isolated belonging to three species, 14 strains have been tested in the laboratory, five strains have been evaluated in caged field trials and two strains have been tested in the open field.

  17. An overview of arthropod-associated fungi from Argentina and Brazil

    USDA-ARS?s Scientific Manuscript database

    Arthropod pests in forest and agricultural systems are afflicted by a plethora of pathogenic organisms. Among them, entomopathogenic fungi are the most common control agents that regulate their populations. This review compiles the information available from Argentina and Brazil about the entomopath...

  18. Transcriptome Analysis of the Entomopathogenic Oomycete Lagenidium giganteum Reveals Putative Virulence Factors

    PubMed Central

    Quiroz Velasquez, Paula F.; Abiff, Sumayyah K.; Fins, Katrina C.; Conway, Quincy B.; Salazar, Norma C.; Delgado, Ana Paula; Dawes, Jhanelle K.; Douma, Lauren G.

    2014-01-01

    A combination of 454 pyrosequencing and Sanger sequencing was used to sample and characterize the transcriptome of the entomopathogenic oomycete Lagenidium giganteum. More than 50,000 high-throughput reads were annotated through homology searches. Several selected reads served as seeds for the amplification and sequencing of full-length transcripts. Phylogenetic analyses inferred from full-length cellulose synthase alignments revealed that L giganteum is nested within the peronosporalean galaxy and as such appears to have evolved from a phytopathogenic ancestor. In agreement with the phylogeny reconstructions, full-length L. giganteum oomycete effector orthologs, corresponding to the cellulose-binding elicitor lectin (CBEL), crinkler (CRN), and elicitin proteins, were characterized by domain organizations similar to those of pathogenicity factors of plant-pathogenic oomycetes. Importantly, the L. giganteum effectors provide a basis for detailing the roles of canonical CRN, CBEL, and elicitin proteins in the infectious process of an oomycete known principally as an animal pathogen. Finally, phylogenetic analyses and genome mining identified members of glycoside hydrolase family 5 subfamily 27 (GH5_27) as putative virulence factors active on the host insect cuticle, based in part on the fact that GH5_27 genes are shared by entomopathogenic oomycetes and fungi but are underrepresented in nonentomopathogenic genomes. The genomic resources gathered from the L. giganteum transcriptome analysis strongly suggest that filamentous entomopathogens (oomycetes and fungi) exhibit convergent evolution: they have evolved independently from plant-associated microbes, have retained genes indicative of plant associations, and may share similar cores of virulence factors, such as GH5_27 enzymes, that are absent from the genomes of their plant-pathogenic relatives. PMID:25107973

  19. Production of antioomycete compounds active against the phytopathogens Phytophthora sojae and Aphanomyces cochlioides by clavicipitoid entomopathogenic fungi.

    PubMed

    Putri, Sastia Prama; Ishido, Kei-Ichi; Kinoshita, Hiroshi; Kitani, Shigeru; Ihara, Fumio; Sakihama, Yasuko; Igarashi, Yasuhiro; Nihira, Takuya

    2014-05-01

    A total of 412 strains belonging to 14 genera of clavicipitoid entomopathogenic fungi (EPF) were screened for activities against two economically important plant pathogenic oomycetes, Phytophthora sojae and Aphanomyces cochlioides. To identify the antioomycete compounds produced by EPF, the extracts of 13 highly active EPF strains were characterized in detail by high performance liquid chromatography with diode array detection and high-resolution mass spectrometric detection and antioomycete assay. The antioomycete activity of several Metarhizium extracts was associated with previously isolated aurovertins, fungerin, N-(methyl-3-oxodec-6-enoyl)-2-pyrroline, and N-(methyl-3-oxodecanoyl)-2-pyrroline. The depsipeptide beauvericin was confirmed to be one of the active principles of three strains of Isaria tenuipes, which strongly inhibited mycelial growth of both P. sojae and A. cochlioides. Two known bioactive metabolites, paecilosetin and aranorosinol A, together with a novel and potent antioomycete compound, farinomalein, were isolated from the extracts of Isaria farinosa and all compounds were confirmed to have antioomycete activity. Identification of 8 antioomycete compounds from 13 clavicipitioid EPF demonstrated a new potential use of EPF as a source of compounds for the control of soil-borne plant pathogenic oomycetes. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. The Impact of Culture Age, Aeration, and Agitation on the Production of Microsclerotia of the Entomopathogenic Fungus Metarhizium anisopliae Using 100-Liter Fermentors

    USDA-ARS?s Scientific Manuscript database

    Microsclerotia are desiccation-tolerant, compact hyphal aggregates produced by numerous fungi as overwintering structures. We recently discovered that the entomopathogenic fungus Metarhizium anisopliae produced microsclerotia during liquid culture fermentation. When air-dried microsclerotial granu...

  1. Regulation of cuticle-degrading subtilisin proteases from the entomopathogenic fungi, Lecanicillium spp: implications for host specificity.

    PubMed

    Bye, Natasha J; Charnley, A Keith

    2008-01-01

    The ability to produce cuticle-degrading proteases to facilitate host penetration does not distinguish per se entomopathogenic fungi from saprophytes. However, adapted pathogens may produce host-protein specific enzymes in response to cues. This possibility prompted an investigation of the regulation of isoforms of the subtilisin Pr1-like proteases from five aphid-pathogenic isolates of Lecanicillium spp. Significant differences were found in substrate specificity and regulation of Pr1-like proteases between isoforms of the same isolate and between different isolates. For example, the pI 8.6 isoform from KV71 was considerably more active against aphid than locust cuticle and was induced specifically by N-acetylglucosamine (NAG). Isoform pI 9.1 from the same isolate was only produced on insect cuticle while most other isoforms were more prominent on chitin containing substrates but not induced by NAG. The ability to regulate isoforms independently may allow production at critical points in host penetration. Appearance of proteases (not subtilisins) with pI 4.2 and 4.4 only on aphid cuticle was a possible link with host specificity of KV71. The absence of C or N metabolite repression in subtilisins from KV42 is unusual for pathogen proteases and may help to account for differences in virulence strategy between aphid-pathogenic isolates of Lecanicillium longisporum (unpublished data).

  2. Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens

    PubMed Central

    Blanford, Simon; Read, Andrew F; Thomas, Matthew B

    2009-01-01

    Background Temperature is a critical determinant of the development of malaria parasites in mosquitoes, and hence the geographic distribution of malaria risk, but little is known about the thermal preferences of Anopheles. A number of other insects modify their thermal behaviour in response to infection. These alterations can be beneficial for the insect or for the infectious agent. Given current interest in developing fungal biopesticides for control of mosquitoes, Anopheles stephensi were examined to test whether mosquitoes showed thermally-mediated behaviour in response to infection with fungal entomopathogens and the rodent malaria, Plasmodium yoelii. Methods Over two experiments, groups of An. stephensi were infected with one of three entomopathogenic fungi, and/or P. yoelii. Infected and uninfected mosquitoes were released on to a thermal gradient (14 – 38°C) for "snapshot" assessments of thermal preference during the first five days post-infection. Mosquito survival was monitored for eight days and, where appropriate, oocyst prevalence and intensity was assessed. Results and conclusion Both infected and uninfected An. stephensi showed a non-random distribution on the gradient, indicating some capacity to behaviourally thermoregulate. However, chosen resting temperatures were not altered by any of the infections. There is thus no evidence that thermally-mediated behaviours play a role in determining malaria prevalence or that they will influence the performance of fungal biopesticides against adult Anopheles. PMID:19379519

  3. Isolation and characterization of a chitinase gene from entomopathogenic fungus Verticillium lecanii

    PubMed Central

    Zhu, Yanping; Pan, Jieru; Qiu, Junzhi; Guan, Xiong

    2008-01-01

    Entomopathogenic fungus Verticillium lecanii is a promising whitefly and aphid control agent. Chitinases secreted by this insect pathogen have considerable importance in the biological control of some insect pests. An endochitinase gene Vlchit1 from the fungus was cloned and overexpressed in Escherichia coli. The Vlchit1 gene not only contains an open reading frame (ORF) which encodes a protein of 423 amino acids (aa), but also is interrupted by three short introns. Vlchit1 protein showed that the chitinase Vlchit1 has a (a/b)8 TIM barrel structure. Overexpression test and Enzymatic activity assay indicated that the Vlchit1 is a functional enzyme that can hydrolyze the chitin substrate, so the Vlchit1 gene can service as a useful gene source for genetic manipulation leading to strain improvement of entomopathogenic fungi or constructing new transgenic plants with resistance to various fungal and insects pests. PMID:24031223

  4. Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge

    PubMed Central

    Ansari, Minshad Ali; Pope, Edward C.; Carpenter, Simon; Scholte, Ernst-Jan; Butt, Tariq M.

    2011-01-01

    Background The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Methodology/Findings Exposure of midges to ‘dry’ conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT50 value for strain V275 was 1.42 days compared to 2.21–3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (108–1011 conidia m−2) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to ‘dry’ conidia and ‘wet’ conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. ‘Dry’ conidia were more effective than ‘wet’ conidia, causing 100% mortality after 5 days. Conclusion/Significance This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of ‘dry’ conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges

  5. Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence

    PubMed Central

    Coutts, Robert H. A.

    2017-01-01

    The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents. PMID:28114361

  6. Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence.

    PubMed

    Kotta-Loizou, Ioly; Coutts, Robert H A

    2017-01-01

    The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents.

  7. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates

    PubMed Central

    Raya-Díaz, Silvia; Segura-Fernández, José Manuel; del Campillo, María del Carmen; Quesada-Moraga, Enrique

    2017-01-01

    Although entomopathogenic fungi (EPF) are best known for their ability to protect crops against insect pests, they may have other beneficial effects on their host plants. These effects, which include promoting plant growth and conferring resistance against abiotic stresses, have been examined in recent years to acquire a better understanding of them. The primary purposes of the present study were (i) to ascertain in vitro whether three different strains of EPF (viz., Metarhizium, Beauveria and Isaria) would increase the Fe bioavailability in calcareous or non-calcareous media containing various Fe sources (ferrihydrite, hematite and goethite) and (ii) to assess the influence of the EPF inoculation method (seed dressing, soil treatment or leaf spraying) on the extent of the endophytic colonization of sorghum and the improvement in the Fe nutrition of pot-grown sorghum plants on an artificial calcareous substrate. All the EPFs studied were found to increase the Fe availability during the in vitro assay. The most efficient EPF was M. brunneum EAMa 01/58–Su, which lowered the pH of the calcareous medium, suggesting that it used a different strategy (organic acid release) than the other two fungi that raised the pH of the non-calcareous medium. The three methods used to inoculate sorghum plants with B. bassiana and M. brunneum in the pot experiment led to differences in re-isolation from plant tissues and in the plant height. These three inoculation methods increased the leaf chlorophyll content of young leaves when the Fe deficiency symptoms were most apparent in the control plants (without fungal inoculation) as well as the Fe content of the above-ground biomass in the plants at the end of the experiment. The total root lengths and fine roots were also increased in response to fungal applications with the three inoculation methods. However, the soil treatment was the most efficient method; thus, its effect on the leaf chlorophyll content was the most persistent, and

  8. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates.

    PubMed

    Raya-Díaz, Silvia; Sánchez-Rodríguez, Antonio Rafael; Segura-Fernández, José Manuel; Del Campillo, María Del Carmen; Quesada-Moraga, Enrique

    2017-01-01

    Although entomopathogenic fungi (EPF) are best known for their ability to protect crops against insect pests, they may have other beneficial effects on their host plants. These effects, which include promoting plant growth and conferring resistance against abiotic stresses, have been examined in recent years to acquire a better understanding of them. The primary purposes of the present study were (i) to ascertain in vitro whether three different strains of EPF (viz., Metarhizium, Beauveria and Isaria) would increase the Fe bioavailability in calcareous or non-calcareous media containing various Fe sources (ferrihydrite, hematite and goethite) and (ii) to assess the influence of the EPF inoculation method (seed dressing, soil treatment or leaf spraying) on the extent of the endophytic colonization of sorghum and the improvement in the Fe nutrition of pot-grown sorghum plants on an artificial calcareous substrate. All the EPFs studied were found to increase the Fe availability during the in vitro assay. The most efficient EPF was M. brunneum EAMa 01/58-Su, which lowered the pH of the calcareous medium, suggesting that it used a different strategy (organic acid release) than the other two fungi that raised the pH of the non-calcareous medium. The three methods used to inoculate sorghum plants with B. bassiana and M. brunneum in the pot experiment led to differences in re-isolation from plant tissues and in the plant height. These three inoculation methods increased the leaf chlorophyll content of young leaves when the Fe deficiency symptoms were most apparent in the control plants (without fungal inoculation) as well as the Fe content of the above-ground biomass in the plants at the end of the experiment. The total root lengths and fine roots were also increased in response to fungal applications with the three inoculation methods. However, the soil treatment was the most efficient method; thus, its effect on the leaf chlorophyll content was the most persistent, and

  9. Insect Immunity to Entomopathogenic Fungi.

    PubMed

    Lu, H-L; St Leger, R J

    2016-01-01

    The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Susceptibility of adults of the cerambycid beetle Hedypathes betulinus to the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Purpureocillium lilacinum

    PubMed Central

    Schapovaloff, M. E.; Alves, L. F. A.; Fanti, A. L.; Alzogaray, R. A.; López Lastra, C. C.

    2014-01-01

    Abstract The cerambycid beetle Hedypathes betulinus (Klug) (Coleoptera: Cerambycidae) causes severe damage to yerba mate plants ( Ilex paraguariensis (St. Hilaire) (Aquifoliales: Aquifoliaceae)), which results in large losses of production. In this study, the pathogenicity of entomopathogenic fungi of the species Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitaceae), Metarhizium anisopliae sensu lato (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae), and Purpureocillium lilacinum (Thom) Luangsa-ard, Hywel-Jones, Houbraken and Samson (Hypocreales: Ophiocordycipitaceae) on yerba mate were evaluated. Fifteen isolates of B. bassiana , two of M. anisopliae , and seven of P. lilacinum on H. betulinus adults were analyzed under laboratory conditions. The raw mortality rate caused by B. bassiana isolates varied from 51.1 to 86.3%, and their LT 50 values varied between 8.7 and 13.6 d. The isolates of M. anisopliae caused 69.6‒81.8% mortality, and their LT 50 values varied between 7.4 and 7.9 d. In contrast, isolates of P. lilacinum were not pathogenic. M. anisopliae and B. bassiana isolates were pathogenic against H. betulinus adults, suggesting that they may be useful in biological control programs for insect pests of yerba mate. PMID:25368071

  11. Enhancing the Stress Tolerance and Virulence of an Entomopathogen by Metabolic Engineering of Dihydroxynaphthalene Melanin Biosynthesis Genes ▿ †

    PubMed Central

    Tseng, Min N.; Chung, Pei C.; Tzean, Shean S.

    2011-01-01

    Entomopathogenic fungi have been used for biocontrol of insect pests for many decades. However, the efficacy of such fungi in field trials is often inconsistent, mainly due to environmental stresses, such as UV radiation, temperature extremes, and desiccation. To circumvent these hurdles, metabolic engineering of dihydroxynaphthalene (DHN) melanin biosynthetic genes (polyketide synthase, scytalone dehydratase, and 1,3,8-trihydroxynaphthalene reductase genes) cloned from Alternaria alternata were transformed into the amelanotic entomopathogenic fungus Metarhizium anisopliae via Agrobacterium-mediated transformation. Melanin expression in the transformant of M. anisopliae was verified by spectrophotometric methods, liquid chromatography/mass spectrometry (LC/MS), and confocal microscopy. The transformant, especially under stresses, showed notably enhanced antistress capacity and virulence, in terms of germination and survival rate, infectivity, and reduced median time to death (LT50) in killing diamondback moth (Plutella xylostella) larvae compared with the wild type. The possible mechanisms in enhancing the stress tolerance and virulence, and the significance and potential for engineering melanin biosynthesis genes in other biocontrol agents and crops to improve antistress fitness are discussed. PMID:21571888

  12. Diversity of soil fungi in North 24 Parganas and their antagonistic potential against Leucinodes orbonalis Guen. (Shoot and fruit borer of brinjal).

    PubMed

    Pal, Sujoy; Ghosh, Swapan Kumar

    2014-12-01

    Soil samples were collected from agricultural fields and gardens in North 24 Parganas, West Bengal, and fungi species were isolated from them. Thirty-one fungal species were isolated with 19 found in agricultural soil and 28 in garden soil. Twenty-eight out of 31 were identified using cultural and microscopic characters, and three were unidentified. The diversity of isolated fungi was calculated by Simpson's diversity index. The garden soil possessed more fungal colonies (750) than agricultural soil (477). In agricultural soil, the dominant fungi were Aspergillus niger, Rhizopus oryzae, and Penicillium expansum, and the dominant fungi of garden soil were A. niger and Fusarium moniliforme. Simpson's diversity index indicated that garden soil had more fungal diversity (0.939) than agricultural soil (0.896). The entomopathogenic capacity of the isolated fungi was tested against the brinjal shoot and fruit borer (Leucinodes orbonalis Guen) which is the major insect pest of brinjal. The isolated fungi were screened against larva of L. orbonalis for their entomopathogenic potential. Beauveria bassiana, A. niger, and P. expansum showed appreciable antagonism to L. orbonalis, and their lethal doses with 50 % mortality (LD50s) were 4.0 × 10(7), 9.06 × 10(7), and 1.50 × 10(8) spore/mL, respectively, and their times taken to reach 50 % mortality (LT50s) were 9.77, 10.56, and 10.60 days, respectively. This work suggests the restriction of chemical pesticide application in agricultural fields to increase fungal diversity. The entomopathogenic efficacy of B. bassiana could be used in agricultural fields to increase fugal diversity and protect the brinjal crop.

  13. Morphology and molecular taxonomy of Evlachovaea-like fungi, and the status of this unusual conidial genus

    USDA-ARS?s Scientific Manuscript database

    The entomopathogenic anamorphic genus Evlachovaea was described to differ from other fungi in forming its conidia obliquely to the axis of the conidiogenous cell and with successive conidia having alternate orientations with a zipper- or chevron-like arrangement resulting in flat, ribbon-like chains...

  14. Production of destruxins from metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants

    USDA-ARS?s Scientific Manuscript database

    Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E prod...

  15. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized Cowpea Plants

    USDA-ARS?s Scientific Manuscript database

    Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E prod...

  16. Characterization of an entomopathogenic fungi target integument protein, Bombyx mori single domain von Willebrand factor type C, in the silkworm, Bombyx mori.

    PubMed

    Han, F; Lu, A; Yuan, Y; Huang, W; Beerntsen, B T; Huang, J; Ling, E

    2017-06-01

    The insect cuticle works as the first line of defence to protect insects from pathogenic infections and water evaporation. However, the old cuticle must be shed in order to enter the next developmental stage. During each ecdysis, moulting fluids are produced and secreted into the area among the old and new cuticles. In a previous study, the protein Bombyx mori single domain von Willebrand factor type C (BmSVWC; BGIBMGA011399) was identified in the moulting fluids of Bo. mori and demonstrated to regulate ecdysis. In this study we show that in Bo. mori larvae, BmSVWC primarily locates to the integument (epidermal cells and cuticle), wing discs and head. During the moulting stage, BmSVWC is released into the moulting fluids, and is then produced again by epidermal cells after ecdysis. Fungal infection was shown to decrease the amount of BmSVWC in the cuticle, which indicates that BmSVWC is a target protein of entomopathogenic fungi. Thus, BmSVWC is mainly involved in maintaining the integrity of the integument structure, which serves to protect insects from physical damage and pathogenic infection. © 2017 The Royal Entomological Society.

  17. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions

    PubMed Central

    2011-01-01

    Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control

  18. Identification of antimicrobial compound, diketopiperazines, from a Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode against major plant pathogenic fungi.

    PubMed

    Nishanth Kumar, S; Mohandas, C; Siji, J V; Rajasekharan, K N; Nambisan, Bala

    2012-10-01

    To purify and characterize antimicrobial compounds from Bacillus sp. strain N associated with rhabditid entomopathogenic nematode (EPN). The cell-free culture filtrate of a bacterium associated with an EPN, Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain three diketopiperazines (DKPs). The structure and absolute stereochemistry of this compound were determined based on extensive spectroscopic analyses (FABMS, (1) H NMR, (13) C NMR, (1) H-(1) H COSY, (1) H-(13) C HMBC) and Marfey's method. The compounds were identified as cyclo(l-Pro-l-Leu), cyclo(d-Pro-l-Leu) and cyclo(d-Pro-l-Tyr), respectively. Three DKPs were active against all the five fungi tested (Aspergillus flavus, Candida albicans, Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum) and are more effective than the standard fungicide bavistin. The highest activity of 4 μg ml(-1) by cyclo(l-Pro-l-Leu) and cyclo(d-Pro-l-Tyr) was recorded against P. expansum, a plant pathogen responsible for causing postharvest decay of stored apples and oranges. Cyclo(d-Pro-l-Leu) recorded good antibacterial activity against all the four bacteria tested (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), and cyclo(l-Pro-l-Leu) and cyclo(d-Pro-l-Tyr) recorded good activity only against Gram-positive bacteria. To our knowledge, this is the first report of antifungal activity of the DKPs against the plant pathogenic fungi F. oxysporum, R. solani and P. expansum. The production of cyclo(l-Pro-l-Leu), cyclo(d-Pro-l-Leu) and cyclo-(d-Pro-l-Tyr) by a bacterium associated with EPN is also reported here for the first time. Isolated DKPs demonstrated high antimicrobial activity against bacteria and fungi, especially against plant pathogenic fungi. We conclude that the bacterium associated with EPN is a promising source of natural bioactive

  19. The preliminary assessment and isolation of entomopathogenic fungi to be used in biological control with twospotted spider mite [Tetranychus urticae (acari, tetranychidae)] from East Anatolia

    NASA Astrophysics Data System (ADS)

    Örtücü, Serkan; Algur, Ömer Faruk

    2017-04-01

    This study was conducted to isolation entomopathogenic fungi for possible use in biocontrol of two-spotted spider mite Tetranychus urticae Koch. and to determine their pathogenicity. For this purpose, plant leaves infected with T. urticae were collected from Erzurum, Kars and Ardahan. At laboratory, the internal and external mycoflora of T.urticae individuals on plant leaves were determined. As a result of isolation, twenty-five different fungi species belonging to the genera Acremonium, Alternaria, Aspergillus, Beauveria, Cladosporium, Gliocladium, Humicola, Penicillium, Trichoderma, Isaria, Ulocladium and Verticillium were obtained. Pathogenicity of this forty-five isolate belonging to twenty-five species were evaluated. As a test organism, T. urticae was used and suspensions (1 × 108conidia ml-1) were prepared in Tween 80. 2ml suspension of a single dose was sprayed onto down side of bean leaf discs using hand sprayer. Mortality was recorded daily for 7 days. A total of twelve isolates belonging to three species were determined to be pathogen against T.urticae. According to scale used: AT020 Isaria farinosa and AT025 Cladosporium cladosporioides were determined as least pathogen, AT037 and AT101 Beauveria bassiana, and AT019 and AT026 C. cladosporioides, and AT035 and AT036 I. farinosa as moderate pathogen, AT007, AT021, AT034 and AT076 B. bassiana as highly pathogen. The other thirty-three isolates found that not pathogenic against T.urticae.

  20. History of Entomopathogenic Nematology

    PubMed Central

    Poinar, G. O.; Grewal, P. S.

    2012-01-01

    The history of entomopathogenic nematology is briefly reviewed. Topic selections include early descriptions of members of Steinernema and Heterorhabditis, how only morphology was originally used to distinguish between the species; descriptions of the symbiotic bacteria and elucidating their role in the nematode- insect complex, including antibiotic properties, phase variants, and impeding host defense responses. Other topics include early solutions regarding production, storage, field applications and the first commercial sales of entomopathogenic nematodes in North America. Later studies centered on how the nematodes locate insect hosts, their effects on non-target organisms and susceptibility of the infective juveniles to soil microbes. While the goals of early workers was to increase the efficacy of entomopathogenic nematodes for pest control, the increasing use of Heterorhabditis and Photorhabdus as genetic models in molecular biology is noted. PMID:23482453

  1. Compatibility of the entomopathogenic fungus Lecanicillium muscarium and insecticides for eradication of sweetpotato whitefly, Bemisia tabaci.

    PubMed

    Cuthbertson, Andrew G S; Walters, Keith F A; Deppe, Carola

    2005-08-01

    The compatibility of the entomopathogenic fungus Lecanicillium muscarium and chemical insecticides used to control the second instar stages of the sweetpotato whitefly, Bemisia tabaci, was investigated. The effect on spore germination of direct exposure for 24 h to the insecticides imidacloprid, buprofezin, teflubenzuron and nicotine was determined. Only exposure to buprofezin was followed by acceptable spore germination. However, all chemicals significantly reduced spore germination when compared to a water control. Infectivity of L. muscarium in the presence of dry residues of buprofezin, teflubenzuron and nicotine (imidacloprid is a systemic pesticide) on foliage were also investigated. No significant detrimental effects on the level of control of B. tabaci was recorded when compared with fungi applied to residue free foliage on either tomato or verbena plants. Fungi in combination with imidacloprid gave higher B. tabaci mortality on verbena foliage compared to either teflubenzuron or nicotine and fungi combinations. Use of these chemical insecticides with L. muscarium in integrated control programmes for B. tabaci is discussed.

  2. Screening of entomopathogenic Metarhizium anisopliae isolates and proteomic analysis of secretion synthesized in response to cowpea weevil (Callosobruchus maculatus) exoskeleton.

    PubMed

    Murad, André M; Laumann, Raul A; Lima, Thaina de A; Sarmento, Rubia B C; Noronha, Eliane F; Rocha, Thales L; Valadares-Inglis, Maria C; Franco, Octávio L

    2006-01-01

    Cowpea crops are severely attacked by Callosobruchus maculatus, a Coleopteran that at the larval stage penetrates into stored seeds and feeds on cotyledons. Cowpea weevil control could be based in utilization of bacteria and fungi to reduce pest development. Entomopathogenic fungi, such as Metarhizium anisopliae, are able to control insect-pests and are widely applied in biological control. This report evaluated ten M. anisopliae isolates according to their virulence, correlating chitinolytic, proteolytic and alpha-amylolytic activities, as well proteomic analysis by two dimensional gels of fungal secretions in response to an induced medium containing C. maculatus shells, indicating novel biotechnological tools capable of improving cowpea crop resistance.

  3. In Vivo Production of Entomopathogenic Nematodes.

    PubMed

    Shapiro-Ilan, David I; Morales-Ramos, Juan A; Rojas, M Guadalupe

    2016-01-01

    In nature, entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are obligate parasites of insects. The nematodes are used widely as biopesticides for suppression of insect pests. More than a dozen entomopathogenic nematode species have been commercialized for use in biological control. Most nematodes intended for commercial application are produced in artificial media via solid or liquid fermentation. However, for laboratory research and small greenhouse or field trials, in vivo production of entomopathogenic nematodes is the common method of propagation. Additionally, small companies continue to produce nematodes using in vivo methods for application in niche markets. Advances in mechanization and alternative production routes (e.g., production geared toward application of nematodes in infected host cadavers) can improve efficiency and economy of scale. The objective of this chapter is to describe basic and advanced procedures for in vivo production of entomopathogenic nematodes.

  4. Using insect pathogenic fungi to manage insect pests, where are we going? (Where SHOULD We Be Going?)

    USDA-ARS?s Scientific Manuscript database

    Since the initial efforts to take advantage of entomopathogenic Ascomycetes in the 19th Century, with the work of Metchnikoff with Metarhizium in Russia and the Kansas Department of Agriculture in the U.S. with Beauveria, practical exploitation of these fungi has steadily increased to the present da...

  5. Variability of the mitochondrial SSU rDNA of entomopathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    Hypocrealean arthropod pathogenic fungi have profound impact on the regulation of agricultural and medical pests. However, until now the genetic and phylogenetic relationships among species have not been clarified, such studies could clarify host specificity relationships and define species boundari...

  6. Occurrence of entomopathogenic fungi and parasitic nematodes on Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae collected in Central Chiapas, Mexico

    USDA-ARS?s Scientific Manuscript database

    Fall armyworm larvae (FAW), Spodoptera frugiperda (J. E. Smith) were collected from whorl-stage cornfields, between the V2 and V4 stages, in 22 localities of Central, Chiapas, México, called "La Frailesca" during late June 2009 to determine the occurrence of native entomopathogens and parasitic nema...

  7. Colonization of Corn, Zea mays, by the Entomopathogenic Fungus Beauveria bassiana†

    PubMed Central

    Wagner, Bruce L.; Lewis, Leslie C.

    2000-01-01

    Light and electron microscopy were used to describe the mode of penetration by the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin into corn, Zea mays L. After inoculation with a foliar spray of conidia, germinating hyphae grew randomly across the leaf surface. Often a germ tube formed from a conidium and elongated only a short distance before terminating its growth. Not all developing hyphae on the leaf surface penetrated the cuticle. However, when penetration did occur, the penetration site(s) was randomly located, indicating that B. bassiana does not require specific topographic signals at an appropriate entry site as do some phytopathogenic fungi. Long hyphal structures were observed to follow the leaf apoplast in any direction from the point of penetration. A few hyphae were observed within xylem elements. Because vascular bundles are interconnected throughout the corn plant, this may explain how B. bassiana travels within the plant and ultimately provides overall insecticidal protection. Virulency bioassays demonstrate that B. bassiana does not lose virulence toward the European corn borer, Ostrinia nubilalis (Hübner), once it colonizes corn. This endophytic relationship between an entomopathogenic fungus and a plant suggests possibilities for biological control, including the use of indigenous fungal inocula as insecticides. PMID:10919808

  8. TIL-type protease inhibitors may be used as targeted resistance factors to enhance silkworm defenses against invasive fungi.

    PubMed

    Li, Youshan; Zhao, Ping; Liu, Huawei; Guo, Xiaomeng; He, Huawei; Zhu, Rui; Xiang, Zhonghuai; Xia, Qingyou

    2015-02-01

    Entomopathogenic fungi penetrate the insect cuticle using their abundant hydrolases. These hydrolases, which include cuticle-degrading proteases and chitinases, are important virulence factors. Our recent findings suggest that many serine protease inhibitors, especially TIL-type protease inhibitors, are involved in insect resistance to pathogenic microorganisms. To clarify the molecular mechanism underlying this resistance to entomopathogenic fungi and identify novel genes to improve the silkworm antifungal capacity, we conducted an in-depth study of serine protease inhibitors. Here, we cloned and expressed a novel silkworm TIL-type protease inhibitor, BmSPI39. In activity assays, BmSPI39 potently inhibited the virulence protease CDEP-1 of Beauveria bassiana, suggesting that it might suppress the fungal penetration of the silkworm integument by inhibiting the cuticle-degrading proteases secreted by the fungus. Phenol oxidase activation studies showed that melanization is involved in the insect immune response to fungal invasion, and that fungus-induced excessive melanization is suppressed by BmSPI39 by inhibiting the fungal cuticle-degrading proteases. To better understand the mechanism involved in the inhibition of fungal virulence by protease inhibitors, their effects on the germination of B. bassiana conidia was examined. BmSPI38 and BmSPI39 significantly inhibited the germination of B. bassiana conidia. Survival assays showed that BmSPI38 and BmSPI39 markedly improved the survival rates of silkworms, and can therefore be used as targeted resistance proteins in the silkworm. These results provided new insight into the molecular mechanisms whereby insect protease inhibitors confer resistance against entomopathogenic fungi, suggesting their potential application in medicinal or agricultural fields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes.

    PubMed

    Valero-Jiménez, Claudio A; Debets, Alfons J M; van Kan, Jan A L; Schoustra, Sijmen E; Takken, Willem; Zwaan, Bas J; Koenraadt, Constantianus J M

    2014-12-06

    Insecticide resistance is greatly hampering current efforts to control malaria and therefore alternative methods are needed. Entomopathogenic fungi have been proposed as an alternative with a special focus on the cosmopolitan species Beauveria bassiana. However, few studies have analysed the effects of natural variation within fungal isolates on mosquito survival, and the implications and possible exploitation for malaria control. Laboratory bioassays were performed on adult female mosquitoes (Anopheles coluzzii) with spores from 29 isolates of B. bassiana, originating from different parts of the world. In addition, phenotypic characteristics of the fungal isolates such as sporulation, spore size and growth rate were studied to explore their relationship with virulence. All tested isolates of B. bassiana killed An. coluzzii mosquitoes, and the rate at which this happened differed significantly among the isolates. The risk of mosquitoes dying was around ten times higher when they were exposed to the most virulent as compared to the least virulent isolate. There was significant variation among isolates in spore size, growth rate and sporulation, but none of these morphological characteristics were correlated, and thus predictive, for the ability of the fungal isolate to kill malaria mosquitoes. This study shows that there is a wide natural variation in virulence of isolates of B. bassiana, and that selecting an appropriate fungal isolate is highly relevant in killing and thus controlling malaria mosquitoes, particularly if used as part of an integrated vector management strategy. Also, the wide variation observed in virulence offers the opportunity to better understand the molecular and genetic mechanisms that drive this variation and thus to address the potential development of resistance against entomopathogenic fungi.

  10. Isolation and Classification of Fungal Whitefly Entomopathogens from Soils of Qinghai-Tibet Plateau and Gansu Corridor in China.

    PubMed

    Dong, Tingyan; Zhang, Bowen; Jiang, Yanfang; Hu, Qiongbo

    2016-01-01

    Qinghai-Tibet Plateau and Gansu Corridor of China with distinct geographic and climatic conditions are remote and less disturbed by humans, in which are likely to find some new strains of fungal entomopathogens against B-biotype whiteflies that is a very important invading pest worldwide. In this research, nineteen strains among six species of entomogenous fungi were isolated from the soil samples collected from 32 locations in Qinghai-Tibet Plateau and Gansu Corridor. From the data of isolation rates, it was indicated that the good biodiversity of entomogenous fungi was found in the soil covered good vegetations. On the contrary, no strains were isolated from the desert areas. In addition, the dominant species, Isaria fumosorosea and Metarhizium anisopliae var. anisopliae in the Qinghai-Tibet Plateau are different from the strains of other places based on ITS genetic homology analysis. It was verified that the Qinghai-Tibet Plateau area was less disturbed by human, and the fungi in this place exchanged less compared with other regional species. All of these strains showed the pathogenicity against the B-biotype whitefly with the mortality of more than 30%. However, a few strains of Paecilomyces lilacinus, Lecanicillium psalliotae, Aspergillus ustus, I. fumosorosea and M. anisopliae var. anisopliae had better virulence with LC50s of 0.36-26.44×106 spores/mL on post-treatment day 6-7. Especially, the L. psalliotae strain LpTS01 was the greatest virulence with LC50 of 0.36×106spores/mL and LT50 of 4.23d. Our research thus presents some new insights to discover new entomopathogenic fungal strains used for B-biotype whitefly biocontrol.

  11. Isolation and Classification of Fungal Whitefly Entomopathogens from Soils of Qinghai-Tibet Plateau and Gansu Corridor in China

    PubMed Central

    Jiang, Yanfang; Hu, Qiongbo

    2016-01-01

    Qinghai-Tibet Plateau and Gansu Corridor of China with distinct geographic and climatic conditions are remote and less disturbed by humans, in which are likely to find some new strains of fungal entomopathogens against B-biotype whiteflies that is a very important invading pest worldwide. In this research, nineteen strains among six species of entomogenous fungi were isolated from the soil samples collected from 32 locations in Qinghai-Tibet Plateau and Gansu Corridor. From the data of isolation rates, it was indicated that the good biodiversity of entomogenous fungi was found in the soil covered good vegetations. On the contrary, no strains were isolated from the desert areas. In addition, the dominant species, Isaria fumosorosea and Metarhizium anisopliae var. anisopliae in the Qinghai-Tibet Plateau are different from the strains of other places based on ITS genetic homology analysis. It was verified that the Qinghai-Tibet Plateau area was less disturbed by human, and the fungi in this place exchanged less compared with other regional species. All of these strains showed the pathogenicity against the B-biotype whitefly with the mortality of more than 30%. However, a few strains of Paecilomyces lilacinus, Lecanicillium psalliotae, Aspergillus ustus, I. fumosorosea and M. anisopliae var. anisopliae had better virulence with LC50s of 0.36–26.44×106 spores/mL on post-treatment day 6–7. Especially, the L. psalliotae strain LpTS01 was the greatest virulence with LC50 of 0.36×106spores/mL and LT50 of 4.23d. Our research thus presents some new insights to discover new entomopathogenic fungal strains used for B-biotype whitefly biocontrol. PMID:27228109

  12. Insecticide Rotation Programs with Entomopathogenic Organisms for Suppression of Western Flower Thrips (Thysanoptera: Thripidae) Adult Populations under Greenhouse Conditions.

    PubMed

    Kivett, Jessica M; Cloyd, Raymond A; Bello, Nora M

    2015-08-01

    Western flower thrips, Frankliniella occidentalis (Pergande), is one of the most destructive insect pests of greenhouse production systems with the ability to develop resistance to a wide variety of insecticides. A common resistance management strategy is rotating insecticides with different modes of action. By incorporating entomopathogenic organisms (fungi and bacteria), which have discrete modes of action compared to standard insecticides, greenhouse producers may preserve the effectiveness of insecticides used for suppression of western flower thrips populations. The objective of this study was to determine how different rotation programs that include entomopathogenic organisms (Beauveria bassiana, Isaria fumosoroseus, Metarhizium anisopliae, and Chromobacterium subtsugae) and commonly used standard insecticides (spinosad, chlorfenapyr, abamectin, and pyridalyl) may impact the population dynamics of western flower thrips adult populations by means of suppression. Eight-week rotation programs were applied to chrysanthemum, Dendranthema x morifolium plants and weekly counts of western flower thrips adults captured on yellow sticky cards were recorded as a means to evaluate the impact of the rotation programs. A final quality assessment of damage caused by western flower thrips feeding on foliage and flowers was also recorded. Furthermore, a cost comparison of each rotation program was conducted. Overall, insecticide rotation programs that incorporated entomopathogenic organisms were not significantly different than the standard insecticide rotation programs without entomopathogenic organisms in suppressing western flower thrips adult populations. However, there were no significant differences among any of the rotation programs compared to the water control. Moreover, there was no differential effect of the rotation programs on foliage and flower quality. Cost savings of up to 34% (in US dollars) are possible when including entomopathogenic organisms in the

  13. Experimental evolution to increase the efficacy of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes: Effects on mycelial growth and virulence.

    PubMed

    Valero-Jiménez, Claudio A; van Kan, Jan A L; Koenraadt, Constantianus J M; Zwaan, Bas J; Schoustra, Sijmen E

    2017-06-01

    Entomopathogenic fungi such as Beauveria bassiana are currently considered as a potential control agent for malaria mosquitoes. The success of such strategies depends among others on the efficacy of the fungus to kill its hosts. As B. bassiana can use various resources for growth and reproduction, increasing the dependency on mosquitoes as a nutritional source may be instrumental for reaching this goal. Passage of entomopathogenic fungi through an insect host has been shown to increase its virulence. We evaluated the virulence, fungal outgrowth, mycelial growth rate, and sporulation rate of two B. bassiana isolates (Bb1520 and Bb8028) that underwent 10 consecutive selection cycles through malaria mosquitoes ( Anopheles coluzzii ) using an experimental evolution approach. This cycling resulted in an altered capacity of evolved B. Bassiana lineages to grow on different substrates while maintaining the ability to kill insects. Notably, however, there were no significant changes in virulence or speed of outgrowth when comparing the evolved lineages against their unevolved ancestors. These results suggest that fungal growth and sporulation evolved through successive and exclusive use of an insect host as a nutritional resource. We discuss the results in light of biocontrol and provide suggestions to increase fungal virulence.

  14. Entomopathogenic fungus as a biological control for an important vector of livestock disease: the Culicoides biting midge.

    PubMed

    Ansari, Minshad Ali; Pope, Edward C; Carpenter, Simon; Scholte, Ernst-Jan; Butt, Tariq M

    2011-01-10

    The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Exposure of midges to 'dry' conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT(50) value for strain V275 was 1.42 days compared to 2.21-3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (10(8)-10(11) conidia m(-2)) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to 'dry' conidia and 'wet' conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. 'Dry' conidia were more effective than 'wet' conidia, causing 100% mortality after 5 days. This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of 'dry' conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges thus reducing the incidence of disease.

  15. Parameters affecting plant defense pathway mediated recruitment of entomopathogenic nematodes

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic nematodes are natural enemies and effective biological control agents of subterranean insect herbivores. Interactions between her bivores, plants, and entomopathogenic nematodes are mediated by plant defense pathways that can induce release of volatiles that recruit entomopathogenic...

  16. Contribution to the knowledge of pathogenic fungi of spiders in Argentina. Southernmost record in the world.

    PubMed

    Manfrino, Romina G; González, Alda; Barneche, Jorge; Tornesello Galván, Julieta; Hywell-Jones, Nigel; López Lastra, Claudia C

    The aim of this study was to identify entomopathogenic fungi infecting spiders (Araneae) in a protected area of Buenos Aires province, Argentina. The Araneae species identified was Stenoterommata platensis. The pathogens identified were Lecanicillium aphanocladii Zare & W. Gams, Purpureocillium lilacinum (Thom) Luangsa-ard, Houbraken, Hywel Jones & Samson and Ophiocordyceps caloceroides (Berk & M.A. Curtis). This study constitutes the southernmost records in the world and contributes to expanding the knowledge of the biodiversity of pathogenic fungi of spiders in Argentina. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Operational-scale application of entomopathogenic fungi for control of Sahelian grasshoppers

    PubMed Central

    Kooyman, C.; Bateman, R. P.; Langewald, J.; Lomer, C. J.; Ouambama, Z.; Thomas, M. B.

    1997-01-01

    Locusts and grasshoppers regularly threaten agricultural production across large parts of the developed and developing worlds. Recent concerns over the health and environmental impacts of standard chemical control measures have led to a demand for alternative, more environmentally benign control technologies. Here we present the results of a field study to investigate the potential of inundative biological control for control of grasshoppers in the Sahelian region of Africa. The biocontrol agent was an oil-based biopesticide formulation of a naturally occurring entomopathogenic fungus, Metarhizium flavoviride. This was applied at a rate of 2l ha-1 to a total area of 150 ha using standard equipment normally used for the application of chemical pesticides. Twenty-one days after application, an 80 per cent reduction in grasshopper populations was recorded in treated plots, relative to control populations in equivalent unsprayed areas. We think that this is the first operational-scale application of a biopesticide to demonstrate significant population reductions of key Sahelian grasshopper pests. This represents a substantial development in locust and grasshopper control, and should open the way for a new era of integrated control strategies where reliance on conventional chemicals is reduced.

  18. Serine proteases SP1 and SP13 mediate the melanization response of Asian corn borer, Ostrinia furnacalis, against entomopathogenic fungus Beauveria bassiana.

    PubMed

    Chu, Yuan; Liu, Yang; Shen, Dongxu; Hong, Fang; Wang, Guirong; An, Chunju

    2015-06-01

    Exposure to entomopathogenic fungi is one approach for insect pest control. Little is known about the immune interactions between fungus and its insect host. Melanization is a prominent immune response in insects in defending against pathogens such as bacteria and fungi. Clip domain serine proteases in insect plasma have been implicated in the activation of prophenoloxidase, a key enzyme in the melanization. The relationship between host melanization and the infection by a fungus needs to be established. We report here that the injection of entomopathogenic fungus Beauveria bassiana induced both melanin synthesis and phenoloxidase activity in its host insect, the Asian corn borer, Ostrinia furnacalis (Guenée). qRT-PCR analysis showed several distinct patterns of expression of 13 clip-domain serine proteases in response to the challenge of fungi, with seven increased, two decreased, and four unchanged. Of special interest among these clip-domain serine protease genes are SP1 and SP13, the orthologs of Manduca sexta HP6 and PAP1 which are involved in the prophenoloxidase activation pathway. Recombinant O. furnacalis SP1 was found to activate proSP13 and induce the phenoloxidase activity in corn borer plasma. Additionally, SP13 was determined to directly cleave prophenoloxidase and therefore act as the prophenoloxidase activating protease. Our work thus reveals a biochemical mechanism in the melanization in corn borer associated with the challenge by B. bassiana injection. These insights could provide valuable information for better understanding the immune responses of Asian corn borer against B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Abundance of Soil-Borne Entomopathogenic Fungi in Organic and Conventional Fields in the Midwestern USA with an Emphasis on the Effect of Herbicides and Fungicides on Fungal Persistence.

    PubMed

    Clifton, Eric H; Jaronski, Stefan T; Hodgson, Erin W; Gassmann, Aaron J

    2015-01-01

    Entomopathogenic fungi (EPF) are widespread in agricultural fields and help suppress crop pests. These natural enemies may be hindered by certain agronomic practices associated with conventional agriculture including the use of pesticides. We tested whether the abundance of EPF differed between organic and conventional fields, and whether specific cropping practices and soil properties were correlated with their abundance. In one year of the survey, soil from organic fields and accompanying margins had significantly more EPF than conventional fields and accompanying margins. Regression analysis revealed that the percentage of silt and the application of organic fertilizer were positively correlated with EPF abundance; but nitrogen concentration, tillage, conventional fields, and margins of conventional fields were negatively correlated with EPF abundance. A greenhouse experiment in which fungicides and herbicides were applied to the soil surface showed no significant effect on EPF. Though organic fields were perceived to be more suitable environments for EPF, abiotic factors and cropping practices such as tillage may have greater impacts on the abundance of EPF. Also, fungicides and herbicides may not be as toxic to soil-borne EPF as originally thought.

  20. Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China.

    PubMed

    Imoulan, Abdessamad; Wu, Hai-Jun; Lu, Wei-Lai; Li, Yi; Li, Bin-Bin; Yang, Rei-Heng; Wang, Wen-Jing; Wang, Xiao-Liang; Kirk, Paul M; Yao, Yi-Jian

    2016-09-01

    Beauveria is among the most ubiquitous genera of entomopathogenic fungi throughout the world. A previously unknown species of the genus was recently discovered from a soil sample collected from Tibetan Plateau, China and is here described as new to science, B. medogensis sp. nov. The new species is distinguished from its closest relatives based on both morphological characterization and molecular phylogenetic analyses. Beauveria medogensis is characterized by globose to subglobose conidia, morphologically similar to some other species of in the genus, but was conclusively separated from those species in the phylogenetic analyses including sequences of four nuclear genes (RPB1, RPB2, TEF1 and Bloc). The new species was clustered in the analyses in a single terminal lineage which was grouped with B. australis sequences together as a sister clade to the B. brongniartii terminal clade. Although molecularly closely related, the new species is distinct morphologically from its closest sisters, B. australis and B. brongniartii, in producing globose to subglobose conidia rather than subglobose, broadly ellipsoid to ellipsoid conidia or ellipsoidal to cylindrical conidia. As isolated from a soil sample, the entomopathogenicity of the new species has been confirmed using Helicoverpa armigera and Tenebrio molitor larvae. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cuticle Fatty Acid Composition and Differential Susceptibility of Three Species of Cockroaches to the Entomopathogenic Fungi Metarhizium anisopliae (Ascomycota, Hypocreales).

    PubMed

    Gutierrez, Alejandra C; Gołębiowski, Marek; Pennisi, Mariana; Peterson, Graciela; García, Juan J; Manfrino, Romina G; López Lastra, Claudia C

    2015-04-01

    Differences in free fatty acids (FFAs) chemical composition of insects may be responsible for susceptibility or resistance to fungal infection. Determination of FFAs found in cuticular lipids can effectively contribute to the knowledge concerning insect defense mechanisms. In this study, we have evaluated the susceptibility of three species of cockroaches to the entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin by topical application. Mortality due to M. anisopliae was highly significant on adults and nymphs of Blattella germanica L. (Blattodea: Blattellidae). However, mortality was faster in adults than in nymphs. Adults of Blatta orientalis L. (Blattodea: Blattidae) were not susceptible to the fungus, and nymphs of Blaptica dubia Serville (Blattodea: Blaberidae) were more susceptible to the fungus than adults. The composition of cuticular FFAs in the three species of cockroaches was also studied. The analysis indicated that all of the fatty acids were mostly straight-chain, long-chain, saturated or unsaturated. Cuticular lipids of three species of cockroaches contained 19 FFAs, ranging from C14:0 to C24:0. The predominant fatty acids found in the three studied species of cockroaches were oleic, linoleic, palmitic, and stearic acid. Only in adults of Bl. orientalis, myristoleic acid, γ-linolenic acid, arachidic acid, dihomolinoleic acid, and behenic acid were identified. Lignoceric acid was detected only in nymphs of Bl. orientalis. Heneicosylic acid and docosahexaenoic acid were identified in adults of Ba. dubia. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Characterization of T-DNA insertion mutants with decreased virulence in the entomopathogenic fungus Beauveria bassiana JEF-007.

    PubMed

    Kim, Sihyeon; Lee, Se Jin; Nai, Yu-Shin; Yu, Jeong Seon; Lee, Mi Rong; Yang, Yi-Ting; Kim, Jae Su

    2016-10-01

    The bean bug, Riptortus pedestris, is a major agricultural pest that reduces crop quality and value. Chemical pesticides have contributed to pest management, but resistance to these chemicals has significantly limited their use. Alternative strategies with different modes of action, such as entomopathogenic fungi, are therefore of great interest. Herein, we explored how entomopathogenic fungi can potentially be used to control the bean bug and focused on identifying virulence-related genes. Beauveria bassiana (JEF isolates) were assayed against bean bugs under laboratory conditions. One isolate, JEF-007, showed >80 % virulence by both spray and contact exposure methods. Agrobacterium tumefaciens-mediated transformation (AtMT) of JEF-007 generated 249 random transformants, two of which (B1-06 and C1-49) showed significantly reduced virulence against Tenebrio molitor and R. pedestris immatures. Both species were used for rapid screening of virulence-reduced mutants. The two transformants had different morphologies, conidial production, and thermotolerance than the wild type. To determine the localization of the randomly inserted T-DNA, thermal asymmetric interlaced (TAIL) PCR was conducted and analysis of the two clones found multiple T-DNA insertions (two in B1-06 and three in C1-49). Genes encoding complex I intermediate-associated protein 30 (CIA30) and the autophagy protein (Atg22) were possibly disrupted by the T-DNA insertion and might be involved in the virulence. This work provides a strong platform for future functional genetic studies of bean bug-pathogenic B. bassiana. The genes putatively involved in fungal virulence should be experimentally validated by knockdown in future studies.

  3. The Mosquito Melanization Response Is Implicated in Defense against the Entomopathogenic Fungus Beauveria bassiana

    PubMed Central

    Osta, Mike A.

    2012-01-01

    Mosquito immunity studies have focused mainly on characterizing immune effector mechanisms elicited against parasites, bacteria and more recently, viruses. However, those elicited against entomopathogenic fungi remain poorly understood, despite the ubiquitous nature of these microorganisms and their unique invasion route that bypasses the midgut epithelium, an important immune tissue and physical barrier. Here, we used the malaria vector Anopheles gambiae as a model to investigate the role of melanization, a potent immune effector mechanism of arthropods, in mosquito defense against the entomopathogenic fungus Beauveria bassiana, using in vivo functional genetic analysis and confocal microscopy. The temporal monitoring of fungal growth in mosquitoes injected with B. bassiana conidia showed that melanin eventually formed on all stages, including conidia, germ tubes and hyphae, except the single cell hyphal bodies. Nevertheless, melanin rarely aborted the growth of any of these stages and the mycelium continued growing despite being melanized. Silencing TEP1 and CLIPA8, key positive regulators of Plasmodium and bacterial melanization in A. gambiae, abolished completely melanin formation on hyphae but not on germinating conidia or germ tubes. The detection of a layer of hemocytes surrounding germinating conidia but not hyphae suggested that melanization of early fungal stages is cell-mediated while that of late stages is a humoral response dependent on TEP1 and CLIPA8. Microscopic analysis revealed specific association of TEP1 with surfaces of hyphae and the requirement of both, TEP1 and CLIPA8, for recruiting phenoloxidase to these surfaces. Finally, fungal proliferation was more rapid in TEP1 and CLIPA8 knockdown mosquitoes which exhibited increased sensitivity to natural B. bassiana infections than controls. In sum, the mosquito melanization response retards significantly B. bassiana growth and dissemination, a finding that may be exploited to design transgenic

  4. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae).

    PubMed

    Jandricic, S E; Filotas, M; Sanderson, J P; Wraight, S P

    2014-05-01

    Seeking new isolates of entomopathogenic fungi with greater virulence against greenhouse aphid pests than those currently registered in North America for control of these insects, single-dose screening assays of 44 selected fungal isolates and 4 commercially available strains were conducted against first-instar nymphs of Myzus persicae and Aphis gossypii. The assays identified a number of Beauveria and Metarhizium isolates with virulence equal to or greater than that of the commercial strains against the nymphal aphids, but none exhibited exceptionally high virulence. Virulence of Isaria isolates was unexpectedly low (<31% mortality at doses>1000conidia/mm(2)). In dose-response assays, Beauveria ARSEF 5493 proved most virulent against M. persicae and A. gossypii; however, LC50s of this isolate did not differ significantly from those of B. bassiana commercial strain JW-1. Dose-response assays were also conducted with Aulacorthum solani, the first reported evaluations of Beauveria and Metarhizium against this pest. The novel isolate Metarhizium 5471 showed virulence⩾that of Beauveria 5493 in terms of LC25 and LC50, but 5493 produced a steeper dose response (slope). Additional tests showed that adult aphids are more susceptible than nymphs to fungal infection but confirmed that infection has a limited pre-mortem effect on aphid reproduction. Effects of assay techniques and the potential of fungal pathogens as aphid-control agents are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Cyclic dipeptides from rhabditid entomopathogenic nematode-associated Bacillus cereus have antimicrobial activities.

    PubMed

    Nishanth Kumar, S; Nath, Vishnu Sukumari; Pratap Chandran, R; Nambisan, Bala

    2014-02-01

    The cell free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain four bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (FABMS, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, (1)H-(13)C HMBC) and Marfey's method. The compounds were identified as cyclic dipeptides (CDPs): cyclo(L-Pro-L-Trp), cyclo(L-Leu-L-Val), cyclo(D-Pro-D-Met), and cyclo(D-Pro-D-Phe), respectively. Compounds recorded significant antibacterial activity against all the test bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant S. aureus) except cyclo(L-Leu-L-Val). Cyclo(L-Leu-L-Val) recorded activity only against Gram positive bacteria. Best antibacterial activity was recorded by cyclo(L-Pro-L-Trp) against S. aureus (4 μg/ml). The four compounds were active against all the five fungi tested (Trichophyton rubrum, Aspergillus flavus, Candida albicans, Candida tropicalis and Cryptococcus neoformans) and the activity was compared with amphotericin B, the standard fungicide. The highest activity of 1 μg/ml by cyclo(L-Pro-L-Trp) was recorded against T. rubrum, a human pathogen responsible for causing athlete's foot, jock itch, and ringworm. The activity of cyclo(L-Pro-L-Trp) against T. rubrum, C. neoformans and C. albicans were better than amphotericin B, the standard antifungal agent. To our knowledge, this is the first report of antifungal activity of CDPs against the human pathogenic fungi T. rubrum and C. neoformans. The four CDPs are nontoxic to healthy human cell line up to 200 μg/ml. We conclude that the bacterium associated with entomopathogenic nematode is promising sources of natural antimicrobial

  6. Evaluation of a New Entomopathogenic Strain of Beauveria bassiana and a New Field Delivery Method against Solenopsis invicta

    PubMed Central

    Li, Jun; Guo, Qiang; Lin, Miaofeng; Jiang, Lu; Ye, Jingwen; Chen, Dasong; Li, Zhigang; Dai, Jianqing; Han, Shichou

    2016-01-01

    Solenopsis invicta Buren is one of the most important pests in China, and control measures are mainly based on the use of synthetic pesticides, which may be inadequate and unsustainable. Hence, there is a growing interest in developing biological control alternatives for managing S. invicta, such as the use of entomopathogenic fungi. To facilitate the commercialization of entomopathogenic fungi against S. invicta, 10 Beauveria bassiana isolates originating from different hosts were tested for virulence in laboratory bioassays, and the most pathogenic strain, ZGNKY-5, was tested in field studies using an improved pathogen delivery system. The cumulative mortality rate reached 93.40% at 1×108 mL-1 conidia after 504 h. The germination and invasion of the spores were observed under a scanning electron microscope, and several conidia adhered to the cuticle of S. invicta after 2 h. Furthermore, the germ tubes of the conidia oriented toward the cuticle after 48 h, and the mycelium colonized the entire body after 96 h. Based on the efficacy observed in the laboratory trials, further experiments were performed with ZGNKY-5 strain to evaluate its utility in an injection control technology against S. invicta in the field. We found that three dosage treatments of ZGNKY-5 strain (500 mL, 750 mL, and 1,000 mL per nest) had significant control effects. Our results show that this strain of Beauveria bassiana and our control method were effective against S. invicta in both laboratory and field settings. PMID:27341441

  7. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Valero-Jiménez, Claudio A; Wiegers, Harm; Zwaan, Bas J; Koenraadt, Constantianus J M; van Kan, Jan A L

    2016-01-01

    Pest insects cause severe damage to global crop production and pose a threat to human health by transmitting diseases. Traditionally, chemical pesticides (insecticides) have been used to control such pests and have proven to be effective only for a limited amount of time because of the rapid spread of genetic insecticide resistance. The basis of this resistance is mostly caused by (co)dominant mutations in single genes, which explains why insecticide use alone is an unsustainable solution. Therefore, robust solutions for insect pest control need to be sought in alternative methods such as biological control agents for which single-gene resistance is less likely to evolve. The entomopathogenic fungus Beauveria bassiana has shown potential as a biological control agent of insects, and insight into the mechanisms of virulence is essential to show the robustness of its use. With the recent availability of the whole genome sequence of B. bassiana, progress in understanding the genetics that constitute virulence toward insects can be made more quickly. In this review we divide the infection process into distinct steps and provide an overview of what is currently known about genes and mechanisms influencing virulence in B. bassiana. We also discuss the need for novel strategies and experimental methods to better understand the infection mechanisms deployed by entomopathogenic fungi. Such knowledge can help improve biocontrol agents, not only by selecting the most virulent genotypes, but also by selecting the genotypes that use combinations of virulence mechanisms for which resistance in the insect host is least likely to develop. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design

    NASA Astrophysics Data System (ADS)

    Cai, Xiaofeng; Nowak, Sarah; Wesche, Frank; Bischoff, Iris; Kaiser, Marcel; Fürst, Robert; Bode, Helge. B.

    2017-04-01

    The production of natural product compound libraries has been observed in nature for different organisms such as bacteria, fungi and plants; however, little is known about the mechanisms generating such chemically diverse libraries. Here we report mechanisms leading to the biosynthesis of the chemically diverse rhabdopeptide/xenortide peptides (RXPs). They are exclusively present in entomopathogenic bacteria of the genera Photorhabdus and Xenorhabdus that live in symbiosis with nematodes delivering them to insect prey, which is killed and utilized for nutrition by both nematodes and bacteria. Chemical diversity of the biologically active RXPs results from a combination of iterative and flexible use of monomodular nonribosomal peptide synthetases including substrate promiscuity, enzyme cross-talk and enzyme stoichiometry as shown by in vivo and in vitro experiments. Together, this highlights several of nature's methods for diversification, or evolution, of natural products and sheds light on the biosynthesis of the bioactive RXPs.

  9. Susceptibility and Immune Defence Mechanisms of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) against Entomopathogenic Fungal Infections

    PubMed Central

    Hussain, Abid; Rizwan-ul-Haq, Muhammad; Al-Ayedh, Hassan; AlJabr, Ahmed Mohammed

    2016-01-01

    Insects infected with entomopathogenic fungi, experience physiological changes that influence their growth and immune defence. The potential of nine isolates of entomopathogenic fungi was evaluated after determining percent germination and relative conidial hydrophobicity. However, nutritional indices were evaluated after immersing eighth-instar Rhynchophorus ferrugineus larvae into each isolate suspension (1 × 107 conidia/mL). The results showed that isolates B6884 and M9374 had 44.51% and 39.02% higher conidial hydrophobicity compared with isolate I03011 (least virulent). The results of nutritional index assays revealed a significant reduction in growth indices after infection with different isolates. Compared with control, B6884 and M9374 greatly decreased larval growth by reducing the efficacy of conversion of ingested food (36%–47%) and Efficacy of conversion of digested food (50%–63%). Furthermore, only isolate B6884 induced 100% mortality within 12 days. Compared with control, isolate I03011, possessing the lowest conidial hydrophobicity, only reduced 0.29% of the efficacy of conversion of ingested food (ECI) and 0.48% of the efficacy of conversion of digested food (ECD). Similarly, transcriptomic analysis of genes related to the Red palm weevil (RPW) immune response, including pathogen recognition receptors (C-type lectin and endo-beta-1,4-glucanse), signal modulator (Serine protease-like protein), signal transductors (Calmodulin-like protein and EF-hand domain containing protein) and effectors (C-type lysozyme, Cathepsin L., Defensin-like protein, Serine carboxypeptidase, and Thaumatin-like protein), was significantly increased in larval samples infected with B6884 and M9374. These results suggest that for an isolate to be virulent, conidial hydrophobicity and germination should also be considered during pathogen selection, as these factors could significantly impact host growth and immune defence mechanisms. PMID:27618036

  10. Abundance of Soil-Borne Entomopathogenic Fungi in Organic and Conventional Fields in the Midwestern USA with an Emphasis on the Effect of Herbicides and Fungicides on Fungal Persistence

    PubMed Central

    Clifton, Eric H.; Jaronski, Stefan T.; Hodgson, Erin W.; Gassmann, Aaron J.

    2015-01-01

    Entomopathogenic fungi (EPF) are widespread in agricultural fields and help suppress crop pests. These natural enemies may be hindered by certain agronomic practices associated with conventional agriculture including the use of pesticides. We tested whether the abundance of EPF differed between organic and conventional fields, and whether specific cropping practices and soil properties were correlated with their abundance. In one year of the survey, soil from organic fields and accompanying margins had significantly more EPF than conventional fields and accompanying margins. Regression analysis revealed that the percentage of silt and the application of organic fertilizer were positively correlated with EPF abundance; but nitrogen concentration, tillage, conventional fields, and margins of conventional fields were negatively correlated with EPF abundance. A greenhouse experiment in which fungicides and herbicides were applied to the soil surface showed no significant effect on EPF. Though organic fields were perceived to be more suitable environments for EPF, abiotic factors and cropping practices such as tillage may have greater impacts on the abundance of EPF. Also, fungicides and herbicides may not be as toxic to soil-borne EPF as originally thought. PMID:26191815

  11. Effect of certain entomopathogenic fungi on oxidative stress and mortality of Periplaneta americana.

    PubMed

    Chaurasia, Abhilasha; Lone, Yaqoob; Wani, Owais; Gupta, U S

    2016-02-01

    The present paper reports the effects of Metarhizium anisopliae, Isaria fumosoroseus and Hirsutella thompsonaii on Periplaneta americana. I. fumosoroseus and H. thompsonaii were cultured at 28±1°C on potato carrot agar and M. anisopliae was cultured at 28±1°C on potato dextrose agar for 14days. Conidial suspensions of fungi were given to cockroaches through different routes. M. anisopliae shows high virulence against adult cockroaches and mortality ranges from 38.65% to 78.36% after 48h. I. fumosoroseus and H. thompsonii show less virulence compared to M. anisopliae. We also investigated the effect of these three fungi on the activity of lactate dehydrogenase, lipid peroxidation and catalase in different tissues of the insect to gain an understanding of the different target site. The result suggested that the activity of lactate dehydrogenase, catalase and level of malondialdehyde varies in different organs and through different routes of exposure. Based on mortality percentages, all tested fungi had high potentials for biocontrol agents against P. americana. Our study reveals for the first time that I. fumosoroseus and H. thompsonaii fungal infections initiate oxidative stress in the midgut, fat body, whole body and hemolymph of cockroach thereby suggesting them to be the target organs for oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Selective isolation of dematiaceous fungi from the workers of Atta laevigata (Formicidae: Attini).

    PubMed

    Guedes, F L A; Attili-Angelis, D; Pagnocca, F C

    2012-01-01

    Leaf-cutting ants (Formicidae: Attini) are considered pests in agriculture for their impact in human crops, as they utilize leaf fragments to raise their fungal mutualist (Agaricales: Lepiotaceae). Basically, the basidiomycetous fungus is cultivated to supply food to adult workers and broads; in return, the ants protect it against natural enemies. However, recent studies have claimed that other microorganisms are associated to ant nests where a wide range of interactions may take place. To investigate the occurrence of dematiaceous fungi on the cuticle of Atta laevigata ants, 30 workers were sampled from an adult nest located in the surroundings of the Center for the Studies of Social Insects, UNESP-Rio Claro, SP, Brazil. The use of selective techniques to avoid high-sporulation fungi has been recommended and was tested in this study. To favor the isolation of the desired fungi, heads and cuticle scrapings of ant bodies were inoculated on Mycosel agar and incubated for 3 weeks at 35°C. Morphological and molecular methods were used to identify the filamentous fungi recovered. From 56 isolates, 19 were hyaline filamentous species, and among the remaining 37, some are mentioned as phyto-associated fungi like Alternaria arborescens, Bipolaris sorokiniana, Bipolaris eleusines, Bipolaris zeae, Curvularia trifolii, and Paraphaeosphaeria michotii. These species are reported from A. laevigata bodies for the first time. None of the isolation trials revealed the presence of the parasite Escovopsis or entomopathogenic fungi. The possible spread of the fungi in nature by the ants is discussed.

  13. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection.

    PubMed

    Mukherjee, Krishnendu; Vilcinskas, Andreas

    2018-01-01

    Parasitic fungi are the only pathogens that can infect insect hosts directly through their proteinaceous exoskeleton. Penetration of the cuticle requires the release of fungal enzymes, including proteinases, which act as virulence factors. Insects can sense fungal infections and activate innate immune responses, including the synthesis of antifungal peptides and proteinase inhibitors that neutralize the incoming proteinases. This well-studied host response is epigenetically regulated by histone acetylation/deacetylation. Here we show that entomopathogenic fungi can in turn sense the presence of insect-derived antifungal peptides and proteinase inhibitors, and respond by inducing the synthesis of chymotrypsin-like proteinases and metalloproteinases that degrade the host-derived defense molecules. The rapidity of this response is dependent on the virulence of the fungal strain. We confirmed the specificity of the pathogen response to host-derived defense molecules by LC/MS and RT-PCR analysis, and correlated this process with the epigenetic regulation of histone acetylation/deacetylation. This cascade of responses reveals that the coevolution of pathogens and hosts can involve a complex series of attacks and counterattacks based on communication between the invading fungal pathogen and its insect host. The resolution of this process determines whether or not pathogenesis is successful.

  14. Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen.

    PubMed

    Jaber, Sana; Mercier, Alex; Knio, Khouzama; Brun, Sylvain; Kambris, Zakaria

    2016-09-05

    Insects are well known vectors of human and animal pathogens and millions of people are killed by mosquito-borne diseases every year. The use of insecticides to target insect vectors has been hampered by the issues of toxicity to the environment and by the selection of resistant insects. Therefore, biocontrol strategies based on naturally occurring microbial pathogens emerged as a promising control alternative. The entomopathogenic fungus Beauveria bassiana is well characterized and have been approved by the United States Environmental Protection Agency as a pest biological control method. However, thousands of other fungi are unexploited and it is important to identify and use different fungi for biocontrol with possibly some vector specific strains. The aim of this study was to identify new fungal entomopathogens that may be used as potential mosquito biocontrol agents. Cadavers of arthropods were collected from pesticide free areas and the fungi associated isolated, cultured and identified. Then the ability of each isolate to kill laboratory insects was assayed and compared to that of B. bassiana. In total we have isolated and identified 42 fungal strains from 17 different arthropod cadavers. Twenty four fungal isolates were cultivated in the laboratory and were able to induce sporulation. When fungal spores were microinjected into Drosophila melanogaster, eight isolates proved to be highly pathogenic while the remaining strains showed moderate or no pathogenicity. Then a selection of isolates was tested against Aedes mosquitoes in a model mimicking natural infections. Only one fungus (Aspergillus nomius) was as pathogenic as B. bassiana and able to kill 100 % of the mosquitoes. The obtained results are encouraging and demonstrate the feasibility of this simple approach for the identification of new potential mosquito killers. Indeed, it is essential to anticipate and prepare biocontrol methods to fight the expansion of mosquitoes' habitat predicted in certain

  15. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2014-01-01

    Background Entomopathogenic fungi are potential candidates for use in integrated vector management, with recent emphasis aimed at developing adult mosquito control methods. Here we investigated the persistence of the fungus Metarhizium anisopliae when tested against female A. aegypti under field conditions. Methods Black cotton cloths impregnated with M. anisopliae conidia, formulated in vegetable oil + isoparaffin, were maintained on a covered veranda for up to 30 days. At specific times, pieces of the cloths were removed, placed in Tween 80 and the resuspended conidia were sprayed directly onto mosquitoes. The persistence of conidia impregnated on black cloths using three different carriers was evaluated in test rooms. Fifty mosquitoes were released into each room and after a 5 day period, the surviving insects were captured. Another 50 insects were then released into each room. The capacity of the fungus at reducing mosquito survival was evaluated over a total of 35 days. Results Conidia extracted from cloths maintained on the veranda for 2 to 18 days remained virulent, with 28 to 60% mosquito survival observed. Mosquito survival following exposure to fungus impregnated cloths showed that fungus + Tween caused similar reductions to that of fungus + vegetable oil. Mosquitoes exposed to the formulation fungus + vegetable oil had survival rates of 36% over the first 5 days of the experiment. Following the release of the second cohort of mosquitoes (6-11days), survival increased to 50%. The survival of the 12–17 day cohort (78%) was statistically equal to that of the controls (84%). Formulation of the fungus in vegetable oil + isoparaffin increased the persistence of the fungus, with the 18–23 day cohort (64% survival) still showing statistical differences to that of the controls (87% survival). Conclusions The potential of entomopathogenic fungi for the control of adult A. aegypti was confirmed under field conditions. Vegetable oil + isoparaffin formulations of

  16. Microbiota from Rhabditis regina may alter nematode entomopathogenicity.

    PubMed

    Jiménez-Cortés, Jesús Guillermo; Canales-Lazcano, Jorge; Lara-Reyes, Nancy; Rosenblueth, Mónica; Martínez-Romero, Esperanza; Contreras-Garduño, Jorge

    2016-11-01

    Here we report the presence of the entomopathogenic nematode Rhabditis (Rhabditoides) regina affecting white grubs (Phyllophaga sp. and Anomala sp.) in Mexico and R. regina-associated bacteria. Bioassays were performed to test the entomopathogenic capacity of dauer and L2 and L3 (combined) larval stages. Furthermore, we determined the diversity of bacteria from laboratory nematodes cultivated for 2 years (dauer and L2-L3 larvae) and from field nematodes (dauer and L2-L3 larvae) in addition to the virulence in Galleria mellonella larvae of some bacterial species from both laboratory and field nematodes. Dauer and non-dauer larvae of R. regina killed G. mellonella. Bacteria such as Serratia sp. (isolated from field nematodes) and Klebsiella sp. (isolated from larvae of laboratory and field nematodes) may explain R. regina entomopathogenic capabilities. Different bacteria were found in nematodes after subculturing in the laboratory suggesting that R. regina may acquire bacteria in different environments. However, there were some consistently found bacteria from laboratory and field nematodes such as Pseudochrobactrum sp., Comamonas sp., Alcaligenes sp., Klebsiella sp., Acinetobacter sp., and Leucobacter sp. that may constitute the nematode microbiome. Results showed that some bacteria contributing to entomopathogenicity may be lost in the laboratory representing a disadvantage when nematodes are cultivated to be used for biological control.

  17. Micoinseticidas e Micoacaricidas no Brasil: Como estamos?

    USDA-ARS?s Scientific Manuscript database

    Mycoinsecticides and mycoacaricides can be defined as biopesticide products based on living propagules of entomopathogenic fungi developed for inundative and inoculative biological control of insects and mites. Based on recently published data on global use of entomopathogenic fungi and a proposal f...

  18. Molecular Analysis of Hypervirulent Somatic Hybrids of the Entomopathogenic Fungi Beauveria bassiana and Beauveria sulfurescens

    PubMed Central

    Viaud, Muriel; Couteaudier, Yvonne; Riba, Guy

    1998-01-01

    Protoplast fusion of diauxotrophic mutants of a Beauveria bassiana entomopathogenic strain (Bb28) and a Beauveria sulfurescens toxinogenic strain (Bs2) produced hybrids which were significantly different from the parents in pathogenicity. Some of the hybrids were hypervirulent and killed insects more quickly than the Bb28 strain, probably because these hybrids had acquired the toxic activity of the Bs2 strain. By using six nuclear genes and a telomeric fingerprint probe, the molecular structures of the hybrids were studied. The results demonstrated the occurrence of parasexual events. Hybrids appeared to be diploid or aneuploid, with portions of the genome being heterozygous. A mitochondrial molecular marker indicated homoplasmy of the hybrids and inheritance of mitochondria from strain Bs2 or Bb28. The pathogenicities and the ploidies of the hybrids remained stable after passage through the host insect, showing that somatic hybridization provides an attractive method for the genetic improvement of biocontrol efficiency in the genus Beauveria. PMID:9435064

  19. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance

    PubMed Central

    Imperiali, Nicola; Chiriboga, Xavier; Schlaeppi, Klaus; Fesselet, Marie; Villacrés, Daniela; Jaffuel, Geoffrey; Bender, S. Franz; Dennert, Francesca; Blanco-Pérez, Ruben; van der Heijden, Marcel G. A.; Maurhofer, Monika; Mascher, Fabio; Turlings, Ted C. J.; Keel, Christoph J.; Campos-Herrera, Raquel

    2017-01-01

    In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by

  20. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance.

    PubMed

    Imperiali, Nicola; Chiriboga, Xavier; Schlaeppi, Klaus; Fesselet, Marie; Villacrés, Daniela; Jaffuel, Geoffrey; Bender, S Franz; Dennert, Francesca; Blanco-Pérez, Ruben; van der Heijden, Marcel G A; Maurhofer, Monika; Mascher, Fabio; Turlings, Ted C J; Keel, Christoph J; Campos-Herrera, Raquel

    2017-01-01

    In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas , mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by

  1. Identification of Immunity-Related Genes in Ostrinia furnacalis against Entomopathogenic Fungi by RNA-Seq Analysis

    PubMed Central

    Zhou, Fan; Wang, Guirong; An, Chunju

    2014-01-01

    Background The Asian corn borer (Ostrinia furnacalis (Guenée)) is one of the most serious corn pests in Asia. Control of this pest with entomopathogenic fungus Beauveria bassiana has been proposed. However, the molecular mechanisms involved in the interactions between O. furnacalis and B. bassiana are unclear, especially under the conditions that the genomic information of O. furnacalis is currently unavailable. So we sequenced and characterized the transcriptome of O. furnacalis larvae infected by B. bassiana with special emphasis on immunity-related genes. Methodology/Principal Findings Illumina Hiseq2000 was used to sequence 4.64 and 4.72 Gb of the transcriptome from water-injected and B. bassiana-injected O. furnacalis larvae, respectively. De novo assembly generated 62,382 unigenes with mean length of 729 nt. All unigenes were searched against Nt, Nr, Swiss-Prot, COG, and KEGG databases for annotations using BLASTN or BLASTX algorithm with an E-value cut-off of 10−5. A total of 35,700 (57.2%) unigenes were annotated to at least one database. Pairwise comparisons resulted in 13,890 differentially expressed genes, with 5,843 up-regulated and 8,047 down-regulated. Based on sequence similarity to homologs known to participate in immune responses, we totally identified 190 potential immunity-related unigenes. They encode 45 pattern recognition proteins, 33 modulation proteins involved in the prophenoloxidase activation cascade, 46 signal transduction molecules, and 66 immune responsive effectors, respectively. The obtained transcriptome contains putative orthologs for nearly all components of the Toll, Imd, and JAK/STAT pathways. We randomly selected 24 immunity-related unigenes and investigated their expression profiles using quantitative RT-PCR assay. The results revealed variant expression patterns in response to the infection of B. bassiana. Conclusions/Significance This study provides the comprehensive sequence resource and expression profiles of the

  2. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes.

    PubMed

    Xu, Jin; Xu, Xiaoxia; Shakeel, Muhammad; Li, Shuzhong; Wang, Shuang; Zhou, Xianqiang; Yu, Jialin; Xu, Xiaojing; Yu, Xiaoqiang; Jin, Fengliang

    2017-01-01

    Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs). The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea . To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella .

  3. The Hidden Habit of the Entomopathogenic Fungus Beauveria bassiana: First Demonstration of Vertical Plant Transmission

    PubMed Central

    Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz

    2014-01-01

    Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120–140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum. PMID:24551242

  4. The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission.

    PubMed

    Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz

    2014-01-01

    Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120-140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum.

  5. The use of fungal entomopathogens as endophytes in biological control: a review

    USDA-ARS?s Scientific Manuscript database

    Fungal entomopathogens have been proposed as environmentally friendly alternatives to chemical control. Unfortunately, their effectiveness continues to be limited by their susceptibility to UV light, low moisture, etc. A relatively recent development, the use of fungal entomopathogens as endophytes,...

  6. Direct plantlet inoculation with soil or insect-associated fungi may control cabbage root fly maggots.

    PubMed

    Razinger, Jaka; Lutz, Matthias; Schroers, Hans-Josef; Palmisano, Marilena; Wohler, Christian; Urek, Gregor; Grunder, Jürg

    2014-07-01

    A potential Delia radicum biological control strategy involving cauliflower plantlet inoculation with various fungi was investigated in a series of laboratory and glasshouse experiments. In addition to entomopathogenic fungi, fungi with a high rhizosphere competence and fungi with the ability to survive as saprotrophs in soil were tested. The following fungal species were evaluated in the experiments: Trichoderma atroviride, T. koningiopsis, T. gamsii, Beauveria bassiana, Metharhizium anisopliae, M. brunneum and Clonostachys solani. A commercial carbosulfan-based insecticide was used as a positive control. Additionally, two commercial products, one based on B. bassiana (Naturalis) and one on Bacillus thuringiensis (Delfin) were used as reference biocontrol agents. The aims were (i) to assess the pathogenicity of the selected fungal isolates to Delia radicum, (ii) to evaluate the fungal isolates' rhizosphere competence, with the emphasis on the persistence of the original inoculum on the growing roots, (iii) to assess possible endophytic plant tissue colonization, and (iv) to evaluate potential plant growth stimulating effects of the added inoculi. Significant pathogenicity of tested fungi against Delia radicum was confirmed in in vitro and glasshouse experiments. All tested fungi persisted on cauliflower rhizoplane. More importantly, the added fungi were found on thoroughly washed roots outside the original point of inoculation. This provided us with evidence that our tested fungi could be transferred via or grow with the elongating roots. In addition to colonizing the rhizoplane, some fungi were found inside the plant root or stem tissue, thus exhibiting endophytic characteristics. The importance of fungal ecology as a criterion in appropriate biological control agent selection is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi.

    PubMed

    Proctor, Robert H; McCormick, Susan P; Kim, Hye-Seon; Cardoza, Rosa E; Stanley, April M; Lindo, Laura; Kelly, Amy; Brown, Daren W; Lee, Theresa; Vaughan, Martha M; Alexander, Nancy J; Busman, Mark; Gutiérrez, Santiago

    2018-04-01

    Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.

  8. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi

    PubMed Central

    McCormick, Susan P.; Lee, Theresa; Vaughan, Martha M.; Alexander, Nancy J.; Busman, Mark

    2018-01-01

    Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi. PMID:29649280

  9. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents

    PubMed Central

    2012-01-01

    Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130

  10. Passive vectoring of entomopathogenic fungus Beauveria bassiana among the wax moth Galleria mellonella larvae by the ectoparasitoid Habrobracon hebetor females.

    PubMed

    Kryukov, Vadim Yu; Kryukova, Natalia A; Tyurin, Maksim V; Yaroslavtseva, Olga N; Glupov, Viktor V

    2017-03-15

    Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with fungal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n-hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  11. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens.

    PubMed

    Shikano, Ikkei

    2017-06-01

    Plants play an important role in the interactions between insect herbivores and their pathogens. Since the seminal review by Cory and Hoover (2006) on plant-mediated effects on insect-pathogen interactions, considerable progress has been made in understanding the complexity of these tritrophic interactions. Increasing interest in the areas of nutritional and ecological immunology over the last decade have revealed that plant primary and secondary metabolites can influence the outcomes of insect-pathogen interactions by altering insect immune functioning and physical barriers to pathogen entry. Some insects use plant secondary chemicals and nutrients to prevent infections (prophylactic medication) and medicate to limit the severity of infections (therapeutic medication). Recent findings suggest that there may be selectable plant traits that enhance entomopathogen efficacy, suggesting that entomopathogens could potentially impose selection pressure on plant traits that improve both pathogen and plant fitness. Moreover, plants in nature are inhabited by diverse communities of microbes, in addition to entomopathogens, some of which can trigger immune responses in insect herbivores. Plants are also shared by numerous other herbivorous arthropods with different modes of feeding that can trigger different defensive responses in plants. Some insect symbionts and gut microbes can degrade ingested defensive phytochemicals and be orally secreted onto wounded plant tissue during herbivory to alter plant defenses. Since non-entomopathogenic microbes and other arthropods are likely to influence the outcomes of plant-insect-entomopathogen interactions, I discuss a need to consider these multitrophic interactions within the greater web of species interactions.

  12. Basic and applied research: Entomopathogenic nematodes

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema kill arthropods with the aid of their bacterial symbionts. These nematodes are potent microbial control agents that have been widely commercialized for control of economically important insect pests. Biocontrol efficacy relies...

  13. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    PubMed

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  14. Effect of the entomopathogenic fungus Lecanicillium muscariumon the predatory mite Phytoseiulus persimilis as a non-target organism.

    PubMed

    Donka, András; Sermann, Helga; Büttner, Carmen

    2008-01-01

    In biological control, different benefit organisms have to combine for an effective management. If entomopathogenic fungi will be integrated, than it has to be considered also the effect on non-target organisms Like beneficial arthropods. Because of the high importance of predatory mite Phytoseiulus persimilis in biological control it was to determine side effects of Leconicillium muscarium on this species. In two standardised biotests in petri dish and on plants (P. vulgaris) individuals were dipped in suspension or set down on leafs after spraying with L. muscarium at different spore density. Results indicate pathogenicity for the predatory mite in principle. But the dimension of infection risk decrease, all the more conditions approach to practical sequence. Under practical conditions on plants and in practical relevant concentration of 10(6) and 10(7) sp./ml no risk is to expect on the plant.

  15. Effects of single and combined applications of entomopathogenic fungi and nematodes against Rhynchophorus ferrugineus (Olivier)

    USDA-ARS?s Scientific Manuscript database

    This study was carried out to investigate the insecticidal properties of Beauveria bassiana and Metarhizium anisopliae, and Heterorhabditis bacteriophora Poinar for their virulence against 2nd, 4th and 6th instar larvae of Rhynchophorus ferrugineus (Olivier). Both fungi were either applied alone or ...

  16. A novel monopartite dsRNA virus isolated from the entomopathogenic and nematophagous fungus Purpureocillium lilacinum.

    PubMed

    Herrero, Noemi

    2016-12-01

    Purpureocillium lilacinum is a ubiquitous saprophytic fungus commonly isolated from soils and widely known as a biological control agent against phytopathogenic nematodes and pest insects. Mycoviruses infect a wide number of fungal species, but the study of viruses infecting entomopathogenic fungi is still quite recent. In this study, a total of 86 P. lilacinum isolates collected from soil in natural and cultivated habitats throughout the Czech Republic were analyzed; 22 % of the isolates harbored double-stranded RNA (dsRNA) elements with viral characteristics. These results suggest that mycoviruses are common in P. lilacinum. One of the most common dsRNA elements detected in the survey was completely sequenced and corresponded to the 2,864-bp genome of a previously undescribed mycovirus, designated Purpureocillium lilacinum nonsegmented virus 1 (PlNV-1). Phylogenetic analysis of the RNA-dependent RNA polymerase of PlNV-1 indicated that this virus might belong to a new taxon related to the family Partitiviridae.

  17. The use of entomopathogenic nematodes in the US and issues related to genetic degradation

    USDA-ARS?s Scientific Manuscript database

    Research and commercial application of entomopathogenic nematodes in North America has a long history. In the pursuit of commercial viability, there have been a number of success stories, but also quite a number of dead ends. We provide insight into new opportunities for entomopathogenic nematodes...

  18. Survey of indigenous entomopathogenic fungi and evaluation of their pathogenicity against the carmine spider mite, Tetranychus cinnabarinus (Boisd.), and the whitefly, Bemisia tabaci (Genn.) biotype B.

    PubMed

    Topuz, Emine; Erler, Fedai; Gumrukcu, Emine

    2016-12-01

    The carmine spider mite, Tetranychus cinnabarinus, and the silverleaf whitefly, Bemisia tabaci, are serious pests of both field- and greenhouse-grown crops in south-western Turkey. Control of these pests has been heavily dependent upon chemical pesticides. The objectives of this study were to investigate the occurrence of indigenous entomopathogenic fungi (EPF) in field populations of T. cinnabarinus and B. tabaci, and to evaluate their pathogenicity against these pests. For this purpose, a survey of EPF isolated from field-collected samples of both pests was carried out in Antalya in 2010 and 2011 using the dilution plating method. Four indigenous Beauveria bassiana isolates (TUR1-B, TUR2-B, FIN1-B, FIN2-B) were recovered. In pathogenicity bioassays with T. cinnabarinus and B. tabaci biotype B, all the isolates tested were pathogenic to some of the biological stages of both pests to varying degrees. FIN1-B and TUR1-B caused mortalities of up to 50 and 45%, respectively, in adults of T. cinnabarinus, and of over 79 and 37%, respectively, in pupae of B. tabaci with 10 7 conidia mL -1 suspensions under laboratory conditions 10 days after inoculation. FIN2-B and TUR2-B had mortalities of 19.45 and 12.28%, respectively, in adults of T. cinnabarinus, and of 6.78 and 8.18%, respectively, in pupae of B. tabaci. None of the isolates had an effect on eggs of either species and larvae of the mite. Overall results suggest that isolates FIN1-B and TUR1-B have potential for management of T. cinnabarinus and B. tabaci. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Entomopathogenic nematodes for the biocontrol of ticks.

    PubMed

    Samish, M; Glazer, I

    2001-08-01

    Entomopathogenic steinemematid and heterorhabditid nematodes are increasingly used to control insect pests of economically important crops. Laboratory and field simulation trials show that ticks are also susceptible to these nematodes. The authors review the potential of entomogenous nematodes for the control of ticks.

  20. Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

    PubMed Central

    Shang, Yanfang; Duan, Zhibing; Hu, Xiao; Xie, Xue-Qin; Zhou, Gang; Peng, Guoxiong; Luo, Zhibing; Huang, Wei; Wang, Bing; Fang, Weiguo; Wang, Sibao; Zhong, Yi; Ma, Li-Jun; St. Leger, Raymond J.; Zhao, Guo-Ping; Pei, Yan; Feng, Ming-Guang; Xia, Yuxian; Wang, Chengshu

    2011-01-01

    Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains

  1. Enhanced biological control potential of the entomopathogenic nematode, Steinernema carpocapsae, applied with a protective gel formulation

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic nematodes combined with the anti-desiccation gel, Barricade®, have potential as an effective pest management tool. We (1) ascertained whether Barricade® could provide protection to entomopathogenic nematode s at low concentrations when applied in direct sun, (2) determined if other ...

  2. Rhipicephalus microplus infected by Metarhizium: unveiling hemocyte quantification, GFP-fungi virulence, and ovary infection.

    PubMed

    de Paulo, Jéssica Fiorotti; Camargo, Mariana Guedes; Coutinho-Rodrigues, Caio Junior Balduino; Marciano, Allan Felipe; de Freitas, Maria Clemente; da Silva, Emily Mesquita; Gôlo, Patrícia Silva; Morena, Diva Denelle Spadacci; da Costa Angelo, Isabele; Bittencourt, Vânia Rita Elias Pinheiro

    2018-06-01

    Hemocytes, cells present in the hemocoel, are involved in the immune response of arthropods challenged with entomopathogens. The present study established the best methodology for harvesting hemocytes from Rhipicephalus microplus and evaluated the number of hemocytes in addition to histological analysis from ovaries of fungus-infected females and tested the virulence of GFP-fungi transformants. Different centrifugation protocols were tested, and the one in which presented fewer disrupted cells and higher cell recovery was applied for evaluating the effect of Metarhizium spp. on hemocytes against R. microplus. After processing, protocol number 1 (i.e., hemolymph samples were centrifuged at 500×g for 3 min at 4 °C) was considered more efficient, with two isolates used (Metarhizium robertsii ARSEF 2575 and Metarhizium anisopliae ARSEF 549), both wild types and GFP, to assess their virulence. In the biological assays, the GFP-fungi were as virulent as wild types, showing no significant differences. Subsequently, hemocyte quantifications were performed after inoculation, which exhibited notable changes in the number of hemocytes, reducing by approximately 80% in females previously treated with Metarhizium isolates in comparison to non-treated females. Complementarily, 48 h after inoculation, in which hemolymph could not be obtained, histological analysis showed the high competence of these fungi to colonize ovary from ticks. Here, for the first time, the best protocol (i.e., very low cell disruption and high cell recovery) for R. microplus hemocyte obtaining was established aiming to guide directions to other studies that involves cellular responses from ticks to fungi infection.

  3. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae).

    PubMed

    Carolino, Aline T; Paula, Adriano R; Silva, Carlos P; Butt, Tariq M; Samuels, Richard I

    2014-04-25

    Entomopathogenic fungi are potential candidates for use in integrated vector management, with recent emphasis aimed at developing adult mosquito control methods. Here we investigated the persistence of the fungus Metarhizium anisopliae when tested against female A. aegypti under field conditions. Black cotton cloths impregnated with M. anisopliae conidia, formulated in vegetable oil + isoparaffin, were maintained on a covered veranda for up to 30 days. At specific times, pieces of the cloths were removed, placed in Tween 80 and the resuspended conidia were sprayed directly onto mosquitoes. The persistence of conidia impregnated on black cloths using three different carriers was evaluated in test rooms. Fifty mosquitoes were released into each room and after a 5 day period, the surviving insects were captured. Another 50 insects were then released into each room. The capacity of the fungus at reducing mosquito survival was evaluated over a total of 35 days. Conidia extracted from cloths maintained on the veranda for 2 to 18 days remained virulent, with 28 to 60% mosquito survival observed. Mosquito survival following exposure to fungus impregnated cloths showed that fungus + Tween caused similar reductions to that of fungus + vegetable oil. Mosquitoes exposed to the formulation fungus + vegetable oil had survival rates of 36% over the first 5 days of the experiment. Following the release of the second cohort of mosquitoes (6-11days), survival increased to 50%. The survival of the 12-17 day cohort (78%) was statistically equal to that of the controls (84%). Formulation of the fungus in vegetable oil + isoparaffin increased the persistence of the fungus, with the 18-23 day cohort (64% survival) still showing statistical differences to that of the controls (87% survival). The potential of entomopathogenic fungi for the control of adult A. aegypti was confirmed under field conditions. Vegetable oil + isoparaffin formulations of M. anisopliae significantly increased the

  4. Identification of an entomopathogenic bacterium, Serratia sp. ANU101, and its hemolytic activity.

    PubMed

    Kim, Yonggyun; Kim, Keunseob; Seo, Jiae; Shrestha, Sony; Kim, Hosanna H; Nalini, Madanagopal; Yi, Youngkeun

    2009-03-01

    Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

  5. Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida.

    PubMed

    Campos-Herrera, Raquel; Trigo, Dolores; Gutiérrez, Carmen

    2006-05-01

    The free-living stage of entomopathogenic nematodes occurs in soil, and is an environmental-friendly alternative for biological control. However, their dispersal capability is limited. Earthworms improve soil characteristics, changing soil structure and influencing many edaphic organisms. Thus, earthworms could be used as vectors to introduce/disperse beneficial organisms. Nevertheless this interaction has not been studied in detail. This study presents the infectivity results of Steinernema feltiae after passing through the Eisenia fetida gut. Although entomopathogenic nematodes have no deleterious effects on earthworms, their passage through E. fetida gut seriously affected their mobility and virulence.

  6. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    PubMed Central

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  7. Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis.

    PubMed

    Zhu, Lei; Peng, Donghai; Wang, Yueying; Ye, Weixing; Zheng, Jinshui; Zhao, Changming; Han, Dongmei; Geng, Ce; Ruan, Lifang; He, Jin; Yu, Ziniu; Sun, Ming

    2015-09-28

    Bacillus thuringiensis has been globally used as a microbial pesticide for over 70 years. However, information regarding its various adaptions and virulence factors and their roles in the entomopathogenic process remains limited. In this work, we present the complete genomes of two industrially patented Bacillus thuringiensis strains (HD-1 and YBT-1520). A comparative genomic analysis showed a larger and more complicated genome constitution that included novel insecticidal toxicity-related genes (ITRGs). All of the putative ITRGs were summarized according to the steps of infection. A comparative genomic analysis showed that highly toxic strains contained significantly more ITRGs, thereby providing additional strategies for infection, immune evasion, and cadaver utilization. Furthermore, a comparative transcriptomic analysis suggested that a high expression of these ITRGs was a key factor in efficient entomopathogenicity. We identified an active extra urease synthesis system in the highly toxic strains that may aid B. thuringiensis survival in insects (similar to previous results with well-known pathogens). Taken together, these results explain the efficient entomopathogenicity of B. thuringiensis. It provides novel insights into the strategies used by B. thuringiensis to resist and overcome host immune defenses and helps identify novel toxicity factors.

  8. Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis

    PubMed Central

    Zhu, Lei; Peng, Donghai; Wang, Yueying; Ye, Weixing; Zheng, Jinshui; Zhao, Changming; Han, Dongmei; Geng, Ce; Ruan, Lifang; He, Jin; Yu, Ziniu; Sun, Ming

    2015-01-01

    Bacillus thuringiensis has been globally used as a microbial pesticide for over 70 years. However, information regarding its various adaptions and virulence factors and their roles in the entomopathogenic process remains limited. In this work, we present the complete genomes of two industrially patented Bacillus thuringiensis strains (HD-1 and YBT-1520). A comparative genomic analysis showed a larger and more complicated genome constitution that included novel insecticidal toxicity-related genes (ITRGs). All of the putative ITRGs were summarized according to the steps of infection. A comparative genomic analysis showed that highly toxic strains contained significantly more ITRGs, thereby providing additional strategies for infection, immune evasion, and cadaver utilization. Furthermore, a comparative transcriptomic analysis suggested that a high expression of these ITRGs was a key factor in efficient entomopathogenicity. We identified an active extra urease synthesis system in the highly toxic strains that may aid B. thuringiensis survival in insects (similar to previous results with well-known pathogens). Taken together, these results explain the efficient entomopathogenicity of B. thuringiensis. It provides novel insights into the strategies used by B. thuringiensis to resist and overcome host immune defenses and helps identify novel toxicity factors. PMID:26411888

  9. The occurrence of immune priming can be species-specific in entomopathogens.

    PubMed

    Medina Gomez, Héctor; Adame Rivas, Galia; Hernández-Quintero, Angélica; González Hernández, Angélica; Torres Guzmán, Juan Carlos; Mendoza, Humberto Lanz; Contreras-Garduño, Jorge

    2018-05-01

    Immune priming in invertebrates refers to an improved immune response (and therefore a better chance of survival) upon a second encounter with a specific pathogen. Although the existence of immune priming has been evaluated in invertebrate hosts, the ability of a particular entomopathogen species or strain to influence the occurrence of immune priming has not been thoroughly evaluated. The aim of the current study was to compare the occurrence of immune priming in Tenebrio molitor larvae after homologous challenges (a dual exposure to similar entomopathogens) with Serratia marcescens, Bacillus thuringiensis and Metarhizium anisopliae. Larvae presented more effective immune priming (measured as survival rates) when exposed to M. anisopliae or B. thuringiensis than when exposed to S. marcescens. We hypothesize that the toll pathway may help T. molitor survive these enemies and that the IMD pathway may be expressed to a lesser degree in this species, which may explain why they succumb to Gram-negative bacteria. This and other recent evidence suggest that the occurrence of immune priming in these organisms must not be ruled out until this phenomenon is tested with different entomopathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii.

    PubMed

    Wang, Yulong; Wang, Tiantian; Qiao, Lintao; Zhu, Jianyu; Fan, Jinrui; Zhang, Tingting; Wang, Zhang-Xun; Li, Wanzhen; Chen, Anhui; Huang, Bo

    2017-05-01

    DNA methylation is an important epigenetic mark in mammals, plants, and fungi and depends on multiple genetic pathways involving de novo and maintenance DNA methyltransferases (DNMTases). Metarhizium robertsii, a model system for investigating insect-fungus interactions, has been used as an environmentally friendly alternative to chemical insecticides. However, little is known concerning the molecular basis for DNA methylation. Here, we report on the roles of two DNMTases (MrRID and MrDIM-2) by characterizing ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 mutants. The results showed that approximately 71, 10, and 8% of m C sites remained in the ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 strains, respectively, compared with the wild-type (WT) strain. Further analysis showed that MrRID regulates the specificity of DNA methylation and MrDIM-2 is responsible for most DNA methylation, implying an interaction or cooperation between MrRID and MrDIM-2 for DNA methylation. Moreover, the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains showed more defects in radial growth and conidial production compared to the WT. Under ultraviolet (UV) irradiation or heat stress, an obvious reduction in spore viability was observed for all the mutant strains compared to the WT. The spore median lethal times (LT 50 s) for the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains in the greater wax moth, Galleria mellonella, were decreased by 47.7 and 65.9%, respectively, which showed that MrDIM-2 is required for full fungal virulence. Our data advances the understanding of the function of DNMTase in entomopathogenic fungi, which should contribute to future epigenetic investigations in fungi.

  11. Virulence of entomopathogenic bacteria in the bed bug, Cimex lectularius.

    PubMed

    Pietri, Jose E; Liang, Dangsheng

    2018-01-01

    Due in part to the development of insecticide resistance, the common bed bug, Cimex lectularius, has overcome human intervention efforts to make a global resurgence. The failure of chemical pesticides has created a need for novel strategies to combat bed bugs. While a number of insect pests are susceptible to the use of entomopathogenic microbes or microbial-derived toxins, biological control methods have not been thoroughly explored in bed bugs. Here, we tested the virulence of three entomopathogenic bacterial species in C. lectularius to determine their potential for bed bug control. We examined bed bug survival after inoculation with live or heat-killed Serratia marcescens, Pseudomonas fluorescens, and Bacillus thuringiensis israelensis at varying temperatures. We also analyzed the viability and growth of the same bacteria in infected bed bugs. All three bacterial species were pathogenic to bed bugs. However, the effects of S. marcescens and P. fluorescens were temperature-dependent while the lethality of B. thuringiensis israelensis was not. In addition, bacterial virulence was partly dependent on the route of infection but was not strongly associated with proliferation. Thus, our results suggest multiple possible mechanisms of microbial pathogenicity in the bed bug and indicate that entomopathogenic bacteria, or products derived from them, may have useful applications for bed bug control. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Purification and characterisation of proteins secreted by the entomopathogenic fungus Metarhizium anisopliae with insecticidal activity against adults of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae).

    PubMed

    Ortiz-Urquiza, Almudena; Garrido-Jurado, Inmaculada; Santiago-Alvarez, Cándido; Quesada-Moraga, Enrique

    2009-10-01

    The control of the Mediterranean fruit fly (medfly) Ceratitis capitata (Wied) is usually performed with protein bait sprays incorporating chemical insecticides that may have adverse effects on humans, non-target organisms and the environment. In recent years, scientists have sought more environmentally friendly insecticides for medfly control, such as plant- and microorganism-derived compounds. Among these compounds, entomopathogenic fungi are an unexplored source of natural insecticides. The crude soluble protein extract (CSPE) of the entomopathogenic fungus Metarhizium anisopliae (Mestch.) (strain EAMa 01/58-Su) shows chronic insecticidal activity when administered per os. Mortality in flies exhibits a dose response. The CSPE produces an antifeedant effect in adult flies, a result probably due to a progressive deterioration of the fly midgut after ingestion of the extract. Protease and temperature treatments show that insecticidal activity against C. capitata is due to proteinaceous compounds that are highly thermostable. Four monomeric proteins from this crude extract have been purified by liquid chromatography and gel electroelution. Although all four monomers seem to be involved in the insecticidal activity of the CSPE, the 15 kDa and the 11 kDa proteins appear to be mainly responsible for the observed insecticidal effect. Four new fungal proteins with insecticidal activity have been purified and identified. These proteins might be combined with insect baits for C. capitata biocontrol. Copyright 2009 Society of Chemical Industry.

  13. Inoculation of sphagnum-based soil substrate with entomopathogenic fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae)

    NASA Astrophysics Data System (ADS)

    Zemek, Rostislav; Konopická, Jana; Bohatá, Andrea

    2018-04-01

    Convenient ecological alternative to broad-spectrum chemical pesticides is the utilization of natural enemies, like predators, parasitoids and microorganisms. A substantial number of microbial biopesticides based on entomopathogenic fungi have been developed worldwide since 1960s. Beauveria bassiana (Balsamo-Crivelli) Vuillemin, Metarhizium anisopliae (Metchnikoff) Sorokin, Isaria fumosorosea (Wize), and B. brongniartii (Saccardo) Petch are the most common species used in commercially produced mycopesticides. Besides direct biological pest control, these fungi could be also used in preventive application programs, particularly in ornamental or nursery plants to provide better control against pests. The aim of the present study was to investigate potential of pre-colonization of sphagnum-based soil substrate with I. fumosorosea strain CCM 8367 which was found earlier to be highly virulent against several pest species. We developed simple laboratory apparatus for application of fungal spore suspension into the substrate. Suspension was prepared from blastospores obtained by submerged cultivation on potato dextrose broth (PDB) medium using an orbital shaker. Inoculated substrate was placed into plastic bags and stored at constant temperature for six months. Every month, samples were analyzed for concentration of colony forming units (CFU) by elution and selective medium technique. The results showed that at 20°C the fungus successfully colonized the soil substrate and persisted there although the mean concentration slightly decreased from 5.89×104 to 2.76×104 CFU per milliliter of substrate during the experiment. Temperature 30°C had negative effect on survival of the fungus and is not recommended for long-term storage of pre-inoculated substrate. We can conclude that I. fumosorosea-colonized substrate can be convenient for preventive and permanent protection of various plants against soil-dwelling pests.

  14. Optimization of a Host Diet for in vivo Production of Entomopathogenic Nematodes

    PubMed Central

    Shapiro-Ilan, David; Guadalupe Rojas, M.; Morales-Ramos, Juan A.; Louis Tedders, W.

    2012-01-01

    To facilitate improved in vivo culture of entomopathogenic nematodes, production of both insect hosts and nematodes should be optimized for maximum fitness, quality, and cost efficiency. In previous studies, we developed an improved diet for Tenebrio molitor, a host that is used for in vivo nematode production, and we demonstrated that single insect diet components (e.g., lipids and proteins) can have a positive or negative impact on entomopathogenic nematode fitness and quality. In this study, we tested components of our improved T. molitor diet (lipids, cholesterol, and a salt [MnSO4]) alone and in combination for effects on host susceptibility and reproductive capacity of Heterorhabditis indica and Steinernema carpocapsae. Our results indicated that moderate levels of lipids (10%) increased host susceptibility to S. carpocapsae but did not affect H. indica, whereas cholesterol and MnSO4 increased host susceptibility to H. indica but not S. carpocapsae. The combined T. molitor diet (improved for increased insect growth) increased host susceptibility to S. carpocapsae and had a neutral effect on H. indica; interactions among single diet ingredients were observed. No effects of insect host diet were detected on the reproductive capacity of either nematode species in T. molitor. Subsequently, progeny infective juveniles, derived from nematodes grown in T. molitor that were fed diets with varying nutritive components were tested for virulence to and reproduction capacity in the target pest Diaprepes abbreviatus. The progeny nematodes produced from differing T. molitor diet treatments did not differ in virulence except H. indica derived from a diet that lacked cholesterol or MnS04 (but contained lipids) did not cause significant D. abbreviatus suppression relative to the water control. We conclude that the improved insect host diet is compatible with production of H. indica and S. carpocapsae, and increases host susceptibility in S. carpocapsae. Furthermore, in a

  15. Establishing fungal entomopathogens as endophytes: towards endophytic biological control

    USDA-ARS?s Scientific Manuscript database

    Beauveria basssiana is a fungal entomopathogen with the ability to colonize plants endophytically. As an endophyte, B. bassiana may play a role in protecting plants from herbivory and disease. This protocol demonstrates two inoculation methods to establish B. bassiana endophytically in the common be...

  16. In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito.

    PubMed

    Lai, Yiling; Chen, Huan; Wei, Ge; Wang, Guandong; Li, Fang; Wang, Sibao

    2017-08-01

    The use of entomopathogenic fungi to control mosquitoes is a promising tool for reducing vector-borne disease transmission. To better understand infection stratagems of insect pathogenic fungi, we analyzed the global gene expression profiling of Beauveria bassiana at 36, 60, 84 and 108 h after topical infection of Anopheles stephensi adult mosquitoes using RNA sequencing (RNA-Seq). A total of 5,354 differentially expressed genes (DEGs) are identified over the course of fungal infection. When the fungus grows on the mosquito cuticle, up-regulated DEGs include adhesion-related genes involved in cuticle attachment, Pth11-like GPCRs hypothesized to be involved in host recognition, and extracellular enzymes involved in the degradation and penetration of the mosquito cuticle. Once in the mosquito hemocoel, the fungus evades mosquito immune system probably through up-regulating expression of β-1,3-glucan degrading enzymes and chitin synthesis enzymes for remodeling of cell walls. Moreover, six previous unknown SSCP (small secreted cysteine-rich proteins) are significantly up-regulated, which may serve as "effectors" to suppress host defense responses. B. bassiana also induces large amounts of antioxidant genes to mitigate host-generated exogenous oxidative stress. At late stage of infection, B. bassiana activates a broad spectrum of genes including nutrient degrading enzymes, some transporters and metabolism pathway components, to exploit mosquito tissues and hemolymph as a nutrient source for hyphal growth. These findings establish an important framework of knowledge for further comprehensive elucidation of fungal pathogenesis and molecular mechanism of Beauveria-mosquito interactions.

  17. Identification of entomopathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    This chapter provides essential assistance for the identification of the most important genera (and main species) of fungal pathogens affecting insects, mites, and spiders. The key allows identifications regardless of which major spore types might be present with the specimen. The phylogenetic affi...

  18. Repellent activity of desiccant dusts and conidia of the entomopathogenic fungus Beauveria bassiana when tested against poultry red mites (Dermanyssus gallinae) in laboratory experiments.

    PubMed

    Kilpinen, Ole; Steenberg, Tove

    2016-11-01

    Desiccant dusts and entomopathogenic fungi have previously been found to hold potential against the poultry red mite, which is an important pest in egg production and notoriously difficult to control. Both control agents may cause repellence in other arthropods and potentially also influence control levels adversely when used against the poultry red mite. Five desiccant dust products with good efficacy against the poultry red mite Dermanyssus gallinae caused avoidance behavior in mites when tested in bioassays. The repellent activity was correlated with efficacy, which was found to depend on both dose and relative humidity (RH). However, one desiccant dust was significantly less repellent compared to other dusts with similar levels of efficacy. Further, dry conidia of the fungus Beauveria bassiana were also shown to be repellent to poultry red mites, both when applied on its own and when admixed with a low dose of the desiccant dust Diamol. The pick-up of desiccant dust particles and fungus conidia from treated surfaces by mites did not differ depending on RH, whereas the overall efficacy of the two control agents were significantly higher at 75 than at 85 % RH. In addition, the combined effect of the two substances was synergistic when tested in a bioassay where mites could choose whether to cross a treated surface. This is the first time a member of Acari has been shown to be repelled by desiccant dusts and by conidia of an entomopathogenic fungus.

  19. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.

    PubMed

    Abebe-Akele, Feseha; Tisa, Louis S; Cooper, Vaughn S; Hatcher, Philip J; Abebe, Eyualem; Thomas, W Kelley

    2015-07-18

    Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are

  20. Isolation and Assessment of Stability of Six Formulations of Entomopathogenic Beauveria bassiana.

    PubMed

    Mwamburi, Lizzy A

    2016-01-01

    Beauveria bassiana is the most widely studied and exploited entomopathogen. The development of a suitable formulation for B. bassiana is a critical component in aiding the entomopathogen germinate and infect the host. In addition to being economical to produce, having high residual activity, it is also important that the formulation is easy to handle, stable during storage, and convenient to mix and apply and be consistently effective in controlling the target pest.In this chapter we describe preparation of experimental formulations of conidia of B. bassiana. The formulations are prepared with barley, rice, wheat bran, clay, kaolin, and peat. The protocol for assessing the stability of the formulations of B. bassiana is also described.

  1. Extracellular lipase of an entomopathogenic fungus effecting larvae of a scale insect.

    PubMed

    Ali, Shaukat; Ren, Shunxiang; Huang, Zhen

    2014-11-01

    Lipases play an important role in the infection process of entomopathogenic fungi by hydrolyzing the ester bonds of lipoproteins, fats and waxes present on the insect surface and in the body. Here we report the purification and characterization of an extracellular lipase from Isaria fumosorosea. The enzyme was purified (138.46-fold) in three steps using (NH4 )2 SO4 precipitation followed by DEAE-cellulose and Sephadex G-100 column chromatography. The molecular weight of purified enzyme was determined to be 31 KDa by SDS-PAGE. The optimum temperature and pH for enzyme activity were 35 °C and 7.0, respectively, using p-nitrophenylpalmitate as the substrate. Lipolytic activity was enhanced in the presence of Ca(+2) , Mg(+2) , Na(+) , and NH4 (+) salts, while Zn(+2) , Fe(+2) , and Cu(+2) inhibited enzyme activity. The enzyme displayed broad substrate specificity with the highest activity observed for coconut oil and p-nitrophenyl carprate. Topical co-application of purified lipase with fungal conidial suspensions decreased the median survival time (ST50 ) of Dysmicoccus neobrevipes nymphs as compared to the fungus alone. Our results indicate that an extracellular lipase produced by I. fumosorosea can be exploited for development of enzyme-based insect management. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Directional movement of entomopathogenic nematodes in response to electrical fields: Effects of species, magnitude of voltage, and infective juvenile age

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic nematodes respond to a variety of stimuli when foraging. Previously, we reported a directional response to electrical fields for two entomopathogenic nematode species; specifically, when electrical fields were generated on agar plates Steinernema glaseri (a nematode that utilizes a...

  3. The first record of entomopathogenic nematodes (Rhabiditiae: Steinernematidae and Heterorhabditidae) in natural ecosystems in Lebanon: A biogeographic approach in the Mediterranean region.

    PubMed

    Noujeim, Elise; Khater, Carla; Pages, Sylvie; Ogier, Jean-Claude; Tailliez, Patrick; Hamze, Mouïn; Thaler, Olivier

    2011-05-01

    A survey of entomopathogenic nematodes in Lebanon was conducted for the first time during 2008-2009. Samples were collected on the coastal strip and in nine vegetation types extending from the coastal line to 3088m above sea level. Wooded and herbaceous ecosystems were considered for sampling purposes. A total of 570 samples were taken, out of which 1% were positive for entomopathogenic nematodes. Approximately, 15.8% out of the 19 sites sampled revealed entomopathogenic nematodes presence (representing three samples). Two entomopathogenic nematodes species Heterorhabditis bacteriophora and Steinernema feltiae were recovered, and identification of their symbiotic bacteria revealed the presence of a Xenorhabdus bovienii, Photorhabdus temperata subsp. thracensis, Photorhabdus luminescens subsp. kayaii and Photorhabdus luminescens subsp. Laumondii. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae.

    PubMed

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; Thomas, Stephy; Geethu, C

    2018-03-01

    An entomopathogenic fungus, Lecanicillium psalliotae strain IISR-EPF-02 previously found infectious to cardamom thrips, Sciothrips cardamomi promoted plant growth in cardamom, Elettaria cardamomum. The isolate exhibited direct plant growth promoting traits by production of indole-3-acetic acid and ammonia and by solubilizing inorganic phosphate and zinc. It also showed indirect plant growth promoting traits by producing siderophores and cell wall-degrading enzymes like, α-amylases, cellulases and proteases. In pot culture experiments, application of the fungus at the root zone of cardamom seedlings significantly increased shoot and root length, shoot and root biomass, number of secondary roots and leaves and leaf chlorophyll content compared to untreated plants. This is the first report on the plant growth promoting traits of this fungus. The entomopathogenic and multifarious growth promoting traits of L. psalliotae strain IISR-EPF-02 suggest that it has great potential for exploitation in sustainable agriculture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae

    PubMed Central

    2011-01-01

    Background The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana have demonstrated effectiveness against anopheline larvae in the laboratory. However, utilising these fungi for the control of anopheline larvae under field conditions, relies on development of effective means of application as well as reducing their sensitivity to UV radiation, high temperatures and the inevitable contact with water. This study was conducted to develop formulations that facilitate the application of Metarhizium anisopliae and Beauveria bassiana spores for the control of anopheline larvae, and also improve their persistence under field conditions. Methods Laboratory bioassays were conducted to test the ability of aqueous (0.1% Tween 80), dry (organic and inorganic) and oil (mineral and synthetic) formulations to facilitate the spread of fungal spores over the water surface and improve the efficacy of formulated spores against anopheline larvae as well as improve spore survival after application. Field bioassays were then carried out to test the efficacy of the most promising formulation under field conditions in western Kenya. Results When formulated in a synthetic oil (ShellSol T), fungal spores of both Metarhizium anisopliae and Beauveria bassiana were easy to mix and apply to the water surface. This formulation was more effective against anopheline larvae than 0.1% Tween 80, dry powders or mineral oil formulations. ShellSol T also improved the persistence of fungal spores after application to the water. Under field conditions in Kenya, the percentage pupation of An. gambiae was significantly reduced by 39 - 50% by the ShellSol T-formulated Metarhizium anisopliae and Beauveria bassiana spores as compared to the effects of the application of unformulated spores. Conclusions ShellSol T is an effective carrier for fungal spores when targeting anopheline larvae under both laboratory and field conditions. Entomopathogenic fungi formulated with a suitable carrier are a

  6. Probiotics for Plants? Growth Promotion by the Entomopathogenic Fungus Beauveria bassiana Depends on Nutrient Availability.

    PubMed

    Tall, Susanna; Meyling, Nicolai V

    2018-03-28

    Cultivation of crops requires nutrient supplements which are costly and impact the environment. Furthermore, global demands for increased crop production call for sustainable solutions to increase yield and utilize resources such as nutrients more effectively. Some entomopathogenic fungi are able to promote plant growth, but studies over such effects have been conducted under optimal conditions where nutrients are abundantly available. We studied the effects of Beauveria bassiana (strain GHA) seed treatment on the growth of maize (Zea mays) at high and low nutrient conditions during 6 weeks in greenhouse. As expected, B. bassiana seed treatment increased plant growth, but only at high nutrient conditions. In contrast, the seed treatment did not benefit plant growth at low nutrient conditions where the fungus potentially constituted a sink and tended to reduce plant growth. The occurrence of endophytic B. bassiana in experimental plant tissues was evaluated by PCR after 6 weeks, but B. bassiana was not documented in any of the above-ground plant tissues indicating that the fungus-plant interaction was independent of endophytic establishment. Our results suggest that B. bassiana seed treatment could be used as a growth promoter of maize when nutrients are abundantly available, while the fungus does not provide any growth benefits when nutrients are scarce.

  7. Identification and sequence determination of a new chrysovirus infecting the entomopathogenic fungus Isaria javanica.

    PubMed

    Herrero, Noemi

    2017-04-01

    A new double-stranded RNA (dsRNA) mycovirus has been identified in the isolate NB IFR-19 of the entomopathogenic fungus Isaria javanica. Isaria javanica chrysovirus-1 (IjCV-1) constitutes a new member of the Chrysoviridae family, and its genome is made up of four dsRNA elements designated dsRNA1, 2, 3 and 4 from largest to smallest. dsRNA1 and dsRNA2 encode an RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. dsRNA3 and 4 encode hypothetical proteins of unknown function. IjCV-1 constitutes the first report of a chrysovirus infecting the entomopathogenic fungus Isaria javanica.

  8. The red pigment prodigiosin is not an essential virulence factor in entomopathogenic Serratia marcescens.

    PubMed

    Zhou, Wei; Li, JingHua; Chen, Jie; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Although pigments produced by pathogenic microbes are generally hypothesized as essential virulence factors, the role of red pigment prodigiosin in the pathogenesis of entomopathogenic Serratia marcescens is not clear. In this study, we analyzed the pathogenicity of different pigmented S. marcescens strains and their non-pigmented mutants in silkworms. Each pigmented strain and the corresponding non-pigmented mutants showed very similar LD50 value (statistically no difference), but caused very different symptom (color of the dead larva). Our results clearly indicated that the red pigment prodigiosin is not an essential virulence factor in entomopathogenic S. marcescens. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Laboratory evaluation of three strains of the entomopathogenic fungus Metarhizium anisopliae for controlling Dermanyssus gallinae.

    PubMed

    Tavassoli, M; Ownag, A; Pourseyed, S H; Mardani, K

    2008-06-01

    The pathogenicity of three strains of the entomopathogenic fungus Metarhizium anisopliae on different life stages of Dermanyssus gallinae was evaluated in the laboratory. All the strains tested were virulent to D. gallinae but pathogenicity varied among the strains. Strain V245 induced a higher mortality rate using different concentrations than other two strains. The estimated median lethal concentration of different strains of M. anisopliae against D. gallinae varied depending on the exposure time of D. gallinae to M. anisopliae. It was concluded that the pathogenicity of the entomopathogenic fungus M. anisopliae on different life stages of D. gallinae was concentration and time dependent.

  10. Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi.

    PubMed

    Ansari, M A; Butt, T M

    2011-06-01

    To determine the stability and conidial yield of two strains of the entomopathogenic fungus Metarhizium anisopliae and one strain of M. brunneum, being developed for the control of insect pests. The conidial yields and the shelf-life of the conidia of two commercially viable strains of M. anisopliae V275 (=F52) and ARSEF 4556 and one strain of M. brunneum (ARSEF 3297) were determined after harvesting conidia from in vitro subcultures on Sabouraud dextrose agar (SDA) and broken basmati rice. The strains were stable and showed no decline in virulence against Tenebrio molitor, even when subcultured successively 12 times on SDA. Conidia-bound Pr1 protease activity decreased in conidia harvested from SDA and mycosed cadavers after the 1st subculture, but increased in conidia produced on rice. The C:N ratio of conidia from mycosed cadavers was lower than that of conidia from rice or SDA. Irrespective of the number of subcultures, strain ARSEF 4556 produced significantly higher conidial yields than ARSEF 3297 and V275. The 12th subculture of V275 and ARSEF 3297 produced the lowest conidial yield. Shelf-life studies showed that conidia of strain ARSEF 4556 had a higher conidial viability than V275 and ARSEF 3297 after 4 months, stored at 4°C. The current study shows that determining strain stability and conidial yield through successive subculturing is an essential component for selecting the best strain for commercial purposes.   This is the first study to compare quality control parameters in the production of conidia on rice, and it shows that the level of Pr1 is comparatively high for inoculum produced on rice. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Transcriptomic insights into the alternative splicing-mediated adaptation of the entomopathogenic fungus Beauveria bassiana to host niches: autophagy-related gene 8 as an example.

    PubMed

    Dong, Wei-Xia; Ding, Jin-Li; Gao, Yang; Peng, Yue-Jin; Feng, Ming-Guang; Ying, Sheng-Hua

    2017-10-01

    Alternative splicing (AS) regulates various biological processes in fungi by extending the cellular proteome. However, comprehensive studies investigating AS in entomopathogenic fungi are lacking. Based on transcriptome data obtained via dual RNA-seq, the first overview of AS events was developed for Beauveria bassiana growing in an insect haemocoel. The AS was demonstrated for 556 of 8840 expressed genes, accounting for 5.4% of the total genes in B. bassiana. Intron retention was the most abundant type of AS, accounting for 87.1% of all splicing events and exon skipping events were rare, only accounting for 2.0% of all events. Functional distribution analysis indicated an association between alternatively spliced genes and several physiological processes. Notably, B. bassiana autophagy-related gene 8 (BbATG8), an indispensable gene for autophagy, was spliced at an alternative 5' splice site to generate two transcripts (BbATG8-α and BbATG8-β). The BbATG8-α transcript was necessary for fungal autophagy and oxidation tolerance, while the BbATG8-β transcript was not. These two transcripts differentially contributed to the formation of conidia or blastospores as well as fungal virulence. Thus, AS acts as a powerful post-transcriptional regulatory strategy in insect mycopathogens and significantly mediates fungal transcriptional adaption to host niches. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation.

    PubMed

    Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N

    2018-06-01

    The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50  > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50  < 120 min irradiation. The QSUN Xenon Test Chamber XE3 is often used by the pharmaceutical and automotive industry to test light stability and weathering, respectively, but it was never used to evaluate fungal tolerance to full-spectrum solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Microsporidian entomopathogens

    USDA-ARS?s Scientific Manuscript database

    Microsporidia, pathogenic protists related to the Fungi, are considered to be primary pathogens of many aquatic and terrestrial insect species and have important roles in insect population dynamics, managed insect disease, and biological control of insect pests. Hosts are infected when spores are i...

  14. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    PubMed

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  15. Effect of entomopathogenic nematodes on Plectrodera scalator (Fabricius) (Coleoptera: Cerambycidae)

    Treesearch

    Declan J. Fallon; Leellen F. Solter; Leah S. Bauer; Deborah L. Miller; James R. Cate; Michael L. McManus

    2006-01-01

    Entomopathogenic nematodes were screened for efficacy against the cottonwood borer, Plectrodera scalator (Fabricius). Steinernema feltiae SN and S. carpocapsae All killed 58 and 50% of larvae, respectively, in Wlter paper bioassays but less than 10% in diet cup bioassays. S. glaseri NJ, S. riobrave TX, and H. indica MG-13 killed less than 10% of larvae in both assays....

  16. Cuticle hydrolysis in four medically important fly species by enzymes of the entomopathogenic fungus Conidiobolus coronatus.

    PubMed

    Boguś, M I; Włóka, E; Wrońska, A; Kaczmarek, A; Kazek, M; Zalewska, K; Ligęza-Żuber, M; Gołębiowski, M

    2017-03-01

    Entomopathogenic fungi infect insects via penetration through the cuticle, which varies remarkably in chemical composition across species and life stages. Fungal infection involves the production of enzymes that hydrolyse cuticular proteins, chitin and lipids. Host specificity is associated with fungus-cuticle interactions related to substrate utilization and resistance to host-specific inhibitors. The soil fungus Conidiobolus coronatus (Constantin) (Entomophthorales: Ancylistaceae) shows virulence against susceptible species. The larvae and pupae of Calliphora vicina (Robineau-Desvoidy) (Diptera: Calliphoridae), Calliphora vomitoria (Linnaeus), Lucilia sericata (Meigen) (Diptera: Calliphoridae) and Musca domestica (Linnaeus) (Diptera: Muscidae) are resistant, but adults exposed to C. coronatus quickly perish. Fungus was cultivated for 3 weeks in a minimal medium. Cell-free filtrate, for which activity of elastase, N-acetylglucosaminidase, chitobiosidase and lipase was determined, was used for in vitro hydrolysis of the cuticle from larvae, puparia and adults. Amounts of amino acids, N-glucosamine and fatty acids released were measured after 8 h of incubation. The effectiveness of fungal enzymes was correlated with concentrations of compounds detected in the cuticles of tested insects. Positive correlations suggest compounds used by the fungus as nutrients, whereas negative correlations may indicate compounds responsible for insect resistance. Adult deaths result from the ingestion of conidia or fungal excretions. © 2016 The Royal Entomological Society.

  17. Mechanized Packing and Delivery System for Entomopathogenic Nematodes in Infected Mealworm Cadavers

    USDA-ARS?s Scientific Manuscript database

    This document describes a mechanized system to pack mealworm (Tenebrio molitor) cadavers infected with entomopathogenic nematodes between two sheets of masking tape. The document is also an operation manual for the machine and provides all the machine specifications, and wiring and pneumatic diagram...

  18. Effects of entomopathogenic fungus species, and impact of fertilizers, on biological control of pecan weevil (Coleoptera: Curculionidae).

    PubMed

    Shapiro-Ilan, David I; Gardner, Wayne A; Wells, Lenny; Cottrell, Ted E; Behle, Robert W; Wood, Bruce W

    2013-04-01

    The pecan weevil, Curculio caryae (Horn), is a key pest of pecan, Carya illinoinensis (Wangenh.) K. Koch. Prior research indicated the potential for use of Hypocreales fungi to suppress C. caryae. We compared the efficacy of two fungal spp., Beauveria bassiana (GHA strain) and Metarhizium brunneum (F52), in their ability to cause C. caryae mortality. The fungus, B. bassiana, was applied to trunks of pecan trees (a method previously shown to be effective in C. caryae suppression) and efficacy was compared with M. brunneum applied to the ground or to the trunk with or without SoyScreen Oil as an ultraviolet protecting agent. Results indicated B. bassiana to be superior to M. brunneum regardless of application method; consequently, the potential for applying B. bassiana to control C. caryae was explored further. Specifically, the impact of different fertilizer regimes (as used by pecan growers) on the persistence of B. bassiana (GHA) in soil was determined. B. bassiana was applied to soil in a pecan orchard after one of several fertilizer treatments--i.e., ammonium nitrate, crimson clover, poultry litter, clover plus poultry litter, and a no-fertilizer control. B. bassiana persistence up to 49 d in 2009 and 2010 was assessed by plating soil onto selective media and determining the number of colony forming units, and by baiting soil with a susceptible host, Galleria mellonella (L.). Fertilizer treatments did not impact B. bassiana persistence. We conclude that standard fertilizers for nitrogen management, when applied according to recommended practices, are unlikely to negatively impact survival of B. bassiana in pecan orchards when the fungus is applied for C. caryae suppression during weevil emergence. Additional research on interactions between entomopathogenic fungi and fertilizer amendments (or other tree nutrition or soil management practices) is merited.

  19. Effect of Infection by Beauveria bassiana and Metarhizium anisopliae on the Feeding of Uvarovistia zebra

    PubMed Central

    Mohammadbeigi, A.; Port, G.

    2015-01-01

    To identify the susceptibility of long-horned grasshoppers to entomopathogenic fungi, the effect of infection with the fungi Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) on food consumption by Uvarovistia zebra (Uvarov) (Orthoptera: Tettigoniidae) was investigated. Preliminary results showed that both fungi had a negative effect on food consumption of the insects. For both fungi a significant reduction of food consumption and faeces production by insects were observed between the highest spore concentration (5 × 106 spores/ml) and other treatments. Compared with control insects, the insects treated with 5 × 106 spores/ml of B. bassiana and M. anisopliae showed 60 and 63% reduction in mean food consumption/insect, respectively. The corrected cumulative percent mortality of the insects treated with the highest concentration of B. bassiana and M. anisopliae were 57.7 and 55.5%, respectively. This was the first account of these entomopathogenic fungi being used against a species from this family, therefore based on the results obtained from this research, it could be said that the fungi have pathogenicity effect on U. zebra as a long-horned grasshopper.

  20. Coronatin-2 from the entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella larvae and incapacitates hemocytes.

    PubMed

    Boguś, M I; Wieloch, W; Ligęza-Żuber, M

    2017-02-01

    Coronatin-2, a 14.5 kDa protein, was isolated from culture filtrates of the entomopathogenic fungus Conidiobolus coronatus (Costantin) Batko (Entomophthoramycota: Entomophthorales). After LC-MS/MS (liquid chromatography tandem mass spectrometry) analysis of the tryptic peptide digest of coronatin-2 and a mass spectra database search no orthologs of this protein could be found in fungi. The highest homology was observed to the partial translation elongation factor 1a from Sphaerosporium equinum (protein sequence coverage, 21%), with only one peptide sequence, suggesting that coronatin-2 is a novel fungal protein that has not yet been described. In contrast to coronatin-1, an insecticidal 36 kDa protein, which shows both elastolytic and chitinolytic activity, coronatin-2 showed no enzymatic activity. Addition of coronatin-2 into cultures of hemocytes taken from larvae of Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), resulted in progressive disintegration of nets formed by granulocytes and plasmatocytes due to rapid degranulation of granulocytes, extensive vacuolization of plasmatocytes accompanied by cytoplasm expulsion, and cell disintegration. Spherulocytes remained intact, while oenocytes rapidly disintegrated. Coronatin-2 produced 80% mortality when injected into G. mellonella at 5 µg larva-1. Further study is warranted to determine the relevance of the acute toxicity of coronatin-2 and its effects on hemocytes in vitro to virulence of C. coronatus against its hosts.

  1. Cecropins as a marker of Spodoptera frugiperda immunosuppression during entomopathogenic bacterial challenge.

    PubMed

    Duvic, B; Jouan, V; Essa, N; Girard, P-A; Pagès, S; Abi Khattar, Z; Volkoff, N-A; Givaudan, A; Destoumieux-Garzon, D; Escoubas, J-M

    2012-06-01

    An antimicrobial peptide (AMP) of the cecropin family was isolated by HPLC from plasma of the insect pest, Spodoptera frugiperda. Its molecular mass is 3910.9 Da as determined by mass spectrometry. Thanks to the EST database Spodobase, we were able to describe 13 cDNAs encoding six different cecropins which belong to the sub-families CecA, CecB, CecC and CecD. The purified peptide identified as CecB1 was chemically synthesized (syCecB1). It was shown to be active against Gram-positive and Gram-negative bacteria as well as fungi. Two closely related entomopathogenic bacteria, Xenorhabdus nematophila F1 and Xenorhabdus mauleonii VC01(T) showed different susceptibility to syCecB1. Indeed, X. nematophila was sensitive to syCecB1 whereas X. mauleonii had a minimal inhibitory concentration (MIC) eight times higher. Interestingly, injection of live X. nematophila into insects did not induce the expression of AMPs in hemolymph. This effect was not observed when this bacterium was heat-killed before injection. On the opposite, both live and heat-killed X. mauleonii induced the expression of AMPs in the hemolymph of S. frugiperda. The same phenomenon was observed for another immune-related protein lacking antimicrobial activity. Altogether, our data suggest that Xenorhabdus strains have developed different strategies to supplant the humoral defense mechanisms of S. frugiperda, either by increasing their resistance to AMPs or by preventing their expression during such host-pathogen interaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

    PubMed Central

    Fragoeiro, Silvia; Bastos, Catarina

    2010-01-01

    This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered. PMID:23956663

  3. Dissolved oxygen levels affect dimorphic growth by the entomopathogenic fungus Isaria fumosorosea

    USDA-ARS?s Scientific Manuscript database

    The entomopathogenic fungus Isaria fumosorosea is capable of dimorphic growth (hyphal or yeast-like) in submerged culture. In shake flask studies, we evaluated the impact of aeration on the mode of growth of I. fumosorosea. Using 250 mL baffled Erlenmeyer flasks, culture volumes of 50, 100, 150, a...

  4. Optimization of a host diet for in vivo production of entomopathogenic nematodes

    USDA-ARS?s Scientific Manuscript database

    In previous studies, we developed an improved diet for Tenebrio molitor, a host that is used for in vivo nematode production, and we demonstrated that single insect diet components (e.g., lipids and proteins) can have a positive or negative impact on entomopathogenic nematode fitness and quality. I...

  5. A weevil sex pheromone serves as an attractant for its entomopathogenic nematode predators

    USDA-ARS?s Scientific Manuscript database

    Diaprepes abbreviatus is an invasive pest of citrus in the United States originating from the Caribbean. Entomopathogenic nematodes (EPNs) are used as biological control agents in the citrus agroecosystems against D. abbreviatus. EPNs respond to herbivore-induced volatiles from citrus roots to assis...

  6. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum.

    PubMed

    Wei, Qinglv; Du, Yanru; Jin, Kai; Xia, Yuxian

    2017-12-01

    Homeodomain transcription factor Ste12 is a key target activated by the pathogenic mitogen-activated-protein kinase pathway, and the activated Ste12p protein regulates downstream gene expression levels to modulate phenotypes. However, the functions of Ste12-like genes in entomopathogenic fungi remain poorly understood and little is known about the downstream genes regulated by Ste12. In this study, we characterized the functions of a Ste12 orthologue in Metarhizium acridum, MaSte12, and identified its downstream target genes. The deletion mutant (ΔMaSte12) is defective in conidial germination but not in hyphal growth, conidiation, or stress tolerance. Bioassays showed that ΔMaSte12 had a dramatically decreased virulence in topical inoculations, but no significant difference was found in intrahemolymph injections when the penetration process was bypassed. The mature appressorium formation rate of ΔMaSte12 was less than 10% on locust wings, with the majority hyphae forming appressorium-like, curved but no swollen structures. Digital gene expression profiling revealed that some genes involved in cell wall synthesis and remodeling, appressorium development, and insect cuticle penetration were downregulated in ΔMaSte12. Thus, MaSte12 has critical roles in the pathogenicity of the entomopathogenic fungus M. acridum, and our study provides some explanations for the impairment of fungal virulence in ΔMaSte12. In addition, virulence is very important for fungal biocontrol agents to control insect pests effectively. This study demonstrated that MaSte12 is involved in fungal virulence but not conidial yield or fungal stress tolerance in M. acridum. Thus, MaSte12 and its downstream genes may be candidates for enhancing fungal virulence to improve mycoinsecticides.

  7. Fungal disease dynamics in insect societies: optimal killing rates and the ambivalent effect of high social interaction rates.

    PubMed

    Novak, Sebastian; Cremer, Sylvia

    2015-05-07

    Entomopathogenic fungi are potent biocontrol agents that are widely used against insect pests, many of which are social insects. Nevertheless, theoretical investigations of their particular life history are scarce. We develop a model that takes into account the main distinguishing features between traditionally studied diseases and obligate killing pathogens, like the (biocontrol-relevant) insect-pathogenic fungi Metarhizium and Beauveria. First, obligate killing entomopathogenic fungi produce new infectious particles (conidiospores) only after host death and not yet on the living host. Second, the killing rates of entomopathogenic fungi depend strongly on the initial exposure dosage, thus we explicitly consider the pathogen load of individual hosts. Further, we make the model applicable not only to solitary host species, but also to group living species by incorporating social interactions between hosts, like the collective disease defences of insect societies. Our results identify the optimal killing rate for the pathogen that minimises its invasion threshold. Furthermore, we find that the rate of contact between hosts has an ambivalent effect: dense interaction networks between individuals are considered to facilitate disease outbreaks because of increased pathogen transmission. In social insects, this is compensated by their collective disease defences, i.e., social immunity. For the type of pathogens considered here, we show that even without social immunity, high contact rates between live individuals dilute the pathogen in the host colony and hence can reduce individual pathogen loads below disease-causing levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The identification of fungi collected from the ceca of commercial poultry.

    PubMed

    Byrd, J A; Caldwell, D Y; Nisbet, D J

    2017-07-01

    Under normal conditions, fungi are ignored unless a disease/syndrome clinical signs are reported. The scientific communities are largely unaware of the roles fungi play in normal production parameters. Numerous preharvest interventions have demonstrated that beneficial bacteria can play a role in improving productions parameters; however, most researchers have ignored the impact that fungi may have on production. The goal of the present study was to record fungi recovered from commercial broiler and layer houses during production. Over 3,000 cecal samples were isolated using conventional culture methodology and over 890 samples were further characterized using an automated repetitive sequence-based PCR (rep-PCR) methodology. Eighty-eight different fungal and yeast species were identified, including Aspergillus spp., Penicillium spp., and Sporidiobolus spp, and 18 unknown genera were separated using rep-PCR. The results from the present study will provide a normal fungi background genera under commercial conditions and will be a stepping stone for investigating the impact of fungi on the gastrointestinal tract and on the health of poultry. Published by Oxford University Press on behalf of Poultry Science Association 2017.

  9. An analysis of using entomopathogenic nematodes against above-ground pests.

    PubMed

    Arthurs, S; Heinz, K M; Prasifka, J R

    2004-08-01

    Applications of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae have traditionally been targeted against soil insects. Nonetheless, research over the last two decades highlights the potential of such agents against above-ground pests under certain circumstances. A general linear model was used to test for patterns in efficacy among 136 published trials with Steinernema carpocapsae Weiser, the most common species applied against foliar and other above-ground pests. The focus was on field and greenhouse assessments, rather than laboratory assays where relevant ecological barriers to infection are typically removed. The model showed differences in nematode treatment efficacy depending on the pests' target habitat (bore holes > cryptic foliage > exposed foliage) and trial location (greenhouse > field studies). Relative humidity and temperature during and up to 8 h post-application were also predicted to influence rates of nematode infection obtained. Conversely, spray adjuvants (both wetting agents and anti-desiccants) and nematode dosage applied (both concentration and use of consecutive applications 3-4 days apart) did not explain a significant amount of variance in nematode performance. With reference to case studies the model is used to discuss the relative importance of different factors on nematode efficacy and highlight priorities for workers considering using entomopathogenic nematodes to target pests in novel environments.

  10. Detection of the Entomopathogenic Fungus Beauveria bassiana in the Rhizosphere of Wound-Stressed Zea mays Plants

    PubMed Central

    McKinnon, Aimee C.; Glare, Travis R.; Ridgway, Hayley J.; Mendoza-Mendoza, Artemio; Holyoake, Andrew; Godsoe, William K.; Bufford, Jennifer L.

    2018-01-01

    Entomopathogenic fungi from the genus Beauveria (Vuillemin) play an important role in controlling insect populations and have been increasingly utilized for the biological control of insect pests. Various studies have reported that Beauveria bassiana (Bals.), Vuill. also has the ability to colonize a broad range of plant hosts as endophytes without causing disease but while still maintaining the capacity to infect insects. Beauveria is often applied as an inundative spore application, but little research has considered how plant colonization may alter the ability to persist in the environment. The aim of this study was to investigate potential interactions between B. bassiana and Zea mays L. (maize) in the rhizosphere following inoculation, in order to understand the factors that may affect environmental persistence of the fungi. The hypothesis was that different isolates of B. bassiana have the ability to colonize maize roots and/or rhizosphere soil, resulting in effects to the plant microbiome. To test this hypothesis, a two-step nested PCR protocol was developed to find and amplify Beauveria in planta or in soil; based on the translation elongation factor 1-alpha (ef1α) gene. The nested protocol was also designed to enable Beauveria species differentiation by sequence analysis. The impact of three selected B. bassiana isolates applied topically to roots on the rhizosphere soil community structure and function were consequently assessed using denaturing gradient gel electrophoresis (DGGE) and MicroRespTM techniques. The microbial community structure and function were not significantly affected by the presence of the isolates, however, retention of the inocula in the rhizosphere at 30 days after inoculation was enhanced when plants were subjected to intensive wounding of foliage to crudely simulate herbivory. The plant defense response likely changed under wound stress resulting in the apparent recruitment of Beauveria in the rhizosphere, which may be an indirect

  11. Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria

    NASA Astrophysics Data System (ADS)

    Haas, D.; Habib, J.; Luxner, J.; Galler, H.; Zarfel, G.; Schlacher, R.; Friedl, H.; Reinthaler, F. F.

    2014-12-01

    Background concentrations of airborne fungi are indispensable criteria for an assessment of fungal concentrations indoors and in the ambient air. The goal of this study was to define the natural background values of culturable fungal spore concentrations as reference values for the assessment of moldy buildings. The concentrations of culturable fungi were determined outdoors as well as indoors in 185 dwellings without visible mold, obvious moisture problems or musty odor. Samples were collected using the MAS-100® microbiological air sampler. The study shows a characteristic seasonal influence on the background levels of Cladosporium, Penicillium and Aspergillus. Cladosporium sp. had a strong outdoor presence, whereas Aspergillus sp. and Penicillium sp. were typical indoor fungi. For the region of Styria, the median outdoor concentrations are between 100 and 940 cfu/m³ for culturable xerophilic fungi in the course of the year. Indoors, median background levels are between 180 and 420 cfu/m³ for xerophilic fungi. The I/O ratios of the airborne fungal spore concentrations were between 0.2 and 2.0. For the assessment of indoor and outdoor air samples the dominant genera Cladosporium, Penicillium and Aspergillus should receive special consideration.

  12. Metacridamides A and B, bioactive macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum

    USDA-ARS?s Scientific Manuscript database

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. Its conidia produce two novel 17-membered macrocycles, metacridamides A (1) and B (2), which consist of a Phe unit condensed with a nonaketide....

  13. Davinia Salvacha Rodrguez, Ph.D. | NREL

    Science.gov Websites

    separations Education Ph.D., Microbiology (Biology), University Complutense de Madrid, 2008 B.S., Biology entomopathogenic fungi," Fungal Biology (2011) "Fungal pretreatment: An alternative in second-generation

  14. Agrobacterium tumefaciens-mediated transformation of the entomopathogenic fungus Nomuraea rileyi.

    PubMed

    Shao, Changwen; Yin, Youping; Qi, Zhaoran; Li, Ren; Song, Zhangyong; Li, Yan; Wang, Zhongkang

    2015-10-01

    An Agrobacterium-mediated genetic transformation system for the entomopathogenic fungus Nomuraea rileyi was established. Three binary T-DNA vectors, pPZP-Hph, pPZP-Hph-RNAi and pPZP-Hph-DsRed2, were constructed. The trpc promoter from Aspergillus nidulans was used as the cis-regulatory element to drive the expression of hygromycin phosphotransferase (hph) gene and DsRed2, which conferred the hygromycin B (Hyg B) resistance and red fluorescence visualization, respectively. The blastospores and conidia were used as the recipients. The blastospores' transformation efficiency reached ∼20-40 transformants per 10(6) blastospores, whereas the conidia were not transformed. Based on an analysis of five generations of subcultures, PCR and Southern blotting assays, the Ptrpc-hph cassette had integrated into the genomes of all transformants, which contained single copy of the hph gene and showed mitotic stability. Abundant altered morphologic phenotypes in colonies, blastospores and hyphae formations were observed in the arbitrary insertional mutants of N. rileyi, which made it possible to study the relationships between the functions and the interrupted genes over the whole genome. The transformation protocol will promote the functional characterization of genes, and the construction of genetically engineered strains of this important entomopathogenic fungus, and potentially of other similar fungal pathogens. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Microbial control of arthropod pests of tropical tree fruits.

    PubMed

    Dolinski, Claudia; Lacey, Lawrence A

    2007-01-01

    A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.

  16. Survey of entomopathogenic nematodes from the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in Colima, Mexico

    USDA-ARS?s Scientific Manuscript database

    A survey of entomopathogenic nematodes (EPN) in the Families Steinernematidae and Heterorhabditidae was conducted on the coast of the State of Colima, Mexico, to determine their occurrence, recovery frequency, and predominant plant species in disturbed and undisturbed habitats. Nineteen soil samples...

  17. A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora.

    PubMed

    Noguez, Jaime H; Conner, Elizabeth S; Zhou, Yue; Ciche, Todd A; Ragains, Justin R; Butcher, Rebecca A

    2012-06-15

    Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species.

  18. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  19. Two symbiotic bacteria of the entomopathogenic nematode Heterorhabditis spp. against Galleria mellonella.

    PubMed

    Liao, Chunli; Gao, Along; Li, Bingbing; Wang, Mengjun; Shan, Linna

    2017-03-01

    The entomopathogenic nematode Heterorhabditis spp. is considered a promising agent in the biocontrol of injurious insects of agriculture. However, different symbiotic bacteria associated with the nematode usually have different specificity and virulence toward their own host. In this study, two symbiotic bacteria, LY2W and NK, were isolated from the intestinal canals of two entomopathogenic nematode Heterorhabditis megidis 90 (PDSj1 and PDSj2) from Galleria mellonela, separately. To determine their species classification, we carried out some investigations on morphology, culture, biochemistry, especially 16S rDNA sequence analyses. As a result, both of them belong to Enterobacter spp., showing the closest relatedness with Enterobacter gergoviae (LY2W) and Enterobacter cloacae (NK), respectively. Moreover, the toxicity to Galleria mellonella was examined using both the metabolites and washed cells (primary and secondary) of these two strains. The results indicated both metabolites and cells of the primary-type bacteria could cause high mortalities (up to 97%) to Galleria mellonella, while those of the primary-type bacteria only killed 20%. These findings would provide new symbiotic bacteria and further references for biological control of the agricultural pest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    PubMed

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  1. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

    PubMed Central

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.

    2013-01-01

    Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon

  2. Multilocus enzyme electrophoresis on agarose gel as an aid to the identification of entomopathogenic Bacillus sphaericus strains.

    PubMed

    Zahner, V; Rabinovitch, L; Cavados, C F; Momen, H

    1994-04-01

    Sixty strains of Bacillus sphaericus, including 31 insect pathogens were studied by multilocus enzyme electrophoresis and were classified into 44 zymovars (electrophoretic types). Among the entomopathogenic strains, 11 belong to the same zymovar (Z59) indicating a widespread frequent genotype. Bands of enzyme activity were not detected among the strains for the loci GPI (E.C.5.3.1.9), G6P (E.C.1.1.1.49), 6PG (E.C.1.1.1.44) and ME (E.C.1.1.1.40). The enzymatic loci NP (E.C.2.4.2.1) and ACON (E.C.4.2.1.3) were monomorphic while the other enzymes, MDH (E.C.1.1.1.37), LeDH (E.C.1.4.1.9), ADH (E.C.1.4.1.1), EST (E.C.3.1.1.1), PEP-2 (E.C.3.4.11.1), PEP-3 (E.C.3.4.11) and PEP-D (E.C. 3.4.13.9) were polymorphic. The genetic variation in the non-insect pathogenic group seemed to be greater than in the entomopathogenic group. This latter group appears to be distinct from other strains of these species. All insect pathogens were recovered in the same phenetic cluster and a diagnostic allele is reported for the identification of entomopathogenic strains.

  3. Chemical ecology of fungi.

    PubMed

    Spiteller, Peter

    2015-07-01

    Fungi are widespread in nature and have conquered nearly every ecological niche. Fungi occur not only in terrestrial but also in freshwater and marine environments. Moreover, fungi are known as a rich source of secondary metabolites. Despite these facts, the ecological role of many of these metabolites is still unknown and the chemical ecology of fungi has not been investigated systematically so far. This review intends to present examples of the various chemical interactions of fungi with other fungi, plants, bacteria and animals and to give an overview of the current knowledge of fungal chemical ecology.

  4. Assessing gene expression during pathogenesis: Use of qRT-PCR to follow toxin production in the entomopathogenic fungus Beauveria bassiana during infection and immune response of the insect host Triatoma infestans.

    PubMed

    Lobo, Luciana S; Luz, Christian; Fernandes, Éverton K K; Juárez, M Patricia; Pedrini, Nicolás

    2015-06-01

    Entomopathogenic fungi secrete toxic secondary metabolites during the invasion of the insect hemocoel as part of the infection process. Although these compounds have been frequently mentioned as virulence factors, the roles of many of them remain poorly understood, including the question of whether they are expressed during the infection process. A major hurdle to this issue remains the low sensitivity of biochemical detection techniques (e.g., HPLC) within the complex samples that may contain trace quantities of fungal molecules inside the insect. In this study, quantitative reverse transcription real-time PCR (qRT-PCR) was used to measure the transcript levels within the insect fungal pathogen Beauveria bassiana, that encode for the synthetase enzymes of the secondary metabolites tenellin (BbtenS), beauvericin (BbbeaS) and bassianolide (BbbslS) during the infection of Triatoma infestans, a Chagas disease insect vector. Absolute quantification was performed at different time periods after insect treatment with various concentrations of propagules, either by immersing the insects in conidial suspensions or by injecting them with blastospores. Both BbtenS and BbbeaS were highly expressed in conidia-treated insects at days 3 and 12 post-treatment. In blastospore-injected insects, BbtenS and BbbeaS expression peaked at 24h post-injection and were also highly expressed in insect cadavers. The levels of BbbslS transcripts were much lower in all conditions tested. The expression patterns of insect genes encoding proteins that belong to the T. infestans humoral immune system were also evaluated with the same technique. This qPCR-based methodology can contribute to decifering the dynamics of entomopathogenic fungal infection at the molecular level. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm

    USDA-ARS?s Scientific Manuscript database

    The use of entomopathogenic nematodes in the biological control of soil insect pests is hampered by the costly and inadequate application techniques. As a possible solution we evaluated an encapsulation approach that offers effective application and may possibly attract the pest by adding attractant...

  6. Oligonucleotide microarray for the identification of potential mycotoxigenic fungi

    PubMed Central

    2010-01-01

    Background Mycotoxins are secondary metabolites which are produced by numerous fungi and pose a continuous challenge to the safety and quality of food commodities in South Africa. These toxins have toxicologically relevant effects on humans and animals that eat contaminated foods. In this study, a diagnostic DNA microarray was developed for the identification of the most common food-borne fungi, as well as the genes leading to toxin production. Results A total of 40 potentially mycotoxigenic fungi isolated from different food commodities, as well as the genes that are involved in the mycotoxin synthetic pathways, were analyzed. For fungal identification, oligonucleotide probes were designed by exploiting the sequence variations of the elongation factor 1-alpha (EF-1 α) coding regions and the internal transcribed spacer (ITS) regions of the rRNA gene cassette. For the detection of fungi able to produce mycotoxins, oligonucleotide probes directed towards genes leading to toxin production from different fungal strains were identified in data available in the public domain. The probes selected for fungal identification and the probes specific for toxin producing genes were spotted onto microarray slides. Conclusions The diagnostic microarray developed can be used to identify single pure strains or cultures of potentially mycotoxigenic fungi as well as genes leading to toxin production in both laboratory samples and maize-derived foods offering an interesting potential for microbiological laboratories. PMID:20307326

  7. Food Web Responses to Augmenting the Entomopathogenic Nematodes in Bare and Animal Manure-Mulched Soil

    PubMed Central

    Duncan, L. W.; Graham, J. H.; Zellers, J.; Bright, D.; Dunn, D. C.; El-Borai, F. E.; Porazinska, D. L.

    2007-01-01

    Factorial treatments of entomopathogenic nematodes (EPN) and composted, manure mulches were evaluated for two years in a central Florida citrus orchard to study the post-application biology of EPN used to manage the root weevil, Diaprepes abbreviatus. Mulch treatments were applied once each year to study the effects of altering the community of EPN competitors (free-living bactivorous nematodes) and antagonists (nematophagous fungi (NF), predaceous nematodes and some microarthro-pods). EPN were augmented once with Steinernema riobrave in 2004 and twice in 2005. Adding EPN to soil affected the prevalence of organisms at several trophic levels, but the effects were often ephemeral and sometimes inconsistent. EPN augmentation always increased the mortality of sentinel weevil larvae, the prevalence of free-living nematodes in sentinel cadavers and the prevalence of trapping NF. Subsequent to the insecticidal effects of EPN augmentation in 2004, but not 2005, EPN became temporarily less prevalent, and fewer sentinel weevil larvae died in EPN-augmented compared to non-augmented plots. Manure mulch had variable effects on endoparasitic NF, but consistently decreased the prevalence of trapping NF and increased the prevalence of EPN and the sentinel mortality. Both temporal and spatial abundance of NF were inversely related to the prevalence of Steinernema diaprepesi, whereas Heterorhabditis zealandica prevalence was positively correlated with NF over time. The number of weevil larvae killed by EPN was likely greatest in 2005, due in part to non-target effects of augmentation on the endemic EPN community in 2004 that occurred during a period of peak weevil recruitment into the soil. PMID:19259487

  8. Identification and characterization of an insect toxin protein, Bb70p, from the entomopathogenic fungus, Beauveria bassiana, using Galleria mellonella as a model system.

    PubMed

    Khan, Sehroon; Nadir, Sadia; Lihua, Guo; Xu, Jianchu; Holmes, Keith A; Dewen, Qiu

    2016-01-01

    An insect-toxic protein, Bb70p, was purified from Beauveria bassiana 70 using ammonium sulfate precipitation, ion exchange chromatography, and gel filtration. Bb70p has a high affinity for anion exchangers and 2D electrophoresis results revealed a single spot with a molecular weight of 35.5 kDa and an iso-electric point of ∼4.5. Bb70p remains active from 4 to 60°C, within a pH range of 4-10, but is more active in slightly acidic pH. A pure protein, Bb70p does not have any carbohydrate side chains. The protein caused high mortality by intra-haemocelic injection into Galleria mellonella with LD50 of 334.4 μg/g body weight and activates the phenol oxidase cascade. With a partial amino acid sequence comparison using the NCBI database, we showed no homology to known toxin proteins of entomopathogenic fungi. Thus, Bb70p appears to be an insect toxin protein, demonstrating novelty. Identification of this insect-toxic protein presents potential to enhance the virulence of B. bassiana through genetic manipulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Pathogenicity of entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; LeBrun, R.A.

    1997-01-01

    The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 108/ml for engorged larvae and 107/ml for engorged females resulted in 100% tick mortality, 2 wk post-infection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 107 spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  10. Infective Juveniles of the Entomopathogenic Nematode Steinernema scapterisci Are Preferentially Activated by Cricket Tissue

    PubMed Central

    2017-01-01

    Entomopathogenic nematodes are a subgroup of insect-parasitic nematodes that are used in biological control as alternatives or supplements to chemical pesticides. Steinernema scapterisci is an unusual member of the entomopathogenic nematode guild for many reasons including that it is promiscuous in its association with bacteria, it can reproduce in the absence of its described bacterial symbiont, and it is known to have a narrow host range. It is a powerful comparative model within the species and could be used to elucidate parasite specialization. Here we describe a new method of efficiently producing large numbers of S. scapterisci infective juveniles (IJs) in house crickets and for quantifying parasitic activation of the IJs upon exposure to host tissue using morphological features. We found that parasite activation is a temporal process with more IJs activating over time. Furthermore, we found that activated IJs secrete a complex mixture of proteins and that S. scapterisci IJs preferentially activate upon exposure to cricket tissue, reaffirming the description of S. scapterisci as a cricket specialist. PMID:28046065

  11. Infective Juveniles of the Entomopathogenic Nematode Steinernema scapterisci Are Preferentially Activated by Cricket Tissue.

    PubMed

    Lu, Dihong; Sepulveda, Claudia; Dillman, Adler R

    2017-01-01

    Entomopathogenic nematodes are a subgroup of insect-parasitic nematodes that are used in biological control as alternatives or supplements to chemical pesticides. Steinernema scapterisci is an unusual member of the entomopathogenic nematode guild for many reasons including that it is promiscuous in its association with bacteria, it can reproduce in the absence of its described bacterial symbiont, and it is known to have a narrow host range. It is a powerful comparative model within the species and could be used to elucidate parasite specialization. Here we describe a new method of efficiently producing large numbers of S. scapterisci infective juveniles (IJs) in house crickets and for quantifying parasitic activation of the IJs upon exposure to host tissue using morphological features. We found that parasite activation is a temporal process with more IJs activating over time. Furthermore, we found that activated IJs secrete a complex mixture of proteins and that S. scapterisci IJs preferentially activate upon exposure to cricket tissue, reaffirming the description of S. scapterisci as a cricket specialist.

  12. Susceptibility of Dalotia coriaria (Kraatz) (Coleoptera: Staphylinidae) to Entomopathogenic Nematodes (Rhabditida: Heterorhabditidae and Steinernematidae)

    PubMed Central

    Tourtois, Joseph; Grieshop, Matthew J.

    2015-01-01

    Dalotia coriaria (Kraatz) (Coleoptera: Staphylinidae) and entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) are two soil-dwelling biological control agents used to manage western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and fungus gnats Bradysis spp. (Diptera: Sciaridae) in glasshouses. Growers often use multiple natural enemies to achieve economic control, but knowledge of interactions among natural enemies is lacking. We conducted a laboratory bioassay to test the pathogenicity of four commercially available nematode species—Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhbditidae), Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae), S. feltiae (Filipjev), and S. riobrave Cabanillas et al.—to third instar and adult D. coriaria. Third instars were three times more susceptible than the adults to the entomopathogenic nematodes. Mortality for D. coriaria adults and third instars treated with S. feltiae and H. bacteriophora was lower than the mortality for D. coriaria adults and third instars treated with S. carpocapsae and S. riobrave. Neither infective juvenile foraging behavior nor size correlates with D. coriaria mortality. Dalotia coriaria appears to be most likely compatible with applications of S. feltiae and H. bacteriophora. PMID:26463077

  13. Independent origins of diploidy in the entomopathogen Metarhizium

    USDA-ARS?s Scientific Manuscript database

    Understanding of ploidal variation in fungi lags behind that for plants and animals because cytogenetic tools are often unable to accurately resolve and size the typically small genomes of fungi by traditional optical methods. Variation in ploidal status is frequently associated with changes in phen...

  14. Activated entomopathogenic nematode infective juveniles release lethal venom proteins

    PubMed Central

    Macchietto, Marissa; Baldwin, James; Mortazavi, Ali

    2017-01-01

    Entomopathogenic nematodes (EPNs) are unique parasites due to their symbiosis with entomopathogenic bacteria and their ability to kill insect hosts quickly after infection. It is widely believed that EPNs rely on their bacterial partners for killing hosts. Here we disproved this theory by demonstrating that the in vitro activated infective juveniles (IJs) of Steinernema carpocapsae (a well-studied EPN species) release venom proteins that are lethal to several insects including Drosophila melanogaster. We confirmed that the in vitro activation is a good approximation of the in vivo process by comparing the transcriptomes of individual in vitro and in vivo activated IJs. We further analyzed the transcriptomes of non-activated and activated IJs and revealed a dramatic shift in gene expression during IJ activation. We also analyzed the venom proteome using mass spectrometry. Among the 472 venom proteins, proteases and protease inhibitors are especially abundant, and toxin-related proteins such as Shk domain-containing proteins and fatty acid- and retinol-binding proteins are also detected, which are potential candidates for suppressing the host immune system. Many of the venom proteins have conserved orthologs in vertebrate-parasitic nematodes and are differentially expressed during IJ activation, suggesting conserved functions in nematode parasitism. In summary, our findings strongly support a new model that S. carpocapsae and likely other Steinernema EPNs have a more active role in contributing to the pathogenicity of the nematode-bacterium complex than simply relying on their symbiotic bacteria. Furthermore, we propose that EPNs are a good model system for investigating vertebrate- and human-parasitic nematodes, especially regarding the function of excretory/secretory products. PMID:28426766

  15. Gypsy moth larval defense mechanisms against pathogenic microorganisms

    Treesearch

    Kathleen S. Shields; Tariq M. Butt

    1991-01-01

    We investigated the response of gypsy moth, Lymantria dispar, larval hemocytes to L. dispar nuclear polyhedrosis virus (LdMNPV) administered per os and by injection, and to injected hyphal bodies and natural protoplasts of some entomopathogenic, entomophthoralean fungi.

  16. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming

    PubMed Central

    Paterson, Robert Russell M.; Lima, Nelson

    2017-01-01

    Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF) will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a) thermotolerant and (b) present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change. PMID:28218685

  17. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming.

    PubMed

    Paterson, Robert Russell M; Lima, Nelson

    2017-02-17

    Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF) will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a) thermotolerant and (b) present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change.

  18. Draft Genome Sequence of a Pseudomonas aeruginosa NA04 Bacterium Isolated from an Entomopathogenic Nematode.

    PubMed

    Salgado-Morales, Rosalba; Rivera-Gómez, Nancy; Lozano-Aguirre Beltrán, Luis Fernando; Hernández-Mendoza, Armando; Dantán-González, Edgar

    2017-09-07

    We report the draft genome sequence of Gram-negative bacterium Pseudomonas aeruginosa NA04, isolated from the entomopathogenic nematode Heterorhabditis indica MOR03. The draft genome consists of 54 contigs, a length of 6.37 Mb, and a G+C content 66.49%. Copyright © 2017 Salgado-Morales et al.

  19. Isaria poprawskii sp. nov. (Hypocreales: Cordycipitacae), a new entomopathogenic fungus from Texas affecting sweet potato whitefly

    USDA-ARS?s Scientific Manuscript database

    Isaria poprawskii is described as a new entomopathogenic species similar to Isaria javanica (=Paecilomyces javanicus). It was discovered ont he sweet potato whitefly, Bemisia tabaci biotype B in the Lower Rio Grande Valley of Texas (LRGV), USA. Morphological and DNA examinations indicated the dist...

  20. Bacteria modulate the degree of amphimix of their symbiotic entomopathogenic nematodes (Heterohabditis spp) in response to nutritional stress

    NASA Astrophysics Data System (ADS)

    Rincones, Johana; Mauléon, Hervé; Jaffe, Klaus

    2001-06-01

    Facultatively sexual entomopathogenic nematodes are a promising model for the experimental study of the adaptive values of sex. Our experiments in the laboratory showed that entomopathogenic nematodes display at least two different strategies in regulating the degree of amphimix as a response to nutritional stress. One strategy promotes the production of males, amphimix and the genetic variability of the offspring, improving the chances for a successful new adaptation. Another strategy increases the production of hermaphrodites at the expense of males, increasing the total number of reproductive individuals and thus the total number of offspring produced. Surprisingly, the strategy used depends upon the strain of symbiotic bacteria the nematodes are growing. The relevance of the results, in helping to discriminate between rival theories for the evolutionary maintenance of sex, is discussed.

  1. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings

    PubMed Central

    Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J.; Zia, Mohammadali; Pestechian, Nader

    2013-01-01

    Background: Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. Materials and Methods: One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. Results: The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Conclusion: Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases. PMID:23901339

  2. Integrated economic and environmental analysis of agricultural straw reuse in edible fungi industry

    PubMed Central

    Lu, Wencong; Yu, Shuao; Huang, Hairong

    2018-01-01

    Background China currently faces severe environmental pollution caused by burning agricultural straw; thus, resource utilization of these straws has become an urgent policy and practical objective for the Chinese government. Methods This study develops a bio-economic model, namely, “straw resource utilization for fungi in China (SRUFIC),” on the basis of a field survey of an edible fungi plant in Zhejiang, China, to investigate an integrated economic and environmental performance of straw reuse in fungi production. Five scenarios, which cover changes in the production scale, wage level, and price fluctuations of the main product and inputs, are simulated. Results Results reveal that (1) the pilot plant potentially provides enhanced economic benefits and disposes added agricultural residues by adjusting its production strategy; (2) the economic performance is most sensitive to fungi price fluctuations, whereas the environmental performance is more sensitive to production scale and price of fungi than other factors; (3) expanding the production scale can be the most efficient means of improving the performance of a plant economically and environmentally. Discussion Overall, agricultural straw reuse in the edible fungi industry can not only reduce the environmental risk derived from burning abandoned straws but also introduce economic benefits. Thus, the straw reuse in the fungi industry should be practiced in China, and specific economic incentive policies, such as price support or subsidies, must be implemented to promote the utilization of agricultural straws in the fungi industry. PMID:29682417

  3. Mycosis inhibits cannibalism by Melanoplus sanguinipes, M. differentialis, Schistocerca americana, and Anabrus simplex

    USDA-ARS?s Scientific Manuscript database

    Cannibalism is common among the Acrididae and the Mormon cricket, Anabrus simplex, a tettigonid. These behaviors have been proposed as mechanisms for the horizontal transmission of Microsporida and entomopathogenic fungi. After anecdotal observations that Melanoplus sanguinipes and A. simplex did ...

  4. First report of Pandora neoaphidis resting spore formation in vivo in aphid hosts under field conditions

    USDA-ARS?s Scientific Manuscript database

    The entomopathogenic fungus PANDORA NEOAPHIDIS is a recognized pathogen of aphids, causing natural epizootics in aphid populations, and interacts favorably with aphid predators and parasitoids. Survival of entomophthoralean fungi in periods of unsuitable weather conditions or lack of appropriate hos...

  5. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): A nuisance pest developing in cotton gin trash piles.

    USDA-ARS?s Scientific Manuscript database

    Larger black flour beetles (LBFB), Cynaeus angustus, feed on saprophytic fungi found in gin trash piles, and become nuisance pests in homes and businesses. We examined the dose-response of three entomopathogenic nematode species (Steinernema carpocapsae, S. feltiae, and Heterorhabditis bacteriophora...

  6. Evaluating the virulence and longevity of non-woven fiber bands impregnated with Metarhizium anisopliae against the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae)

    Treesearch

    Ryan P. Shanley; Melody Keena; Micheal M. Wheeler; Jarrod Leland; Ann E. Hajek

    2009-01-01

    Fiber bands impregnated with entomopathogenic fungi (=fungal bands) provide an effective method for controlling the invasive Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). In this study we investigated the effective longevity of fungal bands for use against A. glabripennis, using...

  7. Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis

    PubMed Central

    Stata, Matt; Wang, Wei; White, Merlin M.; Moncalvo, Jean-Marc

    2018-01-01

    ABSTRACT Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. PMID:29764946

  8. Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis.

    PubMed

    Wang, Yan; Stata, Matt; Wang, Wei; Stajich, Jason E; White, Merlin M; Moncalvo, Jean-Marc

    2018-05-15

    Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. IMPORTANCE Insect guts harbor various microbes that are important for host digestion, immune response, and disease dispersal in certain cases. Bacteria, which are among the primary endosymbionts, have been studied extensively. However, fungi, which are also frequently encountered

  9. Effect of inoculum age and physical parameters on in vitro culture of the entomopathogenic nematode Steinernema feltiae

    USDA-ARS?s Scientific Manuscript database

    Entomopathogenic nematodes (EPNs) of the families Steinernematidae and Heterorhabditidae have a symbiotic association with bacteria which makes them virulent against insects. EPNs have been mass produced using in vivo and in vitro methods including both solid and liquid fermentation. This study asse...

  10. Nematode-Trapping Fungi.

    PubMed

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  11. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock

    PubMed Central

    2015-01-01

    Background The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. Results We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Conclusions Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms. PMID:26694630

  12. A novel approach to biological control with entomopathogenic nematodes: Prophylactic control of the peachtree borer, Synanthedon exitiosa

    USDA-ARS?s Scientific Manuscript database

    The peachtree borer, Synanthedon exitiosa, is a major pest of stone fruits in North America. In this study, we compared the virulence of four entomopathogenic nematode species in the laboratory. The highest virulence was observed in Steinernema carpocapsae followed by the two heterorhabditids spec...

  13. Mass production of fungal entomopathogens

    USDA-ARS?s Scientific Manuscript database

    Hypocrealean fungi encompassing Beauveria bassiana, B. brongniartii, Isaria fumosorosea, I. farinosa, several Lecanicillium spp., Nomuraea rileyi, and Metarhizium spp. are being increasingly exploited worldwide for insect pest management because of the ease with which they can be produced in contras...

  14. House fly (Musca domestica) (Diptera: Muscidae) mortality after exposure to commercial fungal formulations in a sugar bait

    USDA-ARS?s Scientific Manuscript database

    House flies (Musca domestica L.) (Diptera: Muscidae) are major pests of livestock. Biological control is an important tool in an integrated control framework. Increased mortality in filth flies has been documented with entomopathogenic fungi, and several strains are commercially available. Three str...

  15. Effect of four commercial fungal formulations on mortality and sporulation of house flies (Musca domestica) and stable flies (Stomoxys calcitrans)

    USDA-ARS?s Scientific Manuscript database

    House flies (Musca domestica L.) and stable flies (Stomoxys calcitrans (L.)) (Diptera: Muscidae) are major pests of livestock. Biological control is an important tool in an integrated control framework. Increased mortality in filth flies has been documented with entomopathogenic fungi, and several s...

  16. Fusarium and other opportunistic hyaline fungi

    USDA-ARS?s Scientific Manuscript database

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  17. [New natural products from the marine-derived Aspergillus fungi-A review].

    PubMed

    Zhao, Chengying; Liu, Haishan; Zhu, Weiming

    2016-03-04

    Marine-derived fungi were the main source of marine microbial natural products (NPs) due to their complex genetic background, chemodiversity and high yield of NPs. According to our previous survey for marine microbial NPs from 2010 to 2013, Aspergillus fungi have received the most of attention among all the marine-derived fungi, which accounted for 31% NPs of the marine fungal origins. This paper reviewed the sources, chemical structures and bioactivites of all the 512 new marine NPs of Aspergillus fungal origins from 1992 to 2014. These marine NPs have diverse chemical structures including polyketides, fatty acids, sterols and terpenoids, alkaloids, peptides, and so on, 36% of which displayed bioactivities such as cytotoxicity, antimicrobial activity, antioxidant and insecticidal activity. Nitrogen compounds are the major secondary metabolites accounting for 52% NPs from the marine-derived Aspergillus fungi. Nitrogen compounds are also the class with the highest ratio of bioactive compounds, 40% of which are bioactive. Plinabulin, a dehydrodiketopiperazine derivative of halimide had been ended its phase II trial and has received its phase III study from the third quarter of 2015 for the treatment of advanced, metastatic non-small cell lung cancer.

  18. Enhancement of clover growth by inoculation of P-solubilizing fungi and arbuscular mycorrhizal fungi.

    PubMed

    Souchie, Edson L; Azcón, Rosario; Barea, Jose M; Silva, Eliane M R; Saggin-Júnior, Orivaldo J

    2010-09-01

    This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense) growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v) as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L(-1) of Araxá apatite. A completely randomized design, in 8×2 factorial scheme (eight P-solubilizing fungi treatments with or without arbuscular mycorrhizal fungi)and four replicates were used. The P-solubilizing fungi treatments consisted of five Brazilian P-solubilizing fungi isolates (PSF 7, 9, 20, 21 and 22), two Spanish isolates ( Aspergillus niger and the yeast Yarowia lipolytica) and control (non-inoculated treatment). The greatest clover growth rate was recorded when Aspergillus niger and PSF 21 were co-inoculated with arbuscular mycorrhizal fungi. Aspergillus niger, PSF 7 and PSF 21 were the most effective isolates on increasing clover growth in the presence of arbuscular mycorrhizal fungi. Greater mycorrhizal colonization resulted in greater clover growth rate in most PSF treatments. PSF 7 was the best isolate to improve the establishment of mycorrhizal and rhizobia symbiosis.

  19. Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi

    PubMed Central

    Roy, Mélanie; Watthana, Santi; Stier, Anna; Richard, Franck; Vessabutr, Suyanee; Selosse, Marc-André

    2009-01-01

    Background Mycoheterotrophic plants are considered to associate very specifically with fungi. Mycoheterotrophic orchids are mostly associated with ectomycorrhizal fungi in temperate regions, or with saprobes or parasites in tropical regions. Although most mycoheterotrophic orchids occur in the tropics, few studies have been devoted to them, and the main conclusions about their specificity have hitherto been drawn from their association with ectomycorrhizal fungi in temperate regions. Results We investigated three Asiatic Neottieae species from ectomycorrhizal forests in Thailand. We found that all were associated with ectomycorrhizal fungi, such as Thelephoraceae, Russulaceae and Sebacinales. Based on 13C enrichment of their biomass, they probably received their organic carbon from these fungi, as do mycoheterotrophic Neottieae from temperate regions. Moreover, 13C enrichment suggested that some nearby green orchids received part of their carbon from fungi too. Nevertheless, two of the three orchids presented a unique feature for mycoheterotrophic plants: they were not specifically associated with a narrow clade of fungi. Some orchid individuals were even associated with up to nine different fungi. Conclusion Our results demonstrate that some green and mycoheterotrophic orchids in tropical regions can receive carbon from ectomycorrhizal fungi, and thus from trees. Our results reveal the absence of specificity in two mycoheterotrophic orchid-fungus associations in tropical regions, in contrast to most previous studies of mycoheterotrophic plants, which have been mainly focused on temperate orchids. PMID:19682351

  20. Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes.

    PubMed

    Blanford, Simon; Jenkins, Nina E; Read, Andrew F; Thomas, Matthew B

    2012-11-05

    Insecticide resistance is seriously undermining efforts to eliminate malaria. In response, research on alternatives to the use of chemical insecticides against adult mosquito vectors has been increasing. Fungal entomopathogens formulated as biopesticides have received much attention and have shown considerable potential. This research has necessarily focused on relatively few fungal isolates in order to 'prove concept'. Further, most attention has been paid to examining fungal virulence (lethality) and not the other properties of fungal infection that might also contribute to reducing transmission potential. Here, a range of fungal isolates were screened to examine variation in virulence and how this relates to additional pre-lethal reductions in feeding propensity. The Asian malaria vector, Anopheles stephensi was exposed to 17 different isolates of entomopathogenic fungi belonging to species of Beauveria bassiana, Metarhizium anisopliae, Metarhizium acridum and Isaria farinosus. Each isolate was applied to a test substrate at a standard dose rate of 1×109 spores ml-1 and the mosquitoes exposed for six hours. Subsequently the insects were removed to mesh cages where survival was monitored over the next 14 days. During this incubation period the mosquitoes' propensity to feed was assayed for each isolate by offering a feeding stimulant at the side of the cage and recording the number probing. Fungal isolates showed a range of virulence to A. stephensi with some causing >80% mortality within 7 days, while others caused little increase in mortality relative to controls over the study period. Similarly, some isolates had a large impact on feeding propensity, causing >50% pre-lethal reductions in feeding rate, whereas other isolates had very little impact. There was clear correlation between fungal virulence and feeding reduction with virulence explaining nearly 70% of the variation in feeding reduction. However, there were some isolates where either feeding decline

  1. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections.

    PubMed

    Ellison, Mitchell A; McMahon, Michael B; Bonde, Morris R; Palmer, Cristi L; Luster, Douglas G

    2016-01-01

    Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.

  2. Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Gomes, Simone A; Paula, Adriano R; Ribeiro, Anderson; Moraes, Catia O P; Santos, Jonathan W A B; Silva, Carlos P; Samuels, Richard I

    2015-12-30

    Entomopathogenic fungi are potential candidates for use in integrated vector management and many isolates are compatible with synthetic and natural insecticides. Neem oil was tested separately and in combination with the entomopathogenic fungus Metarhizium anisopliae against larvae of the dengue vector Aedes aegypti. Our aim was to increase the effectiveness of the fungus for the control of larval mosquito populations. Commercially available neem oil was used at concentrations ranging from 0.0001 to 1%. Larval survival rates were monitored over a 7 day period following exposure to neem. The virulence of the fungus M. anisopliae was confirmed using five conidial concentrations (1 × 10(5) to 1 × 10(9) conidia mL(-1)) and survival monitored over 7 days. Two concentrations of fungal conidia were then tested together with neem (0.001%). Survival curve comparisons were carried out using the Log-rank test and end-point survival rates were compared using one-way ANOVA. 1% neem was toxic to A. aegypti larvae reducing survival to 18% with S50 of 2 days. Neem had no effect on conidial germination or fungal vegetative growth in vitro. Larval survival rates were reduced to 24% (S50 = 3 days) when using 1 × 10(9) conidia mL(-1). Using 1 × 10(8) conidia mL(-1), 30% survival (S50 = 3 days) was observed. We tested a "sub-lethal" neem concentration (0.001%) together with these concentrations of conidia. For combinations of neem + fungus, the survival rates were significantly lower than the survival rates seen for fungus alone or for neem alone. Using a combination of 1 × 10(7) conidia mL(-1) + neem (0.001%), the survival rates were 36%, whereas exposure to the fungus alone resulted in 74% survival and exposure to neem alone resulted in 78% survival. When using 1 × 10(8) conidia mL(-1), the survival curves were modified, with a combination of the fungus + neem resulting in 12% survival, whilst the fungus alone at this concentration also

  3. Entomopathogenic nematode food webs in an ancient, mining pollution gradient in Spain.

    PubMed

    Campos-Herrera, Raquel; Rodríguez Martín, José Antonio; Escuer, Miguel; García-González, María Teresa; Duncan, Larry W; Gutiérrez, Carmen

    2016-12-01

    Mining activities pollute the environment with by-products that cause unpredictable impacts in surrounding areas. Cartagena-La Unión mine (Southeastern-Spain) was active for >2500years. Despite its closure in 1991, high concentrations of metals and waste residues remain in this area. A previous study using nematodes suggested that high lead content diminished soil biodiversity. However, the effects of mine pollution on specific ecosystem services remain unknown. Entomopathogenic nematodes (EPN) play a major role in the biocontrol of insect pests. Because EPNs are widespread throughout the world, we speculated that EPNs would be present in the mined areas, but at increased incidence with distance from the pollution focus. We predicted that the natural enemies of nematodes would follow a similar spatial pattern. We used qPCR techniques to measure abundance of five EPN species, five nematophagous fungi species, two bacterial ectoparasites of EPNs and one group of free-living nematodes that compete for the insect-cadaver. The study comprised 193 soil samples taken from mining sites, natural areas and agricultural fields. The highest concentrations of iron and zinc were detected in the mined area as was previously described for lead, cadmium and nickel. Molecular tools detected very low numbers of EPNs in samples found to be negative by insect-baiting, demonstrating the importance of the approach. EPNs were detected at low numbers in 13% of the localities, without relationship to heavy-metal concentrations. Only Acrobeloides-group nematodes were inversely related to the pollution gradient. Factors associated with agricultural areas explained 98.35% of the biotic variability, including EPN association with agricultural areas. Our study suggests that EPNs have adapted to polluted habitats that might support arthropod hosts. By contrast, the relationship between abundance of Acrobeloides-group and heavy-metal levels, revealed these taxa as especially well suited bio

  4. Fluorescence of fungi in superficial and deep fungal infections

    PubMed Central

    Elston, Dirk M

    2001-01-01

    Background Fluorescence of many fungi is noted when H&E stained sections are examined under a fluorescent microscope. In theory, this phenomenon could aid in the diagnosis of cutaneous and disseminated fungal infections without the delay associated with special stains. Seventy-six cases of superficial and deep fungal infections and 3 cases of protothecosis were studied to determine the clinical usefulness of this technique. Results In most cases, fluorescence was noted, but was not intense. Fluorescence of fungi did not correlate with the age of the specimen. In most cases, organisms in H&E stained sections were more easily identified with routine light microscopy than with fluorescent microscopy. Conclusion This report suggests that in H&E stained skin specimens, fluorescent microscopy is of little benefit in the identification of fungal organisms. PMID:11602016

  5. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients.

    PubMed

    Wang, Zhenglong; Jin, Kai; Xia, Yuxian

    2016-08-09

    Most fungi, including entomopathogenic fungi, have two different conidiation patterns, normal and microcycle conidiation, under different culture conditions, eg, in media containing different nutrients. However, the mechanisms underlying the conidiation pattern shift are poorly understood. In this study, Metarhizium acridum undergoing microcycle conidiation on sucrose yeast extract agar (SYA) medium shifted to normal conidiation when the medium was supplemented with sucrose, nitrate, or phosphate. By linking changes in nutrients with the conidiation pattern shift and transcriptional changes, we obtained conidiation pattern shift libraries by Solexa/Illumina deep-sequencing technology. A comparative analysis demonstrated that the expression of 137 genes was up-regulated during the shift to normal conidiation, while the expression of 436 genes was up-regulated at the microcycle conidiation stage. A comparison of subtractive libraries revealed that 83, 216, and 168 genes were related to sucrose-induced, nitrate-induced, and phosphate-induced conidiation pattern shifts, respectively. The expression of 217 genes whose expression was specific to microcycle conidiation was further analyzed by the gene expression profiling via multigene concatemers method using mRNA isolated from M. acridum grown on SYA and the four normal conidiation media. The expression of 142 genes was confirmed to be up-regulated on standard SYA medium. Of these 142 genes, 101 encode hypothetical proteins or proteins of unknown function, and only 41 genes encode proteins with putative functions. Of these 41 genes, 18 are related to cell growth, 10 are related to cell proliferation, three are related to the cell cycle, three are related to cell differentiation, two are related to cell wall synthesis, two are related to cell division, and seven have other functions. These results indicate that the conidiation pattern shift in M. acridum mainly results from changes in cell growth and proliferation. The

  6. Susceptibility of Agrilus planipennis (Coleoptera: Buprestidae) to Beauveria bassiana and Metarhizium anisopliae

    Treesearch

    Houping Lui; Leah S. Bauer

    2006-01-01

    The susceptibility of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) to selected strains of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) Sorokin was evaluated through bioassays with direct immersion or foliar exposure under laboratory conditions. Results showed that A. planipennis adults were...

  7. Species limits, phylogeography and reproductive mode in the Metarhizium anisopliae complex

    USDA-ARS?s Scientific Manuscript database

    An essential first step toward understanding the ecology and life histories of Metarhizium anisopliae-group species as entomopathogens, endophytes and soil-adapted fungi is the ability to accurately define species limits and confidently infer a species tree. Here we present a multilocus phylogeny of...

  8. Purification and identification of an antibacterial protein from the symbiotic bacteria associated with novel entomopathogenic nematode, Rhabditis (Oscheius) sp.

    PubMed

    Anju, K M; Archana, M M; Mohandas, C; Nambisan, Bala

    2015-04-01

    Entomopathogenic nematodes (EPN) belonging to the families steinernematidae and heterorhabditidae and their symbiotic bacteria Xenorhabdus and Photorhabdus are well-known as biological control agents and are found to produce a wide range of bioactive secondary metabolites. Studies carried out at the Central Tuber Crops Research Institute (CTCRI) on entomopathogenic nematodes resulted in the identification of novel EPN belonging to the family Rhabditidae. This study reports the purification of a high molecular weight antibacterial protein from culture filtrates of a bacterium (Bacillus cereus) symbiotically associated with a novel entomopathogenic nematode Rhabditis (Oscheius) species, maintained at CTCRI laboratory. Fermentation conditions were standardized and optimum antibacterial activity was observed in tryptic soy broth after 48 h incubation at 30 °C. The aqueous extracts yielded antibacterial proteins which were purified by ammonium sulfate precipitation followed by ion exchange chromatography and size exclusion chromatography. Native gel electrophoresis indicated an active protein of molecular mass 220KDa which resolved into a major band of 90 kDa and a minor band of about 40 kDa on SDS-PAGE. The 90 kDa protein showed antibacterial activity and was further analysed by MALDI TOF-MS/MS. The protein was identified as a TQXA (Threonine-glutamine dipeptide) domain containing protein from Bacillus cereus. The protein was found to be active against Bacillus subtilis MTCC2756, Staphylococus aureus MTCC902 and Escherichia coli MTCC 2622 and was thermally stable.

  9. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  10. Different strategies to kill the host presented by Metarhizium anisopliae and Beauveria bassiana.

    PubMed

    Rustiguel, Cynthia Barbosa; Fernández-Bravo, María; Guimarães, Luis Henrique Souza; Quesada-Moraga, Enrique

    2018-03-01

    Studies conducted over the last decades have shown the potential of entomopathogenic fungi for the biocontrol of some insect pests. Entomopathogenic fungi infect their host through the cuticle, so they do not need to be ingested to be effective. These fungi also secrete secondary metabolites and proteins that are toxic to insect pests. In this context, we analyzed the pathogenicity of Metarhizium anisopliae (Metschn.) strains IBCB 384 and IBCB 425 and Beauveria bassiana (Bals.-Criv.) Vuill. strains E 1764 and E 3158 against Galleria mellonella (Linn.) larvae, during pre-invasion and post-invasion phases. The results showed M. anisopliae, especially strain IBCB 384, was most virulent in the pre-invasion phase against G. mellonella, whereas B. bassiana, especially strain E 1764, was most virulent in the post-invasion phase. During in vivo development and in the production of toxic serum, B. bassiana E 3158 was the most virulent. Different fungal growth (or toxin) strategies were observed for studied strains. Metarhizium anisopliae IBCB 425 prioritizes the growth strategy, whereas strain IBCB 384 and B. bassiana strains E 1764 and E 3158 have a toxic strategy. All strains have pathogenicity against G. mellonella, indicating their possible use for biocontrol.

  11. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

    PubMed Central

    Castagnola, Anaïs; Stock, S. Patricia

    2014-01-01

    This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol. PMID:24634779

  12. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species.

    PubMed

    Yeo, Helen; Pell, Judith K; Alderson, Peter G; Clark, Suzanne J; Pye, Barry J

    2003-02-01

    As part of an approach to select potential mycoinsecticides for aphid biocontrol, we investigated the effects of temperature on the growth, germination and pathogenicity of some hyphomycete fungi. Commercially available mycoinsecticides (based on Beauveria bassiana (Balsamo) Vuillemin and Verticillium lecanii (Zimmermann) Viegas) and other isolates of B bassiana, V lecanii, Metarhizium anisopliae (Metschnikoff) Sorokin and Paecilomyces fumosoroseus (Wize) Brown & Smith were evaluated. The rate of in vitro conidial germination of all isolates was slower at 10 and 15 degrees C than at 20 and 25 degrees C. Similarly, in vitro growth of most isolates was adversely affected at 10 and 15 degrees C. The greatest reduction at 10 degrees C in rates of conidial germination and colony growth, compared with other temperatures, was for M anisopliae isolates. Germination of V lecanii (isolate HRI 1.72) was fastest at 10 degrees C compared with the other fungi. It was also the most pathogenic of three isolates tested against Aphis fabae Scopoli and Myzus persicae Sulzer at 10, 18 and 23 degrees C. Generally, A fabae was more susceptible than M persicae to infection by the fungal isolates tested. A significant interaction between aphid species and temperature indicated that the pathogenic nature of an isolate was dependent not only on the target aphid species but also the temperature conditions of the bioassay. The series of studies, detailed above, allowed a temperature profile to be formed for the different isolates. Verticillium lecanii isolate HRI 1.72 (commercialised as Vertalec) was the most promising isolate selected from results of the series of experiments. Temperature profiles in conjunction with infectivity assays can be useful in selecting appropriate isolates for a particular thermal environment.

  13. Fungi in space--literature survey on fungi used for space research.

    PubMed

    Kern, V D; Hock, B

    1993-09-01

    A complete review of the scientific literature on experiments involving fungi in space is presented. This review begins with balloon experiments around 1935 which carried fungal spores, rocket experiments in the 1950's and 60's, satellite and moon expeditions, long-time orbit experiments and Spacelab missions in the 1980's and 90's. All these missions were aimed at examining the influence of cosmic radiation and weightlessness on genetic, physiological, and morphogenetic processes. During the 2nd German Spacelab mission (D-2, April/May 1993), the experiment FUNGI provided the facilities to cultivate higher basidiomycetes over a period of 10 d in orbit, document gravimorphogenesis and chemically fix fruiting bodies under weightlessness for subsequent ultrastructural analysis. This review shows the necessity of space travel for research on the graviperception of higher fungi and demonstrates the novelty of the experiment FUNGI performed within the framework of the D-2 mission.

  14. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii.

    PubMed

    Li, Wanzhen; Wang, Yulong; Zhu, Jianyu; Wang, Zhangxun; Tang, Guiliang; Huang, Bo

    2017-03-01

    Conidia and mycelia are two important developmental stages in the asexual life cycle of entomopathogenic fungus Metarhizium. Despite the crucial role that DNA methylation plays in many biological processes, its role in regulation of gene expression and development in fungi is not yet fully understood. We performed genome-wide analysis of DNA methylation patterns of an M. robertsii strain with single base pair resolution. Specifically, we examined for changes in methylation patterns between the conidia and mycelia stages. The results showed that approximately 0.38 % of cytosines are methylated in conidia, which is lower than the DNA methylation level (0.42 %) in mycelia. We found that DNA methylation undergoes genome-wide reprogramming during fungal development in M. robertsii. 132 differentially methylated regions (DMRs), which were mostly distributed in gene regions, were identified. KEGG analysis revealed that the DMR-associated genes belong to metabolic pathways. Intriguingly, in contrast to most other eukaryotes, promoter activities in M. robertsii seemed differentially modulated by DNA methylation levels. We found that transcription tended to be enhanced in genes with moderate promoter methylation, while gene expression was decreased in genes with high or low promoter methylation. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Fungi isolated from flue-cured tobacco inoculated in the field with storage fungi.

    PubMed

    Welty, R E

    1971-03-01

    Flue-cured tobacco inoculated in the field with A. amstelodami, A. flavus, A. ochraceus, A. repens, A. ruber, and a species of Penicillium was rarely invaded by these fungi. Regardless of inoculum, the predominant fungi reisolated from green tissue were species of Alternaria and Cladosporium. After curing, A. repens, A. niger, and species of Alternaria and a species of Penicillium were the most commonly isolated fungi. The fungus used as inoculum was not the predominant fungus reisolated from green or cured tissue. Conditions during handling and storage prior to marketing probably determine when storage fungi become associated with the leaf and which species becomes predominant.

  16. Insect pathogens as biological control agents: back to the future

    USDA-ARS?s Scientific Manuscript database

    In the past 15 years a number of successes and setbacks have taken place regarding development and use of microbial control agents. In this Forum paper we present current information on development, use and future directions of entomopathogenic virus, bacteria, fungi and nematodes as components of i...

  17. The entomopathogenic fungus Isaria fumosorosea and its compatibility with buprofezin: effects on the rugose spiraling whitefly Aleurodicus rugioperculatus

    USDA-ARS?s Scientific Manuscript database

    The gumbo limbo or rugose spiraling whitefly is a new invasive pest of palms, woody ornamentals, and fruits in Florida. The pathogenicity of a naturally occurring entomopathogenic fungus, Isaria fumosorosea (PFR 97) is well known for its activity against commonly found whiteflies species in the regi...

  18. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    PubMed Central

    Svahn, K. Stefan; Göransson, Ulf; El-Seedi, Hesham; Bohlin, Lars; Larsson, D.G. Joakim; Olsen, Björn; Chryssanthou, Erja

    2012-01-01

    Background Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules. PMID:22957125

  19. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    PubMed

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  20. Effect of immersion time on efficacy of entomopathogenic nematodes against engorged females of Cattle Fever Tick, Rhipicephalus (Boophilus) microplus

    USDA-ARS?s Scientific Manuscript database

    Six species of entomopathogenic nematodes (EPNs) were tested for their effects on virulence and reproductive parameters of engorged females of the cattle fever tick, Rhipicephalus (Boophilus) microplus (Deutch strain) using an adult immersion test. The treatments included nematode in the genus Stein...

  1. Observations on the entomopathogenic fungus Hirsutella citriformis attacking adult Diaphorina citri (Hemiptera: Psyllid) in a managed citrus grove

    USDA-ARS?s Scientific Manuscript database

    A two-year field study was conducted in an orange grove (0.7 ha) in Florida to characterize the phenology of the entomopathogen Hirsutella citriformis Speare infecting adults of the Asian citrus psyllid, Diaphorina citri Kuwayama. On the average over the two-year study, 23 percent of adults observed...

  2. Draft Genome Sequence of Photorhabdus luminescens HIM3 Isolated from an Entomopathogenic Nematode in Agricultural Soils.

    PubMed

    Salgado-Morales, Rosalba; Rivera-Gómez, Nancy; Martínez-Ocampo, Fernando; Lozano-Aguirre Beltrán, Luis Fernando; Hernández-Mendoza, Armando; Dantán-González, Edgar

    2017-08-31

    In this work, we report the draft genome sequence of Photorhabdus luminescens strain HIM3, a symbiotic bacterium associated with the entomopathogenic nematode Heterorhabditis indica MOR03, isolated from soil sugarcane in Yautepec, Morelos, Mexico. These bacteria have a G+C content of 42.6% and genome size of 5.47 Mb. Copyright © 2017 Salgado-Morales et al.

  3. Phylogenomics of zygomycete fungi: impacts on a phylogenetic classification of Kingdom Fungi

    USDA-ARS?s Scientific Manuscript database

    The zygomycetous fungi (”zygomycetes”) mark the major transition from zoosporic life histories of the common ancestor of Fungi and the earliest diverging chytrid lineages (Chytridiomycota and Blastocladiomycota). Their ecological and economic importance range from the earliest documented symbionts o...

  4. Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris

    USDA-ARS?s Scientific Manuscript database

    The common bean is the most important food legume in the world. We examined the potential of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae applied as seed treatments for their endophytic establishment in the common bean. Endophytic colonization in sterile sand:peat average...

  5. Monitoring the establishment and prevalence of the fungal entomopathogen Entomophaga maimaiga in two Lymantria dispar L. populations in Bulgaria

    Treesearch

    D. Pilarska; M. McManus; P. Pilarska; G. Georgiev; P. Mirchev; A. Linde

    2005-01-01

    The establishment and prevalence of the entomopathogenic fungus Entomophaga maimaiga, (Zygomycetes, Entomophthorales), introduced into two gypsy moth populations in Bulgaria, was monitored during 2000-2004. In the Karlovo Region population, where E. maimaiga was introduced in 1999, the fungus was recovered every year and the...

  6. Laboratory virulence of entomopathogenic nematodes to two ornamental plant pests, Corythucha ciliata (Hemiptera: Tingidae) and Stethobaris nemesis (Coleoptera: Curculionidae)

    USDA-ARS?s Scientific Manuscript database

    In this study we evaluated the potential of entomopathogenic nematodes to control two important ornamental pests: 1) Corythucha ciliata, a native lace bug that attacks the foliage of sycamore trees, and 2) the recently described exotic pest, Stethobaris nemesis, a weevil that attacks amaryllis leave...

  7. Simulated aerial sprays for field cage evaluation of Beauveria bassiana and Metarhizium brunneum (Ascomycetes: Hypocreales) against Anabrus simplex (Orthoptera: Tettigoniidae) in Montana

    USDA-ARS?s Scientific Manuscript database

    Field efficacy of the entomopathogenic Ascomycete Beauveria bassiana strain GHA and Metarhizium brunneum strain F52 was evaluated against nymphs of the Mormon cricket, Anabrus simplex. Fungi were applied with a new apparatus that allows simulated aerial sprays to 0.1m2 areas in the field. The Mormon...

  8. Immune Response of Mormon Crickets to Infection by Beauveria bassiana.

    USDA-ARS?s Scientific Manuscript database

    The Mormon cricket (Anabrus simplex), a tettigoniid, is a major pest of crops and rangeland in the western United States. Beauveria bassiana is an entomopathogenic fungi that serves as a biological control agent of this pest and other grasshoppers. Adult Mormon crickets were drawn from a topical bio...

  9. Virulence of Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales) commercial strains against adult Xylosandrus germanus (Coleoptera: Scolytidae) and impact on brood

    USDA-ARS?s Scientific Manuscript database

    The ambrosia beetle Xylosandrus germanus is an invasive pest with a wide host range and is a serious pest of orchards and nurseries in the eastern US. In this study we evaluated the potential of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae as control agents against this beet...

  10. Does the air condition system in busses spread allergic fungi into driver space?

    PubMed

    Sowiak, Małgorzata; Kozajda, Anna; Jeżak, Karolina; Szadkowska-Stańczyk, Irena

    2018-02-01

    The aim of this study was to establish whether the air-conditioning system in buses constitutes an additional source of indoor air contamination with fungi, and whether or not the fungi concentration depends on the period from the last disinfection of the system, combined with replacement of the cabin dust particle filter. The air samples to fungi analysis using impact method were taken in 30 buses (20 with an air-conditioning system, ACS; 10 with a ventilation system, VS) in two series: 1 and 22 weeks after cabin filter replacement and disinfection of the air-conditioning system. During one test in each bus were taken two samples: before the air-conditioning or ventilation system switched on and 6 min after operating of these systems. The atmospheric air was the external background (EB). After 1 week of use of the system, the fungi concentrations before starting of the ACS and VS system were 527.8 and 1053.0 cfu/m 3 , respectively, and after 22 weeks the concentrations were 351.9 and 1069.6 cfu/m 3 , respectively. While in the sample after 6 min of ACS and VS system operating, the fungi concentration after 1 week of use was 127.6 and 233.7 cfu/m 3 , respectively, and after 22 weeks it was 113.3 and 324.9 cfu/m 3 , respectively. Results do not provide strong evidence that air-conditioning system is an additional source of indoor air contamination with fungi. A longer operation of the system promoted increase of fungi concentration in air-conditioned buses only.

  11. Laboratory and Field Evaluation of the Entomopathogenic Fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for Population Management of Spruce Beetle, Dendroctonus rufipennis (Coleoptera: Scolytinae), in Felled Trees and Factors Limiting Pathogen Success.

    PubMed

    Davis, Thomas Seth; Mann, Andrew J; Malesky, Danielle; Jankowski, Egan; Bradley, Clifford

    2018-03-24

    An isolate of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) was tested for its ability to reduce survival and reproduction of spruce beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Scolytinae), under laboratory and field conditions. Conidial suspension applied directly to adults or to filter papers that adults contacted had a median survival time of 3-4 d in laboratory assays and beetles died more rapidly when exposed to conidial suspension than when treated with surfactant solution only. In the field, conidial suspension was applied to the surface of felled and pheromone-baited Engelmann spruce (Picea engelmannii) trees using a backpack sprayer. Mortality of colonizing parent beetles (F0), reproduction (abundance of F1 offspring in logs), and emergence of F1 beetles from logs was compared between treated and nontreated logs. Application of spore suspension increased mortality of F0 adults by 36% on average. Total F1 reproduction was reduced by 17% and emergence from logs was reduced by 13% in treated logs, but considerable variability in reproduction and emergence was observed. Viable spores were re-isolated from treated logs up to 90 d after application, indicating that spores are capable of long-term persistence on the tree bole microhabitat. Subsequent in vitro tests revealed that temperatures below 15°C and exposure to spruce monoterpenes likely limit performance of B. bassiana under field conditions, but exposure to low-intensity light or interactions with spruce beetle symbiotic fungi were not strongly inhibitory. It is concluded that matching environmental tolerances of biocontrol fungi to field conditions can likely improve their usefulness for control of spruce beetle in windthrown trees.

  12. Control of Hyalomma lusitanicum (Acari: Ixodidade) Ticks Infesting Oryctolagus cuniculus (Lagomorpha: Leporidae) Using the Entomopathogenic Fungus Beauveria bassiana (Hyocreales: Clavicipitaceae) in Field Conditions.

    PubMed

    González, J; Valcárcel, F; Pérez-Sánchez, J L; Tercero-Jaime, J M; Cutuli, M T; Olmeda, A S

    2016-11-01

    Entomopathogenic fungi are widely used to control arthropods not just in agricultural settings but also in Veterinary Medicine and Public Health. These products have been employed to control tick populations and tick-borne diseases. The effectiveness of these control measures not only depends on the fungi, but also on the tick species and environmental conditions. In Mesomediterranean areas, tick species are adapted to extreme climatic conditions and it is therefore especially important to develop suitable tick control strategies. The aim of this study was to evaluate the effectiveness of a new method of tick control which entails the application of a commercial strain of Beauveria bassiana (Balsamo, Vuillemin) on wild rabbit burrows under field conditions. Aqueous solutions of the product were applied using a mist blower sprayer into 1,717 burrows. Two trials were performed, one in spring and the other in summer. The parasitic index (PI) was calculated for 10 rabbits per treatment per time point on day +30, +60, and +90 posttreatment and efficiency was calculated by comparing the PI for ticks in treated and untreated rabbits. A total of 20,234 ixodid ticks were collected. Hyalomma lusitanicum Koch, 1844 was the most abundant tick feeding on rabbits. Treatment significantly reduced the PI in spring (by 78.63% and 63.28% on day +30 and +60, respectively; P < 0.05), but appeared to be less effective in summer, with a marginally significant tick reduction of 35.72% on day +30 (P = 0.05). Results suggest that the efficacy of applications inside burrows could be temperature-dependent and that such applications could be an economic alternative to rabbit tick control during at least two months using a diluted solution of B. bassiana conidia. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Thermophilic Fungi: Their Physiology and Enzymes†

    PubMed Central

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20°C and a maximum temperature of growth extending up to 60 to 62°C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45°C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62°C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and

  14. Clonal reproduction in fungi

    PubMed Central

    Taylor, John W.; Hann-Soden, Christopher; Branco, Sara; Sylvain, Iman; Ellison, Christopher E.

    2015-01-01

    Research over the past two decades shows that both recombination and clonality are likely to contribute to the reproduction of all fungi. This view of fungi is different from the historical and still commonly held view that a large fraction of fungi are exclusively clonal and that some fungi have been exclusively clonal for hundreds of millions of years. Here, we first will consider how these two historical views have changed. Then we will examine the impact on fungal research of the concept of restrained recombination [Tibayrenc M, Ayala FJ (2012) Proc Natl Acad Sci USA 109 (48):E3305–E3313]. Using animal and human pathogenic fungi, we examine extrinsic restraints on recombination associated with bottlenecks in genetic variation caused by geographic dispersal and extrinsic restraints caused by shifts in reproductive mode associated with either disease transmission or hybridization. Using species of the model yeast Saccharomyces and the model filamentous fungus Neurospora, we examine intrinsic restraints on recombination associated with mating systems that range from strictly clonal at one extreme to fully outbreeding at the other and those that lie between, including selfing and inbreeding. We also consider the effect of nomenclature on perception of reproductive mode and a means of comparing the relative impact of clonality and recombination on fungal populations. Last, we consider a recent hypothesis suggesting that fungi thought to have the most severe intrinsic constraints on recombination actually may have the fewest. PMID:26195774

  15. Entomopathogenic nematodes in agricultural areas in Brazil.

    PubMed

    de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro E; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano

    2017-04-06

    Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.

  16. Characterization and virulence of Chilean Lecanicillium (Hypocreales: Cordycipitaceae) isolates on Cinara cupressi (Hemiptera: Aphididae)

    USDA-ARS?s Scientific Manuscript database

    The cypress aphid, Cinara cupressi, is considered to be one of the hundred most important invasive pests in the world. In Chile, it was first detected thirteen years ago, and its populations have been expanding throughout the country. In the course of a survey of entomopathogenic fungi of this pest ...

  17. A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review

    PubMed Central

    Jia, Min; Chen, Ling; Xin, Hai-Liang; Zheng, Cheng-Jian; Rahman, Khalid; Han, Ting; Qin, Lu-Ping

    2016-01-01

    Endophytic fungi or endophytes exist widely inside the healthy tissues of living plants, and are important components of plant micro-ecosystems. Over the long period of evolution, some co-existing endophytes and their host plants have established a special relationship with one and another, which can significantly influence the formation of metabolic products in plants, then affect quality and quantity of crude drugs derived from medicinal plants. This paper will focus on the increasing knowledge of relationships between endophytic fungi and medicinal plants through reviewing of published research data obtained from the last 30 years. The analytical results indicate that the distribution and population structure of endophytes can be considerably affected by factors, such as the genetic background, age, and environmental conditions of their hosts. On the other hand, the endophytic fungi can also confer profound impacts on their host plants by enhancing their growth, increasing their fitness, strengthening their tolerances to abiotic and biotic stresses, and promoting their accumulation of secondary metabolites. All the changes are very important for the production of bioactive components in their hosts. Hence, it is essential to understand such relationships between endophytic fungi and their host medicinal plants. Such knowledge can be well exploited and applied for the production of better and more drugs from medicinal plants. PMID:27375610

  18. Autophagy in plant pathogenic fungi.

    PubMed

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Genomic Encyclopedia of Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supportedmore » by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less

  20. Marine Fungi: Their Ecology and Molecular Diversity

    NASA Astrophysics Data System (ADS)

    Richards, Thomas A.; Jones, Meredith D. M.; Leonard, Guy; Bass, David

    2012-01-01

    Fungi appear to be rare in marine environments. There are relatively few marine isolates in culture, and fungal small subunit ribosomal DNA (SSU rDNA) sequences are rarely recovered in marine clone library experiments (i.e., culture-independent sequence surveys of eukaryotic microbial diversity from environmental DNA samples). To explore the diversity of marine fungi, we took a broad selection of SSU rDNA data sets and calculated a summary phylogeny. Bringing these data together identified a diverse collection of marine fungi, including sequences branching close to chytrids (flagellated fungi), filamentous hypha-forming fungi, and multicellular fungi. However, the majority of the sequences branched with ascomycete and basidiomycete yeasts. We discuss evidence for 36 novel marine lineages, the majority and most divergent of which branch with the chytrids. We then investigate what these data mean for the evolutionary history of the Fungi and specifically marine-terrestrial transitions. Finally, we discuss the roles of fungi in marine ecosystems.

  1. Filamentous Fungi.

    PubMed

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.

  2. Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae)

    PubMed Central

    Huynh, Tien T.; Thomson, Richard; Mclean, Cassandra B.; Lawrie, Ann C.

    2009-01-01

    Background and Aims Mycorrhizal associations are essential to the plant kingdom. The largest flowering plant family, the Orchidaceae, relies on mycorrhizal fungi for germination, growth and survival. Evidence suggests varying degrees of fungal-host specificity based on a single fungal isolate from a single plant. This paper shows for the first time the diversity of endophytes colonizing in a single plant over consecutive years and the functional significance of this diversity. Methods Stem-collars of Caladenia formosa were collected in different seasons and years. Mycorrhizal fungi isolated were tested for their efficacy to induce leafing and genetically determined using ITS-RFLP and sequencing. Results Multiple mycorrhizal fungi were repeatedly isolated from a single collar that displayed varying effectiveness in germination percentages and adult leaf length. Additional factors contributed to the isolation of effective mycorrhizal fungi; fungal collection season, year of collection and individual isolates. Surface sterilization only improved the number of isolated mycorrhizal fungi. Dual inoculation did not increase germination. All 59 mycorrhizal fungi effective in germinating seed belonged to one clearly defined ITS (internal transcribed spacer) clade and clustered close to Sebacina vermifera (79–89 % homology). Isolates resulting in the greatest germination were not necessarily those resulting in the greatest survival and growth 1 year after germination. Conclusion Single orchid plants contained multiple mycorrhizal fungal strains of one species that had diverse functional differences. These results suggest that our current knowledge of fungal–host specificity may be incomplete due to experimental and analytical limitations. It also suggests that the long-term effectiveness of a mycorrhizal fungus or fungi could only be found by germination and longer-term growth tests rather than genetically. PMID:19561011

  3. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  4. Adaptive Immunity to Fungi

    PubMed Central

    Wüthrich, Marcel; Deepe, George S.; Klein, Bruce

    2013-01-01

    Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue. PMID:22224780

  5. [Indiscriminate use of Latin name for natural Cordyceps sinensis insect-fungi complex and multiple Ophiocordyceps sinensis fungi].

    PubMed

    Yao, Yi-Sang; Zhu, Jia-Shi

    2016-04-01

    Natural Cordyceps sinensis(Dongchongxiacao) is an insect-fungi complex containing multiple Ophiocordyceps sinensis(≡Cordyceps sinensis) fungi and dead body of larva of the family of Hepialidae. But natural C. sinensis and O. sinensis fungi use the same Latin name, resulting in uncertainty of the specific meaning, even disturbing the formulation and implementation of governmental policies and regulations, and influencing consumer psychology onthe market. This paper reviews the history and current status of the indiscriminate use of the Latin name O. sinensis for both the natural insect-fungi complex C. sinensis and O. sinensis fungi and lists the rename suggetions. Some scholars suggested using the term O. sinensis for the fungi and renaming the natural C. sinensis "Chinese cordyceps". Others suggested renaming the natural C. sinensis "Ophiocordyceps & Hepialidae". Both suggestions have not reached general consensus due to various academic concerns. This paper also reviews the exacerbation of the academic uncertainties when forcing implementing the 2011 Amsterdam Declaration "One Fungus=One Name" under the academic debate. Joint efforts of mycological, zoological and botany-TCM taxonomists and properly initiating the dispute systems offered by International Mycology Association may solve the debate on the indiscriminate use of the Latin name O.sinensis for the natural insect-fungi complex,the teleomorph and anamorph(s) of O. sinensis fungi. Copyright© by the Chinese Pharmaceutical Association.

  6. Selection of Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato isolates as microbial control agents against the boll weevil (Anthonomus grandis) in Argentina.

    PubMed

    Nussenbaum, A L; Lecuona, R E

    2012-05-01

    The boll weevil (Anthonomus grandis) is the main pest of cotton in the Americas. The aim of this work was to evaluate isolates of the entomopathogenic fungi Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato virulent against A. grandis. Screening was performed to evaluate the pathogenicity of 28 isolates of M. anisopliae s.l. and 66 isolates of B. bassiana s.l. against boll weevil adults. To select the isolates, LC(50) values of the most virulent isolates were calculated, and compatibility between the fungi and insecticides was studied. In addition, the effects of these isolates on the feeding behavior of the adults were evaluated. Isolates Ma 50 and Ma 20 were the most virulent against A. grandis and their LC(50) values were 1.13×10(7) and 1.20×10(7) conidia/ml, respectively. In addition, these isolates were compatible with pyrethroid insecticides, but none with endosulfan. On the other hand, infected females reduced the damage caused by feeding on the cotton squares and their weight gain. This shows that entomopathogenic fungi cause mortality in the insects, but also these fungi could influence the feeding behavior of the females. In summary, these results indicate the possibility of the use of M. anisopliae s.l. as a microbiological control agent against boll weevils. Also, this species could be included in an Integrated Pest Management program. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Habitat associations of two entomopathogenic nematodes: a quantitative study using real-time quantitative polymerase chain reactions.

    PubMed

    Torr, Peter; Spiridonov, Sergei E; Heritage, Stuart; Wilson, Michael J

    2007-03-01

    1. Despite nematodes being the most abundant animals on earth, very few animal ecologists study them, probably because of the difficulties of identifying them to species by morphological methods. 2. A group of nematodes that are important both ecologically and economically is the entomopathogenic nematodes, which play a key role in regulating soil food webs and are sold throughout the world as biological insecticides, yet for which very little is known of their population ecology. 3. A novel detection and quantification method was developed for soil nematodes using real-time polymerase chain reaction (PCR), and the technique was used to estimate numbers of two closely related species of entomopathogenic nematodes, Steinernema kraussei and S. affine in 50 soil samples from 10 sites in Scotland representing two distinct habitats (woodland and grassland). 4. There was a high degree of correlation between our molecular and traditional morphological estimates of population size and our data clearly showed that Steinernema affine occurred only in grassland areas, whereas S. kraussei was found in grassland and woodland samples to a similar degree. 5. Real-time PCR offers a rapid and accurate method of detecting individual nematode species from soil samples without the need for a specialist taxonomist, and has much potential for use in studies of nematode population ecology.

  8. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media

    PubMed Central

    2013-01-01

    Background Endophytic fungi represent underexplored resource of novel lead compounds and have a capacity to produce diverse class of plant secondary metabolites. Here we investigated endophytic fungi diversity and screening of paclitaxel-producing fungi from Taxus x media. Results Eighty-one endophytic fungi isolated from T. media were grouped into 8 genera based on the morphological and molecular identification. Guignardia and Colletotrichum were the dominant genera, whereas the remaining genera were infrequent groups. The genera Glomerella and Gibberella were first reported in Taxus. Three representative species of the distinct genera gave positive hits by molecular marker screening and were capable of producing taxol which were validated by HPLC-MS. Among these 3 taxol-producing fungi, the highest yield of taxol was 720 ng/l by Guignardia mangiferae HAA11 compared with those of Fusarium proliferatum HBA29 (240 ng/l) and Colletotrichum gloeosporioides TA67 (120 ng/l). This is the first report of taxol producer from Guignardia. Moreover, the lower similarities of ts and bapt between microbial and plant origin suggested that fungal taxol biosynthetic cluster might be repeatedly invented during evolution, nor horizontal gene transfer from Taxus species. Conclusions Taxol-producing endophytic fungi could be a fascinating reservoir to generate taxol-related drug lead and to elucidate the remained 5 unknown genes or the potential regulation mechanism in the taxol biosynthesis pathway. PMID:23537181

  9. Interactions between the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae) and the saprobic fungus Fusarium oxysporum (Ascomycota: Hypocreales).

    PubMed

    Navarro, P D; McMullen, J G; Stock, S P

    2014-01-01

    In this study, we assessed the effect of the saprobic fungus, Fusarium oxysporum (Ascomycota: Hypocreales) on the fitness of the entomopathogenic nematode Heterorhabditis sonorensis (Caborca strain). Sand column assays were considered to evaluate the effect of fungal mycelia on infective juvenile (IJ) movement and host access. Additionally, we investigated the effect of fungal spores on the nematodes' ability to search for a host, its virulence, penetration efficiency and reproduction. Three application timings were considered to assess interactions between the fungus and the nematodes. In vitro assays were also considered to determine the effect of fungal extracts on the nematode's symbiotic bacteria. Our observations indicate that presence and age of fungal mycelia significantly affect IJ movement in the sand columns and their ability to establish in the host. These results were also reflected in a reduced insect mortality. In particular, treatments with the 15 days old mycelia showed a significant reduction in insect mortality and penetration efficiency. Presence of fungal spores also impacted nematode virulence and reproduction. In particular, two of the application timings tested (simultaneous [EPN and fungal spores applied at the same time] and alternate I [EPN applied first, fungus applied 24h later]) resulted in antagonistic interactions. Moreover, IJ progeny was reduced to half in the simultaneous application. In vitro assays revealed that fungal extracts at the highest concentration tested (10mg/ml) inhibited the growth of the symbiotic bacteria. Overall, these results suggest that saprobic fungi may play an important role in regulating. EPN populations in the soil, and that they may be one of the factors that impact nematode survival in the soil and their access to insect hosts. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Fungi as a Source of Food.

    PubMed

    Dupont, Joëlle; Dequin, Sylvie; Giraud, Tatiana; Le Tacon, François; Marsit, Souhir; Ropars, Jeanne; Richard, Franck; Selosse, Marc-André

    2017-06-01

    In this article, we review some of the best-studied fungi used as food sources, in particular, the cheese fungi, the truffles, and the fungi used for drink fermentation such as beer, wine, and sake. We discuss their history of consumption by humans and the genomic mechanisms of adaptation during artificial selection.

  11. The entomopathogenic fungus Nomuraea rileyi impairs cellular immunity of its host Helicoverpa armigera.

    PubMed

    Zhong, Ke; Liu, Zhan-Chi; Wang, Jia-Lin; Liu, Xu-Sheng

    2017-09-01

    In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte-mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph. © 2017 Wiley Periodicals, Inc.

  12. Transformation in fungi.

    PubMed Central

    Fincham, J R

    1989-01-01

    Transformation with exogenous deoxyribonucleic acid (DNA) now appears to be possible with all fungal species, or at least all that can be grown in culture. This field of research is at present dominated by Saccharomyces cerevisiae and two filamentous members of the class Ascomycetes, Aspergillus nidulans and Neurospora crassa, with substantial contributions also from fission yeast (Schizosaccharomyces pombe) and another filamentous member of the class Ascomycetes, Podospora anserina. However, transformation has been demonstrated, and will no doubt be extensively used, in representatives of most of the main fungal classes, including Phycomycetes, Basidiomycetes (the order Agaricales and Ustilago species), and a number of the Fungi Imperfecti. The list includes a number of plant pathogens, and transformation is likely to become important in the analysis of the molecular basis of pathogenicity. Transformation may be maintained either by using an autonomously replicating plasmid as a vehicle for the transforming DNA or through integration of the DNA into the chromosomes. In S. cerevisiae and other yeasts, a variety of autonomously replicating plasmids have been used successfully, some of them designed for use as shuttle vectors for Escherichia coli as well as for yeast transformation. Suitable plasmids are not yet available for use in filamentous fungi, in which stable transformation is dependent on chromosomal integration. In Saccharomyces cerevisiae, integration of transforming DNA is virtually always by homology; in filamentous fungi, in contrast, it occurs just as frequently at nonhomologous (ectopic) chromosomal sites. The main importance of transformation in fungi at present is in connection with gene cloning and the analysis of gene function. The most advanced work is being done with S. cerevisiae, in which the virtual restriction of stable DNA integration to homologous chromosome loci enables gene disruption and gene replacement to be carried out with greater

  13. Fungi

    USDA-ARS?s Scientific Manuscript database

    Fungi are seldom encountered in the archaeological record of foodstuffs but there are exceptions, especially for yeast. Excavated vessels contained identifiable residues of fermented beverages. Ancient ovens allow inferences on leavened breads. Mesopotamian clay tablets contain references to truffle...

  14. Fungi contamination of drinking water.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially

  15. Genome-Wide Profiling of Plutella xylostella Immunity-Related miRNAs after Isaria fumosorosea Infection.

    PubMed

    Xu, Jin; Xu, Xiaoxia; Li, Shuzhong; Wang, Shuang; Xu, Xiaojing; Zhou, Xianqiang; Yu, Jialin; Yu, Xiaoqiang; Shakeel, Muhammad; Jin, Fengliang

    2017-01-01

    The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level.

  16. Genome-Wide Profiling of Plutella xylostella Immunity-Related miRNAs after Isaria fumosorosea Infection

    PubMed Central

    Xu, Jin; Xu, Xiaoxia; Li, Shuzhong; Wang, Shuang; Xu, Xiaojing; Zhou, Xianqiang; Yu, Jialin; Yu, Xiaoqiang; Shakeel, Muhammad; Jin, Fengliang

    2017-01-01

    The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level. PMID:29311981

  17. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae) and Beneficial Insects on Conventional Cotton Crops in Australia

    PubMed Central

    Mensah, Robert K.; Young, Alison; Rood-England, Leah

    2015-01-01

    Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 × 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production. PMID:26463189

  18. Bioactive terpenes from marine-derived fungi.

    PubMed

    Elissawy, Ahmed M; El-Shazly, Mohamed; Ebada, Sherif S; Singab, AbdelNasser B; Proksch, Peter

    2015-04-03

    Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years' reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  19. Development of pilot-scale fermentation and stabilization processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneun strain F52

    USDA-ARS?s Scientific Manuscript database

    Using 100L stirred-tank bioreactors, we evaluated the effect of fermentation parameters and drying protocols on the production and stabilization of microsclerotia (MS) of the entomopathogenic fungus Metarhizium brunneum (formerly M. anisopliae F52). Results showed that stirred-tank bioreactors can ...

  20. A new threat to bees? Entomopathogenic nematodes used in biological pest control cause rapid mortality in Bombus terrestris.

    PubMed

    Dutka, Alexandrea; McNulty, Alison; Williamson, Sally M

    2015-01-01

    There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm(2) soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.

  1. Melanized Fungi in Human Disease

    PubMed Central

    Revankar, Sanjay G.; Sutton, Deanna A.

    2010-01-01

    Summary: Melanized or dematiaceous fungi are associated with a wide variety of infectious syndromes. Many are soil organisms and are generally distributed worldwide, though certain species appear to have restricted geographic ranges. Though they are uncommon causes of disease, melanized fungi have been increasingly recognized as important pathogens, with most reports occurring in the past 20 years. The spectrum of diseases with which they are associated has also broadened and includes allergic disease, superficial and deep local infections, pneumonia, brain abscess, and disseminated infection. For some infections in immunocompetent individuals, such as allergic fungal sinusitis and brain abscess, they are among the most common etiologic fungi. Melanin is a likely virulence factor for these fungi. Diagnosis relies on careful microscopic and pathological examination, as well as clinical assessment of the patient, as these fungi are often considered contaminants. Therapy varies depending upon the clinical syndrome. Local infection may be cured with excision alone, while systemic disease is often refractory to therapy. Triazoles such as voriconazole, posaconazole, and itraconazole have the most consistent in vitro activity. Further studies are needed to better understand the pathogenesis and optimal treatment of these uncommon infections. PMID:20930077

  2. What Defines the "Kingdom" Fungi?

    PubMed

    Richards, Thomas A; Leonard, Guy; Wideman, Jeremy G

    2017-06-01

    The application of environmental DNA techniques and increased genome sequencing of microbial diversity, combined with detailed study of cellular characters, has consistently led to the reexamination of our understanding of the tree of life. This has challenged many of the definitions of taxonomic groups, especially higher taxonomic ranks such as eukaryotic kingdoms. The Fungi is an example of a kingdom which, together with the features that define it and the taxa that are grouped within it, has been in a continual state of flux. In this article we aim to summarize multiple lines of data pertinent to understanding the early evolution and definition of the Fungi. These include ongoing cellular and genomic comparisons that, we will argue, have generally undermined all attempts to identify a synapomorphic trait that defines the Fungi. This article will also summarize ongoing work focusing on taxon discovery, combined with phylogenomic analysis, which has identified novel groups that lie proximate/adjacent to the fungal clade-wherever the boundary that defines the Fungi may be. Our hope is that, by summarizing these data in the form of a discussion, we can illustrate the ongoing efforts to understand what drove the evolutionary diversification of fungi.

  3. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae)

    PubMed Central

    Acosta, M. Cristina; Cofré, Noelia; Domínguez, Laura S.; Bidartondo, Martin I.; Sérsic, Alicia N.

    2017-01-01

    Abstract Background and Aims Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Methods Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Key Results Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Conclusions Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. PMID:28398457

  4. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia

    PubMed Central

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Background: Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. Objectives: The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Materials and Methods: Fungi growing on plant segments were isolated and identified based on morphological and molecular characteristics. The isolates were grouped into 35 distinct operational taxonomic units, based on the sequence of the internal transcribed spacer regions in the rRNA gene. The colonization frequency and the dominant fungi percentage of these endophytic fungi were calculated. A dual culture technique was adopted to investigate the antifungal activity of these endophytes. Results: Tamarix nilotica showed the highest endophytic diversity with a relative frequency of 27.27%, followed by Cressa cretica with a relative frequency of 19.27%. The most frequently isolated species was Penicillium chrysogenum with an overall colonization rate of 98.57%. Seven out of 35 endophytic fungi exhibited strong antifungal activity to all plant fungal pathogens tested. P. chrysogenum, Fusarium oxysporum, and F. nygamai exhibited the highest inhibition against the human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Aspergillus sydowii, P. chrysogenum, and Eupenicillium crustaceum showed strong antimicrobial activity against Enterococcus faecalis. Conclusions: The antimicrobial activity of these endophytic microorganisms could be exploited in biotechnology, medicine, and agriculture. PMID:27099679

  5. Differential response of a local population of entomopathogenic nematodes to non-native herbivore induced plant volatiles (HIPV) in the laboratory and field

    USDA-ARS?s Scientific Manuscript database

    Recent work has shown the potential for enhanced efficacy of entomopathogenic nematodes (EPN) through their attraction to herbivore induced plant volatiles. However, there has been little investigation into the utilization of these attractants in systems other than in those in which the compounds we...

  6. Production of L-asparaginase by filamentous fungi.

    PubMed

    Sarquis, Maria Inez de Moura; Oliveira, Edna Maria Morais; Santos, Alberdan Silva; Costa, Gisela Lara da

    2004-08-01

    L-asparaginase production was investigated in the filamentous fungi Aspergillus tamarii and Aspergillus terreus. The fungi were cultivated in medium containing different nitrogen sources. A. terreus showed the highest L-asparaginase (activity) production level (58 U/L) when cultivated in a 2% proline medium. Both fungi presented the lowest level of L-asparaginase production in the presence of glutamine and urea as nitrogen sources. These results suggest that L-asparaginase production by of filamentous fungi is under nitrogen regulation.

  7. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review

    PubMed Central

    Evelin, Heikham; Kapoor, Rupam; Giri, Bhoopander

    2009-01-01

    Background Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. Scope This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling biochemical, physiological and molecular mechanisms in mycorrhizal plants to alleviate salt stress. Conclusions The role of arbuscular mycorrhizal fungi in alleviating salt stress is well documented. This paper reviews the mechanisms arbuscular mycorrhizal fungi employ to enhance the salt tolerance of host plants such as enhanced nutrient acquisition (P, N, Mg and Ca), maintenance of the K+ : Na+ ratio, biochemical changes (accumulation of proline, betaines, polyamines, carbohydrates and antioxidants), physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation), molecular changes (the expression of genes: PIP, Na+/H+ antiporters, Lsnced, Lslea and LsP5CS) and ultra-structural changes. Theis review identifies certain lesser explored areas such as molecular and ultra-structural changes where further research is needed for better understanding of symbiosis with reference to salt stress for optimum usage of this technology in the field on a large scale. This review paper gives useful benchmark information for the development and prioritization of future research programmes. PMID:19815570

  8. Enhancing the Thermotolerance of Entomopathogenic Isaria fumosorosea SFP-198 Conidial Powder by Controlling the Moisture Content Using Drying and Adjuvants

    PubMed Central

    Lee, Se Jin; Lee, Hyang Burm

    2014-01-01

    Entomopathogenic fungi are promising pest-control agents but their industrial applicability is limited by their thermosusceptibility. With an aim to increase the thermotolerance of Isaria fumosorosea SFP-198, moisture absorbents were added to dried conidial powder, and the relationship between its water potential and thermotolerance was investigated. Mycotized rice grains were dried at 10℃, 20℃, 30℃, and 40℃ and the drying effect of each temperature for 24, 48, 96, and 140 hr was determined. Drying for 48 hr at 10℃ and 20℃ reduced the moisture content to < 5% without any significant loss of conidial thermotolerance, but drying at 30℃ and 40℃ reduced both moisture content and conidial thermotolerance. To maintain thermotolerance during storage, moisture absorbents, such as calcium chloride, silica gel, magnesium sulfate, white carbon, and sodium sulfate were individually added to previously dried-conidial powder at 10% (w/w). These mixtures was then stored at room temperature for 30 days and subjected to 50℃ for 2 hr. The white carbon mixture had the highest conidial thermotolerance, followed by silica gel, magnesium sulfate, and then the other absorbents. A significant correlation between the water potential and conidial thermotolerance was observed in all conidia-absorbent mixtures tested in this study (r = -0.945). Conidial thermotolerance in wet conditions was evaluated by adding moisturized white carbon (0~20% H2O) to conidia to mimic wet conditions. Notably, the conidia still maintained their thermotolerance under these conditions. Thus, it is evident that conidial thermotolerance can be maintained by drying mycotized rice grains at low temperatures and adding a moisture absorbent, such as white carbon. PMID:24808736

  9. Occurrence of keratinophilic fungi on Indian birds.

    PubMed

    Dixit, A K; Kushwaha, R K

    1991-01-01

    Keratinophilic fungi were isolated from feathers of most common Indian birds, viz. domestic chicken (Gallus domesticus), domestic pigeon (Columba livia), house sparrow (Passer domesticus), house crow (Corvus splendens), duck (Anas sp.), rose-ringed parakeet (Psittacula krameri). Out of 87 birds, 58 yielded 4 keratinophilic fungal genera representing 13 fungal species and one sterile mycelium. The isolated fungi were cultured on Sabouraud's dextrose agar at 28 +/- 2 degrees C. Chrysosporium species were isolated on most of the birds. Chrysosporium lucknowense and Chrysosporium tropicum were the most common fungal species associated with these Indian birds. Maximum occurrence of fungi (47%) was recorded on domestic chickens and the least number of keratinophilic fungi was isolated from the domestic pigeon and duck. The average number of fungi per bird was found to be the 0.44.

  10. Biological Control of Aquatic Plants with Pathogenic Fungi

    DTIC Science & Technology

    1981-01-01

    reverse side II necoosary and Ident•l•y by block number) Aquatic plant control Fungi Aquatic plants Pathogenic fungi Biological control Waterhyacinths...BACTERIA ............. ................. D1 2 1 BIOTIGICAL CONTROL OF AQUATIC PLANTS WITH PATHOGENIC FUNGI PART I: INTRODUCTION 1. Plant pathogens have...first noted in Florida. 13. In December of 1973, Dr. K. E. Ctnway isolated a Cercospora species, along with many other fungi , from declining

  11. Biodiversity of Fungi : Inventory and Monitoring Methods

    USGS Publications Warehouse

    Mueller, G.M.; Bills, G.F.; Foster, M.S.

    2004-01-01

    Biodiversity of Fungi is essential for anyone collecting and/or monitoring any fungi. Fascinating and beautiful, fungi are vital components of nearly all ecosystems and impact human health and our economy in a myriad of ways. Standardized methods for documenting diversity and distribution have been lacking. An wealth of information, especially regrading sampling protocols, compiled by an international team of fungal biologists, make Biodiversity of Fungi an incredible and fundamental resource for the study of organismal biodiversity. Chapters cover everything from what is a fungus, to maintaining and organizing a permanent study collection with associated databases; from protocols for sampling slime molds to insect associated fungi; from fungi growing on and in animals and plants to mushrooms and truffles. The chapters are arranged both ecologically and by sampling method rather than by taxonomic group for ease of use. The information presented here is intended for everyone interested in fungi, anyone who needs tools to study them in nature including naturalists, land managers, ecologists, mycologists, and even citizen scientists and sophiscated amateurs. Fungi are among the most important organisms in the world; they play vital roles in ecosystem functions and have wide-ranging effects, both positive and negative, on humans and human-related activities. There are about 1.5 million species of fungi. The combination of fungal species and abundances in an ecosystem are often used as indicators of ecosystem health and as indicators of the effects of pollution and of different management and use plans. Because of their significance, it is important that these organisms be monitored. This book is the first comprehensive treatment of fungal inventory and monitoring, including standardized sampling protocols as well as information on study design, sample preservation, and data analysis.

  12. [Detection of entomopathogen nematode [EPN - sand flies (Phlebotomus tobbi)] caught in the wild in Aydın, Kuşadası town and its assessment as a biological control agent].

    PubMed

    Karakuş, Mehmet; Arserim, Suha K; Töz, Seray Özensoy; Özbel, Yusuf

    2013-01-01

    In this study, the midgut of the sand flies investigated with direct method for the presence of parasites and other organisms. Wild sand flies collected in Kuşadası Town-Aydın, were dissected and midgut contents were examined by light microscopy. After midgut dissection, the head and genitalia of sand fly specimens were clarified and mounted for species identification. During the study, a total of 1027 sand flies were dissected. Eight and two species belonging to Phlebotomus and Sergentomyia genera were determined, respectively. Phlebotomus tobbi was found to be most abundant species (61.34%). A third stage of infective Entomopathogen Nematode belonging to Steinernematidae family was observed in the hemocoel of one specimen of P. tobbi during the dissection process. This is the first finding related to entomopathogen nematodes found in sand flies in Turkey. In the study, the sand fly fauna was determined in Kuşadası Town. For the control of sand flies, entomopathogenic nematodes which are not harmful for non-target organisms, can be used instead of chemical insecticides that can cause unknown damage in the environment.

  13. The frequency of sex in fungi

    PubMed Central

    James, Timothy Y.

    2016-01-01

    Fungi are a diverse group of organisms with a huge variation in reproductive strategy. While almost all species can reproduce sexually, many reproduce asexually most of the time. When sexual reproduction does occur, large variation exists in the amount of in- and out-breeding. While budding yeast is expected to outcross only once every 10 000 generations, other fungi are obligate outcrossers with well-mixed panmictic populations. In this review, we give an overview of the costs and benefits of sexual and asexual reproduction in fungi, and the mechanisms that evolved in fungi to reduce the costs of either mode. The proximate molecular mechanisms potentiating outcrossing and meiosis appear to be present in nearly all fungi, making them of little use for predicting outcrossing rates, but also suggesting the absence of true ancient asexual lineages. We review how population genetic methods can be used to estimate the frequency of sex in fungi and provide empirical data that support a mixed mode of reproduction in many species with rare to frequent sex in between rounds of mitotic reproduction. Finally, we highlight how these estimates might be affected by the fungus-specific mechanisms that evolved to reduce the costs of sexual and asexual reproduction. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619703

  14. The frequency of sex in fungi.

    PubMed

    Nieuwenhuis, Bart P S; James, Timothy Y

    2016-10-19

    Fungi are a diverse group of organisms with a huge variation in reproductive strategy. While almost all species can reproduce sexually, many reproduce asexually most of the time. When sexual reproduction does occur, large variation exists in the amount of in- and out-breeding. While budding yeast is expected to outcross only once every 10 000 generations, other fungi are obligate outcrossers with well-mixed panmictic populations. In this review, we give an overview of the costs and benefits of sexual and asexual reproduction in fungi, and the mechanisms that evolved in fungi to reduce the costs of either mode. The proximate molecular mechanisms potentiating outcrossing and meiosis appear to be present in nearly all fungi, making them of little use for predicting outcrossing rates, but also suggesting the absence of true ancient asexual lineages. We review how population genetic methods can be used to estimate the frequency of sex in fungi and provide empirical data that support a mixed mode of reproduction in many species with rare to frequent sex in between rounds of mitotic reproduction. Finally, we highlight how these estimates might be affected by the fungus-specific mechanisms that evolved to reduce the costs of sexual and asexual reproduction.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  15. [Fungi in the gut - the gut mycobiome].

    PubMed

    Hof, Herbert

    2017-08-01

    Many different fungi, including yeasts and molds, can be found in the intestinal tract of humans constituting the gut mycobiome. In case the bacterial flora is altered, the fungal flora may react inversely. By a so-called fungal diet, however, the composition of the mycobiome can hardly be influenced. Whereas some fungi are only transiently present in the gut after oral uptake, others, such as Candida, Saccharomyces, Rhodotorula, Trichosporon, Geotrichum, amongst others, are members of the residential, autochthonous gut flora. Some of these fungi exert beneficial effects, for example by synthesizing useful materials. Rhodotorula can produce fatty acids and carotenoids. Others are able to metabolize toxic compounds, for example mycotoxins as well as procarcinogenic items in food. Toxins, as well as pathogenic bacteria, can be bound to mannans on the surface of fungi und can consequently be exported. Some fungi are said to exert probiotic activities. Certain fungal constituents, such as glucans, may even stimulate the immune system. On the other hand, some fungi cannot only colonize the gut asymptomatically but can also be noxious under certain conditions when, for example, the bacterial flora is disturbed. By means of their virulence factors, they can damage the gut epithelium and even penetrate into the Mukosa inducing inflammation, They can also aggravate chronic inflammatory processes. Fungi play a role in the development of obesity. Lastly, fungi in the gut represent a reservoir from which they may spread to other sites when the conditions are favorable. © Georg Thieme Verlag KG Stuttgart · New York.

  16. The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia

    PubMed Central

    Lee, Yung-I; Yang, Chih-Kai; Gebauer, Gerhard

    2015-01-01

    Background and Aims Most fully mycoheterotrophic (MH) orchids investigated to date are mycorrhizal with fungi that simultaneously form ectomycorrhizas with forest trees. Only a few MH orchids are currently known to be mycorrhizal with saprotrophic, mostly wood-decomposing, fungi instead of ectomycorrhizal fungi. This study provides evidence that the importance of associations between MH orchids and saprotrophic non-Rhizoctonia fungi is currently under-estimated. Methods Using microscopic techniques and molecular approaches, mycorrhizal fungi were localized and identified for seven MH orchid species from four genera and two subfamilies, Vanilloideae and Epidendroideae, growing in four humid and warm sub-tropical forests in Taiwan. Carbon and nitrogen stable isotope natural abundances of MH orchids and autotrophic reference plants were used in order to elucidate the nutritional resources utilized by the orchids. Key Results Six out of the seven MH orchid species were mycorrhizal with either wood- or litter-decaying saprotrophic fungi. Only one orchid species was associated with ectomycorrhizal fungi. Stable isotope abundance patterns showed significant distinctions between orchids mycorrhizal with the three groups of fungal hosts. Conclusions Mycoheterotrophic orchids utilizing saprotrophic non-Rhizoctonia fungi as a carbon and nutrient source are clearly more frequent than hitherto assumed. On the basis of this kind of nutrition, orchids can thrive in deeply shaded, light-limiting forest understoreys even without support from ectomycorrhizal fungi. Sub-tropical East Asia appears to be a hotspot for orchids mycorrhizal with saprotrophic non-Rhizoctonia fungi. PMID:26113634

  17. [Mycorrhizal fungi diversity of Vaccinium uliginosum L].

    PubMed

    Yang, Xiuli; Yan, Wei

    2015-02-04

    The diversity of mycorrhizal fungi isolated from Vaccinium uliginosum L in the northern region of Daxing' anling mountains was examined for the first time. Morphology and ITS sequence analysis were used to identify the fungal communities. Six groups of fungi were isolated from Vaccinium uliginosum root samples: one belongs to Hymenoscyphus; one to Phialocephala; one to Lachnum; one to Cadophora; one to Marasmius and one to Mycena. Among them, 87. 10% belong to ascomycetes and 12.90% belong to Basidiomycotina. The diversity of fungi associated with Vaccinium uliginosum is abundant and the fungi are from heterogenous group.

  18. [Antimicrobial activity of volatile oil from Atractylodes lancea against three species of endophytic fungi and seven species of exogenous fungi].

    PubMed

    Wang, Yu; Dai, Chuan-Chao; Chen, Yan

    2009-11-01

    In order to investigate the inhibitory effects of host plants secondary metabolites on the growth of endophytic and exogenous fungi, the volatile oil from medicinal plant Atractylodes lancea was extracted with organic solvent extraction method, and its antimicrobial activity against three species of endophytic and seven species of exogenous fungi was determined by paper disc assay and spread-plate. The volatile oil had inhibitory effects on the growth of test endophytic fungi. It had strong antimicrobial activity against Rhodotorula glutinis and Saprolegnia, but weak activity against Rhizopus and Absidia. It suppressed the sporulation of Trichoderma viride and Aspergillus niger, but no effects on the growth of Phytophthora. Under the stress of high concentration volatile oil, the hyphal branches of test endophytic fungi increased, the distance between the branches became shorter, and the growth of aerial hyphae was inhibited. The test endophytic fungi had remarkable ability to metabolize and transform the volatile oil, and decreased the contents of its main ingredients. All the results showed that the volatile oil extracted from A. lancea had inhibitory effects on the growth of endophytic fungi, but the fungi could adapt to the volatile oil via metabolizing and decomposing it.

  19. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi

    PubMed Central

    2014-01-01

    Background Nematode-trapping fungi are a unique group of organisms that can capture nematodes using sophisticated trapping structures. The genome of Drechslerella stenobrocha, a constricting-ring-forming fungus, has been sequenced and reported, and provided new insights into the evolutionary origins of nematode predation in fungi, the trapping mechanisms, and the dual lifestyles of saprophagy and predation. Results The genome of the fungus Drechslerella stenobrocha, which mechanically traps nematodes using a constricting ring, was sequenced. The genome was 29.02 Mb in size and was found rare instances of transposons and repeat induced point mutations, than that of Arthrobotrys oligospora. The functional proteins involved in nematode-infection, such as chitinases, subtilisins, and adhesive proteins, underwent a significant expansion in the A. oligospora genome, while there were fewer lectin genes that mediate fungus-nematode recognition in the D. stenobrocha genome. The carbohydrate-degrading enzyme catalogs in both species were similar to those of efficient cellulolytic fungi, suggesting a saprophytic origin of nematode-trapping fungi. In D. stenobrocha, the down-regulation of saprophytic enzyme genes and the up-regulation of infection-related genes during the capture of nematodes indicated a transition between dual life strategies of saprophagy and predation. The transcriptional profiles also indicated that trap formation was related to the protein kinase C (PKC) signal pathway and regulated by Zn(2)–C6 type transcription factors. Conclusions The genome of D. stenobrocha provides support for the hypothesis that nematode trapping fungi evolved from saprophytic fungi in a high carbon and low nitrogen environment. It reveals the transition between saprophagy and predation of these fungi and also proves new insights into the mechanisms of mechanical trapping. PMID:24507587

  20. Biodiversity of entomopathogenic nematodes in Italy.

    PubMed

    Tarasco, E; Clausi, M; Rappazzo, G; Panzavolta, T; Curto, G; Sorino, R; Oreste, M; Longo, A; Leone, D; Tiberi, R; Vinciguerra, M T; Triggiani, O

    2015-05-01

    An investigation was carried out on the distribution and biodiversity of steinernematid and heterorhabdtid entomopathogenic nematodes (EPN) in nine regions of Italy in the period 1990-2010. More than 2000 samples were collected from 580 localities and 133 of them yielded EPN specimens. A mapping of EPN distribution in Italy showed 133 indigenous EPN strains belonging to 12 species: 43 isolates of Heterorhabditis bacteriophora, 1 of H. downesi, 1 of H. megidis, 51 of Steinernema feltiae, 12 of S. affine, 4 of S. kraussei, 8 of S. apuliae, 5 of S. ichnusae, 3 of S. carpocapsae, 1 of S. vulcanicum, 3 of Steinernema 'isolate S.sp.MY7' of 'S. intermedium group' and 1 of S. arenarium. Steinernematids are more widespread than heterorhabditids and S. feltiae and H. bacteriophora are the most commonly encountered species. Sampling sites were grouped into 11 habitats: uncultivated land, orchard, field, sea coast, pinewood, broadleaf wood, grasslands, river and lake borders, caves, salt pan and moist zones; the soil texture of each site was defined and the preferences of habitat and soil texture of each species was assessed. Except for the two dominant species, S. feltiae and H. bacteriophora, EPN occurrence tends to be correlated with a specific vegetation habitat. Steinernema kraussei, H. downesi and H. megidis were collected only in Sicily and three of the species recently described - S. apuliae, S. ichnusae and S. vulcanicum - are known only from Italy and seem to be endemic.

  1. Biocontrol of ticks by entomopathogenic nematodes. Research update.

    PubMed

    Samish, M; Alekseev, E; Glazer, I

    2000-01-01

    Entomopathogenic nematodes (EPNs) are lethal to ticks even though they do not use their normal propagation cycle within tick cadavers. The tick Boophilus annulatus was found to be far more susceptible to EPNs than Hyalomma excavatum, Rhipicephalus bursa, or Rhipicephalus sanguineus. Ticks seem to be less susceptible to nematodes when feeding on a host. Preimaginal tick stages were less susceptible to nematodes than adult ticks. The mortality rate of unfed females was highest, followed by unfed males, and engorged females. The virulence of nematodes to ticks varied greatly among different nematode strains. In most cases, the Heterorhabditis sp. strains were the most virulent strains tested in petri dishes. In buckets containing sandy soil sprayed with 50 nematodes/cm2 and engorged B. annulatus females, the LT50 of the ticks was less than five days. The addition of manure to soil or a manure extract to petri dishes reduced nematode virulence. Since ticks spend most of their life cycle in the upper humid layer of the ground, and many nematode strains share this same ecological niche, the use of EPNs for biocontrol of ticks appears promising.

  2. Elucidating the nutritional dynamics of fungi using stable isotopes.

    PubMed

    Mayor, Jordan R; Schuur, Edward A G; Henkel, Terry W

    2009-02-01

    Mycorrhizal and saprotrophic (SAP) fungi are essential to terrestrial element cycling due to their uptake of mineral nutrients and decomposition of detritus. Linking these ecological roles to specific fungi is necessary to improve our understanding of global nutrient cycling, fungal ecophysiology, and forest ecology. Using discriminant analyses of nitrogen (delta(15)N) and carbon (delta(13)C) isotope values from 813 fungi across 23 sites, we verified collector-based categorizations as either ectomycorrhizal (ECM) or SAP in > 91% of the fungi, and provided probabilistic assignments for an additional 27 fungi of unknown ecological role. As sites ranged from boreal tundra to tropical rainforest, we were able to show that fungal delta(13)C (26 sites) and delta(15)N (32 sites) values could be predicted by climate or latitude as previously shown in plant and soil analyses. Fungal delta(13)C values are likely reflecting differences in C-source between ECM and SAP fungi, whereas (15)N enrichment of ECM fungi relative to SAP fungi suggests that ECM fungi are consistently delivering (15)N depleted N to host trees across a range of ecosystem types.

  3. Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)?

    PubMed

    Půza, Vladimír; Mrácek, Zdenĕk

    2010-05-01

    Living and freeze-killed natural and laboratory hosts, with different susceptibility to entomopathogenic nematodes, were exposed to the larvae of Steinernema affine and Steinernema kraussei in two different experimental arenas (Eppendorf tubes, Petri dishes), and the success of the colonisation and eventual progeny production were observed. Both nematodes were able to colonise both living and dead larvae of Galleria mellonella (Lepidoptera) and adult Blatella germanica (Blattodea) even though the progeny production in dead hosts was lower on average. Living carabid beetles, Poecilus cupreus, and elaterid larvae (Coleoptera) were resistant to the infection, however, both nematodes were able to colonise and multiply in several dead P. cupreus and in a majority of dead elaterid larvae. By scavenging, EPNs can utilise cadavers of insects that are naturally resistant to EPN infection, and so broaden their host range. (c) 2010 Elsevier Inc. All rights reserved.

  4. Ecological characterisation of the Colombian entomopathogenic nematode Heterorhabditis sp. SL0708.

    PubMed

    Mejia-Torres, M C; Sáenz, A

    2013-05-01

    The entomopathogenic nematode Heterorhabditis sp. SL0708 (Rhabditida: Heterorhabditidae) isolated from soil in Alcalá, Valle del Cauca (Colombia) was characterised ecologically using Galleria mellonella larvae (L) (Pyralidae: Galleriinae) as hosts. The effect of temperature on the viability, infectivity and reproduction, and of moisture on infectivity and storage in liquid were evaluated in infective juveniles (IJs). Significant differences were found in the viability, infectivity and reproduction of the IJs at different temperatures. No nematodes were recovered at 5 °C and 10 °C, and at 35 °C no infectivity was observed. Average daily nematode recovery was best at 25 °C, and survival of the IJs was low in substrates presenting 13% moisture. The optimal storage temperature for Heterorhabditis sp. SL0708 was between 20 °C and 30 °C, keeping its infectivity for up to 8 weeks.

  5. Effectiveness of Metarhizium anisopliae and Entomopathogenic Nematodes to Control Oryctes rhinoceros Larvae in the Rainy Season.

    PubMed

    Indriyanti, Dyah Rini; Widiyaningrum, Priyantini; Haryuni; Slamet, Muji; Maretta, Yoris Adi

    2017-01-01

    Metarhizium anisopliae (MET) and entomopathogenic nematodes (EPN) are microorganisms that attack the larvae of Oryctes rhinoceros. The effects of MET, EPN and the combination of both on the O. rhinoceros larvae were studied during the rainy season in Jepara Indonesia. This study aimed to determine the effectiveness of Metarhizium anisopliae and entomopathogenic nematodes to control Oryctes rhinoceros larvae in the rainy season. There were four level doses of MET, four level doses of EPN and four mixture of MET and EPN. The experiment used 72 containers that were placed in the garden with coconut palm shade. Five kilograms of organic soil that was mixed with biological control agents (MET, EPN and MET+EPN) and ten O. rhinoceros larvae 3rd instar were put in each other container. The data were analyzed by descriptive analysis. Every larvae mortality was observed once a week and observations are for 8 weeks. The result showed that the larval mortality due to MET treatment occurred on 2nd-7th week. Meanwhile, the larval mortality due to EPN treatment took place on 2nd-8th weeks and the larval mortality due to MET+EPN treatment occurred on 1st-5th weeks. The combination of MET and EPN was simultaneously effective to control O. rhinoceros larvae than separate use of MET or EPN. Result of this study showed that using two agents of biocontrol was more effective, so that it can be beneficial for controlling O. rhinoceros larvae in the field.

  6. Dicer and Argonaute Genes Involved in RNA Interference in the Entomopathogenic Fungus Metarhizium robertsii.

    PubMed

    Meng, Huimin; Wang, Zhangxun; Wang, Yulong; Zhu, Hong; Huang, Bo

    2017-04-01

    RNA interference (RNAi) is a gene-silencing mechanism that plays an important role in gene regulation in a number of eukaryotic organisms. Two core components, Dicer and Argonaute, are central in the RNAi machinery. However, the physiological roles of Dicer and Argonaute in the entomopathogenic fungus Metarhizium robertsii have remained unclear. Here, the roles of genes encoding Dicer ( M. robertsii dcl1 [ Mrdcl1 ] and Mrdcl2 ) and Argonaute ( Mrago1 and Mrago2 ) proteins in M. robertsii were investigated. The results showed that the Dicer-like protein MrDCL2 and Argonaute protein MrAGO1 are the major components of the RNAi process occurring in M. robertsii The Dicer and Argonaute genes were not involved in the regulation of growth and diverse abiotic stress response in M. robertsii under the tested conditions. Moreover, our results showed that the Dicer and Argonaute gene mutants demonstrated reduced abilities to produce conidia, compared to the wild type (WT) and the gene-rescued mutant. In particular, the conidial yields in the Δ dcl2 and Δ ago1 mutants were reduced by 55.8% and 59.3%, respectively, compared with those from the control strains. Subsequently, for the WT and Δ dcl2 mutant strains, digital gene expression (DGE) profiling analysis of the stage of mycelium growth and conidiogenesis revealed that modest changes occur in development or metabolism processes, which may explain the reduction in conidiation in the Δ dcl2 mutant. In addition, we further applied high-throughput sequencing technology to identify small RNAs (sRNAs) that are differentially expressed in the WT and the Δ dcl2 mutant and found that 4 known microRNA-like small RNAs (milRNAs) and 8 novel milRNAs were Mrdcl2 dependent in M. robertsii IMPORTANCE The identification and characterization of components in RNAi have contributed significantly to our understanding of the mechanism and functions of RNAi in eukaryotes. Here, we found that Dicer and Argonaute genes play an important role

  7. Heteroresistance and fungi.

    PubMed

    Ferreira, Gabriella F; Santos, Daniel A

    2017-09-01

    The concept of heteroresistance refers to the heterogeneous susceptibility to an antimicrobial drug in a microorganism population, meaning that some clones may be resistant and others are susceptible. This phenomenon has been widely studied in bacteria, but little attention has been given to its expression in fungi. We review the available literature on heteroresistance in fungi and invite the reader to recognise this phenomenon as a fungal mechanism to adapt to environmental stress, which may interfere both in resistance and virulence. Finally, heteroresistance may explain the treatment failures to eradicate mycosis in some patients treated with a seemingly appropriate antifungal. © 2017 Blackwell Verlag GmbH.

  8. Sustainable management tactics for control of Phyllotreta cruciferae (Coleoptera: Chrysomelidae) on canola in Montana.

    PubMed

    Reddy, Gadi V P; Tangtrakulwanich, Khanobporn; Miller, John H; Ophus, Victoria L; Prewett, Julie

    2014-04-01

    The crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), has recently emerged as a serious pest of canola (Brassica napus L.) in Montana. The adult beetles feed on canola leaves, causing many small holes that stunt growth and reduce yield. In 2013, damage to canola seedlings was high (approximately 80%) in many parts of Montana, evidence that when flea beetles emerge in large numbers, they can quickly destroy a young canola crop. In the current study, the effectiveness of several biopesticides was evaluated and compared with two insecticides (deltamethrin and bifenthrin) commonly used as foliar sprays as well as seed treatment with an imidacloprid insecticide for the control of P. cruciferae under field conditions in 2013. The biopesticides used included an entomopathogenic nematode (Steinernema carpocapsae), two entomopathogenic fungi (Beauveria bassiana and Metarhizium brunneum), neem, and petroleum spray oils. The control agents were delivered in combination or alone in a single or repeated applications at different times. The plant-derived compound neem (azadirachtin), petroleum spray oil, and fatty acids (M-Pede) only showed moderate effect, although they significantly reduced leaf injuries caused by P. cruciferae and resulted in higher canola yield than the untreated control. Combined use of B. bassiana and M. brunneum in two repeated applications and bifenthrin in five applications were most effective in reducing feeding injuries and improving yield levels at both trial locations. This indicates that entomopathogenic fungi are effective against P. cruciferae, and may serve as alternatives to conventional insecticides or seed treatments in managing this pest.

  9. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens

    PubMed Central

    Posada, Francisco J.; Vega, Fernando E.

    2005-01-01

    Fifty Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains isolated from the coffee berry borer were used to develop a novel screening method aimed at selecting strains with the highest biocontrol potential. The screening method is based on percent insect mortality, average survival time, mortality distribution, percent spore germination, fungal life cycle duration, and spore production on the insect. Based on these parameters, only 11 strains merited further study. The use of a sound scientific protocol for the selection of promising fungal entomopathogens should lead to more efficient use of time, labor, and financial resources in biological control programs. PMID:17119619

  10. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality

    PubMed Central

    Wei, Ge; Lai, Yiling; Wang, Guandong; Chen, Huan; Li, Fang

    2017-01-01

    The insect gut microbiota plays crucial roles in modulating the interactions between the host and intestinal pathogens. Unlike viruses, bacteria, and parasites, which need to be ingested to cause disease, entomopathogenic fungi infect insects through the cuticle and proliferate in the hemolymph. However, interactions between the gut microbiota and entomopathogenic fungi are unknown. Here we show that the pathogenic fungus Beauveria bassiana interacts with the gut microbiota to accelerate mosquito death. After topical fungal infection, mosquitoes with gut microbiota die significantly faster than mosquitoes without microbiota. Furthermore, fungal infection causes dysbiosis of mosquito gut microbiota with a significant increase in gut bacterial load and a significant decrease in bacterial diversity. In particular, the opportunistic pathogenic bacterium Serratia marcescens overgrows in the midgut and translocates to the hemocoel, which promotes fungal killing of mosquitoes. We further reveal that fungal infection down-regulates antimicrobial peptide and dual oxidase expression in the midgut. Duox down-regulation in the midgut is mediated by secretion of the toxin oosporein from B. bassiana. Our findings reveal the important contribution of the gut microbiota in B. bassiana-killing activity, providing new insights into the mechanisms of fungal pathogenesis in insects. PMID:28533370

  11. Effects of inbreeding on potential and realized immune responses in Tenebrio molitor.

    PubMed

    Rantala, Markus J; Viitaniemi, Heidi; Roff, Derek A

    2011-06-01

    Although numerous studies on vertebrates suggest that inbreeding reduces their resistance against parasites and pathogens, studies in insects have found contradictory evidence. In this study we tested the effect of 1 generation of brother-sister mating (inbreeding) on potential and realized immune responses and other life-history traits in Tenebrio molitor. We found that inbreeding reduced adult mass, pre-adult survival and increased development time, suggesting that inbreeding reduced the condition of the adults and thus potentially made them more susceptible to physiological stress. However, we found no significant effect of inbreeding on the potential immune response (encapsulation response), but inbreeding reduced the realized immune response (resistance against the entomopathogenic fungi, Beauveria bassiana). There was a significant family effect on encapsulation response, but no family effect on the resistance against the entomopathogenic fungi. Given that this latter trait showed significant inbreeding depression and that the sample size for the family-effect analysis was small it is likely that the lack of a significant family effect is due to reduced statistical power, rather than the lack of a heritable basis to the trait. Our study highlights the importance of using pathogens and parasites in immunoecological studies.

  12. Diversity and distribution of entomopathogenic nematodes (Nematoda: Steinernematidae, Heterorhabditidae) and their bacterial symbionts (gamma-Proteobacteria: Enterobacteriaceae) in Jordan.

    PubMed

    Stock, S Patricia; Al Banna, Luma; Darwish, Rula; Katbeh, Ahmad

    2008-06-01

    Until now, only a few systematic surveys of entomopathogenic nematodes (EPN) have been conducted in Middle Eastern countries. Many of the recovered EPN species in this region have shown to own distinctive qualities that enable their survival in unique environments, such as high temperatures and low moisture levels tolerance. These new species and strains, with unique environmental tolerances, are more suitable for their consideration in pest management programs in xerophytic regions. With this background in mind, we recently conducted a survey of EPN in Jordan. This study records for the first time the diversity and distribution of these nematodes and their bacterial symbionts in this country. Jordan's three geographic regions: (1) the highlands, (2) Jordan valley and (3) the desert region were sampled. Within each region, natural habitats and agricultural regions characteristic to each region were considered for sampling purposes. Four EPN species including three Steinernema and one Heterorhabditis were recovered. Nematodes were identified using a combination of molecular markers and classic morphological diagnostic tools. Bacterial symbionts were identified by analysis of 16S rRNA sequences. Abiotic characteristics such as soil type, soil pH, and elevation were also recorded. We herein report the diversity of EPN species in Jordan and discuss their potential in Biocontrol and IPM programs for this country.

  13. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2014-01-01

    Abstract The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed

  14. Screening of Oomycete Fungi for Their Potential Role in Reducing the Biting Midge (Diptera: Ceratopogonidae) Larval Populations in Hervey Bay, Queensland, Australia

    PubMed Central

    Stephen, Kirsty; Kurtböke, D. Ipek

    2011-01-01

    Biting midges are globally distributed pests causing significant economic losses and transmitting arbovirus diseases to both animals and humans. Current biological and chemical control strategies for biting midge target destruction of adult forms, but strategies directed at immature stages of the insect have yet to be explored in Australia. In the present study, coastal waters of Hervey Bay region in Queensland, Australia were screened to detect the habitats of biting midge at immature stages. These results were then correlated to local environmental conditions and naturally occurring entomopathogenic fungal flora, in particular the Oomycete fungi, to determine their reducing effect on insect immature stages in the search for biological control agents in the region. The dominant species of biting midge found within this study was Culicoides subimmaculatus occuring between mean high water neaps and mean high water spring tide levels. Within this intertidal zone, the presence of C. subimmaculatus larvae was found to be influenced by both sediment size and distance from shore. Halophytophthora isolates colonized both dead and alive pupae. However, the association was found to be surface colonization rather than invasion causing the death of the host. Lack of aggressive oomycete fungal antagonists towards midge larvae might correlate with increased incidences of biting midge infestations in the region. PMID:21655137

  15. Marine Fungi: A Source of Potential Anticancer Compounds

    PubMed Central

    Deshmukh, Sunil K.; Prakash, Ved; Ranjan, Nihar

    2018-01-01

    Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines. PMID:29354097

  16. Potential Antiviral Agents from Marine Fungi: An Overview

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  17. Thermophilic fungi in the new age of fungal taxonomy.

    PubMed

    de Oliveira, Tássio Brito; Gomes, Eleni; Rodrigues, Andre

    2015-01-01

    Thermophilic fungi are of wide interest due to their potential to produce heat-tolerant enzymes for biotechnological processes. However, the taxonomy of such organisms remains obscure, especially given new developments in the nomenclature of fungi. Here, we examine the taxonomy of the thermophilic fungi most commonly used in industry in light of the recent taxonomic changes following the adoption of the International Code of Nomenclature for Algae, Fungi and Plants and also based on the movement One Fungus = One Name. Despite the widespread use of these fungi in applied research, several thermotolerant fungi still remain classified as thermophiles. Furthermore, we found that while some thermophilic fungi have had their genomes sequenced, many taxa still do not have barcode sequences of reference strains available in public databases. This lack of basic information is a limiting factor for the species identification of thermophilic fungi and for metagenomic studies in this field. Based on next-generation sequencing, such studies generate large amounts of data, which may reveal new species of thermophilic fungi in different substrates (composting systems, geothermal areas, piles of plant material). As discussed in this study, there are intrinsic problems associated with this method, considering the actual state of the taxonomy of thermophilic fungi. To overcome such difficulties, the taxonomic classification of this group should move towards standardizing the commonly used species names in industry and to assess the possibility of including new systems for describing species based on environmental sequences.

  18. Oviposition behavior and survival of Tamarixia radiata (Hymenoptera: Eulophidae), an ectoparasitoid of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), on hosts exposed to an entomopathogenic fungus

    USDA-ARS?s Scientific Manuscript database

    Antagonistic interactions between the nymphal parasitoid, Tamarixia radiata Waterston (Hymenoptera: Eulophidae), and the ARSEF 3581 isolate of the entomopathogenic fungus, Isaria fumosorosea Wize (Hypocreales: Cordycipitaceae) could disrupt biological control of the Asian citrus psyllid, Diaphorina ...

  19. Common wood decay fungi found in the Caribbean Basin

    Treesearch

    D. Jean Lodge

    2016-01-01

    There are hundreds of wood-decay fungi in the Caribbean Basin, but relatively few of these are likely to grow on manmade structures built of wood or wood-composites. The wood-decay fungi of greatest concern are those that cause brown-rot, and especially brown-rot fungi that are resistant to copper-based wood preservatives. Some fungi that grow in the Caribbean and...

  20. Genome Studies on Nematophagous and Entomogenous Fungi in China

    PubMed Central

    Zhang, Weiwei; Cheng, Xiaoli; Liu, Xingzhong; Xiang, Meichun

    2016-01-01

    The nematophagous and entomogenous fungi are natural enemies of nematodes and insects and have been utilized by humans to control agricultural and forestry pests. Some of these fungi have been or are being developed as biological control agents in China and worldwide. Several important nematophagous and entomogenous fungi, including nematode-trapping fungi (Arthrobotrys oligospora and Drechslerella stenobrocha), nematode endoparasite (Hirsutella minnesotensis), insect pathogens (Beauveria bassiana and Metarhizium spp.) and Chinese medicinal fungi (Ophiocordyceps sinensis and Cordyceps militaris), have been genome sequenced and extensively analyzed in China. The biology, evolution, and pharmaceutical application of these fungi and their interacting with host nematodes and insects revealed by genomes, comparing genomes coupled with transcriptomes are summarized and reviewed in this paper. PMID:29376926

  1. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi.

    PubMed

    Li, Juan; Gu, Fei; Wu, Runian; Yang, JinKui; Zhang, Ke-Qin

    2017-03-30

    Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles.

  2. Draft Genome Sequence of the Entomopathogenic Bacterium Bacillus pumilus 15.1, a Strain Highly Toxic to the Mediterranean Fruit Fly Ceratitis capitata

    PubMed Central

    García-Ramón, Diana C.; Palma, Leopoldo; Berry, Colin; Osuna, Antonio

    2015-01-01

    We present the draft whole-genome sequence of the entomopathogenic Bacillus pumilus 15.1 strain that consists of 3,795,691 bp and 3,776 predicted protein-coding genes. This genome sequence provides the basis for understanding the potential mechanism behind the toxicity and virulence of B. pumilus 15.1 against the Mediterranean fruit fly. PMID:26404596

  3. [Predacious nematode-destroying fungi].

    PubMed

    Czygier, M; Boguś, M I

    2001-01-01

    Gastrointestinal nematodes are considered a serious economic problem affecting the livestock industry around the world. Current methods of their control, relaying mainly on organic drugs, are not sustainable because parasites develop resistance to anthelmintic and bacause of increasing public concern about chemicals residues in livestock products and environment. Nematode-trapping fungi offer a very promissing, nonchemotherapeutic approach to nematode parasite control. Their potential in preventing nematodosis is well documented. In this paper we outline the present knowlege on mechanisms involved in trapping and killing nematodes by the predacious nematode-destroying fungi.

  4. SALT WATER FUNGI

    DTIC Science & Technology

    strates Investigation of actinomycetales occurring in the marine environment Concurrent related mycological research program Systematics of pelagic fungi Biology and ecology of marine yeasts Concurrent bacteriological research programs

  5. Root-feeding insects and their interactions with organisms in the rhizosphere.

    PubMed

    Johnson, Scott N; Rasmann, Sergio

    2015-01-07

    Root-feeding insects are an increasingly studied group of herbivores whose impacts on plant productivity and ecosystem processes are widely recognized. Their belowground habitat has hitherto hindered our understanding of how they interact with other organisms that share the rhizosphere. A surge in research in this area has now shed light on these interactions. We review key interactions between root-feeding insects and other rhizospheric organisms, including beneficial plant microbes (mycorrhizal fungi, nitrogen-fixing bacteria), antagonists/pathogens of root herbivores (arthropod predators, entomopathogenic nematodes/fungi, and bacterial pathogens), competitors, symbiotic microbes, and detritivores. Patterns for these interactions are emerging. The negative impacts of mycorrhizal fungi on root herbivores, for instance, raise the intriguing prospect that these fungi could be used for pest management. Moreover, a better understanding of symbiotic microbes in root herbivores, especially those underpinning digestion, could prove useful in industries such as biofuel production.

  6. Interactions between cranberries and fungi: the proposed function of organic acids in virulence suppression of fruit rot fungi

    PubMed Central

    Tadych, Mariusz; Vorsa, Nicholi; Wang, Yifei; Bergen, Marshall S.; Johnson-Cicalese, Jennifer; Polashock, James J.; White, James F.

    2015-01-01

    Cranberry fruit are a rich source of bioactive compounds that may function as constitutive or inducible barriers against rot-inducing fungi. The content and composition of these compounds change as the season progresses. Several necrotrophic fungi cause cranberry fruit rot disease complex. These fungi remain mostly asymptomatic until the fruit begins to mature in late August. Temporal fluctuations and quantitative differences in selected organic acid profiles between fruit of six cranberry genotypes during the growing season were observed. The concentration of benzoic acid in fruit increased while quinic acid decreased throughout fruit development. In general, more rot-resistant genotypes (RR) showed higher levels of benzoic acid early in fruit development and more gradual decline in quinic acid levels than that observed in the more rot-susceptible genotypes. We evaluated antifungal activities of selected cranberry constituents and found that most bioactive compounds either had no effects or stimulated growth or reactive oxygen species (ROS) secretion of four tested cranberry fruit rot fungi, while benzoic acid and quinic acid reduced growth and suppressed secretion of ROS by these fungi. We propose that variation in the levels of ROS suppressive compounds, such as benzoic and quinic acids, may influence virulence by the fruit rot fungi. Selection for crops that maintain high levels of virulence suppressive compounds could yield new disease resistant varieties. This could represent a new strategy for control of disease caused by necrotrophic pathogens that exhibit a latent or endophytic phase. PMID:26322038

  7. Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by RNA-Seq Analysis.

    PubMed

    Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun

    2016-01-01

    Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri.

  8. Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by RNA-Seq Analysis

    PubMed Central

    Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun

    2016-01-01

    Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri. PMID:27644092

  9. Occurrence and hygienic relevance of fungi in drinking water.

    PubMed

    Kanzler, D; Buzina, W; Paulitsch, A; Haas, D; Platzer, S; Marth, E; Mascher, F

    2008-03-01

    Fungi, above all filamentous fungi, can occur almost everywhere, even in water. They can grow in such a quantity in water that they can affect the health of the population or have negative effects on food production. There are several reports of fungal growth in water from different countries, but to our knowledge none from Austria so far. The aim of this study was to gain an overview of the spectrum of filamentous fungi and yeasts in drinking water systems. Thirty-eight water samples from drinking water and groundwater were analysed. Fungi were isolated by using membrane filtration and plating method with subsequent cultivation on agar plates. The different taxa of fungi were identified using routine techniques as well as molecular methods. Fungi were isolated in all water samples examined. The mean value for drinking water was 9.1 CFU per 100 ml and for groundwater 5400 CFU per 100 ml. Altogether 32 different taxa of fungi were found. The taxa which occurred most frequently were Cladosporium spp., Basidiomycetes and Penicillium spp. (74.6%, 56.4% and 48.7%, respectively). This study shows that drinking water can be a reservoir for fungi, among them opportunists, which can cause infections in immunosuppressed patients.

  10. Mimicry in plant-parasitic fungi.

    PubMed

    Ngugi, Henry K; Scherm, Harald

    2006-04-01

    Mimicry is the close resemblance of one living organism (the mimic) to another (the model), leading to misidentification by a third organism (the operator). Similar to other organism groups, certain species of plant-parasitic fungi are known to engage in mimetic relationships, thereby increasing their fitness. In some cases, fungal infection can lead to the formation of flower mimics (pseudo flowers) that attract insect pollinators via visual and/or olfactory cues; these insects then either transmit fungal gametes to accomplish outcrossing (e.g. in some heterothallic rust fungi belonging to the genera Puccinia and Uromyces) or vector infectious spores to healthy plants, thereby spreading disease (e.g. in the anther smut fungus Microbotryum violaceum and the mummy berry pathogen Monilinia vaccinii-corymbosi). In what is termed aggressive mimicry, some specialized plant-parasitic fungi are able to mimic host structures or host molecules to gain access to resources. An example is M. vaccinii-corymbosi, whose conidia and germ tubes, respectively, mimic host pollen grains and pollen tubes anatomically and physiologically, allowing the pathogen to gain entry into the host's ovary via stigma and style. We review these and other examples of mimicry by plant-parasitic fungi and some of the mechanisms, signals, and evolutionary implications.

  11. Cyclodepsipeptides and other O-containing heterocyclic metabolites from Beauveria felina EN-135, a marine-derived entomopathogenic fungus.

    PubMed

    Du, Feng-Yu; Li, Xiao-Ming; Zhang, Peng; Li, Chun-Shun; Wang, Bin-Gui

    2014-05-13

    Bioassay-guided fractionation of a culture extract of Beauveria felina EN-135, an entomopathogenic fungus isolated from a marine bryozoan, led to the isolation of a new cyclodepsipeptide, iso-isariin D (1); two new O-containing heterocyclic compounds that we have named felinones A and B (2 and 3); and four known cyclodepsipeptides (4-7). The structures were elucidated via spectroscopic analysis, and the absolute configurations of 1 and 2 were determined using single-crystal X-ray diffraction and CD, respectively. All isolated compounds were evaluated for antimicrobial activity and brine-shrimp (Artemia salina) lethality.

  12. Fungi that Infect Humans.

    PubMed

    Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R

    2017-06-01

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  13. Bioremediation of treated wood with fungi

    Treesearch

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  14. [Heavy metal pollution ecology of macro-fungi: research advances and expectation].

    PubMed

    Zhou, Qi-xing; An, Xin-long; Wei, Shu-he

    2008-08-01

    Macro-fungi are the main component of biosphere and one of the ecological resources, and play very important roles in matter cycling and in maintaining ecological balances. This paper summarized and reviewed the research advances in the eco-toxicological effects of heavy metals on macro-fungi, the bioaccumulation function of macro-fungi on heavy metals, the ecological adaptation mechanisms of macro-fungi to heavy metal pollution, the role of macro-fungi as a bio-indicator of heavy metal pollution, and the potential of macro-fungi in the ecological remediation of contaminated environment. To strengthen the researches on the heavy metal pollution ecology of macro-fungi would be of practical significance in the reasonable utilization of macro-fungi resources and in the ecological remediation of contaminated environment.

  15. Aliphatic hydrocarbons of the fungi.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  16. Compatibility of OMRI certified surfactants with three entomopathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    The Organic Materials Review Institute (OMRI) is a nonprofit organization providing an independent review of products intended for use in organic production systems to certify compliance with U.S. National organic standards. Since all adjuvants to be used in organic agriculture production are requir...

  17. Discovering the secondary metabolite potential encoded within Entomopathogenic Fungi

    USDA-ARS?s Scientific Manuscript database

    This article discusses the secondary metabolite potential of the insect pathogens Metarhizium and Beauveria, including a bioinformatics analysis of secondary metabolite genes for which no products are yet identified....

  18. FPD: A comprehensive phosphorylation database in fungi.

    PubMed

    Bai, Youhuang; Chen, Bin; Li, Mingzhu; Zhou, Yincong; Ren, Silin; Xu, Qin; Chen, Ming; Wang, Shihua

    2017-10-01

    Protein phosphorylation, one of the most classic post-translational modification, plays a critical role in diverse cellular processes including cell cycle, growth, and signal transduction pathways. However, the available information about phosphorylation in fungi is limited. Here, we provided a Fungi Phosphorylation Database (FPD) that comprises high-confidence in vivo phosphosites identified by MS-based proteomics in various fungal species. This comprehensive phosphorylation database contains 62 272 non-redundant phosphorylation sites in 11 222 proteins across eight organisms, including Aspergillus flavus, Aspergillus nidulans, Fusarium graminearum, Magnaporthe oryzae, Neurospora crassa, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Cryptococcus neoformans. A fungi-specific phosphothreonine motif and several conserved phosphorylation motifs were discovered by comparatively analysing the pattern of phosphorylation sites in plants, animals, and fungi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. A nitric oxide-releasing solution as a potential treatment for fungi associated with tinea pedis.

    PubMed

    Regev-Shoshani, G; Crowe, A; Miller, C C

    2013-02-01

    To test a nitric oxide-releasing solution (NORS) as a potential antifungal footbath therapy against Trichophyton mentagrophytes and Trichophyton rubrum during the mycelial and conidial phases. NORS (sodium nitrite citric acid) produces nitric oxide verified by gas chromatography and mass spectrometry (GC-MS). Antifungal activity of this solution was tested against mycelia and conidia of T. mentagrophytes and T. rubrum, using 1-20 mmol l(-1) nitrites and 10-30 min exposure times. The direct effect of the gas released from the solution on the viability of those fungi was tested. NORS demonstrated strong antifungal activity and was found to be dose and time dependent. NO and nitrogen dioxide (NO(2) ) were the only gases detected from this reaction and are likely responsible for the antifungal effect. This in vitro research suggests that a single 20-min exposure to NORS could potentially be used as an effective single-dose treatment against fungi that are associated with tinea pedis in both mycelia and spore phase. This study provides the background for developing a user-friendly footbath treatment for Athlete's Foot that will kill both vegetative fungi and its spores. © 2012 The Society for Applied Microbiology.

  20. Proteome studies of filamentous fungi.

    PubMed

    Baker, Scott E; Panisko, Ellen A

    2011-01-01

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide variety of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, nongel-based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of variations on the general methods and technologies for identifying peptides in a given sample. We present a method that can serve as a "baseline" for proteomic studies of fungi.

  1. A Game to Teach the Life Cycles of Fungi

    ERIC Educational Resources Information Center

    Blum, Abraham

    1976-01-01

    Presented is a biological game utilized to teach fungi life cycles to secondary biology students. The game is designed to overcome difficulties of correlating schematic drawings with images seen through the microscope, correlating life cycles of fungi and host, and understanding cyclic development of fungi. (SL)

  2. The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella.

    PubMed

    Mc Namara, Louise; Carolan, James C; Griffin, Christine T; Fitzpatrick, David; Kavanagh, Kevin

    2017-07-01

    Galleria mellonella is a well-established model species regularly employed in the study of the insect immune response at cellular and humoral levels to investigate fungal pathogenesis and biocontrol agents. A cellular and proteomic analysis of the effect of culture filtrate of three entomopathogenic fungi (EPF) species on the immune system of G. mellonella was performed. Treatment with Beauveria caledonica and Metarhizium anisopliae 96h culture filtrate facilitated a significantly increased yeast cell density in larvae (3-fold and 3.8-fold, respectively). Larvae co-injected with either M. anisopliae or B. caledonica culture filtrate and Candida albicans showed significantly increased mortality. The same was not seen for larvae injected with Beauveria bassiana filtrate. Together these results suggest that B. caledonica and M. anisopliae filtrate are modulating the insect immune system allowing a subsequent pathogen to proliferate. B. caledonica and M. anisopliae culture filtrates impact upon the larval prophenoloxidase (ProPO) cascade (e.g. ProPO activating factor 3 and proPO activating enzyme 3 were increased in abundance relative to controls), while B. bassiana treated larvae displayed higher abundances of alpha-esterase when compared to control larvae (2.4-fold greater) and larvae treated with M. anisopliae and B. caledonica. Treatment with EPF culture filtrate had a significant effect on antimicrobial peptide abundances particularly in M. anisopliae treated larvae where cecropin-D precursor, hemolin and gloverin were differentially abundant in comparison to controls. Differences in proteomic profiles for different treatments may reflect or even partially explain the differences in their immunomodulatory potential. Screening EPF for their ability to modulate the insect immune response represents a means of assessing EPF for use as biocontrol agents, particularly if the goal is to use them in combination with other control agents. Additionally EPF represent a

  3. Comparative genome analysis of Basidiomycete fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Robert; Salamov, Asaf; Henrissat, Bernard

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To better understand the genetic diversity of this phylum we compared the genomes of 35 basidiomycetes including 6 newly sequenced genomes. These genomes span extremes of genome size, gene number, and repeat content. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) found in only one organism.more » Correlations between lifestyle and certain gene families are evident. Phylogenetic patterns of plant biomass-degrading genes in Agaricomycotina suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. Based on phylogenetically-informed PCA analysis of wood decay genes, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has typical ligninolytic class II fungal peroxidases (PODs). This prediction is supported by growth assays in which both fungi exhibit wood decay with white rot-like characteristics. Based on this, we suggest that the white/brown rot dichotomy may be inadequate to describe the full range of wood decaying fungi. Analysis of the rate of discovery of proteins with no or few homologs suggests the value of continued sequencing of basidiomycete fungi.« less

  4. Lufenuron suppresses the resistance of Formosan subterranean termites (Isoptera: Rhinotermitidae) to entomopathogenic bacteria.

    PubMed

    Wang, Cai; Henderson, Gregg; Gautam, Bal K

    2013-08-01

    Pesticides can negatively affect insect immunity. Although studies show that Formosan subterranean termites, Coptotermes formosanus Shiraki, are resistant to microbial infections, the effects of pesticides on disease resistance is not well studied. In this study, C. formosanus previously fed lufenuron was exposed to each of the three entomopathogenic bacteria, Pseudomonas aeruginosa (Schroeter) Migula, Serratia marcescens Bizio, and Bacillus thuringiensis Berliner subsp. israelensis. We found that termite mortality was significantly higher and synergistic in the combination of lufenuron and P. aeruginosa compared with treatment of lufenuron or P. aeruginosa alone. Other bacteria and lufenuron combinations were not quite as effective. Interestingly, only in treatments without lufenuron did termites show carcass-burying behavior. The results indicate that lufenuron, a chitin synthesis inhibitor, can suppress Formosan subterranean termite resistance to P. aeruginosa. Possible suppression mechanisms are discussed.

  5. Proteomics of filamentous fungi.

    PubMed

    Kim, Yonghyun; Nandakumar, M P; Marten, Mark R

    2007-09-01

    Proteomic analysis, defined here as the global assessment of cellular proteins expressed in a particular biological state, is a powerful tool that can provide a systematic understanding of events at the molecular level. Proteomic studies of filamentous fungi have only recently begun to appear in the literature, despite the prevalence of these organisms in the biotechnology industry, and their importance as both human and plant pathogens. Here, we review recent publications that have used a proteomic approach to develop a better understanding of filamentous fungi, highlighting sample preparation methods and whole-cell cytoplasmic proteomics, as well as subproteomics of cell envelope, mitochondrial and secreted proteins.

  6. Continent-wide distribution in mycorrhizal fungi: implications for the biogeography of specialized orchids

    PubMed Central

    Davis, Belinda J.; Phillips, Ryan D.; Wright, Magali; Linde, Celeste C.; Dixon, Kingsley W.

    2015-01-01

    Background and Aims Although mycorrhizal associations are predominantly generalist, specialized mycorrhizal interactions have repeatedly evolved in Orchidaceae, suggesting a potential role in limiting the geographical range of orchid species. In particular, the Australian orchid flora is characterized by high mycorrhizal specialization and short-range endemism. This study investigates the mycorrhizae used by Pheladenia deformis, one of the few orchid species to occur across the Australian continent. Specifically, it examines whether P. deformis is widely distributed through using multiple fungi or a single widespread fungus, and if the fungi used by Australian orchids are widespread at the continental scale. Methods Mycorrhizal fungi were isolated from P. deformis populations in eastern and western Australia. Germination trials using seed from western Australian populations were conducted to test if these fungi supported germination, regardless of the region in which they occurred. A phylogenetic analysis was undertaken using isolates from P. deformis and other Australian orchids that use the genus Sebacina to test for the occurrence of operational taxonomic units (OTUs) in eastern and western Australia. Key Results With the exception of one isolate, all fungi used by P. deformis belonged to a single fungal OTU of Sebacina. Fungal isolates from eastern and western Australia supported germination of P. deformis. A phylogenetic analysis of Australian Sebacina revealed that all of the OTUs that had been well sampled occurred on both sides of the continent. Conclusions The use of a widespread fungal OTU in P. deformis enables a broad distribution despite high mycorrhizal specificity. The Sebacina OTUs that are used by a range of Australian orchids occur on both sides of the continent, demonstrating that the short-range endemism prevalent in the orchids is not driven by fungal species with narrow distributions. Alternatively, a combination of specific edaphic

  7. Anti-Immune Strategies of Pathogenic Fungi

    PubMed Central

    Marcos, Caroline M.; de Oliveira, Haroldo C.; de Melo, Wanessa de Cássia M. Antunes; da Silva, Julhiany de Fátima; Assato, Patrícia A.; Scorzoni, Liliana; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi. PMID:27896220

  8. Lichenized and lichenicolous fungi from the Albanian Alps (Kosovo, Montenegro).

    PubMed

    Strasser, Eva A; Hafellner, Josef; Stešević, Danijela; Geci, Fehmi; Mayrhofer, Helmut

    2015-11-01

    396 taxa (381 species) of lichenized and 45 species of lichenicolous fungi from the upper montane, subalpine and alpine belts of the Albanian Alps (= Prokletije Mountain Range, Bjeshkët e Nemuna) are presented. 92 lichenized and 26 lichenicolous fungi are new to Montenegro, 165 lichenized and 24 lichenicolous fungi are new to Kosovo, and 25 lichenized fungi (23 species) are new for the Balkan Peninsula.

  9. Freezing and desiccation tolerance in entomopathogenic nematodes: diversity and correlation of traits.

    PubMed

    Shapiro-Ilan, David I; Brown, Ian; Lewis, Edwin E

    2014-03-01

    The ability of entomopathogenic nematodes to tolerate environmental stress such as desiccating or freezing conditions, can contribute significantly to biocontrol efficacy. Thus, in selecting which nematode to use in a particular biocontrol program, it is important to be able to predict which strain or species to use in target areas where environmental stress is expected. Our objectives were to (i) compare inter- and intraspecific variation in freeze and desiccation tolerance among a broad array of entomopathogenic nematodes, and (ii) determine if freeze and desiccation tolerance are correlated. In laboratory studies we compared nematodes at two levels of relative humidity (RH) (97% and 85%) and exposure periods (24 and 48 h), and nematodes were exposed to freezing temperatures (-2°C) for 6 or 24 h. To assess interspecific variation, we compared ten species including seven that are of current or recent commercial interest: Heterorhabditis bacteriophora (VS), H. floridensis, H. georgiana, (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All), S. feltiae (SN), S. glaseri (VS), S. rarum (17C&E), and S. riobrave (355). To assess intraspecific variation we compared five strains of H. bacteriophora (Baine, Fl1-1, Hb, Oswego, and VS) and four strains of S. carpocapsae (All, Cxrd, DD136, and Sal), and S. riobrave (355, 38b, 7-12, and TP). S. carpocapsae exhibited the highest level of desiccation tolerance among species followed by S. feltiae and S. rarum; the heterorhabditid species exhibited the least desiccation tolerance and S. riobrave and S. glaseri were intermediate. No intraspecific variation was observed in desiccation tolerance; S. carpocapsae strains showed higher tolerance than all H. bacteriophora or S. riobrave strains yet there was no difference detected within species. In interspecies comparisons, poor freeze tolerance was observed in H. indica, and S. glaseri, S. rarum, and S. riobrave whereas H. georgiana and S. feltiae exhibited the

  10. Antibiosis of vineyard ecosystem fungi against food-borne microorganisms.

    PubMed

    Cueva, Carolina; Moreno-Arribas, M Victoria; Bartolomé, Begoña; Salazar, Óscar; Vicente, M Francisca; Bills, Gerald F

    2011-12-01

    Fermentation extracts from fungi isolated from vineyard ecosystems were tested for antimicrobial activities against a set of test microorganisms, including five food-borne pathogens (Staphylococcus aureus EP167, Acinetobacter baumannii (clinically isolated), Pseudomonas aeruginosa PAO1, Escherichia coli O157:H7 (CECT 5947) and Candida albicans MY1055) and two probiotic bacteria (Lactobacillus plantarum LCH17 and Lactobacillus brevis LCH23). A total of 182 fungi was grown in eight different media, and the fermentation extracts were screened for antimicrobial activity. A total of 71 fungi produced extracts active against at least one pathogenic microorganism, but not against any probiotic bacteria. The Gram-positive bacterium S. aureus EP167 was more susceptible to antimicrobial fungi broth extracts than Gram-negative bacteria and pathogenic fungi. Identification of active fungi based on internal transcribed spacer rRNA sequence analysis revealed that species in the orders Pleosporales, Hypocreales and Xylariales dominated. Differences in antimicrobial selectivity were observed among isolates from the same species. Some compounds present in the active extracts were tentatively identified by liquid chromatography-mass spectrometry. Antimicrobial metabolites produced by vineyard ecosystem fungi may potentially limit colonization and spoilage of food products by food-borne pathogens, with minimal effect on probiotic bacteria. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Catalogue of the Lichenized and Lichenicolous Fungi of Montenegro

    PubMed Central

    Knežević, Branka; Mayrhofer, Helmut

    2011-01-01

    Summary The catalogue is based on a comprehensive evaluation of 169 published sources. The lichen mycota as currently known from Montenegro includes 681 species (with eight subspecies, nine varieties and one form) of lichenized fungi, 12 species of lichenicolous fungi, and nine non-lichenized fungi traditionally included in lichenological literature. PMID:21423858

  12. Proteome Studies of Filamentous Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Scott E.; Panisko, Ellen A.

    2011-04-20

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel basedmore » proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.« less

  13. Nematophagous fungi from decomposing cattle faeces in Argentina.

    PubMed

    Saumell, Carlos Alfredo; Fernández, Alicia Silvina; Fusé, Luis Alberto; Rodríguez, Manuela; Sagüés, María Federica; Iglesias, Lucía Emilia

    2015-01-01

    Biological control of gastrointestinal nematodes of ruminants by use of nematophagous fungi would become part of any livestock parasite integral control system. Identifying autochthonous species that could then be selected for mass production is an important phase in the practical use of biological control. To search for nematophagous fungi with potential use as biological control agents against gastrointestinal nematodes in Argentina. Decomposing cattle faeces sampled in different locations were incubated in water agar 2% with Panagrellus sp. The developed nematophagous fungi were transferred to new water agar 2% plates and then to corn meal agar plates in order to carry out their identification. Fungal diversity and richness were also assessed. Seventeen species from nine genera of nematophagous fungi were found. Twelve species were nematode-trapping fungi and three species plus two fungi identified to genus level corresponded to endoparasitic fungi. Arthrobotrys conoides, Arthrobotrys oligospora, Duddingtonia flagrans, Monacrosporium doedycoides, Arthrobotrys robusta and Drechmeria coniospora were the most frequently isolated species overall in the whole study (6.6%, 5.7%, 5.7%, 5.7%, 4.7% and 4.7%, respectively) although other species were more frequently recorded at local levels such as Arthrobotrys pyriformis (18.8%). Only A. conoides has been previously isolated from ruminant faecal samples in Argentina. Five nematode-trapping fungal species are mentioned for the first time in the Americas D. flagrans and A. conoides, both identified in the present study, are among the most promising ones as biological control agents against gastrointestinal nematodes of ruminants. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. Fungi in carpeting and furniture dust.

    PubMed

    Schober, G

    1991-11-01

    The qualitative and quantitative species composition of fungi in carpets and upholstered furniture dust found in the living-rooms of nine Dutch dwellings was examined in a pilot study. Numbers of spores of xerophilic fungi did not differ in dust removed from carpeting and upholstery. Spores of hydrophilic species were found to be more predominant on floors (P less than 0.05), whereas meso-hygrophilic spores, largely dominated by allergologically relevant Penicillium species, were significantly more abundant in dust taken from regularly used furniture (P less than 0.05). Our results indicate that growth conditions for fungi in the micro-habitats of furniture differ from those in carpeting. No statistically significant differences in number of viable spores have been found in samples taken from ground-floor level compared with those taken from 1st to 3rd floor level of dwellings. From this study, the need for a micro-topographic analysis of the fungal flora in the human environment has become apparent. Efficient allergological home sanitation in dwellings of allergic patients requires detailed data about the colonization of the various micro-habitats by allergenic fungi.

  15. Lichenized and lichenicolous fungi from the Albanian Alps (Kosovo, Montenegro)

    PubMed Central

    Strasser, Eva A.; Hafellner, Josef; Stešević, Danijela; Geci, Fehmi; Mayrhofer, Helmut

    2016-01-01

    396 taxa (381 species) of lichenized and 45 species of lichenicolous fungi from the upper montane, subalpine and alpine belts of the Albanian Alps (= Prokletije Mountain Range, Bjeshkët e Nemuna) are presented. 92 lichenized and 26 lichenicolous fungi are new to Montenegro, 165 lichenized and 24 lichenicolous fungi are new to Kosovo, and 25 lichenized fungi (23 species) are new for the Balkan Peninsula. PMID:26869727

  16. Highly diversified fungi are associated with the achlorophyllous orchid Gastrodia flavilabella.

    PubMed

    Liu, Tsunglin; Li, Ching-Min; Han, Yue-Lun; Chiang, Tzen-Yuh; Chiang, Yu-Chung; Sung, Huang-Mo

    2015-03-14

    Mycoheterotrophic orchids are achlorophyllous plants that obtain carbon and nutrients from their mycorrhizal fungi. They often show strong preferential association with certain fungi and may obtain nutrients from surrounding photosynthetic plants through ectomycorrhizal fungi. Gastrodia is a large genus of mycoheterotrophic orchids in Asia, but Gastrodia species' association with fungi has not been well studied. We asked two questions: (1) whether certain fungi were preferentially associated with G. flavilabella, which is an orchid in Taiwan and (2) whether fungal associations of G. flavilabella were affected by the composition of fungi in the environment. Using next-generation sequencing, we studied the fungal communities in the tubers of Gastrodia flavilabella and the surrounding soil. We found (1) highly diversified fungi in the G. flavilabella tubers, (2) that Mycena species were the predominant fungi in the tubers but minor in the surrounding soil, and (3) the fungal communities in the G. flavilabella tubers were clearly distinct from those in the surrounding soil. We also found that the fungal composition in soil can change quickly with distance. G. flavilabella was associated with many more fungi than previously thought. Among the fungi in the tuber of G. flavilabella, Mycena species were predominant, different from the previous finding that adult G. elata depends on Armillaria species for nutritional supply. Moreover, the preferential fungus association of G. flavilabella was not significantly influenced by the composition of fungi in the environment.

  17. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions.

    PubMed

    Samish, M; Rot, A; Ment, D; Barel, S; Glazer, I; Gindin, G

    2014-12-15

    High infectivity of entomopathogenic fungi to ticks under laboratory conditions has been demonstrated in many studies. However, the few reports on their use under field conditions demonstrate large variations in their success, often with no clear explanation. The present study evaluated the factors affecting the efficacy of the fungus Metarhizium brunneum against the tick Rhipicephalus (Boophilus) annulatus. It demonstrates how environmental conditions and ground cover affect the efficiency of the fungus under field conditions. During the summer, 93% of tick females exposed to fungus-contaminated ground died within 1 week, whereas during the winter, only 62.2% died within 6 weeks. Nevertheless, the hatchability of their eggs was only 6.1% during the summer and 0.0% during winter. Covering the ground with grass, leaves or gravel improved fungal performance. Aside from killing female ticks, the fungus had a substantial effect on tick fecundity. Fungal infection reduced the proportion of female ticks laying full-size egg masses by up to 91%, and reduced egg hatchability by up to 100%. To reduce the negative effect of outdoor factors on fungal activity, its conidia were mixed with different oils (olive, canola, mineral or paraffin at 10% v/v) and evaluated in both laboratory and field tests for efficacy. All tested oils without conidia sprayed on the sand did not influence tick survival or weight of the laid eggs but significantly reduced egghatchability. Conidia in water with canola or mineral oil spread on agarose and incubated for 18 h showed 57% and 0% germination, respectively. Comparing, under laboratory conditions, the effects of adding each of the four oils to conidia in water on ticks demonstrated no effect on female mortality or weight of the laid egg mass, but the percentage of hatched eggs was reduced. In outdoor trials, female ticks placed on the ground sprayed with conidia in water yielded an average of 175 larvae per female and there was no hatching of

  18. [Keratinophilic fungi in soils of parks of Corrientes city, Argentina].

    PubMed

    Sarmiento, María Mercedes; Mangiaterra, Magdalena; Bojanich, María Viviana; Basualdo, Juan Ángel; Giusiano, Gustavo

    2016-01-01

    The soil is a natural reservoir of keratinophilic fungi, which are a small but important group of filamentous fungi, some of which typically develop on keratinized tissues of living animals. There are numerous species of saprophytic fungi with recognized keratinophilic abilities, and several studies have been undertaken in order to link their presence to possible human disease. To know the biota of geophilic fungi in general and of keratinophilic fungi particularly in soils from two public parks. Soil samples from two public parks of Corrientes city, Argentina, were studied during two seasons, using the hook technique and serial dilutions for fungal isolation. Using the hook technique, 170 isolates were classified into 17 genera and 21 species, among which it is worth mentioning the presence of Microsporum canis. Shannon index for keratinophilic fungi in autumn was 2.27, and 1.92 in spring. By means of the serial dilutions technique, 278 fungi isolated were identified into 33 genera and 71 species. Shannon index in autumn was 3.9, and 3.5 in spring. The soils studied have particularly favorable conditions for the survival of pathogens and opportunistic geophilic fungi for humans and animals. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  19. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  20. In vivo expression of genes in the entomopathogenic fungus Beauveria bassiana during infection of lepidopteran larvae.

    PubMed

    Galidevara, Sandhya; Reineke, Annette; Koduru, Uma Devi

    2016-05-01

    The entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin is commercially available as a bio insecticide. The expression of three genes previously identified to have a role in pathogenicity in in vitro studies was validated in vivo in three lepidopteran insects infected with B. bassiana. Expression of all three genes was observed in all the tested insects starting from 48 or 72h to 10d post infection corroborating their role in pathogenicity. We suggest that it is essential to test the expression of putative pathogenicity genes both in vitro and in vivo to understand their role in different insect species. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Identification of the cuticular lipid composition of the Western Flower Thrips Frankliniella occidentalis.

    PubMed

    Gołebiowski, Marek; Maliński, Edmund; Nawrot, Jan; Szafranek, Janusz; Stepnowski, Piotr

    2007-06-01

    The Western Flower Thrips Frankliniella occidentalis effectively resists many insecticides, but it can be controlled by the use of bioinsecticides such as entomopathogenic fungi. The epicuticular chemistry of these insects is therefore of great interest, and accordingly, the cuticular lipid composition of F. occidentalis was analysed. It was found that the cuticular lipids of both the adult and larval stages of F. occidentalis consist of two groups of compounds--hydrocarbons and free fatty acids. The same hydrocarbon pattern was found in both adults and larvae, with the exception of n-hentriacontane, which was detected only in adult insects. The following homologous series were identified: n-alkanes from C-25 to C-29 (31) with the marked dominance of odd numbers of carbon atoms, 3-methylalkanes with 26 and 28 carbon atoms, and branched monomethylalkanes (branched at C-9, -11, -13 and -15) with 26, 28 and 30 carbon atoms. The chemical composition of the free fatty acids consists of two homologous series: saturated (C(14:0), C(16:0), C(18:0)) and unsaturated fatty acids (C(16:1) and C(18:1)). This analysis confirmed the lack of potential inhibitors of entomopathogenic fungi in the cuticular lipids of this insect species.

  2. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps.

    PubMed

    Dostálová, Anna; Rommelaere, Samuel; Poidevin, Mickael; Lemaitre, Bruno

    2017-09-05

    Members of the thioester-containing protein (TEP) family contribute to host defence in both insects and mammals. However, their role in the immune response of Drosophila is elusive. In this study, we address the role of TEPs in Drosophila immunity by generating a mutant fly line, referred to as TEPq Δ , lacking the four immune-inducible TEPs, TEP1, 2, 3 and 4. Survival analyses with TEPq Δ flies reveal the importance of these proteins in defence against entomopathogenic fungi, Gram-positive bacteria and parasitoid wasps. Our results confirm that TEPs are required for efficient phagocytosis of bacteria, notably for the two Gram-positive species tested, Staphylococcus aureus and Enterococcus faecalis. Furthermore, we show that TEPq Δ flies have reduced Toll pathway activation upon microbial infection, resulting in lower expression of antimicrobial peptide genes. Epistatic analyses suggest that TEPs function upstream or independently of the serine protease ModSP at an initial stage of Toll pathway activation. Collectively, our study brings new insights into the role of TEPs in insect immunity. It reveals that TEPs participate in both humoral and cellular arms of immune response in Drosophila. In particular, it shows the importance of TEPs in defence against Gram-positive bacteria and entomopathogenic fungi, notably by promoting Toll pathway activation.

  3. Lipid transfer from plants to arbuscular mycorrhiza fungi

    PubMed Central

    Keymer, Andreas; Pimprikar, Priya; Wewer, Vera; Huber, Claudia; Brands, Mathias; Bucerius, Simone L; Delaux, Pierre-Marc; Klingl, Verena; von Röpenack-Lahaye, Edda; Wang, Trevor L; Eisenreich, Wolfgang; Dörmann, Peter; Parniske, Martin; Gutjahr, Caroline

    2017-01-01

    Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and accumulation of emblematic fungal 16:1ω5 FAs. Using isotopolog profiling we demonstrate that 13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled by sugars but depends on lipid transfer from plant hosts. DOI: http://dx.doi.org/10.7554/eLife.29107.001 PMID:28726631

  4. An improved method for generating axenic entomopathogenic nematodes.

    PubMed

    Yadav, Shruti; Shokal, Upasana; Forst, Steven; Eleftherianos, Ioannis

    2015-09-19

    Steinernema carpocapsae are parasitic nematodes that invade and kill insects. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila and together form an excellent model to study pathogen infection processes and host anti-nematode/antibacterial immune responses. To determine the contribution of S. carpocapsae and their associated X. nematophila to the successful infection of insects as well as to investigate the interaction of each mutualistic partner with the insect immune system, it is important to develop and establish robust methods for generating nematodes devoid of their bacteria. To produce S. carpocapsae nematodes without their associated X. nematophila bacteria, we have modified a previous method, which involves the use of a X. nematophila rpoS mutant strain that fails to colonize the intestine of the worms. We confirmed the absence of bacteria in the nematodes using a molecular diagnostic and two rounds of an axenicity assay involving appropriate antibiotics and nematode surface sterilization. We used axenic and symbiotic S. carpocapsae to infect Drosophila melanogaster larvae and found that both types of nematodes were able to cause insect death at similar rates. Generation of entomopathogenic nematodes lacking their mutualistic bacteria provides an excellent tool to dissect the molecular and genetic basis of nematode parasitism and to identify the insect host immune factors that participate in the immune response against nematode infections.

  5. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  6. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis.

    PubMed

    Liu, Kaihui; Ding, Xiaowei; Deng, Baiwan; Chen, Wenqiang

    2009-09-01

    This study investigated the endophytic fungi diversity of Taxus chinensis and screened the taxol-producing fungi in the host. A total of 115 endophytic fungi isolates obtained from bark segments of T. chinensis were grouped into 23 genera based on the morphological traits and sequence analysis of the internal transcribed spacers (ITS1-5.8S-ITS2), indicating endophytic fungi in T. chinensis are diverse and abundant. Diaporthe, Phomopsis (anamorph of Diaporthe), Acremonium, and Pezicula were the dominant genera, whereas the remaining genera were infrequent groups. The 13 representative species of the distinct genera were capable of producing taxol verified by reverse-phase high performance liquid chromatography (HPLC). Among the taxol-producing fungi, the yield of taxol produced by the Metarhizium anisopliae, H-27 was 846.1 microg l(-1) in reformative potato dextrose liquid medium, and the fungal taxol was further validated by mass spectrometry (MS). The taxol-producing fungi (92.3%) were infrequent communities, suggesting that infrequent fungi associated with T. chinensis might be a fascinating reservoir of taxol-generating fungi.

  7. Health Risks Associated with Exposure to Filamentous Fungi

    PubMed Central

    Egbuta, Mary Augustina; Mwanza, Mulunda

    2017-01-01

    Filamentous fungi occur widely in the environment, contaminating soil, air, food and other substrates. Due to their wide distribution, they have medical and economic implications. Regardless of their use as a source of antibiotics, vitamins and raw materials for various industrially important chemicals, most fungi and filamentous fungi produce metabolites associated with a range of health risks, both in humans and in animals. The association of filamentous fungi and their metabolites to different negative health conditions in humans and animals, has contributed to the importance of investigating different health risks induced by this family of heterotrophs. This review aims to discuss health risks associated with commonly occurring filamentous fungal species which belong to genera Aspergillus, Penicillium and Fusarium, as well as evaluating their pathogenicity and mycotoxic properties. PMID:28677641

  8. Fun with Fungi.

    ERIC Educational Resources Information Center

    McLure, John W.

    1993-01-01

    Describes hands-on activities with fungi that may provoke the curiosity of early adolescents and increase their enjoyment and understanding of a vast, important portion of botany. Some of the activities may be conducted during the winter months when most fieldwork ceases. (PR)

  9. Culturable fungi in potting soils and compost.

    PubMed

    Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F

    2016-11-01

    In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Susceptibility of ectomycorrhizal fungi to soil heating.

    PubMed

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Effect of heavy metals on soil fungi

    NASA Astrophysics Data System (ADS)

    Sosak-Świderska, Bożena

    2010-05-01

    Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

  12. Symbiotic soil fungi enhance ecosystem resilience to climate change.

    PubMed

    Martínez-García, Laura B; De Deyn, Gerlinde B; Pugnaire, Francisco I; Kothamasi, David; van der Heijden, Marcel G A

    2017-12-01

    Substantial amounts of nutrients are lost from soils through leaching. These losses can be environmentally damaging, causing groundwater eutrophication and also comprise an economic burden in terms of lost agricultural production. More intense precipitation events caused by climate change will likely aggravate this problem. So far it is unresolved to which extent soil biota can make ecosystems more resilient to climate change and reduce nutrient leaching losses when rainfall intensity increases. In this study, we focused on arbuscular mycorrhizal (AM) fungi, common soil fungi that form symbiotic associations with most land plants and which increase plant nutrient uptake. We hypothesized that AM fungi mitigate nutrient losses following intensive precipitation events (higher amount of precipitation and rain events frequency). To test this, we manipulated the presence of AM fungi in model grassland communities subjected to two rainfall scenarios: moderate and high rainfall intensity. The total amount of nutrients lost through leaching increased substantially with higher rainfall intensity. The presence of AM fungi reduced phosphorus losses by 50% under both rainfall scenarios and nitrogen losses by 40% under high rainfall intensity. Thus, the presence of AM fungi enhanced the nutrient interception ability of soils, and AM fungi reduced the nutrient leaching risk when rainfall intensity increases. These findings are especially relevant in areas with high rainfall intensity (e.g., such as the tropics) and for ecosystems that will experience increased rainfall due to climate change. Overall, this work demonstrates that soil biota such as AM fungi can enhance ecosystem resilience and reduce the negative impact of increased precipitation on nutrient losses. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Safety evaluation of filamentous fungi isolated from industrial doenjang koji.

    PubMed

    Lee, Jin Hee; Jo, Eun Hye; Hong, Eun Jin; Kim, Kyung Min; Lee, Inhyung

    2014-10-01

    A few starters have been developed and used for doenjang fermentation but often without safety evaluation. Filamentous fungi were isolated from industrial doenjang koji, and their potential for mycotoxin production was evaluated. Two fungi were isolated; one was more dominantly present (90%). Both greenish (SNU-G) and whitish (SNU-W) fungi showed 97% and 95% internal transcribed spacer sequence identities to Aspergillus oryzae/flavus, respectively. However, the SmaI digestion pattern of their genomic DNA suggested that both belong to A. oryzae. Moreover, both fungi had morphological characteristics similar to that of A. oryzae. SNU-G and SNU-W did not form sclerotia, which is a typical characteristic of A. oryzae. Therefore, both fungi were identified to be A. oryzae. In aflatoxin gene cluster analysis, both fungi had norB-cypA genes similar to that of A. oryzae. Consistent with this, aflatoxins were not detected in SNU-G and SNU-W using ammonia vapor, TLC, and HPLC analyses. Both fungi seemed to have a whole cyclopiazonic acid (CPA) gene cluster based on PCR of the maoA, dmaT, and pks-nrps genes, which are key genes for CPA biosynthesis. However, CPA was not detected in TLC and HPLC analyses. Therefore, both fungi seem to be safe to use as doenjang koji starters and may be suitable fungal candidates for further development of starters for traditional doenjang fermentation.

  14. Selective effects of two systemic fungicides on soil fungi.

    PubMed

    Abdel-Fattah, H M; Abdel-Kader, M I; Hamida, S

    1982-08-20

    BAS 317 00F was not toxic to the total count of fungi after 2 days but was regularly significantly toxic at the three doses after 5, 20 and 40 days and toxic at the low and the high doses after 80 days. In the agar medium, it was toxic to the counts of total fungi. Aspergillus, A. terreus, Rhizopus oryzae and Mucor racemosus at the high dose. Only the mycelial growth of Trichoderma viride which was significantly inhibited by the three doses when this fungicide was added to the liquid medium. Polyram-Combi induced two effects on the total population of soil fungi. One inhibitory and this was demonstrated almost regularly after 2, 10 and 40 days and the other stimulatory after 80 days of treatment with the low and the high doses. In the agar medium, this fungicide was very toxic to total fungi and to almost all fungal genera and species at the three doses. Several fungi could survive the high dose. In liquid medium, the test fungi showed variable degree of sensitivity and the most sensitive was Gliocladium roseum which was completely eradicated by the three doses.

  15. [Effect of a preparation from Chaetomium fungi on the growth of phytopathogenic fungi].

    PubMed

    Tomilova, O G; Shternshis, M V

    2006-01-01

    We studied the fungicidal activity of a biological preparation from the fungi of the genus Chaetomium against soil phytopathogenic fungi Rhizoctonia solani and Fusarium oxysporum. The inhibitory effect of the preparation under study depended on its concentration, duration of storage, and growth characteristics of pure cultures of the phytopathogens. The highest (98.8%) inhibitory activity was observed on day 3 of the interaction with Rhizoctonia solani. After a 2-year storage, this preparation was capable of inhibiting the growth of the phytopathogens only at high doses. The preparation precluded the development of bare patch and increased the productivity of potato plants. The preparation may serve as an alternative to chemical fungicides for plant protection.

  16. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.

    PubMed

    Toju, Hirokazu; Kishida, Osamu; Katayama, Noboru; Takagi, Kentaro

    2016-01-01

    Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.

  17. Five New Wood Decay Fungi (Polyporales and Hymenochaetales) in Korea

    PubMed Central

    Kim, Nam Kyu; Park, Jae Young; Park, Myung Soo; Lee, Hyun; Cho, Hae Jin; Eimes, John A.; Kim, Changmu

    2016-01-01

    The wood decay fungi are a diverse taxonomic group that plays a pivotal role in forest carbon cycling. Wood decay fungi use various enzymatic pathways to digest dead or living wood in order to obtain carbon and other nutrients and these enzymatic systems have been exploited for both industrial and medical applications. Over 600 wood decay fungi species have been described in Korea; however, the recent application of molecular markers has dramatically altered the taxonomy of many of these wood decay fungi at both the genus and species levels. By combining molecular methods, specifically sequences of the internal transcribed spacer region, with traditional morphological characters, this study identified five new species records for Korea in five genera: Aurantiporus, Favolus, Neofavolus, Loweomyces, and Hymenochaetopsis. Three of these genera (Aurantiporus, Favolus, and Loweomyces) were previously unknown in Korea. The relatively simple morphology of the wood decay fungi often leads to ambiguous taxonomic assignment. Therefore, molecular markers are a necessary component of any taxonomic or evolutionary study of wood decay fungi. Our study highlights the need for a more robust and multifaceted approach in investigating new wood decay fungi in Korea. PMID:27790065

  18. Five New Wood Decay Fungi (Polyporales and Hymenochaetales) in Korea.

    PubMed

    Kim, Nam Kyu; Park, Jae Young; Park, Myung Soo; Lee, Hyun; Cho, Hae Jin; Eimes, John A; Kim, Changmu; Lim, Young Woon

    2016-09-01

    The wood decay fungi are a diverse taxonomic group that plays a pivotal role in forest carbon cycling. Wood decay fungi use various enzymatic pathways to digest dead or living wood in order to obtain carbon and other nutrients and these enzymatic systems have been exploited for both industrial and medical applications. Over 600 wood decay fungi species have been described in Korea; however, the recent application of molecular markers has dramatically altered the taxonomy of many of these wood decay fungi at both the genus and species levels. By combining molecular methods, specifically sequences of the internal transcribed spacer region, with traditional morphological characters, this study identified five new species records for Korea in five genera: Aurantiporus , Favolus , Neofavolus , Loweomyces , and Hymenochaetopsis . Three of these genera ( Aurantiporus , Favolus , and Loweomyces ) were previously unknown in Korea. The relatively simple morphology of the wood decay fungi often leads to ambiguous taxonomic assignment. Therefore, molecular markers are a necessary component of any taxonomic or evolutionary study of wood decay fungi. Our study highlights the need for a more robust and multifaceted approach in investigating new wood decay fungi in Korea.

  19. Coprophilous fungi of the horse.

    PubMed

    Pointelli, E; Santa-maria, M A; Caretta, G

    1981-05-08

    A total of 1267 microfungi, including 35 Myxomycetes, were recorded from the fecal samples of the 60 horses; of these 395 were found on 20 saddle-horse feces, 363 on 20 race-horses and 509 on 20 working horses. Eighty two species representing 53 genera were recorded; of these 7 were Zygomycetes, 18 Ascomycetes, 1 Basidiomycetes and 25 Fungi Imperfecti: 2 Myxomycetes. Common coprophilous fungi are in decreasing order Pilobolus kleinii, Saccobolus depauperatus, Mucor hiemalis, Lasiobolus ciliatus, Podospora curvula, Petriella guttulata, M. circinelloides, Coprinus radiatus, Dictyostelium mucoroides, Sordaria fimicola, C. miser, C. stercorariusm, Acremonium sp., Coprotus granuliformis, Graphium putredinis, Iodophanus carneus, Chaetomium murorum, Podospora communis, P. inaequalis, P. setosa, Saccobolus versicolor and Cladosporium cucumerinum. Species of Myrothecium verrucaria, Actinomucor elegans, Kernia nitida, Spiculostilbella dendritica and Mucor parvispora were found exclusively in working-horses feces. Badhamia sp., Anixiopsis stercoraria, Echinobotryum state of D. stemonitis, Geotrichum candidum and Oidiodendron sp. were found only in saddle-horses feces. Chlamidomyces palmarum, Philocopra sp. were found exclusively in race-horses feces. Notes on infrequent or interesting fungi include Thamnostylum piriforme, Phialocephala dimorphospora, Rhopalomyces elegans and Spiculostilbella dendritica.

  20. Biology of flower-infecting fungi.

    PubMed

    Ngugi, Henry K; Scherm, Harald

    2006-01-01

    The ability to infect host flowers offers important ecological benefits to plant-parasitic fungi; not surprisingly, therefore, numerous fungal species from a wide range of taxonomic groups have adopted a life style that involves flower infection. Although flower-infecting fungi are very diverse, they can be classified readily into three major groups: opportunistic, unspecialized pathogens causing necrotic symptoms such as blossom blights (group 1), and specialist flower pathogens which infect inflorescences either through the gynoecium (group 2) or systemically through the apical meristem (group 3). This three-tier system is supported by life history attributes such as host range, mode of spore transmission, degree of host sterilization as a result of infection, and whether or not the fungus undergoes an obligate sexual cycle, produces resting spores in affected inflorescences, and is r- or K-selected. Across the three groups, the flower as an infection court poses important challenges for disease management. Ecologically and evolutionarily, terms and concepts borrowed from the study of venereal (sexually transmitted) diseases of animals do not adequately capture the range of strategies employed by fungi that infect flowers.

  1. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi.

    PubMed

    Vályi, Kriszta; Mardhiah, Ulfah; Rillig, Matthias C; Hempel, Stefan

    2016-10-01

    Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities.

  2. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi

    PubMed Central

    Vályi, Kriszta; Mardhiah, Ulfah; Rillig, Matthias C; Hempel, Stefan

    2016-01-01

    Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities. PMID:27093046

  3. Degradation of Coal by the Fungi Polyporus versicolor and Poria monticola

    PubMed Central

    Cohen, Martin S.; Gabriele, Peter D.

    1982-01-01

    We report that two species of basidiomycete fungi (Polyporus versicolor and Poria monticola) grow in minimal liquid or solid medium when supplemented with crushed lignite coal. The fungi also grow directly on crushed lignite coal. The growth of both fungi was observed qualitatively as the production and extension of hyphae. No fungal growth occurred in minimal agar medium without coal. The fungi degraded solid lignite coal to a black liquid product which never appeared in cultures unless fungi and coal were present together. Apparently, lignite coal can serve as the principal substrate for the growth of the fungi. Infrared analyses of the liquid products of lignite degradation showed both similarities to and differences from the original lignite. Images PMID:16346060

  4. Fungi-assisted silver nanoparticle synthesis and their applications.

    PubMed

    Khan, Azhar U; Malik, Nazia; Khan, Masudulla; Cho, Moo Hwan; Khan, Mohammad Mansoob

    2018-01-01

    Nanotechnology is a rapidly developing field because of its wide range of applications in science, nanoscience and biotechnology. Nanobiotechnology deals with nanomaterials synthesised or modified using biotechnology. Fungi are used to synthesise metal nanoparticles and they have vast applications in wound healing, pathogen detection and control, food preservation, textiles, fabrics, etc. The present review describes the different types of fungi used for the biosyntheses of silver nanoparticles (AgNPs), along with their characterisation and possible biological applications. AgNPs synthesised by other physical and chemical methods are expensive and have toxic substances adsorbed onto them. Therefore, green, simple and effective approaches have been chosen for the biosynthesis of AgNPs, which are very important because of their lower toxicity and environmentally friendly behaviour. AgNPs synthesised using fungi have high monodispersity, specific composition and a narrow size range. In this regard, among the different biological methods used for metal nanoparticle synthesis, fungi are considered to be a superior biogenic method owing to their diversity and better size control. To further understand the biosynthesis of AgNPs using various fungi and evaluate their potential applications, this review discusses the antimicrobial, antibacterial, antifungal, antiviral, antidermatophytic, anti-inflammatory, antitumor, hepatoprotective, cytotoxic, hypotensive, and immunomodulatory activities of these AgNPs. The synthesis of AgNPs using fungi is a clean, green, inexpensive, eco-friendly, reliable, and safe method that can be used for a range of applications in real life for the benefit of human beings.

  5. Molecular evolution of cyclin proteins in animals and fungi

    PubMed Central

    2011-01-01

    Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events. PMID:21798004

  6. Distribution and identification of airborne fungi in railway stations in Tokyo, Japan.

    PubMed

    Kawasaki, Tamami; Kyotani, Takashi; Ushiogi, Tomoyoshi; Izumi, Yasuhiko; Lee, Hunjun; Hayakawa, Toshio

    2010-01-01

    The current study was performed to (1) understand the distribution of airborne fungi culturable on dichloran-glycerol agar (DG18) media over a one-year monitoring period, (2) identify the types of airborne fungi collected, and (3) compare and contrast under- and above-ground spaces, in two railway stations in Tokyo, Japan. Measurements of airborne fungi were taken at stations A and B located in Tokyo. Station A had under- and above-ground concourses and platforms whereas station B had spaces only above-ground. Airborne fungi at each measurement position were collected with an air sampler on DG18 media. After cultivation of the sample plates, the number of fungi colonies was counted on each agar plate. In station A, the underground platform was characterized as (1) having the highest humidity and (2) a high concentration of airborne fungi, with (3) a high proportion of non-sporulating fungi (NSF) and Aspergillus versicolor. There was a strong positive correlation between the concentrations of airborne particles and fungi in station A. Common aspects of the two stations were (1) that fungi were mostly detected in autumn, and (2) there was no correlation between the humidity and concentration of fungi throughout the year. The results of this study indicate that the distribution and composition of fungi differ depending on the structure of the station.

  7. Effects of Fungicides on Aquatic Fungi and Bacteria

    NASA Astrophysics Data System (ADS)

    Conners, D. E.; Rosemond, A. D.; Black, M. C.

    2005-05-01

    Aquatic microorganisms play an important role in conditioning leaf litter that enters streams and serves as an important base of production for consumers. Contamination of streams by fungicides may adversely affect microorganisms and alter leaf litter processing rates. Unfortunately, microorganisms are rarely used in acute toxicity tests for fungicide evaluation and registration. We adapted the resazurin reduction assay, which is used in medical microbiology, to assess the acute toxicity of four fungicides (azoxystrobin, trifloxystrobin, kresoxim-methyl and chlorothalonil) to aquatic fungi (Articulospora tetracladia) and bacteria (Cytophaga spp.), and investigated the ability of the toxicants to inhibit leaf breakdown in microcosms. Fungi were more sensitive to fungicides than many standard test organisms (cladocerans, green algae, trout), while bacteria were often the least sensitive. All of the fungicides except kresoxim-methyl, when added to microcosms at concentrations that inhibited the fungi by 90 percent in acute tests, reduced leaf breakdown rates by an average of 14.7 percent. Thus, aquatic fungi and their associated functions in streams may be relatively sensitive to fungicides applied terrestrially that enter streams through non-point sources. These data highlight the importance of including aquatic fungi in safety assessments of pesticides for protection of microbial function.

  8. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    PubMed Central

    Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi

    2016-01-01

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799

  9. The use of white-rot fungi as active biofilters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun-Luellemann, A.; Johannes, C.; Majcherczyk, A.

    1995-12-31

    White-rot fungi, growing on lignocellulosic substrates, have been successfully used as active organisms in biofilters. Filters using these fungi have a very high biological active surface area, allowing for high degrees of retention, a comparatively low pressure drop, and a high physical stability. The unspecific action of the extracellular enzymes of the white-rot fungi allows for the degradation of a wide variety of substances by the same organism. Degradation of several compounds in the gas phase by the white-rot fungi Trametes versicolor, Pleurotus ostreatus, Bjerkandera adusta, and Phanerochaete chrysosporium was tested. Among the aromatic solvents, styrene was the compound thatmore » was most readily degraded, followed by ethylbenzene, xylenes, and toluene. Tetrahydrofuran and dichloromethane were also degraded, whereas dioxane could not be attacked by fungi under the conditions used. Acrylonitrile and aniline were degraded very well, whereas pyridine was resistant to degradation. The process for removing styrene is now in the scaling-up stage.« less

  10. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi

    PubMed Central

    Fofanova, Tatiana Y.; Stewart, Christopher J.; Nash, Andrea K.; Wong, Matthew C.; Gesell, Jonathan R.; Auchtung, Jennifer M.; Ajami, Nadim J.; Petrosino, Joseph F.

    2018-01-01

    ABSTRACT A wide diversity of fungi have been detected in the human gastrointestinal (GI) tract with the potential to provide or influence important functions. However, many of the fungi most commonly detected in stool samples are also present in food or the oral cavity. Therefore, to recognize which gut fungi are likely to have a sustained influence on human health, there is a need to separate transient members of the GI tract from true colonizers. To identify colonizing fungi, the eukaryotic rRNA operon’s second internal transcribed spacer (ITS2) was sequenced from the stool, saliva, and food of healthy adults following consumption of different controlled diets. Unlike most bacterial 16S rRNA genes, the only fungal ITS2 operational taxonomic units (OTUs) detected in stool DNA across multiple diets were also present in saliva and/or food. Additional analyses, including culture-based approaches and sequencing of the 18S rRNA gene, ITS2 cDNA, and DNA extracted using alternative methods, failed to detect additional fungi. Two abundant fungi, Saccharomyces cerevisiae and Candida albicans, were examined further in healthy volunteers. Saccharomyces became undetectable in stool when a S. cerevisiae-free diet was consumed, and the levels of C. albicans in stool were dramatically reduced by more frequent cleaning of teeth. Extremely low fungal abundance, the inability of fungi to grow under conditions mimicking the distal gut, and evidence from analysis of other public datasets further support the hypothesis that fungi do not routinely colonize the GI tracts of healthy adults. IMPORTANCE We sought to identify the fungi that colonize healthy GI tracts and that have a sustained influence on the diverse functions of the gut microbiome. Instead, we found that all fungi in the stool of healthy volunteers could be explained by their presence in oral and dietary sources and that our results, together with those from other analyses, support the model that there is little or no

  11. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi.

    PubMed

    Auchtung, Thomas A; Fofanova, Tatiana Y; Stewart, Christopher J; Nash, Andrea K; Wong, Matthew C; Gesell, Jonathan R; Auchtung, Jennifer M; Ajami, Nadim J; Petrosino, Joseph F

    2018-01-01

    A wide diversity of fungi have been detected in the human gastrointestinal (GI) tract with the potential to provide or influence important functions. However, many of the fungi most commonly detected in stool samples are also present in food or the oral cavity. Therefore, to recognize which gut fungi are likely to have a sustained influence on human health, there is a need to separate transient members of the GI tract from true colonizers. To identify colonizing fungi, the eukaryotic rRNA operon's second internal transcribed spacer (ITS2) was sequenced from the stool, saliva, and food of healthy adults following consumption of different controlled diets. Unlike most bacterial 16S rRNA genes, the only fungal ITS2 operational taxonomic units (OTUs) detected in stool DNA across multiple diets were also present in saliva and/or food. Additional analyses, including culture-based approaches and sequencing of the 18S rRNA gene, ITS2 cDNA, and DNA extracted using alternative methods, failed to detect additional fungi. Two abundant fungi, Saccharomyces cerevisiae and Candida albicans, were examined further in healthy volunteers. Saccharomyces became undetectable in stool when a S. cerevisiae-free diet was consumed, and the levels of C. albicans in stool were dramatically reduced by more frequent cleaning of teeth. Extremely low fungal abundance, the inability of fungi to grow under conditions mimicking the distal gut, and evidence from analysis of other public datasets further support the hypothesis that fungi do not routinely colonize the GI tracts of healthy adults. IMPORTANCE We sought to identify the fungi that colonize healthy GI tracts and that have a sustained influence on the diverse functions of the gut microbiome. Instead, we found that all fungi in the stool of healthy volunteers could be explained by their presence in oral and dietary sources and that our results, together with those from other analyses, support the model that there is little or no

  12. Are Entomopathogenic Nematodes Effective Biological Control Agents Against the Carob Moth, Ectomyelois ceratoniae?

    PubMed Central

    Memari, Zahra; Karimi, Javad; Kamali, Shokoofeh; Goldansaz, Seyed Hossein; Hosseini, Mojtaba

    2016-01-01

    The carob moth (Ectomyelois ceratoniae) is the key pest of pomegranate, which causes a significant percentage of losses in pomegranate orchards and warehouses of Iran annually. The pest larvae are characterized by displaying a cryptic behavior within the fruit, which avoids most routine control techniques, especially chemical method. The low efficiency of traditional measurements and also the rich species diversity of natural enemies within the infested fruits highlight the necessity of exploring effective control methods, especially environmental friendly approaches. Entomopathogenic nematodes (EPNs) are a group of biological control agents that actively search for the host, including those in a cryptic habitat like the carob moth larvae within infested fruits. Here, we assumed that treatment of the infested and dropped fruits with EPNs may provide new insight into the management of the carob moth. Three species of EPNs, Steinernema feltiae, S. carpocapsae, and Heterorhabditis bacteriophora were selected and used in a series of in vitro and in vivo experiments. In preliminary assays, the EPNs species were used with different concentrations of infective juveniles (IJs) (0, 1, 5, 10, 25, and 50 IJ/larvae) in 2-cm diam. plates. The mortality rates of the laboratory tests were 79.75% and 76.5% for S. feltiae and S. carpocapsae, corresponded to LC50 value of 2.02 IJ/larva for S. feltiae and 2.05 IJ/larva for S. carpocapsae. On the contrary, H. bacteriophora demonstrated low virulence on the pest larvae in petri tests with a LC50 = 426.92 IJ/larva. Hence, both Steinernema species were selected for subsequent experiments. The penetration rate for S. feltiae and S. carpocapsae into the hemocoel of the pest was 43% and 31%, respectively, and the corresponding reproduction rate was 15,452 IJ/larva for S. feltiae and 18,456 IJ/larva for S. carpocapsae. The gathered data from those in vitro tests were used for a field assay. Different concentrations (5, 10, 50, 100, and 160

  13. Dispersal of arbuscular mycorrhizal fungi and plants during succession

    NASA Astrophysics Data System (ADS)

    García de León, David; Moora, Mari; Öpik, Maarja; Jairus, Teele; Neuenkamp, Lena; Vasar, Martti; Bueno, C. Guillermo; Gerz, Maret; Davison, John; Zobel, Martin

    2016-11-01

    Arbuscular mycorrhizal (AM) fungi are important root symbionts that enhance plant nutrient uptake and tolerance to pathogens and drought. While the role of plant dispersal in shaping successional vegetation is well studied, there is very little information about the dispersal abilities of AM fungi. We conducted a trap-box experiment in a recently abandoned quarry at 10 different distances from the quarry edge (i.e. the potential propagule source) over eleven months to assess the short term, within-year, arrival of plant and AM fungal assemblages and hence their dispersal abilities. Using DNA based techniques we identified AM fungal taxa and analyzed their phylogenetic diversity. Plant diversity was determined by transporting trap soil to a greenhouse and identifying emerging seedlings. We recorded 30 AM fungal taxa. These contained a high proportion of ruderal AM fungi (30% of taxa, 79% of sequences) but the richness and abundance of AM fungi were not related to the distance from the presumed propagule source. The number of sequences of AM fungi decreased over time. Twenty seven plant species (30% of them ruderal) were recorded from the soil seed traps. Plant diversity decreased with distance from the propagule source and increased over time. Our data show that AM fungi with ruderal traits can be fast colonizers of early successional habitats.

  14. Comparative Genome Analysis of Basidiomycete Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Robert; Salamov, Asaf; Morin, Emmanuelle

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypesmore » found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.« less

  15. Anti-Rhodotorula activity of mycophenolic acid enhanced in the presence of polyene antibiotic nystatin.

    PubMed

    Kinoshita, H; Wongsuntornpoj, S; Ihara, F; Nihira, T

    2017-02-01

    Rhodotorula species are opportunistic pathogens, which cause not only systemic fungaemia but also other localized infections. Despite serious side effects such as nephrotoxicity and hypokalemia, amphotericin B (a polyene antifungal) has been commonly prescribed for Rhodotorula infection because Rhodotorula species are resistant against a candin family of antifungal agents. In this study, novel active compounds against Rhodotorula species were screened from the extracts of entomopathogenic fungi based on the synergistic effect of polyene nystatin (NYS), which causes efficient targeting of compounds due to increased permeability through the fungal cell membrane. Around 37% of culture extracts from 31 entomopathogenic fungal strains showed anti-Rhodotorula activity in the synergistic bioassay system, suggesting that the coexistence assay with NYS enhanced the discovery of anti-Rhodotorula compounds. Judging from various physicochemical data, the active component from strain HF763 was identified as an immunosuppressant drug, mycophenolic acid (MPA). The minimum inhibitory concentration of MPA against three pathogenic Rhodotorula strains was determined, focusing on the synergistic effect with NYS. The results revealed that the values decreased by at least 87% in the presence of NYS, indicating that MPA showed a synergistic effect with NYS. This study aimed to screen active compounds against Rhodotorula species that are resistant to a candin family of antifungal agents, from entomopathogenic fungi. Assuming that most of the latent antifungal compounds do not exert their activity due to their inability to penetrate the membrane, we took advantage of polyene nystatin in the screening to increase permeability through the fungal cell membrane. The result of the screening revealed hidden antifungal activity of mycophenolic acid, demonstrating that the method applied in this study unlocks the potentials of bioresources, and proposes a new remedy for mycosis. © 2016 The

  16. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel

    PubMed Central

    2012-01-01

    Background Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Though fungi from mangrove ecosystem have been reported for production of several lignocellulolytic enzymes, they remain unexplored for their SCO producing ability. Thus, these oleaginous fungi from the mangrove ecosystem could be suitable candidates for production of SCOs from lignocellulosic biomass. The accumulation of lipids being species specific, strain selection is critical and therefore, it is of importance to evaluate the fungal diversity of mangrove wetlands. The whole cells of these fungi were investigated with respect to oleaginicity, cell mass, lipid content, fatty acid methyl ester profiles and physicochemical properties of transesterified SCOs in order to explore their potential for biodiesel production. Results In the present study, 14 yeasts and filamentous fungi were isolated from the detritus based mangrove wetlands along the Indian west coast. Nile red staining revealed that lipid bodies were present in 5 of the 14 fungal isolates. Lipid extraction showed that these fungi were able to accumulate > 20% (w/w) of their dry cell mass (4.14 - 6.44 g L-1) as lipids with neutral lipid as the major fraction. The profile of transesterified SCOs revealed a high content of saturated and monounsaturated fatty acids i.e., palmitic (C16:0), stearic (C18:0) and oleic (C18:1) acids similar to conventional vegetable oils used for biodiesel production. The experimentally determined and predicted biodiesel properties for 3 fungal isolates correlated well with the specified standards. Isolate IBB M1, with the highest SCO yield and containing high amounts of saturated and monounsaturated fatty acid was identified as Aspergillus terreus using morphotaxonomic study and 18 S rRNA gene sequencing. Batch flask cultures with varying initial glucose concentration revealed that maximal cell biomass and lipid content were

  17. Mycorrhizal fungi of aspen forests: Natural occurrence and potential applications

    Treesearch

    Cathy L. Cripps

    2001-01-01

    Native mycorrhizal fungi associated with aspen were surveyed on three soil types in the north-central Rocky Mountains. Selected isolates were tested for the ability to enhance aspen seedling growth in vitro. Over 50 species of ectomycorrhizal fungi occur with Populus tremuloides in this region, primarily basidiomycete fungi in the Agaricales. Almost one-third (30%)...

  18. Biochemical mutagens affect the preservation of fungi and biodiversity estimations.

    PubMed

    Paterson, R Russell M; Lima, Nelson

    2013-01-01

    Many fungi have significant industrial applications or biosafety concerns and maintaining the original characteristics is essential. The preserved fungi have to represent the situation in nature for posterity, biodiversity estimations, and taxonomic research. However, spontaneous fungal mutations and secondary metabolites affecting producing fungi are well known. There is increasing interest in the preservation of microbes in Biological Resource Centers (BRC) to ensure that the organisms remain viable and stable genetically. It would be anathema if they contacted mutagens routinely. However, for the purpose of this discussion, there are three potential sources of biochemical mutagens when obtaining individual fungi from the environment: (a) mixtures of microorganisms are plated routinely onto growth media containing mutagenic antibiotics to control overgrowth by contaminants, (b) the microbial mixtures may contain microorganisms capable of producing mutagenic secondary metabolites, and (c) target fungi for isolation may produce "self" mutagens in pure culture. The probability that these compounds could interact with fungi undermines confidence in the preservation process and the potential effects of these biochemical mutagens are considered for the first time on strains held in BRC in this review.

  19. An ethnobotanical survey of edible fungi in Chuxiong City, Yunnan, China.

    PubMed

    Liu, Dongyang; Cheng, Hong; Bussmann, Rainer W; Guo, Zhiyong; Liu, Bo; Long, Chunlin

    2018-06-15

    Chuxiong, known as "the City of Fungi," is rich in fungal resources and traditional knowledge related to fungal biodiversity. The local environment is an excellent habitat for a wide variety of edible fungi. In addition, the region is home to many ethnic minorities and especially the Yi ethnic group who has a long history for traditionally using fungi as food or medicine. The aims of this review are to provide up-to-date information on the knowledge about, and traditional management of, fungi in this area and give advice on future utilization and conservation. Field surveys and in-depth semi-structured interviews were used to gather data. Ethnomycological data was collected from 67 informants in the summer of 2015. Twenty-two edible fungal species were recorded both as food or non-timber forest products (NTFPs), used to increase income, and the importance of this resource for the Yi ethnic group was evaluated. Abundant and diverse wild genetic resources and a large production chain of edible fungi were recorded in Chuxiong. However, because of over-harvesting, the wild edible fungi are facing increasing threats. Suggestions are proposed to allow sustainable use of fungi resources, including (1) promotion of diversification of transportation, (2) development of fungi cultivation to improve quality and supply and reduce harvest pressure, (3) improvement of public awareness for environmental protection and sustainable development, and (4) promotion of eco-tourism and development of fungi catering in rural agro- and slow-food tourism.

  20. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses

    PubMed Central

    Parrent, Jeri Lynn; James, Timothy Y; Vasaitis, Rimvydas; Taylor, Andrew FS

    2009-01-01

    Background Many fungi are obligate biotrophs of plants, growing in live plant tissues, gaining direct access to recently photosynthesized carbon. Photosynthate within plants is transported from source to sink tissues as sucrose, which is hydrolyzed by plant glycosyl hydrolase family 32 enzymes (GH32) into its constituent monosaccharides to meet plant cellular demands. A number of plant pathogenic fungi also use GH32 enzymes to access plant-derived sucrose, but less is known about the sucrose utilization ability of mutualistic and commensal plant biotrophic fungi, such as mycorrhizal and endophytic fungi. The aim of this study was to explore the distribution and abundance of GH32 genes in fungi to understand how sucrose utilization is structured within and among major ecological guilds and evolutionary lineages. Using bioinformatic and PCR-based analyses, we tested for GH32 gene presence in all available fungal genomes and an additional 149 species representing a broad phylogenetic and ecological range of biotrophic fungi. Results We detected 9 lineages of GH32 genes in fungi, 4 of which we describe for the first time. GH32 gene number in fungal genomes ranged from 0–12. Ancestral state reconstruction of GH32 gene abundance showed a strong correlation with nutritional mode, and gene family expansion was observed in several clades of pathogenic filamentous Ascomycota species. GH32 gene number was negatively correlated with animal pathogenicity and positively correlated with plant biotrophy, with the notable exception of mycorrhizal taxa. Few mycorrhizal species were found to have GH32 genes as compared to other guilds of plant-associated fungi, such as pathogens, endophytes and lichen-forming fungi. GH32 genes were also more prevalent in the Ascomycota than in the Basidiomycota. Conclusion We found a strong signature of both ecological strategy and phylogeny on GH32 gene number in fungi. These data suggest that plant biotrophic fungi exhibit a wide range of ability

  1. Biosorption of heavy metals by obligate halophilic fungi.

    PubMed

    Bano, Amna; Hussain, Javaid; Akbar, Ali; Mehmood, Khalid; Anwar, Muhammad; Hasni, Muhammad Sharif; Ullah, Sami; Sajid, Sumbal; Ali, Imran

    2018-05-01

    The presence of heavy metals in the environment poses a serious threat to human health. Remediation of this problem using microorganisms has been widely researched to find a sustainable solution. Obligate halophilic fungi comprising Aspergillus flavus, Aspergillus gracilis, Aspergillus penicillioides (sp. 1), Aspergillus penicillioides (sp. 2), Aspergillus restrictus and Sterigmatomyces halophilus were used for the biosorption of cadmium, copper, ferrous, manganese, lead and zinc. The metals were supplemented as salts in potato dextrose broth for the growth of obligate halophilic fungi and incubated for 14 days. The supernatant and biomass were obtained by the acid digestion method. The biosorption was screened by atomic absorption spectroscopy. All tested fungi showed moderate to high adsorption of heavy metals, amongst which A. flavus and S. halophilus showed the best average adsorption of all heavy metals studied, with an average of 86 and 83%, respectively. On average, Fe and Zn are best removed from the liquid media of obligate halophilic fungi, with an average of 85 and 84%, respectively. This pioneering study of biosorption by obligate halophilic fungi using inexpensive media in stagnant conditions provides a cost-effective environmental solution for the removal of heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Dead wood, living legacies: habitat for a host of fungi.

    Treesearch

    Sally Duncan; Jonathan Thompson

    2004-01-01

    The web of life that exists below ground and out of sight may be the final frontier for forest ecologists. Among the many unknowns in this realm are the thousands of species of so-called ectomycorrhizal fungi, those fungi that have mutual-need associations with both trees and mammals.The richness and diversity of ectomycorrhizal fungi species contribute...

  3. Toxins of filamentous fungi.

    PubMed

    Bhatnagar, Deepak; Yu, Jiujiang; Ehrlich, Kenneth C

    2002-01-01

    Mycotoxins are low-molecular-weight secondary metabolites of fungi. The most significant mycotoxins are contaminants of agricultural commodities, foods and feeds. Fungi that produce these toxins do so both prior to harvest and during storage. Although contamination of commodities by toxigenic fungi occurs frequently in areas with a hot and humid climate (i.e. conditions favorable for fungal growth), they can also be found in temperate conditions. Production of mycotoxins is dependent upon the type of producing fungus and environmental conditions such as the substrate, water activity (moisture and relative humidity), duration of exposure to stress conditions and microbial, insect or other animal interactions. Although outbreaks of mycotoxicoses in humans have been documented, several of these have not been well characterized, neither has a direct correlation between the mycotoxin and resulting toxic effect been well established in vivo. Even though the specific modes of action of most of the toxins are not well established, acute and chronic effects in prokaryotic and eukaryotic systems, including humans have been reported. The toxicity of the mycotoxins varies considerably with the toxin, the animal species exposed to it, and the extent of exposure, age and nutritional status. Most of the toxic effects of mycotoxins are limited to specific organs, but several mycotoxins affect many organs. Induction of cancer by some mycotoxins is a major concern as a chronic effect of these toxins. It is nearly impossible to eliminate mycotoxins from the foods and feed in spite of the regulatory efforts at the national and international levels to remove the contaminated commodities. This is because mycotoxins are highly stable compounds, the producing fungi are ubiquitous, and food contamination can occur both before and after harvest. Nevertheless, good farm management practices and adequate storage facilities minimize the toxin contamination problems. Current research is

  4. Fungus-Farming Termites Selectively Bury Weedy Fungi that Smell Different from Crop Fungi.

    PubMed

    Katariya, Lakshya; Ramesh, Priya B; Gopalappa, Thejashwini; Desireddy, Sathish; Bessière, Jean-Marie; Borges, Renee M

    2017-10-01

    Mutualistic associations such as the fungal farms of insects are prone to parasitism and are consequently vulnerable to attack by weeds and pests. Therefore, efficient farm management requires quick detection of weeds for their elimination. Furthermore, if the available weedicides are non-specific, then the ability of insects to discriminate between crop and weeds becomes essential for targeted application of such compounds. Here, we demonstrate for the first time in fungus-farming insects, that worker castes of the fungus-growing termite Odontotermes obesus discriminate between their crop (Termitomyces) and the weedy (Pseudoxylaria) fungi, even if exposed to only fungal scents. Termites respond to the presence of fungal mycelium or scent alone, by burying the weed with the offered material such as soil or agar, possibly anointing the weed with chemicals in the process. The scent profiles of crop and weedy fungi are distinct and the differences are likely exploited by termites to selectively mount their defences. Sesquiterpene compounds such as aristolene and viridiflorol, which are absent from crop odours, may constitute the "weedy scent". Our results provide a general mechanism of how other fungus-farming insects could avoid indiscriminate application of non-specific fungicides which could lead to poisoning their crops, and have bearing on the stability of the mutualism between termites and their crop fungus in the face of parasitism by weedy fungi.

  5. Biogeography of mutualistic fungi cultivated by leafcutter ants

    USDA-ARS?s Scientific Manuscript database

    Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the USA, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA-sequence an...

  6. Analysis of fatty acid composition of anaerobic rumen fungi.

    PubMed

    Koppová, I; Novotná, Z; Strosová, L; Fliegerová, K

    2008-01-01

    The fatty acid (FA) composition of fresh mycelia of anaerobic rumen fungi was determined. The fatty acids methyl esters (FAME) of six strains belonging to four genera (Neocallimastix, Caecomyces, Orpinomyces, Anaeromyces) and one unknown strain were analyzed by gas chromatography. All studied fungi possess the same FAs but differences were found in their relative concentrations. The FA profile of anaerobic fungi comprises carbon chains of length ranging from 12 to 24; the most common fatty acids were stearic (C(18:0)), arachidic (C(20:0)), heneicosanoic (C(21:0)), behenic (C(22:0)), tricosanoic (C(23:0)) and lignoceric (C(24:0)) with relative amount representing >4% of total FA. Significant differences were determined for heptadecanoic, oleic, behenic and tricosanoic acids. Rumen anaerobic fungi can contain very long chain fatty acids; we found unsaturated fatty acids including cis-11-eicosenoic (C(20:1)), cis-11,14-eicosadienoic (C(20:2)), erucic (C(22:1n9)), cis-13,16-docosadienoic (C(22:2)) and nervonic (C(24:1)) acids in very small amounts but their presence seems to be unique for anaerobic fungi.

  7. [Health-toxicologic aspects of some fungi].

    PubMed

    Ochmański, W; Barabasz, W

    2000-01-01

    Recent findings of fungi in food products of such renomed companies as Coca-Cola and Danone resulted in society-wide alert in Poland. Humans have contact with fungi everywhere. Every food product covered with mould or having marks of it should be discarded. We should mention that cutting of or skimming the mould is totally ineffective and dangerous, because of the fact that rest of the product will contain products of fungal metabolism such as mikotoxins, which are, of course, invisible. Modern food producing technologies effected in microorganism-free products, but sporadically we can find dead fungi debris due to improper washing procedures of multi-use bottles, like it was observed in Coca-Cola products. As for mould-covered cottage cheese type products of Danone, most probably reason was improper handling of ready, sealed products during transport and storage. Even minimal physical injuries to air-tight containers resulted in sporae penetration to milk products and finally contamination with mikotoxins.

  8. Genetics, Molecular, and Proteomics Advances in Filamentous Fungi.

    PubMed

    Sharma Ghimire, Prakriti; Jin, Cheng

    2017-10-01

    Filamentous fungi play a dynamic role in health and the environment. In addition, their unique and complex hyphal structures are involved in their morphogenesis, integrity, synthesis, and degradation, according to environmental and physiological conditions and resource availability. However, in biotechnology, it has a great value in the production of enzymes, pharmaceuticals, and food ingredients. The beginning of nomenclature of overall fungi started in early 1990 after which the categorization, interior and exterior mechanism, function, molecular and genetics study took pace. This mini-review has emphasized some of the important aspects of filamentous fungi, their pattern of life cycle, history, and development of different strategic methods applied to exploit this unique organism. New trends and concepts that have been applied to overcome obstacle because of their basic structure related to genomics and systems biology has been presented. Furthermore, the future aspects and challenges that need to be deciphered to get a bigger and better picture of filamentous fungi have been discussed.

  9. Estimates of carbon allocation to ectomycorrhizal fungi in a temperate forest

    NASA Astrophysics Data System (ADS)

    Ouimette, A.; Ollinger, S. V.; Vadeboncoeur, M. A.; Hobbie, E. A.

    2012-12-01

    The capacity of temperate and boreal forests to grow and sequester carbon (C) is limited by the amount of available nitrogen (N) in soils. While the importance of N to carbon storage is well known, we lack a thorough understanding of the mechanisms of N acquisition and the belowground carbon investment required for trees to compete for N. Resolving these uncertainties is critical for predicting future carbon budgets, given expected changes in climate, N deposition, atmospheric CO2, and tree species distribution. Some of the greatest uncertainties surrounding belowground C-N interactions involve the symbiotic fungi that serve as an interface between trees and various forms of N they acquire. Nearly all temperate and boreal forest trees have associations with one of two types of fungi: ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Both types of fungi provide trees with soil nitrogen and other nutrients necessary for growth and in return receive carbon (sugars) from trees. Understanding the differences between these fungal groups is important because they differ dramatically in their carbon requirements and in their ability to access different forms of N. ECM fungi have higher carbon demand, more extensive hyphae (fungal roots), and much stronger capabilities to break down soil organic matter than AM fungi. Despite their importance in the terrestrial C cycle, mycorrhizal fungi are distinctly absent from forest ecosystem C and N models, primarily due to a lack of quantitative data on carbon allocation to mycorrhizal fungi in forests. Quantifying carbon allocation to mycorrhizal fungi is inherently difficult given their small (microscopic) size and lack of specific quantitative biomarkers. Here we present simple measurements that make use of natural abundance N stable isotope data (δ15N) of plant and soil pools, as well as forest C and N budget data, to provide estimates of C allocation to ECM fungi across temperate forest stands with a range of soil N

  10. Endophytic fungi: expanding the arsenal of industrial enzyme producers.

    PubMed

    Corrêa, Rúbia Carvalho Gomes; Rhoden, Sandro Augusto; Mota, Thatiane Rodrigues; Azevedo, João Lúcio; Pamphile, João Alencar; de Souza, Cristina Giatti Marques; Polizeli, Maria de Lourdes Teixeira de Moraes; Bracht, Adelar; Peralta, Rosane Marina

    2014-10-01

    Endophytic fungi, mostly belonging to the Ascomycota, are found in the intercellular spaces of the aerial plant parts, particularly in leaf sheaths, sometimes even within the bark and root system without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce a wide range of enzymes and secondary metabolites exhibiting a variety of biological activities. However, they have been only barely exploited as sources of enzymes of industrial interest. This review emphasizes the suitability and possible advantages of including the endophytic fungi in the screening of new enzyme producing organisms as well as in studies aiming to optimize the production of enzymes through well-known culture processes. Apparently endophytic fungi possess the two types of extracellular enzymatic systems necessary to degrade the vegetal biomass: (1) the hydrolytic system responsible for polysaccharide degradation consisting mainly in xylanases and cellulases; and (2) the unique oxidative ligninolytic system, which degrades lignin and opens phenyl rings, comprises mainly laccases, ligninases and peroxidases. The obvious ability of endophytic fungi to degrade the complex structure of lignocellulose makes them useful in the exploration of the lignocellulosic biomass for the production of fuel ethanol and other value-added commodity chemicals. In addition to this, endophytic fungi may become new sources of industrially useful enzymes such as lipases, amylases and proteases.

  11. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    NASA Astrophysics Data System (ADS)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  12. Phylogenetic congruence between subtropical trees and their associated fungi.

    PubMed

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S; Gilbert, Gregory S; Yu, Shixiao

    2016-12-01

    Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK , rbcL , atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.

  13. Steroid toxicity and detoxification in ascomycetous fungi.

    PubMed

    Cvelbar, Damjana; Zist, Vanja; Kobal, Katja; Zigon, Dušan; Zakelj-Mavrič, Marija

    2013-02-25

    In the last couple of decades fungal infections have become a significant clinical problem. A major interest into fungal steroid action has been provoked since research has proven that steroid hormones are toxic to fungi and affect the host/fungus relationship. Steroid hormones were found to differ in their antifungal activity in ascomycetous fungi Hortaea werneckii, Saccharomyces cerevisiae and Aspergillus oryzae. Dehydroepiandrosterone was shown to be the strongest inhibitor of growth in all three varieties of fungi followed by androstenedione and testosterone. For their protection, fungi use several mechanisms to lower the toxic effects of steroids. The efficiency of biotransformation in detoxification depended on the microorganism and steroid substrate used. Biotransformation was a relatively slow process as it also depended on the growth phase of the fungus. In addition to biotransformation, steroid extrusion out of the cells contributed to the lowering of the active intracellular steroid concentration. Plasma membrane Pdr5 transporter was found to be the most effective, followed by Snq2 transporter and vacuolar transporters Ybt1 and Ycf1. Proteins Aus1 and Dan1 were not found to be involved in steroid import. The research of possible targets of steroid hormone action in fungi suggests that steroid hormones inhibit ergosterol biosynthesis in S. cerevisiae and H. werneckii. Results of this inhibition caused changes in the sterol content of the cellular membrane. The presence of steroid hormones most probably causes the degradation of the Tat2 permease and impairment of tryptophan import. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    PubMed

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  15. Distribution of sterols in the fungi. I - Fungal spores

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Laseter, J. L.

    1974-01-01

    Mass spectrometry was used to examine freely extractable sterols from spores of several species of fungi. Ergosterol was the most common sterol produced by any individual species, but it was completely absent from two species belonging to apparently distantly related groups of fungi: the aquatic Phycomycetes and the rust fungi. This fact could have taxonomic or phylogenetic implications. The use of glass capillary columns in the resolution of the sterols is shown to eliminate some of the difficulty inherent in this process.

  16. Arylamine N-acetyltransferases in mycotoxigenic and related fungi of agricultural significance

    USDA-ARS?s Scientific Manuscript database

    Mycotoxigenic fungi are of worldwide concern, as they contaminate crops and compromise food safety. Many of these fungi are also aggressive plant pathogens with devastating effects on maize, and wheat. The host plants possess a variety of defensive mechanisms against those fungi, including the produ...

  17. Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests

    PubMed Central

    Högberg, Peter; Plamboeck, Agneta H.; Taylor, Andrew F. S.; Fransson, Petra M. A.

    1999-01-01

    Fungi play crucial roles in the biogeochemistry of terrestrial ecosystems, most notably as saprophytes decomposing organic matter and as mycorrhizal fungi enhancing plant nutrient uptake. However, a recurrent problem in fungal ecology is to establish the trophic status of species in the field. Our interpretations and conclusions are too often based on extrapolations from laboratory microcosm experiments or on anecdotal field evidence. Here, we used natural variations in stable carbon isotope ratios (δ13C) as an approach to distinguish between fungal decomposers and symbiotic mycorrhizal fungal species in the rich sporocarp flora (our sample contains 135 species) of temperate forests. We also demonstrated that host-specific mycorrhizal fungi that receive C from overstorey or understorey tree species differ in their δ13C. The many promiscuous mycorrhizal fungi, associated with and connecting several tree hosts, were calculated to receive 57–100% of their C from overstorey trees. Thus, overstorey trees also support, partly or wholly, the nutrient-absorbing mycelia of their alleged competitors, the understorey trees. PMID:10411910

  18. Fungi on the Skin: Dermatophytes and Malassezia

    PubMed Central

    White, Theodore C.; Findley, Keisha; Dawson, Thomas L.; Scheynius, Annika; Boekhout, Teun; Cuomo, Christina A.; Xu, Jun; Saunders, Charles W.

    2014-01-01

    Several human skin diseases and disorders are associated with two groups of fungi, the dermatophytes and Malassezia. Although these skin-related problems are not generally life threatening, they are among the most common diseases and disorders of mankind. These fungi are phylogenetically divergent, with the dermatophytes within the Ascomycota and Malassezia within Basidiomycota. Genome analysis indicates that the adaptations to the skin environment are different in these two groups of fungi. Malassezia are dependent on host lipids and secrete lipases and phospholipases that likely release host fatty acids. The dermatophytes encode multiple enzymes with potential roles in modulating host interactions: polyketide synthases, nonribosomal peptide synthetases, LysM, proteases, kinases, and pseudokinases. These two fungal groups have maximized their interactions with the host using two very different mechanisms. PMID:25085959

  19. Black yeasts-like fungi isolated from dialysis water in hemodialysis units.

    PubMed

    Figel, Izabel Cristina; Marangoni, Paulo Roberto Dantas; Tralamazza, Sabina Moser; Vicente, Vânia Aparecida; Dalzoto, Patrícia do Rocio; do Nascimento, Mariana Machado Fidelis; de Hoog, G Sybren; Pimentel, Ida Chapaval

    2013-06-01

    Hemodialysis in patients with chronic renal failure promotes the removal of toxic substances, water, and minerals from the body and often takes place in specialized clinics. Microbial contamination of dialysis fluid is a serious problem in therapy. One of the sources of contamination is the water used to prepare the dialysate. In Brazil, legislation regulating the microbiological quality of water for dialysis does not cover waterborne microbes such as Pseudomonas, mycobacteria, and fungi. The aim of the present study was to quantify, isolate, and identify fungi present in water systems in six hemodialysis units in Curitiba, Paraná state, Brazil. Fungi were analyzed by surface plating and membrane filtration. Isolates were identified by morphology, while the dematiaceous fungi were identified by sequencing the rDNA ITS region. It was found that 66 % of the samples presented fungi, while black fungi were present in 46 % of all samples. Twenty-eight isolates from treated water for dialysis and dialysate were identified by sequencing and were found to be Exophiala pisciphila, E. cancerae, E. equina, and Rhinocladiella similis. The presence of dematiaceous fungi may pose a risk for debilitated hospitalized patients.

  20. Mannitol in Plants, Fungi, and Plant-Fungal Interactions.

    PubMed

    Patel, Takshay K; Williamson, John D

    2016-06-01

    Although the presence of mannitol in organisms as diverse as plants and fungi clearly suggests that this compound has important roles, our understanding of fungal mannitol metabolism and its interaction with mannitol metabolism in plants is far from complete. Despite recent inroads into understanding the importance of mannitol and its metabolic roles in salt, osmotic, and oxidative stress tolerance in plants and fungi, our current understanding of exactly how mannitol protects against reactive oxygen is also still incomplete. In this opinion, we propose a new model of the interface between mannitol metabolism in plants and fungi and how it impacts plant-pathogen interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.