Sample records for background error statistics

  1. Investigating the role of background and observation error correlations in improving a model forecast of forest carbon balance using four dimensional variational data assimilation.

    NASA Astrophysics Data System (ADS)

    Pinnington, Ewan; Casella, Eric; Dance, Sarah; Lawless, Amos; Morison, James; Nichols, Nancy; Wilkinson, Matthew; Quaife, Tristan

    2016-04-01

    Forest ecosystems play an important role in sequestering human emitted carbon-dioxide from the atmosphere and therefore greatly reduce the effect of anthropogenic induced climate change. For that reason understanding their response to climate change is of great importance. Efforts to implement variational data assimilation routines with functional ecology models and land surface models have been limited, with sequential and Markov chain Monte Carlo data assimilation methods being prevalent. When data assimilation has been used with models of carbon balance, background "prior" errors and observation errors have largely been treated as independent and uncorrelated. Correlations between background errors have long been known to be a key aspect of data assimilation in numerical weather prediction. More recently, it has been shown that accounting for correlated observation errors in the assimilation algorithm can considerably improve data assimilation results and forecasts. In this paper we implement a 4D-Var scheme with a simple model of forest carbon balance, for joint parameter and state estimation and assimilate daily observations of Net Ecosystem CO2 Exchange (NEE) taken at the Alice Holt forest CO2 flux site in Hampshire, UK. We then investigate the effect of specifying correlations between parameter and state variables in background error statistics and the effect of specifying correlations in time between observation error statistics. The idea of including these correlations in time is new and has not been previously explored in carbon balance model data assimilation. In data assimilation, background and observation error statistics are often described by the background error covariance matrix and the observation error covariance matrix. We outline novel methods for creating correlated versions of these matrices, using a set of previously postulated dynamical constraints to include correlations in the background error statistics and a Gaussian correlation function to include time correlations in the observation error statistics. The methods used in this paper will allow the inclusion of time correlations between many different observation types in the assimilation algorithm, meaning that previously neglected information can be accounted for. In our experiments we compared the results using our new correlated background and observation error covariance matrices and those using diagonal covariance matrices. We found that using the new correlated matrices reduced the root mean square error in the 14 year forecast of daily NEE by 44 % decreasing from 4.22 g C m-2 day-1 to 2.38 g C m-2 day-1.

  2. The role of ensemble-based statistics in variational assimilation of cloud-affected observations from infrared imagers

    NASA Astrophysics Data System (ADS)

    Hacker, Joshua; Vandenberghe, Francois; Jung, Byoung-Jo; Snyder, Chris

    2017-04-01

    Effective assimilation of cloud-affected radiance observations from space-borne imagers, with the aim of improving cloud analysis and forecasting, has proven to be difficult. Large observation biases, nonlinear observation operators, and non-Gaussian innovation statistics present many challenges. Ensemble-variational data assimilation (EnVar) systems offer the benefits of flow-dependent background error statistics from an ensemble, and the ability of variational minimization to handle nonlinearity. The specific benefits of ensemble statistics, relative to static background errors more commonly used in variational systems, have not been quantified for the problem of assimilating cloudy radiances. A simple experiment framework is constructed with a regional NWP model and operational variational data assimilation system, to provide the basis understanding the importance of ensemble statistics in cloudy radiance assimilation. Restricting the observations to those corresponding to clouds in the background forecast leads to innovations that are more Gaussian. The number of large innovations is reduced compared to the more general case of all observations, but not eliminated. The Huber norm is investigated to handle the fat tails of the distributions, and allow more observations to be assimilated without the need for strict background checks that eliminate them. Comparing assimilation using only ensemble background error statistics with assimilation using only static background error statistics elucidates the importance of the ensemble statistics. Although the cost functions in both experiments converge to similar values after sufficient outer-loop iterations, the resulting cloud water, ice, and snow content are greater in the ensemble-based analysis. The subsequent forecasts from the ensemble-based analysis also retain more condensed water species, indicating that the local environment is more supportive of clouds. In this presentation we provide details that explain the apparent benefit from using ensembles for cloudy radiance assimilation in an EnVar context.

  3. Generalized Background Error covariance matrix model (GEN_BE v2.0)

    NASA Astrophysics Data System (ADS)

    Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D. M.

    2014-07-01

    The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model to allow for a simpler, flexible, robust, and community-oriented framework that gathers methods used by meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks and showing some of the new features on data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to involve new control variables. While the generation of the background errors statistics code has been first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily extended to other domains of science and be chosen as a testbed for diagnostic and new modeling of B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.

  4. Generalized background error covariance matrix model (GEN_BE v2.0)

    NASA Astrophysics Data System (ADS)

    Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D. M.; Barré, J.

    2015-03-01

    The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model. GEN_BE allows for a simpler, flexible, robust, and community-oriented framework that gathers methods used by some meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks of different modeling of B and showing some of the new features in data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to implement new control variables. While the generation of the background errors statistics code was first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily applied to other domains of science and chosen to diagnose and model B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.

  5. A Study on Mutil-Scale Background Error Covariances in 3D-Var Data Assimilation

    NASA Astrophysics Data System (ADS)

    Zhang, Xubin; Tan, Zhe-Min

    2017-04-01

    The construction of background error covariances is a key component of three-dimensional variational data assimilation. There are different scale background errors and interactions among them in the numerical weather Prediction. However, the influence of these errors and their interactions cannot be represented in the background error covariances statistics when estimated by the leading methods. So, it is necessary to construct background error covariances influenced by multi-scale interactions among errors. With the NMC method, this article firstly estimates the background error covariances at given model-resolution scales. And then the information of errors whose scales are larger and smaller than the given ones is introduced respectively, using different nesting techniques, to estimate the corresponding covariances. The comparisons of three background error covariances statistics influenced by information of errors at different scales reveal that, the background error variances enhance particularly at large scales and higher levels when introducing the information of larger-scale errors by the lateral boundary condition provided by a lower-resolution model. On the other hand, the variances reduce at medium scales at the higher levels, while those show slight improvement at lower levels in the nested domain, especially at medium and small scales, when introducing the information of smaller-scale errors by nesting a higher-resolution model. In addition, the introduction of information of larger- (smaller-) scale errors leads to larger (smaller) horizontal and vertical correlation scales of background errors. Considering the multivariate correlations, the Ekman coupling increases (decreases) with the information of larger- (smaller-) scale errors included, whereas the geostrophic coupling in free atmosphere weakens in both situations. The three covariances obtained in above work are used in a data assimilation and model forecast system respectively, and then the analysis-forecast cycles for a period of 1 month are conducted. Through the comparison of both analyses and forecasts from this system, it is found that the trends for variation in analysis increments with information of different scale errors introduced are consistent with those for variation in variances and correlations of background errors. In particular, introduction of smaller-scale errors leads to larger amplitude of analysis increments for winds at medium scales at the height of both high- and low- level jet. And analysis increments for both temperature and humidity are greater at the corresponding scales at middle and upper levels under this circumstance. These analysis increments improve the intensity of jet-convection system which includes jets at different levels and coupling between them associated with latent heat release, and these changes in analyses contribute to the better forecasts for winds and temperature in the corresponding areas. When smaller-scale errors are included, analysis increments for humidity enhance significantly at large scales at lower levels to moisten southern analyses. This humidification devotes to correcting dry bias there and eventually improves forecast skill of humidity. Moreover, inclusion of larger- (smaller-) scale errors is beneficial for forecast quality of heavy (light) precipitation at large (small) scales due to the amplification (diminution) of intensity and area in precipitation forecasts but tends to overestimate (underestimate) light (heavy) precipitation .

  6. Comparative interpretations of renormalization inversion technique for reconstructing unknown emissions from measured atmospheric concentrations

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory

    2017-04-01

    The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.

  7. Analysis of Statistical Methods and Errors in the Articles Published in the Korean Journal of Pain

    PubMed Central

    Yim, Kyoung Hoon; Han, Kyoung Ah; Park, Soo Young

    2010-01-01

    Background Statistical analysis is essential in regard to obtaining objective reliability for medical research. However, medical researchers do not have enough statistical knowledge to properly analyze their study data. To help understand and potentially alleviate this problem, we have analyzed the statistical methods and errors of articles published in the Korean Journal of Pain (KJP), with the intention to improve the statistical quality of the journal. Methods All the articles, except case reports and editorials, published from 2004 to 2008 in the KJP were reviewed. The types of applied statistical methods and errors in the articles were evaluated. Results One hundred and thirty-nine original articles were reviewed. Inferential statistics and descriptive statistics were used in 119 papers and 20 papers, respectively. Only 20.9% of the papers were free from statistical errors. The most commonly adopted statistical method was the t-test (21.0%) followed by the chi-square test (15.9%). Errors of omission were encountered 101 times in 70 papers. Among the errors of omission, "no statistics used even though statistical methods were required" was the most common (40.6%). The errors of commission were encountered 165 times in 86 papers, among which "parametric inference for nonparametric data" was the most common (33.9%). Conclusions We found various types of statistical errors in the articles published in the KJP. This suggests that meticulous attention should be given not only in the applying statistical procedures but also in the reviewing process to improve the value of the article. PMID:20552071

  8. Implementation and Research on the Operational Use of the Mesoscale Prediction Model COAMPS in Poland

    DTIC Science & Technology

    2007-09-30

    COAMPS model. Bogumil Jakubiak, University of Warsaw – participated in EGU General Assembly , Vienna Austria 15-20 April 2007 giving one oral and two...conditional forecast (background) error probability density function using an ensemble of the model forecast to generate background error statistics...COAMPS system on ICM machines at Warsaw University for the purpose of providing operational support to the general public using the ICM meteorological

  9. Phase error statistics of a phase-locked loop synchronized direct detection optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Natarajan, Suresh; Gardner, C. S.

    1987-01-01

    Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.

  10. Use of an OSSE to Evaluate Background Error Covariances Estimated by the 'NMC Method'

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.; Prive, Nikki C.; Gu, Wei

    2014-01-01

    The NMC method has proven utility for prescribing approximate background-error covariances required by variational data assimilation systems. Here, untunedNMCmethod estimates are compared with explicitly determined error covariances produced within an OSSE context by exploiting availability of the true simulated states. Such a comparison provides insights into what kind of rescaling is required to render the NMC method estimates usable. It is shown that rescaling of variances and directional correlation lengths depends greatly on both pressure and latitude. In particular, some scaling coefficients appropriate in the Tropics are the reciprocal of those in the Extratropics. Also, the degree of dynamic balance is grossly overestimated by the NMC method. These results agree with previous examinations of the NMC method which used ensembles as an alternative for estimating background-error statistics.

  11. Medical Errors Reduction Initiative

    DTIC Science & Technology

    2009-03-01

    enough data was collected to have any statistical significance or determine impact on latent error in the process of blood transfusion. Bedside...of adverse drug events. JAMA 1995; 274: 35-43 . Leape, L.L., Brennan, T .A., & Laird, N .M. ( 1991) The nature of adverse events in hospitalized...Background Medical errors are a significant cause of morbidity and mortality among hospitalized patients (Kohn, Corrigan and Donaldson, 2000; Leape, Brennan

  12. Statistical methods and errors in family medicine articles between 2010 and 2014-Suez Canal University, Egypt: A cross-sectional study

    PubMed Central

    Nour-Eldein, Hebatallah

    2016-01-01

    Background: With limited statistical knowledge of most physicians it is not uncommon to find statistical errors in research articles. Objectives: To determine the statistical methods and to assess the statistical errors in family medicine (FM) research articles that were published between 2010 and 2014. Methods: This was a cross-sectional study. All 66 FM research articles that were published over 5 years by FM authors with affiliation to Suez Canal University were screened by the researcher between May and August 2015. Types and frequencies of statistical methods were reviewed in all 66 FM articles. All 60 articles with identified inferential statistics were examined for statistical errors and deficiencies. A comprehensive 58-item checklist based on statistical guidelines was used to evaluate the statistical quality of FM articles. Results: Inferential methods were recorded in 62/66 (93.9%) of FM articles. Advanced analyses were used in 29/66 (43.9%). Contingency tables 38/66 (57.6%), regression (logistic, linear) 26/66 (39.4%), and t-test 17/66 (25.8%) were the most commonly used inferential tests. Within 60 FM articles with identified inferential statistics, no prior sample size 19/60 (31.7%), application of wrong statistical tests 17/60 (28.3%), incomplete documentation of statistics 59/60 (98.3%), reporting P value without test statistics 32/60 (53.3%), no reporting confidence interval with effect size measures 12/60 (20.0%), use of mean (standard deviation) to describe ordinal/nonnormal data 8/60 (13.3%), and errors related to interpretation were mainly for conclusions without support by the study data 5/60 (8.3%). Conclusion: Inferential statistics were used in the majority of FM articles. Data analysis and reporting statistics are areas for improvement in FM research articles. PMID:27453839

  13. Willingness to Share Research Data Is Related to the Strength of the Evidence and the Quality of Reporting of Statistical Results

    PubMed Central

    Wicherts, Jelte M.; Bakker, Marjan; Molenaar, Dylan

    2011-01-01

    Background The widespread reluctance to share published research data is often hypothesized to be due to the authors' fear that reanalysis may expose errors in their work or may produce conclusions that contradict their own. However, these hypotheses have not previously been studied systematically. Methods and Findings We related the reluctance to share research data for reanalysis to 1148 statistically significant results reported in 49 papers published in two major psychology journals. We found the reluctance to share data to be associated with weaker evidence (against the null hypothesis of no effect) and a higher prevalence of apparent errors in the reporting of statistical results. The unwillingness to share data was particularly clear when reporting errors had a bearing on statistical significance. Conclusions Our findings on the basis of psychological papers suggest that statistical results are particularly hard to verify when reanalysis is more likely to lead to contrasting conclusions. This highlights the importance of establishing mandatory data archiving policies. PMID:22073203

  14. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature

    PubMed Central

    MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard

    2016-01-01

    Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600

  15. Digital simulation of hybrid loop operation in RFI backgrounds.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.

    1972-01-01

    A digital computer model for Monte-Carlo simulation of an imperfect second-order hybrid phase-locked loop (PLL) operating in radio-frequency interference (RFI) and Gaussian noise backgrounds has been developed. Characterization of hybrid loop performance in terms of cycle slipping statistics and phase error variance, through computer simulation, indicates that the hybrid loop has desirable performance characteristics in RFI backgrounds over the conventional PLL or the costas loop.

  16. (Biased) Grading of Students' Performance: Students' Names, Performance Level, and Implicit Attitudes.

    PubMed

    Bonefeld, Meike; Dickhäuser, Oliver

    2018-01-01

    Biases in pre-service teachers' evaluations of students' performance may arise due to stereotypes (e.g., the assumption that students with a migrant background have lower potential). This study examines the effects of a migrant background, performance level, and implicit attitudes toward individuals with a migrant background on performance assessment (assigned grades and number of errors counted in a dictation). Pre-service teachers ( N = 203) graded the performance of a student who appeared to have a migrant background statistically significantly worse than that of a student without a migrant background. The differences were more pronounced when the performance level was low and when the pre-service teachers held relatively positive implicit attitudes toward individuals with a migrant background. Interestingly, only performance level had an effect on the number of counted errors. Our results support the assumption that pre-service teachers exhibit bias when grading students with a migrant background in a third-grade level dictation assignment.

  17. (Biased) Grading of Students’ Performance: Students’ Names, Performance Level, and Implicit Attitudes

    PubMed Central

    Bonefeld, Meike; Dickhäuser, Oliver

    2018-01-01

    Biases in pre-service teachers’ evaluations of students’ performance may arise due to stereotypes (e.g., the assumption that students with a migrant background have lower potential). This study examines the effects of a migrant background, performance level, and implicit attitudes toward individuals with a migrant background on performance assessment (assigned grades and number of errors counted in a dictation). Pre-service teachers (N = 203) graded the performance of a student who appeared to have a migrant background statistically significantly worse than that of a student without a migrant background. The differences were more pronounced when the performance level was low and when the pre-service teachers held relatively positive implicit attitudes toward individuals with a migrant background. Interestingly, only performance level had an effect on the number of counted errors. Our results support the assumption that pre-service teachers exhibit bias when grading students with a migrant background in a third-grade level dictation assignment. PMID:29867618

  18. Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development

    NASA Astrophysics Data System (ADS)

    Ghannadpour, Seyyed Saeed; Hezarkhani, Ardeshir

    2016-03-01

    The U-statistic method is one of the most important structural methods to separate the anomaly from the background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, to use U-statistic method in three-dimensional (3D) condition, U-statistic is applied on the grade of two ideal test examples, by considering sample Z values (elevation). So far, this is the first time that this method has been applied on a 3D condition. To evaluate the performance of 3D U-statistic method and in order to compare U-statistic with one non-structural method, the method of threshold assessment based on median and standard deviation (MSD method) is applied on the two example tests. Results show that the samples indicated by U-statistic method as anomalous are more regular and involve less dispersion than those indicated by the MSD method. So that, according to the location of anomalous samples, denser areas of them can be determined as promising zones. Moreover, results show that at a threshold of U = 0, the total error of misclassification for U-statistic method is much smaller than the total error of criteria of bar {x}+n× s. Finally, 3D model of two test examples for separating anomaly from background using 3D U-statistic method is provided. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the 3D U-spatial statistic method, is additionally provided. This software is compatible with all the geochemical varieties and can be used in similar exploration projects.

  19. Evaluation of the impact of observations on blended sea surface winds in a two-dimensional variational scheme using degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Xiang, Jie; Fei, Jianfang; Wang, Yi; Liu, Chunxia; Li, Yuanxiang

    2017-12-01

    This paper presents an evaluation of the observational impacts on blended sea surface winds from a two-dimensional variational data assimilation (2D-Var) scheme. We begin by briefly introducing the analysis sensitivity with respect to observations in variational data assimilation systems and its relationship with the degrees of freedom for signal (DFS), and then the DFS concept is applied to the 2D-Var sea surface wind blending scheme. Two methods, a priori and a posteriori, are used to estimate the DFS of the zonal ( u) and meridional ( v) components of winds in the 2D-Var blending scheme. The a posteriori method can obtain almost the same results as the a priori method. Because only by-products of the blending scheme are used for the a posteriori method, the computation time is reduced significantly. The magnitude of the DFS is critically related to the observational and background error statistics. Changing the observational and background error variances can affect the DFS value. Because the observation error variances are assumed to be uniform, the observational influence at each observational location is related to the background error variance, and the observations located at the place where there are larger background error variances have larger influences. The average observational influence of u and v with respect to the analysis is about 40%, implying that the background influence with respect to the analysis is about 60%.

  20. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  1. Background Error Covariance Estimation using Information from a Single Model Trajectory with Application to Ocean Data Assimilation into the GEOS-5 Coupled Model

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume; Koster, Randal D. (Editor)

    2014-01-01

    An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory. SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.

  2. Background Error Covariance Estimation Using Information from a Single Model Trajectory with Application to Ocean Data Assimilation

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele; Kovach, Robin M.; Vernieres, Guillaume

    2014-01-01

    An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory.SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.

  3. Perception of Community Pharmacists towards Dispensing Errors in Community Pharmacy Setting in Gondar Town, Northwest Ethiopia

    PubMed Central

    2017-01-01

    Background Dispensing errors are inevitable occurrences in community pharmacies across the world. Objective This study aimed to identify the community pharmacists' perception towards dispensing errors in the community pharmacies in Gondar town, Northwest Ethiopia. Methods A cross-sectional study was conducted among 47 community pharmacists selected through convenience sampling. Data were analyzed using SPSS version 20. Descriptive statistics, Mann–Whitney U test, and Pearson's Chi-square test of independence were conducted with P ≤ 0.05 considered statistically significant. Result The majority of respondents were in the 23–28-year age group (N = 26, 55.3%) and with at least B.Pharm degree (N = 25, 53.2%). Poor prescription handwriting and similar/confusing names were perceived to be the main contributing factors while all the strategies and types of dispensing errors were highly acknowledged by the respondents. Group differences (P < 0.05) in opinions were largely due to educational level and age. Conclusion Dispensing errors were associated with prescribing quality and design of dispensary as well as dispensing procedures. Opinion differences relate to age and educational status of the respondents. PMID:28612023

  4. Local indicators of geocoding accuracy (LIGA): theory and application

    PubMed Central

    Jacquez, Geoffrey M; Rommel, Robert

    2009-01-01

    Background Although sources of positional error in geographic locations (e.g. geocoding error) used for describing and modeling spatial patterns are widely acknowledged, research on how such error impacts the statistical results has been limited. In this paper we explore techniques for quantifying the perturbability of spatial weights to different specifications of positional error. Results We find that a family of curves describes the relationship between perturbability and positional error, and use these curves to evaluate sensitivity of alternative spatial weight specifications to positional error both globally (when all locations are considered simultaneously) and locally (to identify those locations that would benefit most from increased geocoding accuracy). We evaluate the approach in simulation studies, and demonstrate it using a case-control study of bladder cancer in south-eastern Michigan. Conclusion Three results are significant. First, the shape of the probability distributions of positional error (e.g. circular, elliptical, cross) has little impact on the perturbability of spatial weights, which instead depends on the mean positional error. Second, our methodology allows researchers to evaluate the sensitivity of spatial statistics to positional accuracy for specific geographies. This has substantial practical implications since it makes possible routine sensitivity analysis of spatial statistics to positional error arising in geocoded street addresses, global positioning systems, LIDAR and other geographic data. Third, those locations with high perturbability (most sensitive to positional error) and high leverage (that contribute the most to the spatial weight being considered) will benefit the most from increased positional accuracy. These are rapidly identified using a new visualization tool we call the LIGA scatterplot. Herein lies a paradox for spatial analysis: For a given level of positional error increasing sample density to more accurately follow the underlying population distribution increases perturbability and introduces error into the spatial weights matrix. In some studies positional error may not impact the statistical results, and in others it might invalidate the results. We therefore must understand the relationships between positional accuracy and the perturbability of the spatial weights in order to have confidence in a study's results. PMID:19863795

  5. Impact of variational assimilation using multivariate background error covariances on the simulation of monsoon depressions over India

    NASA Astrophysics Data System (ADS)

    Dhanya, M.; Chandrasekar, A.

    2016-02-01

    The background error covariance structure influences a variational data assimilation system immensely. The simulation of a weather phenomenon like monsoon depression can hence be influenced by the background correlation information used in the analysis formulation. The Weather Research and Forecasting Model Data assimilation (WRFDA) system includes an option for formulating multivariate background correlations for its three-dimensional variational (3DVar) system (cv6 option). The impact of using such a formulation in the simulation of three monsoon depressions over India is investigated in this study. Analysis and forecast fields generated using this option are compared with those obtained using the default formulation for regional background error correlations (cv5) in WRFDA and with a base run without any assimilation. The model rainfall forecasts are compared with rainfall observations from the Tropical Rainfall Measurement Mission (TRMM) and the other model forecast fields are compared with a high-resolution analysis as well as with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The results of the study indicate that inclusion of additional correlation information in background error statistics has a moderate impact on the vertical profiles of relative humidity, moisture convergence, horizontal divergence and the temperature structure at the depression centre at the analysis time of the cv5/cv6 sensitivity experiments. Moderate improvements are seen in two of the three depressions investigated in this study. An improved thermodynamic and moisture structure at the initial time is expected to provide for improved rainfall simulation. The results of the study indicate that the skill scores of accumulated rainfall are somewhat better for the cv6 option as compared to the cv5 option for at least two of the three depression cases studied, especially at the higher threshold levels. Considering the importance of utilising improved flow-dependent correlation structures for efficient data assimilation, the need for more studies on the impact of background error covariances is obvious.

  6. The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    1999-10-01

    We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.

  7. Frogs Exploit Statistical Regularities in Noisy Acoustic Scenes to Solve Cocktail-Party-like Problems.

    PubMed

    Lee, Norman; Ward, Jessica L; Vélez, Alejandro; Micheyl, Christophe; Bee, Mark A

    2017-03-06

    Noise is a ubiquitous source of errors in all forms of communication [1]. Noise-induced errors in speech communication, for example, make it difficult for humans to converse in noisy social settings, a challenge aptly named the "cocktail party problem" [2]. Many nonhuman animals also communicate acoustically in noisy social groups and thus face biologically analogous problems [3]. However, we know little about how the perceptual systems of receivers are evolutionarily adapted to avoid the costs of noise-induced errors in communication. In this study of Cope's gray treefrog (Hyla chrysoscelis; Hylidae), we investigated whether receivers exploit a potential statistical regularity present in noisy acoustic scenes to reduce errors in signal recognition and discrimination. We developed an anatomical/physiological model of the peripheral auditory system to show that temporal correlation in amplitude fluctuations across the frequency spectrum ("comodulation") [4-6] is a feature of the noise generated by large breeding choruses of sexually advertising males. In four psychophysical experiments, we investigated whether females exploit comodulation in background noise to mitigate noise-induced errors in evolutionarily critical mate-choice decisions. Subjects experienced fewer errors in recognizing conspecific calls and in selecting the calls of high-quality mates in the presence of simulated chorus noise that was comodulated. These data show unequivocally, and for the first time, that exploiting statistical regularities present in noisy acoustic scenes is an important biological strategy for solving cocktail-party-like problems in nonhuman animal communication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Measurement error in time-series analysis: a simulation study comparing modelled and monitored data.

    PubMed

    Butland, Barbara K; Armstrong, Ben; Atkinson, Richard W; Wilkinson, Paul; Heal, Mathew R; Doherty, Ruth M; Vieno, Massimo

    2013-11-13

    Assessing health effects from background exposure to air pollution is often hampered by the sparseness of pollution monitoring networks. However, regional atmospheric chemistry-transport models (CTMs) can provide pollution data with national coverage at fine geographical and temporal resolution. We used statistical simulation to compare the impact on epidemiological time-series analysis of additive measurement error in sparse monitor data as opposed to geographically and temporally complete model data. Statistical simulations were based on a theoretical area of 4 regions each consisting of twenty-five 5 km × 5 km grid-squares. In the context of a 3-year Poisson regression time-series analysis of the association between mortality and a single pollutant, we compared the error impact of using daily grid-specific model data as opposed to daily regional average monitor data. We investigated how this comparison was affected if we changed the number of grids per region containing a monitor. To inform simulations, estimates (e.g. of pollutant means) were obtained from observed monitor data for 2003-2006 for national network sites across the UK and corresponding model data that were generated by the EMEP-WRF CTM. Average within-site correlations between observed monitor and model data were 0.73 and 0.76 for rural and urban daily maximum 8-hour ozone respectively, and 0.67 and 0.61 for rural and urban loge(daily 1-hour maximum NO2). When regional averages were based on 5 or 10 monitors per region, health effect estimates exhibited little bias. However, with only 1 monitor per region, the regression coefficient in our time-series analysis was attenuated by an estimated 6% for urban background ozone, 13% for rural ozone, 29% for urban background loge(NO2) and 38% for rural loge(NO2). For grid-specific model data the corresponding figures were 19%, 22%, 54% and 44% respectively, i.e. similar for rural loge(NO2) but more marked for urban loge(NO2). Even if correlations between model and monitor data appear reasonably strong, additive classical measurement error in model data may lead to appreciable bias in health effect estimates. As process-based air pollution models become more widely used in epidemiological time-series analysis, assessments of error impact that include statistical simulation may be useful.

  9. Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume

    2013-01-01

    Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.

  10. Assessing the Impact of Pre-gpm Microwave Precipitation Observations in the Goddard WRF Ensemble Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Chambon, Philippe; Zhang, Sara Q.; Hou, Arthur Y.; Zupanski, Milija; Cheung, Samson

    2013-01-01

    The forthcoming Global Precipitation Measurement (GPM) Mission will provide next generation precipitation observations from a constellation of satellites. Since precipitation by nature has large variability and low predictability at cloud-resolving scales, the impact of precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely affected by the characterization of background and observation errors and the representation of nonlinear cloud/precipitation physics in an NWP data assimilation system. We present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in western Europe. Sensitivities to observation error specifications, background error covariance estimated from ensemble forecasts with different ensemble sizes, and MW channel selections are examined through single-observation assimilation experiments. An empirical bias correction for precipitation-affected MW radiances is developed based on the statistics of radiance innovations in rainy areas. The data impact is assessed by full data assimilation cycling experiments for a storm event that occurred in France in September 2010. Results show that the assimilation of MW precipitation observations from a satellite constellation mimicking GPM has a positive impact on the accumulated rain forecasts verified with surface radar rain estimates. The case-study on a convective storm also reveals that the accuracy of ensemble-based background error covariance is limited by sampling errors and model errors such as precipitation displacement and unresolved convective scale instability.

  11. Recommendations for describing statistical studies and results in general readership science and engineering journals.

    PubMed

    Gardenier, John S

    2012-12-01

    This paper recommends how authors of statistical studies can communicate to general audiences fully, clearly, and comfortably. The studies may use statistical methods to explore issues in science, engineering, and society or they may address issues in statistics specifically. In either case, readers without explicit statistical training should have no problem understanding the issues, the methods, or the results at a non-technical level. The arguments for those results should be clear, logical, and persuasive. This paper also provides advice for editors of general journals on selecting high quality statistical articles without the need for exceptional work or expense. Finally, readers are also advised to watch out for some common errors or misuses of statistics that can be detected without a technical statistical background.

  12. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  13. The Simpson's paradox unraveled

    PubMed Central

    Hernán, Miguel A; Clayton, David; Keiding, Niels

    2011-01-01

    Background In a famous article, Simpson described a hypothetical data example that led to apparently paradoxical results. Methods We make the causal structure of Simpson's example explicit. Results We show how the paradox disappears when the statistical analysis is appropriately guided by subject-matter knowledge. We also review previous explanations of Simpson's paradox that attributed it to two distinct phenomena: confounding and non-collapsibility. Conclusion Analytical errors may occur when the problem is stripped of its causal context and analyzed merely in statistical terms. PMID:21454324

  14. Currie detection limits in gamma-ray spectroscopy.

    PubMed

    De Geer, Lars-Erik

    2004-01-01

    Currie Hypothesis testing is applied to gamma-ray spectral data, where an optimum part of the peak is used and the background is considered well known from nearby channels. With this, the risk of making Type I errors is about 100 times lower than commonly assumed. A programme, PeakMaker, produces random peaks with given characteristics on the screen and calculations are done to facilitate a full use of Poisson statistics in spectrum analyses. SHORT TECHNICAL NOTE SUMMARY: The Currie decision limit concept applied to spectral data is reinterpreted, which gives better consistency between the selected error risk and the observed error rates. A PeakMaker program is described and the few count problem is analyzed.

  15. Disclosure of Medical Errors: What Factors Influence How Patients Respond?

    PubMed Central

    Mazor, Kathleen M; Reed, George W; Yood, Robert A; Fischer, Melissa A; Baril, Joann; Gurwitz, Jerry H

    2006-01-01

    BACKGROUND Disclosure of medical errors is encouraged, but research on how patients respond to specific practices is limited. OBJECTIVE This study sought to determine whether full disclosure, an existing positive physician-patient relationship, an offer to waive associated costs, and the severity of the clinical outcome influenced patients' responses to medical errors. PARTICIPANTS Four hundred and seven health plan members participated in a randomized experiment in which they viewed video depictions of medical error and disclosure. DESIGN Subjects were randomly assigned to experimental condition. Conditions varied in type of medication error, level of disclosure, reference to a prior positive physician-patient relationship, an offer to waive costs, and clinical outcome. MEASURES Self-reported likelihood of changing physicians and of seeking legal advice; satisfaction, trust, and emotional response. RESULTS Nondisclosure increased the likelihood of changing physicians, and reduced satisfaction and trust in both error conditions. Nondisclosure increased the likelihood of seeking legal advice and was associated with a more negative emotional response in the missed allergy error condition, but did not have a statistically significant impact on seeking legal advice or emotional response in the monitoring error condition. Neither the existence of a positive relationship nor an offer to waive costs had a statistically significant impact. CONCLUSIONS This study provides evidence that full disclosure is likely to have a positive effect or no effect on how patients respond to medical errors. The clinical outcome also influences patients' responses. The impact of an existing positive physician-patient relationship, or of waiving costs associated with the error remains uncertain. PMID:16808770

  16. A Measurement of Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters Using Data from the South Pole Telescope

    DOE PAGES

    Baxter, E. J.; Keisler, R.; Dodelson, S.; ...

    2015-06-22

    Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error andmore » find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M 200,lens = 0.83 +0.38 -0.37 M 200,SZ (68% C.L., statistical error only).« less

  17. Bias and heteroscedastic memory error in self-reported health behavior: an investigation using covariance structure analysis

    PubMed Central

    Kupek, Emil

    2002-01-01

    Background Frequent use of self-reports for investigating recent and past behavior in medical research requires statistical techniques capable of analyzing complex sources of bias associated with this methodology. In particular, although decreasing accuracy of recalling more distant past events is commonplace, the bias due to differential in memory errors resulting from it has rarely been modeled statistically. Methods Covariance structure analysis was used to estimate the recall error of self-reported number of sexual partners for past periods of varying duration and its implication for the bias. Results Results indicated increasing levels of inaccuracy for reports about more distant past. Considerable positive bias was found for a small fraction of respondents who reported ten or more partners in the last year, last two years and last five years. This is consistent with the effect of heteroscedastic random error where the majority of partners had been acquired in the more distant past and therefore were recalled less accurately than the partners acquired more recently to the time of interviewing. Conclusions Memory errors of this type depend on the salience of the events recalled and are likely to be present in many areas of health research based on self-reported behavior. PMID:12435276

  18. On the Choice of Variable for Atmospheric Moisture Analysis

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; DaSilva, Arlindo M.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The implications of using different control variables for the analysis of moisture observations in a global atmospheric data assimilation system are investigated. A moisture analysis based on either mixing ratio or specific humidity is prone to large extrapolation errors, due to the high variability in space and time of these parameters and to the difficulties in modeling their error covariances. Using the logarithm of specific humidity does not alleviate these problems, and has the further disadvantage that very dry background estimates cannot be effectively corrected by observations. Relative humidity is a better choice from a statistical point of view, because this field is spatially and temporally more coherent and error statistics are therefore easier to obtain. If, however, the analysis is designed to preserve relative humidity in the absence of moisture observations, then the analyzed specific humidity field depends entirely on analyzed temperature changes. If the model has a cool bias in the stratosphere this will lead to an unstable accumulation of excess moisture there. A pseudo-relative humidity can be defined by scaling the mixing ratio by the background saturation mixing ratio. A univariate pseudo-relative humidity analysis will preserve the specific humidity field in the absence of moisture observations. A pseudorelative humidity analysis is shown to be equivalent to a mixing ratio analysis with flow-dependent covariances. In the presence of multivariate (temperature-moisture) observations it produces analyzed relative humidity values that are nearly identical to those produced by a relative humidity analysis. Based on a time series analysis of radiosonde observed-minus-background differences it appears to be more justifiable to neglect specific humidity-temperature correlations (in a univariate pseudo-relative humidity analysis) than to neglect relative humidity-temperature correlations (in a univariate relative humidity analysis). A pseudo-relative humidity analysis is easily implemented in an existing moisture analysis system, by simply scaling observed-minus background moisture residuals prior to solving the analysis equation, and rescaling the analyzed increments afterward.

  19. Detecting Spatial Patterns in Biological Array Experiments

    PubMed Central

    ROOT, DAVID E.; KELLEY, BRIAN P.; STOCKWELL, BRENT R.

    2005-01-01

    Chemical genetic screening and DNA and protein microarrays are among a number of increasingly important and widely used biological research tools that involve large numbers of parallel experiments arranged in a spatial array. It is often difficult to ensure that uniform experimental conditions are present throughout the entire array, and as a result, one often observes systematic spatially correlated errors, especially when array experiments are performed using robots. Here, the authors apply techniques based on the discrete Fourier transform to identify and quantify spatially correlated errors superimposed on a spatially random background. They demonstrate that these techniques are effective in identifying common spatially systematic errors in high-throughput 384-well microplate assay data. In addition, the authors employ a statistical test to allow for automatic detection of such errors. Software tools for using this approach are provided. PMID:14567791

  20. Outlier Removal and the Relation with Reporting Errors and Quality of Psychological Research

    PubMed Central

    Bakker, Marjan; Wicherts, Jelte M.

    2014-01-01

    Background The removal of outliers to acquire a significant result is a questionable research practice that appears to be commonly used in psychology. In this study, we investigated whether the removal of outliers in psychology papers is related to weaker evidence (against the null hypothesis of no effect), a higher prevalence of reporting errors, and smaller sample sizes in these papers compared to papers in the same journals that did not report the exclusion of outliers from the analyses. Methods and Findings We retrieved a total of 2667 statistical results of null hypothesis significance tests from 153 articles in main psychology journals, and compared results from articles in which outliers were removed (N = 92) with results from articles that reported no exclusion of outliers (N = 61). We preregistered our hypotheses and methods and analyzed the data at the level of articles. Results show no significant difference between the two types of articles in median p value, sample sizes, or prevalence of all reporting errors, large reporting errors, and reporting errors that concerned the statistical significance. However, we did find a discrepancy between the reported degrees of freedom of t tests and the reported sample size in 41% of articles that did not report removal of any data values. This suggests common failure to report data exclusions (or missingness) in psychological articles. Conclusions We failed to find that the removal of outliers from the analysis in psychological articles was related to weaker evidence (against the null hypothesis of no effect), sample size, or the prevalence of errors. However, our control sample might be contaminated due to nondisclosure of excluded values in articles that did not report exclusion of outliers. Results therefore highlight the importance of more transparent reporting of statistical analyses. PMID:25072606

  1. Measuring X-Ray Polarization in the Presence of Systematic Effects: Known Background

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald F.; O'Dell, Stephen L.; Weisskopf, Martin C.

    2012-01-01

    The prospects for accomplishing x-ray polarization measurements of astronomical sources have grown in recent years, after a hiatus of more than 37 years. Unfortunately, accompanying this long hiatus has been some confusion over the statistical uncertainties associated with x-ray polarization measurements of these sources. We have initiated a program to perform the detailed calculations that will offer insights into the uncertainties associated with x-ray polarization measurements. Here we describe a mathematical formalism for determining the 1- and 2-parameter errors in the magnitude and position angle of x-ray (linear) polarization in the presence of a (polarized or unpolarized) background. We further review relevant statistics including clearly distinguishing between the Minimum Detectable Polarization (MDP) and the accuracy of a polarization measurement.

  2. Using MERRA Gridded Innovations for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo; Redder, Christopher

    2010-01-01

    MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.

  3. Using MERRA Gridded Innovation for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities

    NASA Astrophysics Data System (ADS)

    da Silva, A.; Redder, C. R.

    2010-12-01

    MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The Project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.

  4. Statistics of equivalent width data and new oscillator strengths for Si II, Fe II, and Mn II. [in interstellar medium

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave

    1986-01-01

    Equivalent width data from Copernicus and IUE appear to have an exponential, rather than a Gaussian distribution of errors. This is probably because there is one dominant source of error: the assignment of the background continuum shape. The maximum likelihood method of parameter estimation is presented for the case of exponential statistics, in enough generality for application to many problems. The method is applied to global fitting of Si II, Fe II, and Mn II oscillator strengths and interstellar gas parameters along many lines of sight. The new values agree in general with previous determinations but are usually much more tightly constrained. Finally, it is shown that care must be taken in deriving acceptable regions of parameter space because the probability contours are not generally ellipses whose axes are parallel to the coordinate axes.

  5. Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors

    NASA Astrophysics Data System (ADS)

    Pernot, Pascal; Savin, Andreas

    2018-06-01

    Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.

  6. [What Surgeons Should Know about Risk Management].

    PubMed

    Strametz, R; Tannheimer, M; Rall, M

    2017-02-01

    Background: The fact that medical treatment is associated with errors has long been recognized. Based on the principle of "first do no harm", numerous efforts have since been made to prevent such errors or limit their impact. However, recent statistics show that these measures do not sufficiently prevent grave mistakes with serious consequences. Preventable mistakes such as wrong patient or wrong site surgery still frequently occur in error statistics. Methods: Based on insight from research on human error, in due consideration of recent legislative regulations in Germany, the authors give an overview of the clinical risk management tools needed to identify risks in surgery, analyse their causes, and determine adequate measures to manage those risks depending on their relevance. The use and limitations of critical incident reporting systems (CIRS), safety checklists and crisis resource management (CRM) are highlighted. Also the rationale for IT systems to support the risk management process is addressed. Results/Conclusion: No single tool of risk management can be effective as a standalone instrument, but unfolds its effect only when embedded in a superordinate risk management system, which integrates tailor-made elements to increase patient safety into the workflows of each organisation. Competence in choosing adequate tools, effective IT systems to support the risk management process as well as leadership and commitment to constructive handling of human error are crucial components to establish a safety culture in surgery. Georg Thieme Verlag KG Stuttgart · New York.

  7. Quantitative analysis of trace levels of surface contamination by X-ray photoelectron spectroscopy Part I: statistical uncertainty near the detection limit.

    PubMed

    Hill, Shannon B; Faradzhev, Nadir S; Powell, Cedric J

    2017-12-01

    We discuss the problem of quantifying common sources of statistical uncertainties for analyses of trace levels of surface contamination using X-ray photoelectron spectroscopy. We examine the propagation of error for peak-area measurements using common forms of linear and polynomial background subtraction including the correlation of points used to determine both background and peak areas. This correlation has been neglected in previous analyses, but we show that it contributes significantly to the peak-area uncertainty near the detection limit. We introduce the concept of relative background subtraction variance (RBSV) which quantifies the uncertainty introduced by the method of background determination relative to the uncertainty of the background area itself. The uncertainties of the peak area and atomic concentration and of the detection limit are expressed using the RBSV, which separates the contributions from the acquisition parameters, the background-determination method, and the properties of the measured spectrum. These results are then combined to find acquisition strategies that minimize the total measurement time needed to achieve a desired detection limit or atomic-percentage uncertainty for a particular trace element. Minimization of data-acquisition time is important for samples that are sensitive to x-ray dose and also for laboratories that need to optimize throughput.

  8. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    NASA Astrophysics Data System (ADS)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  9. On the statistical assessment of classifiers using DNA microarray data

    PubMed Central

    Ancona, N; Maglietta, R; Piepoli, A; D'Addabbo, A; Cotugno, R; Savino, M; Liuni, S; Carella, M; Pesole, G; Perri, F

    2006-01-01

    Background In this paper we present a method for the statistical assessment of cancer predictors which make use of gene expression profiles. The methodology is applied to a new data set of microarray gene expression data collected in Casa Sollievo della Sofferenza Hospital, Foggia – Italy. The data set is made up of normal (22) and tumor (25) specimens extracted from 25 patients affected by colon cancer. We propose to give answers to some questions which are relevant for the automatic diagnosis of cancer such as: Is the size of the available data set sufficient to build accurate classifiers? What is the statistical significance of the associated error rates? In what ways can accuracy be considered dependant on the adopted classification scheme? How many genes are correlated with the pathology and how many are sufficient for an accurate colon cancer classification? The method we propose answers these questions whilst avoiding the potential pitfalls hidden in the analysis and interpretation of microarray data. Results We estimate the generalization error, evaluated through the Leave-K-Out Cross Validation error, for three different classification schemes by varying the number of training examples and the number of the genes used. The statistical significance of the error rate is measured by using a permutation test. We provide a statistical analysis in terms of the frequencies of the genes involved in the classification. Using the whole set of genes, we found that the Weighted Voting Algorithm (WVA) classifier learns the distinction between normal and tumor specimens with 25 training examples, providing e = 21% (p = 0.045) as an error rate. This remains constant even when the number of examples increases. Moreover, Regularized Least Squares (RLS) and Support Vector Machines (SVM) classifiers can learn with only 15 training examples, with an error rate of e = 19% (p = 0.035) and e = 18% (p = 0.037) respectively. Moreover, the error rate decreases as the training set size increases, reaching its best performances with 35 training examples. In this case, RLS and SVM have error rates of e = 14% (p = 0.027) and e = 11% (p = 0.019). Concerning the number of genes, we found about 6000 genes (p < 0.05) correlated with the pathology, resulting from the signal-to-noise statistic. Moreover the performances of RLS and SVM classifiers do not change when 74% of genes is used. They progressively reduce up to e = 16% (p < 0.05) when only 2 genes are employed. The biological relevance of a set of genes determined by our statistical analysis and the major roles they play in colorectal tumorigenesis is discussed. Conclusions The method proposed provides statistically significant answers to precise questions relevant for the diagnosis and prognosis of cancer. We found that, with as few as 15 examples, it is possible to train statistically significant classifiers for colon cancer diagnosis. As for the definition of the number of genes sufficient for a reliable classification of colon cancer, our results suggest that it depends on the accuracy required. PMID:16919171

  10. Implementation and Research on the Operational Use of the Mesoscale Prediction Model COAMPS in Poland

    DTIC Science & Technology

    2008-09-30

    participated in EGU General Assembly , Vienna Austria 13-18 April 2008, giving a poster presentation. Bogumil Jakubiak, University of Warsaw...participated in EGU General Assembly , Vienna Austria 13-18 April 2008, giving two posters presentation. Mikolaj Sierzega, University of Warwick – participated...model forecast to generate background error statistics. This helps us to identify and understand the uncertainties in high-resolution NWP forecasts

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soffientini, Chiara Dolores, E-mail: chiaradolores.soffientini@polimi.it; Baselli, Giuseppe; De Bernardi, Elisabetta

    Purpose: Quantitative {sup 18}F-fluorodeoxyglucose positron emission tomography is limited by the uncertainty in lesion delineation due to poor SNR, low resolution, and partial volume effects, subsequently impacting oncological assessment, treatment planning, and follow-up. The present work develops and validates a segmentation algorithm based on statistical clustering. The introduction of constraints based on background features and contiguity priors is expected to improve robustness vs clinical image characteristics such as lesion dimension, noise, and contrast level. Methods: An eight-class Gaussian mixture model (GMM) clustering algorithm was modified by constraining the mean and variance parameters of four background classes according to the previousmore » analysis of a lesion-free background volume of interest (background modeling). Hence, expectation maximization operated only on the four classes dedicated to lesion detection. To favor the segmentation of connected objects, a further variant was introduced by inserting priors relevant to the classification of neighbors. The algorithm was applied to simulated datasets and acquired phantom data. Feasibility and robustness toward initialization were assessed on a clinical dataset manually contoured by two expert clinicians. Comparisons were performed with respect to a standard eight-class GMM algorithm and to four different state-of-the-art methods in terms of volume error (VE), Dice index, classification error (CE), and Hausdorff distance (HD). Results: The proposed GMM segmentation with background modeling outperformed standard GMM and all the other tested methods. Medians of accuracy indexes were VE <3%, Dice >0.88, CE <0.25, and HD <1.2 in simulations; VE <23%, Dice >0.74, CE <0.43, and HD <1.77 in phantom data. Robustness toward image statistic changes (±15%) was shown by the low index changes: <26% for VE, <17% for Dice, and <15% for CE. Finally, robustness toward the user-dependent volume initialization was demonstrated. The inclusion of the spatial prior improved segmentation accuracy only for lesions surrounded by heterogeneous background: in the relevant simulation subset, the median VE significantly decreased from 13% to 7%. Results on clinical data were found in accordance with simulations, with absolute VE <7%, Dice >0.85, CE <0.30, and HD <0.81. Conclusions: The sole introduction of constraints based on background modeling outperformed standard GMM and the other tested algorithms. Insertion of a spatial prior improved the accuracy for realistic cases of objects in heterogeneous backgrounds. Moreover, robustness against initialization supports the applicability in a clinical setting. In conclusion, application-driven constraints can generally improve the capabilities of GMM and statistical clustering algorithms.« less

  12. Background Error Correlation Modeling with Diffusion Operators

    DTIC Science & Technology

    2013-01-01

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 07-10-2013 Book Chapter Background Error Correlation Modeling with Diffusion Operators...normalization Unclassified Unclassified Unclassified UU 27 Max Yaremchuk (228) 688-5259 Reset Chapter 8 Background error correlation modeling with diffusion ...field, then a structure like this simulates enhanced diffusive transport of model errors in the regions of strong cur- rents on the background of

  13. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    NASA Astrophysics Data System (ADS)

    De Angelis, Francesco; Cimini, Domenico; Löhnert, Ulrich; Caumont, Olivier; Haefele, Alexander; Pospichal, Bernhard; Martinet, Pauline; Navas-Guzmán, Francisco; Klein-Baltink, Henk; Dupont, Jean-Charles; Hocking, James

    2017-10-01

    Ground-based microwave radiometers (MWRs) offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL) with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP) models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes) require an accurate representation of the differences between model (background) and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O-B). Monitoring of O-B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O-B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB) measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O-B monitoring can effectively detect instrument malfunctions. O-B statistics (bias, standard deviation, and root mean square) for water vapour channels (22.24-30.0 GHz) are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ˜ 2-2.5 K) towards the high-frequency wing ( ˜ 0.8-1.3 K). Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O-B statistics for temperature channels show different behaviour for relatively transparent (51-53 GHz) and opaque channels (54-58 GHz). Opaque channels show lower uncertainties (< 0.8-0.9 K) and little variation with elevation angle. Transparent channels show larger biases ( ˜ 2-3 K) with relatively low standard deviations ( ˜ 1-1.5 K). The observations minus analysis TB statistics are similar to the O-B statistics, suggesting a possible improvement to be expected by assimilating MWR TB into NWP models. Lastly, the O-B TB differences have been evaluated to verify the normal-distribution hypothesis underlying variational and ensemble Kalman filter-based DA systems. Absolute values of excess kurtosis and skewness are generally within 1 and 0.5, respectively, for all instrumental sites, demonstrating O-B normal distribution for most of the channels and elevations angles.

  14. A statistical investigation into the stability of iris recognition in diverse population sets

    NASA Astrophysics Data System (ADS)

    Howard, John J.; Etter, Delores M.

    2014-05-01

    Iris recognition is increasingly being deployed on population wide scales for important applications such as border security, social service administration, criminal identification and general population management. The error rates for this incredibly accurate form of biometric identification are established using well known, laboratory quality datasets. However, it is has long been acknowledged in biometric theory that not all individuals have the same likelihood of being correctly serviced by a biometric system. Typically, techniques for identifying clients that are likely to experience a false non-match or a false match error are carried out on a per-subject basis. This research makes the novel hypothesis that certain ethnical denominations are more or less likely to experience a biometric error. Through established statistical techniques, we demonstrate this hypothesis to be true and document the notable effect that the ethnicity of the client has on iris similarity scores. Understanding the expected impact of ethnical diversity on iris recognition accuracy is crucial to the future success of this technology as it is deployed in areas where the target population consists of clientele from a range of geographic backgrounds, such as border crossings and immigration check points.

  15. Clinical and Radiographic Evaluation of Procedural Errors during Preparation of Curved Root Canals with Hand and Rotary Instruments: A Randomized Clinical Study

    PubMed Central

    Khanna, Rajesh; Handa, Aashish; Virk, Rupam Kaur; Ghai, Deepika; Handa, Rajni Sharma; Goel, Asim

    2017-01-01

    Background: The process of cleaning and shaping the canal is not an easy goal to obtain, as canal curvature played a significant role during the instrumentation of the curved canals. Aim: The present in vivo study was conducted to evaluate procedural errors during the preparation of curved root canals using hand Nitiflex and rotary K3XF instruments. Materials and Methods: Procedural errors such as ledge formation, instrument separation, and perforation (apical, furcal, strip) were determined in sixty patients, divided into two groups. In Group I, thirty teeth in thirty patients were prepared using hand Nitiflex system, and in Group II, thirty teeth in thirty patients were prepared using K3XF rotary system. The evaluation was done clinically as well as radiographically. The results recorded from both groups were compiled and put to statistical analysis. Statistical Analysis: Chi-square test was used to compare the procedural errors (instrument separation, ledge formation, and perforation). Results: In the present study, both hand Nitiflex and rotary K3XF showed ledge formation and instrument separation. Although ledge formation and instrument separation by rotary K3XF file system was less as compared to hand Nitiflex. No perforation was seen in both the instrument groups. Conclusion: Canal curvature played a significant role during the instrumentation of the curved canals. Procedural errors such as ledge formation and instrument separation by rotary K3XF file system were less as compared to hand Nitiflex. PMID:29042727

  16. Radar error statistics for the space shuttle

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1979-01-01

    Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.

  17. A silicon avalanche photodiode detector circuit for Nd:YAG laser scattering

    NASA Astrophysics Data System (ADS)

    Hsieh, C.-L.; Haskovec, J.; Carlstrom, T. N.; Deboo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.

    1990-06-01

    A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge sensitive preamplifier was developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N = 1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low frequency background light component. The background signal is amplified with a computer controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Z sub eff measurements of the plasma. The signal processing was analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.

  18. Silicon avalanche photodiode detector circuit for Nd:YAG laser scattering

    NASA Astrophysics Data System (ADS)

    Hsieh, C. L.; Haskovec, J.; Carlstrom, T. N.; DeBoo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.

    1990-10-01

    A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature-controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge-sensitive preamplifier has been developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N=1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low-frequency background light component. The background signal is amplified with a computer-controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Zeff measurements of the plasma. The signal processing has been analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.

  19. LoCuSS: THE MASS DENSITY PROFILE OF MASSIVE GALAXY CLUSTERS AT z = 0.2 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okabe, Nobuhiro; Umetsu, Keiichi; Smith, Graham P.

    We present a stacked weak-lensing analysis of an approximately mass-selected sample of 50 galaxy clusters at 0.15 < z < 0.3, based on observations with Suprime-Cam on the Subaru Telescope. We develop a new method for selecting lensed background galaxies from which we estimate that our sample of red background galaxies suffers just 1% contamination. We detect the stacked tangential shear signal from the full sample of 50 clusters, based on this red sample of background galaxies, at a total signal-to-noise ratio of 32.7. The Navarro-Frenk-White model is an excellent fit to the data, yielding sub-10% statistical precision on massmore » and concentration: M{sub vir}=7.19{sup +0.53}{sub -0.50} Multiplication-Sign 10{sup 14} h{sup -1} M{sub sun}, c{sub vir}=5.41{sup +0.49}{sub -0.45} (c{sub 200}=4.22{sup +0.40}{sub -0.36}). Tests of a range of possible systematic errors, including shear calibration and stacking-related issues, indicate that they are subdominant to the statistical errors. The concentration parameter obtained from stacking our approximately mass-selected cluster sample is broadly in line with theoretical predictions. Moreover, the uncertainty on our measurement is comparable with the differences between the different predictions in the literature. Overall, our results highlight the potential for stacked weak-lensing methods to probe the mean mass density profile of cluster-scale dark matter halos with upcoming surveys, including Hyper-Suprime-Cam, Dark Energy Survey, and KIDS.« less

  20. Genotyping and inflated type I error rate in genome-wide association case/control studies

    PubMed Central

    Sampson, Joshua N; Zhao, Hongyu

    2009-01-01

    Background One common goal of a case/control genome wide association study (GWAS) is to find SNPs associated with a disease. Traditionally, the first step in such studies is to assign a genotype to each SNP in each subject, based on a statistic summarizing fluorescence measurements. When the distributions of the summary statistics are not well separated by genotype, the act of genotype assignment can lead to more potential problems than acknowledged by the literature. Results Specifically, we show that the proportions of each called genotype need not equal the true proportions in the population, even as the number of subjects grows infinitely large. The called genotypes for two subjects need not be independent, even when their true genotypes are independent. Consequently, p-values from tests of association can be anti-conservative, even when the distributions of the summary statistic for the cases and controls are identical. To address these problems, we propose two new tests designed to reduce the inflation in the type I error rate caused by these problems. The first algorithm, logiCALL, measures call quality by fully exploring the likelihood profile of intensity measurements, and the second algorithm avoids genotyping by using a likelihood ratio statistic. Conclusion Genotyping can introduce avoidable false positives in GWAS. PMID:19236714

  1. The development of performance-monitoring function in the posterior medial frontal cortex

    PubMed Central

    Fitzgerald, Kate Dimond; Perkins, Suzanne C.; Angstadt, Mike; Johnson, Timothy; Stern, Emily R.; Welsh, Robert C.; Taylor, Stephan F.

    2009-01-01

    Background Despite its critical role in performance-monitoring, the development of posterior medial prefrontal cortex (pMFC) in goal-directed behaviors remains poorly understood. Performance monitoring depends on distinct, but related functions that may differentially activate the pMFC, such as monitoring response conflict and detecting errors. Developmental differences in conflict- and error-related activations, coupled with age-related changes in behavioral performance, may confound attempts to map the maturation of pMFC functions. To characterize the development of pMFC-based performance monitoring functions, we segregated interference and error-processing, while statistically controlling for performance. Methods Twenty-one adults and 23 youth performed an event-related version of the Multi-Source Interference Task during functional magnetic resonance imaging (fMRI). Linear modeling of interference and error contrast estimates derived from the pMFC were regressed on age, while covarying for performance. Results Interference- and error-processing were associated with robust activation of the pMFC in both youth and adults. Among youth, interference- and error-related activation of the pMFC increased with age, independent of performance. Greater accuracy associated with greater pMFC activity during error commission in both groups. Discussion Increasing pMFC response to interference and errors occurs with age, likely contributing to the improvement of performance monitoring capacity during development. PMID:19913101

  2. Putting Meaning Back Into the Mean: A Comment on the Misuse of Elementary Statistics in a Sample of Manuscripts Submitted to Clinical Therapeutics.

    PubMed

    Forrester, Janet E

    2015-12-01

    Errors in the statistical presentation and analyses of data in the medical literature remain common despite efforts to improve the review process, including the creation of guidelines for authors and the use of statistical reviewers. This article discusses common elementary statistical errors seen in manuscripts recently submitted to Clinical Therapeutics and describes some ways in which authors and reviewers can identify errors and thus correct them before publication. A nonsystematic sample of manuscripts submitted to Clinical Therapeutics over the past year was examined for elementary statistical errors. Clinical Therapeutics has many of the same errors that reportedly exist in other journals. Authors require additional guidance to avoid elementary statistical errors and incentives to use the guidance. Implementation of reporting guidelines for authors and reviewers by journals such as Clinical Therapeutics may be a good approach to reduce the rate of statistical errors. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  3. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-04

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  4. Scripts for TRUMP data analyses. Part II (HLA-related data): statistical analyses specific for hematopoietic stem cell transplantation.

    PubMed

    Kanda, Junya

    2016-01-01

    The Transplant Registry Unified Management Program (TRUMP) made it possible for members of the Japan Society for Hematopoietic Cell Transplantation (JSHCT) to analyze large sets of national registry data on autologous and allogeneic hematopoietic stem cell transplantation. However, as the processes used to collect transplantation information are complex and differed over time, the background of these processes should be understood when using TRUMP data. Previously, information on the HLA locus of patients and donors had been collected using a questionnaire-based free-description method, resulting in some input errors. To correct minor but significant errors and provide accurate HLA matching data, the use of a Stata or EZR/R script offered by the JSHCT is strongly recommended when analyzing HLA data in the TRUMP dataset. The HLA mismatch direction, mismatch counting method, and different impacts of HLA mismatches by stem cell source are other important factors in the analysis of HLA data. Additionally, researchers should understand the statistical analyses specific for hematopoietic stem cell transplantation, such as competing risk, landmark analysis, and time-dependent analysis, to correctly analyze transplant data. The data center of the JSHCT can be contacted if statistical assistance is required.

  5. On the Calculation of Uncertainty Statistics with Error Bounds for CFD Calculations Containing Random Parameters and Fields

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2016-01-01

    This chapter discusses the ongoing development of combined uncertainty and error bound estimates for computational fluid dynamics (CFD) calculations subject to imposed random parameters and random fields. An objective of this work is the construction of computable error bound formulas for output uncertainty statistics that guide CFD practitioners in systematically determining how accurately CFD realizations should be approximated and how accurately uncertainty statistics should be approximated for output quantities of interest. Formal error bounds formulas for moment statistics that properly account for the presence of numerical errors in CFD calculations and numerical quadrature errors in the calculation of moment statistics have been previously presented in [8]. In this past work, hierarchical node-nested dense and sparse tensor product quadratures are used to calculate moment statistics integrals. In the present work, a framework has been developed that exploits the hierarchical structure of these quadratures in order to simplify the calculation of an estimate of the quadrature error needed in error bound formulas. When signed estimates of realization error are available, this signed error may also be used to estimate output quantity of interest probability densities as a means to assess the impact of realization error on these density estimates. Numerical results are presented for CFD problems with uncertainty to demonstrate the capabilities of this framework.

  6. Fission cross section of 239Th and 232Th relative to 235U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, J. W.

    1979-01-01

    The fission cross sections of /sup 230/Th and /sup 232/Th were measured relative to /sup 235/U from near threshold to near 10 MeV. The weights of the thorium samples were determined by isotopic dilution. The weight of the uranium deposit was based on specific activity measurements of a /sup 234/U-/sup 235/U mixture and low geometry alpha counting. Corrections were made for thermal background, loss of fragments in the deposits, neutron scattering in the detector assembly, sample geometry, sample composition and the spectrum of the neutron source. Generally the systematic errors were approx. 1%. The combined systematic and statistical errors weremore » typically 1.5%. 17 references.« less

  7. Combined proportional and additive residual error models in population pharmacokinetic modelling.

    PubMed

    Proost, Johannes H

    2017-11-15

    In pharmacokinetic modelling, a combined proportional and additive residual error model is often preferred over a proportional or additive residual error model. Different approaches have been proposed, but a comparison between approaches is still lacking. The theoretical background of the methods is described. Method VAR assumes that the variance of the residual error is the sum of the statistically independent proportional and additive components; this method can be coded in three ways. Method SD assumes that the standard deviation of the residual error is the sum of the proportional and additive components. Using datasets from literature and simulations based on these datasets, the methods are compared using NONMEM. The different coding of methods VAR yield identical results. Using method SD, the values of the parameters describing residual error are lower than for method VAR, but the values of the structural parameters and their inter-individual variability are hardly affected by the choice of the method. Both methods are valid approaches in combined proportional and additive residual error modelling, and selection may be based on OFV. When the result of an analysis is used for simulation purposes, it is essential that the simulation tool uses the same method as used during analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Errors in statistical decision making Chapter 2 in Applied Statistics in Agricultural, Biological, and Environmental Sciences

    USDA-ARS?s Scientific Manuscript database

    Agronomic and Environmental research experiments result in data that are analyzed using statistical methods. These data are unavoidably accompanied by uncertainty. Decisions about hypotheses, based on statistical analyses of these data are therefore subject to error. This error is of three types,...

  9. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  10. Background-Error Correlation Model Based on the Implicit Solution of a Diffusion Equation

    DTIC Science & Technology

    2010-01-01

    1 Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation Matthew J. Carrier* and Hans Ngodock...4. TITLE AND SUBTITLE Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation 5a. CONTRACT NUMBER 5b. GRANT...2001), which sought to model error correlations based on the explicit solution of a generalized diffusion equation. The implicit solution is

  11. Detailed modeling of the statistical uncertainty of Thomson scattering measurements

    NASA Astrophysics Data System (ADS)

    Morton, L. A.; Parke, E.; Den Hartog, D. J.

    2013-11-01

    The uncertainty of electron density and temperature fluctuation measurements is determined by statistical uncertainty introduced by multiple noise sources. In order to quantify these uncertainties precisely, a simple but comprehensive model was made of the noise sources in the MST Thomson scattering system and of the resulting variance in the integrated scattered signals. The model agrees well with experimental and simulated results. The signal uncertainties are then used by our existing Bayesian analysis routine to find the most likely electron temperature and density, with confidence intervals. In the model, photonic noise from scattered light and plasma background light is multiplied by the noise enhancement factor (F) of the avalanche photodiode (APD). Electronic noise from the amplifier and digitizer is added. The amplifier response function shapes the signal and induces correlation in the noise. The data analysis routine fits a characteristic pulse to the digitized signals from the amplifier, giving the integrated scattered signals. A finite digitization rate loses information and can cause numerical integration error. We find a formula for the variance of the scattered signals in terms of the background and pulse amplitudes, and three calibration constants. The constants are measured easily under operating conditions, resulting in accurate estimation of the scattered signals' uncertainty. We measure F ≈ 3 for our APDs, in agreement with other measurements for similar APDs. This value is wavelength-independent, simplifying analysis. The correlated noise we observe is reproduced well using a Gaussian response function. Numerical integration error can be made negligible by using an interpolated characteristic pulse, allowing digitization rates as low as the detector bandwidth. The effect of background noise is also determined.

  12. Beta Decay Half-Life of 84Mo

    NASA Astrophysics Data System (ADS)

    Stoker, J. B.; Mantica, P. F.; Bazin, D.; Bickley, A.; Becerril, A.; Crawford, H.; Cruse, K.; Estrade, A.; Mosby, M.; Guess, C. J.; Hitt, G. W.; Lorusso, G.; Matos, M.; Meharchand, R.; Minamisono, K.; Montes, F.; Pereira, J.; Perdikakis, G.; Pinter, J. S.; Schatz, H.; Vredevoogd, J.; Zegers, R. G. T.

    2008-10-01

    The β-decay half-life ^84Mo governs leakage out of the Zr-Nb cycle, a high temperature rp-process endpoint in x-ray binaries [1]. Treatment of the background and the poor statistics accumulated during the previous half-life measurement leave questions about statistical and systematic errors. We have remeasured the half-life of ^84Mo using a concerted setup of the NSCL β-Counting System [3] and 16 detectors from the Segmented Germanium Array [4]. We will report the half-life for ^84Mo, deduced using 40 times the previous sample size. The application of the NSCL RF Fragment Separator to remove unwanted isotopes, and hence reduce background for the half-life measurement, will also be discussed. [1] H. Schatz et al., Phys. Rep. 294, 167 1998 [2] P. Kienle et al., Prog. Part. Nuc. Phys. 46, 73 2001 [3] J. Prisciandaro et al., NIM A 505, 140 2003 [4] W. Mueller et al., NIM A 466, 492 2001 [5] D. Gorelov et al. PAC 2005, Knoxville, TN, May 16-20

  13. Predicting protein concentrations with ELISA microarray assays, monotonic splines and Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Don S.; Anderson, Kevin K.; White, Amanda M.

    Background: A microarray of enzyme-linked immunosorbent assays, or ELISA microarray, predicts simultaneously the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Making sound biological inferences as well as improving the ELISA microarray process require require both concentration predictions and creditable estimates of their errors. Methods: We present a statistical method based on monotonic spline statistical models, penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict concentrations and estimate prediction errors in ELISA microarray. PCLS restrains the flexible spline to a fit of assay intensitymore » that is a monotone function of protein concentration. With MC, both modeling and measurement errors are combined to estimate prediction error. The spline/PCLS/MC method is compared to a common method using simulated and real ELISA microarray data sets. Results: In contrast to the rigid logistic model, the flexible spline model gave credible fits in almost all test cases including troublesome cases with left and/or right censoring, or other asymmetries. For the real data sets, 61% of the spline predictions were more accurate than their comparable logistic predictions; especially the spline predictions at the extremes of the prediction curve. The relative errors of 50% of comparable spline and logistic predictions differed by less than 20%. Monte Carlo simulation rendered acceptable asymmetric prediction intervals for both spline and logistic models while propagation of error produced symmetric intervals that diverged unrealistically as the standard curves approached horizontal asymptotes. Conclusions: The spline/PCLS/MC method is a flexible, robust alternative to a logistic/NLS/propagation-of-error method to reliably predict protein concentrations and estimate their errors. The spline method simplifies model selection and fitting, and reliably estimates believable prediction errors. For the 50% of the real data sets fit well by both methods, spline and logistic predictions are practically indistinguishable, varying in accuracy by less than 15%. The spline method may be useful when automated prediction across simultaneous assays of numerous proteins must be applied routinely with minimal user intervention.« less

  14. Identification and correction of systematic error in high-throughput sequence data

    PubMed Central

    2011-01-01

    Background A feature common to all DNA sequencing technologies is the presence of base-call errors in the sequenced reads. The implications of such errors are application specific, ranging from minor informatics nuisances to major problems affecting biological inferences. Recently developed "next-gen" sequencing technologies have greatly reduced the cost of sequencing, but have been shown to be more error prone than previous technologies. Both position specific (depending on the location in the read) and sequence specific (depending on the sequence in the read) errors have been identified in Illumina and Life Technology sequencing platforms. We describe a new type of systematic error that manifests as statistically unlikely accumulations of errors at specific genome (or transcriptome) locations. Results We characterize and describe systematic errors using overlapping paired reads from high-coverage data. We show that such errors occur in approximately 1 in 1000 base pairs, and that they are highly replicable across experiments. We identify motifs that are frequent at systematic error sites, and describe a classifier that distinguishes heterozygous sites from systematic error. Our classifier is designed to accommodate data from experiments in which the allele frequencies at heterozygous sites are not necessarily 0.5 (such as in the case of RNA-Seq), and can be used with single-end datasets. Conclusions Systematic errors can easily be mistaken for heterozygous sites in individuals, or for SNPs in population analyses. Systematic errors are particularly problematic in low coverage experiments, or in estimates of allele-specific expression from RNA-Seq data. Our characterization of systematic error has allowed us to develop a program, called SysCall, for identifying and correcting such errors. We conclude that correction of systematic errors is important to consider in the design and interpretation of high-throughput sequencing experiments. PMID:22099972

  15. Cluster mislocation in kinematic Sunyaev-Zel'dovich effect extraction

    NASA Astrophysics Data System (ADS)

    Calafut, Victoria; Bean, Rachel; Yu, Byeonghee

    2017-12-01

    We investigate the impact of a variety of analysis assumptions that influence cluster identification and location on the kinematic Sunyaev-Zel'dovich (kSZ) pairwise momentum signal and covariance estimation. Photometric and spectroscopic galaxy tracers from SDSS, WISE, and DECaLs, spanning redshifts 0.05

  16. Moments of inclination error distribution computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program is described which calculates orbital inclination error statistics using a closed-form solution. This solution uses a data base of trajectory errors from actual flights to predict the orbital inclination error statistics. The Scott flight history data base consists of orbit insertion errors in the trajectory parameters - altitude, velocity, flight path angle, flight azimuth, latitude and longitude. The methods used to generate the error statistics are of general interest since they have other applications. Program theory, user instructions, output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  17. Spatial interpolation of solar global radiation

    NASA Astrophysics Data System (ADS)

    Lussana, C.; Uboldi, F.; Antoniazzi, C.

    2010-09-01

    Solar global radiation is defined as the radiant flux incident onto an area element of the terrestrial surface. Its direct knowledge plays a crucial role in many applications, from agrometeorology to environmental meteorology. The ARPA Lombardia's meteorological network includes about one hundred of pyranometers, mostly distributed in the southern part of the Alps and in the centre of the Po Plain. A statistical interpolation method based on an implementation of the Optimal Interpolation is applied to the hourly average of the solar global radiation observations measured by the ARPA Lombardia's network. The background field is obtained using SMARTS (The Simple Model of the Atmospheric Radiative Transfer of Sunshine, Gueymard, 2001). The model is initialised by assuming clear sky conditions and it takes into account the solar position and orography related effects (shade and reflection). The interpolation of pyranometric observations introduces in the analysis fields information about cloud presence and influence. A particular effort is devoted to prevent observations affected by large errors of different kinds (representativity errors, systematic errors, gross errors) from entering the analysis procedure. The inclusion of direct cloud information from satellite observations is also planned.

  18. Proper Image Subtraction—Optimal Transient Detection, Photometry, and Hypothesis Testing

    NASA Astrophysics Data System (ADS)

    Zackay, Barak; Ofek, Eran O.; Gal-Yam, Avishay

    2016-10-01

    Transient detection and flux measurement via image subtraction stand at the base of time domain astronomy. Due to the varying seeing conditions, the image subtraction process is non-trivial, and existing solutions suffer from a variety of problems. Starting from basic statistical principles, we develop the optimal statistic for transient detection, flux measurement, and any image-difference hypothesis testing. We derive a closed-form statistic that: (1) is mathematically proven to be the optimal transient detection statistic in the limit of background-dominated noise, (2) is numerically stable, (3) for accurately registered, adequately sampled images, does not leave subtraction or deconvolution artifacts, (4) allows automatic transient detection to the theoretical sensitivity limit by providing credible detection significance, (5) has uncorrelated white noise, (6) is a sufficient statistic for any further statistical test on the difference image, and, in particular, allows us to distinguish particle hits and other image artifacts from real transients, (7) is symmetric to the exchange of the new and reference images, (8) is at least an order of magnitude faster to compute than some popular methods, and (9) is straightforward to implement. Furthermore, we present extensions of this method that make it resilient to registration errors, color-refraction errors, and any noise source that can be modeled. In addition, we show that the optimal way to prepare a reference image is the proper image coaddition presented in Zackay & Ofek. We demonstrate this method on simulated data and real observations from the PTF data release 2. We provide an implementation of this algorithm in MATLAB and Python.

  19. Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: a Monte Carlo study.

    PubMed

    Chou, C P; Bentler, P M; Satorra, A

    1991-11-01

    Research studying robustness of maximum likelihood (ML) statistics in covariance structure analysis has concluded that test statistics and standard errors are biased under severe non-normality. An estimation procedure known as asymptotic distribution free (ADF), making no distributional assumption, has been suggested to avoid these biases. Corrections to the normal theory statistics to yield more adequate performance have also been proposed. This study compares the performance of a scaled test statistic and robust standard errors for two models under several non-normal conditions and also compares these with the results from ML and ADF methods. Both ML and ADF test statistics performed rather well in one model and considerably worse in the other. In general, the scaled test statistic seemed to behave better than the ML test statistic and the ADF statistic performed the worst. The robust and ADF standard errors yielded more appropriate estimates of sampling variability than the ML standard errors, which were usually downward biased, in both models under most of the non-normal conditions. ML test statistics and standard errors were found to be quite robust to the violation of the normality assumption when data had either symmetric and platykurtic distributions, or non-symmetric and zero kurtotic distributions.

  20. An Unsupervised Deep Hyperspectral Anomaly Detector

    PubMed Central

    Ma, Ning; Peng, Yu; Wang, Shaojun

    2018-01-01

    Hyperspectral image (HSI) based detection has attracted considerable attention recently in agriculture, environmental protection and military applications as different wavelengths of light can be advantageously used to discriminate different types of objects. Unfortunately, estimating the background distribution and the detection of interesting local objects is not straightforward, and anomaly detectors may give false alarms. In this paper, a Deep Belief Network (DBN) based anomaly detector is proposed. The high-level features and reconstruction errors are learned through the network in a manner which is not affected by previous background distribution assumption. To reduce contamination by local anomalies, adaptive weights are constructed from reconstruction errors and statistical information. By using the code image which is generated during the inference of DBN and modified by adaptively updated weights, a local Euclidean distance between under test pixels and their neighboring pixels is used to determine the anomaly targets. Experimental results on synthetic and recorded HSI datasets show the performance of proposed method outperforms the classic global Reed-Xiaoli detector (RXD), local RX detector (LRXD) and the-state-of-the-art Collaborative Representation detector (CRD). PMID:29495410

  1. Model Error Estimation for the CPTEC Eta Model

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; daSilva, Arlindo

    1999-01-01

    Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.

  2. Improved Statistics for Genome-Wide Interaction Analysis

    PubMed Central

    Ueki, Masao; Cordell, Heather J.

    2012-01-01

    Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new “joint effects” statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al.'s originally-proposed statistics, on account of the inflated error rate that can result. PMID:22496670

  3. The minimal local-asperity hypothesis of early retinal lateral inhibition.

    PubMed

    Balboa, R M; Grzywacz, N M

    2000-07-01

    Recently we found that the theories related to information theory existent in the literature cannot explain the behavior of the extent of the lateral inhibition mediated by retinal horizontal cells as a function of background light intensity. These theories can explain the fall of the extent from intermediate to high intensities, but not its rise from dim to intermediate intensities. We propose an alternate hypothesis that accounts for the extent's bell-shape behavior. This hypothesis proposes that the lateral-inhibition adaptation in the early retina is part of a system to extract several image attributes, such as occlusion borders and contrast. To do so, this system would use prior probabilistic knowledge about the biological processing and relevant statistics in natural images. A key novel statistic used here is the probability of the presence of an occlusion border as a function of local contrast. Using this probabilistic knowledge, the retina would optimize the spatial profile of lateral inhibition to minimize attribute-extraction error. The two significant errors that this minimization process must reduce are due to the quantal noise in photoreceptors and the straddling of occlusion borders by lateral inhibition.

  4. The impact of different background errors in the assimilation of satellite radiances and in-situ observational data using WRFDA for three rainfall events over Iran

    NASA Astrophysics Data System (ADS)

    Zakeri, Zeinab; Azadi, Majid; Ghader, Sarmad

    2018-01-01

    Satellite radiances and in-situ observations are assimilated through Weather Research and Forecasting Data Assimilation (WRFDA) system into Advanced Research WRF (ARW) model over Iran and its neighboring area. Domain specific background error based on x and y components of wind speed (UV) control variables is calculated for WRFDA system and some sensitivity experiments are carried out to compare the impact of global background error and the domain specific background errors, both on the precipitation and 2-m temperature forecasts over Iran. Three precipitation events that occurred over the country during January, September and October 2014 are simulated in three different experiments and the results for precipitation and 2-m temperature are verified against the verifying surface observations. Results show that using domain specific background error improves 2-m temperature and 24-h accumulated precipitation forecasts consistently, while global background error may even degrade the forecasts compared to the experiments without data assimilation. The improvement in 2-m temperature is more evident during the first forecast hours and decreases significantly as the forecast length increases.

  5. Error tolerance analysis of wave diagnostic based on coherent modulation imaging in high power laser system

    NASA Astrophysics Data System (ADS)

    Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2018-02-01

    Coherent modulation imaging providing fast convergence speed and high resolution with single diffraction pattern is a promising technique to satisfy the urgent demands for on-line multiple parameter diagnostics with single setup in high power laser facilities (HPLF). However, the influence of noise on the final calculated parameters concerned has not been investigated yet. According to a series of simulations with twenty different sampling beams generated based on the practical parameters and performance of HPLF, the quantitative analysis based on statistical results was first investigated after considering five different error sources. We found the background noise of detector and high quantization error will seriously affect the final accuracy and different parameters have different sensitivity to different noise sources. The simulation results and the corresponding analysis provide the potential directions to further improve the final accuracy of parameter diagnostics which is critically important to its formal applications in the daily routines of HPLF.

  6. Satellite Sampling and Retrieval Errors in Regional Monthly Rain Estimates from TMI AMSR-E, SSM/I, AMSU-B and the TRMM PR

    NASA Technical Reports Server (NTRS)

    Fisher, Brad; Wolff, David B.

    2010-01-01

    Passive and active microwave rain sensors onboard earth-orbiting satellites estimate monthly rainfall from the instantaneous rain statistics collected during satellite overpasses. It is well known that climate-scale rain estimates from meteorological satellites incur sampling errors resulting from the process of discrete temporal sampling and statistical averaging. Sampling and retrieval errors ultimately become entangled in the estimation of the mean monthly rain rate. The sampling component of the error budget effectively introduces statistical noise into climate-scale rain estimates that obscure the error component associated with the instantaneous rain retrieval. Estimating the accuracy of the retrievals on monthly scales therefore necessitates a decomposition of the total error budget into sampling and retrieval error quantities. This paper presents results from a statistical evaluation of the sampling and retrieval errors for five different space-borne rain sensors on board nine orbiting satellites. Using an error decomposition methodology developed by one of the authors, sampling and retrieval errors were estimated at 0.25 resolution within 150 km of ground-based weather radars located at Kwajalein, Marshall Islands and Melbourne, Florida. Error and bias statistics were calculated according to the land, ocean and coast classifications of the surface terrain mask developed for the Goddard Profiling (GPROF) rain algorithm. Variations in the comparative error statistics are attributed to various factors related to differences in the swath geometry of each rain sensor, the orbital and instrument characteristics of the satellite and the regional climatology. The most significant result from this study found that each of the satellites incurred negative longterm oceanic retrieval biases of 10 to 30%.

  7. Impact of geophysical model error for recovering temporal gravity field model

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Luo, Zhicai; Wu, Yihao; Li, Qiong; Xu, Chuang

    2016-07-01

    The impact of geophysical model error on recovered temporal gravity field models with both real and simulated GRACE observations is assessed in this paper. With real GRACE observations, we build four temporal gravity field models, i.e., HUST08a, HUST11a, HUST04 and HUST05. HUST08a and HUST11a are derived from different ocean tide models (EOT08a and EOT11a), while HUST04 and HUST05 are derived from different non-tidal models (AOD RL04 and AOD RL05). The statistical result shows that the discrepancies of the annual mass variability amplitudes in six river basins between HUST08a and HUST11a models, HUST04 and HUST05 models are all smaller than 1 cm, which demonstrates that geophysical model error slightly affects the current GRACE solutions. The impact of geophysical model error for future missions with more accurate satellite ranging is also assessed by simulation. The simulation results indicate that for current mission with range rate accuracy of 2.5 × 10- 7 m/s, observation error is the main reason for stripe error. However, when the range rate accuracy improves to 5.0 × 10- 8 m/s in the future mission, geophysical model error will be the main source for stripe error, which will limit the accuracy and spatial resolution of temporal gravity model. Therefore, observation error should be the primary error source taken into account at current range rate accuracy level, while more attention should be paid to improving the accuracy of background geophysical models for the future mission.

  8. The Effect of Random Error on Diagnostic Accuracy Illustrated with the Anthropometric Diagnosis of Malnutrition

    PubMed Central

    2016-01-01

    Background It is often thought that random measurement error has a minor effect upon the results of an epidemiological survey. Theoretically, errors of measurement should always increase the spread of a distribution. Defining an illness by having a measurement outside an established healthy range will lead to an inflated prevalence of that condition if there are measurement errors. Methods and results A Monte Carlo simulation was conducted of anthropometric assessment of children with malnutrition. Random errors of increasing magnitude were imposed upon the populations and showed that there was an increase in the standard deviation with each of the errors that became exponentially greater with the magnitude of the error. The potential magnitude of the resulting error of reported prevalence of malnutrition were compared with published international data and found to be of sufficient magnitude to make a number of surveys and the numerous reports and analyses that used these data unreliable. Conclusions The effect of random error in public health surveys and the data upon which diagnostic cut-off points are derived to define “health” has been underestimated. Even quite modest random errors can more than double the reported prevalence of conditions such as malnutrition. Increasing sample size does not address this problem, and may even result in less accurate estimates. More attention needs to be paid to the selection, calibration and maintenance of instruments, measurer selection, training & supervision, routine estimation of the likely magnitude of errors using standardization tests, use of statistical likelihood of error to exclude data from analysis and full reporting of these procedures in order to judge the reliability of survey reports. PMID:28030627

  9. Henri Becquerel: serendipitous brilliance

    NASA Astrophysics Data System (ADS)

    Margaritondo, Giorgio

    2008-06-01

    Serendipity has always been an attendant to great science. Arno Penzias and Robert Wilson discovered the cosmic background radiation after first mistaking it for the effect of pigeon droppings on their microwave antenna. US spy satellites detected gamma-ray bursts when surveying the sky for evidence of secret Soviet nuclear tests during the Cold War. Satyendra Bose arrived at Bose-Einstein statistics only after discovering that a mathematical error explained the experimental data concerning the photoelectric effect. In the words of science-fiction writer Isaac Asimov, "The most exciting phrase in science is not 'Eureka!', but rather, 'That's funny...'.

  10. Consistency errors in p-values reported in Spanish psychology journals.

    PubMed

    Caperos, José Manuel; Pardo, Antonio

    2013-01-01

    Recent reviews have drawn attention to frequent consistency errors when reporting statistical results. We have reviewed the statistical results reported in 186 articles published in four Spanish psychology journals. Of these articles, 102 contained at least one of the statistics selected for our study: Fisher-F , Student-t and Pearson-c 2 . Out of the 1,212 complete statistics reviewed, 12.2% presented a consistency error, meaning that the reported p-value did not correspond to the reported value of the statistic and its degrees of freedom. In 2.3% of the cases, the correct calculation would have led to a different conclusion than the reported one. In terms of articles, 48% included at least one consistency error, and 17.6% would have to change at least one conclusion. In meta-analytical terms, with a focus on effect size, consistency errors can be considered substantial in 9.5% of the cases. These results imply a need to improve the quality and precision with which statistical results are reported in Spanish psychology journals.

  11. Efficient Methods to Assimilate Satellite Retrievals Based on Information Content. Part 2; Suboptimal Retrieval Assimilation

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Dee, D. P.

    1998-01-01

    One of the outstanding problems in data assimilation has been and continues to be how best to utilize satellite data while balancing the tradeoff between accuracy and computational cost. A number of weather prediction centers have recently achieved remarkable success in improving their forecast skill by changing the method by which satellite data are assimilated into the forecast model from the traditional approach of assimilating retrievals to the direct assimilation of radiances in a variational framework. The operational implementation of such a substantial change in methodology involves a great number of technical details, e.g., pertaining to quality control procedures, systematic error correction techniques, and tuning of the statistical parameters in the analysis algorithm. Although there are clear theoretical advantages to the direct radiance assimilation approach, it is not obvious at all to what extent the improvements that have been obtained so far can be attributed to the change in methodology, or to various technical aspects of the implementation. The issue is of interest because retrieval assimilation retains many practical and logistical advantages which may become even more significant in the near future when increasingly high-volume data sources become available. The central question we address here is: how much improvement can we expect from assimilating radiances rather than retrievals, all other things being equal? We compare the two approaches in a simplified one-dimensional theoretical framework, in which problems related to quality control and systematic error correction are conveniently absent. By assuming a perfect radiative transfer model and perfect knowledge of radiance and background error covariances, we are able to formulate a nonlinear local error analysis for each assimilation method. Direct radiance assimilation is optimal in this idealized context, while the traditional method of assimilating retrievals is suboptimal because it ignores the cross-covariances between background errors and retrieval errors. We show that interactive retrieval assimilation (where the same background used for assimilation is also used in the retrieval step) is equivalent to direct assimilation of radiances with suboptimal analysis weights. We illustrate and extend these theoretical arguments with several one-dimensional assimilation experiments, where we estimate vertical atmospheric profiles using simulated data from both the High-resolution InfraRed Sounder 2 (HIRS2) and the future Atmospheric InfraRed Sounder (AIRS).

  12. Statistical analysis of modeling error in structural dynamic systems

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, J. D.

    1990-01-01

    The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.

  13. A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates

    PubMed Central

    Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J

    2009-01-01

    Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590

  14. Statistical error in simulations of Poisson processes: Example of diffusion in solids

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan O.; Leetmaa, Mikael; Vekilova, Olga Yu.; Simak, Sergei I.; Skorodumova, Natalia V.

    2016-08-01

    Simulations of diffusion in solids often produce poor statistics of diffusion events. We present an analytical expression for the statistical error in ion conductivity obtained in such simulations. The error expression is not restricted to any computational method in particular, but valid in the context of simulation of Poisson processes in general. This analytical error expression is verified numerically for the case of Gd-doped ceria by running a large number of kinetic Monte Carlo calculations.

  15. On the Limitations of Variational Bias Correction

    NASA Technical Reports Server (NTRS)

    Moradi, Isaac; Mccarty, Will; Gelaro, Ronald

    2018-01-01

    Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.

  16. Standard Errors and Confidence Intervals of Norm Statistics for Educational and Psychological Tests.

    PubMed

    Oosterhuis, Hannah E M; van der Ark, L Andries; Sijtsma, Klaas

    2016-11-14

    Norm statistics allow for the interpretation of scores on psychological and educational tests, by relating the test score of an individual test taker to the test scores of individuals belonging to the same gender, age, or education groups, et cetera. Given the uncertainty due to sampling error, one would expect researchers to report standard errors for norm statistics. In practice, standard errors are seldom reported; they are either unavailable or derived under strong distributional assumptions that may not be realistic for test scores. We derived standard errors for four norm statistics (standard deviation, percentile ranks, stanine boundaries and Z-scores) under the mild assumption that the test scores are multinomially distributed. A simulation study showed that the standard errors were unbiased and that corresponding Wald-based confidence intervals had good coverage. Finally, we discuss the possibilities for applying the standard errors in practical test use in education and psychology. The procedure is provided via the R function check.norms, which is available in the mokken package.

  17. Flexible methods for segmentation evaluation: Results from CT-based luggage screening

    PubMed Central

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2017-01-01

    BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346

  18. Mitigating errors caused by interruptions during medication verification and administration: interventions in a simulated ambulatory chemotherapy setting

    PubMed Central

    Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia

    2014-01-01

    Background Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. Objective The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. Methods The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Results Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Conclusions Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in medication verification tasks. These findings can be generalised and adapted to mitigate interruption-related errors in other settings where medication verification and administration are required. PMID:24906806

  19. Deep 3 GHz number counts from a P(D) fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Scott, Douglas; Wall, J. V.; Condon, J. J.; Cotton, W. D.; Fomalont, E. B.; Kellermann, K. I.; Miller, N.; Perley, R. A.

    2014-05-01

    Radio source counts constrain galaxy populations and evolution, as well as the global star formation history. However, there is considerable disagreement among the published 1.4-GHz source counts below 100 μJy. Here, we present a statistical method for estimating the μJy and even sub-μJy source count using new deep wide-band 3-GHz data in the Lockman Hole from the Karl G. Jansky Very Large Array. We analysed the confusion amplitude distribution P(D), which provides a fresh approach in the form of a more robust model, with a comprehensive error analysis. We tested this method on a large-scale simulation, incorporating clustering and finite source sizes. We discuss in detail our statistical methods for fitting using Markov chain Monte Carlo, handling correlations, and systematic errors from the use of wide-band radio interferometric data. We demonstrated that the source count can be constrained down to 50 nJy, a factor of 20 below the rms confusion. We found the differential source count near 10 μJy to have a slope of -1.7, decreasing to about -1.4 at fainter flux densities. At 3 GHz, the rms confusion in an 8-arcsec full width at half-maximum beam is ˜ 1.2 μJy beam-1, and a radio background temperature ˜14 mK. Our counts are broadly consistent with published evolutionary models. With these results, we were also able to constrain the peak of the Euclidean normalized differential source count of any possible new radio populations that would contribute to the cosmic radio background down to 50 nJy.

  20. Teaching Statistics Online Using "Excel"

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2011-01-01

    As anyone who has taught or taken a statistics course knows, statistical calculations can be tedious and error-prone, with the details of a calculation sometimes distracting students from understanding the larger concepts. Traditional statistics courses typically use scientific calculators, which can relieve some of the tedium and errors but…

  1. Statistical methods and errors in family medicine articles between 2010 and 2014-Suez Canal University, Egypt: A cross-sectional study.

    PubMed

    Nour-Eldein, Hebatallah

    2016-01-01

    With limited statistical knowledge of most physicians it is not uncommon to find statistical errors in research articles. To determine the statistical methods and to assess the statistical errors in family medicine (FM) research articles that were published between 2010 and 2014. This was a cross-sectional study. All 66 FM research articles that were published over 5 years by FM authors with affiliation to Suez Canal University were screened by the researcher between May and August 2015. Types and frequencies of statistical methods were reviewed in all 66 FM articles. All 60 articles with identified inferential statistics were examined for statistical errors and deficiencies. A comprehensive 58-item checklist based on statistical guidelines was used to evaluate the statistical quality of FM articles. Inferential methods were recorded in 62/66 (93.9%) of FM articles. Advanced analyses were used in 29/66 (43.9%). Contingency tables 38/66 (57.6%), regression (logistic, linear) 26/66 (39.4%), and t-test 17/66 (25.8%) were the most commonly used inferential tests. Within 60 FM articles with identified inferential statistics, no prior sample size 19/60 (31.7%), application of wrong statistical tests 17/60 (28.3%), incomplete documentation of statistics 59/60 (98.3%), reporting P value without test statistics 32/60 (53.3%), no reporting confidence interval with effect size measures 12/60 (20.0%), use of mean (standard deviation) to describe ordinal/nonnormal data 8/60 (13.3%), and errors related to interpretation were mainly for conclusions without support by the study data 5/60 (8.3%). Inferential statistics were used in the majority of FM articles. Data analysis and reporting statistics are areas for improvement in FM research articles.

  2. A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis.

    PubMed

    Lin, Johnny; Bentler, Peter M

    2012-01-01

    Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's asymptotically distribution-free method and Satorra Bentler's mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler's statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby's study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic.

  3. Accounting for measurement error: a critical but often overlooked process.

    PubMed

    Harris, Edward F; Smith, Richard N

    2009-12-01

    Due to instrument imprecision and human inconsistencies, measurements are not free of error. Technical error of measurement (TEM) is the variability encountered between dimensions when the same specimens are measured at multiple sessions. A goal of a data collection regimen is to minimise TEM. The few studies that actually quantify TEM, regardless of discipline, report that it is substantial and can affect results and inferences. This paper reviews some statistical approaches for identifying and controlling TEM. Statistically, TEM is part of the residual ('unexplained') variance in a statistical test, so accounting for TEM, which requires repeated measurements, enhances the chances of finding a statistically significant difference if one exists. The aim of this paper was to review and discuss common statistical designs relating to types of error and statistical approaches to error accountability. This paper addresses issues of landmark location, validity, technical and systematic error, analysis of variance, scaled measures and correlation coefficients in order to guide the reader towards correct identification of true experimental differences. Researchers commonly infer characteristics about populations from comparatively restricted study samples. Most inferences are statistical and, aside from concerns about adequate accounting for known sources of variation with the research design, an important source of variability is measurement error. Variability in locating landmarks that define variables is obvious in odontometrics, cephalometrics and anthropometry, but the same concerns about measurement accuracy and precision extend to all disciplines. With increasing accessibility to computer-assisted methods of data collection, the ease of incorporating repeated measures into statistical designs has improved. Accounting for this technical source of variation increases the chance of finding biologically true differences when they exist.

  4. Analysis of uncertainties and convergence of the statistical quantities in turbulent wall-bounded flows by means of a physically based criterion

    NASA Astrophysics Data System (ADS)

    Andrade, João Rodrigo; Martins, Ramon Silva; Thompson, Roney Leon; Mompean, Gilmar; da Silveira Neto, Aristeu

    2018-04-01

    The present paper provides an analysis of the statistical uncertainties associated with direct numerical simulation (DNS) results and experimental data for turbulent channel and pipe flows, showing a new physically based quantification of these errors, to improve the determination of the statistical deviations between DNSs and experiments. The analysis is carried out using a recently proposed criterion by Thompson et al. ["A methodology to evaluate statistical errors in DNS data of plane channel flows," Comput. Fluids 130, 1-7 (2016)] for fully turbulent plane channel flows, where the mean velocity error is estimated by considering the Reynolds stress tensor, and using the balance of the mean force equation. It also presents how the residual error evolves in time for a DNS of a plane channel flow, and the influence of the Reynolds number on its convergence rate. The root mean square of the residual error is shown in order to capture a single quantitative value of the error associated with the dimensionless averaging time. The evolution in time of the error norm is compared with the final error provided by DNS data of similar Reynolds numbers available in the literature. A direct consequence of this approach is that it was possible to compare different numerical results and experimental data, providing an improved understanding of the convergence of the statistical quantities in turbulent wall-bounded flows.

  5. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  6. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    PubMed

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Background Conditions for the October 29, 2003 Solar Flare by the AVS-F Apparatus Data

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Lyapin, A. R.; Troitskaya, E. V.

    The background model for AVS-F apparatus onboard CORONAS-F satellite for the October 29, 2003 X10-class solar flare is discussed in the presented work. This background model developed for AVS-F counts rate in the low- and high-energy spectral ranges in both individual channels and summarized. Count rate were approximated by polynomials of high order taking into account the mean count rate in the geomagnetic equatorial region at the different orbits parts and Kp-index averaged on 5 bins in time interval from -24 to -12 hours before the time of geomagnetic equator passing. The observed averaged counts rate on equator in the region of geomagnetic latitude ±5o and estimated minimum count rate values are in coincidence within statistical errors for all selected orbits parts used for background modeling. This model will used to refine the estimated energy of registered during the solar flare spectral features and detailed analysis of their temporal profiles behavior both in corresponding energy bands and in summarized energy range.

  8. Single-variant and multi-variant trend tests for genetic association with next-generation sequencing that are robust to sequencing error.

    PubMed

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Alejandro Q; Musolf, Anthony; Matise, Tara C; Finch, Stephen J; Gordon, Derek

    2012-01-01

    As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single-variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p value, no matter how many loci. Copyright © 2013 S. Karger AG, Basel.

  9. Single variant and multi-variant trend tests for genetic association with next generation sequencing that are robust to sequencing error

    PubMed Central

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Andrew; Musolf, Anthony; Matise, Tara C.; Finch, Stephen J.; Gordon, Derek

    2013-01-01

    As with any new technology, next generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model, based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to that data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p-value, no matter how many loci. PMID:23594495

  10. Preference, satisfaction and critical errors with Genuair and Breezhaler inhalers in patients with COPD: a randomised, cross-over, multicentre study

    PubMed Central

    Pascual, Sergi; Feimer, Jan; De Soyza, Anthony; Sauleda Roig, Jaume; Haughney, John; Padullés, Laura; Seoane, Beatriz; Rekeda, Ludmyla; Ribera, Anna; Chrystyn, Henry

    2015-01-01

    Background: The specific attributes of inhaler devices can influence patient use, satisfaction and treatment compliance, and may ultimately impact on clinical outcomes in patients with chronic obstructive pulmonary disease (COPD). Aims: To assess patient preference, satisfaction and critical inhaler technique errors with Genuair (a multidose inhaler) and Breezhaler (a single-dose inhaler) after 2 weeks of daily use. Methods: Patients with COPD and moderate to severe airflow obstruction were randomised in a cross-over, open-label, multicentre study to consecutive once-daily inhalations of placebo via Genuair and Breezhaler, in addition to current COPD medication. The primary end point was the proportion of patients who preferred Genuair versus Breezhaler after 2 weeks (Patient Satisfaction and Preference Questionnaire). Other end points included overall satisfaction and correct use of the inhalers after 2 weeks, and willingness to continue with each device. Results: Of the 128 patients enrolled, 127 were included in the safety population (male n=91; mean age 67.6 years). Of the 110 of the 123 patients in the intent-to-treat population who indicated an inhaler preference, statistically significantly more patients preferred Genuair than Breezhaler (72.7 vs. 27.3%; P<0.001). Mean overall satisfaction scores were also greater for Genuair than for Breezhaler (5.9 vs. 5.3, respectively; P<0.001). After 2 weeks, there was no statistically significant difference in the number of patients who made ⩾1 critical inhaler technique error with Breezhaler than with Genuair (7.3 vs. 3.3%, respectively). Conclusions: Patient overall preference and satisfaction was significantly higher with Genuair compared with Breezhaler. The proportion of patients making critical inhaler technique errors was low with Genuair and Breezhaler. PMID:25927321

  11. Error and its meaning in forensic science.

    PubMed

    Christensen, Angi M; Crowder, Christian M; Ousley, Stephen D; Houck, Max M

    2014-01-01

    The discussion of "error" has gained momentum in forensic science in the wake of the Daubert guidelines and has intensified with the National Academy of Sciences' Report. Error has many different meanings, and too often, forensic practitioners themselves as well as the courts misunderstand scientific error and statistical error rates, often confusing them with practitioner error (or mistakes). Here, we present an overview of these concepts as they pertain to forensic science applications, discussing the difference between practitioner error (including mistakes), instrument error, statistical error, and method error. We urge forensic practitioners to ensure that potential sources of error and method limitations are understood and clearly communicated and advocate that the legal community be informed regarding the differences between interobserver errors, uncertainty, variation, and mistakes. © 2013 American Academy of Forensic Sciences.

  12. Death Certification Errors and the Effect on Mortality Statistics.

    PubMed

    McGivern, Lauri; Shulman, Leanne; Carney, Jan K; Shapiro, Steven; Bundock, Elizabeth

    Errors in cause and manner of death on death certificates are common and affect families, mortality statistics, and public health research. The primary objective of this study was to characterize errors in the cause and manner of death on death certificates completed by non-Medical Examiners. A secondary objective was to determine the effects of errors on national mortality statistics. We retrospectively compared 601 death certificates completed between July 1, 2015, and January 31, 2016, from the Vermont Electronic Death Registration System with clinical summaries from medical records. Medical Examiners, blinded to original certificates, reviewed summaries, generated mock certificates, and compared mock certificates with original certificates. They then graded errors using a scale from 1 to 4 (higher numbers indicated increased impact on interpretation of the cause) to determine the prevalence of minor and major errors. They also compared International Classification of Diseases, 10th Revision (ICD-10) codes on original certificates with those on mock certificates. Of 601 original death certificates, 319 (53%) had errors; 305 (51%) had major errors; and 59 (10%) had minor errors. We found no significant differences by certifier type (physician vs nonphysician). We did find significant differences in major errors in place of death ( P < .001). Certificates for deaths occurring in hospitals were more likely to have major errors than certificates for deaths occurring at a private residence (59% vs 39%, P < .001). A total of 580 (93%) death certificates had a change in ICD-10 codes between the original and mock certificates, of which 348 (60%) had a change in the underlying cause-of-death code. Error rates on death certificates in Vermont are high and extend to ICD-10 coding, thereby affecting national mortality statistics. Surveillance and certifier education must expand beyond local and state efforts. Simplifying and standardizing underlying literal text for cause of death may improve accuracy, decrease coding errors, and improve national mortality statistics.

  13. Measurements of the cosmic background radiation

    NASA Technical Reports Server (NTRS)

    Lubin, P.; Villela, T.

    1987-01-01

    Maps of the large scale structure (theta is greater than 6 deg) of the cosmic background radiation covering 90 percent of the sky are now available. The data show a very strong 50-100 sigma (statistical error) dipole component, interpreted as being due to our motion, with a direction of alpha = 11.5 + or - 0.15 hours, sigma = -5.6 + or - 2.0 deg. The inferred direction of the velocity of our galaxy relative to the cosmic background radiation is alpha = 10.6 + or - 0.3 hours, sigma = -2.3 + or - 5 deg. This is 44 deg from the center of the Virgo cluster. After removing the dipole component, the data show a galactic signature but no apparent residual structure. An autocorrelation of the residual data, after substraction of the galactic component from a combined Berkeley (3 mm) and Princeton (12 mm) data sets, show no apparent structure from 10 to 180 deg with a rms of 0.01 mK(sup 2). At 90 percent confidence level limit of .00007 is placed on a quadrupole component.

  14. THE ACUTE EFFECTS OF CONCENTRIC VERSUS ECCENTRIC MUSCLE FATIGUE ON SHOULDER ACTIVE REPOSITIONING SENSE

    PubMed Central

    2017-01-01

    Purpose/Background Shoulder proprioception is essential in the activities of daily living as well as in sports. Acute muscle fatigue is believed to cause a deterioration of proprioception, increasing the risk of injury. The purpose of this study was to evaluate if fatigue of the shoulder external rotators during eccentric versus concentric activity affects shoulder joint proprioception as determined by active reproduction of position. Study design Quasi-experimental trial. Methods Twenty-two healthy subjects with no recent history of shoulder pathology were randomly allocated to either a concentric or an eccentric exercise group for fatiguing the shoulder external rotators. Proprioception was assessed before and after the fatiguing protocol using an isokinetic dynamometer, by measuring active reproduction of position at 30 ° of shoulder external rotation, reported as absolute angular error. The fatiguing protocol consisted of sets of fifteen consecutive external rotator muscle contractions in either the concentric or eccentric action. The subjects were exercised until there was a 30% decline from the peak torque of the subjects’ maximal voluntary contraction over three consecutive muscle contractions. Results A one-way analysis of variance test revealed no statistical difference in absolute angular error (p > 0.05) between concentric and eccentric groups. Moreover, no statistical difference (p > 0.05) was found in absolute angular error between pre- and post-fatigue in either group. Conclusions Eccentric exercise does not seem to acutely affect shoulder proprioception to a larger extent than concentric exercise. Level of evidence 2b PMID:28515976

  15. The (mis)reporting of statistical results in psychology journals.

    PubMed

    Bakker, Marjan; Wicherts, Jelte M

    2011-09-01

    In order to study the prevalence, nature (direction), and causes of reporting errors in psychology, we checked the consistency of reported test statistics, degrees of freedom, and p values in a random sample of high- and low-impact psychology journals. In a second study, we established the generality of reporting errors in a random sample of recent psychological articles. Our results, on the basis of 281 articles, indicate that around 18% of statistical results in the psychological literature are incorrectly reported. Inconsistencies were more common in low-impact journals than in high-impact journals. Moreover, around 15% of the articles contained at least one statistical conclusion that proved, upon recalculation, to be incorrect; that is, recalculation rendered the previously significant result insignificant, or vice versa. These errors were often in line with researchers' expectations. We classified the most common errors and contacted authors to shed light on the origins of the errors.

  16. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.

  17. A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis

    PubMed Central

    Lin, Johnny; Bentler, Peter M.

    2012-01-01

    Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne’s asymptotically distribution-free method and Satorra Bentler’s mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler’s statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby’s study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic. PMID:23144511

  18. Statistical Reporting Errors and Collaboration on Statistical Analyses in Psychological Science.

    PubMed

    Veldkamp, Coosje L S; Nuijten, Michèle B; Dominguez-Alvarez, Linda; van Assen, Marcel A L M; Wicherts, Jelte M

    2014-01-01

    Statistical analysis is error prone. A best practice for researchers using statistics would therefore be to share data among co-authors, allowing double-checking of executed tasks just as co-pilots do in aviation. To document the extent to which this 'co-piloting' currently occurs in psychology, we surveyed the authors of 697 articles published in six top psychology journals and asked them whether they had collaborated on four aspects of analyzing data and reporting results, and whether the described data had been shared between the authors. We acquired responses for 49.6% of the articles and found that co-piloting on statistical analysis and reporting results is quite uncommon among psychologists, while data sharing among co-authors seems reasonably but not completely standard. We then used an automated procedure to study the prevalence of statistical reporting errors in the articles in our sample and examined the relationship between reporting errors and co-piloting. Overall, 63% of the articles contained at least one p-value that was inconsistent with the reported test statistic and the accompanying degrees of freedom, and 20% of the articles contained at least one p-value that was inconsistent to such a degree that it may have affected decisions about statistical significance. Overall, the probability that a given p-value was inconsistent was over 10%. Co-piloting was not found to be associated with reporting errors.

  19. Statistical Reporting Errors and Collaboration on Statistical Analyses in Psychological Science

    PubMed Central

    Veldkamp, Coosje L. S.; Nuijten, Michèle B.; Dominguez-Alvarez, Linda; van Assen, Marcel A. L. M.; Wicherts, Jelte M.

    2014-01-01

    Statistical analysis is error prone. A best practice for researchers using statistics would therefore be to share data among co-authors, allowing double-checking of executed tasks just as co-pilots do in aviation. To document the extent to which this ‘co-piloting’ currently occurs in psychology, we surveyed the authors of 697 articles published in six top psychology journals and asked them whether they had collaborated on four aspects of analyzing data and reporting results, and whether the described data had been shared between the authors. We acquired responses for 49.6% of the articles and found that co-piloting on statistical analysis and reporting results is quite uncommon among psychologists, while data sharing among co-authors seems reasonably but not completely standard. We then used an automated procedure to study the prevalence of statistical reporting errors in the articles in our sample and examined the relationship between reporting errors and co-piloting. Overall, 63% of the articles contained at least one p-value that was inconsistent with the reported test statistic and the accompanying degrees of freedom, and 20% of the articles contained at least one p-value that was inconsistent to such a degree that it may have affected decisions about statistical significance. Overall, the probability that a given p-value was inconsistent was over 10%. Co-piloting was not found to be associated with reporting errors. PMID:25493918

  20. Sound source measurement by using a passive sound insulation and a statistical approach

    NASA Astrophysics Data System (ADS)

    Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.

    2015-10-01

    This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.

  1. An Adaptive Buddy Check for Observational Quality Control

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.

  2. A Retrospective Survey of Research Design and Statistical Analyses in Selected Chinese Medical Journals in 1998 and 2008

    PubMed Central

    Jin, Zhichao; Yu, Danghui; Zhang, Luoman; Meng, Hong; Lu, Jian; Gao, Qingbin; Cao, Yang; Ma, Xiuqiang; Wu, Cheng; He, Qian; Wang, Rui; He, Jia

    2010-01-01

    Background High quality clinical research not only requires advanced professional knowledge, but also needs sound study design and correct statistical analyses. The number of clinical research articles published in Chinese medical journals has increased immensely in the past decade, but study design quality and statistical analyses have remained suboptimal. The aim of this investigation was to gather evidence on the quality of study design and statistical analyses in clinical researches conducted in China for the first decade of the new millennium. Methodology/Principal Findings Ten (10) leading Chinese medical journals were selected and all original articles published in 1998 (N = 1,335) and 2008 (N = 1,578) were thoroughly categorized and reviewed. A well-defined and validated checklist on study design, statistical analyses, results presentation, and interpretation was used for review and evaluation. Main outcomes were the frequencies of different types of study design, error/defect proportion in design and statistical analyses, and implementation of CONSORT in randomized clinical trials. From 1998 to 2008: The error/defect proportion in statistical analyses decreased significantly ( = 12.03, p<0.001), 59.8% (545/1,335) in 1998 compared to 52.2% (664/1,578) in 2008. The overall error/defect proportion of study design also decreased ( = 21.22, p<0.001), 50.9% (680/1,335) compared to 42.40% (669/1,578). In 2008, design with randomized clinical trials remained low in single digit (3.8%, 60/1,578) with two-third showed poor results reporting (defects in 44 papers, 73.3%). Nearly half of the published studies were retrospective in nature, 49.3% (658/1,335) in 1998 compared to 48.2% (761/1,578) in 2008. Decreases in defect proportions were observed in both results presentation ( = 93.26, p<0.001), 92.7% (945/1,019) compared to 78.2% (1023/1,309) and interpretation ( = 27.26, p<0.001), 9.7% (99/1,019) compared to 4.3% (56/1,309), some serious ones persisted. Conclusions/Significance Chinese medical research seems to have made significant progress regarding statistical analyses, but there remains ample room for improvement regarding study designs. Retrospective clinical studies are the most often used design, whereas randomized clinical trials are rare and often show methodological weaknesses. Urgent implementation of the CONSORT statement is imperative. PMID:20520824

  3. Cosmology from Cosmic Microwave Background and large- scale structure

    NASA Astrophysics Data System (ADS)

    Xu, Yongzhong

    2003-10-01

    This dissertation consists of a series of studies, constituting four published papers, involving the Cosmic Microwave Background and the large scale structure, which help constrain Cosmological parameters and potential systematic errors. First, we present a method for comparing and combining maps with different resolutions and beam shapes, and apply it to the Saskatoon, QMAP and COBE/DMR data sets. Although the Saskatoon and QMAP maps detect signal at the 21σ and 40σ, levels, respectively, their difference is consistent with pure noise, placing strong limits on possible systematic errors. In particular, we obtain quantitative upper limits on relative calibration and pointing errors. Splitting the combined data by frequency shows similar consistency between the Ka- and Q-bands, placing limits on foreground contamination. The visual agreement between the maps is equally striking. Our combined QMAP+Saskatoon map, nicknamed QMASK, is publicly available at www.hep.upenn.edu/˜xuyz/qmask.html together with its 6495 x 6495 noise covariance matrix. This thoroughly tested data set covers a large enough area (648 square degrees—at the time, the largest degree-scale map available) to allow a statistical comparison with LOBE/DMR, showing good agreement. By band-pass-filtering the QMAP and Saskatoon maps, we are also able to spatially compare them scale-by-scale to check for beam- and pointing-related systematic errors. Using the QMASK map, we then measure the cosmic microwave background (CMB) power spectrum on angular scales ℓ ˜ 30 200 (1° 6°), and we test it for non-Gaussianity using morphological statistics known as Minkowski functionals. We conclude that the QMASK map is neither a very typical nor a very exceptional realization of a Gaussian random field. At least about 20% of the 1000 Gaussian Monte Carlo maps differ more than the QMASK map from the mean morphological parameters of the Gaussian fields. Finally, we compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loève eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy- galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h /Mpc < k < 0.8 h/Mpc. We find no significant detection of baryonic wiggles. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter β = 0.49 ± 0.16 for r = 1.

  4. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models

    NASA Astrophysics Data System (ADS)

    Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.

    2017-06-01

    We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.

  5. Sampling Errors in Monthly Rainfall Totals for TRMM and SSM/I, Based on Statistics of Retrieved Rain Rates and Simple Models

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.

  6. [Character of refractive errors in population study performed by the Area Military Medical Commission in Lodz].

    PubMed

    Nowak, Michał S; Goś, Roman; Smigielski, Janusz

    2008-01-01

    To determine the prevalence of refractive errors in population. A retrospective review of medical examinations for entry to the military service from The Area Military Medical Commission in Lodz. Ophthalmic examinations were performed. We used statistic analysis to review the results. Statistic analysis revealed that refractive errors occurred in 21.68% of the population. The most commen refractive error was myopia. 1) The most commen ocular diseases are refractive errors, especially myopia (21.68% in total). 2) Refractive surgery and contact lenses should be allowed as the possible correction of refractive errors for military service.

  7. Refractive errors in students from Middle Eastern backgrounds living and undertaking schooling in Australia.

    PubMed

    Azizoglu, Serap; Junghans, Barbara M; Barutchu, Ayla; Crewther, Sheila G

    2011-01-01

      Environmental factors associated with schooling systems in various countries have been implicated in the rising prevalence of myopia, making the comparison of prevalence of refractive errors in migrant populations of interest. This study aims to determine the prevalence of refractive errors in children of Middle Eastern descent, raised and living in urban Australia but actively maintaining strong ties to their ethnic culture, and to compare them with those in the Middle East where myopia prevalence is generally low.   A total of 354 out of a possible 384 late primary/early secondary schoolchildren attending a private school attracting children of Middle Eastern background in Melbourne were assessed for refractive error and visual acuity. A Shin Nippon open-field NVision-K5001 autorefractor was used to carry out non-cycloplegic autorefraction while viewing a distant target. For statistical analyses students were divided into three age groups: 10-11 years (n = 93); 12-13 years (n = 158); and 14-15 years (n = 102).   All children were bilingual and classified as of Middle Eastern (96.3 per cent) or Egyptian (3.7 per cent) origin. Ages ranged from 10 to 15 years, with a mean of 13.17 ± 0.8 (SEM) years. Mean spherical equivalent refraction (SER) for the right eye was +0.09 ± 0.07 D (SEM) with a range from -7.77 D to +5.85 D. The prevalence of myopia, defined as a spherical equivalent refraction 0.50 D or more of myopia, was 14.7 per cent. The prevalence of hyperopia, defined as a spherical equivalent refraction of +0.75 D or greater, was 16.4 per cent, while hyperopia of +1.50 D or greater was 5.4 per cent. A significant difference in SER was seen as a function of age; however, no significant gender difference was seen.   This is the first study to report the prevalence of refractive errors for second-generation Australian schoolchildren coming from a predominantly Lebanese Middle Eastern Arabic background, who endeavour to maintain their ethnic ties. The relatively low prevalence of myopia is similar to that found for other metropolitan Australian school children but higher than that reported in the Middle East. These results suggest that lifestyle and educational practices may be a significant influence in the progression of myopic refractive errors. © 2010 The Authors. Clinical and Experimental Optometry © 2010 Optometrists Association Australia.

  8. Advanced Water Vapor Lidar Detection System

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1998-01-01

    In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of 10 over the current system, using a newly evaluated, very low noise avalanche photo diode detector and constructing a 10 MHz waveform digitizer which will replace the current CAMAC system.

  9. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians

    PubMed Central

    Ghasemi, Asghar; Zahediasl, Saleh

    2012-01-01

    Statistical errors are common in scientific literature and about 50% of the published articles have at least one error. The assumption of normality needs to be checked for many statistical procedures, namely parametric tests, because their validity depends on it. The aim of this commentary is to overview checking for normality in statistical analysis using SPSS. PMID:23843808

  10. Interval Timing Accuracy and Scalar Timing in C57BL/6 Mice

    PubMed Central

    Buhusi, Catalin V.; Aziz, Dyana; Winslow, David; Carter, Rickey E.; Swearingen, Joshua E.; Buhusi, Mona C.

    2010-01-01

    In many species, interval timing behavior is accurate—appropriate estimated durations—and scalar—errors vary linearly with estimated durations. While accuracy has been previously examined, scalar timing has not been yet clearly demonstrated in house mice (Mus musculus), raising concerns about mouse models of human disease. We estimated timing accuracy and precision in C57BL/6 mice, the most used background strain for genetic models of human disease, in a peak-interval procedure with multiple intervals. Both when timing two intervals (Experiment 1) or three intervals (Experiment 2), C57BL/6 mice demonstrated varying degrees of timing accuracy. Importantly, both at individual and group level, their precision varied linearly with the subjective estimated duration. Further evidence for scalar timing was obtained using an intraclass correlation statistic. This is the first report of consistent, reliable scalar timing in a sizable sample of house mice, thus validating the PI procedure as a valuable technique, the intraclass correlation statistic as a powerful test of the scalar property, and the C57BL/6 strain as a suitable background for behavioral investigations of genetically engineered mice modeling disorders of interval timing. PMID:19824777

  11. Uncorrected refractive error and associated factors among primary school children in Debre Markos District, Northwest Ethiopia

    PubMed Central

    2014-01-01

    Background Uncorrected Refractive Error is one of the leading cause amblyopia that exposes children to poor school performance. It refrain them from productive working lives resulting in severe economic and social loses in their latter adulthood lives. The objective of the study was to assess the prevalence of uncorrected refractive error and its associated factors among school children in Debre Markos District. Method A cross section study design was employed. Four hundred thirty two students were randomly selected using a multistage stratified sampling technique. The data were collected by trained ophthalmic nurses through interview, structured questionnaires and physical examinations. Snellens visual acuity measurement chart was used to identify the visual acuity of students. Students with visual acuity less than 6/12 had undergone further examination using auto refractor and cross-checked using spherical and cylindrical lenses. The data were entered into epi data statistical software version 3.1 and analyzed by SPSS version 20. The statistical significance was set at α ≤ 0.05. Descriptive, bivariate and multivariate analyses were done using odds ratios with 95% confidence interval. Result Out of 432 students selected for the study, 420 (97.2%) were in the age group 7–15 years. The mean age was 12 ± 2.1SD. Overall prevalence of refractive error was 43 (10.2%). Myopia was found among the most dominant 5.47% followed by astigmatism 1.9% and hyperopia 1.4% in both sexes. Female sex (AOR: 3.96, 95% CI: 1.55-10.09), higher grade level (AOR: 4.82, 95% CI: 1.98-11.47) and using computers regularly (AOR: 4.53, 95% CI: 1.58-12.96) were significantly associated with refractive error. Conclusion The burden of uncorrected refractive errors is high among primary schools children. Myopia was common in both sexes. The potential risk factors were sex, regular use of computers and higher grade level of students. Hence, school health programs should work on health information dissemination and eye health care services provision. PMID:25070579

  12. Common Scientific and Statistical Errors in Obesity Research

    PubMed Central

    George, Brandon J.; Beasley, T. Mark; Brown, Andrew W.; Dawson, John; Dimova, Rositsa; Divers, Jasmin; Goldsby, TaShauna U.; Heo, Moonseong; Kaiser, Kathryn A.; Keith, Scott; Kim, Mimi Y.; Li, Peng; Mehta, Tapan; Oakes, J. Michael; Skinner, Asheley; Stuart, Elizabeth; Allison, David B.

    2015-01-01

    We identify 10 common errors and problems in the statistical analysis, design, interpretation, and reporting of obesity research and discuss how they can be avoided. The 10 topics are: 1) misinterpretation of statistical significance, 2) inappropriate testing against baseline values, 3) excessive and undisclosed multiple testing and “p-value hacking,” 4) mishandling of clustering in cluster randomized trials, 5) misconceptions about nonparametric tests, 6) mishandling of missing data, 7) miscalculation of effect sizes, 8) ignoring regression to the mean, 9) ignoring confirmation bias, and 10) insufficient statistical reporting. We hope that discussion of these errors can improve the quality of obesity research by helping researchers to implement proper statistical practice and to know when to seek the help of a statistician. PMID:27028280

  13. Educational background of nurses and their perceptions of the quality and safety of patient care.

    PubMed

    Swart, Reece P; Pretorius, Ronel; Klopper, Hester

    2015-04-30

    International health systems research confirms the critical role that nurses play in ensuring the delivery of high quality patient care and subsequent patient safety. It is therefore important that the education of nurses should prepare them for the provision of safe care of a high quality. The South African healthcare system is made up of public and private hospitals that employ various categories of nurses. The perceptions of the various categories of nurses with reference to quality of care and patient safety are unknown in South Africa (SA). To determine the relationship between the educational background of nurses and their perceptions of quality of care and patient safety in private surgical units in SA. A descriptive correlational design was used. A questionnaire was used for data collection, after which hierarchical linear modelling was utilised to determine the relationships amongst the variables. Both the registered- and enrolled nurses seemed satisfied with the quality of care and patient safety in the units were they work. Enrolled nurses (ENs) indicated that current efforts to prevent errors are adequate, whilst the registered nurses (RNs) obtained high scores in reporting incidents in surgical wards. From the results it was evident that perceptions of RNs and ENs related to the quality of care and patient safety differed. There seemed to be a statistically-significant difference between RNs and ENs perceptions of the prevention of errors in the unit, losing patient information between shifts and patient incidents related to medication errors, pressure ulcers and falls with injury.

  14. Evaluation of precipitation forecasts from 3D-Var and hybrid GSI-based system during Indian summer monsoon 2015

    NASA Astrophysics Data System (ADS)

    Singh, Sanjeev Kumar; Prasad, V. S.

    2018-02-01

    This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.

  15. On improvement to the Shock Propagation Model (SPM) applied to interplanetary shock transit time forecasting

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Wei, F. S.; Feng, X. S.; Xie, Y. Q.

    2008-09-01

    This paper investigates methods to improve the predictions of Shock Arrival Time (SAT) of the original Shock Propagation Model (SPM). According to the classical blast wave theory adopted in the SPM, the shock propagating speed is determined by the total energy of the original explosion together with the background solar wind speed. Noting that there exists an intrinsic limit to the transit times computed by the SPM predictions for a specified ambient solar wind, we present a statistical analysis on the forecasting capability of the SPM using this intrinsic property. Two facts about SPM are found: (1) the error in shock energy estimation is not the only cause of the prediction errors and we should not expect that the accuracy of SPM to be improved drastically by an exact shock energy input; and (2) there are systematic differences in prediction results both for the strong shocks propagating into a slow ambient solar wind and for the weak shocks into a fast medium. Statistical analyses indicate the physical details of shock propagation and thus clearly point out directions of the future improvement of the SPM. A simple modification is presented here, which shows that there is room for improvement of SPM and thus that the original SPM is worthy of further development.

  16. Testing physical models for dipolar asymmetry with CMB polarization

    NASA Astrophysics Data System (ADS)

    Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.

    2017-12-01

    The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.

  17. A map of the cosmic background radiation at 3 millimeters

    NASA Technical Reports Server (NTRS)

    Lubin, P.; Villela, T.; Epstein, G.; Smoot, G.

    1985-01-01

    Data from a series of balloon flights covering both the Northern and Southern Hemispheres, measuring the large angular scale anisotropy in the cosmic background radiation at 3.3 mm wavelength are presented. The data cover 85 percent of the sky to a limiting sensitivity of 0.7 mK per 7 deg field of view. The data show a 50-sigma (statistical error only) dipole anisotropy with an amplitude of 3.44 + or - 0.17 mK and a direction of alpha = 11.2 h + or - 0.1 h, and delta = -6.0 deg + or - 1.5 deg. A 90 percent confidence level upper limit of 0.00007 is obtained for the rms quadrupole amplitude. Flights separated by 6 months show the motion of earth around the sun. Galactic contamination is very small, with less than 0.1 mK contribution to the dipole quadrupole terms. A map of the sky has been generated from the data.

  18. On P values and effect modification.

    PubMed

    Mayer, Martin

    2017-12-01

    A crucial element of evidence-based healthcare is the sound understanding and use of statistics. As part of instilling sound statistical knowledge and practice, it seems useful to highlight instances of unsound statistical reasoning or practice, not merely in captious or vitriolic spirit, but rather, to use such error as a springboard for edification by giving tangibility to the concepts at hand and highlighting the importance of avoiding such error. This article aims to provide an instructive overview of two key statistical concepts: effect modification and P values. A recent article published in the Journal of the American College of Cardiology on side effects related to statin therapy offers a notable example of errors in understanding effect modification and P values, and although not so critical as to entirely invalidate the article, the errors still demand considerable scrutiny and correction. In doing so, this article serves as an instructive overview of the statistical concepts of effect modification and P values. Judicious handling of statistics is imperative to avoid muddying their utility. This article contributes to the body of literature aiming to improve the use of statistics, which in turn will help facilitate evidence appraisal, synthesis, translation, and application.

  19. Preservation of a T-Invariant Reductionist Scaffold in "effective" Intrinsically Irreversible Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ne'Eman, Yuval

    2003-08-01

    The recently developed Irreversible Quantum Mechanics formalism describes physical reality both at the statistical and the particle levels and voices have been heard suggesting that it be used in fundamental physics. Two examples are sketched in which similar steps were taken and proved to be terrible errors: Aristotle's rejection of the vacuum because "nature does not tolerate it", replacing it by a law of force linear in velocity and Chew's rejection of Quantum Field Theory because "it is not unitary off-mass-shell". In Particle Physics, I suggest using the new representation as an "effective" picture without abandoning the canonical background.

  20. New efficient optimizing techniques for Kalman filters and numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis

    2016-06-01

    The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.

  1. Spatial heterogeneity of type I error for local cluster detection tests

    PubMed Central

    2014-01-01

    Background Just as power, type I error of cluster detection tests (CDTs) should be spatially assessed. Indeed, CDTs’ type I error and power have both a spatial component as CDTs both detect and locate clusters. In the case of type I error, the spatial distribution of wrongly detected clusters (WDCs) can be particularly affected by edge effect. This simulation study aims to describe the spatial distribution of WDCs and to confirm and quantify the presence of edge effect. Methods A simulation of 40 000 datasets has been performed under the null hypothesis of risk homogeneity. The simulation design used realistic parameters from survey data on birth defects, and in particular, two baseline risks. The simulated datasets were analyzed using the Kulldorff’s spatial scan as a commonly used test whose behavior is otherwise well known. To describe the spatial distribution of type I error, we defined the participation rate for each spatial unit of the region. We used this indicator in a new statistical test proposed to confirm, as well as quantify, the edge effect. Results The predefined type I error of 5% was respected for both baseline risks. Results showed strong edge effect in participation rates, with a descending gradient from center to edge, and WDCs more often centrally situated. Conclusions In routine analysis of real data, clusters on the edge of the region should be carefully considered as they rarely occur when there is no cluster. Further work is needed to combine results from power studies with this work in order to optimize CDTs performance. PMID:24885343

  2. Three-dimensional ionospheric tomography reconstruction using the model function approach in Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Wang, Sicheng; Huang, Sixun; Xiang, Jie; Fang, Hanxian; Feng, Jian; Wang, Yu

    2016-12-01

    Ionospheric tomography is based on the observed slant total electron content (sTEC) along different satellite-receiver rays to reconstruct the three-dimensional electron density distributions. Due to incomplete measurements provided by the satellite-receiver geometry, it is a typical ill-posed problem, and how to overcome the ill-posedness is still a crucial content of research. In this paper, Tikhonov regularization method is used and the model function approach is applied to determine the optimal regularization parameter. This algorithm not only balances the weights between sTEC observations and background electron density field but also converges globally and rapidly. The background error covariance is given by multiplying background model variance and location-dependent spatial correlation, and the correlation model is developed by using sample statistics from an ensemble of the International Reference Ionosphere 2012 (IRI2012) model outputs. The Global Navigation Satellite System (GNSS) observations in China are used to present the reconstruction results, and measurements from two ionosondes are used to make independent validations. Both the test cases using artificial sTEC observations and actual GNSS sTEC measurements show that the regularization method can effectively improve the background model outputs.

  3. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@nao.ac.jp, E-mail: tof@astr.tohoku.ac.jp

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging,more » but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.« less

  4. Error correction and statistical analyses for intra-host comparisons of feline immunodeficiency virus diversity from high-throughput sequencing data.

    PubMed

    Liu, Yang; Chiaromonte, Francesca; Ross, Howard; Malhotra, Raunaq; Elleder, Daniel; Poss, Mary

    2015-06-30

    Infection with feline immunodeficiency virus (FIV) causes an immunosuppressive disease whose consequences are less severe if cats are co-infected with an attenuated FIV strain (PLV). We use virus diversity measurements, which reflect replication ability and the virus response to various conditions, to test whether diversity of virulent FIV in lymphoid tissues is altered in the presence of PLV. Our data consisted of the 3' half of the FIV genome from three tissues of animals infected with FIV alone, or with FIV and PLV, sequenced by 454 technology. Since rare variants dominate virus populations, we had to carefully distinguish sequence variation from errors due to experimental protocols and sequencing. We considered an exponential-normal convolution model used for background correction of microarray data, and modified it to formulate an error correction approach for minor allele frequencies derived from high-throughput sequencing. Similar to accounting for over-dispersion in counts, this accounts for error-inflated variability in frequencies - and quite effectively reproduces empirically observed distributions. After obtaining error-corrected minor allele frequencies, we applied ANalysis Of VAriance (ANOVA) based on a linear mixed model and found that conserved sites and transition frequencies in FIV genes differ among tissues of dual and single infected cats. Furthermore, analysis of minor allele frequencies at individual FIV genome sites revealed 242 sites significantly affected by infection status (dual vs. single) or infection status by tissue interaction. All together, our results demonstrated a decrease in FIV diversity in bone marrow in the presence of PLV. Importantly, these effects were weakened or undetectable when error correction was performed with other approaches (thresholding of minor allele frequencies; probabilistic clustering of reads). We also queried the data for cytidine deaminase activity on the viral genome, which causes an asymmetric increase in G to A substitutions, but found no evidence for this host defense strategy. Our error correction approach for minor allele frequencies (more sensitive and computationally efficient than other algorithms) and our statistical treatment of variation (ANOVA) were critical for effective use of high-throughput sequencing data in understanding viral diversity. We found that co-infection with PLV shifts FIV diversity from bone marrow to lymph node and spleen.

  5. The impact of computerized physician order entry on prescription orders: A quasi-experimental study in Iran

    PubMed Central

    Khammarnia, Mohammad; Sharifian, Roxana; Zand, Farid; Barati, Omid; Keshtkaran, Ali; Sabetian, Golnar; Shahrokh, , Nasim; Setoodezadeh, Fatemeh

    2017-01-01

    Background: One way to reduce medical errors associated with physician orders is computerized physician order entry (CPOE) software. This study was conducted to compare prescription orders between 2 groups before and after CPOE implementation in a hospital. Methods: We conducted a before-after prospective study in 2 intensive care unit (ICU) wards (as intervention and control wards) in the largest tertiary public hospital in South of Iran during 2014 and 2016. All prescription orders were validated by a clinical pharmacist and an ICU physician. The rates of ordering the errors in medical orders were compared before (manual ordering) and after implementation of the CPOE. A standard checklist was used for data collection. For the data analysis, SPSS Version 21, descriptive statistics, and analytical tests such as McNemar, chi-square, and logistic regression were used. Results: The CPOE significantly decreased 2 types of errors, illegible orders and lack of writing the drug form, in the intervention ward compared to the control ward (p< 0.05); however, the 2 errors increased due to the defect in the CPOE (p< 0.001). The use of CPOE decreased the prescription errors from 19% to 3% (p= 0.001), However, no differences were observed in the control ward (p<0.05). In addition, more errors occurred in the morning shift (p< 0.001). Conclusion: In general, the use of CPOE significantly reduced the prescription errors. Nonetheless, more caution should be exercised in the use of this system, and its deficiencies should be resolved. Furthermore, it is recommended that CPOE be used to improve the quality of delivered services in hospitals. PMID:29445698

  6. The impact of computerized physician order entry on prescription orders: A quasi-experimental study in Iran.

    PubMed

    Khammarnia, Mohammad; Sharifian, Roxana; Zand, Farid; Barati, Omid; Keshtkaran, Ali; Sabetian, Golnar; Shahrokh, Nasim; Setoodezadeh, Fatemeh

    2017-01-01

    Background: One way to reduce medical errors associated with physician orders is computerized physician order entry (CPOE) software. This study was conducted to compare prescription orders between 2 groups before and after CPOE implementation in a hospital. Methods: We conducted a before-after prospective study in 2 intensive care unit (ICU) wards (as intervention and control wards) in the largest tertiary public hospital in South of Iran during 2014 and 2016. All prescription orders were validated by a clinical pharmacist and an ICU physician. The rates of ordering the errors in medical orders were compared before (manual ordering) and after implementation of the CPOE. A standard checklist was used for data collection. For the data analysis, SPSS Version 21, descriptive statistics, and analytical tests such as McNemar, chi-square, and logistic regression were used. Results: The CPOE significantly decreased 2 types of errors, illegible orders and lack of writing the drug form, in the intervention ward compared to the control ward (p< 0.05); however, the 2 errors increased due to the defect in the CPOE (p< 0.001). The use of CPOE decreased the prescription errors from 19% to 3% (p= 0.001), However, no differences were observed in the control ward (p<0.05). In addition, more errors occurred in the morning shift (p< 0.001). Conclusion: In general, the use of CPOE significantly reduced the prescription errors. Nonetheless, more caution should be exercised in the use of this system, and its deficiencies should be resolved. Furthermore, it is recommended that CPOE be used to improve the quality of delivered services in hospitals.

  7. A Complementary Note to 'A Lag-1 Smoother Approach to System-Error Estimation': The Intrinsic Limitations of Residual Diagnostics

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo

    2015-01-01

    Recently, this author studied an approach to the estimation of system error based on combining observation residuals derived from a sequential filter and fixed lag-1 smoother. While extending the methodology to a variational formulation, experimenting with simple models and making sure consistency was found between the sequential and variational formulations, the limitations of the residual-based approach came clearly to the surface. This note uses the sequential assimilation application to simple nonlinear dynamics to highlight the issue. Only when some of the underlying error statistics are assumed known is it possible to estimate the unknown component. In general, when considerable uncertainties exist in the underlying statistics as a whole, attempts to obtain separate estimates of the various error covariances are bound to lead to misrepresentation of errors. The conclusions are particularly relevant to present-day attempts to estimate observation-error correlations from observation residual statistics. A brief illustration of the issue is also provided by comparing estimates of error correlations derived from a quasi-operational assimilation system and a corresponding Observing System Simulation Experiments framework.

  8. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.

    2010-08-10

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error),more » and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing upper limits that applies to all detection algorithms.« less

  9. Empirical performance of interpolation techniques in risk-neutral density (RND) estimation

    NASA Astrophysics Data System (ADS)

    Bahaludin, H.; Abdullah, M. H.

    2017-03-01

    The objective of this study is to evaluate the empirical performance of interpolation techniques in risk-neutral density (RND) estimation. Firstly, the empirical performance is evaluated by using statistical analysis based on the implied mean and the implied variance of RND. Secondly, the interpolation performance is measured based on pricing error. We propose using the leave-one-out cross-validation (LOOCV) pricing error for interpolation selection purposes. The statistical analyses indicate that there are statistical differences between the interpolation techniques:second-order polynomial, fourth-order polynomial and smoothing spline. The results of LOOCV pricing error shows that interpolation by using fourth-order polynomial provides the best fitting to option prices in which it has the lowest value error.

  10. Evaluating flow cytometer performance with weighted quadratic least squares analysis of LED and multi-level bead data

    PubMed Central

    Parks, David R.; Khettabi, Faysal El; Chase, Eric; Hoffman, Robert A.; Perfetto, Stephen P.; Spidlen, Josef; Wood, James C.S.; Moore, Wayne A.; Brinkman, Ryan R.

    2017-01-01

    We developed a fully automated procedure for analyzing data from LED pulses and multi-level bead sets to evaluate backgrounds and photoelectron scales of cytometer fluorescence channels. The method improves on previous formulations by fitting a full quadratic model with appropriate weighting and by providing standard errors and peak residuals as well as the fitted parameters themselves. Here we describe the details of the methods and procedures involved and present a set of illustrations and test cases that demonstrate the consistency and reliability of the results. The automated analysis and fitting procedure is generally quite successful in providing good estimates of the Spe (statistical photoelectron) scales and backgrounds for all of the fluorescence channels on instruments with good linearity. The precision of the results obtained from LED data is almost always better than for multi-level bead data, but the bead procedure is easy to carry out and provides results good enough for most purposes. Including standard errors on the fitted parameters is important for understanding the uncertainty in the values of interest. The weighted residuals give information about how well the data fits the model, and particularly high residuals indicate bad data points. Known photoelectron scales and measurement channel backgrounds make it possible to estimate the precision of measurements at different signal levels and the effects of compensated spectral overlap on measurement quality. Combining this information with measurements of standard samples carrying dyes of biological interest, we can make accurate comparisons of dye sensitivity among different instruments. Our method is freely available through the R/Bioconductor package flowQB. PMID:28160404

  11. SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.

    PubMed

    Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S

    2012-06-01

    With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.

  12. Statistics of the radiated field of a space-to-earth microwave power transfer system

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Leininger, G.

    1976-01-01

    Statistics such as average power density pattern, variance of the power density pattern and variance of the beam pointing error are related to hardware parameters such as transmitter rms phase error and rms amplitude error. Also a limitation on spectral width of the phase reference for phase control was established. A 1 km diameter transmitter appears feasible provided the total rms insertion phase errors of the phase control modules does not exceed 10 deg, amplitude errors do not exceed 10% rms, and the phase reference spectral width does not exceed approximately 3 kHz. With these conditions the expected radiation pattern is virtually the same as the error free pattern, and the rms beam pointing error would be insignificant (approximately 10 meters).

  13. Predictors of Errors of Novice Java Programmers

    ERIC Educational Resources Information Center

    Bringula, Rex P.; Manabat, Geecee Maybelline A.; Tolentino, Miguel Angelo A.; Torres, Edmon L.

    2012-01-01

    This descriptive study determined which of the sources of errors would predict the errors committed by novice Java programmers. Descriptive statistics revealed that the respondents perceived that they committed the identified eighteen errors infrequently. Thought error was perceived to be the main source of error during the laboratory programming…

  14. An Artificial Intelligence Approach to Analyzing Student Errors in Statistics.

    ERIC Educational Resources Information Center

    Sebrechts, Marc M.; Schooler, Lael J.

    1987-01-01

    Describes the development of an artificial intelligence system called GIDE that analyzes student errors in statistics problems by inferring the students' intentions. Learning strategies involved in problem solving are discussed and the inclusion of goal structures is explained. (LRW)

  15. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  16. Empirical investigation into depth-resolution of Magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, N.; Ogaya, X.

    2017-12-01

    We investigate the depth-resolution of MT data comparing reconstructed 1D resistivity profiles with measured resistivity and lithostratigraphy from borehole data. Inversion of MT data has been widely used to reconstruct the 1D fine-layered resistivity structure beneath an isolated Magnetotelluric (MT) station. Uncorrelated noise is generally assumed to be associated to MT data. However, wrong assumptions on error statistics have been proved to strongly bias the results obtained in geophysical inversions. In particular the number of resolved layers at depth strongly depends on error statistics. In this study, we applied a trans-dimensional McMC algorithm for reconstructing the 1D resistivity profile near-by the location of a 1500 m-deep borehole, using MT data. We resolve the MT inverse problem imposing different models for the error statistics associated to the MT data. Following a Hierachical Bayes' approach, we also inverted for the hyper-parameters associated to each error statistics model. Preliminary results indicate that assuming un-correlated noise leads to a number of resolved layers larger than expected from the retrieved lithostratigraphy. Moreover, comparing the inversion of synthetic resistivity data obtained from the "true" resistivity stratification measured along the borehole shows that a consistent number of resistivity layers can be obtained using a Gaussian model for the error statistics, with substantial correlation length.

  17. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means

    PubMed Central

    2014-01-01

    In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878

  18. Determination of Type I Error Rates and Power of Answer Copying Indices under Various Conditions

    ERIC Educational Resources Information Center

    Yormaz, Seha; Sünbül, Önder

    2017-01-01

    This study aims to determine the Type I error rates and power of S[subscript 1] , S[subscript 2] indices and kappa statistic at detecting copying on multiple-choice tests under various conditions. It also aims to determine how copying groups are created in order to calculate how kappa statistics affect Type I error rates and power. In this study,…

  19. Multiple Category-Lot Quality Assurance Sampling: A New Classification System with Application to Schistosomiasis Control

    PubMed Central

    Olives, Casey; Valadez, Joseph J.; Brooker, Simon J.; Pagano, Marcello

    2012-01-01

    Background Originally a binary classifier, Lot Quality Assurance Sampling (LQAS) has proven to be a useful tool for classification of the prevalence of Schistosoma mansoni into multiple categories (≤10%, >10 and <50%, ≥50%), and semi-curtailed sampling has been shown to effectively reduce the number of observations needed to reach a decision. To date the statistical underpinnings for Multiple Category-LQAS (MC-LQAS) have not received full treatment. We explore the analytical properties of MC-LQAS, and validate its use for the classification of S. mansoni prevalence in multiple settings in East Africa. Methodology We outline MC-LQAS design principles and formulae for operating characteristic curves. In addition, we derive the average sample number for MC-LQAS when utilizing semi-curtailed sampling and introduce curtailed sampling in this setting. We also assess the performance of MC-LQAS designs with maximum sample sizes of n = 15 and n = 25 via a weighted kappa-statistic using S. mansoni data collected in 388 schools from four studies in East Africa. Principle Findings Overall performance of MC-LQAS classification was high (kappa-statistic of 0.87). In three of the studies, the kappa-statistic for a design with n = 15 was greater than 0.75. In the fourth study, where these designs performed poorly (kappa-statistic less than 0.50), the majority of observations fell in regions where potential error is known to be high. Employment of semi-curtailed and curtailed sampling further reduced the sample size by as many as 0.5 and 3.5 observations per school, respectively, without increasing classification error. Conclusion/Significance This work provides the needed analytics to understand the properties of MC-LQAS for assessing the prevalance of S. mansoni and shows that in most settings a sample size of 15 children provides a reliable classification of schools. PMID:22970333

  20. An analytic technique for statistically modeling random atomic clock errors in estimation

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1981-01-01

    Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.

  1. Studies of the extreme ultraviolet/soft x-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, R.A.

    1978-01-01

    The results of an extensive sky survey of the extreme ultraviolet (EUV)/soft x-ray background are reported. The data were obtained with a focusing telescope designed and calibrated at U.C. Berkeley which observed EUV sources and the diffuse background as part of the Apollo-Soyuz mission in July, 1975. With a primary field-of-view of 2.3 + 0.1/sup 0/ FWHM and four EUV bandpass filters (16 to 25, 20 to 73, 80 to 108, and 80 to 250 eV) the EUV telescope obtained background data included in the final observational sample for 21 discrete sky locations and 11 large angular scans, as wellmore » as for a number of shorter observations. Analysis of the data reveals as intense flux above 80 eV energy, with upper limits to the background intensity given for the lower energy filters Ca 2 x 10/sup 4/ and 6 x 10/sup 2/ ph cm/sup -2/ sec/sup -1/ ster/sup -1/ eV/sup -1/ at 21 and 45 eV respectively). The 80 to 108 eV flux agrees within statistical errors with the earlier results of Cash, Malina and Stern (1976): the Apollo-Soyuz average reported intensity is 4.0 +- 1.3 ph cm/sup -2/ sec/sup -1/ ster/sup -1/ eV/sup -1/ at Ca 100 eV, or roughly a factor of ten higher than the corresponding 250 eV intensity. The uniformity of the background flux is uncertain due to limitations in the statistical accuracy of the data; upper limits to the point-to-point standard deviation of the background intensity are (..delta..I/I approximately less than 0.8 +- 0.4 (80 to 108 eV) and approximately less than 0.4 +- 0.2 (80 to 250 eV). No evidence is found for a correlation between the telescope count rate and earth-based parameters (zenith angle, sun angle, etc.) for E approximately greater than 80 eV (the lower energy bandpasses are significantly affected by scattered solar radiation. Unlike some previous claims for the soft x-ray background, no simple dependence upon galactic latitude is seen.« less

  2. A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada.

    PubMed

    Ménard, Richard; Deshaies-Jacques, Martin; Gasset, Nicolas

    2016-09-01

    An objective analysis is one of the main components of data assimilation. By combining observations with the output of a predictive model we combine the best features of each source of information: the complete spatial and temporal coverage provided by models, with a close representation of the truth provided by observations. The process of combining observations with a model output is called an analysis. To produce an analysis requires the knowledge of observation and model errors, as well as its spatial correlation. This paper is devoted to the development of methods of estimation of these error variances and the characteristic length-scale of the model error correlation for its operational use in the Canadian objective analysis system. We first argue in favor of using compact support correlation functions, and then introduce three estimation methods: the Hollingsworth-Lönnberg (HL) method in local and global form, the maximum likelihood method (ML), and the [Formula: see text] diagnostic method. We perform one-dimensional (1D) simulation studies where the error variance and true correlation length are known, and perform an estimation of both error variances and correlation length where both are non-uniform. We show that a local version of the HL method can capture accurately the error variances and correlation length at each observation site, provided that spatial variability is not too strong. However, the operational objective analysis requires only a single and globally valid correlation length. We examine whether any statistics of the local HL correlation lengths could be a useful estimate, or whether other global estimation methods such as by the global HL, ML, or [Formula: see text] should be used. We found in both 1D simulation and using real data that the ML method is able to capture physically significant aspects of the correlation length, while most other estimates give unphysical and larger length-scale values. This paper describes a proposed improvement of the objective analysis of surface pollutants at Environment and Climate Change Canada (formerly known as Environment Canada). Objective analyses are essentially surface maps of air pollutants that are obtained by combining observations with an air quality model output, and are thought to provide a complete and more accurate representation of the air quality. The highlight of this study is an analysis of methods to estimate the model (or background) error correlation length-scale. The error statistics are an important and critical component to the analysis scheme.

  3. A statistical survey of heat input parameters into the cusp thermosphere

    NASA Astrophysics Data System (ADS)

    Moen, J. I.; Skjaeveland, A.; Carlson, H. C.

    2017-12-01

    Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.

  4. Ocular morbidity prevalence among school children in Shimla, Himachal, North India

    PubMed Central

    Gupta, Madhu; Gupta, Bhupinder P; Chauhan, Anil; Bhardwaj, Ashok

    2009-01-01

    Background Data on eye diseases among school children is not readily available. Considering the fact that one-third of India's blind lose their eyesight before the age of 20 years and many of them are under five when they become blind, early detection and treatment of ocular morbidity among children is important. Aim To estimate the prevalence of ocular morbidity among school children of age 6-16 years. Settings Government and private coeducational schools in urban area of Shimla. Design Cross-sectional Materials and Methods Government and private coeducational schools selected by stratified random sampling. About 1561 school children, studying in elementary through secondary class in these schools were examined from August 2001 to January 2002 in Shimla. A doctor did visual acuity and detailed ophthalmic examination. Statistical analysis The Chi-square test was used to test differences in proportions. Differences were considered to be statistically significant at the 5% level. Results Prevalence of ocular morbidity was 31.6% (CI=29.9-32.1%), refractive errors 22% (CI=21.1-22.8%), squint 2.5% (CI=2.4-2.6%), color blindness 2.3% (CI=2.2-2.4%), vitamin A deficiency 1.8 % (CI=1.7-1.9%), conjunctivitis 0.8% (CI=0.79-0.81%). Overall prevalence of ocular morbidity in government and private schools did not show any statistical significant difference. Prevalence of conjunctivitis was significantly (P<0.5) more in government schools. Conclusion A high prevalence of ocular morbidity among high-school children was observed. Refractive errors were the most common ocular disorders. PMID:19237787

  5. Evaluation of assumptions in soil moisture triple collocation analysis

    USDA-ARS?s Scientific Manuscript database

    Triple collocation analysis (TCA) enables estimation of error variances for three or more products that retrieve or estimate the same geophysical variable using mutually-independent methods. Several statistical assumptions regarding the statistical nature of errors (e.g., mutual independence and ort...

  6. Issues with data and analyses: Errors, underlying themes, and potential solutions

    PubMed Central

    Allison, David B.

    2018-01-01

    Some aspects of science, taken at the broadest level, are universal in empirical research. These include collecting, analyzing, and reporting data. In each of these aspects, errors can and do occur. In this work, we first discuss the importance of focusing on statistical and data errors to continually improve the practice of science. We then describe underlying themes of the types of errors and postulate contributing factors. To do so, we describe a case series of relatively severe data and statistical errors coupled with surveys of some types of errors to better characterize the magnitude, frequency, and trends. Having examined these errors, we then discuss the consequences of specific errors or classes of errors. Finally, given the extracted themes, we discuss methodological, cultural, and system-level approaches to reducing the frequency of commonly observed errors. These approaches will plausibly contribute to the self-critical, self-correcting, ever-evolving practice of science, and ultimately to furthering knowledge. PMID:29531079

  7. Microscopic saw mark analysis: an empirical approach.

    PubMed

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2015-01-01

    Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.

  8. Evaluation of the Effect of Noise on the Rate of Errors and Speed of Work by the Ergonomic Test of Two-Hand Co-Ordination

    PubMed Central

    Habibi, Ehsanollah; Dehghan, Habibollah; Dehkordy, Sina Eshraghy; Maracy, Mohammad Reza

    2013-01-01

    Background: Among the most important and effective factors affecting the efficiency of the human workforce are accuracy, promptness, and ability. In the context of promoting levels and quality of productivity, the aim of this study was to investigate the effects of exposure to noise on the rate of errors, speed of work, and capability in performing manual activities. Methods: This experimental study was conducted on 96 students (52 female and 44 male) of the Isfahan Medical Science University with the average and standard deviations of age, height, and weight of 22.81 (3.04) years, 171.67 (8.51) cm, and 65.05 (13.13) kg, respectively. Sampling was conducted with a randomized block design. Along with controlling for intervening factors, a combination of sound pressure levels [65 dB (A), 85 dB (A), and 95 dB (A)] and exposure times (0, 20, and 40) were used for evaluation of precision and speed of action of the participants, in the ergonomic test of two-hand coordination. Data was analyzed by SPSS18 software using a descriptive and analytical statistical method by analysis of covariance (ANCOVA) repeated measures. Results: The results of this study showed that increasing sound pressure level from 65 to 95 dB in network ‘A’ increased the speed of work (P < 0.05). Increase in the exposure time (0 to 40 min of exposure) and gender showed no significant differences statistically in speed of work (P > 0.05). Male participants got annoyed from the noise more than females. Also, increase in sound pressure level increased the rate of error (P < 0.05). Conclusions: According to the results of this research, increasing the sound pressure level decreased efficiency and increased the errors and in exposure to sounds less than 85 dB in the beginning, the efficiency decreased initially and then increased in a mild slope. PMID:23930164

  9. Information gains from cosmic microwave background experiments

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Amara, Adam; Refregier, Alexandre; Paranjape, Aseem; Akeret, Joël

    2014-07-01

    To shed light on the fundamental problems posed by dark energy and dark matter, a large number of experiments have been performed and combined to constrain cosmological models. We propose a novel way of quantifying the information gained by updates on the parameter constraints from a series of experiments which can either complement earlier measurements or replace them. For this purpose, we use the Kullback-Leibler divergence or relative entropy from information theory to measure differences in the posterior distributions in model parameter space from a pair of experiments. We apply this formalism to a historical series of cosmic microwave background experiments ranging from Boomerang to WMAP, SPT, and Planck. Considering different combinations of these experiments, we thus estimate the information gain in units of bits and distinguish contributions from the reduction of statistical errors and the "surprise" corresponding to a significant shift of the parameters' central values. For this experiment series, we find individual relative entropy gains ranging from about 1 to 30 bits. In some cases, e.g. when comparing WMAP and Planck results, we find that the gains are dominated by the surprise rather than by improvements in statistical precision. We discuss how this technique provides a useful tool for both quantifying the constraining power of data from cosmological probes and detecting the tensions between experiments.

  10. Spectral characteristics of background error covariance and multiscale data assimilation

    DOE PAGES

    Li, Zhijin; Cheng, Xiaoping; Gustafson, Jr., William I.; ...

    2016-05-17

    The steady increase of the spatial resolutions of numerical atmospheric and oceanic circulation models has occurred over the past decades. Horizontal grid spacing down to the order of 1 km is now often used to resolve cloud systems in the atmosphere and sub-mesoscale circulation systems in the ocean. These fine resolution models encompass a wide range of temporal and spatial scales, across which dynamical and statistical properties vary. In particular, dynamic flow systems at small scales can be spatially localized and temporarily intermittent. Difficulties of current data assimilation algorithms for such fine resolution models are numerically and theoretically examined. Ourmore » analysis shows that the background error correlation length scale is larger than 75 km for streamfunctions and is larger than 25 km for water vapor mixing ratios, even for a 2-km resolution model. A theoretical analysis suggests that such correlation length scales prevent the currently used data assimilation schemes from constraining spatial scales smaller than 150 km for streamfunctions and 50 km for water vapor mixing ratios. Moreover, our results highlight the need to fundamentally modify currently used data assimilation algorithms for assimilating high-resolution observations into the aforementioned fine resolution models. Lastly, within the framework of four-dimensional variational data assimilation, a multiscale methodology based on scale decomposition is suggested and challenges are discussed.« less

  11. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2017-03-01

    We show how to calculate the secure final key rate in the four-intensity decoy-state measurement-device-independent quantum key distribution protocol with both source errors and statistical fluctuations with a certain failure probability. Our results rely only on the range of only a few parameters in the source state. All imperfections in this protocol have been taken into consideration without assuming any specific error patterns of the source.

  12. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    PubMed Central

    Tian, Zengshan; Xu, Kunjie; Yu, Xiang

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349

  13. Error analysis for RADAR neighbor matching localization in linear logarithmic strength varying Wi-Fi environment.

    PubMed

    Zhou, Mu; Tian, Zengshan; Xu, Kunjie; Yu, Xiang; Wu, Haibo

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.

  14. Properties of permutation-based gene tests and controlling type 1 error using a summary statistic based gene test

    PubMed Central

    2013-01-01

    Background The advent of genome-wide association studies has led to many novel disease-SNP associations, opening the door to focused study on their biological underpinnings. Because of the importance of analyzing these associations, numerous statistical methods have been devoted to them. However, fewer methods have attempted to associate entire genes or genomic regions with outcomes, which is potentially more useful knowledge from a biological perspective and those methods currently implemented are often permutation-based. Results One property of some permutation-based tests is that their power varies as a function of whether significant markers are in regions of linkage disequilibrium (LD) or not, which we show from a theoretical perspective. We therefore develop two methods for quantifying the degree of association between a genomic region and outcome, both of whose power does not vary as a function of LD structure. One method uses dimension reduction to “filter” redundant information when significant LD exists in the region, while the other, called the summary-statistic test, controls for LD by scaling marker Z-statistics using knowledge of the correlation matrix of markers. An advantage of this latter test is that it does not require the original data, but only their Z-statistics from univariate regressions and an estimate of the correlation structure of markers, and we show how to modify the test to protect the type 1 error rate when the correlation structure of markers is misspecified. We apply these methods to sequence data of oral cleft and compare our results to previously proposed gene tests, in particular permutation-based ones. We evaluate the versatility of the modification of the summary-statistic test since the specification of correlation structure between markers can be inaccurate. Conclusion We find a significant association in the sequence data between the 8q24 region and oral cleft using our dimension reduction approach and a borderline significant association using the summary-statistic based approach. We also implement the summary-statistic test using Z-statistics from an already-published GWAS of Chronic Obstructive Pulmonary Disorder (COPD) and correlation structure obtained from HapMap. We experiment with the modification of this test because the correlation structure is assumed imperfectly known. PMID:24199751

  15. Variability in Post-Error Behavioral Adjustment Is Associated with Functional Abnormalities in the Temporal Cortex in Children with ADHD

    ERIC Educational Resources Information Center

    Spinelli, Simona; Vasa, Roma A.; Joel, Suresh; Nelson, Tess E.; Pekar, James J.; Mostofsky, Stewart H.

    2011-01-01

    Background: Error processing is reflected, behaviorally, by slower reaction times (RT) on trials immediately following an error (post-error). Children with attention-deficit hyperactivity disorder (ADHD) fail to show RT slowing and demonstrate increased intra-subject variability (ISV) on post-error trials. The neural correlates of these behavioral…

  16. High Prevalence of Refractive Errors in 7 Year Old Children in Iran

    PubMed Central

    HASHEMI, Hassan; YEKTA, Abbasali; JAFARZADEHPUR, Ebrahim; OSTADIMOGHADDAM, Hadi; ETEMAD, Koorosh; ASHARLOUS, Amir; NABOVATI, Payam; KHABAZKHOOB, Mehdi

    2016-01-01

    Background: The latest WHO report indicates that refractive errors are the leading cause of visual impairment throughout the world. The aim of this study was to determine the prevalence of myopia, hyperopia, and astigmatism in 7 yr old children in Iran. Methods: In a cross-sectional study in 2013 with multistage cluster sampling, first graders were randomly selected from 8 cities in Iran. All children were tested by an optometrist for uncorrected and corrected vision, and non-cycloplegic and cycloplegic refraction. Refractive errors in this study were determined based on spherical equivalent (SE) cyloplegic refraction. Results: From 4614 selected children, 89.0% participated in the study, and 4072 were eligible. The prevalence rates of myopia, hyperopia and astigmatism were 3.04% (95% CI: 2.30–3.78), 6.20% (95% CI: 5.27–7.14), and 17.43% (95% CI: 15.39–19.46), respectively. Prevalence of myopia (P=0.925) and astigmatism (P=0.056) were not statistically significantly different between the two genders, but the odds of hyperopia were 1.11 (95% CI: 1.01–2.05) times higher in girls (P=0.011). The prevalence of with-the-rule astigmatism was 12.59%, against-the-rule was 2.07%, and oblique 2.65%. Overall, 22.8% (95% CI: 19.7–24.9) of the schoolchildren in this study had at least one type of refractive error. Conclusion: One out of every 5 schoolchildren had some refractive error. Conducting multicenter studies throughout the Middle East can be very helpful in understanding the current distribution patterns and etiology of refractive errors compared to the previous decade. PMID:27114984

  17. Scout trajectory error propagation computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1982-01-01

    Since 1969, flight experience has been used as the basis for predicting Scout orbital accuracy. The data used for calculating the accuracy consists of errors in the trajectory parameters (altitude, velocity, etc.) at stage burnout as observed on Scout flights. Approximately 50 sets of errors are used in Monte Carlo analysis to generate error statistics in the trajectory parameters. A covariance matrix is formed which may be propagated in time. The mechanization of this process resulted in computer program Scout Trajectory Error Propagation (STEP) and is described herein. Computer program STEP may be used in conjunction with the Statistical Orbital Analysis Routine to generate accuracy in the orbit parameters (apogee, perigee, inclination, etc.) based upon flight experience.

  18. Do stochastic inhomogeneities affect dark-energy precision measurements?

    PubMed

    Ben-Dayan, I; Gasperini, M; Marozzi, G; Nugier, F; Veneziano, G

    2013-01-11

    The effect of a stochastic background of cosmological perturbations on the luminosity-redshift relation is computed to second order through a recently proposed covariant and gauge-invariant light-cone averaging procedure. The resulting expressions are free from both ultraviolet and infrared divergences, implying that such perturbations cannot mimic a sizable fraction of dark energy. Different averages are estimated and depend on the particular function of the luminosity distance being averaged. The energy flux being minimally affected by perturbations at large z is proposed as the best choice for precision estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic) variance induces statistical errors on Ω(Λ)(z) typically lying in the few-percent range.

  19. Leuconostoc Mesenteroides Growth in Food Products: Prediction and Sensitivity Analysis by Adaptive-Network-Based Fuzzy Inference Systems

    PubMed Central

    Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien

    2013-01-01

    Background An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. Methods The ANFIS and ANN models were compared in terms of six statistical indices calculated by comparing their prediction results with actual data: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R 2). Graphical plots were also used for model comparison. Conclusions The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. PMID:23705023

  20. How to Create Automatically Graded Spreadsheets for Statistics Courses

    ERIC Educational Resources Information Center

    LoSchiavo, Frank M.

    2016-01-01

    Instructors often use spreadsheet software (e.g., Microsoft Excel) in their statistics courses so that students can gain experience conducting computerized analyses. Unfortunately, students tend to make several predictable errors when programming spreadsheets. Without immediate feedback, programming errors are likely to go undetected, and as a…

  1. Meta-analysis inside and outside particle physics: two traditions that should converge?

    PubMed

    Baker, Rose D; Jackson, Dan

    2013-06-01

    The use of meta-analysis in medicine and epidemiology really took off in the 1970s. However, in high-energy physics, the Particle Data Group has been carrying out meta-analyses of measurements of particle masses and other properties since 1957. Curiously, there has been virtually no interaction between those working inside and outside particle physics. In this paper, we use statistical models to study two major differences in practice. The first is the usefulness of systematic errors, which physicists are now beginning to quote in addition to statistical errors. The second is whether it is better to treat heterogeneity by scaling up errors as do the Particle Data Group or by adding a random effect as does the rest of the community. Besides fitting models, we derive and use an exact test of the error-scaling hypothesis. We also discuss the other methodological differences between the two streams of meta-analysis. Our conclusion is that systematic errors are not currently very useful and that the conventional random effects model, as routinely used in meta-analysis, has a useful role to play in particle physics. The moral we draw for statisticians is that we should be more willing to explore 'grassroots' areas of statistical application, so that good statistical practice can flow both from and back to the statistical mainstream. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Assessing colour-dependent occupation statistics inferred from galaxy group catalogues

    NASA Astrophysics Data System (ADS)

    Campbell, Duncan; van den Bosch, Frank C.; Hearin, Andrew; Padmanabhan, Nikhil; Berlind, Andreas; Mo, H. J.; Tinker, Jeremy; Yang, Xiaohu

    2015-09-01

    We investigate the ability of current implementations of galaxy group finders to recover colour-dependent halo occupation statistics. To test the fidelity of group catalogue inferred statistics, we run three different group finders used in the literature over a mock that includes galaxy colours in a realistic manner. Overall, the resulting mock group catalogues are remarkably similar, and most colour-dependent statistics are recovered with reasonable accuracy. However, it is also clear that certain systematic errors arise as a consequence of correlated errors in group membership determination, central/satellite designation, and halo mass assignment. We introduce a new statistic, the halo transition probability (HTP), which captures the combined impact of all these errors. As a rule of thumb, errors tend to equalize the properties of distinct galaxy populations (i.e. red versus blue galaxies or centrals versus satellites), and to result in inferred occupation statistics that are more accurate for red galaxies than for blue galaxies. A statistic that is particularly poorly recovered from the group catalogues is the red fraction of central galaxies as a function of halo mass. Group finders do a good job in recovering galactic conformity, but also have a tendency to introduce weak conformity when none is present. We conclude that proper inference of colour-dependent statistics from group catalogues is best achieved using forward modelling (i.e. running group finders over mock data) or by implementing a correction scheme based on the HTP, as long as the latter is not too strongly model dependent.

  3. Errors in causal inference: an organizational schema for systematic error and random error.

    PubMed

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Real-Time Identification of Wheel Terrain Interaction Models for Enhanced Autonomous Vehicle Mobility

    DTIC Science & Technology

    2014-04-24

    tim at io n Er ro r ( cm ) 0 2 4 6 8 10 Color Statistics Angelova...Color_Statistics_Error) / Average_Slip_Error Position Estimation Error: Global Pose Po si tio n Es tim at io n Er ro r ( cm ) 0 2 4 6 8 10 12 Color...get some kind of clearance for releasing pose and odometry data) collected at the following sites – Taylor, Gascola, Somerset, Fort Bliss and

  5. Linear and Order Statistics Combiners for Pattern Classification

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep; Lau, Sonie (Technical Monitor)

    2001-01-01

    Several researchers have experimentally shown that substantial improvements can be obtained in difficult pattern recognition problems by combining or integrating the outputs of multiple classifiers. This chapter provides an analytical framework to quantify the improvements in classification results due to combining. The results apply to both linear combiners and order statistics combiners. We first show that to a first order approximation, the error rate obtained over and above the Bayes error rate, is directly proportional to the variance of the actual decision boundaries around the Bayes optimum boundary. Combining classifiers in output space reduces this variance, and hence reduces the 'added' error. If N unbiased classifiers are combined by simple averaging. the added error rate can be reduced by a factor of N if the individual errors in approximating the decision boundaries are uncorrelated. Expressions are then derived for linear combiners which are biased or correlated, and the effect of output correlations on ensemble performance is quantified. For order statistics based non-linear combiners, we derive expressions that indicate how much the median, the maximum and in general the i-th order statistic can improve classifier performance. The analysis presented here facilitates the understanding of the relationships among error rates, classifier boundary distributions, and combining in output space. Experimental results on several public domain data sets are provided to illustrate the benefits of combining and to support the analytical results.

  6. The GEOS Ozone Data Assimilation System: Specification of Error Statistics

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    A global three-dimensional ozone data assimilation system has been developed at the Data Assimilation Office of the NASA/Goddard Space Flight Center. The Total Ozone Mapping Spectrometer (TOMS) total ozone and the Solar Backscatter Ultraviolet (SBUV) or (SBUV/2) partial ozone profile observations are assimilated. The assimilation, into an off-line ozone transport model, is done using the global Physical-space Statistical Analysis Scheme (PSAS). This system became operational in December 1999. A detailed description of the statistical analysis scheme, and in particular, the forecast and observation error covariance models is given. A new global anisotropic horizontal forecast error correlation model accounts for a varying distribution of observations with latitude. Correlations are largest in the zonal direction in the tropics where data is sparse. Forecast error variance model is proportional to the ozone field. The forecast error covariance parameters were determined by maximum likelihood estimation. The error covariance models are validated using x squared statistics. The analyzed ozone fields in the winter 1992 are validated against independent observations from ozone sondes and HALOE. There is better than 10% agreement between mean Halogen Occultation Experiment (HALOE) and analysis fields between 70 and 0.2 hPa. The global root-mean-square (RMS) difference between TOMS observed and forecast values is less than 4%. The global RMS difference between SBUV observed and analyzed ozone between 50 and 3 hPa is less than 15%.

  7. On-line estimation of error covariance parameters for atmospheric data assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.

    1995-01-01

    A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.

  8. Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology.

    PubMed

    Bennett, Derrick A; Landry, Denise; Little, Julian; Minelli, Cosetta

    2017-09-19

    Several statistical approaches have been proposed to assess and correct for exposure measurement error. We aimed to provide a critical overview of the most common approaches used in nutritional epidemiology. MEDLINE, EMBASE, BIOSIS and CINAHL were searched for reports published in English up to May 2016 in order to ascertain studies that described methods aimed to quantify and/or correct for measurement error for a continuous exposure in nutritional epidemiology using a calibration study. We identified 126 studies, 43 of which described statistical methods and 83 that applied any of these methods to a real dataset. The statistical approaches in the eligible studies were grouped into: a) approaches to quantify the relationship between different dietary assessment instruments and "true intake", which were mostly based on correlation analysis and the method of triads; b) approaches to adjust point and interval estimates of diet-disease associations for measurement error, mostly based on regression calibration analysis and its extensions. Two approaches (multiple imputation and moment reconstruction) were identified that can deal with differential measurement error. For regression calibration, the most common approach to correct for measurement error used in nutritional epidemiology, it is crucial to ensure that its assumptions and requirements are fully met. Analyses that investigate the impact of departures from the classical measurement error model on regression calibration estimates can be helpful to researchers in interpreting their findings. With regard to the possible use of alternative methods when regression calibration is not appropriate, the choice of method should depend on the measurement error model assumed, the availability of suitable calibration study data and the potential for bias due to violation of the classical measurement error model assumptions. On the basis of this review, we provide some practical advice for the use of methods to assess and adjust for measurement error in nutritional epidemiology.

  9. How allele frequency and study design affect association test statistics with misrepresentation errors.

    PubMed

    Escott-Price, Valentina; Ghodsi, Mansoureh; Schmidt, Karl Michael

    2014-04-01

    We evaluate the effect of genotyping errors on the type-I error of a general association test based on genotypes, showing that, in the presence of errors in the case and control samples, the test statistic asymptotically follows a scaled non-central $\\chi ^2$ distribution. We give explicit formulae for the scaling factor and non-centrality parameter for the symmetric allele-based genotyping error model and for additive and recessive disease models. They show how genotyping errors can lead to a significantly higher false-positive rate, growing with sample size, compared with the nominal significance levels. The strength of this effect depends very strongly on the population distribution of the genotype, with a pronounced effect in the case of rare alleles, and a great robustness against error in the case of large minor allele frequency. We also show how these results can be used to correct $p$-values.

  10. WASP (Write a Scientific Paper) using Excel - 6: Standard error and confidence interval.

    PubMed

    Grech, Victor

    2018-03-01

    The calculation of descriptive statistics includes the calculation of standard error and confidence interval, an inevitable component of data analysis in inferential statistics. This paper provides pointers as to how to do this in Microsoft Excel™. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Statistical Analysis Experiment for Freshman Chemistry Lab.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Describes a laboratory experiment dissolving zinc from galvanized nails in which data can be gathered very quickly for statistical analysis. The data have sufficient significant figures and the experiment yields a nice distribution of random errors. Freshman students can gain an appreciation of the relationships between random error, number of…

  12. Improving UWB-Based Localization in IoT Scenarios with Statistical Models of Distance Error.

    PubMed

    Monica, Stefania; Ferrari, Gianluigi

    2018-05-17

    Interest in the Internet of Things (IoT) is rapidly increasing, as the number of connected devices is exponentially growing. One of the application scenarios envisaged for IoT technologies involves indoor localization and context awareness. In this paper, we focus on a localization approach that relies on a particular type of communication technology, namely Ultra Wide Band (UWB). UWB technology is an attractive choice for indoor localization, owing to its high accuracy. Since localization algorithms typically rely on estimated inter-node distances, the goal of this paper is to evaluate the improvement brought by a simple (linear) statistical model of the distance error. On the basis of an extensive experimental measurement campaign, we propose a general analytical framework, based on a Least Square (LS) method, to derive a novel statistical model for the range estimation error between a pair of UWB nodes. The proposed statistical model is then applied to improve the performance of a few illustrative localization algorithms in various realistic scenarios. The obtained experimental results show that the use of the proposed statistical model improves the accuracy of the considered localization algorithms with a reduction of the localization error up to 66%.

  13. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    PubMed

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  14. A simulation of GPS and differential GPS sensors

    NASA Technical Reports Server (NTRS)

    Rankin, James M.

    1993-01-01

    The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.

  15. Multi-year objective analyses of warm season ground-level ozone and PM2.5 over North America using real-time observations and Canadian operational air quality models

    NASA Astrophysics Data System (ADS)

    Robichaud, A.; Ménard, R.

    2013-05-01

    We present multi-year objective analyses (OA) on a high spatio-temporal resolution (15 or 21 km, every hour) for the warm season period (1 May-31 October) for ground-level ozone (2002-2012) and for fine particulate matter (diameter less than 2.5 microns (PM2.5)) (2004-2012). The OA used here combines the Canadian Air Quality forecast suite with US and Canadian surface air quality monitoring sites. The analysis is based on an optimal interpolation with capabilities for adaptive error statistics for ozone and PM2.5 and an explicit bias correction scheme for the PM2.5 analyses. The estimation of error statistics has been computed using a modified version of the Hollingsworth-Lönnberg's (H-L) method. Various quality controls (gross error check, sudden jump test and background check) have been applied to the observations to remove outliers. An additional quality control is applied to check the consistency of the error statistics estimation model at each observing station and for each hour. The error statistics are further tuned "on the fly" using a χ2 (chi-square) diagnostic, a procedure which verifies significantly better than without tuning. Successful cross-validation experiments were performed with an OA set-up using 90% of observations to build the objective analysis and with the remainder left out as an independent set of data for verification purposes. Furthermore, comparisons with other external sources of information (global models and PM2.5 satellite surface derived measurements) show reasonable agreement. The multi-year analyses obtained provide relatively high precision with an absolute yearly averaged systematic error of less than 0.6 ppbv (parts per billion by volume) and 0.7 μg m-3 (micrograms per cubic meter) for ozone and PM2.5 respectively and a random error generally less than 9 ppbv for ozone and under 12 μg m-3 for PM2.5. In this paper, we focus on two applications: (1) presenting long term averages of objective analysis and analysis increments as a form of summer climatology and (2) analyzing long term (decadal) trends and inter-annual fluctuations using OA outputs. Our results show that high percentiles of ozone and PM2.5 are both following a decreasing trend overall in North America with the eastern part of United States (US) presenting the highest decrease likely due to more effective pollution controls. Some locations, however, exhibited an increasing trend in the mean ozone and PM2.5 such as the northwestern part of North America (northwest US and Alberta). The low percentiles are generally rising for ozone which may be linked to increasing emissions from emerging countries and the resulting pollution brought by the intercontinental transport. After removing the decadal trend, we demonstrate that the inter-annual fluctuations of the high percentiles are significantly correlated with temperature fluctuations for ozone and precipitation fluctuations for PM2.5. We also show that there was a moderately significant correlation between the inter-annual fluctuations of the high percentiles of ozone and PM2.5 with economic indices such as the Industrial Dow Jones and/or the US gross domestic product growth rate.

  16. The performance of the Congruence Among Distance Matrices (CADM) test in phylogenetic analysis

    PubMed Central

    2011-01-01

    Background CADM is a statistical test used to estimate the level of Congruence Among Distance Matrices. It has been shown in previous studies to have a correct rate of type I error and good power when applied to dissimilarity matrices and to ultrametric distance matrices. Contrary to most other tests of incongruence used in phylogenetic analysis, the null hypothesis of the CADM test assumes complete incongruence of the phylogenetic trees instead of congruence. In this study, we performed computer simulations to assess the type I error rate and power of the test. It was applied to additive distance matrices representing phylogenies and to genetic distance matrices obtained from nucleotide sequences of different lengths that were simulated on randomly generated trees of varying sizes, and under different evolutionary conditions. Results Our results showed that the test has an accurate type I error rate and good power. As expected, power increased with the number of objects (i.e., taxa), the number of partially or completely congruent matrices and the level of congruence among distance matrices. Conclusions Based on our results, we suggest that CADM is an excellent candidate to test for congruence and, when present, to estimate its level in phylogenomic studies where numerous genes are analysed simultaneously. PMID:21388552

  17. Mathematical background and attitudes toward statistics in a sample of Spanish college students.

    PubMed

    Carmona, José; Martínez, Rafael J; Sánchez, Manuel

    2005-08-01

    To examine the relation of mathematical background and initial attitudes toward statistics of Spanish college students in social sciences the Survey of Attitudes Toward Statistics was given to 827 students. Multivariate analyses tested the effects of two indicators of mathematical background (amount of exposure and achievement in previous courses) on the four subscales. Analysis suggested grades in previous courses are more related to initial attitudes toward statistics than the number of mathematics courses taken. Mathematical background was related with students' affective responses to statistics but not with their valuing of statistics. Implications of possible research are discussed.

  18. Reducing computation in an i-vector speaker recognition system using a tree-structured universal background model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Richard; De Leon, Phillip L.

    The majority of state-of-the-art speaker recognition systems (SR) utilize speaker models that are derived from an adapted universal background model (UBM) in the form of a Gaussian mixture model (GMM). This is true for GMM supervector systems, joint factor analysis systems, and most recently i-vector systems. In all of the identified systems, the posterior probabilities and sufficient statistics calculations represent a computational bottleneck in both enrollment and testing. We propose a multi-layered hash system, employing a tree-structured GMM–UBM which uses Runnalls’ Gaussian mixture reduction technique, in order to reduce the number of these calculations. Moreover, with this tree-structured hash, wemore » can trade-off reduction in computation with a corresponding degradation of equal error rate (EER). As an example, we also reduce this computation by a factor of 15× while incurring less than 10% relative degradation of EER (or 0.3% absolute EER) when evaluated with NIST 2010 speaker recognition evaluation (SRE) telephone data.« less

  19. Reducing computation in an i-vector speaker recognition system using a tree-structured universal background model

    DOE PAGES

    McClanahan, Richard; De Leon, Phillip L.

    2014-08-20

    The majority of state-of-the-art speaker recognition systems (SR) utilize speaker models that are derived from an adapted universal background model (UBM) in the form of a Gaussian mixture model (GMM). This is true for GMM supervector systems, joint factor analysis systems, and most recently i-vector systems. In all of the identified systems, the posterior probabilities and sufficient statistics calculations represent a computational bottleneck in both enrollment and testing. We propose a multi-layered hash system, employing a tree-structured GMM–UBM which uses Runnalls’ Gaussian mixture reduction technique, in order to reduce the number of these calculations. Moreover, with this tree-structured hash, wemore » can trade-off reduction in computation with a corresponding degradation of equal error rate (EER). As an example, we also reduce this computation by a factor of 15× while incurring less than 10% relative degradation of EER (or 0.3% absolute EER) when evaluated with NIST 2010 speaker recognition evaluation (SRE) telephone data.« less

  20. Evaluating flow cytometer performance with weighted quadratic least squares analysis of LED and multi-level bead data.

    PubMed

    Parks, David R; El Khettabi, Faysal; Chase, Eric; Hoffman, Robert A; Perfetto, Stephen P; Spidlen, Josef; Wood, James C S; Moore, Wayne A; Brinkman, Ryan R

    2017-03-01

    We developed a fully automated procedure for analyzing data from LED pulses and multilevel bead sets to evaluate backgrounds and photoelectron scales of cytometer fluorescence channels. The method improves on previous formulations by fitting a full quadratic model with appropriate weighting and by providing standard errors and peak residuals as well as the fitted parameters themselves. Here we describe the details of the methods and procedures involved and present a set of illustrations and test cases that demonstrate the consistency and reliability of the results. The automated analysis and fitting procedure is generally quite successful in providing good estimates of the Spe (statistical photoelectron) scales and backgrounds for all the fluorescence channels on instruments with good linearity. The precision of the results obtained from LED data is almost always better than that from multilevel bead data, but the bead procedure is easy to carry out and provides results good enough for most purposes. Including standard errors on the fitted parameters is important for understanding the uncertainty in the values of interest. The weighted residuals give information about how well the data fits the model, and particularly high residuals indicate bad data points. Known photoelectron scales and measurement channel backgrounds make it possible to estimate the precision of measurements at different signal levels and the effects of compensated spectral overlap on measurement quality. Combining this information with measurements of standard samples carrying dyes of biological interest, we can make accurate comparisons of dye sensitivity among different instruments. Our method is freely available through the R/Bioconductor package flowQB. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  1. The deficit of joint position sense in the chronic unstable ankle as measured by inversion angle replication error.

    PubMed

    Nakasa, Tomoyuki; Fukuhara, Kohei; Adachi, Nobuo; Ochi, Mitsuo

    2008-05-01

    Functional instability is defined as a repeated ankle inversion sprain and a giving way sensation. Previous studies have described the damage of sensori-motor control in ankle sprain as being a possible cause of functional instability. The aim of this study was to evaluate the inversion angle replication errors in patients with functional instability after ankle sprain. The difference between the index angle and replication angle was measured in 12 subjects with functional instability, with the aim of evaluating the replication error. As a control group, the replication errors of 17 healthy volunteers were investigated. The side-to-side differences of the replication errors were compared between both the groups, and the relationship between the side-to-side differences of the replication errors and the mechanical instability were statistically analyzed in the unstable group. The side-to-side difference of the replication errors was 1.0 +/- 0.7 degrees in the unstable group and 0.2 +/- 0.7 degrees in the control group. There was a statistically significant difference between both the groups. The side-to-side differences of the replication errors in the unstable group did not statistically correlate to the anterior talar translation and talar tilt. The patients with functional instability had the deficit of joint position sense in comparison with healthy volunteers. The replication error did not correlate to the mechanical instability. The patients with functional instability should be treated appropriately in spite of having less mechanical instability.

  2. The Effects of Measurement Error on Statistical Models for Analyzing Change. Final Report.

    ERIC Educational Resources Information Center

    Dunivant, Noel

    The results of six major projects are discussed including a comprehensive mathematical and statistical analysis of the problems caused by errors of measurement in linear models for assessing change. In a general matrix representation of the problem, several new analytic results are proved concerning the parameters which affect bias in…

  3. Student Distractor Choices on the Mathematics Virginia Standards of Learning Middle School Assessments

    ERIC Educational Resources Information Center

    Lewis, Virginia Vimpeny

    2011-01-01

    Number Concepts; Measurement; Geometry; Probability; Statistics; and Patterns, Functions and Algebra. Procedural Errors were further categorized into the following content categories: Computation; Measurement; Statistics; and Patterns, Functions, and Algebra. The results of the analysis showed the main sources of error for 6th, 7th, and 8th…

  4. Pathology-related cases in the Norwegian System of Patient Injury Compensation in the period 2010-2015.

    PubMed

    Alfsen, G Cecilie; Chen, Ying; Kähler, Hanne; Bukholm, Ida Rashida Khan

    2016-12-01

    The Norwegian System of Patient Injury Compensation (NPE) processes compensation claims from patients who complain about malpractice in the health services. A wrong diagnosis in pathology may cause serious injury to the patient, but the incidence of compensation claims is unknown, because pathology is not specified as a separate category in NPE’s statistics. Knowledge about errors is required to assess quality-enhancing measures. We have therefore searched through the NPE records to identify cases whose background stems from errors committed in pathology departments and laboratories. We have searched through the NPE records for cases related to pathology for the years 2010 – 2015. During this period the NPE processed a total of 26 600 cases, of which 93 were related to pathology. The compensation claim was upheld in 66 cases, resulting in total compensation payments amounting to NOK 63 million. False-negative results in the form of undetected diagnoses were the most frequent grounds for compensation claims (63 cases), with an undetected malignant melanoma (n = 23) or atypia in cell samples from the cervix uteri (n = 16) as the major groups. Sixteen cases involved non-diagnostic issues such as mix-up of samples (n = 8), contamination of samples (n = 4) or delayed responses (n = 4). The number of compensation claims caused by errors in pathology diagnostics is low in relative terms. The errors may, however, be of a serious nature, especially if malignant conditions are overlooked or samples mixed up.

  5. Implementation of a flow-dependent background error correlation length scale formulation in the NEMOVAR OSTIA system

    NASA Astrophysics Data System (ADS)

    Fiedler, Emma; Mao, Chongyuan; Good, Simon; Waters, Jennifer; Martin, Matthew

    2017-04-01

    OSTIA is the Met Office's Operational Sea Surface Temperature (SST) and Ice Analysis system, which produces L4 (globally complete, gridded) analyses on a daily basis. Work is currently being undertaken to replace the original OI (Optimal Interpolation) data assimilation scheme with NEMOVAR, a 3D-Var data assimilation method developed for use with the NEMO ocean model. A dual background error correlation length scale formulation is used for SST in OSTIA, as implemented in NEMOVAR. Short and long length scales are combined according to the ratio of the decomposition of the background error variances into short and long spatial correlations. The pre-defined background error variances vary spatially and seasonally, but not on shorter time-scales. If the derived length scales applied to the daily analysis are too long, SST features may be smoothed out. Therefore a flow-dependent component to determining the effective length scale has also been developed. The total horizontal gradient of the background SST field is used to identify regions where the length scale should be shortened. These methods together have led to an improvement in the resolution of SST features compared to the previous OI analysis system, without the introduction of spurious noise. This presentation will show validation results for feature resolution in OSTIA using the OI scheme, the dual length scale NEMOVAR scheme, and the flow-dependent implementation.

  6. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  7. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Measurement and errors of crater statistics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Planetary imagery techniques, errors in measurement or degradation assignment, and statistical formulas are presented with respect to cratering data. Base map photograph preparation, measurement of crater diameters and sampled area, and instruments used are discussed. Possible uncertainties, such as Sun angle, scale factors, degradation classification, and biases in crater recognition are discussed. The mathematical formulas used in crater statistics are presented.

  8. Visual Survey of Infantry Troops. Part 1. Visual Acuity, Refractive Status, Interpupillary Distance and Visual Skills

    DTIC Science & Technology

    1989-06-01

    letters on one line and several letters on the next line, there is no accurate way to credit these extra letters for statistical analysis. The decimal and...contains the descriptive statistics of the objective refractive error components of infantrymen. Figures 8-11 show the frequency distributions for sphere...equivalents. Nonspectacle wearers Table 12 contains the idescriptive statistics for non- spectacle wearers. Based or these refractive error data, about 30

  9. Improving short-term air quality predictions over the U.S. using chemical data assimilation

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Delle Monache, L.; Alessandrini, S.; Saide, P.; Lin, H. C.; Liu, Z.; Pfister, G.; Edwards, D. P.; Baker, B.; Tang, Y.; Lee, P.; Djalalova, I.; Wilczak, J. M.

    2017-12-01

    State and local air quality forecasters across the United States use air quality forecasts from the National Air Quality Forecasting Capability (NAQFC) at the National Oceanic and Atmospheric Administration (NOAA) as one of the key tools to protect the public from adverse air pollution related health effects by dispensing timely information about air pollution episodes. This project funded by the National Aeronautics and Space Administration (NASA) aims to enhance the decision-making process by improving the accuracy of NAQFC short-term predictions of ground-level particulate matter of less than 2.5 µm in diameter (PM2.5) by exploiting NASA Earth Science Data with chemical data assimilation. The NAQFC is based on the Community Multiscale Air Quality (CMAQ) model. To improve the initialization of PM2.5 in CMAQ, we developed a new capability in the community Gridpoint Statistical Interpolation (GSI) system to assimilate Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals in CMAQ. Specifically, we developed new capabilities within GSI to read/write CMAQ data, a forward operator that calculates AOD at 550 nm from CMAQ aerosol chemical composition and an adjoint of the forward operator that translates the changes in AOD to aerosol chemical composition. A generalized background error covariance program called "GEN_BE" has been extended to calculate background error covariance using CMAQ output. The background error variances are generated using a combination of both emissions and meteorological perturbations to better capture sources of uncertainties in PM2.5 simulations. The newly developed CMAQ-GSI system is used to perform daily 24-h PM2.5 forecasts with and without data assimilation from 15 July to 14 August 2014, and the resulting forecasts are compared against AirNOW PM2.5 measurements at 550 stations across the U. S. We find that the assimilation of MODIS AOD retrievals improves initialization of the CMAQ model in terms of improved correlation coefficient and reduced bias. However, we notice a large bias in nighttime PM2.5 simulations which is primarily associated with very shallow boundary layer in the model. The developments and results will be discussed in detail during the presentation.

  10. Sample Size and Statistical Conclusions from Tests of Fit to the Rasch Model According to the Rasch Unidimensional Measurement Model (Rumm) Program in Health Outcome Measurement.

    PubMed

    Hagell, Peter; Westergren, Albert

    Sample size is a major factor in statistical null hypothesis testing, which is the basis for many approaches to testing Rasch model fit. Few sample size recommendations for testing fit to the Rasch model concern the Rasch Unidimensional Measurement Models (RUMM) software, which features chi-square and ANOVA/F-ratio based fit statistics, including Bonferroni and algebraic sample size adjustments. This paper explores the occurrence of Type I errors with RUMM fit statistics, and the effects of algebraic sample size adjustments. Data with simulated Rasch model fitting 25-item dichotomous scales and sample sizes ranging from N = 50 to N = 2500 were analysed with and without algebraically adjusted sample sizes. Results suggest the occurrence of Type I errors with N less then or equal to 500, and that Bonferroni correction as well as downward algebraic sample size adjustment are useful to avoid such errors, whereas upward adjustment of smaller samples falsely signal misfit. Our observations suggest that sample sizes around N = 250 to N = 500 may provide a good balance for the statistical interpretation of the RUMM fit statistics studied here with respect to Type I errors and under the assumption of Rasch model fit within the examined frame of reference (i.e., about 25 item parameters well targeted to the sample).

  11. Data Analysis & Statistical Methods for Command File Errors

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Waggoner, Bruce; Bryant, Larry

    2014-01-01

    This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.

  12. Rank score and permutation testing alternatives for regression quantile estimates

    USGS Publications Warehouse

    Cade, B.S.; Richards, J.D.; Mielke, P.W.

    2006-01-01

    Performance of quantile rank score tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1) were evaluated by simulation for models with p = 2 and 6 predictors, moderate collinearity among predictors, homogeneous and hetero-geneous errors, small to moderate samples (n = 20–300), and central to upper quantiles (0.50–0.99). Test statistics evaluated were the conventional quantile rank score T statistic distributed as χ2 random variable with q degrees of freedom (where q parameters are constrained by H 0:) and an F statistic with its sampling distribution approximated by permutation. The permutation F-test maintained better Type I errors than the T-test for homogeneous error models with smaller n and more extreme quantiles τ. An F distributional approximation of the F statistic provided some improvements in Type I errors over the T-test for models with > 2 parameters, smaller n, and more extreme quantiles but not as much improvement as the permutation approximation. Both rank score tests required weighting to maintain correct Type I errors when heterogeneity under the alternative model increased to 5 standard deviations across the domain of X. A double permutation procedure was developed to provide valid Type I errors for the permutation F-test when null models were forced through the origin. Power was similar for conditions where both T- and F-tests maintained correct Type I errors but the F-test provided some power at smaller n and extreme quantiles when the T-test had no power because of excessively conservative Type I errors. When the double permutation scheme was required for the permutation F-test to maintain valid Type I errors, power was less than for the T-test with decreasing sample size and increasing quantiles. Confidence intervals on parameters and tolerance intervals for future predictions were constructed based on test inversion for an example application relating trout densities to stream channel width:depth.

  13. Trends in statistical methods in articles published in Archives of Plastic Surgery between 2012 and 2017.

    PubMed

    Han, Kyunghwa; Jung, Inkyung

    2018-05-01

    This review article presents an assessment of trends in statistical methods and an evaluation of their appropriateness in articles published in the Archives of Plastic Surgery (APS) from 2012 to 2017. We reviewed 388 original articles published in APS between 2012 and 2017. We categorized the articles that used statistical methods according to the type of statistical method, the number of statistical methods, and the type of statistical software used. We checked whether there were errors in the description of statistical methods and results. A total of 230 articles (59.3%) published in APS between 2012 and 2017 used one or more statistical method. Within these articles, there were 261 applications of statistical methods with continuous or ordinal outcomes, and 139 applications of statistical methods with categorical outcome. The Pearson chi-square test (17.4%) and the Mann-Whitney U test (14.4%) were the most frequently used methods. Errors in describing statistical methods and results were found in 133 of the 230 articles (57.8%). Inadequate description of P-values was the most common error (39.1%). Among the 230 articles that used statistical methods, 71.7% provided details about the statistical software programs used for the analyses. SPSS was predominantly used in the articles that presented statistical analyses. We found that the use of statistical methods in APS has increased over the last 6 years. It seems that researchers have been paying more attention to the proper use of statistics in recent years. It is expected that these positive trends will continue in APS.

  14. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-07-25

    This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load valuesmore » to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  15. A comparison of different statistical methods analyzing hypoglycemia data using bootstrap simulations.

    PubMed

    Jiang, Honghua; Ni, Xiao; Huster, William; Heilmann, Cory

    2015-01-01

    Hypoglycemia has long been recognized as a major barrier to achieving normoglycemia with intensive diabetic therapies. It is a common safety concern for the diabetes patients. Therefore, it is important to apply appropriate statistical methods when analyzing hypoglycemia data. Here, we carried out bootstrap simulations to investigate the performance of the four commonly used statistical models (Poisson, negative binomial, analysis of covariance [ANCOVA], and rank ANCOVA) based on the data from a diabetes clinical trial. Zero-inflated Poisson (ZIP) model and zero-inflated negative binomial (ZINB) model were also evaluated. Simulation results showed that Poisson model inflated type I error, while negative binomial model was overly conservative. However, after adjusting for dispersion, both Poisson and negative binomial models yielded slightly inflated type I errors, which were close to the nominal level and reasonable power. Reasonable control of type I error was associated with ANCOVA model. Rank ANCOVA model was associated with the greatest power and with reasonable control of type I error. Inflated type I error was observed with ZIP and ZINB models.

  16. Water quality management using statistical analysis and time-series prediction model

    NASA Astrophysics Data System (ADS)

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2014-12-01

    This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.

  17. Statistical model for speckle pattern optimization.

    PubMed

    Su, Yong; Zhang, Qingchuan; Gao, Zeren

    2017-11-27

    Image registration is the key technique of optical metrologies such as digital image correlation (DIC), particle image velocimetry (PIV), and speckle metrology. Its performance depends critically on the quality of image pattern, and thus pattern optimization attracts extensive attention. In this article, a statistical model is built to optimize speckle patterns that are composed of randomly positioned speckles. It is found that the process of speckle pattern generation is essentially a filtered Poisson process. The dependence of measurement errors (including systematic errors, random errors, and overall errors) upon speckle pattern generation parameters is characterized analytically. By minimizing the errors, formulas of the optimal speckle radius are presented. Although the primary motivation is from the field of DIC, we believed that scholars in other optical measurement communities, such as PIV and speckle metrology, will benefit from these discussions.

  18. Hypothesis-Testing Demands Trustworthy Data—A Simulation Approach to Inferential Statistics Advocating the Research Program Strategy

    PubMed Central

    Krefeld-Schwalb, Antonia; Witte, Erich H.; Zenker, Frank

    2018-01-01

    In psychology as elsewhere, the main statistical inference strategy to establish empirical effects is null-hypothesis significance testing (NHST). The recent failure to replicate allegedly well-established NHST-results, however, implies that such results lack sufficient statistical power, and thus feature unacceptably high error-rates. Using data-simulation to estimate the error-rates of NHST-results, we advocate the research program strategy (RPS) as a superior methodology. RPS integrates Frequentist with Bayesian inference elements, and leads from a preliminary discovery against a (random) H0-hypothesis to a statistical H1-verification. Not only do RPS-results feature significantly lower error-rates than NHST-results, RPS also addresses key-deficits of a “pure” Frequentist and a standard Bayesian approach. In particular, RPS aggregates underpowered results safely. RPS therefore provides a tool to regain the trust the discipline had lost during the ongoing replicability-crisis. PMID:29740363

  19. Hypothesis-Testing Demands Trustworthy Data-A Simulation Approach to Inferential Statistics Advocating the Research Program Strategy.

    PubMed

    Krefeld-Schwalb, Antonia; Witte, Erich H; Zenker, Frank

    2018-01-01

    In psychology as elsewhere, the main statistical inference strategy to establish empirical effects is null-hypothesis significance testing (NHST). The recent failure to replicate allegedly well-established NHST-results, however, implies that such results lack sufficient statistical power, and thus feature unacceptably high error-rates. Using data-simulation to estimate the error-rates of NHST-results, we advocate the research program strategy (RPS) as a superior methodology. RPS integrates Frequentist with Bayesian inference elements, and leads from a preliminary discovery against a (random) H 0 -hypothesis to a statistical H 1 -verification. Not only do RPS-results feature significantly lower error-rates than NHST-results, RPS also addresses key-deficits of a "pure" Frequentist and a standard Bayesian approach. In particular, RPS aggregates underpowered results safely. RPS therefore provides a tool to regain the trust the discipline had lost during the ongoing replicability-crisis.

  20. The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sudeep; Louis, Thibaut; Calabrese, Erminia

    2014-04-01

    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and showmore » they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.« less

  1. The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data

    NASA Technical Reports Server (NTRS)

    Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon; hide

    2014-01-01

    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.

  2. Robust crop and weed segmentation under uncontrolled outdoor illumination.

    PubMed

    Jeon, Hong Y; Tian, Lei F; Zhu, Heping

    2011-01-01

    An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA).

  3. Employer reasons for failing to report eligible workers’ compensation claims in the BLS survey of occupational injuries and illnesses

    PubMed Central

    Wuellner, Sara E.; Bonauto, David K.

    2016-01-01

    Background Little research has been done to identify reasons employers fail to report some injuries and illnesses in the Bureau of Labor Statistics Survey of Occupational Injuries and Illnesses (SOII). Methods We interviewed the 2012 Washington SOII respondents from establishments that had failed to report one or more eligible workers’ compensation claims in the SOII about their reasons for not reporting specific claims. Qualitative content analysis methods were used to identify themes and patterns in the responses. Results Non‐compliance with OSHA recordkeeping or SOII reporting instructions and data entry errors led to unreported claims. Some employers refused to include claims because they did not consider the injury to be work‐related, despite workers’ compensation eligibility. Participant responses brought the SOII eligibility of some claims into question. Conclusion Systematic and non‐systematic errors lead to SOII underreporting. Insufficient recordkeeping systems and limited knowledge of reporting requirements are barriers to accurate workplace injury records. Am. J. Ind. Med. 59:343–356, 2016. © 2016 The Authors. American Journal of Industrial Medicine Published by Wiley Periodicals, Inc. PMID:26970051

  4. Multiple statistical tests: Lessons from a d20.

    PubMed

    Madan, Christopher R

    2016-01-01

    Statistical analyses are often conducted with α= .05. When multiple statistical tests are conducted, this procedure needs to be adjusted to compensate for the otherwise inflated Type I error. In some instances in tabletop gaming, sometimes it is desired to roll a 20-sided die (or 'd20') twice and take the greater outcome. Here I draw from probability theory and the case of a d20, where the probability of obtaining any specific outcome is (1)/ 20, to determine the probability of obtaining a specific outcome (Type-I error) at least once across repeated, independent statistical tests.

  5. Statistical inference for template aging

    NASA Astrophysics Data System (ADS)

    Schuckers, Michael E.

    2006-04-01

    A change in classification error rates for a biometric device is often referred to as template aging. Here we offer two methods for determining whether the effect of time is statistically significant. The first of these is the use of a generalized linear model to determine if these error rates change linearly over time. This approach generalizes previous work assessing the impact of covariates using generalized linear models. The second approach uses of likelihood ratio tests methodology. The focus here is on statistical methods for estimation not the underlying cause of the change in error rates over time. These methodologies are applied to data from the National Institutes of Standards and Technology Biometric Score Set Release 1. The results of these applications are discussed.

  6. Evaluating concentration estimation errors in ELISA microarray experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Don S.; White, Amanda M.; Varnum, Susan M.

    Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to predict a protein concentration in a sample. Deploying ELISA in a microarray format permits simultaneous prediction of the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Evaluating prediction error is critical to interpreting biological significance and improving the ELISA microarray process. Evaluating prediction error must be automated to realize a reliable high-throughput ELISA microarray system. Methods: In this paper, we present a statistical method based on propagation of error to evaluate prediction errors in the ELISA microarray process. Althoughmore » propagation of error is central to this method, it is effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization and statistical diagnostics when evaluating ELISA microarray prediction errors. We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of prediction errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error.« less

  7. Development of an errorable car-following driver model

    NASA Astrophysics Data System (ADS)

    Yang, H.-H.; Peng, H.

    2010-06-01

    An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.

  8. Data processing in neutron protein crystallography using positron-sensitive detectors

    NASA Astrophysics Data System (ADS)

    Schoenborn, B. P.

    Neutrons provide a unique probe for localizing hydrogen atoms and for distinguishing hydrogen from deuterons. Hydrogen atoms largely determine the three dimensional structure of proteins and are responsible for many catalytic reactions. The study of hydrogen bonding and hydrogen exchange will therefore give insight into reaction mechanisms and conformational fluctuations. In addition, neutrons provide the ability to distinguish N from C and O and to allow correct orientation of groups such as histidine and glutamine. To take advantage of these unique features of neutron crystallography, one needs accurate Fourier maps depicting atomic structure to a high precision. Special attention is given to subtraction of the high background associated with hydrogen containing molecules, which produces a disproportionately large statistical error.

  9. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    PubMed

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  10. On using summary statistics from an external calibration sample to correct for covariate measurement error.

    PubMed

    Guo, Ying; Little, Roderick J; McConnell, Daniel S

    2012-01-01

    Covariate measurement error is common in epidemiologic studies. Current methods for correcting measurement error with information from external calibration samples are insufficient to provide valid adjusted inferences. We consider the problem of estimating the regression of an outcome Y on covariates X and Z, where Y and Z are observed, X is unobserved, but a variable W that measures X with error is observed. Information about measurement error is provided in an external calibration sample where data on X and W (but not Y and Z) are recorded. We describe a method that uses summary statistics from the calibration sample to create multiple imputations of the missing values of X in the regression sample, so that the regression coefficients of Y on X and Z and associated standard errors can be estimated using simple multiple imputation combining rules, yielding valid statistical inferences under the assumption of a multivariate normal distribution. The proposed method is shown by simulation to provide better inferences than existing methods, namely the naive method, classical calibration, and regression calibration, particularly for correction for bias and achieving nominal confidence levels. We also illustrate our method with an example using linear regression to examine the relation between serum reproductive hormone concentrations and bone mineral density loss in midlife women in the Michigan Bone Health and Metabolism Study. Existing methods fail to adjust appropriately for bias due to measurement error in the regression setting, particularly when measurement error is substantial. The proposed method corrects this deficiency.

  11. Error Distribution Evaluation of the Third Vanishing Point Based on Random Statistical Simulation

    NASA Astrophysics Data System (ADS)

    Li, C.

    2012-07-01

    POS, integrated by GPS / INS (Inertial Navigation Systems), has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems). However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus) and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY). How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY) and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ) is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.

  12. A Modeling Framework for Optimal Computational Resource Allocation Estimation: Considering the Trade-offs between Physical Resolutions, Uncertainty and Computational Costs

    NASA Astrophysics Data System (ADS)

    Moslehi, M.; de Barros, F.; Rajagopal, R.

    2014-12-01

    Hydrogeological models that represent flow and transport in subsurface domains are usually large-scale with excessive computational complexity and uncertain characteristics. Uncertainty quantification for predicting flow and transport in heterogeneous formations often entails utilizing a numerical Monte Carlo framework, which repeatedly simulates the model according to a random field representing hydrogeological characteristics of the field. The physical resolution (e.g. grid resolution associated with the physical space) for the simulation is customarily chosen based on recommendations in the literature, independent of the number of Monte Carlo realizations. This practice may lead to either excessive computational burden or inaccurate solutions. We propose an optimization-based methodology that considers the trade-off between the following conflicting objectives: time associated with computational costs, statistical convergence of the model predictions and physical errors corresponding to numerical grid resolution. In this research, we optimally allocate computational resources by developing a modeling framework for the overall error based on a joint statistical and numerical analysis and optimizing the error model subject to a given computational constraint. The derived expression for the overall error explicitly takes into account the joint dependence between the discretization error of the physical space and the statistical error associated with Monte Carlo realizations. The accuracy of the proposed framework is verified in this study by applying it to several computationally extensive examples. Having this framework at hand aims hydrogeologists to achieve the optimum physical and statistical resolutions to minimize the error with a given computational budget. Moreover, the influence of the available computational resources and the geometric properties of the contaminant source zone on the optimum resolutions are investigated. We conclude that the computational cost associated with optimal allocation can be substantially reduced compared with prevalent recommendations in the literature.

  13. Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    In order to provide a complete description of a materials thermoelectric power factor, in addition to the measured nominal value, an uncertainty interval is required. The uncertainty may contain sources of measurement error including systematic bias error and precision error of a statistical nature. The work focuses specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the methods apply to any measurement system. The analysis accounts for sources of systematic error including sample preparation tolerance, measurement probe placement, thermocouple cold-finger effect, and measurement parameters; in addition to including uncertainty of a statistical nature. Complete uncertainty analysis of a measurement system allows for more reliable comparison of measurement data between laboratories.

  14. A Prototype Regional GSI-based EnKF-Variational Hybrid Data Assimilation System for the Rapid Refresh Forecasting System: Dual-Resolution Implementation and Testing Results

    NASA Astrophysics Data System (ADS)

    Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun

    2018-05-01

    A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.

  15. Impact of scatterometer wind (ASCAT-A/B) data assimilation on semi real-time forecast system at KIAPS

    NASA Astrophysics Data System (ADS)

    Han, H. J.; Kang, J. H.

    2016-12-01

    Since Jul. 2015, KIAPS (Korea Institute of Atmospheric Prediction Systems) has been performing the semi real-time forecast system to assess the performance of their forecast system as a NWP model. KPOP (KIAPS Protocol for Observation Processing) is a part of KIAPS data assimilation system and has been performing well in KIAPS semi real-time forecast system. In this study, due to the fact that KPOP would be able to treat the scatterometer wind data, we analyze the effect of scatterometer wind (ASCAT-A/B) on KIAPS semi real-time forecast system. O-B global distribution and statistics of scatterometer wind give use two information which are the difference between background field and observation is not too large and KPOP processed the scatterometer wind data well. The changes of analysis increment because of O-B global distribution appear remarkably at the bottom of atmospheric field. It also shows that scatterometer wind data cover wide ocean where data would be able to short. Performance of scatterometer wind data can be checked through the vertical error reduction against IFS between background and analysis field and vertical statistics of O-A. By these analysis result, we can notice that scatterometer wind data will influence the positive effect on lower level performance of semi real-time forecast system at KIAPS. After, long-term result based on effect of scatterometer wind data will be analyzed.

  16. Error-Related Brain Activity in Young Children: Associations with Parental Anxiety and Child Temperamental Negative Emotionality

    ERIC Educational Resources Information Center

    Torpey, Dana C.; Hajcak, Greg; Kim, Jiyon; Kujawa, Autumn J.; Dyson, Margaret W.; Olino, Thomas M.; Klein, Daniel N.

    2013-01-01

    Background: There is increasing interest in error-related brain activity in anxiety disorders. The error-related negativity (ERN) is a negative deflection in the event-related potential approximately 50 [milliseconds] after errors compared to correct responses. Recent studies suggest that the ERN may be a biomarker for anxiety, as it is positively…

  17. Drug Administration Errors in an Institution for Individuals with Intellectual Disability: An Observational Study

    ERIC Educational Resources Information Center

    van den Bemt, P. M. L. A.; Robertz, R.; de Jong, A. L.; van Roon, E. N.; Leufkens, H. G. M.

    2007-01-01

    Background: Medication errors can result in harm, unless barriers to prevent them are present. Drug administration errors are less likely to be prevented, because they occur in the last stage of the drug distribution process. This is especially the case in non-alert patients, as patients often form the final barrier to prevention of errors.…

  18. Adjusting for radiotelemetry error to improve estimates of habitat use.

    Treesearch

    Scott L. Findholt; Bruce K. Johnson; Lyman L. McDonald; John W. Kern; Alan Ager; Rosemary J. Stussy; Larry D. Bryant

    2002-01-01

    Animal locations estimated from radiotelemetry have traditionally been treated as error-free when analyzed in relation to habitat variables. Location error lowers the power of statistical tests of habitat selection. We describe a method that incorporates the error surrounding point estimates into measures of environmental variables determined from a geographic...

  19. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    PubMed

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  20. The Correlation between Sex, Age, Educational Background, and Hours of Service on Vigilance Level of ATC Officers in Air Nav Surabaya, Indonesia

    ERIC Educational Resources Information Center

    Saleh, Lalu Muhammad; Suwandi, Tjipto; Hamidah

    2016-01-01

    The vigilance of an Air Traffic Control (ATC) officer determines aviation safety. The number of aviation accidents tends to be increasing in recent years. Aviation accidents may be caused by human errors (i.e. errors made by pilot or ATC officer) or unsafe work condition. Sex, age, educational background, and hours of service might affect…

  1. Powerful Inference with the D-Statistic on Low-Coverage Whole-Genome Data

    PubMed Central

    Soraggi, Samuele; Wiuf, Carsten; Albrechtsen, Anders

    2017-01-01

    The detection of ancient gene flow between human populations is an important issue in population genetics. A common tool for detecting ancient admixture events is the D-statistic. The D-statistic is based on the hypothesis of a genetic relationship that involves four populations, whose correctness is assessed by evaluating specific coincidences of alleles between the groups. When working with high-throughput sequencing data, calling genotypes accurately is not always possible; therefore, the D-statistic currently samples a single base from the reads of one individual per population. This implies ignoring much of the information in the data, an issue especially striking in the case of ancient genomes. We provide a significant improvement to overcome the problems of the D-statistic by considering all reads from multiple individuals in each population. We also apply type-specific error correction to combat the problems of sequencing errors, and show a way to correct for introgression from an external population that is not part of the supposed genetic relationship, and how this leads to an estimate of the admixture rate. We prove that the D-statistic is approximated by a standard normal distribution. Furthermore, we show that our method outperforms the traditional D-statistic in detecting admixtures. The power gain is most pronounced for low and medium sequencing depth (1–10×), and performances are as good as with perfectly called genotypes at a sequencing depth of 2×. We show the reliability of error correction in scenarios with simulated errors and ancient data, and correct for introgression in known scenarios to estimate the admixture rates. PMID:29196497

  2. Merging tree ring chronologies and climate system model simulated temperature by optimal interpolation algorithm in North America

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xing, Pei; Luo, Yong; Zhao, Zongci; Nie, Suping; Huang, Jianbin; Wang, Shaowu; Tian, Qinhua

    2015-04-01

    A new dataset of annual mean surface temperature has been constructed over North America in recent 500 years by performing optimal interpolation (OI) algorithm. Totally, 149 series totally were screened out including 69 tree ring width (MXD) and 80 tree ring width (TRW) chronologies are screened from International Tree Ring Data Bank (ITRDB). The simulated annual mean surface temperature derives from the past1000 experiment results of Community Climate System Model version 4 (CCSM4). Different from existing research that applying data assimilation approach to (General Circulation Models) GCMs simulation, the errors of both the climate model simulation and tree ring reconstruction were considered, with a view to combining the two parts in an optimal way. Variance matching (VM) was employed to calibrate tree ring chronologies on CRUTEM4v, and corresponding errors were estimated through leave-one-out process. Background error covariance matrix was estimated from samples of simulation results in a running 30-year window in a statistical way. Actually, the background error covariance matrix was calculated locally within the scanning range (2000km in this research). Thus, the merging process continued with a time-varying local gain matrix. The merging method (MM) was tested by two kinds of experiments, and the results indicated standard deviation of errors can be reduced by about 0.3 degree centigrade lower than tree ring reconstructions and 0.5 degree centigrade lower than model simulation. During the recent Obvious decadal variability can be identified in MM results including the evident cooling (0.10 degree per decade) in 1940-60s, wherein the model simulation exhibit a weak increasing trend (0.05 degree per decade) instead. MM results revealed a compromised spatial pattern of the linear trend of surface temperature during a typical period (1601-1800 AD) in Little Ice Age, which basically accorded with the phase transitions of the Pacific decadal oscillation (PDO) and Atlantic multi-decadal oscillation (AMO). Through the empirical orthogonal functions and power spectrum analysis, it was demonstrated that, compared with the pure simulations of CCSM4, MM made significant improvement of decadal variability for the gridded temperature in North America by merging the temperature-sensitive tree ring records.

  3. Comparison of optimised germanium gamma spectrometry and multicollector inductively coupled plasma mass spectrometry for the determination of 134Cs, 137Cs and 154Eu single ratios in highly burnt UO 2

    NASA Astrophysics Data System (ADS)

    Caruso, S.; Günther-Leopold, I.; Murphy, M. F.; Jatuff, F.; Chawla, R.

    2008-05-01

    Non-destructive and destructive methods have been compared to validate their corresponding assessed accuracies in the measurement of 134Cs/137Cs and 154Eu/137Cs isotopic concentration ratios in four spent UO2 fuel samples with very high (52 and 71 GWd/t) and ultra-high (91 and 126 GWd/t) burnup values, and about 10 (in the first three samples) and 4 years (in the latter sample) cooling time. The non-destructive technique tested was high-resolution gamma spectrometry using a high-purity germanium detector (HPGe) and a special tomographic station for the handling of highly radioactive 400 mm spent fuel segments that included a tungsten collimator, lead filter (to enhance the signal to Compton background ratio and reduce the dead time) and paraffin wax (to reduce neutron damage). The non-destructive determination of these isotopic concentration ratios has been particularly challenging for these segments because of the need to properly derive non-Gaussian gamma-peak areas and subtract the background from perturbing capture gammas produced by the intrinsic high-intensity neutron emissions from the spent fuel. Additionally, the activity distribution within each pin was determined tomographically to correct appropriately for self-attenuation and geometrical effects. The ratios obtained non-destructively showed a 1σ statistical error in the range 1.9-2.9%. The destructive technique used was a high-performance liquid chromatographic separation system, combined online to a multicollector inductively coupled plasma mass spectrometer (HPLC-MC-ICP-MS), for the analysis of dissolved fuel solutions. During the mass spectrometric analyses, special care was taken in the optimisation of the chromatographic separation for Eu and the interfering element Gd, as also in the mathematical correction of the 154Gd background from the 154Eu signal. The ratios obtained destructively are considerably more precise (1σ statistical error in the range 0.4-0.8% for most of the samples, but up to 2.8% for one sample). The HPGe gamma spectrometry can achieve a high degree of accuracy (agreement with HPLC-MC-ICP-MS within a few percent), only by virtue of the optimised setup, and the refined measurement strategy and data treatment employed.

  4. On the Statistical Errors of RADAR Location Sensor Networks with Built-In Wi-Fi Gaussian Linear Fingerprints

    PubMed Central

    Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo

    2012-01-01

    The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis. PMID:22737027

  5. On the statistical errors of RADAR location sensor networks with built-in Wi-Fi Gaussian linear fingerprints.

    PubMed

    Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo

    2012-01-01

    The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis.

  6. Statistical learning from nonrecurrent experience with discrete input variables and recursive-error-minimization equations

    NASA Astrophysics Data System (ADS)

    Carter, Jeffrey R.; Simon, Wayne E.

    1990-08-01

    Neural networks are trained using Recursive Error Minimization (REM) equations to perform statistical classification. Using REM equations with continuous input variables reduces the required number of training experiences by factors of one to two orders of magnitude over standard back propagation. Replacing the continuous input variables with discrete binary representations reduces the number of connections by a factor proportional to the number of variables reducing the required number of experiences by another order of magnitude. Undesirable effects of using recurrent experience to train neural networks for statistical classification problems are demonstrated and nonrecurrent experience used to avoid these undesirable effects. 1. THE 1-41 PROBLEM The statistical classification problem which we address is is that of assigning points in ddimensional space to one of two classes. The first class has a covariance matrix of I (the identity matrix) the covariance matrix of the second class is 41. For this reason the problem is known as the 1-41 problem. Both classes have equal probability of occurrence and samples from both classes may appear anywhere throughout the ddimensional space. Most samples near the origin of the coordinate system will be from the first class while most samples away from the origin will be from the second class. Since the two classes completely overlap it is impossible to have a classifier with zero error. The minimum possible error is known as the Bayes error and

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namikawa, Toshiya

    We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflationary gravitational waves and gravitational lensing, measurements of other various effects on CMB polarization open new window into the early Universe. One of these is anisotropies of the cosmic polarization rotation which probes the Chern-Simons term generally predicted by string theory. The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the Standard Model extentionmore » framework. The cosmic rotation anisotropies can be reconstructed as quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB four-point correlation and is not directly related to the cosmic-rotation power spectrum. Understanding all contributions in the four-point correlation is required to extract the cosmic rotation signal. Here, assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify each contribution to the four-point correlation and find that (1) a secondary contraction of the trispectrum increases the total signal-to-noise, (2) a bias from the lensing-induced trispectrum is significant compared to the statistical errors in, e.g., LiteBIRD and CMBS4-like experiments, (3) the use of a realization-dependent estimator decreases the statistical errors by 10%–20%, depending on experimental specifications, and (4) other higher-order contributions are negligible at least for near future experiments.« less

  8. A Meta-Meta-Analysis: Empirical Review of Statistical Power, Type I Error Rates, Effect Sizes, and Model Selection of Meta-Analyses Published in Psychology

    ERIC Educational Resources Information Center

    Cafri, Guy; Kromrey, Jeffrey D.; Brannick, Michael T.

    2010-01-01

    This article uses meta-analyses published in "Psychological Bulletin" from 1995 to 2005 to describe meta-analyses in psychology, including examination of statistical power, Type I errors resulting from multiple comparisons, and model choice. Retrospective power estimates indicated that univariate categorical and continuous moderators, individual…

  9. Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.

    2012-01-01

    Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.

  10. Statistical model to perform error analysis of curve fits of wind tunnel test data using the techniques of analysis of variance and regression analysis

    NASA Technical Reports Server (NTRS)

    Alston, D. W.

    1981-01-01

    The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.

  11. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  12. An Analysis of Lexical Errors of Korean Language Learners: Some American College Learners' Case

    ERIC Educational Resources Information Center

    Kang, Manjin

    2014-01-01

    There has been a huge amount of research on errors of language learners. However, most of them have focused on syntactic errors and those about lexical errors are not found easily despite the importance of lexical learning for the language learners. The case is even rarer for Korean language. In line with this background, this study was designed…

  13. Does size matter? Statistical limits of paleomagnetic field reconstruction from small rock specimens

    NASA Astrophysics Data System (ADS)

    Berndt, Thomas; Muxworthy, Adrian R.; Fabian, Karl

    2016-01-01

    As samples of ever decreasing sizes are being studied paleomagnetically, care has to be taken that the underlying assumptions of statistical thermodynamics (Maxwell-Boltzmann statistics) are being met. Here we determine how many grains and how large a magnetic moment a sample needs to have to be able to accurately record an ambient field. It is found that for samples with a thermoremanent magnetic moment larger than 10-11Am2 the assumption of a sufficiently large number of grains is usually given. Standard 25 mm diameter paleomagnetic samples usually contain enough magnetic grains such that statistical errors are negligible, but "single silicate crystal" works on, for example, zircon, plagioclase, and olivine crystals are approaching the limits of what is physically possible, leading to statistic errors in both the angular deviation and paleointensity that are comparable to other sources of error. The reliability of nanopaleomagnetic imaging techniques capable of resolving individual grains (used, for example, to study the cloudy zone in meteorites), however, is questionable due to the limited area of the material covered.

  14. Sampling errors for satellite-derived tropical rainfall - Monte Carlo study using a space-time stochastic model

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Abdullah, A.; Martin, Russell L.; North, Gerald R.

    1990-01-01

    Estimates of monthly average rainfall based on satellite observations from a low earth orbit will differ from the true monthly average because the satellite observes a given area only intermittently. This sampling error inherent in satellite monitoring of rainfall would occur even if the satellite instruments could measure rainfall perfectly. The size of this error is estimated for a satellite system being studied at NASA, the Tropical Rainfall Measuring Mission (TRMM). First, the statistical description of rainfall on scales from 1 to 1000 km is examined in detail, based on rainfall data from the Global Atmospheric Research Project Atlantic Tropical Experiment (GATE). A TRMM-like satellite is flown over a two-dimensional time-evolving simulation of rainfall using a stochastic model with statistics tuned to agree with GATE statistics. The distribution of sampling errors found from many months of simulated observations is found to be nearly normal, even though the distribution of area-averaged rainfall is far from normal. For a range of orbits likely to be employed in TRMM, sampling error is found to be less than 10 percent of the mean for rainfall averaged over a 500 x 500 sq km area.

  15. Comparison of base flows to selected streamflow statistics representative of 1930-2002 in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.

    2012-01-01

    Base flows were compared with published streamflow statistics to assess climate variability and to determine the published statistics that can be substituted for annual and seasonal base flows of unregulated streams in West Virginia. The comparison study was done by the U.S. Geological Survey, in cooperation with the West Virginia Department of Environmental Protection, Division of Water and Waste Management. The seasons were defined as winter (January 1-March 31), spring (April 1-June 30), summer (July 1-September 30), and fall (October 1-December 31). Differences in mean annual base flows for five record sub-periods (1930-42, 1943-62, 1963-69, 1970-79, and 1980-2002) range from -14.9 to 14.6 percent when compared to the values for the period 1930-2002. Differences between mean seasonal base flows and values for the period 1930-2002 are less variable for winter and spring, -11.2 to 11.0 percent, than for summer and fall, -47.0 to 43.6 percent. Mean summer base flows (July-September) and mean monthly base flows for July, August, September, and October are approximately equal, within 7.4 percentage points of mean annual base flow. The mean of each of annual, spring, summer, fall, and winter base flows are approximately equal to the annual 50-percent (standard error of 10.3 percent), 45-percent (error of 14.6 percent), 75-percent (error of 11.8 percent), 55-percent (error of 11.2 percent), and 35-percent duration flows (error of 11.1 percent), respectively. The mean seasonal base flows for spring, summer, fall, and winter are approximately equal to the spring 50- to 55-percent (standard error of 6.8 percent), summer 45- to 50-percent (error of 6.7 percent), fall 45-percent (error of 15.2 percent), and winter 60-percent duration flows (error of 8.5 percent), respectively. Annual and seasonal base flows representative of the period 1930-2002 at unregulated streamflow-gaging stations and ungaged locations in West Virginia can be estimated using previously published values of statistics and procedures.

  16. Statistical model specification and power: recommendations on the use of test-qualified pooling in analysis of experimental data

    PubMed Central

    Colegrave, Nick

    2017-01-01

    A common approach to the analysis of experimental data across much of the biological sciences is test-qualified pooling. Here non-significant terms are dropped from a statistical model, effectively pooling the variation associated with each removed term with the error term used to test hypotheses (or estimate effect sizes). This pooling is only carried out if statistical testing on the basis of applying that data to a previous more complicated model provides motivation for this model simplification; hence the pooling is test-qualified. In pooling, the researcher increases the degrees of freedom of the error term with the aim of increasing statistical power to test their hypotheses of interest. Despite this approach being widely adopted and explicitly recommended by some of the most widely cited statistical textbooks aimed at biologists, here we argue that (except in highly specialized circumstances that we can identify) the hoped-for improvement in statistical power will be small or non-existent, and there is likely to be much reduced reliability of the statistical procedures through deviation of type I error rates from nominal levels. We thus call for greatly reduced use of test-qualified pooling across experimental biology, more careful justification of any use that continues, and a different philosophy for initial selection of statistical models in the light of this change in procedure. PMID:28330912

  17. Prediction of pilot reserve attention capacity during air-to-air target tracking

    NASA Technical Reports Server (NTRS)

    Onstott, E. D.; Faulkner, W. H.

    1977-01-01

    Reserve attention capacity of a pilot was calculated using a pilot model that allocates exclusive model attention according to the ranking of task urgency functions whose variables are tracking error and error rate. The modeled task consisted of tracking a maneuvering target aircraft both vertically and horizontally, and when possible, performing a diverting side task which was simulated by the precise positioning of an electrical stylus and modeled as a task of constant urgency in the attention allocation algorithm. The urgency of the single loop vertical task is simply the magnitude of the vertical tracking error, while the multiloop horizontal task requires a nonlinear urgency measure of error and error rate terms. Comparison of model results with flight simulation data verified the computed model statistics of tracking error of both axes, lateral and longitudinal stick amplitude and rate, and side task episodes. Full data for the simulation tracking statistics as well as the explicit equations and structure of the urgency function multiaxis pilot model are presented.

  18. Notes on power of normality tests of error terms in regression models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Střelec, Luboš

    2015-03-10

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importancemore » of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models.« less

  19. Refractive errors among students occupying rooms lighted with incandescent or fluorescent lamps.

    PubMed

    Czepita, Damian; Gosławski, Wojciech; Mojsa, Artur

    2004-01-01

    The purpose of the study was to determine whether the development of refractive errors could be associated with exposure to light emitted by incandescent or fluorescent lamps. 3636 students were examined (1638 boys and 1998 girls, aged 6-18 years, mean age 12.1, SD 3.4). The examination included retinoscopy with cycloplegia. Myopia was defined as refractive error < or = -0.5 D, hyperopia as refractive error > or = +1.5 D, astigmatism as refractive error > 0.5 DC. Anisometropia was diagnosed when the difference in the refraction of both eyes was > 1.0 D. The children and their parents completed a questionnaire on exposure to light at home. Data were analyzed statistically with the chi2 test. P values of less than 0.05 were considered statistically significant. It was found that the use of fluorescent lamps was associated with an increase in the occurrence of hyperopia (P < 0.01). There was no association between sleeping with the light turned on and prevalence of refractive errors.

  20. Estimating random errors due to shot noise in backscatter lidar observations.

    PubMed

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark; Hostetler, Chris; McGill, Matthew; Powell, Kathleen; Winker, David; Hu, Yongxiang

    2006-06-20

    We discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson- distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root mean square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF, uncertainties can be reliably calculated from or for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar and tested using data from the Lidar In-space Technology Experiment.

  1. Estimating Random Errors Due to Shot Noise in Backscatter Lidar Observations

    NASA Technical Reports Server (NTRS)

    Liu, Zhaoyan; Hunt, William; Vaughan, Mark A.; Hostetler, Chris A.; McGill, Matthew J.; Powell, Kathy; Winker, David M.; Hu, Yongxiang

    2006-01-01

    In this paper, we discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson-distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root-mean-square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF uncertainties can be reliably calculated from/for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar and tested using data from the Lidar In-space Technology Experiment (LITE). OCIS Codes:

  2. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models.

    EPA Science Inventory

    BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of a...

  3. Exposure Measurement Error in PM2.5 Health Effects Studies: A Pooled Analysis of Eight Personal Exposure Validation Studies

    EPA Science Inventory

    Background: Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typ...

  4. SBAR improves communication and safety climate and decreases incident reports due to communication errors in an anaesthetic clinic: a prospective intervention study.

    PubMed

    Randmaa, Maria; Mårtensson, Gunilla; Leo Swenne, Christine; Engström, Maria

    2014-01-21

    We aimed to examine staff members' perceptions of communication within and between different professions, safety attitudes and psychological empowerment, prior to and after implementation of the communication tool Situation-Background-Assessment-Recommendation (SBAR) at an anaesthetic clinic. The aim was also to study whether there was any change in the proportion of incident reports caused by communication errors. A prospective intervention study with comparison group using preassessments and postassessments. Questionnaire data were collected from staff in an intervention (n=100) and a comparison group (n=69) at the anaesthetic clinic in two hospitals prior to (2011) and after (2012) implementation of SBAR. The proportion of incident reports due to communication errors was calculated during a 1-year period prior to and after implementation. Anaesthetic clinics at two hospitals in Sweden. All licensed practical nurses, registered nurses and physicians working in the operating theatres, intensive care units and postanaesthesia care units at anaesthetic clinics in two hospitals were invited to participate. Implementation of SBAR in an anaesthetic clinic. The primary outcomes were staff members' perception of communication within and between different professions, as well as their perceptions of safety attitudes. Secondary outcomes were psychological empowerment and incident reports due to error of communication. In the intervention group, there were statistically significant improvements in the factors 'Between-group communication accuracy' (p=0.039) and 'Safety climate' (p=0.011). The proportion of incident reports due to communication errors decreased significantly (p<0.0001) in the intervention group, from 31% to 11%. Implementing the communication tool SBAR in anaesthetic clinics was associated with improvement in staff members' perception of communication between professionals and their perception of the safety climate as well as with a decreased proportion of incident reports related to communication errors. ISRCTN37251313.

  5. Package Design Affects Accuracy Recognition for Medications

    PubMed Central

    Endestad, Tor; Wortinger, Laura A.; Madsen, Steinar; Hortemo, Sigurd

    2016-01-01

    Objective: Our aim was to test if highlighting and placement of substance name on medication package have the potential to reduce patient errors. Background: An unintentional overdose of medication is a large health issue that might be linked to medication package design. In two experiments, placement, background color, and the active ingredient of generic medication packages were manipulated according to best human factors guidelines to reduce causes of labeling-related patient errors. Method: In two experiments, we compared the original packaging with packages where we varied placement of the name, dose, and background of the active ingredient. Age-relevant differences and the effect of color on medication recognition error were tested. In Experiment 1, 59 volunteers (30 elderly and 29 young students), participated. In Experiment 2, 25 volunteers participated. Results: The most common error was the inability to identify that two different packages contained the same active ingredient (young, 41%, and elderly, 68%). This kind of error decreased with the redesigned packages (young, 8%, and elderly, 16%). Confusion errors related to color design were reduced by two thirds in the redesigned packages compared with original generic medications. Conclusion: Prominent placement of substance name and dose with a band of high-contrast color support recognition of the active substance in medications. Application: A simple modification including highlighting and placing the name of the active ingredient in the upper right-hand corner of the package helps users realize that two different packages can contain the same active substance, thus reducing the risk of inadvertent medication overdose. PMID:27591209

  6. Comparison of Kalman filter and optimal smoother estimates of spacecraft attitude

    NASA Technical Reports Server (NTRS)

    Sedlak, J.

    1994-01-01

    Given a valid system model and adequate observability, a Kalman filter will converge toward the true system state with error statistics given by the estimated error covariance matrix. The errors generally do not continue to decrease. Rather, a balance is reached between the gain of information from new measurements and the loss of information during propagation. The errors can be further reduced, however, by a second pass through the data with an optimal smoother. This algorithm obtains the optimally weighted average of forward and backward propagating Kalman filters. It roughly halves the error covariance by including future as well as past measurements in each estimate. This paper investigates whether such benefits actually accrue in the application of an optimal smoother to spacecraft attitude determination. Tests are performed both with actual spacecraft data from the Extreme Ultraviolet Explorer (EUVE) and with simulated data for which the true state vector and noise statistics are exactly known.

  7. Statistics for the Relative Detectability of Chemicals in Weak Gaseous Plumes in LWIR Hyperspectral Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metoyer, Candace N.; Walsh, Stephen J.; Tardiff, Mark F.

    2008-10-30

    The detection and identification of weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temperature, and background clutter. This paper presents an analysis of one formulation of the physics-based model that describes the at-sensor observed radiance. The motivating question for the analyses performed in this paper is as follows. Given a set of backgrounds, is there a way to predict the background over which the probability of detecting a given chemical will be the highest? Two statistics were developed to address this question. These statistics incorporate data frommore » the long-wave infrared band to predict the background over which chemical detectability will be the highest. These statistics can be computed prior to data collection. As a preliminary exploration into the predictive ability of these statistics, analyses were performed on synthetic hyperspectral images. Each image contained one chemical (either carbon tetrachloride or ammonia) spread across six distinct background types. The statistics were used to generate predictions for the background ranks. Then, the predicted ranks were compared to the empirical ranks obtained from the analyses of the synthetic images. For the simplified images under consideration, the predicted and empirical ranks showed a promising amount of agreement. One statistic accurately predicted the best and worst background for detection in all of the images. Future work may include explorations of more complicated plume ingredients, background types, and noise structures.« less

  8. Powerful Inference with the D-Statistic on Low-Coverage Whole-Genome Data.

    PubMed

    Soraggi, Samuele; Wiuf, Carsten; Albrechtsen, Anders

    2018-02-02

    The detection of ancient gene flow between human populations is an important issue in population genetics. A common tool for detecting ancient admixture events is the D-statistic. The D-statistic is based on the hypothesis of a genetic relationship that involves four populations, whose correctness is assessed by evaluating specific coincidences of alleles between the groups. When working with high-throughput sequencing data, calling genotypes accurately is not always possible; therefore, the D-statistic currently samples a single base from the reads of one individual per population. This implies ignoring much of the information in the data, an issue especially striking in the case of ancient genomes. We provide a significant improvement to overcome the problems of the D-statistic by considering all reads from multiple individuals in each population. We also apply type-specific error correction to combat the problems of sequencing errors, and show a way to correct for introgression from an external population that is not part of the supposed genetic relationship, and how this leads to an estimate of the admixture rate. We prove that the D-statistic is approximated by a standard normal distribution. Furthermore, we show that our method outperforms the traditional D-statistic in detecting admixtures. The power gain is most pronounced for low and medium sequencing depth (1-10×), and performances are as good as with perfectly called genotypes at a sequencing depth of 2×. We show the reliability of error correction in scenarios with simulated errors and ancient data, and correct for introgression in known scenarios to estimate the admixture rates. Copyright © 2018 Soraggi et al.

  9. Weak-value amplification and optimal parameter estimation in the presence of correlated noise

    NASA Astrophysics Data System (ADS)

    Sinclair, Josiah; Hallaji, Matin; Steinberg, Aephraim M.; Tollaksen, Jeff; Jordan, Andrew N.

    2017-11-01

    We analytically and numerically investigate the performance of weak-value amplification (WVA) and related parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of a general measurement strategy that involves sorting data into separate subsets based on the outcome of a second "partitioning" measurement. Using a simplified correlated noise model that can be analyzed exactly together with optimal statistical estimators, we compare WVA to a conventional measurement method. We find that WVA indeed yields a much lower variance of the parameter of interest than the conventional technique does, optimized in the absence of any partitioning measurements. In contrast, a statistically optimal analysis that employs partitioning measurements, incorporating all partitioned results and their known correlations, is found to yield an improvement—typically slight—over the noise reduction achieved by WVA. This result occurs because the simple WVA technique is not tailored to any specific noise environment and therefore does not make use of correlations between the different partitions. We also compare WVA to traditional background subtraction, a familiar technique where measurement outcomes are partitioned to eliminate unknown offsets or errors in calibration. Surprisingly, for the cases we consider, background subtraction turns out to be a special case of the optimal partitioning approach, possessing a similar typically slight advantage over WVA. These results give deeper insight into the role of partitioning measurements (with or without postselection) in enhancing measurement precision, which some have found puzzling. They also resolve previously made conflicting claims about the usefulness of weak-value amplification to precision measurement in the presence of correlated noise. We finish by presenting numerical results to model a more realistic laboratory situation of time-decaying correlations, showing that our conclusions hold for a wide range of statistical models.

  10. The Impact of a Patient Safety Program on Medical Error Reporting

    DTIC Science & Technology

    2005-05-01

    307 The Impact of a Patient Safety Program on Medical Error Reporting Donald R. Woolever Abstract Background: In response to the occurrence of...a sentinel event—a medical error with serious consequences—Eglin U.S. Air Force (USAF) Regional Hospital developed and implemented a patient safety...communication, teamwork, and reporting. Objective: To determine the impact of a patient safety program on patterns of medical error reporting. Methods: This

  11. Errors in Focus? Native and Non-Native Perceptions of Error Salience in Hong Kong Student English - A Case Study.

    ERIC Educational Resources Information Center

    Newbrook, Mark

    1990-01-01

    A study compared the perceptions of two experts from different cultural backgrounds concerning salience of a variety of errors typical of the English written by Hong Kong secondary and college students. A book on English error types written by a Hong-Kong born, fluent Chinese-English bilingual linguist was analyzed for its emphases, and a list of…

  12. A model for the statistical description of analytical errors occurring in clinical chemical laboratories with time.

    PubMed

    Hyvärinen, A

    1985-01-01

    The main purpose of the present study was to describe the statistical behaviour of daily analytical errors in the dimensions of place and time, providing a statistical basis for realistic estimates of the analytical error, and hence allowing the importance of the error and the relative contributions of its different sources to be re-evaluated. The observation material consists of creatinine and glucose results for control sera measured in daily routine quality control in five laboratories for a period of one year. The observation data were processed and computed by means of an automated data processing system. Graphic representations of time series of daily observations, as well as their means and dispersion limits when grouped over various time intervals, were investigated. For partition of the total variation several two-way analyses of variance were done with laboratory and various time classifications as factors. Pooled sets of observations were tested for normality of distribution and for consistency of variances, and the distribution characteristics of error variation in different categories of place and time were compared. Errors were found from the time series to vary typically between days. Due to irregular fluctuations in general and particular seasonal effects in creatinine, stable estimates of means or of dispersions for errors in individual laboratories could not be easily obtained over short periods of time but only from data sets pooled over long intervals (preferably at least one year). Pooled estimates of proportions of intralaboratory variation were relatively low (less than 33%) when the variation was pooled within days. However, when the variation was pooled over longer intervals this proportion increased considerably, even to a maximum of 89-98% (95-98% in each method category) when an outlying laboratory in glucose was omitted, with a concomitant decrease in the interaction component (representing laboratory-dependent variation with time). This indicates that a substantial part of the variation comes from intralaboratory variation with time rather than from constant interlaboratory differences. Normality and consistency of statistical distributions were best achieved in the long-term intralaboratory sets of the data, under which conditions the statistical estimates of error variability were also most characteristic of the individual laboratories rather than necessarily being similar to one another. Mixing of data from different laboratories may give heterogeneous and nonparametric distributions and hence is not advisable.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion

    NASA Technical Reports Server (NTRS)

    Zivotofsky, A. Z.; Rottach, K. G.; Averbuch-Heller, L.; Kori, A. A.; Thomas, C. W.; Dell'Osso, L. F.; Leigh, R. J.

    1996-01-01

    1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the "memory period" (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the "spatial error" than with the "retinal error"; this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal error was greater than under any other experimental condition. 6. In most trials, the initial saccade to the remembered target was followed by additional saccades while the subject was still in darkness. These secondary saccades, which were executed in the absence of visual feedback, brought the eye closer to the target location. During paradigms involving horizontal background movement, these corrections were more prominent horizontally than vertically. 7. Further measurements were made in two subjects to determine whether inaccuracy of memory-guided saccades, in the horizontal plane, was due to mislocalization at the time that the target flashed, misrepresentation of the trajectory of the pursuit eye movement during the memory period, or both. 8. The magnitude of the saccadic error, both with and without corrections made in darkness, was mislocalized by approximately 30% of the displacement of the background at the time that the target flashed. The magnitude of the saccadic error also was influenced by net movement of the background during the memory period, corresponding to approximately 25% of net background movement for the initial saccade and approximately 13% for the final eye position achieved in darkness. 9. We formulated simple linear models to test specific hypotheses about which combinations of signals best describe the observed saccadic amplitudes. We tested the possibilities that the brain made an accurate memory of target location and a reliable representation of the eye movement during the memory period, or that one or both of these was corrupted by the illusory visual stimulus. Our data were best accounted for by a model in which both the working memory of target location and the internal representation of the horizontal eye movements were corrupted by the illusory visual stimulus. We conclude that extraretinal signals played only a minor role, in comparison with visual estimates of the direction of gaze, in planning eye movements to remembered targ.

  14. The statistical significance of error probability as determined from decoding simulations for long codes

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.

  15. 78 FR 28597 - State Median Income Estimates for a Four-Person Household: Notice of the Federal Fiscal Year (FFY...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ....gov/acs/www/ or contact the Census Bureau's Social, Economic, and Housing Statistics Division at (301...) Sampling Error, which consists of the error that arises from the use of probability sampling to create the... direction; and (2) Sampling Error, which consists of the error that arises from the use of probability...

  16. Knowledge of healthcare professionals about medication errors in hospitals

    PubMed Central

    Abdel-Latif, Mohamed M. M.

    2016-01-01

    Context: Medication errors are the most common types of medical errors in hospitals and leading cause of morbidity and mortality among patients. Aims: The aim of the present study was to assess the knowledge of healthcare professionals about medication errors in hospitals. Settings and Design: A self-administered questionnaire was distributed to randomly selected healthcare professionals in eight hospitals in Madinah, Saudi Arabia. Subjects and Methods: An 18-item survey was designed and comprised questions on demographic data, knowledge of medication errors, availability of reporting systems in hospitals, attitudes toward error reporting, causes of medication errors. Statistical Analysis Used: Data were analyzed with Statistical Package for the Social Sciences software Version 17. Results: A total of 323 of healthcare professionals completed the questionnaire with 64.6% response rate of 138 (42.72%) physicians, 34 (10.53%) pharmacists, and 151 (46.75%) nurses. A majority of the participants had a good knowledge about medication errors concept and their dangers on patients. Only 68.7% of them were aware of reporting systems in hospitals. Healthcare professionals revealed that there was no clear mechanism available for reporting of errors in most hospitals. Prescribing (46.5%) and administration (29%) errors were the main causes of errors. The most frequently encountered medication errors were anti-hypertensives, antidiabetics, antibiotics, digoxin, and insulin. Conclusions: This study revealed differences in the awareness among healthcare professionals toward medication errors in hospitals. The poor knowledge about medication errors emphasized the urgent necessity to adopt appropriate measures to raise awareness about medication errors in Saudi hospitals. PMID:27330261

  17. Impact of documentation errors on accuracy of cause of death coding in an educational hospital in Southern Iran.

    PubMed

    Haghighi, Mohammad Hosein Hayavi; Dehghani, Mohammad; Teshnizi, Saeid Hoseini; Mahmoodi, Hamid

    2014-01-01

    Accurate cause of death coding leads to organised and usable death information but there are some factors that influence documentation on death certificates and therefore affect the coding. We reviewed the role of documentation errors on the accuracy of death coding at Shahid Mohammadi Hospital (SMH), Bandar Abbas, Iran. We studied the death certificates of all deceased patients in SMH from October 2010 to March 2011. Researchers determined and coded the underlying cause of death on the death certificates according to the guidelines issued by the World Health Organization in Volume 2 of the International Statistical Classification of Diseases and Health Related Problems-10th revision (ICD-10). Necessary ICD coding rules (such as the General Principle, Rules 1-3, the modification rules and other instructions about death coding) were applied to select the underlying cause of death on each certificate. Demographic details and documentation errors were then extracted. Data were analysed with descriptive statistics and chi square tests. The accuracy rate of causes of death coding was 51.7%, demonstrating a statistically significant relationship (p=.001) with major errors but not such a relationship with minor errors. Factors that result in poor quality of Cause of Death coding in SMH are lack of coder training, documentation errors and the undesirable structure of death certificates.

  18. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.

    2018-05-01

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  19. Fast maximum likelihood estimation using continuous-time neural point process models.

    PubMed

    Lepage, Kyle Q; MacDonald, Christopher J

    2015-06-01

    A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np(2)) to O(qp(2)). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.

  20. Statistical and systematic errors in the measurement of weak-lensing Minkowski functionals: Application to the Canada-France-Hawaii Lensing Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirasaki, Masato; Yoshida, Naoki, E-mail: masato.shirasaki@utap.phys.s.u-tokyo.ac.jp

    2014-05-01

    The measurement of cosmic shear using weak gravitational lensing is a challenging task that involves a number of complicated procedures. We study in detail the systematic errors in the measurement of weak-lensing Minkowski Functionals (MFs). Specifically, we focus on systematics associated with galaxy shape measurements, photometric redshift errors, and shear calibration correction. We first generate mock weak-lensing catalogs that directly incorporate the actual observational characteristics of the Canada-France-Hawaii Lensing Survey (CFHTLenS). We then perform a Fisher analysis using the large set of mock catalogs for various cosmological models. We find that the statistical error associated with the observational effects degradesmore » the cosmological parameter constraints by a factor of a few. The Subaru Hyper Suprime-Cam (HSC) survey with a sky coverage of ∼1400 deg{sup 2} will constrain the dark energy equation of the state parameter with an error of Δw {sub 0} ∼ 0.25 by the lensing MFs alone, but biases induced by the systematics can be comparable to the 1σ error. We conclude that the lensing MFs are powerful statistics beyond the two-point statistics only if well-calibrated measurement of both the redshifts and the shapes of source galaxies is performed. Finally, we analyze the CFHTLenS data to explore the ability of the MFs to break degeneracies between a few cosmological parameters. Using a combined analysis of the MFs and the shear correlation function, we derive the matter density Ω{sub m0}=0.256±{sub 0.046}{sup 0.054}.« less

  1. Extracting harmonic signal from a chaotic background with local linear model

    NASA Astrophysics Data System (ADS)

    Li, Chenlong; Su, Liyun

    2017-02-01

    In this paper, the problems of blind detection and estimation of harmonic signal in strong chaotic background are analyzed, and new methods by using local linear (LL) model are put forward. The LL model has been exhaustively researched and successfully applied for fitting and forecasting chaotic signal in many chaotic fields. We enlarge the modeling capacity substantially. Firstly, we can predict the short-term chaotic signal and obtain the fitting error based on the LL model. Then we detect the frequencies from the fitting error by periodogram, a property on the fitting error is proposed which has not been addressed before, and this property ensures that the detected frequencies are similar to that of harmonic signal. Secondly, we establish a two-layer LL model to estimate the determinate harmonic signal in strong chaotic background. To estimate this simply and effectively, we develop an efficient backfitting algorithm to select and optimize the parameters that are hard to be exhaustively searched for. In the method, based on sensitivity to initial value of chaos motion, the minimum fitting error criterion is used as the objective function to get the estimation of the parameters of the two-layer LL model. Simulation shows that the two-layer LL model and its estimation technique have appreciable flexibility to model the determinate harmonic signal in different chaotic backgrounds (Lorenz, Henon and Mackey-Glass (M-G) equations). Specifically, the harmonic signal can be extracted well with low SNR and the developed background algorithm satisfies the condition of convergence in repeated 3-5 times.

  2. Brain fingerprinting classification concealed information test detects US Navy military medical information with P300

    PubMed Central

    Farwell, Lawrence A.; Richardson, Drew C.; Richardson, Graham M.; Furedy, John J.

    2014-01-01

    A classification concealed information test (CIT) used the “brain fingerprinting” method of applying P300 event-related potential (ERP) in detecting information that is (1) acquired in real life and (2) unique to US Navy experts in military medicine. Military medicine experts and non-experts were asked to push buttons in response to three types of text stimuli. Targets contain known information relevant to military medicine, are identified to subjects as relevant, and require pushing one button. Subjects are told to push another button to all other stimuli. Probes contain concealed information relevant to military medicine, and are not identified to subjects. Irrelevants contain equally plausible, but incorrect/irrelevant information. Error rate was 0%. Median and mean statistical confidences for individual determinations were 99.9% with no indeterminates (results lacking sufficiently high statistical confidence to be classified). We compared error rate and statistical confidence for determinations of both information present and information absent produced by classification CIT (Is a probe ERP more similar to a target or to an irrelevant ERP?) vs. comparison CIT (Does a probe produce a larger ERP than an irrelevant?) using P300 plus the late negative component (LNP; together, P300-MERMER). Comparison CIT produced a significantly higher error rate (20%) and lower statistical confidences: mean 67%; information-absent mean was 28.9%, less than chance (50%). We compared analysis using P300 alone with the P300 + LNP. P300 alone produced the same 0% error rate but significantly lower statistical confidences. These findings add to the evidence that the brain fingerprinting methods as described here provide sufficient conditions to produce less than 1% error rate and greater than 95% median statistical confidence in a CIT on information obtained in the course of real life that is characteristic of individuals with specific training, expertise, or organizational affiliation. PMID:25565941

  3. FastSim: A Fast Simulation for the SuperB Detector

    NASA Astrophysics Data System (ADS)

    Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.

    2011-12-01

    We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.

  4. Statistical quality assessment criteria for a linear mixing model with elliptical t-distribution errors

    NASA Astrophysics Data System (ADS)

    Manolakis, Dimitris G.

    2004-10-01

    The linear mixing model is widely used in hyperspectral imaging applications to model the reflectance spectra of mixed pixels in the SWIR atmospheric window or the radiance spectra of plume gases in the LWIR atmospheric window. In both cases it is important to detect the presence of materials or gases and then estimate their amount, if they are present. The detection and estimation algorithms available for these tasks are related but they are not identical. The objective of this paper is to theoretically investigate how the heavy tails observed in hyperspectral background data affect the quality of abundance estimates and how the F-test, used for endmember selection, is robust to the presence of heavy tails when the model fits the data.

  5. Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method

    NASA Astrophysics Data System (ADS)

    Ha, J.; Kim, J.; Kwak, M.; Ha, K.

    2007-12-01

    A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.

  6. Using foreground/background analysis to determine leaf and canopy chemistry

    NASA Technical Reports Server (NTRS)

    Pinzon, J. E.; Ustin, S. L.; Hart, Q. J.; Jacquemoud, S.; Smith, M. O.

    1995-01-01

    Spectral Mixture Analysis (SMA) has become a well established procedure for analyzing imaging spectrometry data, however, the technique is relatively insensitive to minor sources of spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear regression analysis to predict canopy chemistry. Grossman et al. reported that SMLR is sensitive to measurement error and that the prediction of minor chemical components are not independent of patterns observed in more dominant spectral components like water. Further, they observed that the relationships were strongly dependent on the mode of expressing reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or are basis (g/sq m). Thus, alternative multivariate techniques need to be examined. Smith et al. reported a revised SMA that they termed Foreground/Background Analysis (FBA) that permits directing the analysis along any axis of variance by identifying vectors through the n-dimensional spectral volume orthonormal to each other. Here, we report an application of the FBA technique for the detection of canopy chemistry using a modified form of the analysis.

  7. Dependence of the compensation error on the error of a sensor and corrector in an adaptive optics phase-conjugating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyko, V V; Kislov, V I; Ofitserov, E N

    2015-08-31

    In the framework of a statistical model of an adaptive optics system (AOS) of phase conjugation, three algorithms based on an integrated mathematical approach are considered, each of them intended for minimisation of one of the following characteristics: the sensor error (in the case of an ideal corrector), the corrector error (in the case of ideal measurements) and the compensation error (with regard to discreteness and measurement noises and to incompleteness of a system of response functions of the corrector actuators). Functional and statistical relationships between the algorithms are studied and a relation is derived to ensure calculation of themore » mean-square compensation error as a function of the errors of the sensor and corrector with an accuracy better than 10%. Because in adjusting the AOS parameters, it is reasonable to proceed from the equality of the sensor and corrector errors, in the case the Hartmann sensor is used as a wavefront sensor, the required number of actuators in the absence of the noise component in the sensor error turns out 1.5 – 2.5 times less than the number of counts, and that difference grows with increasing measurement noise. (adaptive optics)« less

  8. Atmospheric microwave refractivity and refraction

    NASA Technical Reports Server (NTRS)

    Yu, E.; Hodge, D. B.

    1980-01-01

    The atmospheric refractivity can be expressed as a function of temperature, pressure, water vapor content, and operating frequency. Based on twenty-year meteorological data, statistics of the atmospheric refractivity were obtained. These statistics were used to estimate the variation of dispersion, attenuation, and refraction effects on microwave and millimeter wave signals propagating along atmospheric paths. Bending angle, elevation angle error, and range error were also developed for an exponentially tapered, spherical atmosphere.

  9. Improving the Canadian Precipitation Analysis Estimates through an Observing System Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.

    2014-12-01

    To gain a better understanding of the spatiotemporal distribution of rainfall over the Churchill River basin, this study was undertaken. The research incorporates gridded precipitation data from the Canadian Precipitation Analysis (CaPA) system. CaPA has been developed by Environment Canada and provides near real-time precipitation estimates on a 10 km by 10 km grid over North America at a temporal resolution of 6 hours. The spatial fields are generated by combining forecasts from the Global Environmental Multiscale (GEM) model with precipitation observations from the network of synoptic weather stations. CaPA's skill is highly influenced by the number of weather stations in the region of interest as well as by the quality of the observations. In an attempt to evaluate the performance of CaPA as a function of the density of the weather station network, a dual-stage design algorithm to simulate CaPA is proposed which incorporates generated weather fields. More specifically, we are adopting a controlled design algorithm which is generally known as Observing System Simulation Experiment (OSSE). The advantage of using the experiment is that one can define reference precipitation fields assumed to represent the true state of rainfall over the region of interest. In the first stage of the defined OSSE, a coupled stochastic model of precipitation and temperature gridded fields is calibrated and validated. The performance of the generator is then validated by comparing model statistics with observed statistics and by using the generated samples as input to the WATFLOOD™ hydrologic model. In the second stage of the experiment, in order to account for the systematic error of station observations and GEM fields, representative errors are to be added to the reference field using by-products of CaPA's variographic analysis. These by-products explain the variance of station observations and background errors.

  10. Pocket guide to transportation, 1999

    DOT National Transportation Integrated Search

    1998-12-01

    Statistics published in this Pocket Guide to Transportation come from many different sources. Some statistics are based on samples and are subject to sampling variability. Statistics may also be subject to omissions and errors in reporting, recording...

  11. Pocket guide to transportation, 2009

    DOT National Transportation Integrated Search

    2009-01-01

    Statistics published in this Pocket Guide to Transportation come from many different sources. Some statistics are based on samples and are subject to sampling variability. Statistics may also be subject to omissions and errors in reporting, recording...

  12. Pocket guide to transportation, 2013.

    DOT National Transportation Integrated Search

    2013-01-01

    Abstract Statistics published in this Pocket Guide to Transportation come from many different sources. Some statistics are based on samples and are subject to sampling variability. Statistics may also be subject to omissions and errors in reporting, ...

  13. Pocket guide to transportation, 2010

    DOT National Transportation Integrated Search

    2010-01-01

    Statistics published in this Pocket Guide to Transportation come from many different sources. Some statistics are based on samples and are subject to sampling variability. Statistics may also be subject to omissions and errors in reporting, recording...

  14. Assessment of the knowledge and attitudes of intern doctors to medication prescribing errors in a Nigeria tertiary hospital

    PubMed Central

    Ajemigbitse, Adetutu A.; Omole, Moses Kayode; Ezike, Nnamdi Chika; Erhun, Wilson O.

    2013-01-01

    Context: Junior doctors are reported to make most of the prescribing errors in the hospital setting. Aims: The aim of the following study is to determine the knowledge intern doctors have about prescribing errors and circumstances contributing to making them. Settings and Design: A structured questionnaire was distributed to intern doctors in National Hospital Abuja Nigeria. Subjects and Methods: Respondents gave information about their experience with prescribing medicines, the extent to which they agreed with the definition of a clinically meaningful prescribing error and events that constituted such. Their experience with prescribing certain categories of medicines was also sought. Statistical Analysis Used: Data was analyzed with Statistical Package for the Social Sciences (SPSS) software version 17 (SPSS Inc Chicago, Ill, USA). Chi-squared analysis contrasted differences in proportions; P < 0.05 was considered to be statistically significant. Results: The response rate was 90.9% and 27 (90%) had <1 year of prescribing experience. 17 (56.7%) respondents totally agreed with the definition of a clinically meaningful prescribing error. Most common reasons for prescribing mistakes were a failure to check prescriptions with a reference source (14, 25.5%) and failure to check for adverse drug interactions (14, 25.5%). Omitting some essential information such as duration of therapy (13, 20%), patient age (14, 21.5%) and dosage errors (14, 21.5%) were the most common types of prescribing errors made. Respondents considered workload (23, 76.7%), multitasking (19, 63.3%), rushing (18, 60.0%) and tiredness/stress (16, 53.3%) as important factors contributing to prescribing errors. Interns were least confident prescribing antibiotics (12, 25.5%), opioid analgesics (12, 25.5%) cytotoxics (10, 21.3%) and antipsychotics (9, 19.1%) unsupervised. Conclusions: Respondents seemed to have a low awareness of making prescribing errors. Principles of rational prescribing and events that constitute prescribing errors should be taught in the practice setting. PMID:24808682

  15. Natural abundance deuterium and 18-oxygen effects on the precision of the doubly labeled water method

    NASA Technical Reports Server (NTRS)

    Horvitz, M. A.; Schoeller, D. A.

    2001-01-01

    The doubly labeled water method for measuring total energy expenditure is subject to error from natural variations in the background 2H and 18O in body water. There is disagreement as to whether the variations in background abundances of the two stable isotopes covary and what relative doses of 2H and 18O minimize the impact of variation on the precision of the method. We have performed two studies to investigate the amount and covariance of the background variations. These were a study of urine collected weekly from eight subjects who remained in the Madison, WI locale for 6 wk and frequent urine samples from 14 subjects during round-trip travel to a locale > or = 500 miles from Madison, WI. Background variation in excess of analytical error was detected in six of the eight nontravelers, and covariance was demonstrated in four subjects. Background variation was detected in all 14 travelers, and covariance was demonstrated in 11 subjects. The median slopes of the regression lines of delta2H vs. delta18O were 6 and 7, respectively. Modeling indicated that 2H and 18O doses yielding a 6:1 ratio of final enrichments should minimize this error introduced to the doubly labeled water method.

  16. Natural abundance deuterium and 18-oxygen effects on the precision of the doubly labeled water method.

    PubMed

    Horvitz, M A; Schoeller, D A

    2001-06-01

    The doubly labeled water method for measuring total energy expenditure is subject to error from natural variations in the background 2H and 18O in body water. There is disagreement as to whether the variations in background abundances of the two stable isotopes covary and what relative doses of 2H and 18O minimize the impact of variation on the precision of the method. We have performed two studies to investigate the amount and covariance of the background variations. These were a study of urine collected weekly from eight subjects who remained in the Madison, WI locale for 6 wk and frequent urine samples from 14 subjects during round-trip travel to a locale > or = 500 miles from Madison, WI. Background variation in excess of analytical error was detected in six of the eight nontravelers, and covariance was demonstrated in four subjects. Background variation was detected in all 14 travelers, and covariance was demonstrated in 11 subjects. The median slopes of the regression lines of delta2H vs. delta18O were 6 and 7, respectively. Modeling indicated that 2H and 18O doses yielding a 6:1 ratio of final enrichments should minimize this error introduced to the doubly labeled water method.

  17. Treatment of Anomia Using Errorless Versus Errorful Learning: Are Frontal Executive Skills and Feedback Important?

    ERIC Educational Resources Information Center

    Fillingham, Joanne; Sage, Karen; Ralph, Matthew Lambon

    2005-01-01

    Background: Studies from the amnesia literature suggest that errorless learning can produce superior results to errorful learning. However, it was found in a previous investigation by the present authors that errorless and errorful therapy produced equivalent results for patients with aphasic word-finding difficulties. A study in the academic…

  18. Motor-Based Treatment with and without Ultrasound Feedback for Residual Speech-Sound Errors

    ERIC Educational Resources Information Center

    Preston, Jonathan L.; Leece, Megan C.; Maas, Edwin

    2017-01-01

    Background: There is a need to develop effective interventions and to compare the efficacy of different interventions for children with residual speech-sound errors (RSSEs). Rhotics (the r-family of sounds) are frequently in error American English-speaking children with RSSEs and are commonly targeted in treatment. One treatment approach involves…

  19. Analysis of basic clustering algorithms for numerical estimation of statistical averages in biomolecules.

    PubMed

    Anandakrishnan, Ramu; Onufriev, Alexey

    2008-03-01

    In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.

  20. Is a shift from research on individual medical error to research on health information technology underway? A 40-year analysis of publication trends in medical journals.

    PubMed

    Erlewein, Daniel; Bruni, Tommaso; Gadebusch Bondio, Mariacarla

    2018-06-07

    In 1983, McIntyre and Popper underscored the need for more openness in dealing with errors in medicine. Since then, much has been written on individual medical errors. Furthermore, at the beginning of the 21st century, researchers and medical practitioners increasingly approached individual medical errors through health information technology. Hence, the question arises whether the attention of biomedical researchers shifted from individual medical errors to health information technology. We ran a study to determine publication trends concerning individual medical errors and health information technology in medical journals over the last 40 years. We used the Medical Subject Headings (MeSH) taxonomy in the database MEDLINE. Each year, we analyzed the percentage of relevant publications to the total number of publications in MEDLINE. The trends identified were tested for statistical significance. Our analysis showed that the percentage of publications dealing with individual medical errors increased from 1976 until the beginning of the 21st century but began to drop in 2003. Both the upward and the downward trends were statistically significant (P < 0.001). A breakdown by country revealed that it was the weight of the US and British publications that determined the overall downward trend after 2003. On the other hand, the percentage of publications dealing with health information technology doubled between 2003 and 2015. The upward trend was statistically significant (P < 0.001). The identified trends suggest that the attention of biomedical researchers partially shifted from individual medical errors to health information technology in the USA and the UK. © 2018 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  1. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  2. Statistics of the residual refraction errors in laser ranging data

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1977-01-01

    A theoretical model for the range error covariance was derived by assuming that the residual refraction errors are due entirely to errors in the meteorological data which are used to calculate the atmospheric correction. The properties of the covariance function are illustrated by evaluating the theoretical model for the special case of a dense network of weather stations uniformly distributed within a circle.

  3. Demand Forecasting: An Evaluation of DODs Accuracy Metric and Navys Procedures

    DTIC Science & Technology

    2016-06-01

    inventory management improvement plan, mean of absolute scaled error, lead time adjusted squared error, forecast accuracy, benchmarking, naïve method...Manager JASA Journal of the American Statistical Association LASE Lead-time Adjusted Squared Error LCI Life Cycle Indicator MA Moving Average MAE...Mean Squared Error xvi NAVSUP Naval Supply Systems Command NDAA National Defense Authorization Act NIIN National Individual Identification Number

  4. Correcting for Optimistic Prediction in Small Data Sets

    PubMed Central

    Smith, Gordon C. S.; Seaman, Shaun R.; Wood, Angela M.; Royston, Patrick; White, Ian R.

    2014-01-01

    The C statistic is a commonly reported measure of screening test performance. Optimistic estimation of the C statistic is a frequent problem because of overfitting of statistical models in small data sets, and methods exist to correct for this issue. However, many studies do not use such methods, and those that do correct for optimism use diverse methods, some of which are known to be biased. We used clinical data sets (United Kingdom Down syndrome screening data from Glasgow (1991–2003), Edinburgh (1999–2003), and Cambridge (1990–2006), as well as Scottish national pregnancy discharge data (2004–2007)) to evaluate different approaches to adjustment for optimism. We found that sample splitting, cross-validation without replication, and leave-1-out cross-validation produced optimism-adjusted estimates of the C statistic that were biased and/or associated with greater absolute error than other available methods. Cross-validation with replication, bootstrapping, and a new method (leave-pair-out cross-validation) all generated unbiased optimism-adjusted estimates of the C statistic and had similar absolute errors in the clinical data set. Larger simulation studies confirmed that all 3 methods performed similarly with 10 or more events per variable, or when the C statistic was 0.9 or greater. However, with lower events per variable or lower C statistics, bootstrapping tended to be optimistic but with lower absolute and mean squared errors than both methods of cross-validation. PMID:24966219

  5. Impact and quantification of the sources of error in DNA pooling designs.

    PubMed

    Jawaid, A; Sham, P

    2009-01-01

    The analysis of genome wide variation offers the possibility of unravelling the genes involved in the pathogenesis of disease. Genome wide association studies are also particularly useful for identifying and validating targets for therapeutic intervention as well as for detecting markers for drug efficacy and side effects. The cost of such large-scale genetic association studies may be reduced substantially by the analysis of pooled DNA from multiple individuals. However, experimental errors inherent in pooling studies lead to a potential increase in the false positive rate and a loss in power compared to individual genotyping. Here we quantify various sources of experimental error using empirical data from typical pooling experiments and corresponding individual genotyping counts using two statistical methods. We provide analytical formulas for calculating these different errors in the absence of complete information, such as replicate pool formation, and for adjusting for the errors in the statistical analysis. We demonstrate that DNA pooling has the potential of estimating allele frequencies accurately, and adjusting the pooled allele frequency estimates for differential allelic amplification considerably improves accuracy. Estimates of the components of error show that differential allelic amplification is the most important contributor to the error variance in absolute allele frequency estimation, followed by allele frequency measurement and pool formation errors. Our results emphasise the importance of minimising experimental errors and obtaining correct error estimates in genetic association studies.

  6. Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields

    NASA Astrophysics Data System (ADS)

    Bettadpur, S.

    2012-04-01

    The next-generation Release-05 GRACE gravity field data products are the result of extensive effort applied to the improvements to the GRACE Level-1 (tracking) data products, and to improvements in the background gravity models and processing methodology. As a result, the squared-error upper-bound in RL05 fields is half or less than the squared-error upper-bound in RL04 fields. The CSR-RL05 field release consists of unconstrained gravity fields as well as a regularized gravity field time-series that can be used for several applications without any post-processing error reduction. This paper will describe the background and the nature of these improvements in the data products, and provide an error characterization. We will describe the insights these new series offer in measuring the mass flux due to diverse Hydrologic, Oceanographic and Cryospheric processes.

  7. Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images.

    PubMed

    Wu, Allison Chia-Yi; Rifkin, Scott A

    2015-03-27

    Recent techniques for tagging and visualizing single molecules in fixed or living organisms and cell lines have been revolutionizing our understanding of the spatial and temporal dynamics of fundamental biological processes. However, fluorescence microscopy images are often noisy, and it can be difficult to distinguish a fluorescently labeled single molecule from background speckle. We present a computational pipeline to distinguish the true signal of fluorescently labeled molecules from background fluorescence and noise. We test our technique using the challenging case of wide-field, epifluorescence microscope image stacks from single molecule fluorescence in situ experiments on nematode embryos where there can be substantial out-of-focus light and structured noise. The software recognizes and classifies individual mRNA spots by measuring several features of local intensity maxima and classifying them with a supervised random forest classifier. A key innovation of this software is that, by estimating the probability that each local maximum is a true spot in a statistically principled way, it makes it possible to estimate the error introduced by image classification. This can be used to assess the quality of the data and to estimate a confidence interval for the molecule count estimate, all of which are important for quantitative interpretations of the results of single-molecule experiments. The software classifies spots in these images well, with >95% AUROC on realistic artificial data and outperforms other commonly used techniques on challenging real data. Its interval estimates provide a unique measure of the quality of an image and confidence in the classification.

  8. Reversed inverse regression for the univariate linear calibration and its statistical properties derived using a new methodology

    NASA Astrophysics Data System (ADS)

    Kang, Pilsang; Koo, Changhoi; Roh, Hokyu

    2017-11-01

    Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.

  9. The Impact of Subsampling on MODIS Level-3 Statistics of Cloud Optical Thickness and Effective Radius

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros

    2004-01-01

    The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.

  10. Analysis of variance to assess statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Joe, Cody; Lee, Colin; Besio, Walter G

    2017-07-01

    Concentric ring electrodes have shown promise in non-invasive electrophysiological measurement demonstrating their superiority to conventional disc electrodes, in particular, in accuracy of Laplacian estimation. Recently, we have proposed novel variable inter-ring distances concentric ring electrodes. Analytic and finite element method modeling results for linearly increasing distances electrode configurations suggested they may decrease the truncation error resulting in more accurate Laplacian estimates compared to currently used constant inter-ring distances configurations. This study assesses statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes. Full factorial design of analysis of variance was used with one categorical and two numerical factors: the inter-ring distances, the electrode diameter, and the number of concentric rings in the electrode. The response variables were the Relative Error and the Maximum Error of Laplacian estimation computed using a finite element method model for each of the combinations of levels of three factors. Effects of the main factors and their interactions on Relative Error and Maximum Error were assessed and the obtained results suggest that all three factors have statistically significant effects in the model confirming the potential of using inter-ring distances as a means of improving accuracy of Laplacian estimation.

  11. Detection of changes of high-frequency activity by statistical time-frequency analysis in epileptic spikes

    PubMed Central

    Kobayashi, Katsuhiro; Jacobs, Julia; Gotman, Jean

    2013-01-01

    Objective A novel type of statistical time-frequency analysis was developed to elucidate changes of high-frequency EEG activity associated with epileptic spikes. Methods The method uses the Gabor Transform and detects changes of power in comparison to background activity using t-statistics that are controlled by the false discovery rate (FDR) to correct type I error of multiple testing. The analysis was applied to EEGs recorded at 2000 Hz from three patients with mesial temporal lobe epilepsy. Results Spike-related increase of high-frequency oscillations (HFOs) was clearly shown in the FDR-controlled t-spectra: it was most dramatic in spikes recorded from the hippocampus when the hippocampus was the seizure onset zone (SOZ). Depression of fast activity was observed immediately after the spikes, especially consistently in the discharges from the hippocampal SOZ. It corresponded to the slow wave part in case of spike-and-slow-wave complexes, but it was noted even in spikes without apparent slow waves. In one patient, a gradual increase of power above 200 Hz preceded spikes. Conclusions FDR-controlled t-spectra clearly detected the spike-related changes of HFOs that were unclear in standard power spectra. Significance We developed a promising tool to study the HFOs that may be closely linked to the pathophysiology of epileptogenesis. PMID:19394892

  12. Fish: A New Computer Program for Friendly Introductory Statistics Help

    ERIC Educational Resources Information Center

    Brooks, Gordon P.; Raffle, Holly

    2005-01-01

    All introductory statistics students must master certain basic descriptive statistics, including means, standard deviations and correlations. Students must also gain insight into such complex concepts as the central limit theorem and standard error. This article introduces and describes the Friendly Introductory Statistics Help (FISH) computer…

  13. The Impact of Information Culture on Patient Safety Outcomes

    PubMed Central

    Mikkonen, Santtu; Saranto, Kaija; Bates, David W.

    2017-01-01

    Summary Background An organization’s information culture and information management practices create conditions for processing patient information in hospitals. Information management incidents are failures that could lead to adverse events for the patient if they are not detected. Objectives To test a theoretical model that links information culture in acute care hospitals to information management incidents and patient safety outcomes. Methods Reason’s model for the stages of development of organizational accidents was applied. Study data were collected from a cross-sectional survey of 909 RNs who work in medical or surgical units at 32 acute care hospitals in Finland. Structural equation modeling was used to assess how well the hypothesized model fit the study data. Results Fit indices indicated a good fit for the model. In total, 18 of the 32 paths tested were statistically significant. Documentation errors had the strongest total effect on patient safety outcomes. Organizational guidance positively affected information availability and utilization of electronic patient records, whereas the latter had the strongest total effect on the reduction of information delays. Conclusions Patient safety outcomes are associated with information management incidents and information culture. Further, the dimensions of the information culture create work conditions that generate errors in hospitals. PMID:28272647

  14. Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination

    PubMed Central

    Jeon, Hong Y.; Tian, Lei F.; Zhu, Heping

    2011-01-01

    An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA). PMID:22163954

  15. Adapting Active Shape Models for 3D segmentation of tubular structures in medical images.

    PubMed

    de Bruijne, Marleen; van Ginneken, Bram; Viergever, Max A; Niessen, Wiro J

    2003-07-01

    Active Shape Models (ASM) have proven to be an effective approach for image segmentation. In some applications, however, the linear model of gray level appearance around a contour that is used in ASM is not sufficient for accurate boundary localization. Furthermore, the statistical shape model may be too restricted if the training set is limited. This paper describes modifications to both the shape and the appearance model of the original ASM formulation. Shape model flexibility is increased, for tubular objects, by modeling the axis deformation independent of the cross-sectional deformation, and by adding supplementary cylindrical deformation modes. Furthermore, a novel appearance modeling scheme that effectively deals with a highly varying background is developed. In contrast with the conventional ASM approach, the new appearance model is trained on both boundary and non-boundary points, and the probability that a given point belongs to the boundary is estimated non-parametrically. The methods are evaluated on the complex task of segmenting thrombus in abdominal aortic aneurysms (AAA). Shape approximation errors were successfully reduced using the two shape model extensions. Segmentation using the new appearance model significantly outperformed the original ASM scheme; average volume errors are 5.1% and 45% respectively.

  16. Incorporating GIS building data and census housing statistics for sub-block-level population estimation

    USGS Publications Warehouse

    Wu, S.-S.; Wang, L.; Qiu, X.

    2008-01-01

    This article presents a deterministic model for sub-block-level population estimation based on the total building volumes derived from geographic information system (GIS) building data and three census block-level housing statistics. To assess the model, we generated artificial blocks by aggregating census block areas and calculating the respective housing statistics. We then applied the model to estimate populations for sub-artificial-block areas and assessed the estimates with census populations of the areas. Our analyses indicate that the average percent error of population estimation for sub-artificial-block areas is comparable to those for sub-census-block areas of the same size relative to associated blocks. The smaller the sub-block-level areas, the higher the population estimation errors. For example, the average percent error for residential areas is approximately 0.11 percent for 100 percent block areas and 35 percent for 5 percent block areas.

  17. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping.

    PubMed

    Kubica, Aleksander; Beverland, Michael E; Brandão, Fernando; Preskill, John; Svore, Krysta M

    2018-05-04

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p_{3DCC}^{(1)}≃1.9% and p_{3DCC}^{(2)}≃27.6%. We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  18. Observation of non-classical correlations in sequential measurements of photon polarization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F.

    2016-10-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength.

  19. A fully redundant double difference algorithm for obtaining minimum variance estimates from GPS observations

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.

    1986-01-01

    In double differencing a regression system obtained from concurrent Global Positioning System (GPS) observation sequences, one either undersamples the system to avoid introducing colored measurement statistics, or one fully samples the system incurring the resulting non-diagonal covariance matrix for the differenced measurement errors. A suboptimal estimation result will be obtained in the undersampling case and will also be obtained in the fully sampled case unless the color noise statistics are taken into account. The latter approach requires a least squares weighting matrix derived from inversion of a non-diagonal covariance matrix for the differenced measurement errors instead of inversion of the customary diagonal one associated with white noise processes. Presented is the so-called fully redundant double differencing algorithm for generating a weighted double differenced regression system that yields equivalent estimation results, but features for certain cases a diagonal weighting matrix even though the differenced measurement error statistics are highly colored.

  20. Virtual Reality Robotic Surgery Warm-Up Improves Task Performance in a Dry Lab Environment: A Prospective Randomized Controlled Study

    PubMed Central

    Lendvay, Thomas S.; Brand, Timothy C.; White, Lee; Kowalewski, Timothy; Jonnadula, Saikiran; Mercer, Laina; Khorsand, Derek; Andros, Justin; Hannaford, Blake; Satava, Richard M.

    2014-01-01

    Background Pre-operative simulation “warm-up” has been shown to improve performance and reduce errors in novice and experienced surgeons, yet existing studies have only investigated conventional laparoscopy. We hypothesized a brief virtual reality (VR) robotic warm-up would enhance robotic task performance and reduce errors. Study Design In a two-center randomized trial, fifty-one residents and experienced minimally invasive surgery faculty in General Surgery, Urology, and Gynecology underwent a validated robotic surgery proficiency curriculum on a VR robotic simulator and on the da Vinci surgical robot. Once successfully achieving performance benchmarks, surgeons were randomized to either receive a 3-5 minute VR simulator warm-up or read a leisure book for 10 minutes prior to performing similar and dissimilar (intracorporeal suturing) robotic surgery tasks. The primary outcomes compared were task time, tool path length, economy of motion, technical and cognitive errors. Results Task time (-29.29sec, p=0.001, 95%CI-47.03,-11.56), path length (-79.87mm, p=0.014, 95%CI -144.48,-15.25), and cognitive errors were reduced in the warm-up group compared to the control group for similar tasks. Global technical errors in intracorporeal suturing (0.32, p=0.020, 95%CI 0.06,0.59) were reduced after the dissimilar VR task. When surgeons were stratified by prior robotic and laparoscopic clinical experience, the more experienced surgeons(n=17) demonstrated significant improvements from warm-up in task time (-53.5sec, p=0.001, 95%CI -83.9,-23.0) and economy of motion (0.63mm/sec, p=0.007, 95%CI 0.18,1.09), whereas improvement in these metrics was not statistically significantly appreciated in the less experienced cohort(n=34). Conclusions We observed a significant performance improvement and error reduction rate among surgeons of varying experience after VR warm-up for basic robotic surgery tasks. In addition, the VR warm-up reduced errors on a more complex task (robotic suturing) suggesting the generalizability of the warm-up. PMID:23583618

  1. Blessing of dimensionality: mathematical foundations of the statistical physics of data.

    PubMed

    Gorban, A N; Tyukin, I Y

    2018-04-28

    The concentrations of measure phenomena were discovered as the mathematical background to statistical mechanics at the end of the nineteenth/beginning of the twentieth century and have been explored in mathematics ever since. At the beginning of the twenty-first century, it became clear that the proper utilization of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality This paper summarizes recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median-level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fisher's discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us with such classifiers and determine a non-iterative (one-shot) procedure for their construction.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  2. The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational-wave searches

    NASA Astrophysics Data System (ADS)

    Caballero, R. N.; Lee, K. J.; Lentati, L.; Desvignes, G.; Champion, D. J.; Verbiest, J. P. W.; Janssen, G. H.; Stappers, B. W.; Kramer, M.; Lazarus, P.; Possenti, A.; Tiburzi, C.; Perrodin, D.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Karuppusamy, R.; Lassus, A.; Liu, K.; McKee, J.; Mingarelli, C. M. F.; Petiteau, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; van Haasteren, R.; Vecchio, A.

    2016-04-01

    The sensitivity of Pulsar Timing Arrays to gravitational waves (GWs) depends on the noise present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include rotational instabilities, for example. Extrinsic sources of noise include contributions from physical processes which are not sufficiently well modelled, for example, dispersion and scattering effects, analysis errors and instrumental instabilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For characterizing the low-frequency, stochastic and achromatic noise component, or `timing noise', we employ two methods, based on Bayesian and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of their timing noise parameters and find that the two methods give consistent results. For the remaining 17 MSPs, we place upper limits on the timing noise amplitude at the 95 per cent confidence level. We additionally place an upper limit on the contribution to the pulsar noise budget from errors in the reference terrestrial time standards (below 1 per cent), and we find evidence for a noise component which is present only in the data of one of the four used telescopes. Finally, we estimate that the timing noise of individual pulsars reduces the sensitivity of this data set to an isotropic, stochastic GW background by a factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable, inspiralling supermassive black hole binaries with circular orbits.

  3. Testing parity-violating physics from cosmic rotation power reconstruction

    DOE PAGES

    Namikawa, Toshiya

    2017-02-22

    We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflationary gravitational waves and gravitational lensing, measurements of other various effects on CMB polarization open new window into the early Universe. One of these is anisotropies of the cosmic polarization rotation which probes the Chern-Simons term generally predicted by string theory. The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the Standard Model extentionmore » framework. The cosmic rotation anisotropies can be reconstructed as quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB four-point correlation and is not directly related to the cosmic-rotation power spectrum. Understanding all contributions in the four-point correlation is required to extract the cosmic rotation signal. Here, assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify each contribution to the four-point correlation and find that (1) a secondary contraction of the trispectrum increases the total signal-to-noise, (2) a bias from the lensing-induced trispectrum is significant compared to the statistical errors in, e.g., LiteBIRD and CMBS4-like experiments, (3) the use of a realization-dependent estimator decreases the statistical errors by 10%–20%, depending on experimental specifications, and (4) other higher-order contributions are negligible at least for near future experiments.« less

  4. Blessing of dimensionality: mathematical foundations of the statistical physics of data

    NASA Astrophysics Data System (ADS)

    Gorban, A. N.; Tyukin, I. Y.

    2018-04-01

    The concentrations of measure phenomena were discovered as the mathematical background to statistical mechanics at the end of the nineteenth/beginning of the twentieth century and have been explored in mathematics ever since. At the beginning of the twenty-first century, it became clear that the proper utilization of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality. This paper summarizes recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median-level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fisher's discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us with such classifiers and determine a non-iterative (one-shot) procedure for their construction. This article is part of the theme issue `Hilbert's sixth problem'.

  5. Prediction of transmission distortion for wireless video communication: analysis.

    PubMed

    Chen, Zhifeng; Wu, Dapeng

    2012-03-01

    Transmitting video over wireless is a challenging problem since video may be seriously distorted due to packet errors caused by wireless channels. The capability of predicting transmission distortion (i.e., video distortion caused by packet errors) can assist in designing video encoding and transmission schemes that achieve maximum video quality or minimum end-to-end video distortion. This paper is aimed at deriving formulas for predicting transmission distortion. The contribution of this paper is twofold. First, we identify the governing law that describes how the transmission distortion process evolves over time and analytically derive the transmission distortion formula as a closed-form function of video frame statistics, channel error statistics, and system parameters. Second, we identify, for the first time, two important properties of transmission distortion. The first property is that the clipping noise, which is produced by nonlinear clipping, causes decay of propagated error. The second property is that the correlation between motion-vector concealment error and propagated error is negative and has dominant impact on transmission distortion, compared with other correlations. Due to these two properties and elegant error/distortion decomposition, our formula provides not only more accurate prediction but also lower complexity than the existing methods.

  6. Systematic Error Modeling and Bias Estimation

    PubMed Central

    Zhang, Feihu; Knoll, Alois

    2016-01-01

    This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386

  7. Investigating the Relationship between Conceptual and Procedural Errors in the Domain of Probability Problem-Solving.

    ERIC Educational Resources Information Center

    O'Connell, Ann Aileen

    The relationships among types of errors observed during probability problem solving were studied. Subjects were 50 graduate students in an introductory probability and statistics course. Errors were classified as text comprehension, conceptual, procedural, and arithmetic. Canonical correlation analysis was conducted on the frequencies of specific…

  8. A Unified Approach to Measurement Error and Missing Data: Overview and Applications

    ERIC Educational Resources Information Center

    Blackwell, Matthew; Honaker, James; King, Gary

    2017-01-01

    Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…

  9. Calibration of remotely sensed proportion or area estimates for misclassification error

    Treesearch

    Raymond L. Czaplewski; Glenn P. Catts

    1992-01-01

    Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...

  10. Compact disk error measurements

    NASA Technical Reports Server (NTRS)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  11. The Relation Between Inflation in Type-I and Type-II Error Rate and Population Divergence in Genome-Wide Association Analysis of Multi-Ethnic Populations.

    PubMed

    Derks, E M; Zwinderman, A H; Gamazon, E R

    2017-05-01

    Population divergence impacts the degree of population stratification in Genome Wide Association Studies. We aim to: (i) investigate type-I error rate as a function of population divergence (F ST ) in multi-ethnic (admixed) populations; (ii) evaluate the statistical power and effect size estimates; and (iii) investigate the impact of population stratification on the results of gene-based analyses. Quantitative phenotypes were simulated. Type-I error rate was investigated for Single Nucleotide Polymorphisms (SNPs) with varying levels of F ST between the ancestral European and African populations. Type-II error rate was investigated for a SNP characterized by a high value of F ST . In all tests, genomic MDS components were included to correct for population stratification. Type-I and type-II error rate was adequately controlled in a population that included two distinct ethnic populations but not in admixed samples. Statistical power was reduced in the admixed samples. Gene-based tests showed no residual inflation in type-I error rate.

  12. Quotation accuracy in medical journal articles-a systematic review and meta-analysis.

    PubMed

    Jergas, Hannah; Baethge, Christopher

    2015-01-01

    Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose-quotation errors-may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress.

  13. Icon flickering, flicker rate, and color combinations of an icon's symbol/background in visual search performance.

    PubMed

    Huang, Kuo-Chen; Chiang, Shu-Ying; Chen, Chen-Fu

    2008-02-01

    The effects of color combinations of an icon's symbol/background and components of flicker and flicker rate on visual search performance on a liquid crystal display screen were investigated with 39 subjects who searched for a target icon in a circular stimulus array (diameter = 20 cm) including one target and 19 distractors. Analysis showed that the icon's symbol/background color significantly affected search time. The search times for icons with black/red and white/blue were significantly shorter than for white/yellow, black/yellow, and black/blue. Flickering of different components of the icon significantly affected the search time. Search time for an icon's border flickering was shorter than for an icon symbol flickering; search for flicker rates of 3 and 5 Hz was shorter than that for 1 Hz. For icon's symbol/background color combinations, search error rate for black/blue was greater than for black/red and white/blue combinations, and the error rate for an icon's border flickering was lower than for an icon's symbol flickering. Interactions affected search time and error rate. Results are applicable to design of graphic user interfaces.

  14. Recovery of intrinsic fluorescence from single-point interstitial measurements for quantification of doxorubicin concentration

    PubMed Central

    Baran, Timothy M.; Foster, Thomas H.

    2014-01-01

    Background and Objective We developed a method for the recovery of intrinsic fluorescence from single-point measurements in highly scattering and absorbing samples without a priori knowledge of the sample optical properties. The goal of the study was to demonstrate accurate recovery of fluorophore concentration in samples with widely varying background optical properties, while simultaneously recovering the optical properties. Materials and Methods Tissue-simulating phantoms containing doxorubicin, MnTPPS, and Intralipid-20% were created, and fluorescence measurements were performed using a single isotropic probe. The resulting spectra were analyzed using a forward-adjoint fluorescence model in order to recover the fluorophore concentration and background optical properties. Results We demonstrated recovery of doxorubicin concentration with a mean error of 11.8%. The concentration of the background absorber was recovered with an average error of 23.2% and the scattering spectrum was recovered with a mean error of 19.8%. Conclusion This method will allow for the determination of local concentrations of fluorescent drugs, such as doxorubicin, from minimally invasive fluorescence measurements. This is particularly interesting in the context of transarterial chemoembolization (TACE) treatment of liver cancer. PMID:24037853

  15. Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes

    NASA Astrophysics Data System (ADS)

    Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team

    We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.

  16. Refractive errors in children and adolescents in Bucaramanga (Colombia).

    PubMed

    Galvis, Virgilio; Tello, Alejandro; Otero, Johanna; Serrano, Andrés A; Gómez, Luz María; Castellanos, Yuly

    2017-01-01

    The aim of this study was to establish the frequency of refractive errors in children and adolescents aged between 8 and 17 years old, living in the metropolitan area of Bucaramanga (Colombia). This study was a secondary analysis of two descriptive cross-sectional studies that applied sociodemographic surveys and assessed visual acuity and refraction. Ametropias were classified as myopic errors, hyperopic errors, and mixed astigmatism. Eyes were considered emmetropic if none of these classifications were made. The data were collated using free software and analyzed with STATA/IC 11.2. One thousand two hundred twenty-eight individuals were included in this study. Girls showed a higher rate of ametropia than boys. Hyperopic refractive errors were present in 23.1% of the subjects, and myopic errors in 11.2%. Only 0.2% of the eyes had high myopia (≤-6.00 D). Mixed astigmatism and anisometropia were uncommon, and myopia frequency increased with age. There were statistically significant steeper keratometric readings in myopic compared to hyperopic eyes. The frequency of refractive errors that we found of 36.7% is moderate compared to the global data. The rates and parameters statistically differed by sex and age groups. Our findings are useful for establishing refractive error rate benchmarks in low-middle-income countries and as a baseline for following their variation by sociodemographic factors.

  17. Applied statistics in ecology: common pitfalls and simple solutions

    Treesearch

    E. Ashley Steel; Maureen C. Kennedy; Patrick G. Cunningham; John S. Stanovick

    2013-01-01

    The most common statistical pitfalls in ecological research are those associated with data exploration, the logic of sampling and design, and the interpretation of statistical results. Although one can find published errors in calculations, the majority of statistical pitfalls result from incorrect logic or interpretation despite correct numerical calculations. There...

  18. Impact of Communication Errors in Radiology on Patient Care, Customer Satisfaction, and Work-Flow Efficiency.

    PubMed

    Siewert, Bettina; Brook, Olga R; Hochman, Mary; Eisenberg, Ronald L

    2016-03-01

    The purpose of this study is to analyze the impact of communication errors on patient care, customer satisfaction, and work-flow efficiency and to identify opportunities for quality improvement. We performed a search of our quality assurance database for communication errors submitted from August 1, 2004, through December 31, 2014. Cases were analyzed regarding the step in the imaging process at which the error occurred (i.e., ordering, scheduling, performance of examination, study interpretation, or result communication). The impact on patient care was graded on a 5-point scale from none (0) to catastrophic (4). The severity of impact between errors in result communication and those that occurred at all other steps was compared. Error evaluation was performed independently by two board-certified radiologists. Statistical analysis was performed using the chi-square test and kappa statistics. Three hundred eighty of 422 cases were included in the study. One hundred ninety-nine of the 380 communication errors (52.4%) occurred at steps other than result communication, including ordering (13.9%; n = 53), scheduling (4.7%; n = 18), performance of examination (30.0%; n = 114), and study interpretation (3.7%; n = 14). Result communication was the single most common step, accounting for 47.6% (181/380) of errors. There was no statistically significant difference in impact severity between errors that occurred during result communication and those that occurred at other times (p = 0.29). In 37.9% of cases (144/380), there was an impact on patient care, including 21 minor impacts (5.5%; result communication, n = 13; all other steps, n = 8), 34 moderate impacts (8.9%; result communication, n = 12; all other steps, n = 22), and 89 major impacts (23.4%; result communication, n = 45; all other steps, n = 44). In 62.1% (236/380) of cases, no impact was noted, but 52.6% (200/380) of cases had the potential for an impact. Among 380 communication errors in a radiology department, 37.9% had a direct impact on patient care, with an additional 52.6% having a potential impact. Most communication errors (52.4%) occurred at steps other than result communication, with similar severity of impact.

  19. The impact of statistical adjustment on conditional standard errors of measurement in the assessment of physician communication skills.

    PubMed

    Raymond, Mark R; Clauser, Brian E; Furman, Gail E

    2010-10-01

    The use of standardized patients to assess communication skills is now an essential part of assessing a physician's readiness for practice. To improve the reliability of communication scores, it has become increasingly common in recent years to use statistical models to adjust ratings provided by standardized patients. This study employed ordinary least squares regression to adjust ratings, and then used generalizability theory to evaluate the impact of these adjustments on score reliability and the overall standard error of measurement. In addition, conditional standard errors of measurement were computed for both observed and adjusted scores to determine whether the improvements in measurement precision were uniform across the score distribution. Results indicated that measurement was generally less precise for communication ratings toward the lower end of the score distribution; and the improvement in measurement precision afforded by statistical modeling varied slightly across the score distribution such that the most improvement occurred in the upper-middle range of the score scale. Possible reasons for these patterns in measurement precision are discussed, as are the limitations of the statistical models used for adjusting performance ratings.

  20. Examining Impulse-Variability Theory and the Speed-Accuracy Trade-Off in Children's Overarm Throwing Performance.

    PubMed

    Molina, Sergio L; Stodden, David F

    2018-04-01

    This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.

  1. Medication errors of nurses and factors in refusal to report medication errors among nurses in a teaching medical center of iran in 2012.

    PubMed

    Mostafaei, Davoud; Barati Marnani, Ahmad; Mosavi Esfahani, Haleh; Estebsari, Fatemeh; Shahzaidi, Shiva; Jamshidi, Ensiyeh; Aghamiri, Seyed Samad

    2014-10-01

    About one third of unwanted reported medication consequences are due to medication errors, resulting in one-fifth of hospital injuries. The aim of this study was determined formal and informal medication errors of nurses and the level of importance of factors in refusal to report medication errors among nurses. The cross-sectional study was done on the nursing staff of Shohada Tajrish Hospital, Tehran, Iran in 2012. The data was gathered through a questionnaire, made by the researchers. The questionnaires' face and content validity was confirmed by experts and for measuring its reliability test-retest was used. The data was analyzed by descriptive statistics. We used SPSS for related statistical analyses. The most important factors in refusal to report medication errors respectively were: lack of medication error recording and reporting system in the hospital (3.3%), non-significant error reporting to hospital authorities and lack of appropriate feedback (3.1%), and lack of a clear definition for a medication error (3%). There were both formal and informal reporting of medication errors in this study. Factors pertaining to management in hospitals as well as the fear of the consequences of reporting are two broad fields among the factors that make nurses not report their medication errors. In this regard, providing enough education to nurses, boosting the job security for nurses, management support and revising related processes and definitions are some factors that can help decreasing medication errors and increasing their report in case of occurrence.

  2. Static Scene Statistical Non-Uniformity Correction

    DTIC Science & Technology

    2015-03-01

    Error NUC Non-Uniformity Correction RMSE Root Mean Squared Error RSD Relative Standard Deviation S3NUC Static Scene Statistical Non-Uniformity...Deviation ( RSD ) which normalizes the standard deviation, σ, to the mean estimated value, µ using the equation RS D = σ µ × 100. The RSD plot of the gain...estimates is shown in Figure 4.1(b). The RSD plot shows that after a sample size of approximately 10, the different photocount values and the inclusion

  3. Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; Ghisletta, Paolo; Lindenberger, Ulman; Hertzog, Christopher

    2018-01-01

    Latent Growth Curve Models (LGCM) have become a standard technique to model change over time. Prediction and explanation of inter-individual differences in change are major goals in lifespan research. The major determinants of statistical power to detect individual differences in change are the magnitude of true inter-individual differences in linear change (LGCM slope variance), design precision, alpha level, and sample size. Here, we show that design precision can be expressed as the inverse of effective error. Effective error is determined by instrument reliability and the temporal arrangement of measurement occasions. However, it also depends on another central LGCM component, the variance of the latent intercept and its covariance with the latent slope. We derive a new reliability index for LGCM slope variance—effective curve reliability (ECR)—by scaling slope variance against effective error. ECR is interpretable as a standardized effect size index. We demonstrate how effective error, ECR, and statistical power for a likelihood ratio test of zero slope variance formally relate to each other and how they function as indices of statistical power. We also provide a computational approach to derive ECR for arbitrary intercept-slope covariance. With practical use cases, we argue for the complementary utility of the proposed indices of a study's sensitivity to detect slope variance when making a priori longitudinal design decisions or communicating study designs. PMID:29755377

  4. Reconstruction of Atmospheric Tracer Releases with Optimal Resolution Features: Concentration Data Assimilation

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Turbelin, Gregory; Issartel, Jean-Pierre; Kumar, Pramod; Feiz, Amir Ali

    2015-04-01

    The fast growing urbanization, industrialization and military developments increase the risk towards the human environment and ecology. This is realized in several past mortality incidents, for instance, Chernobyl nuclear explosion (Ukraine), Bhopal gas leak (India), Fukushima-Daichi radionuclide release (Japan), etc. To reduce the threat and exposure to the hazardous contaminants, a fast and preliminary identification of unknown releases is required by the responsible authorities for the emergency preparedness and air quality analysis. Often, an early detection of such contaminants is pursued by a distributed sensor network. However, identifying the origin and strength of unknown releases following the sensor reported concentrations is a challenging task. This requires an optimal strategy to integrate the measured concentrations with the predictions given by the atmospheric dispersion models. This is an inverse problem. The measured concentrations are insufficient and atmospheric dispersion models suffer from inaccuracy due to the lack of process understanding, turbulence uncertainties, etc. These lead to a loss of information in the reconstruction process and thus, affect the resolution, stability and uniqueness of the retrieved source. An additional well known issue is the numerical artifact arisen at the measurement locations due to the strong concentration gradient and dissipative nature of the concentration. Thus, assimilation techniques are desired which can lead to an optimal retrieval of the unknown releases. In general, this is facilitated within the Bayesian inference and optimization framework with a suitable choice of a priori information, regularization constraints, measurement and background error statistics. An inversion technique is introduced here for an optimal reconstruction of unknown releases using limited concentration measurements. This is based on adjoint representation of the source-receptor relationship and utilization of a weight function which exhibits a priori information about the unknown releases apparent to the monitoring network. The properties of the weight function provide an optimal data resolution and model resolution to the retrieved source estimates. The retrieved source estimates are proved theoretically to be stable against the random measurement errors and their reliability can be interpreted in terms of the distribution of the weight functions. Further, the same framework can be extended for the identification of the point type releases by utilizing the maximum of the retrieved source estimates. The inversion technique has been evaluated with the several diffusion experiments, like, Idaho low wind diffusion experiment (1974), IIT Delhi tracer experiment (1991), European Tracer Experiment (1994), Fusion Field Trials (2007), etc. In case of point release experiments, the source parameters are mostly retrieved close to the true source parameters with least error. Primarily, the proposed technique overcomes two major difficulties incurred in the source reconstruction: (i) The initialization of the source parameters as required by the optimization based techniques. The converged solution depends on their initialization. (ii) The statistical knowledge about the measurement and background errors as required by the Bayesian inference based techniques. These are hypothetically assumed in case of no prior knowledge.

  5. Mobile phones and head tumours. The discrepancies in cause-effect relationships in the epidemiological studies - how do they arise?

    PubMed Central

    2011-01-01

    Background Whether or not there is a relationship between use of mobile phones (analogue and digital cellulars, and cordless) and head tumour risk (brain tumours, acoustic neuromas, and salivary gland tumours) is still a matter of debate; progress requires a critical analysis of the methodological elements necessary for an impartial evaluation of contradictory studies. Methods A close examination of the protocols and results from all case-control and cohort studies, pooled- and meta-analyses on head tumour risk for mobile phone users was carried out, and for each study the elements necessary for evaluating its reliability were identified. In addition, new meta-analyses of the literature data were undertaken. These were limited to subjects with mobile phone latency time compatible with the progression of the examined tumours, and with analysis of the laterality of head tumour localisation corresponding to the habitual laterality of mobile phone use. Results Blind protocols, free from errors, bias, and financial conditioning factors, give positive results that reveal a cause-effect relationship between long-term mobile phone use or latency and statistically significant increase of ipsilateral head tumour risk, with biological plausibility. Non-blind protocols, which instead are affected by errors, bias, and financial conditioning factors, give negative results with systematic underestimate of such risk. However, also in these studies a statistically significant increase in risk of ipsilateral head tumours is quite common after more than 10 years of mobile phone use or latency. The meta-analyses, our included, examining only data on ipsilateral tumours in subjects using mobile phones since or for at least 10 years, show large and statistically significant increases in risk of ipsilateral brain gliomas and acoustic neuromas. Conclusions Our analysis of the literature studies and of the results from meta-analyses of the significant data alone shows an almost doubling of the risk of head tumours induced by long-term mobile phone use or latency. PMID:21679472

  6. Variational Continuous Assimilation of TMI and SSM/I Rain Rates: Impact on GEOS-3 Hurricane Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; Reale, Oreste

    2003-01-01

    We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfall data using moisture and temperature tendency corrections as the control variable to offset model deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted precipitation is based on parameterized moist physics, which can have substantial systematic errors. This study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective pathway to precipitation assimilation. The particular scheme we exarnine employs a '1+1' dimension precipitation observation operator based on a 6-h integration of a column model of moist physics from the Goddard Earth Observing System (GEOS) global data assimilation system DAS). In earlier studies, we tested a simplified version of this scheme and obtained improved monthly-mean analyses and better short-range forecast skills. This paper describes the full implementation ofthe 1+1D VCA scheme using background and observation error statistics, and examines how it may improve GEOS analyses and forecasts of prominent tropical weather systems such as hurricanes. Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd show that assimilating 6-h TMI and SSM/I surfice rain rates leads to more realistic storm features in the analysis, which, in turn, provide better initial conditions for 5-day storm track prediction and precipitation forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be crucial to making effective use of precipitation information in data assimilation.

  7. Evidence-based Draft Guideline for Prevention of Midwifery Malpractices based on Referred Cases to the Forensic Medicine Commission and the Medical Council from 2006–2011

    PubMed Central

    Asadi, Leila; Beigi, Marjan; Valiani, Mahbube; Mardani, Fardin

    2017-01-01

    Background: Medical errors are the main concerns in health systems, which considering their ascending rate in the recent years, especially in the field of midwifery, have caused a medical crisis. Considering the importance of evidence-based health services as a way to improve health systems, the aim of this study was to suggest a guideline for preventing malpractice in midwifery services. Materials and Methods: In this cross-sectional study that was conducted in 2013, we investigated 206 cases that were referred to the Isfahan Legal Medicine Organization and Medical Council of Forensic Medicine from 2006–2011. Data were collected by a checklist and were analyzed using SPSS-16 software. Descriptive statistical tests (mean, maximum, minimum, standard deviation, frequency, and percentage agreement) were used to describe the data. Then, we used the Delphi technique with the participation from 17 experts in midwifery, gynecology, and legal medicine to provide an evidence-based draft guideline for prevention of midwifery errors. Results: A total of 206 cases were reviewed. In 66 cases (32%) the verdict for malpractice in midwifery services was approved. A practical draft guideline for preventing clinical errors for midwifery in the fields of pregnancy, delivery, and postpartum period was developed. Conclusions: This evidence-based draft guideline can improve the attention of all the healthcare providers, especially midwives and physicians to prevent urgent problems and offer effective health services for mothers and infants. PMID:28904546

  8. Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models

    NASA Astrophysics Data System (ADS)

    Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.

    2012-02-01

    This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the state space that spans multiple subspaces of different dimensionalities. The order of the autoregressive process required to fit the data is determined here by posterior residual-sample examination and statistical tests. Inference for earth model parameters is carried out on the trans-dimensional posterior probability distribution by considering ensembles of parameter vectors. In particular, vs uncertainty estimates are obtained by marginalizing the trans-dimensional posterior distribution in terms of vs-profile marginal distributions. The methodology is applied to microtremor array dispersion data collected at two sites with significantly different geology in British Columbia, Canada. At both sites, results show excellent agreement with estimates from invasive measurements.

  9. Automated Hypothesis Tests and Standard Errors for Nonstandard Problems with Description of Computer Package: A Draft.

    ERIC Educational Resources Information Center

    Lord, Frederic M.; Stocking, Martha

    A general Computer program is described that will compute asymptotic standard errors and carry out significance tests for an endless variety of (standard and) nonstandard large-sample statistical problems, without requiring the statistician to derive asymptotic standard error formulas. The program assumes that the observations have a multinormal…

  10. Role of Forcing Uncertainty and Background Model Error Characterization in Snow Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Dong, Jiarul; Peters-Lidard, Christa D.; Mocko, David; Gomez, Breogan

    2017-01-01

    Accurate specification of the model error covariances in data assimilation systems is a challenging issue. Ensemble land data assimilation methods rely on stochastic perturbations of input forcing and model prognostic fields for developing representations of input model error covariances. This article examines the limitations of using a single forcing dataset for specifying forcing uncertainty inputs for assimilating snow depth retrievals. Using an idealized data assimilation experiment, the article demonstrates that the use of hybrid forcing input strategies (either through the use of an ensemble of forcing products or through the added use of the forcing climatology) provide a better characterization of the background model error, which leads to improved data assimilation results, especially during the snow accumulation and melt-time periods. The use of hybrid forcing ensembles is then employed for assimilating snow depth retrievals from the AMSR2 (Advanced Microwave Scanning Radiometer 2) instrument over two domains in the continental USA with different snow evolution characteristics. Over a region near the Great Lakes, where the snow evolution tends to be ephemeral, the use of hybrid forcing ensembles provides significant improvements relative to the use of a single forcing dataset. Over the Colorado headwaters characterized by large snow accumulation, the impact of using the forcing ensemble is less prominent and is largely limited to the snow transition time periods. The results of the article demonstrate that improving the background model error through the use of a forcing ensemble enables the assimilation system to better incorporate the observational information.

  11. Multibaseline gravitational wave radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit

    2011-03-15

    We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise.more » Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.« less

  12. Adverse effects of metallic artifacts on voxel-wise analysis and tract-based spatial statistics in diffusion tensor imaging.

    PubMed

    Goto, Masami; Abe, Osamu; Hata, Junichi; Fukunaga, Issei; Shimoji, Keigo; Kunimatsu, Akira; Gomi, Tsutomu

    2017-02-01

    Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that reflects the Brownian motion of water molecules constrained within brain tissue. Fractional anisotropy (FA) is one of the most commonly measured DTI parameters, and can be applied to quantitative analysis of white matter as tract-based spatial statistics (TBSS) and voxel-wise analysis. Purpose To show an association between metallic implants and the results of statistical analysis (voxel-wise group comparison and TBSS) for fractional anisotropy (FA) mapping, in DTI of healthy adults. Material and Methods Sixteen healthy volunteers were scanned with 3-Tesla MRI. A magnetic keeper type of dental implant was used as the metallic implant. DTI was acquired three times in each participant: (i) without a magnetic keeper (FAnon1); (ii) with a magnetic keeper (FAimp); and (iii) without a magnetic keeper (FAnon2) as reproducibility of FAnon1. Group comparisons with paired t-test were performed as FAnon1 vs. FAnon2, and as FAnon1 vs. FAimp. Results Regions of significantly reduced and increased local FA values were revealed by voxel-wise group comparison analysis (a P value of less than 0.05, corrected with family-wise error), but not by TBSS. Conclusion Metallic implants existing outside the field of view produce artifacts that affect the statistical analysis (voxel-wise group comparisons) for FA mapping. When statistical analysis for FA mapping is conducted by researchers, it is important to pay attention to any dental implants present in the mouths of the participants.

  13. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Aiping; Guo, Lei

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  14. Implementation of an experimental program to investigate the performance characteristics of OMEGA navigation

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.

    1974-01-01

    A theoretical formulation of differential and composite OMEGA error is presented to establish hypotheses about the functional relationships between various parameters and OMEGA navigational errors. Computer software developed to provide for extensive statistical analysis of the phase data is described. Results from the regression analysis used to conduct parameter sensitivity studies on differential OMEGA error tend to validate the theoretically based hypothesis concerning the relationship between uncorrected differential OMEGA error and receiver separation range and azimuth. Limited results of measurement of receiver repeatability error and line of position measurement error are also presented.

  15. Using Audit Information to Adjust Parameter Estimates for Data Errors in Clinical Trials

    PubMed Central

    Shepherd, Bryan E.; Shaw, Pamela A.; Dodd, Lori E.

    2013-01-01

    Background Audits are often performed to assess the quality of clinical trial data, but beyond detecting fraud or sloppiness, the audit data is generally ignored. In earlier work using data from a non-randomized study, Shepherd and Yu (2011) developed statistical methods to incorporate audit results into study estimates, and demonstrated that audit data could be used to eliminate bias. Purpose In this manuscript we examine the usefulness of audit-based error-correction methods in clinical trial settings where a continuous outcome is of primary interest. Methods We demonstrate the bias of multiple linear regression estimates in general settings with an outcome that may have errors and a set of covariates for which some may have errors and others, including treatment assignment, are recorded correctly for all subjects. We study this bias under different assumptions including independence between treatment assignment, covariates, and data errors (conceivable in a double-blinded randomized trial) and independence between treatment assignment and covariates but not data errors (possible in an unblinded randomized trial). We review moment-based estimators to incorporate the audit data and propose new multiple imputation estimators. The performance of estimators is studied in simulations. Results When treatment is randomized and unrelated to data errors, estimates of the treatment effect using the original error-prone data (i.e., ignoring the audit results) are unbiased. In this setting, both moment and multiple imputation estimators incorporating audit data are more variable than standard analyses using the original data. In contrast, in settings where treatment is randomized but correlated with data errors and in settings where treatment is not randomized, standard treatment effect estimates will be biased. And in all settings, parameter estimates for the original, error-prone covariates will be biased. Treatment and covariate effect estimates can be corrected by incorporating audit data using either the multiple imputation or moment-based approaches. Bias, precision, and coverage of confidence intervals improve as the audit size increases. Limitations The extent of bias and the performance of methods depend on the extent and nature of the error as well as the size of the audit. This work only considers methods for the linear model. Settings much different than those considered here need further study. Conclusions In randomized trials with continuous outcomes and treatment assignment independent of data errors, standard analyses of treatment effects will be unbiased and are recommended. However, if treatment assignment is correlated with data errors or other covariates, naive analyses may be biased. In these settings, and when covariate effects are of interest, approaches for incorporating audit results should be considered. PMID:22848072

  16. Estimating error statistics for Chambon-la-Forêt observatory definitive data

    NASA Astrophysics Data System (ADS)

    Lesur, Vincent; Heumez, Benoît; Telali, Abdelkader; Lalanne, Xavier; Soloviev, Anatoly

    2017-08-01

    We propose a new algorithm for calibrating definitive observatory data with the goal of providing users with estimates of the data error standard deviations (SDs). The algorithm has been implemented and tested using Chambon-la-Forêt observatory (CLF) data. The calibration process uses all available data. It is set as a large, weakly non-linear, inverse problem that ultimately provides estimates of baseline values in three orthogonal directions, together with their expected standard deviations. For this inverse problem, absolute data error statistics are estimated from two series of absolute measurements made within a day. Similarly, variometer data error statistics are derived by comparing variometer data time series between different pairs of instruments over few years. The comparisons of these time series led us to use an autoregressive process of order 1 (AR1 process) as a prior for the baselines. Therefore the obtained baselines do not vary smoothly in time. They have relatively small SDs, well below 300 pT when absolute data are recorded twice a week - i.e. within the daily to weekly measures recommended by INTERMAGNET. The algorithm was tested against the process traditionally used to derive baselines at CLF observatory, suggesting that statistics are less favourable when this latter process is used. Finally, two sets of definitive data were calibrated using the new algorithm. Their comparison shows that the definitive data SDs are less than 400 pT and may be slightly overestimated by our process: an indication that more work is required to have proper estimates of absolute data error statistics. For magnetic field modelling, the results show that even on isolated sites like CLF observatory, there are very localised signals over a large span of temporal frequencies that can be as large as 1 nT. The SDs reported here encompass signals of a few hundred metres and less than a day wavelengths.

  17. Bootstrap Methods: A Very Leisurely Look.

    ERIC Educational Resources Information Center

    Hinkle, Dennis E.; Winstead, Wayland H.

    The Bootstrap method, a computer-intensive statistical method of estimation, is illustrated using a simple and efficient Statistical Analysis System (SAS) routine. The utility of the method for generating unknown parameters, including standard errors for simple statistics, regression coefficients, discriminant function coefficients, and factor…

  18. The crossing statistic: dealing with unknown errors in the dispersion of Type Ia supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafieloo, Arman; Clifton, Timothy; Ferreira, Pedro, E-mail: arman@ewha.ac.kr, E-mail: tclifton@astro.ox.ac.uk, E-mail: p.ferreira1@physics.ox.ac.uk

    2011-08-01

    We propose a new statistic that has been designed to be used in situations where the intrinsic dispersion of a data set is not well known: The Crossing Statistic. This statistic is in general less sensitive than χ{sup 2} to the intrinsic dispersion of the data, and hence allows us to make progress in distinguishing between different models using goodness of fit to the data even when the errors involved are poorly understood. The proposed statistic makes use of the shape and trends of a model's predictions in a quantifiable manner. It is applicable to a variety of circumstances, althoughmore » we consider it to be especially well suited to the task of distinguishing between different cosmological models using type Ia supernovae. We show that this statistic can easily distinguish between different models in cases where the χ{sup 2} statistic fails. We also show that the last mode of the Crossing Statistic is identical to χ{sup 2}, so that it can be considered as a generalization of χ{sup 2}.« less

  19. Patient safety in the clinical laboratory: a longitudinal analysis of specimen identification errors.

    PubMed

    Wagar, Elizabeth A; Tamashiro, Lorraine; Yasin, Bushra; Hilborne, Lee; Bruckner, David A

    2006-11-01

    Patient safety is an increasingly visible and important mission for clinical laboratories. Attention to improving processes related to patient identification and specimen labeling is being paid by accreditation and regulatory organizations because errors in these areas that jeopardize patient safety are common and avoidable through improvement in the total testing process. To assess patient identification and specimen labeling improvement after multiple implementation projects using longitudinal statistical tools. Specimen errors were categorized by a multidisciplinary health care team. Patient identification errors were grouped into 3 categories: (1) specimen/requisition mismatch, (2) unlabeled specimens, and (3) mislabeled specimens. Specimens with these types of identification errors were compared preimplementation and postimplementation for 3 patient safety projects: (1) reorganization of phlebotomy (4 months); (2) introduction of an electronic event reporting system (10 months); and (3) activation of an automated processing system (14 months) for a 24-month period, using trend analysis and Student t test statistics. Of 16,632 total specimen errors, mislabeled specimens, requisition mismatches, and unlabeled specimens represented 1.0%, 6.3%, and 4.6% of errors, respectively. Student t test showed a significant decrease in the most serious error, mislabeled specimens (P < .001) when compared to before implementation of the 3 patient safety projects. Trend analysis demonstrated decreases in all 3 error types for 26 months. Applying performance-improvement strategies that focus longitudinally on specimen labeling errors can significantly reduce errors, therefore improving patient safety. This is an important area in which laboratory professionals, working in interdisciplinary teams, can improve safety and outcomes of care.

  20. Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.

    2010-01-01

    Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.

  1. Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn

    1989-01-01

    Techniques for extraction boundary layer parameters from measurements of a short-pulse CO2 Doppler lidar are described. The measurements are those collected during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). By continuously operating the lidar for about an hour, stable statistics of the radial velocities can be extracted. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. Combining many measurements would normally reduce the error provided that, it is unbiased and uncorrelated. The nature of some of the algorithms however, is such that, biased and correlated errors may be generated even though the raw measurements are not. Data processing procedures were developed that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is shown to reduce the errors substantially. The principal features of the derived turbulence statistics for two case studied are presented.

  2. Model-based error diffusion for high fidelity lenticular screening.

    PubMed

    Lau, Daniel; Smith, Trebor

    2006-04-17

    Digital halftoning is the process of converting a continuous-tone image into an arrangement of black and white dots for binary display devices such as digital ink-jet and electrophotographic printers. As printers are achieving print resolutions exceeding 1,200 dots per inch, it is becoming increasingly important for halftoning algorithms to consider the variations and interactions in the size and shape of printed dots between neighboring pixels. In the case of lenticular screening where statistically independent images are spatially multiplexed together, ignoring these variations and interactions, such as dot overlap, will result in poor lenticular image quality. To this end, we describe our use of model-based error-diffusion for the lenticular screening problem where statistical independence between component images is achieved by restricting the diffusion of error to only those pixels of the same component image where, in order to avoid instabilities, the proposed approach involves a novel error-clipping procedure.

  3. Bayesian truncation errors in chiral effective field theory: model checking and accounting for correlations

    NASA Astrophysics Data System (ADS)

    Melendez, Jordan; Wesolowski, Sarah; Furnstahl, Dick

    2017-09-01

    Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. A Bayesian model yields posterior probability distribution functions for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. As a general example of a statistical approach to truncation errors, the model was applied to chiral EFT for neutron-proton scattering using various semi-local potentials of Epelbaum, Krebs, and Meißner (EKM). Here we discuss how our model can learn correlation information from the data and how to perform Bayesian model checking to validate that the EFT is working as advertised. Supported in part by NSF PHY-1614460 and DOE NUCLEI SciDAC DE-SC0008533.

  4. Asteroid orbital error analysis: Theory and application

    NASA Technical Reports Server (NTRS)

    Muinonen, K.; Bowell, Edward

    1992-01-01

    We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).

  5. Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.

    2014-04-14

    To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation.more » We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.« less

  6. Analytic score distributions for a spatially continuous tridirectional Monte Carol transport problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, T.E.

    1996-01-01

    The interpretation of the statistical error estimates produced by Monte Carlo transport codes is still somewhat of an art. Empirically, there are variance reduction techniques whose error estimates are almost always reliable, and there are variance reduction techniques whose error estimates are often unreliable. Unreliable error estimates usually result from inadequate large-score sampling from the score distribution`s tail. Statisticians believe that more accurate confidence interval statements are possible if the general nature of the score distribution can be characterized. Here, the analytic score distribution for the exponential transform applied to a simple, spatially continuous Monte Carlo transport problem is provided.more » Anisotropic scattering and implicit capture are included in the theory. In large part, the analytic score distributions that are derived provide the basis for the ten new statistical quality checks in MCNP.« less

  7. A multi-object statistical atlas adaptive for deformable registration errors in anomalous medical image segmentation

    NASA Astrophysics Data System (ADS)

    Botter Martins, Samuel; Vallin Spina, Thiago; Yasuda, Clarissa; Falcão, Alexandre X.

    2017-02-01

    Statistical Atlases have played an important role towards automated medical image segmentation. However, a challenge has been to make the atlas more adaptable to possible errors in deformable registration of anomalous images, given that the body structures of interest for segmentation might present significant differences in shape and texture. Recently, deformable registration errors have been accounted by a method that locally translates the statistical atlas over the test image, after registration, and evaluates candidate objects from a delineation algorithm in order to choose the best one as final segmentation. In this paper, we improve its delineation algorithm and extend the model to be a multi-object statistical atlas, built from control images and adaptable to anomalous images, by incorporating a texture classifier. In order to provide a first proof of concept, we instantiate the new method for segmenting, object-by-object and all objects simultaneously, the left and right brain hemispheres, and the cerebellum, without the brainstem, and evaluate it on MRT1-images of epilepsy patients before and after brain surgery, which removed portions of the temporal lobe. The results show efficiency gain with statistically significant higher accuracy, using the mean Average Symmetric Surface Distance, with respect to the original approach.

  8. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less

  9. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC. Employing a Cerenkov detector for the thickness measurement of X-rays in a scattering background

    NASA Astrophysics Data System (ADS)

    Li, Shu-Wei; Kang, Ke-Jun; Wang, Yi; Li, Jin; Li, Yuan-Jing; Zhang, Qing-Jun

    2010-12-01

    The variation in environmental scattering background is a major source of systematic errors in X-ray inspection and measurement systems. As the energy of these photons consisting of environmental scattering background is much lower generally, the Cerenkov detectors having the detection threshold are likely insensitive to them and able to exclude their influence. A thickness measurement experiment is designed to verify the idea by employing a Cerenkov detector and an ionizing chamber for comparison. Furthermore, it is also found that the application of the Cerenkov detectors is helpful to exclude another systematic error from the variation of low energy components in the spectrum incident on the detector volume.

  10. Evaluation of normalization methods for cDNA microarray data by k-NN classification

    PubMed Central

    Wu, Wei; Xing, Eric P; Myers, Connie; Mian, I Saira; Bissell, Mina J

    2005-01-01

    Background Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Results Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Conclusion Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics. PMID:16045803

  11. Laser Velocimeter Measurements and Analysis in Turbulent Flows with Combustion. Part 2.

    DTIC Science & Technology

    1983-07-01

    sampling error for 63 this sample size. Mean velocities and turbulence intensi- ties were found to be statistically accurate to ± 1 % and 13%, respectively...Although the statist - ical error was found to be rather small (± 1 % for mean velo- cities and 13% for turbulence intensities), there can be additional...34Computational and Experimental Study of a Captive Annular Eddy," Journal of Fluid Mechanics, Vol. 28, pt. 1 , pp. 43-63, 12 April, 1967. 152 REFERENCES (con’d

  12. Visual Performance on the Small Letter Contrast Test: Effects of Aging, Low Luminance and Refractive Error

    DTIC Science & Technology

    2000-08-01

    luminance performance and aviation, many aviators develop ametropias refractive error having comparable effects on during their careers. We were... statistically (0.04 logMAR, the non-aviator group. Separate investigators at p=0.01), but not clinically significant (ə/2 line different research facilities... statistically significant (0.11 ± 0.1 logCS, t=4.0, sensitivity on the SLCT decreased for the aviator pɘ.001), yet there is significant overlap group at a

  13. Insight From the Statistics of Nothing: Estimating Limits of Change Detection Using Inferred No-Change Areas in DEM Difference Maps and Application to Landslide Hazard Studies

    NASA Astrophysics Data System (ADS)

    Haneberg, W. C.

    2017-12-01

    Remote characterization of new landslides or areas of ongoing movement using differences in high resolution digital elevation models (DEMs) created through time, for example before and after major rains or earthquakes, is an attractive proposition. In the case of large catastrophic landslides, changes may be apparent enough that simple subtraction suffices. In other cases, statistical noise can obscure landslide signatures and place practical limits on detection. In ideal cases on land, GPS surveys of representative areas at the time of DEM creation can quantify the inherent errors. In less-than-ideal terrestrial cases and virtually all submarine cases, it may be impractical or impossible to independently estimate the DEM errors. Examining DEM difference statistics for areas reasonably inferred to have no change, however, can provide insight into the limits of detectability. Data from inferred no-change areas of airborne LiDAR DEM difference maps of the 2014 Oso, Washington landslide and landslide-prone colluvium slopes along the Ohio River valley in northern Kentucky, show that DEM difference maps can have non-zero mean and slope dependent error components consistent with published studies of DEM errors. Statistical thresholds derived from DEM difference error and slope data can help to distinguish between DEM differences that are likely real—and which may indicate landsliding—from those that are likely spurious or irrelevant. This presentation describes and compares two different approaches, one based upon a heuristic assumption about the proportion of the study area likely covered by new landslides and another based upon the amount of change necessary to ensure difference at a specified level of probability.

  14. Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle

    USGS Publications Warehouse

    Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.

    2015-09-28

    Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.

  15. Quotation accuracy in medical journal articles—a systematic review and meta-analysis

    PubMed Central

    Jergas, Hannah

    2015-01-01

    Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose—quotation errors—may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress. PMID:26528420

  16. An empirical assessment of exposure measurement error and effect attenuation in bi-pollutant epidemiologic models

    EPA Science Inventory

    Background: Using multipollutant models to understand combined health effects of exposure to multiple pollutants is becoming more common. However, complex relationships between pollutants and differing degrees of exposure error across pollutants can make health effect estimates f...

  17. Relevant reduction effect with a modified thermoplastic mask of rotational error for glottic cancer in IMRT

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hong; Jung, Joo-Young; Cho, Kwang Hwan; Ryu, Mi Ryeong; Bae, Sun Hyun; Moon, Seong Kwon; Kim, Yong Ho; Choe, Bo-Young; Suh, Tae Suk

    2017-02-01

    The purpose of this study was to analyze the glottis rotational error (GRE) by using a thermoplastic mask for patients with the glottic cancer undergoing intensity-modulated radiation therapy (IMRT). We selected 20 patients with glottic cancer who had received IMRT by using the tomotherapy. The image modalities with both kilovoltage computed tomography (planning kVCT) and megavoltage CT (daily MVCT) images were used for evaluating the error. Six anatomical landmarks in the image were defined to evaluate a correlation between the absolute GRE (°) and the length of contact with the underlying skin of the patient by the mask (mask, mm). We also statistically analyzed the results by using the Pearson's correlation coefficient and a linear regression analysis ( P <0.05). The mask and the absolute GRE were verified to have a statistical correlation ( P < 0.01). We found a statistical significance for each parameter in the linear regression analysis (mask versus absolute roll: P = 0.004 [ P < 0.05]; mask versus 3D-error: P = 0.000 [ P < 0.05]). The range of the 3D-errors with contact by the mask was from 1.2% - 39.7% between the maximumand no-contact case in this study. A thermoplastic mask with a tight, increased contact area may possibly contribute to the uncertainty of the reproducibility as a variation of the absolute GRE. Thus, we suggest that a modified mask, such as one that covers only the glottis area, can significantly reduce the patients' setup errors during the treatment.

  18. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ˜ 2°, than those from the three empirical models with averaged errors > ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  19. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE PAGES

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-21

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  20. Selecting Statistical Quality Control Procedures for Limiting the Impact of Increases in Analytical Random Error on Patient Safety.

    PubMed

    Yago, Martín

    2017-05-01

    QC planning based on risk management concepts can reduce the probability of harming patients due to an undetected out-of-control error condition. It does this by selecting appropriate QC procedures to decrease the number of erroneous results reported. The selection can be easily made by using published nomograms for simple QC rules when the out-of-control condition results in increased systematic error. However, increases in random error also occur frequently and are difficult to detect, which can result in erroneously reported patient results. A statistical model was used to construct charts for the 1 ks and X /χ 2 rules. The charts relate the increase in the number of unacceptable patient results reported due to an increase in random error with the capability of the measurement procedure. They thus allow for QC planning based on the risk of patient harm due to the reporting of erroneous results. 1 ks Rules are simple, all-around rules. Their ability to deal with increases in within-run imprecision is minimally affected by the possible presence of significant, stable, between-run imprecision. X /χ 2 rules perform better when the number of controls analyzed during each QC event is increased to improve QC performance. Using nomograms simplifies the selection of statistical QC procedures to limit the number of erroneous patient results reported due to an increase in analytical random error. The selection largely depends on the presence or absence of stable between-run imprecision. © 2017 American Association for Clinical Chemistry.

  1. Investigation of Error Patterns in Geographical Databases

    NASA Technical Reports Server (NTRS)

    Dryer, David; Jacobs, Derya A.; Karayaz, Gamze; Gronbech, Chris; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The objective of the research conducted in this project is to develop a methodology to investigate the accuracy of Airport Safety Modeling Data (ASMD) using statistical, visualization, and Artificial Neural Network (ANN) techniques. Such a methodology can contribute to answering the following research questions: Over a representative sampling of ASMD databases, can statistical error analysis techniques be accurately learned and replicated by ANN modeling techniques? This representative ASMD sample should include numerous airports and a variety of terrain characterizations. Is it possible to identify and automate the recognition of patterns of error related to geographical features? Do such patterns of error relate to specific geographical features, such as elevation or terrain slope? Is it possible to combine the errors in small regions into an error prediction for a larger region? What are the data density reduction implications of this work? ASMD may be used as the source of terrain data for a synthetic visual system to be used in the cockpit of aircraft when visual reference to ground features is not possible during conditions of marginal weather or reduced visibility. In this research, United States Geologic Survey (USGS) digital elevation model (DEM) data has been selected as the benchmark. Artificial Neural Networks (ANNS) have been used and tested as alternate methods in place of the statistical methods in similar problems. They often perform better in pattern recognition, prediction and classification and categorization problems. Many studies show that when the data is complex and noisy, the accuracy of ANN models is generally higher than those of comparable traditional methods.

  2. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  3. The Statistical Power of Planned Comparisons.

    ERIC Educational Resources Information Center

    Benton, Roberta L.

    Basic principles underlying statistical power are examined; and issues pertaining to effect size, sample size, error variance, and significance level are highlighted via the use of specific hypothetical examples. Analysis of variance (ANOVA) and related methods remain popular, although other procedures sometimes have more statistical power against…

  4. Application of Statistics in Engineering Technology Programs

    ERIC Educational Resources Information Center

    Zhan, Wei; Fink, Rainer; Fang, Alex

    2010-01-01

    Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…

  5. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    DOE PAGES

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N spec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N spec is ~10 6 we findmore » that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N spec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z s – z p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less

  6. 75 FR 26780 - State Median Income Estimate for a Four-Person Family: Notice of the Federal Fiscal Year (FFY...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Household Economic Statistics Division at (301) 763-3243. Under the advice of the Census Bureau, HHS..., which consists of the error that arises from the use of probability sampling to create the sample. For...) Sampling Error, which consists of the error that arises from the use of probability sampling to create the...

  7. Numerical Differentiation Methods for Computing Error Covariance Matrices in Item Response Theory Modeling: An Evaluation and a New Proposal

    ERIC Educational Resources Information Center

    Tian, Wei; Cai, Li; Thissen, David; Xin, Tao

    2013-01-01

    In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…

  8. The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Dias, Nelson Luís; Crivellaro, Bianca Luhm; Chamecki, Marcelo

    2018-05-01

    The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually H > 0.5 , which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley-Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (H_p ), and (2) with the classical rescaled range introduced by Hurst (H_R ). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, H_R is larger than H_p for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley-Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.

  9. Statistical approaches to account for false-positive errors in environmental DNA samples.

    PubMed

    Lahoz-Monfort, José J; Guillera-Arroita, Gurutzeta; Tingley, Reid

    2016-05-01

    Environmental DNA (eDNA) sampling is prone to both false-positive and false-negative errors. We review statistical methods to account for such errors in the analysis of eDNA data and use simulations to compare the performance of different modelling approaches. Our simulations illustrate that even low false-positive rates can produce biased estimates of occupancy and detectability. We further show that removing or classifying single PCR detections in an ad hoc manner under the suspicion that such records represent false positives, as sometimes advocated in the eDNA literature, also results in biased estimation of occupancy, detectability and false-positive rates. We advocate alternative approaches to account for false-positive errors that rely on prior information, or the collection of ancillary detection data at a subset of sites using a sampling method that is not prone to false-positive errors. We illustrate the advantages of these approaches over ad hoc classifications of detections and provide practical advice and code for fitting these models in maximum likelihood and Bayesian frameworks. Given the severe bias induced by false-negative and false-positive errors, the methods presented here should be more routinely adopted in eDNA studies. © 2015 John Wiley & Sons Ltd.

  10. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy

    PubMed Central

    Schaufele, Fred

    2013-01-01

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839

  11. An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters

    NASA Astrophysics Data System (ADS)

    Kuzmiakova, Adele; Dillner, Ann M.; Takahama, Satoshi

    2016-06-01

    A growing body of research on statistical applications for characterization of atmospheric aerosol Fourier transform infrared (FT-IR) samples collected on polytetrafluoroethylene (PTFE) filters (e.g., Russell et al., 2011; Ruthenburg et al., 2014) and a rising interest in analyzing FT-IR samples collected by air quality monitoring networks call for an automated PTFE baseline correction solution. The existing polynomial technique (Takahama et al., 2013) is not scalable to a project with a large number of aerosol samples because it contains many parameters and requires expert intervention. Therefore, the question of how to develop an automated method for baseline correcting hundreds to thousands of ambient aerosol spectra given the variability in both environmental mixture composition and PTFE baselines remains. This study approaches the question by detailing the statistical protocol, which allows for the precise definition of analyte and background subregions, applies nonparametric smoothing splines to reproduce sample-specific PTFE variations, and integrates performance metrics from atmospheric aerosol and blank samples alike in the smoothing parameter selection. Referencing 794 atmospheric aerosol samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011, we start by identifying key FT-IR signal characteristics, such as non-negative absorbance or analyte segment transformation, to capture sample-specific transitions between background and analyte. While referring to qualitative properties of PTFE background, the goal of smoothing splines interpolation is to learn the baseline structure in the background region to predict the baseline structure in the analyte region. We then validate the model by comparing smoothing splines baseline-corrected spectra with uncorrected and polynomial baseline (PB)-corrected equivalents via three statistical applications: (1) clustering analysis, (2) functional group quantification, and (3) thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) predictions. The discrepancy rate for a four-cluster solution is 10 %. For all functional groups but carboxylic COH the discrepancy is ≤ 10 %. Performance metrics obtained from TOR OC and EC predictions (R2 ≥ 0.94 %, bias ≤ 0.01 µg m-3, and error ≤ 0.04 µg m-3) are on a par with those obtained from uncorrected and PB-corrected spectra. The proposed protocol leads to visually and analytically similar estimates as those generated by the polynomial method. More importantly, the automated solution allows us and future users to evaluate its analytical reproducibility while minimizing reducible user bias. We anticipate the protocol will enable FT-IR researchers and data analysts to quickly and reliably analyze a large amount of data and connect them to a variety of available statistical learning methods to be applied to analyte absorbances isolated in atmospheric aerosol samples.

  12. Statistically Controlling for Confounding Constructs Is Harder than You Think

    PubMed Central

    Westfall, Jacob; Yarkoni, Tal

    2016-01-01

    Social scientists often seek to demonstrate that a construct has incremental validity over and above other related constructs. However, these claims are typically supported by measurement-level models that fail to consider the effects of measurement (un)reliability. We use intuitive examples, Monte Carlo simulations, and a novel analytical framework to demonstrate that common strategies for establishing incremental construct validity using multiple regression analysis exhibit extremely high Type I error rates under parameter regimes common in many psychological domains. Counterintuitively, we find that error rates are highest—in some cases approaching 100%—when sample sizes are large and reliability is moderate. Our findings suggest that a potentially large proportion of incremental validity claims made in the literature are spurious. We present a web application (http://jakewestfall.org/ivy/) that readers can use to explore the statistical properties of these and other incremental validity arguments. We conclude by reviewing SEM-based statistical approaches that appropriately control the Type I error rate when attempting to establish incremental validity. PMID:27031707

  13. What to use to express the variability of data: Standard deviation or standard error of mean?

    PubMed

    Barde, Mohini P; Barde, Prajakt J

    2012-07-01

    Statistics plays a vital role in biomedical research. It helps present data precisely and draws the meaningful conclusions. While presenting data, one should be aware of using adequate statistical measures. In biomedical journals, Standard Error of Mean (SEM) and Standard Deviation (SD) are used interchangeably to express the variability; though they measure different parameters. SEM quantifies uncertainty in estimate of the mean whereas SD indicates dispersion of the data from mean. As readers are generally interested in knowing the variability within sample, descriptive data should be precisely summarized with SD. Use of SEM should be limited to compute CI which measures the precision of population estimate. Journals can avoid such errors by requiring authors to adhere to their guidelines.

  14. Kappa statistic for the clustered dichotomous responses from physicians and patients

    PubMed Central

    Kang, Chaeryon; Qaqish, Bahjat; Monaco, Jane; Sheridan, Stacey L.; Cai, Jianwen

    2013-01-01

    The bootstrap method for estimating the standard error of the kappa statistic in the presence of clustered data is evaluated. Such data arise, for example, in assessing agreement between physicians and their patients regarding their understanding of the physician-patient interaction and discussions. We propose a computationally efficient procedure for generating correlated dichotomous responses for physicians and assigned patients for simulation studies. The simulation result demonstrates that the proposed bootstrap method produces better estimate of the standard error and better coverage performance compared to the asymptotic standard error estimate that ignores dependence among patients within physicians with at least a moderately large number of clusters. An example of an application to a coronary heart disease prevention study is presented. PMID:23533082

  15. Does bad inference drive out good?

    PubMed

    Marozzi, Marco

    2015-07-01

    The (mis)use of statistics in practice is widely debated, and a field where the debate is particularly active is medicine. Many scholars emphasize that a large proportion of published medical research contains statistical errors. It has been noted that top class journals like Nature Medicine and The New England Journal of Medicine publish a considerable proportion of papers that contain statistical errors and poorly document the application of statistical methods. This paper joins the debate on the (mis)use of statistics in the medical literature. Even though the validation process of a statistical result may be quite elusive, a careful assessment of underlying assumptions is central in medicine as well as in other fields where a statistical method is applied. Unfortunately, a careful assessment of underlying assumptions is missing in many papers, including those published in top class journals. In this paper, it is shown that nonparametric methods are good alternatives to parametric methods when the assumptions for the latter ones are not satisfied. A key point to solve the problem of the misuse of statistics in the medical literature is that all journals have their own statisticians to review the statistical method/analysis section in each submitted paper. © 2015 Wiley Publishing Asia Pty Ltd.

  16. Medication administration error reporting and associated factors among nurses working at the University of Gondar referral hospital, Northwest Ethiopia, 2015.

    PubMed

    Bifftu, Berhanu Boru; Dachew, Berihun Assefa; Tiruneh, Bewket Tadesse; Beshah, Debrework Tesgera

    2016-01-01

    Medication administration is the final step/phase of medication process in which its error directly affects the patient health. Due to the central role of nurses in medication administration, whether they are the source of an error, a contributor, or an observer they have the professional, legal and ethical responsibility to recognize and report. The aim of this study was to assess the prevalence of medication administration error reporting and associated factors among nurses working at The University of Gondar Referral Hospital, Northwest Ethiopia. Institution based quantitative cross - sectional study was conducted among 282 Nurses. Data were collected using semi-structured, self-administered questionnaire of the Medication Administration Errors Reporting (MAERs). Binary logistic regression with 95 % confidence interval was used to identify factors associated with medication administration errors reporting. The estimated medication administration error reporting was found to be 29.1 %. The perceived rates of medication administration errors reporting for non-intravenous related medications were ranged from 16.8 to 28.6 % and for intravenous-related from 20.6 to 33.4 %. Education status (AOR =1.38, 95 % CI: 4.009, 11.128), disagreement over time - error definition (AOR = 0.44, 95 % CI: 0.468, 0.990), administrative reason (AOR = 0.35, 95 % CI: 0.168, 0.710) and fear (AOR = 0.39, 95 % CI: 0.257, 0.838) were factors statistically significant for the refusal of reporting medication administration errors at p-value <0.05. In this study, less than one third of the study participants reported medication administration errors. Educational status, disagreement over time - error definition, administrative reason and fear were factors statistically significant for the refusal of errors reporting at p-value <0.05. Therefore, the results of this study suggest strategies that enhance the cultures of error reporting such as providing a clear definition of reportable errors and strengthen the educational status of nurses by the health care organization.

  17. BaTMAn: Bayesian Technique for Multi-image Analysis

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2016-12-01

    Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.

  18. Increasing the statistical significance of entanglement detection in experiments.

    PubMed

    Jungnitsch, Bastian; Niekamp, Sönke; Kleinmann, Matthias; Gühne, Otfried; Lu, He; Gao, Wei-Bo; Chen, Yu-Ao; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-05-28

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. Experimentally, we observe this phenomenon in a four-photon experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore, we provide a way to develop entanglement tests with high statistical significance.

  19. Recovery of intrinsic fluorescence from single-point interstitial measurements for quantification of doxorubicin concentration.

    PubMed

    Baran, Timothy M; Foster, Thomas H

    2013-10-01

    We developed a method for the recovery of intrinsic fluorescence from single-point measurements in highly scattering and absorbing samples without a priori knowledge of the sample optical properties. The goal of the study was to demonstrate accurate recovery of fluorophore concentration in samples with widely varying background optical properties, while simultaneously recovering the optical properties. Tissue-simulating phantoms containing doxorubicin, MnTPPS, and Intralipid-20% were created, and fluorescence measurements were performed using a single isotropic probe. The resulting spectra were analyzed using a forward-adjoint fluorescence model in order to recover the fluorophore concentration and background optical properties. We demonstrated recovery of doxorubicin concentration with a mean error of 11.8%. The concentration of the background absorber was recovered with an average error of 23.2% and the scattering spectrum was recovered with a mean error of 19.8%. This method will allow for the determination of local concentrations of fluorescent drugs, such as doxorubicin, from minimally invasive fluorescence measurements. This is particularly interesting in the context of transarterial chemoembolization (TACE) treatment of liver cancer. © 2013 Wiley Periodicals, Inc.

  20. Research Design and Statistical Methods in Indian Medical Journals: A Retrospective Survey

    PubMed Central

    Hassan, Shabbeer; Yellur, Rajashree; Subramani, Pooventhan; Adiga, Poornima; Gokhale, Manoj; Iyer, Manasa S.; Mayya, Shreemathi S.

    2015-01-01

    Good quality medical research generally requires not only an expertise in the chosen medical field of interest but also a sound knowledge of statistical methodology. The number of medical research articles which have been published in Indian medical journals has increased quite substantially in the past decade. The aim of this study was to collate all evidence on study design quality and statistical analyses used in selected leading Indian medical journals. Ten (10) leading Indian medical journals were selected based on impact factors and all original research articles published in 2003 (N = 588) and 2013 (N = 774) were categorized and reviewed. A validated checklist on study design, statistical analyses, results presentation, and interpretation was used for review and evaluation of the articles. Main outcomes considered in the present study were – study design types and their frequencies, error/defects proportion in study design, statistical analyses, and implementation of CONSORT checklist in RCT (randomized clinical trials). From 2003 to 2013: The proportion of erroneous statistical analyses did not decrease (χ2=0.592, Φ=0.027, p=0.4418), 25% (80/320) in 2003 compared to 22.6% (111/490) in 2013. Compared with 2003, significant improvement was seen in 2013; the proportion of papers using statistical tests increased significantly (χ2=26.96, Φ=0.16, p<0.0001) from 42.5% (250/588) to 56.7 % (439/774). The overall proportion of errors in study design decreased significantly (χ2=16.783, Φ=0.12 p<0.0001), 41.3% (243/588) compared to 30.6% (237/774). In 2013, randomized clinical trials designs has remained very low (7.3%, 43/588) with majority showing some errors (41 papers, 95.3%). Majority of the published studies were retrospective in nature both in 2003 [79.1% (465/588)] and in 2013 [78.2% (605/774)]. Major decreases in error proportions were observed in both results presentation (χ2=24.477, Φ=0.17, p<0.0001), 82.2% (263/320) compared to 66.3% (325/490) and interpretation (χ2=25.616, Φ=0.173, p<0.0001), 32.5% (104/320) compared to 17.1% (84/490), though some serious ones were still present. Indian medical research seems to have made no major progress regarding using correct statistical analyses, but error/defects in study designs have decreased significantly. Randomized clinical trials are quite rarely published and have high proportion of methodological problems. PMID:25856194

  1. Research design and statistical methods in Indian medical journals: a retrospective survey.

    PubMed

    Hassan, Shabbeer; Yellur, Rajashree; Subramani, Pooventhan; Adiga, Poornima; Gokhale, Manoj; Iyer, Manasa S; Mayya, Shreemathi S

    2015-01-01

    Good quality medical research generally requires not only an expertise in the chosen medical field of interest but also a sound knowledge of statistical methodology. The number of medical research articles which have been published in Indian medical journals has increased quite substantially in the past decade. The aim of this study was to collate all evidence on study design quality and statistical analyses used in selected leading Indian medical journals. Ten (10) leading Indian medical journals were selected based on impact factors and all original research articles published in 2003 (N = 588) and 2013 (N = 774) were categorized and reviewed. A validated checklist on study design, statistical analyses, results presentation, and interpretation was used for review and evaluation of the articles. Main outcomes considered in the present study were - study design types and their frequencies, error/defects proportion in study design, statistical analyses, and implementation of CONSORT checklist in RCT (randomized clinical trials). From 2003 to 2013: The proportion of erroneous statistical analyses did not decrease (χ2=0.592, Φ=0.027, p=0.4418), 25% (80/320) in 2003 compared to 22.6% (111/490) in 2013. Compared with 2003, significant improvement was seen in 2013; the proportion of papers using statistical tests increased significantly (χ2=26.96, Φ=0.16, p<0.0001) from 42.5% (250/588) to 56.7 % (439/774). The overall proportion of errors in study design decreased significantly (χ2=16.783, Φ=0.12 p<0.0001), 41.3% (243/588) compared to 30.6% (237/774). In 2013, randomized clinical trials designs has remained very low (7.3%, 43/588) with majority showing some errors (41 papers, 95.3%). Majority of the published studies were retrospective in nature both in 2003 [79.1% (465/588)] and in 2013 [78.2% (605/774)]. Major decreases in error proportions were observed in both results presentation (χ2=24.477, Φ=0.17, p<0.0001), 82.2% (263/320) compared to 66.3% (325/490) and interpretation (χ2=25.616, Φ=0.173, p<0.0001), 32.5% (104/320) compared to 17.1% (84/490), though some serious ones were still present. Indian medical research seems to have made no major progress regarding using correct statistical analyses, but error/defects in study designs have decreased significantly. Randomized clinical trials are quite rarely published and have high proportion of methodological problems.

  2. Statistics Using Just One Formula

    ERIC Educational Resources Information Center

    Rosenthal, Jeffrey S.

    2018-01-01

    This article advocates that introductory statistics be taught by basing all calculations on a single simple margin-of-error formula and deriving all of the standard introductory statistical concepts (confidence intervals, significance tests, comparisons of means and proportions, etc) from that one formula. It is argued that this approach will…

  3. Suzaku observations of the outskirts of the galaxy cluster Abell 3395, including a filament toward Abell 3391

    NASA Astrophysics Data System (ADS)

    Sugawara, Yuuki; Takizawa, Motokazu; Itahana, Madoka; Akamatsu, Hiroki; Fujita, Yutaka; Ohashi, Takaya; Ishisaki, Yoshitaka

    2017-12-01

    The results of Suzaku observations of the outskirts of Abell 3395, including a large-scale structure filament toward Abell 3391, are presented. We measured temperature and abundance distributions from the southern outskirt of A 3395 to the north at the virial radius, where a filament structure has been found in the former X-ray and Sunyaev-Zel'dovich (SZ) effect observations between A 3391 and A 3395. The overall temperature structure is consistent with the universal profile proposed by Okabe, N., et al. 2014, PASJ, 66, 99 for relaxed clusters, except for the filament region. A hint of intracluster medium heating is found between the two clusters, which might be due to their interaction in the early phase of a cluster merger. Although we obtained a relatively low metal abundance of Z=0.169^{+0.164+0.009+0.018}_{-0.150-0.004-0.015} solar, where the first, second, and third errors are statistical, cosmic X-ray background systematic, and non-X-ray background systematic, respectively, at the virial radius in the filament, our results are still consistent with previous results for other clusters (Z ˜ 0.3 solar) within errors. Therefore, our results are also consistent with the early enrichment scenario. We estimated Compton y parameters only from X-ray results in the region between A 3391 and A 3395 assuming a simple geometry. They are smaller than the previous SZ results with the Planck satellite. The difference could be attributed to a more elaborate geometry such as a filament inclined to the line-of-sight direction, or underestimation of the X-ray temperature because of the unresolved multi-temperature structures or undetected hot X-ray emission of the shock-heated gas.

  4. Quantifying uncertainty in climate change science through empirical information theory.

    PubMed

    Majda, Andrew J; Gershgorin, Boris

    2010-08-24

    Quantifying the uncertainty for the present climate and the predictions of climate change in the suite of imperfect Atmosphere Ocean Science (AOS) computer models is a central issue in climate change science. Here, a systematic approach to these issues with firm mathematical underpinning is developed through empirical information theory. An information metric to quantify AOS model errors in the climate is proposed here which incorporates both coarse-grained mean model errors as well as covariance ratios in a transformation invariant fashion. The subtle behavior of model errors with this information metric is quantified in an instructive statistically exactly solvable test model with direct relevance to climate change science including the prototype behavior of tracer gases such as CO(2). Formulas for identifying the most sensitive climate change directions using statistics of the present climate or an AOS model approximation are developed here; these formulas just involve finding the eigenvector associated with the largest eigenvalue of a quadratic form computed through suitable unperturbed climate statistics. These climate change concepts are illustrated on a statistically exactly solvable one-dimensional stochastic model with relevance for low frequency variability of the atmosphere. Viable algorithms for implementation of these concepts are discussed throughout the paper.

  5. Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleijnen, J.P.C.; Helton, J.C.

    1999-04-01

    The robustness of procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses is investigated. These procedures are based on attempts to detect increasingly complex patterns in the scatterplots under consideration and involve the identification of (1) linear relationships with correlation coefficients, (2) monotonic relationships with rank correlation coefficients, (3) trends in central tendency as defined by means, medians and the Kruskal-Wallis statistic, (4) trends in variability as defined by variances and interquartile ranges, and (5) deviations from randomness as defined by the chi-square statistic. The following two topics related to the robustness of these procedures are consideredmore » for a sequence of example analyses with a large model for two-phase fluid flow: the presence of Type I and Type II errors, and the stability of results obtained with independent Latin hypercube samples. Observations from analysis include: (1) Type I errors are unavoidable, (2) Type II errors can occur when inappropriate analysis procedures are used, (3) physical explanations should always be sought for why statistical procedures identify variables as being important, and (4) the identification of important variables tends to be stable for independent Latin hypercube samples.« less

  6. Assessing the statistical significance of the achieved classification error of classifiers constructed using serum peptide profiles, and a prescription for random sampling repeated studies for massive high-throughput genomic and proteomic studies.

    PubMed

    Lyons-Weiler, James; Pelikan, Richard; Zeh, Herbert J; Whitcomb, David C; Malehorn, David E; Bigbee, William L; Hauskrecht, Milos

    2005-01-01

    Peptide profiles generated using SELDI/MALDI time of flight mass spectrometry provide a promising source of patient-specific information with high potential impact on the early detection and classification of cancer and other diseases. The new profiling technology comes, however, with numerous challenges and concerns. Particularly important are concerns of reproducibility of classification results and their significance. In this work we describe a computational validation framework, called PACE (Permutation-Achieved Classification Error), that lets us assess, for a given classification model, the significance of the Achieved Classification Error (ACE) on the profile data. The framework compares the performance statistic of the classifier on true data samples and checks if these are consistent with the behavior of the classifier on the same data with randomly reassigned class labels. A statistically significant ACE increases our belief that a discriminative signal was found in the data. The advantage of PACE analysis is that it can be easily combined with any classification model and is relatively easy to interpret. PACE analysis does not protect researchers against confounding in the experimental design, or other sources of systematic or random error. We use PACE analysis to assess significance of classification results we have achieved on a number of published data sets. The results show that many of these datasets indeed possess a signal that leads to a statistically significant ACE.

  7. Perception of Community Pharmacists towards Dispensing Errors in Community Pharmacy Setting in Gondar Town, Northwest Ethiopia.

    PubMed

    Asmelashe Gelayee, Dessalegn; Binega Mekonnen, Gashaw

    2017-01-01

    Dispensing errors are inevitable occurrences in community pharmacies across the world. This study aimed to identify the community pharmacists' perception towards dispensing errors in the community pharmacies in Gondar town, Northwest Ethiopia. A cross-sectional study was conducted among 47 community pharmacists selected through convenience sampling. Data were analyzed using SPSS version 20. Descriptive statistics, Mann-Whitney U test, and Pearson's Chi-square test of independence were conducted with P ≤ 0.05 considered statistically significant. The majority of respondents were in the 23-28-year age group ( N = 26, 55.3%) and with at least B.Pharm degree ( N = 25, 53.2%). Poor prescription handwriting and similar/confusing names were perceived to be the main contributing factors while all the strategies and types of dispensing errors were highly acknowledged by the respondents. Group differences ( P < 0.05) in opinions were largely due to educational level and age. Dispensing errors were associated with prescribing quality and design of dispensary as well as dispensing procedures. Opinion differences relate to age and educational status of the respondents.

  8. Sequential Tests of Multiple Hypotheses Controlling Type I and II Familywise Error Rates

    PubMed Central

    Bartroff, Jay; Song, Jinlin

    2014-01-01

    This paper addresses the following general scenario: A scientist wishes to perform a battery of experiments, each generating a sequential stream of data, to investigate some phenomenon. The scientist would like to control the overall error rate in order to draw statistically-valid conclusions from each experiment, while being as efficient as possible. The between-stream data may differ in distribution and dimension but also may be highly correlated, even duplicated exactly in some cases. Treating each experiment as a hypothesis test and adopting the familywise error rate (FWER) metric, we give a procedure that sequentially tests each hypothesis while controlling both the type I and II FWERs regardless of the between-stream correlation, and only requires arbitrary sequential test statistics that control the error rates for a given stream in isolation. The proposed procedure, which we call the sequential Holm procedure because of its inspiration from Holm’s (1979) seminal fixed-sample procedure, shows simultaneous savings in expected sample size and less conservative error control relative to fixed sample, sequential Bonferroni, and other recently proposed sequential procedures in a simulation study. PMID:25092948

  9. Cocaine Dependence Treatment Data: Methods for Measurement Error Problems With Predictors Derived From Stationary Stochastic Processes

    PubMed Central

    Guan, Yongtao; Li, Yehua; Sinha, Rajita

    2011-01-01

    In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854

  10. Cluster size statistic and cluster mass statistic: two novel methods for identifying changes in functional connectivity between groups or conditions.

    PubMed

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods--the cluster size statistic (CSS) and cluster mass statistic (CMS)--are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity.

  11. Cluster Size Statistic and Cluster Mass Statistic: Two Novel Methods for Identifying Changes in Functional Connectivity Between Groups or Conditions

    PubMed Central

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods – the cluster size statistic (CSS) and cluster mass statistic (CMS) – are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity. PMID:24906136

  12. Particle simulation of Coulomb collisions: Comparing the methods of Takizuka and Abe and Nanbu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Chiaming; Lin, Tungyou; Caflisch, Russel

    2008-04-20

    The interactions of charged particles in a plasma are governed by long-range Coulomb collision. We compare two widely used Monte Carlo models for Coulomb collisions. One was developed by Takizuka and Abe in 1977, the other was developed by Nanbu in 1997. We perform deterministic and statistical error analysis with respect to particle number and time step. The two models produce similar stochastic errors, but Nanbu's model gives smaller time step errors. Error comparisons between these two methods are presented.

  13. Myopia in secondary school students in Mwanza City, Tanzania: the need for a national screening programme

    PubMed Central

    Wedner, S H; Ross, D A; Todd, J; Anemona, A; Balira, R; Foster, A

    2002-01-01

    Background/aims: The prevalence of significant refractive errors and other eye diseases was measured in 2511 secondary school students aged 11–27 years in Mwanza City, Tanzania. Risk factors for myopia were explored. Methods: A questionnaire assessed the students’ socioeconomic background and exposure to near work followed by visual acuity assessment and a full eye examination. Non-cycloplegic objective and subjective refraction was done on all participants with visual acuity of worse than 6/12 in either eye without an obvious cause. Results: 154 (6.1%) students had significant refractive errors. Myopia was the leading refractive error (5.6%). Amblyopia (0.4%), strabismus (0.2%), and other treatable eye disorders were uncommon. Only 30.3% of students with significant refractive errors wore spectacles before the survey. Age, sex, ethnicity, father’s educational status, and a family history of siblings with spectacles were significant independent risk factors for myopia. Conclusion: The prevalence of uncorrected significant refractive errors is high enough to justify a regular school eye screening programme in secondary schools in Tanzania. Risk factors for myopia are similar to those reported in European, North-American, and Asian populations. PMID:12386067

  14. Statistical process control methods allow the analysis and improvement of anesthesia care.

    PubMed

    Fasting, Sigurd; Gisvold, Sven E

    2003-10-01

    Quality aspects of the anesthetic process are reflected in the rate of intraoperative adverse events. The purpose of this report is to illustrate how the quality of the anesthesia process can be analyzed using statistical process control methods, and exemplify how this analysis can be used for quality improvement. We prospectively recorded anesthesia-related data from all anesthetics for five years. The data included intraoperative adverse events, which were graded into four levels, according to severity. We selected four adverse events, representing important quality and safety aspects, for statistical process control analysis. These were: inadequate regional anesthesia, difficult emergence from general anesthesia, intubation difficulties and drug errors. We analyzed the underlying process using 'p-charts' for statistical process control. In 65,170 anesthetics we recorded adverse events in 18.3%; mostly of lesser severity. Control charts were used to define statistically the predictable normal variation in problem rate, and then used as a basis for analysis of the selected problems with the following results: Inadequate plexus anesthesia: stable process, but unacceptably high failure rate; Difficult emergence: unstable process, because of quality improvement efforts; Intubation difficulties: stable process, rate acceptable; Medication errors: methodology not suited because of low rate of errors. By applying statistical process control methods to the analysis of adverse events, we have exemplified how this allows us to determine if a process is stable, whether an intervention is required, and if quality improvement efforts have the desired effect.

  15. Comparative Assessment of Lixisenatide, Exenatide, and Liraglutide Pen Devices

    PubMed Central

    Enginee, Diplom; Elton, Hina; Penfornis, Alfred; Edelman, Steve

    2014-01-01

    Background: Glucagon-like peptide-1 (GLP-1) receptor agonists are a relatively recent addition to the treatment options for type 2 diabetes mellitus (T2DM) and are administered using prefilled pen devices. Method: In this open-label task and interview-based pilot study, 3 GLP-1 receptor agonist pen devices—exenatide (Byetta®, Bristol-Myers Squibb/AstraZeneca), liraglutide (Victoza®, Novo Nordisk), and lixisenatide (Lyxumia®, Sanofi-Aventis)—were comparatively assessed in a randomized order in 30 participants with T2DM for ease of use, using a series of key performance measures (time taken to complete a series of tasks, number of user errors [successful performance], and user satisfaction rating). Linear and logistic regression analysis was conducted for the lixisenatide and liraglutide pens versus the exenatide pen. Participants’ mean age was 60 years; 27% and 20% of the participants had visual impairments and reduced manual dexterity, respectively. Results: Tasks were completed faster (P < .001) and with higher successful performance (P = .001) with the lixisenatide pen than with the exenatide pen, whereas the liraglutide pen was not statistically significant versus the exenatide pen on these parameters. Overall, user satisfaction was statistically higher for the lixisenatide and liraglutide pens versus the exenatide pen (P < .001 for both). Conclusions: Lixisenatide and liraglutide pens are associated with higher user satisfaction compared with the exenatide pen. In addition, the lixisenatide pen is faster and results in fewer errors than its comparator (exenatide). The lixisenatide pen may therefore be a suitable choice for patients with T2DM, including older and pen device-naïve patients, and those with visual impairments and reduced manual dexterity. PMID:24876548

  16. Accurate phase extraction algorithm based on Gram–Schmidt orthonormalization and least square ellipse fitting method

    NASA Astrophysics Data System (ADS)

    Lei, Hebing; Yao, Yong; Liu, Haopeng; Tian, Yiting; Yang, Yanfu; Gu, Yinglong

    2018-06-01

    An accurate algorithm by combing Gram-Schmidt orthonormalization and least square ellipse fitting technology is proposed, which could be used for phase extraction from two or three interferograms. The DC term of background intensity is suppressed by subtraction operation on three interferograms or by high-pass filter on two interferograms. Performing Gram-Schmidt orthonormalization on pre-processing interferograms, the phase shift error is corrected and a general ellipse form is derived. Then the background intensity error and the corrected error could be compensated by least square ellipse fitting method. Finally, the phase could be extracted rapidly. The algorithm could cope with the two or three interferograms with environmental disturbance, low fringe number or small phase shifts. The accuracy and effectiveness of the proposed algorithm are verified by both of the numerical simulations and experiments.

  17. Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform

    PubMed Central

    Liu, Yuexin; Lee, Young Jong; Cicerone, Marcus T.

    2014-01-01

    We describe a closed-form approach for performing a Kramers–Kronig (KK) transform that can be used to rapidly and reliably retrieve the phase, and thus the resonant imaginary component, from a broadband coherent anti-Stokes Raman scattering (CARS) spectrum with a nonflat background. In this approach we transform the frequency-domain data to the time domain, perform an operation that ensures a causality criterion is met, then transform back to the frequency domain. The fact that this method handles causality in the time domain allows us to conveniently account for spectrally varying nonresonant background from CARS as a response function with a finite rise time. A phase error accompanies KK transform of data with finite frequency range. In examples shown here, that phase error leads to small (<1%) errors in the retrieved resonant spectra. PMID:19412273

  18. Using IMSL Mathematical and Statistical Computer Subroutines in Physiological and Biomechanical Research

    DTIC Science & Technology

    1987-10-01

    NDATA). CSCOEF(4.NDATA). CSVAL. ERROR, F. kFDATA(NDATA). FLOAT, FVAL. RNUNF, SDEV. SMPAR. SQRT. a SYAL . WEIGHT(NDATA), X. XDATA(NDATA). XT INTRINSIC...BREAK.CSCOEF) FYAL - F(XT) ERROR a SVAL - FVAL WRITE (NOUT,’(4F15.4)’) XT. FYAL. SYAL , ERROR 30 CONTINUE C 99999 FORMAT (12X. ’X’. 9X. ’Function’. 7X

  19. Using the Sampling Margin of Error to Assess the Interpretative Validity of Student Evaluations of Teaching

    ERIC Educational Resources Information Center

    James, David E.; Schraw, Gregory; Kuch, Fred

    2015-01-01

    We present an equation, derived from standard statistical theory, that can be used to estimate sampling margin of error for student evaluations of teaching (SETs). We use the equation to examine the effect of sample size, response rates and sample variability on the estimated sampling margin of error, and present results in four tables that allow…

  20. The Use of Meta-Analytic Statistical Significance Testing

    ERIC Educational Resources Information Center

    Polanin, Joshua R.; Pigott, Terri D.

    2015-01-01

    Meta-analysis multiplicity, the concept of conducting multiple tests of statistical significance within one review, is an underdeveloped literature. We address this issue by considering how Type I errors can impact meta-analytic results, suggest how statistical power may be affected through the use of multiplicity corrections, and propose how…

  1. An Examination of Statistical Power in Multigroup Dynamic Structural Equation Models

    ERIC Educational Resources Information Center

    Prindle, John J.; McArdle, John J.

    2012-01-01

    This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…

  2. A Pilot Study Teaching Metrology in an Introductory Statistics Course

    ERIC Educational Resources Information Center

    Casleton, Emily; Beyler, Amy; Genschel, Ulrike; Wilson, Alyson

    2014-01-01

    Undergraduate students who have just completed an introductory statistics course often lack deep understanding of variability and enthusiasm for the field of statistics. This paper argues that by introducing the commonly underemphasized concept of measurement error, students will have a better chance of attaining both. We further present lecture…

  3. Survey of Cancer Patient Safety Culture: A Comparison of Chemotherapy and Oncology Departments of Teaching Hospitals of Tehran

    PubMed Central

    Raeissi, Pouran; Sharifi, Marziye; Khosravizadeh, Omid; Heidari, Mohammad

    2017-01-01

    Background: Patient safety culture plays an important role in healthcare systems, especially in chemotherapy and oncology departments (CODs), and its assessment can help to improve quality of services and hospital care. Objective: This study aimed to evaluate and compare items and dimensions of patient safety culture in the CODs of selected teaching hospitals of Iran and Tehran University of Medical Sciences. Materials and Methods: This descriptive-analytical cross-sectional survey was conducted during a six-month period on 270 people from chemotherapy and oncology departments selected through a cluster sampling method. All participants answered the standard questionnaire for “Hospital Survey of Patient Safety Culture” (HSOPSC). Statistical analyses were performed using SPSS/18 software. Results: The average score for patient safety culture was three for the majority of the studied CODs. Statistically significant differences were observed for supervisor actions, teamwork within various units, feedback and communications about errors, and the level of hospital management support. (p<0.05). Relationships between studied hospitals and patient safety culture were not statistically significant (p>0.05). Conclusion: Our results showed that the overall status of patient safety culture is not good in the studied CODs. In particular, teamwork across different units and organizational learning with continuous improvement were the only two properly operating items among 12 dimensions of patient safety culture. Therefore, systematic interventions are strongly required to promote communication. PMID:29072411

  4. On the insufficiency of arbitrarily precise covariance matrices: non-Gaussian weak-lensing likelihoods

    NASA Astrophysics Data System (ADS)

    Sellentin, Elena; Heavens, Alan F.

    2018-01-01

    We investigate whether a Gaussian likelihood, as routinely assumed in the analysis of cosmological data, is supported by simulated survey data. We define test statistics, based on a novel method that first destroys Gaussian correlations in a data set, and then measures the non-Gaussian correlations that remain. This procedure flags pairs of data points that depend on each other in a non-Gaussian fashion, and thereby identifies where the assumption of a Gaussian likelihood breaks down. Using this diagnosis, we find that non-Gaussian correlations in the CFHTLenS cosmic shear correlation functions are significant. With a simple exclusion of the most contaminated data points, the posterior for s8 is shifted without broadening, but we find no significant reduction in the tension with s8 derived from Planck cosmic microwave background data. However, we also show that the one-point distributions of the correlation statistics are noticeably skewed, such that sound weak-lensing data sets are intrinsically likely to lead to a systematically low lensing amplitude being inferred. The detected non-Gaussianities get larger with increasing angular scale such that for future wide-angle surveys such as Euclid or LSST, with their very small statistical errors, the large-scale modes are expected to be increasingly affected. The shifts in posteriors may then not be negligible and we recommend that these diagnostic tests be run as part of future analyses.

  5. Incorporating GIS and remote sensing for census population disaggregation

    NASA Astrophysics Data System (ADS)

    Wu, Shuo-Sheng'derek'

    Census data are the primary source of demographic data for a variety of researches and applications. For confidentiality issues and administrative purposes, census data are usually released to the public by aggregated areal units. In the United States, the smallest census unit is census blocks. Due to data aggregation, users of census data may have problems in visualizing population distribution within census blocks and estimating population counts for areas not coinciding with census block boundaries. The main purpose of this study is to develop methodology for estimating sub-block areal populations and assessing the estimation errors. The City of Austin, Texas was used as a case study area. Based on tax parcel boundaries and parcel attributes derived from ancillary GIS and remote sensing data, detailed urban land use classes were first classified using a per-field approach. After that, statistical models by land use classes were built to infer population density from other predictor variables, including four census demographic statistics (the Hispanic percentage, the married percentage, the unemployment rate, and per capita income) and three physical variables derived from remote sensing images and building footprints vector data (a landscape heterogeneity statistics, a building pattern statistics, and a building volume statistics). In addition to statistical models, deterministic models were proposed to directly infer populations from building volumes and three housing statistics, including the average space per housing unit, the housing unit occupancy rate, and the average household size. After population models were derived or proposed, how well the models predict populations for another set of sample blocks was assessed. The results show that deterministic models were more accurate than statistical models. Further, by simulating the base unit for modeling from aggregating blocks, I assessed how well the deterministic models estimate sub-unit-level populations. I also assessed the aggregation effects and the resealing effects on sub-unit estimates. Lastly, from another set of mixed-land-use sample blocks, a mixed-land-use model was derived and compared with a residential-land-use model. The results of per-field land use classification are satisfactory with a Kappa accuracy statistics of 0.747. Model Assessments by land use show that population estimates for multi-family land use areas have higher errors than those for single-family land use areas, and population estimates for mixed land use areas have higher errors than those for residential land use areas. The assessments of sub-unit estimates using a simulation approach indicate that smaller areas show higher estimation errors, estimation errors do not relate to the base unit size, and resealing improves all levels of sub-unit estimates.

  6. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures

    PubMed Central

    2012-01-01

    Background Over the past years, statistical and Bayesian approaches have become increasingly appreciated to address the long-standing problem of computational RNA structure prediction. Recently, a novel probabilistic method for the prediction of RNA secondary structures from a single sequence has been studied which is based on generating statistically representative and reproducible samples of the entire ensemble of feasible structures for a particular input sequence. This method samples the possible foldings from a distribution implied by a sophisticated (traditional or length-dependent) stochastic context-free grammar (SCFG) that mirrors the standard thermodynamic model applied in modern physics-based prediction algorithms. Specifically, that grammar represents an exact probabilistic counterpart to the energy model underlying the Sfold software, which employs a sampling extension of the partition function (PF) approach to produce statistically representative subsets of the Boltzmann-weighted ensemble. Although both sampling approaches have the same worst-case time and space complexities, it has been indicated that they differ in performance (both with respect to prediction accuracy and quality of generated samples), where neither of these two competing approaches generally outperforms the other. Results In this work, we will consider the SCFG based approach in order to perform an analysis on how the quality of generated sample sets and the corresponding prediction accuracy changes when different degrees of disturbances are incorporated into the needed sampling probabilities. This is motivated by the fact that if the results prove to be resistant to large errors on the distinct sampling probabilities (compared to the exact ones), then it will be an indication that these probabilities do not need to be computed exactly, but it may be sufficient and more efficient to approximate them. Thus, it might then be possible to decrease the worst-case time requirements of such an SCFG based sampling method without significant accuracy losses. If, on the other hand, the quality of sampled structures can be observed to strongly react to slight disturbances, there is little hope for improving the complexity by heuristic procedures. We hence provide a reliable test for the hypothesis that a heuristic method could be implemented to improve the time scaling of RNA secondary structure prediction in the worst-case – without sacrificing much of the accuracy of the results. Conclusions Our experiments indicate that absolute errors generally lead to the generation of useless sample sets, whereas relative errors seem to have only small negative impact on both the predictive accuracy and the overall quality of resulting structure samples. Based on these observations, we present some useful ideas for developing a time-reduced sampling method guaranteeing an acceptable predictive accuracy. We also discuss some inherent drawbacks that arise in the context of approximation. The key results of this paper are crucial for the design of an efficient and competitive heuristic prediction method based on the increasingly accepted and attractive statistical sampling approach. This has indeed been indicated by the construction of prototype algorithms. PMID:22776037

  7. Error floor behavior study of LDPC codes for concatenated codes design

    NASA Astrophysics Data System (ADS)

    Chen, Weigang; Yin, Liuguo; Lu, Jianhua

    2007-11-01

    Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.

  8. vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments

    PubMed Central

    2010-01-01

    Background The replication rate (or fitness) between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Results Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1). Conclusions Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/. PMID:20482791

  9. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    PubMed

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  10. Assessing Statistical Competencies in Clinical and Translational Science Education: One Size Does Not Fit All

    PubMed Central

    Lindsell, Christopher J.; Welty, Leah J.; Mazumdar, Madhu; Thurston, Sally W.; Rahbar, Mohammad H.; Carter, Rickey E.; Pollock, Bradley H.; Cucchiara, Andrew J.; Kopras, Elizabeth J.; Jovanovic, Borko D.; Enders, Felicity T.

    2014-01-01

    Abstract Introduction Statistics is an essential training component for a career in clinical and translational science (CTS). Given the increasing complexity of statistics, learners may have difficulty selecting appropriate courses. Our question was: what depth of statistical knowledge do different CTS learners require? Methods For three types of CTS learners (principal investigator, co‐investigator, informed reader of the literature), each with different backgrounds in research (no previous research experience, reader of the research literature, previous research experience), 18 experts in biostatistics, epidemiology, and research design proposed levels for 21 statistical competencies. Results Statistical competencies were categorized as fundamental, intermediate, or specialized. CTS learners who intend to become independent principal investigators require more specialized training, while those intending to become informed consumers of the medical literature require more fundamental education. For most competencies, less training was proposed for those with more research background. Discussion When selecting statistical coursework, the learner's research background and career goal should guide the decision. Some statistical competencies are considered to be more important than others. Baseline knowledge assessments may help learners identify appropriate coursework. Conclusion Rather than one size fits all, tailoring education to baseline knowledge, learner background, and future goals increases learning potential while minimizing classroom time. PMID:25212569

  11. Global CO2 flux inversions from remote-sensing data with systematic errors using hierarchical statistical models

    NASA Astrophysics Data System (ADS)

    Zammit-Mangion, Andrew; Stavert, Ann; Rigby, Matthew; Ganesan, Anita; Rayner, Peter; Cressie, Noel

    2017-04-01

    The Orbiting Carbon Observatory-2 (OCO-2) satellite was launched on 2 July 2014, and it has been a source of atmospheric CO2 data since September 2014. The OCO-2 dataset contains a number of variables, but the one of most interest for flux inversion has been the column-averaged dry-air mole fraction (in units of ppm). These global level-2 data offer the possibility of inferring CO2 fluxes at Earth's surface and tracking those fluxes over time. However, as well as having a component of random error, the OCO-2 data have a component of systematic error that is dependent on the instrument's mode, namely land nadir, land glint, and ocean glint. Our statistical approach to CO2-flux inversion starts with constructing a statistical model for the random and systematic errors with parameters that can be estimated from the OCO-2 data and possibly in situ sources from flasks, towers, and the Total Column Carbon Observing Network (TCCON). Dimension reduction of the flux field is achieved through the use of physical basis functions, while temporal evolution of the flux is captured by modelling the basis-function coefficients as a vector autoregressive process. For computational efficiency, flux inversion uses only three months of sensitivities of mole fraction to changes in flux, computed using MOZART; any residual variation is captured through the modelling of a stochastic process that varies smoothly as a function of latitude. The second stage of our statistical approach is to simulate from the posterior distribution of the basis-function coefficients and all unknown parameters given the data using a fully Bayesian Markov chain Monte Carlo (MCMC) algorithm. Estimates and posterior variances of the flux field can then be obtained straightforwardly from this distribution. Our statistical approach is different than others, as it simultaneously makes inference (and quantifies uncertainty) on both the error components' parameters and the CO2 fluxes. We compare it to more classical approaches through an Observing System Simulation Experiment (OSSE) on a global scale. By changing the size of the random and systematic errors in the OSSE, we can determine the corresponding spatial and temporal resolutions at which useful flux signals could be detected from the OCO-2 data.

  12. Trial Sequential Analysis in systematic reviews with meta-analysis.

    PubMed

    Wetterslev, Jørn; Jakobsen, Janus Christian; Gluud, Christian

    2017-03-06

    Most meta-analyses in systematic reviews, including Cochrane ones, do not have sufficient statistical power to detect or refute even large intervention effects. This is why a meta-analysis ought to be regarded as an interim analysis on its way towards a required information size. The results of the meta-analyses should relate the total number of randomised participants to the estimated required meta-analytic information size accounting for statistical diversity. When the number of participants and the corresponding number of trials in a meta-analysis are insufficient, the use of the traditional 95% confidence interval or the 5% statistical significance threshold will lead to too many false positive conclusions (type I errors) and too many false negative conclusions (type II errors). We developed a methodology for interpreting meta-analysis results, using generally accepted, valid evidence on how to adjust thresholds for significance in randomised clinical trials when the required sample size has not been reached. The Lan-DeMets trial sequential monitoring boundaries in Trial Sequential Analysis offer adjusted confidence intervals and restricted thresholds for statistical significance when the diversity-adjusted required information size and the corresponding number of required trials for the meta-analysis have not been reached. Trial Sequential Analysis provides a frequentistic approach to control both type I and type II errors. We define the required information size and the corresponding number of required trials in a meta-analysis and the diversity (D 2 ) measure of heterogeneity. We explain the reasons for using Trial Sequential Analysis of meta-analysis when the actual information size fails to reach the required information size. We present examples drawn from traditional meta-analyses using unadjusted naïve 95% confidence intervals and 5% thresholds for statistical significance. Spurious conclusions in systematic reviews with traditional meta-analyses can be reduced using Trial Sequential Analysis. Several empirical studies have demonstrated that the Trial Sequential Analysis provides better control of type I errors and of type II errors than the traditional naïve meta-analysis. Trial Sequential Analysis represents analysis of meta-analytic data, with transparent assumptions, and better control of type I and type II errors than the traditional meta-analysis using naïve unadjusted confidence intervals.

  13. Evaluation of Methods Used for Estimating Selected Streamflow Statistics, and Flood Frequency and Magnitude, for Small Basins in North Coastal California

    USGS Publications Warehouse

    Mann, Michael P.; Rizzardo, Jule; Satkowski, Richard

    2004-01-01

    Accurate streamflow statistics are essential to water resource agencies involved in both science and decision-making. When long-term streamflow data are lacking at a site, estimation techniques are often employed to generate streamflow statistics. However, procedures for accurately estimating streamflow statistics often are lacking. When estimation procedures are developed, they often are not evaluated properly before being applied. Use of unevaluated or underevaluated flow-statistic estimation techniques can result in improper water-resources decision-making. The California State Water Resources Control Board (SWRCB) uses two key techniques, a modified rational equation and drainage basin area-ratio transfer, to estimate streamflow statistics at ungaged locations. These techniques have been implemented to varying degrees, but have not been formally evaluated. For estimating peak flows at the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals, the SWRCB uses the U.S. Geological Surveys (USGS) regional peak-flow equations. In this study, done cooperatively by the USGS and SWRCB, the SWRCB estimated several flow statistics at 40 USGS streamflow gaging stations in the north coast region of California. The SWRCB estimates were made without reference to USGS flow data. The USGS used the streamflow data provided by the 40 stations to generate flow statistics that could be compared with SWRCB estimates for accuracy. While some SWRCB estimates compared favorably with USGS statistics, results were subject to varying degrees of error over the region. Flow-based estimation techniques generally performed better than rain-based methods, especially for estimation of December 15 to March 31 mean daily flows. The USGS peak-flow equations also performed well, but tended to underestimate peak flows. The USGS equations performed within reported error bounds, but will require updating in the future as peak-flow data sets grow larger. Little correlation was discovered between estimation errors and geographic locations or various basin characteristics. However, for 25-percentile year mean-daily-flow estimates for December 15 to March 31, the greatest estimation errors were at east San Francisco Bay area stations with mean annual precipitation less than or equal to 30 inches, and estimated 2-year/24-hour rainfall intensity less than 3 inches.

  14. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom.

    PubMed

    Werner-Wasik, Maria; Nelson, Arden D; Choi, Walter; Arai, Yoshio; Faulhaber, Peter F; Kang, Patrick; Almeida, Fabio D; Xiao, Ying; Ohri, Nitin; Brockway, Kristin D; Piper, Jonathan W; Nelson, Aaron S

    2012-03-01

    To evaluate the accuracy and consistency of a gradient-based positron emission tomography (PET) segmentation method, GRADIENT, compared with manual (MANUAL) and constant threshold (THRESHOLD) methods. Contouring accuracy was evaluated with sphere phantoms and clinically realistic Monte Carlo PET phantoms of the thorax. The sphere phantoms were 10-37 mm in diameter and were acquired at five institutions emulating clinical conditions. One institution also acquired a sphere phantom with multiple source-to-background ratios of 2:1, 5:1, 10:1, 20:1, and 70:1. One observer segmented (contoured) each sphere with GRADIENT and THRESHOLD from 25% to 50% at 5% increments. Subsequently, seven physicians segmented 31 lesions (7-264 mL) from 25 digital thorax phantoms using GRADIENT, THRESHOLD, and MANUAL. For spheres <20 mm in diameter, GRADIENT was the most accurate with a mean absolute % error in diameter of 8.15% (10.2% SD) compared with 49.2% (51.1% SD) for 45% THRESHOLD (p < 0.005). For larger spheres, the methods were statistically equivalent. For varying source-to-background ratios, GRADIENT was the most accurate for spheres >20 mm (p < 0.065) and <20 mm (p < 0.015). For digital thorax phantoms, GRADIENT was the most accurate (p < 0.01), with a mean absolute % error in volume of 10.99% (11.9% SD), followed by 25% THRESHOLD at 17.5% (29.4% SD), and MANUAL at 19.5% (17.2% SD). GRADIENT had the least systematic bias, with a mean % error in volume of -0.05% (16.2% SD) compared with 25% THRESHOLD at -2.1% (34.2% SD) and MANUAL at -16.3% (20.2% SD; p value <0.01). Interobserver variability was reduced using GRADIENT compared with both 25% THRESHOLD and MANUAL (p value <0.01, Levene's test). GRADIENT was the most accurate and consistent technique for target volume contouring. GRADIENT was also the most robust for varying imaging conditions. GRADIENT has the potential to play an important role for tumor delineation in radiation therapy planning and response assessment. Copyright © 2012. Published by Elsevier Inc.

  15. A hybrid ARIMA and neural network model applied to forecast catch volumes of Selar crumenophthalmus

    NASA Astrophysics Data System (ADS)

    Aquino, Ronald L.; Alcantara, Nialle Loui Mar T.; Addawe, Rizavel C.

    2017-11-01

    The Selar crumenophthalmus with the English name big-eyed scad fish, locally known as matang-baka, is one of the fishes commonly caught along the waters of La Union, Philippines. The study deals with the forecasting of catch volumes of big-eyed scad fish for commercial consumption. The data used are quarterly caught volumes of big-eyed scad fish from 2002 to first quarter of 2017. This actual data is available from the open stat database published by the Philippine Statistics Authority (PSA)whose task is to collect, compiles, analyzes and publish information concerning different aspects of the Philippine setting. Autoregressive Integrated Moving Average (ARIMA) models, Artificial Neural Network (ANN) model and the Hybrid model consisting of ARIMA and ANN were developed to forecast catch volumes of big-eyed scad fish. Statistical errors such as Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) were computed and compared to choose the most suitable model for forecasting the catch volume for the next few quarters. A comparison of the results of each model and corresponding statistical errors reveals that the hybrid model, ARIMA-ANN (2,1,2)(6:3:1), is the most suitable model to forecast the catch volumes of the big-eyed scad fish for the next few quarters.

  16. On the error statistics of Viterbi decoding and the performance of concatenated codes

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Deutsch, L. J.; Butman, S. A.

    1981-01-01

    Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations.

  17. Cloud-free resolution element statistics program

    NASA Technical Reports Server (NTRS)

    Liley, B.; Martin, C. D.

    1971-01-01

    Computer program computes number of cloud-free elements in field-of-view and percentage of total field-of-view occupied by clouds. Human error is eliminated by using visual estimation to compute cloud statistics from aerial photographs.

  18. New Spectral Evidence of an Unaccounted Component of the Near-infrared Extragalactic Background Light from the CIBER

    NASA Astrophysics Data System (ADS)

    Matsuura, Shuji; Arai, Toshiaki; Bock, James J.; Cooray, Asantha; Korngut, Phillip M.; Kim, Min Gyu; Lee, Hyung Mok; Lee, Dae Hee; Levenson, Louis R.; Matsumoto, Toshio; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2017-04-01

    The extragalactic background light (EBL) captures the total integrated emission from stars and galaxies throughout the cosmic history. The amplitude of the near-infrared EBL from space absolute photometry observations has been controversial and depends strongly on the modeling and subtraction of the zodiacal light (ZL) foreground. We report the first measurement of the diffuse background spectrum at 0.8-1.7 μm from the CIBER experiment. The observations were obtained with an absolute spectrometer over two flights in multiple sky fields to enable the subtraction of ZL, stars, terrestrial emission, and diffuse Galactic light. After subtracting foregrounds and accounting for systematic errors, we find the nominal EBL brightness, assuming the Kelsall ZL model, is {42.7}-10.6+11.9 nW m-2 sr-1 at 1.4 μm. We also analyzed the data using the Wright ZL model, which results in a worse statistical fit to the data and an unphysical EBL, falling below the known background light from galaxies at λ < 1.3 μm. Using a model-independent analysis based on the minimum EBL brightness, we find an EBL brightness of {28.7}-3.3+5.1 nWm-2 sr-1 at 1.4 μm. While the derived EBL amplitude strongly depends on the ZL model, we find that we cannot fit the spectral data to ZL, Galactic emission, and EBL from solely integrated galactic light from galaxy counts. The results require a new diffuse component, such as an additional foreground or an excess EBL with a redder spectrum than that of ZL.

  19. An accessible method for implementing hierarchical models with spatio-temporal abundance data

    USGS Publications Warehouse

    Ross, Beth E.; Hooten, Melvin B.; Koons, David N.

    2012-01-01

    A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.

  20. Mind the Mode: Differences in Paper vs. Web-Based Survey Modes Among Women With Cancer.

    PubMed

    Hagan, Teresa L; Belcher, Sarah M; Donovan, Heidi S

    2017-09-01

    Researchers administering surveys seek to balance data quality, sources of error, and practical concerns when selecting an administration mode. Rarely are decisions about survey administration based on the background of study participants, although socio-demographic characteristics like age, education, and race may contribute to participants' (non)responses. In this study, we describe differences in paper- and web-based surveys administered in a national cancer survivor study of women with a history of cancer to compare the ability of each survey administrative mode to provide quality, generalizable data. We compared paper- and web-based survey data by socio-demographic characteristics of respondents, missing data rates, scores on primary outcome measure, and administrative costs and time using descriptive statistics, tests of mean group differences, and linear regression. Our findings indicate that more potentially vulnerable patients preferred paper questionnaires and that data quality, responses, and costs significantly varied by mode and participants' demographic information. We provide targeted suggestions for researchers conducting survey research to reduce survey error and increase generalizability of study results to the patient population of interest. Researchers must carefully weigh the pros and cons of survey administration modes to ensure a representative sample and high-quality data. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  1. Localization of extended brain sources from EEG/MEG: the ExSo-MUSIC approach.

    PubMed

    Birot, Gwénaël; Albera, Laurent; Wendling, Fabrice; Merlet, Isabelle

    2011-05-01

    We propose a new MUSIC-like method, called 2q-ExSo-MUSIC (q ≥ 1). This method is an extension of the 2q-MUSIC (q ≥ 1) approach for solving the EEG/MEG inverse problem, when spatially-extended neocortical sources ("ExSo") are considered. It introduces a novel ExSo-MUSIC principle. The novelty is two-fold: i) the parameterization of the spatial source distribution that leads to an appropriate metric in the context of distributed brain sources and ii) the introduction of an original, efficient and low-cost way of optimizing this metric. In 2q-ExSo-MUSIC, the possible use of higher order statistics (q ≥ 2) offers a better robustness with respect to Gaussian noise of unknown spatial coherence and modeling errors. As a result we reduced the penalizing effects of both the background cerebral activity that can be seen as a Gaussian and spatially correlated noise, and the modeling errors induced by the non-exact resolution of the forward problem. Computer results on simulated EEG signals obtained with physiologically-relevant models of both the sources and the volume conductor show a highly increased performance of our 2q-ExSo-MUSIC method as compared to the classical 2q-MUSIC algorithms. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. ERASE-Seq: Leveraging replicate measurements to enhance ultralow frequency variant detection in NGS data

    PubMed Central

    Kamps-Hughes, Nick; McUsic, Andrew; Kurihara, Laurie; Harkins, Timothy T.; Pal, Prithwish; Ray, Claire

    2018-01-01

    The accurate detection of ultralow allele frequency variants in DNA samples is of interest in both research and medical settings, particularly in liquid biopsies where cancer mutational status is monitored from circulating DNA. Next-generation sequencing (NGS) technologies employing molecular barcoding have shown promise but significant sensitivity and specificity improvements are still needed to detect mutations in a majority of patients before the metastatic stage. To address this we present analytical validation data for ERASE-Seq (Elimination of Recurrent Artifacts and Stochastic Errors), a method for accurate and sensitive detection of ultralow frequency DNA variants in NGS data. ERASE-Seq differs from previous methods by creating a robust statistical framework to utilize technical replicates in conjunction with background error modeling, providing a 10 to 100-fold reduction in false positive rates compared to published molecular barcoding methods. ERASE-Seq was tested using spiked human DNA mixtures with clinically realistic DNA input quantities to detect SNVs and indels between 0.05% and 1% allele frequency, the range commonly found in liquid biopsy samples. Variants were detected with greater than 90% sensitivity and a false positive rate below 0.1 calls per 10,000 possible variants. The approach represents a significant performance improvement compared to molecular barcoding methods and does not require changing molecular reagents. PMID:29630678

  3. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    NASA Astrophysics Data System (ADS)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.; Bianchini, Federico; Bleem, Lindsey E.; Crawford, Thomas M.; Holder, Gilbert P.; Manzotti, Alessandro; Reichardt, Christian L.

    2017-08-01

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.

  4. Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error

    NASA Astrophysics Data System (ADS)

    Miller, Austin

    In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.

  5. [Statistical Process Control (SPC) can help prevent treatment errors without increasing costs in radiotherapy].

    PubMed

    Govindarajan, R; Llueguera, E; Melero, A; Molero, J; Soler, N; Rueda, C; Paradinas, C

    2010-01-01

    Statistical Process Control (SPC) was applied to monitor patient set-up in radiotherapy and, when the measured set-up error values indicated a loss of process stability, its root cause was identified and eliminated to prevent set-up errors. Set up errors were measured for medial-lateral (ml), cranial-caudal (cc) and anterior-posterior (ap) dimensions and then the upper control limits were calculated. Once the control limits were known and the range variability was acceptable, treatment set-up errors were monitored using sub-groups of 3 patients, three times each shift. These values were plotted on a control chart in real time. Control limit values showed that the existing variation was acceptable. Set-up errors, measured and plotted on a X chart, helped monitor the set-up process stability and, if and when the stability was lost, treatment was interrupted, the particular cause responsible for the non-random pattern was identified and corrective action was taken before proceeding with the treatment. SPC protocol focuses on controlling the variability due to assignable cause instead of focusing on patient-to-patient variability which normally does not exist. Compared to weekly sampling of set-up error in each and every patient, which may only ensure that just those sampled sessions were set-up correctly, the SPC method enables set-up error prevention in all treatment sessions for all patients and, at the same time, reduces the control costs. Copyright © 2009 SECA. Published by Elsevier Espana. All rights reserved.

  6. Physicians' medication prescribing in primary care . in Riyadh City, Saudi Arabia. Literature review, part 3: prescribing errors.

    PubMed

    Qureshi, N A; Neyaz, Y; Khoja, T; Magzoub, M A; Haycox, A; Walley, T

    2011-02-01

    Medication errors are globally huge in magnitude and associated with high morbidity and mortality together with high costs and legal problems. Medication errors are caused by multiple factors related to health providers, consumers and health system, but most prescribing errors are preventable. This paper is the third of 3 review articles that form the background for a series of 5 interconnected studies of prescribing patterns and medication errors in the public and private primary health care sectors of Saudi Arabia. A MEDLINE search was conducted to identify papers published in peer-reviewed journals over the previous 3 decades. The paper reviews the etiology, prevention strategies, reporting mechanisms and the myriad consequences of medication errors.

  7. Structural interpretation in composite systems using powder X-ray diffraction: applications of error propagation to the pair distribution function.

    PubMed

    Moore, Michael D; Shi, Zhenqi; Wildfong, Peter L D

    2010-12-01

    To develop a method for drawing statistical inferences from differences between multiple experimental pair distribution function (PDF) transforms of powder X-ray diffraction (PXRD) data. The appropriate treatment of initial PXRD error estimates using traditional error propagation algorithms was tested using Monte Carlo simulations on amorphous ketoconazole. An amorphous felodipine:polyvinyl pyrrolidone:vinyl acetate (PVPva) physical mixture was prepared to define an error threshold. Co-solidified products of felodipine:PVPva and terfenadine:PVPva were prepared using a melt-quench method and subsequently analyzed using PXRD and PDF. Differential scanning calorimetry (DSC) was used as an additional characterization method. The appropriate manipulation of initial PXRD error estimates through the PDF transform were confirmed using the Monte Carlo simulations for amorphous ketoconazole. The felodipine:PVPva physical mixture PDF analysis determined ±3σ to be an appropriate error threshold. Using the PDF and error propagation principles, the felodipine:PVPva co-solidified product was determined to be completely miscible, and the terfenadine:PVPva co-solidified product, although having appearances of an amorphous molecular solid dispersion by DSC, was determined to be phase-separated. Statistically based inferences were successfully drawn from PDF transforms of PXRD patterns obtained from composite systems. The principles applied herein may be universally adapted to many different systems and provide a fundamentally sound basis for drawing structural conclusions from PDF studies.

  8. Kappa statistic for clustered dichotomous responses from physicians and patients.

    PubMed

    Kang, Chaeryon; Qaqish, Bahjat; Monaco, Jane; Sheridan, Stacey L; Cai, Jianwen

    2013-09-20

    The bootstrap method for estimating the standard error of the kappa statistic in the presence of clustered data is evaluated. Such data arise, for example, in assessing agreement between physicians and their patients regarding their understanding of the physician-patient interaction and discussions. We propose a computationally efficient procedure for generating correlated dichotomous responses for physicians and assigned patients for simulation studies. The simulation result demonstrates that the proposed bootstrap method produces better estimate of the standard error and better coverage performance compared with the asymptotic standard error estimate that ignores dependence among patients within physicians with at least a moderately large number of clusters. We present an example of an application to a coronary heart disease prevention study. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Statistics is not enough: revisiting Ronald A. Fisher's critique (1936) of Mendel's experimental results (1866).

    PubMed

    Pilpel, Avital

    2007-09-01

    This paper is concerned with the role of rational belief change theory in the philosophical understanding of experimental error. Today, philosophers seek insight about error in the investigation of specific experiments, rather than in general theories. Nevertheless, rational belief change theory adds to our understanding of just such cases: R. A. Fisher's criticism of Mendel's experiments being a case in point. After an historical introduction, the main part of this paper investigates Fisher's paper from the point of view of rational belief change theory: what changes of belief about Mendel's experiment does Fisher go through and with what justification. It leads to surprising insights about what Fisher had done right and wrong, and, more generally, about the limits of statistical methods in detecting error.

  10. Performance Metrics, Error Modeling, and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Nearing, Grey S.; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Tang, Ling

    2016-01-01

    A common set of statistical metrics has been used to summarize the performance of models or measurements-­ the most widely used ones being bias, mean square error, and linear correlation coefficient. They assume linear, additive, Gaussian errors, and they are interdependent, incomplete, and incapable of directly quantifying un­certainty. The authors demonstrate that these metrics can be directly derived from the parameters of the simple linear error model. Since a correct error model captures the full error information, it is argued that the specification of a parametric error model should be an alternative to the metrics-based approach. The error-modeling meth­odology is applicable to both linear and nonlinear errors, while the metrics are only meaningful for linear errors. In addition, the error model expresses the error structure more naturally, and directly quantifies uncertainty. This argument is further explained by highlighting the intrinsic connections between the performance metrics, the error model, and the joint distribution between the data and the reference.

  11. On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution

    NASA Astrophysics Data System (ADS)

    Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein

    2018-07-01

    One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.

  12. SER Analysis of MPPM-Coded MIMO-FSO System over Uncorrelated and Correlated Gamma-Gamma Atmospheric Turbulence Channels

    NASA Astrophysics Data System (ADS)

    Khallaf, Haitham S.; Garrido-Balsells, José M.; Shalaby, Hossam M. H.; Sampei, Seiichi

    2015-12-01

    The performance of multiple-input multiple-output free space optical (MIMO-FSO) communication systems, that adopt multipulse pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived for both cases of uncorrelated and correlated channels. The effects of background noise, receiver shot-noise, and atmospheric turbulence are taken into consideration in our analysis. The random fluctuations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the widely used gamma-gamma statistical distribution. Uncorrelated MIMO channels are modeled by the α-μ distribution. A closed-form expression for the probability density function of the optical received irradiance is derived for the case of correlated MIMO channels. Using our analytical expressions, the degradation of the system performance with the increment of the correlation coefficients between MIMO channels is corroborated.

  13. On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution

    NASA Astrophysics Data System (ADS)

    Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein

    2017-12-01

    One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.

  14. The magnocellular visual pathway and facial emotion misattribution errors in schizophrenia.

    PubMed

    Bedwell, Jeffrey S; Chan, Chi C; Cohen, Ovad; Karbi, Yinnon; Shamir, Eyal; Rassovsky, Yuri

    2013-07-01

    Many individuals with schizophrenia show impairment in labeling the emotion depicted by faces, and tend to ascribe anger or fear to neutral expressions. Preliminary research has linked some of these difficulties to dysfunction in the magnocellular (M) visual pathway, which has direct projections to subcortical emotion processing regions. The current study attempted to clarify these relationships using a novel paradigm that included a red background. Diffuse red light is known to suppress the M-pathway in nonpsychiatric adults, and there is preliminary evidence that it may have the opposite (stimulating) effect in schizophrenia-spectrum disorders (SSDs). Twenty-five individuals with SSDs were compared with 31 nonpsychiatric controls using a facial emotion identification task depicting happy, angry, fearful, and sad emotions on red, green, and gray backgrounds. There was a robust interaction of group by change in errors to the red (vs. green) background for misattributing fear expressions as depicting anger (p=.001, ή(2)=.18). Specifically, controls showed a significant decrease in this type of error with the red background (p=.003, d=0.77), while the SSD group tended to increase this type of error (p=.07, d=0.54). These findings suggest that the well-established M-pathway abnormalities in SSDs may contribute to the heightened misperception of other emotions such as anger, which in turn may cause social misperceptions in the environment and elicit symptoms such as paranoia and social withdrawal. As the ventral striatum plays a primary role in identifying anger and receives efferent input from the M-pathway, it may serve as the neuroanatomical substrate in the perception of anger. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. General Aviation Avionics Statistics.

    DTIC Science & Technology

    1980-12-01

    designed to produce standard errors on these variables at levels specified by the FAA. No controls were placed on the standard errors of the non-design...Transponder Encoding Requirement. and Mode CAutomatic (11as been deleted) Altitude Reporting Ca- pabili.,; Two-way Radio; VOR or TACAN Receiver. Remaining 42

  16. Standard deviation and standard error of the mean.

    PubMed

    Lee, Dong Kyu; In, Junyong; Lee, Sangseok

    2015-06-01

    In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results.

  17. Standard deviation and standard error of the mean

    PubMed Central

    In, Junyong; Lee, Sangseok

    2015-01-01

    In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results. PMID:26045923

  18. Round-off errors in cutting plane algorithms based on the revised simplex procedure

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1973-01-01

    This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.

  19. Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studies.

    PubMed

    Cheng, Dunlei; Branscum, Adam J; Stamey, James D

    2010-07-01

    To quantify the impact of ignoring misclassification of a response variable and measurement error in a covariate on statistical power, and to develop software for sample size and power analysis that accounts for these flaws in epidemiologic data. A Monte Carlo simulation-based procedure is developed to illustrate the differences in design requirements and inferences between analytic methods that properly account for misclassification and measurement error to those that do not in regression models for cross-sectional and cohort data. We found that failure to account for these flaws in epidemiologic data can lead to a substantial reduction in statistical power, over 25% in some cases. The proposed method substantially reduced bias by up to a ten-fold margin compared to naive estimates obtained by ignoring misclassification and mismeasurement. We recommend as routine practice that researchers account for errors in measurement of both response and covariate data when determining sample size, performing power calculations, or analyzing data from epidemiological studies. 2010 Elsevier Inc. All rights reserved.

  20. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms.

    PubMed

    Tang, Jie; Nett, Brian E; Chen, Guang-Hong

    2009-10-07

    Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

  1. Ensemble codes involving hippocampal neurons are at risk during delayed performance tests.

    PubMed

    Hampson, R E; Deadwyler, S A

    1996-11-26

    Multielectrode recording techniques were used to record ensemble activity from 10 to 16 simultaneously active CA1 and CA3 neurons in the rat hippocampus during performance of a spatial delayed-nonmatch-to-sample task. Extracted sources of variance were used to assess the nature of two different types of errors that accounted for 30% of total trials. The two types of errors included ensemble "miscodes" of sample phase information and errors associated with delay-dependent corruption or disappearance of sample information at the time of the nonmatch response. Statistical assessment of trial sequences and associated "strength" of hippocampal ensemble codes revealed that miscoded error trials always followed delay-dependent error trials in which encoding was "weak," indicating that the two types of errors were "linked." It was determined that the occurrence of weakly encoded, delay-dependent error trials initiated an ensemble encoding "strategy" that increased the chances of being correct on the next trial and avoided the occurrence of further delay-dependent errors. Unexpectedly, the strategy involved "strongly" encoding response position information from the prior (delay-dependent) error trial and carrying it forward to the sample phase of the next trial. This produced a miscode type error on trials in which the "carried over" information obliterated encoding of the sample phase response on the next trial. Application of this strategy, irrespective of outcome, was sufficient to reorient the animal to the proper between trial sequence of response contingencies (nonmatch-to-sample) and boost performance to 73% correct on subsequent trials. The capacity for ensemble analyses of strength of information encoding combined with statistical assessment of trial sequences therefore provided unique insight into the "dynamic" nature of the role hippocampus plays in delay type memory tasks.

  2. Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Reichert, Peter; Abbaspour, Karim C.; Yang, Hong

    2007-07-01

    SummaryCalibration of hydrologic models is very difficult because of measurement errors in input and response, errors in model structure, and the large number of non-identifiable parameters of distributed models. The difficulties even increase in arid regions with high seasonal variation of precipitation, where the modelled residuals often exhibit high heteroscedasticity and autocorrelation. On the other hand, support of water management by hydrologic models is important in arid regions, particularly if there is increasing water demand due to urbanization. The use and assessment of model results for this purpose require a careful calibration and uncertainty analysis. Extending earlier work in this field, we developed a procedure to overcome (i) the problem of non-identifiability of distributed parameters by introducing aggregate parameters and using Bayesian inference, (ii) the problem of heteroscedasticity of errors by combining a Box-Cox transformation of results and data with seasonally dependent error variances, (iii) the problems of autocorrelated errors, missing data and outlier omission with a continuous-time autoregressive error model, and (iv) the problem of the seasonal variation of error correlations with seasonally dependent characteristic correlation times. The technique was tested with the calibration of the hydrologic sub-model of the Soil and Water Assessment Tool (SWAT) in the Chaohe Basin in North China. The results demonstrated the good performance of this approach to uncertainty analysis, particularly with respect to the fulfilment of statistical assumptions of the error model. A comparison with an independent error model and with error models that only considered a subset of the suggested techniques clearly showed the superiority of the approach based on all the features (i)-(iv) mentioned above.

  3. Evaluation Of Statistical Models For Forecast Errors From The HBV-Model

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.

    2009-04-01

    Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.

  4. First Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Data Processing Methods and Systematic Errors Limits

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Barnes, C.; Bennett, C. L.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.

    2003-01-01

    We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.

  5. Development of extended WRF variational data assimilation system (WRFDA) for WRF non-hydrostatic mesoscale model

    NASA Astrophysics Data System (ADS)

    Pattanayak, Sujata; Mohanty, U. C.

    2018-06-01

    The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.

  6. Modulation/demodulation techniques for satellite communications. Part 1: Background

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  7. SU-D-BRD-07: Evaluation of the Effectiveness of Statistical Process Control Methods to Detect Systematic Errors For Routine Electron Energy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, S

    2015-06-15

    Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignmentmore » of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors using routine measurement of electron beam energy constancy.« less

  8. Prevalence of refractive errors in the Slovak population calculated using the Gullstrand schematic eye model.

    PubMed

    Popov, I; Valašková, J; Štefaničková, J; Krásnik, V

    2017-01-01

    A substantial part of the population suffers from some kind of refractive errors. It is envisaged that their prevalence may change with the development of society. The aim of this study is to determine the prevalence of refractive errors using calculations based on the Gullstrand schematic eye model. We used the Gullstrand schematic eye model to calculate refraction retrospectively. Refraction was presented as the need for glasses correction at a vertex distance of 12 mm. The necessary data was obtained using the optical biometer Lenstar LS900. Data which could not be obtained due to the limitations of the device was substituted by theoretical data from the Gullstrand schematic eye model. Only analyses from the right eyes were presented. The data was interpreted using descriptive statistics, Pearson correlation and t-test. The statistical tests were conducted at a level of significance of 5%. Our sample included 1663 patients (665 male, 998 female) within the age range of 19 to 96 years. Average age was 70.8 ± 9.53 years. Average refraction of the eye was 2.73 ± 2.13D (males 2.49 ± 2.34, females 2.90 ± 2.76). The mean absolute error from emmetropia was 3.01 ± 1.58 (males 2.83 ± 2.95, females 3.25 ± 3.35). 89.06% of the sample was hyperopic, 6.61% was myopic and 4.33% emmetropic. We did not find any correlation between refraction and age. Females were more hyperopic than males. We did not find any statistically significant hypermetopic shift of refraction with age. According to our estimation, the calculations of refractive errors using the Gullstrand schematic eye model showed a significant hypermetropic shift of more than +2D. Our results could be used in future for comparing the prevalence of refractive errors using same methods we used.Key words: refractive errors, refraction, Gullstrand schematic eye model, population, emmetropia.

  9. Estimation of sensible and latent heat flux from natural sparse vegetation surfaces using surface renewal

    NASA Astrophysics Data System (ADS)

    Zapata, N.; Martínez-Cob, A.

    2001-12-01

    This paper reports a study undertaken to evaluate the feasibility of the surface renewal method to accurately estimate long-term evaporation from the playa and margins of an endorreic salty lagoon (Gallocanta lagoon, Spain) under semiarid conditions. High-frequency temperature readings were taken for two time lags ( r) and three measurement heights ( z) in order to get surface renewal sensible heat flux ( HSR) values. These values were compared against eddy covariance sensible heat flux ( HEC) values for a calibration period (25-30 July 2000). Error analysis statistics (index of agreement, IA; root mean square error, RMSE; and systematic mean square error, MSEs) showed that the agreement between HSR and HEC improved as measurement height decreased and time lag increased. Calibration factors α were obtained for all analyzed cases. The best results were obtained for the z=0.9 m ( r=0.75 s) case for which α=1.0 was observed. In this case, uncertainty was about 10% in terms of relative error ( RE). Latent heat flux values were obtained by solving the energy balance equation for both the surface renewal ( LESR) and the eddy covariance ( LEEC) methods, using HSR and HEC, respectively, and measurements of net radiation and soil heat flux. For the calibration period, error analysis statistics for LESR were quite similar to those for HSR, although errors were mostly at random. LESR uncertainty was less than 9%. Calibration factors were applied for a validation data subset (30 July-4 August 2000) for which meteorological conditions were somewhat different (higher temperatures and wind speed and lower solar and net radiation). Error analysis statistics for both HSR and LESR were quite good for all cases showing the goodness of the calibration factors. Nevertheless, the results obtained for the z=0.9 m ( r=0.75 s) case were still the best ones.

  10. Atmospheric Dispersion Effects in Weak Lensing Measurements

    DOE PAGES

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less

  11. Investigating the relationship between foveal morphology and refractive error in a population with infantile nystagmus syndrome.

    PubMed

    Healey, Natasha; McLoone, Eibhlin; Mahon, Gerald; Jackson, A Jonathan; Saunders, Kathryn J; McClelland, Julie F

    2013-04-26

    We explored associations between refractive error and foveal hypoplasia in infantile nystagmus syndrome (INS). We recruited 50 participants with INS (albinism n = 33, nonalbinism infantile nystagmus [NAIN] n = 17) aged 4 to 48 years. Cycloplegic refractive error and logMAR acuity were obtained. Spherical equivalent (SER), most ametropic meridian (MAM) refractive error, and better eye acuity (VA) were used for analyses. High resolution spectral-domain optical coherence tomography (SD-OCT) was used to obtain foveal scans, which were graded using the Foveal Hypoplasia Grading Scale. Associations between grades of severity of foveal hypoplasia, and refractive error and VA were explored. Participants with more severe foveal hypoplasia had significantly higher MAMs and SERs (Kruskal-Wallis H test P = 0.005 and P = 0.008, respectively). There were no statistically significant associations between foveal hypoplasia and cylindrical refractive error (Kruskal-Wallis H test P = 0.144). Analyses demonstrated significant differences between participants with albinism or NAIN in terms of SER and MAM (Mann-Whitney U test P = 0.001). There were no statistically significant differences between astigmatic errors between participants with albinism and NAIN. Controlling for the effects of albinism, results demonstrated no significant associations between SER, and MAM and foveal hypoplasia (partial correlation P > 0.05). Poorer visual acuity was associated statistically significantly with more severe foveal hypoplasia (Kruskal-Wallis H test P = 0.001) and with a diagnosis of albinism (Mann-Whitney U test P = 0.001). Increasing severity of foveal hypoplasia is associated with poorer VA, reflecting reduced cone density in INS. Individuals with INS also demonstrate a significant association between more severe foveal hypoplasia and increasing hyperopia. However, in the absence of albinism, there is no significant relation between refractive outcome and degree of foveal hypoplasia, suggesting that foveal maldevelopment in isolation does not impair significantly the emmetropization process. It likely is that impaired emmetropization evidenced in the albinism group may be attributed to the whole eye effect of albinism.

  12. A statistical approach to instrument calibration

    Treesearch

    Robert R. Ziemer; David Strauss

    1978-01-01

    Summary - It has been found that two instruments will yield different numerical values when used to measure identical points. A statistical approach is presented that can be used to approximate the error associated with the calibration of instruments. Included are standard statistical tests that can be used to determine if a number of successive calibrations of the...

  13. The Importance of Statistical Modeling in Data Analysis and Inference

    ERIC Educational Resources Information Center

    Rollins, Derrick, Sr.

    2017-01-01

    Statistical inference simply means to draw a conclusion based on information that comes from data. Error bars are the most commonly used tool for data analysis and inference in chemical engineering data studies. This work demonstrates, using common types of data collection studies, the importance of specifying the statistical model for sound…

  14. Evaluating Item Fit for Multidimensional Item Response Models

    ERIC Educational Resources Information Center

    Zhang, Bo; Stone, Clement A.

    2008-01-01

    This research examines the utility of the s-x[superscript 2] statistic proposed by Orlando and Thissen (2000) in evaluating item fit for multidimensional item response models. Monte Carlo simulation was conducted to investigate both the Type I error and statistical power of this fit statistic in analyzing two kinds of multidimensional test…

  15. Algorithm for computing descriptive statistics for very large data sets and the exa-scale era

    NASA Astrophysics Data System (ADS)

    Beekman, Izaak

    2017-11-01

    An algorithm for Single-point, Parallel, Online, Converging Statistics (SPOCS) is presented. It is suited for in situ analysis that traditionally would be relegated to post-processing, and can be used to monitor the statistical convergence and estimate the error/residual in the quantity-useful for uncertainty quantification too. Today, data may be generated at an overwhelming rate by numerical simulations and proliferating sensing apparatuses in experiments and engineering applications. Monitoring descriptive statistics in real time lets costly computations and experiments be gracefully aborted if an error has occurred, and monitoring the level of statistical convergence allows them to be run for the shortest amount of time required to obtain good results. This algorithm extends work by Pébay (Sandia Report SAND2008-6212). Pébay's algorithms are recast into a converging delta formulation, with provably favorable properties. The mean, variance, covariances and arbitrary higher order statistical moments are computed in one pass. The algorithm is tested using Sillero, Jiménez, & Moser's (2013, 2014) publicly available UPM high Reynolds number turbulent boundary layer data set, demonstrating numerical robustness, efficiency and other favorable properties.

  16. The Asymmetry Parameter and Branching Ratio of Sigma Plus Radiative Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foucher, Maurice Emile

    1992-05-01

    We have measured the asymmetry parameter and branching ratio of themore » $$\\Sigma^+$$ radiative decay. This high statistics experiment (FNAL 761) was performed in the Proton Center charged hyperon beam at Fermi National Accelerator Laboratory in Batavia, Illinois. We find for the asymmetry parameter -0.720 $$\\pm$$ 0.086 $$\\pm$$ 0.045 where the first error is statistical and the second is systematic. This result is based on a sample of 34754 $$\\pm$$ 212 events. We find a preliminary value for the branching ratio $$Br ( \\Sigma^+ \\to p\\gamma )$$ $$/ Br ( \\Sigma^+ \\to p \\pi^0 )$$ = (2.14 $$\\pm$$ 0.07 $$\\pm$$ 0.11) x $$10^{-3}$$ where the first error is statistical and the second is systematic. This result is based on a sample of 31040 $$\\pm$$ 650 events. Both results are in agreement with previous low statistics measurements.« less

  17. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  18. Box-Counting Dimension Revisited: Presenting an Efficient Method of Minimizing Quantization Error and an Assessment of the Self-Similarity of Structural Root Systems

    PubMed Central

    Bouda, Martin; Caplan, Joshua S.; Saiers, James E.

    2016-01-01

    Fractal dimension (FD), estimated by box-counting, is a metric used to characterize plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantization error (QE), which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterize the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitized in 3D and subjected to box-counts. A pattern search algorithm was used to minimize QE by optimizing grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates. QE, due to both grid position and orientation, was a significant source of error in FD estimates, but pattern search provided an efficient means of minimizing it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitizations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did not characterize the scaling of our digitizations well: the scaling exponent was a function of scale. Our findings serve as a caution against applying FD under the assumption of statistical self-similarity without rigorously evaluating it first. PMID:26925073

  19. Robust inference from multiple test statistics via permutations: a better alternative to the single test statistic approach for randomized trials.

    PubMed

    Ganju, Jitendra; Yu, Xinxin; Ma, Guoguang Julie

    2013-01-01

    Formal inference in randomized clinical trials is based on controlling the type I error rate associated with a single pre-specified statistic. The deficiency of using just one method of analysis is that it depends on assumptions that may not be met. For robust inference, we propose pre-specifying multiple test statistics and relying on the minimum p-value for testing the null hypothesis of no treatment effect. The null hypothesis associated with the various test statistics is that the treatment groups are indistinguishable. The critical value for hypothesis testing comes from permutation distributions. Rejection of the null hypothesis when the smallest p-value is less than the critical value controls the type I error rate at its designated value. Even if one of the candidate test statistics has low power, the adverse effect on the power of the minimum p-value statistic is not much. Its use is illustrated with examples. We conclude that it is better to rely on the minimum p-value rather than a single statistic particularly when that single statistic is the logrank test, because of the cost and complexity of many survival trials. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Intersection negotiation problems of older drivers. Volume 2, Background synthesis on age and intersection driving difficulties

    DOT National Transportation Integrated Search

    1998-09-01

    This project included a background literature synthesis and observational field study. The research goals were to document driving problems and errors at intersections, for older drivers using their own cars to travel familiar and unfamiliar routes, ...

  1. Application of Monte Carlo algorithms to the Bayesian analysis of the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Jewell, J.; Levin, S.; Anderson, C. H.

    2004-01-01

    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for the extraction of cosmological information from the cosmic microwave background (CMB).

  2. Improved detection of radioactive material using a series of measurements

    NASA Astrophysics Data System (ADS)

    Mann, Jenelle

    The goal of this project is to develop improved algorithms for detection of radioactive sources that have low signal compared to background. The detection of low signal sources is of interest in national security applications where the source may have weak ionizing radiation emissions, is heavily shielded, or the counting time is short (such as portal monitoring). Traditionally to distinguish signal from background the decision threshold (y*) is calculated by taking a long background count and limiting the false negative error (alpha error) to 5%. Some problems with this method include: background is constantly changing due to natural environmental fluctuations and large amounts of data are being taken as the detector continuously scans that are not utilized. Rather than looking at a single measurement, this work investigates looking at a series of N measurements and develops an appropriate decision threshold for exceeding the decision threshold n times in a series of N. This methodology is investigated for a rectangular, triangular, sinusoidal, Poisson, and Gaussian distribution.

  3. Exposed and Embedded Corrections in Aphasia Therapy: Issues of Voice and Identity

    ERIC Educational Resources Information Center

    Simmons-Mackie, Nina; Damico, Jack S.

    2008-01-01

    Background: Because communication after the onset of aphasia can be fraught with errors, therapist corrections are pervasive in therapy for aphasia. Although corrections are designed to improve the accuracy of communication, some corrections can have social and emotional consequences during interactions. That is, exposure of errors can potentially…

  4. BEATBOX v1.0: Background Error Analysis Testbed with Box Models

    NASA Astrophysics Data System (ADS)

    Knote, Christoph; Barré, Jérôme; Eckl, Max

    2018-02-01

    The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.

  5. A study on characteristics of retrospective optimal interpolation with WRF testbed

    NASA Astrophysics Data System (ADS)

    Kim, S.; Noh, N.; Lim, G.

    2012-12-01

    This study presents the application of retrospective optimal interpolation (ROI) with Weather Research and Forecasting model (WRF). Song et al. (2009) suggest ROI method which is an optimal interpolation (OI) that gradually assimilates observations over the analysis window for variance-minimum estimate of an atmospheric state at the initial time of the analysis window. Song and Lim (2011) improve the method by incorporating eigen-decomposition and covariance inflation. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In this study, ROI method is applied to WRF model to validate the algorithm and to investigate the capability. The computational costs for ROI can be reduced due to the eigen-decomposition of background error covariance. Using the background error covariance in eigen-space, 1-profile assimilation experiment is performed. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation. The characteristics and strength/weakness of ROI method are investigated by conducting the experiments with other data assimilation method.

  6. Perception in statistical graphics

    NASA Astrophysics Data System (ADS)

    VanderPlas, Susan Ruth

    There has been quite a bit of research on statistical graphics and visualization, generally focused on new types of graphics, new software to create graphics, interactivity, and usability studies. Our ability to interpret and use statistical graphics hinges on the interface between the graph itself and the brain that perceives and interprets it, and there is substantially less research on the interplay between graph, eye, brain, and mind than is sufficient to understand the nature of these relationships. The goal of the work presented here is to further explore the interplay between a static graph, the translation of that graph from paper to mental representation (the journey from eye to brain), and the mental processes that operate on that graph once it is transferred into memory (mind). Understanding the perception of statistical graphics should allow researchers to create more effective graphs which produce fewer distortions and viewer errors while reducing the cognitive load necessary to understand the information presented in the graph. Taken together, these experiments should lay a foundation for exploring the perception of statistical graphics. There has been considerable research into the accuracy of numerical judgments viewers make from graphs, and these studies are useful, but it is more effective to understand how errors in these judgments occur so that the root cause of the error can be addressed directly. Understanding how visual reasoning relates to the ability to make judgments from graphs allows us to tailor graphics to particular target audiences. In addition, understanding the hierarchy of salient features in statistical graphics allows us to clearly communicate the important message from data or statistical models by constructing graphics which are designed specifically for the perceptual system.

  7. Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)

    NASA Astrophysics Data System (ADS)

    Kasibhatla, P.

    2004-12-01

    In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.

  8. The Applicability of Standard Error of Measurement and Minimal Detectable Change to Motor Learning Research-A Behavioral Study.

    PubMed

    Furlan, Leonardo; Sterr, Annette

    2018-01-01

    Motor learning studies face the challenge of differentiating between real changes in performance and random measurement error. While the traditional p -value-based analyses of difference (e.g., t -tests, ANOVAs) provide information on the statistical significance of a reported change in performance scores, they do not inform as to the likely cause or origin of that change, that is, the contribution of both real modifications in performance and random measurement error to the reported change. One way of differentiating between real change and random measurement error is through the utilization of the statistics of standard error of measurement (SEM) and minimal detectable change (MDC). SEM is estimated from the standard deviation of a sample of scores at baseline and a test-retest reliability index of the measurement instrument or test employed. MDC, in turn, is estimated from SEM and a degree of confidence, usually 95%. The MDC value might be regarded as the minimum amount of change that needs to be observed for it to be considered a real change, or a change to which the contribution of real modifications in performance is likely to be greater than that of random measurement error. A computer-based motor task was designed to illustrate the applicability of SEM and MDC to motor learning research. Two studies were conducted with healthy participants. Study 1 assessed the test-retest reliability of the task and Study 2 consisted in a typical motor learning study, where participants practiced the task for five consecutive days. In Study 2, the data were analyzed with a traditional p -value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings showed good test-retest reliability for the task and that the p -value-based analysis alone identified statistically significant improvements in performance over time even when the observed changes could in fact have been smaller than the MDC and thereby caused mostly by random measurement error, as opposed to by learning. We suggest therefore that motor learning studies could complement their p -value-based analyses of difference with statistics such as SEM and MDC in order to inform as to the likely cause or origin of any reported changes in performance.

  9. Error, Power, and Blind Sentinels: The Statistics of Seagrass Monitoring

    PubMed Central

    Schultz, Stewart T.; Kruschel, Claudia; Bakran-Petricioli, Tatjana; Petricioli, Donat

    2015-01-01

    We derive statistical properties of standard methods for monitoring of habitat cover worldwide, and criticize them in the context of mandated seagrass monitoring programs, as exemplified by Posidonia oceanica in the Mediterranean Sea. We report the novel result that cartographic methods with non-trivial classification errors are generally incapable of reliably detecting habitat cover losses less than about 30 to 50%, and the field labor required to increase their precision can be orders of magnitude higher than that required to estimate habitat loss directly in a field campaign. We derive a universal utility threshold of classification error in habitat maps that represents the minimum habitat map accuracy above which direct methods are superior. Widespread government reliance on blind-sentinel methods for monitoring seafloor can obscure the gradual and currently ongoing losses of benthic resources until the time has long passed for meaningful management intervention. We find two classes of methods with very high statistical power for detecting small habitat cover losses: 1) fixed-plot direct methods, which are over 100 times as efficient as direct random-plot methods in a variable habitat mosaic; and 2) remote methods with very low classification error such as geospatial underwater videography, which is an emerging, low-cost, non-destructive method for documenting small changes at millimeter visual resolution. General adoption of these methods and their further development will require a fundamental cultural change in conservation and management bodies towards the recognition and promotion of requirements of minimal statistical power and precision in the development of international goals for monitoring these valuable resources and the ecological services they provide. PMID:26367863

  10. Adaboost multi-view face detection based on YCgCr skin color model

    NASA Astrophysics Data System (ADS)

    Lan, Qi; Xu, Zhiyong

    2016-09-01

    Traditional Adaboost face detection algorithm uses Haar-like features training face classifiers, whose detection error rate is low in the face region. While under the complex background, the classifiers will make wrong detection easily to the background regions with the similar faces gray level distribution, which leads to the error detection rate of traditional Adaboost algorithm is high. As one of the most important features of a face, skin in YCgCr color space has good clustering. We can fast exclude the non-face areas through the skin color model. Therefore, combining with the advantages of the Adaboost algorithm and skin color detection algorithm, this paper proposes Adaboost face detection algorithm method that bases on YCgCr skin color model. Experiments show that, compared with traditional algorithm, the method we proposed has improved significantly in the detection accuracy and errors.

  11. A study of digital holographic filters generation. Phase 2: Digital data communication system, volume 1

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Mo, C. D.

    1978-01-01

    An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.

  12. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Urnes, James M., Sr. (Inventor); Smith, Timothy A. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  13. Error threshold for color codes and random three-body Ising models.

    PubMed

    Katzgraber, Helmut G; Bombin, H; Martin-Delgado, M A

    2009-08-28

    We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of p(c) = 0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise.

  14. Ensemble Kalman filters for dynamical systems with unresolved turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grooms, Ian, E-mail: grooms@cims.nyu.edu; Lee, Yoonsang; Majda, Andrew J.

    Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (amore » multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an accurate estimate of the large-scale part of the system does not provide an accurate estimate of the true state. By providing simultaneous estimates of both the large- and small-scale parts of the solution, the new framework is able to provide accurate estimates of the true system state.« less

  15. Evaluation of Satellite and Model Precipitation Products Over Turkey

    NASA Astrophysics Data System (ADS)

    Yilmaz, M. T.; Amjad, M.

    2017-12-01

    Satellite-based remote sensing, gauge stations, and models are the three major platforms to acquire precipitation dataset. Among them satellites and models have the advantage of retrieving spatially and temporally continuous and consistent datasets, while the uncertainty estimates of these retrievals are often required for many hydrological studies to understand the source and the magnitude of the uncertainty in hydrological response parameters. In this study, satellite and model precipitation data products are validated over various temporal scales (daily, 3-daily, 7-daily, 10-daily and monthly) using in-situ measured precipitation observations from a network of 733 gauges from all over the Turkey. Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 and European Center of Medium-Range Weather Forecast (ECMWF) model estimates (daily, 3-daily, 7-daily and 10-daily accumulated forecast) are used in this study. Retrievals are evaluated for their mean and standard deviation and their accuracies are evaluated via bias, root mean square error, error standard deviation and correlation coefficient statistics. Intensity vs frequency analysis and some contingency table statistics like percent correct, probability of detection, false alarm ratio and critical success index are determined using daily time-series. Both ECMWF forecasts and TRMM observations, on average, overestimate the precipitation compared to gauge estimates; wet biases are 10.26 mm/month and 8.65 mm/month, respectively for ECMWF and TRMM. RMSE values of ECMWF forecasts and TRMM estimates are 39.69 mm/month and 41.55 mm/month, respectively. Monthly correlations between Gauges-ECMWF, Gauges-TRMM and ECMWF-TRMM are 0.76, 0.73 and 0.81, respectively. The model and the satellite error statistics are further compared against the gauges error statistics based on inverse distance weighting (IWD) analysis. Both the model and satellite data have less IWD errors (14.72 mm/month and 10.75 mm/month, respectively) compared to gauges IWD error (21.58 mm/month). These results show that, on average, ECMWF forecast data have higher skill than TRMM observations. Overall, both ECMWF forecast data and TRMM observations show good potential for catchment scale hydrological analysis.

  16. Measurement and Predition Errors in Body Composition Assessment and the Search for the Perfect Prediction Equation.

    ERIC Educational Resources Information Center

    Katch, Frank I.; Katch, Victor L.

    1980-01-01

    Sources of error in body composition assessment by laboratory and field methods can be found in hydrostatic weighing, residual air volume, skinfolds, and circumferences. Statistical analysis can and should be used in the measurement of body composition. (CJ)

  17. Improvement of Accuracy for Background Noise Estimation Method Based on TPE-AE

    NASA Astrophysics Data System (ADS)

    Itai, Akitoshi; Yasukawa, Hiroshi

    This paper proposes a method of a background noise estimation based on the tensor product expansion with a median and a Monte carlo simulation. We have shown that a tensor product expansion with absolute error method is effective to estimate a background noise, however, a background noise might not be estimated by using conventional method properly. In this paper, it is shown that the estimate accuracy can be improved by using proposed methods.

  18. The propagation of inventory-based positional errors into statistical landslide susceptibility models

    NASA Astrophysics Data System (ADS)

    Steger, Stefan; Brenning, Alexander; Bell, Rainer; Glade, Thomas

    2016-12-01

    There is unanimous agreement that a precise spatial representation of past landslide occurrences is a prerequisite to produce high quality statistical landslide susceptibility models. Even though perfectly accurate landslide inventories rarely exist, investigations of how landslide inventory-based errors propagate into subsequent statistical landslide susceptibility models are scarce. The main objective of this research was to systematically examine whether and how inventory-based positional inaccuracies of different magnitudes influence modelled relationships, validation results, variable importance and the visual appearance of landslide susceptibility maps. The study was conducted for a landslide-prone site located in the districts of Amstetten and Waidhofen an der Ybbs, eastern Austria, where an earth-slide point inventory was available. The methodological approach comprised an artificial introduction of inventory-based positional errors into the present landslide data set and an in-depth evaluation of subsequent modelling results. Positional errors were introduced by artificially changing the original landslide position by a mean distance of 5, 10, 20, 50 and 120 m. The resulting differently precise response variables were separately used to train logistic regression models. Odds ratios of predictor variables provided insights into modelled relationships. Cross-validation and spatial cross-validation enabled an assessment of predictive performances and permutation-based variable importance. All analyses were additionally carried out with synthetically generated data sets to further verify the findings under rather controlled conditions. The results revealed that an increasing positional inventory-based error was generally related to increasing distortions of modelling and validation results. However, the findings also highlighted that interdependencies between inventory-based spatial inaccuracies and statistical landslide susceptibility models are complex. The systematic comparisons of 12 models provided valuable evidence that the respective error-propagation was not only determined by the degree of positional inaccuracy inherent in the landslide data, but also by the spatial representation of landslides and the environment, landslide magnitude, the characteristics of the study area, the selected classification method and an interplay of predictors within multiple variable models. Based on the results, we deduced that a direct propagation of minor to moderate inventory-based positional errors into modelling results can be partly counteracted by adapting the modelling design (e.g. generalization of input data, opting for strongly generalizing classifiers). Since positional errors within landslide inventories are common and subsequent modelling and validation results are likely to be distorted, the potential existence of inventory-based positional inaccuracies should always be considered when assessing landslide susceptibility by means of empirical models.

  19. Effects of different centrifugation conditions on clinical chemistry and Immunology test results

    PubMed Central

    2011-01-01

    Background The effect of centrifugation time of heparinized blood samples on clinical chemistry and immunology results has rarely been studied. WHO guideline proposed a 15 min centrifugation time without citing any scientific publications. The centrifugation time has a considerable impact on the turn-around-time. Methods We investigated 74 parameters in samples from 44 patients on a Roche Cobas 6000 system, to see whether there was a statistical significant difference in the test results among specimens centrifuged at 2180 g for 15 min, at 2180 g for 10 min or at 1870 g for 7 min, respectively. Two tubes with different plasma separators (both Greiner Bio-One) were used for each centrifugation condition. Statistical comparisons were made by Deming fit. Results Tubes with different separators showed identical results in all parameters. Likewise, excellent correlations were found among tubes to which different centrifugation conditions were applied. Fifty percent of the slopes lay between 0.99 and 1.01. Only 3.6 percent of the statistical tests results fell outside the significance level of p < 0.05, which was less than the expected 5%. This suggests that the outliers are the result of random variation and the large number of statistical tests performed. Further, we found that our data are sufficient not to miss a biased test (beta error) with a probability of 0.10 to 0.05 in most parameters. Conclusion A centrifugation time of either 7 or 10 min provided identical test results compared to the time of 15 min as proposed by WHO under the conditions used in our study. PMID:21569233

  20. Multi-Reader ROC studies with Split-Plot Designs: A Comparison of Statistical Methods

    PubMed Central

    Obuchowski, Nancy A.; Gallas, Brandon D.; Hillis, Stephen L.

    2012-01-01

    Rationale and Objectives Multi-reader imaging trials often use a factorial design, where study patients undergo testing with all imaging modalities and readers interpret the results of all tests for all patients. A drawback of the design is the large number of interpretations required of each reader. Split-plot designs have been proposed as an alternative, in which one or a subset of readers interprets all images of a sample of patients, while other readers interpret the images of other samples of patients. In this paper we compare three methods of analysis for the split-plot design. Materials and Methods Three statistical methods are presented: Obuchowski-Rockette method modified for the split-plot design, a newly proposed marginal-mean ANOVA approach, and an extension of the three-sample U-statistic method. A simulation study using the Roe-Metz model was performed to compare the type I error rate, power and confidence interval coverage of the three test statistics. Results The type I error rates for all three methods are close to the nominal level but tend to be slightly conservative. The statistical power is nearly identical for the three methods. The coverage of 95% CIs fall close to the nominal coverage for small and large sample sizes. Conclusions The split-plot MRMC study design can be statistically efficient compared with the factorial design, reducing the number of interpretations required per reader. Three methods of analysis, shown to have nominal type I error rate, similar power, and nominal CI coverage, are available for this study design. PMID:23122570

Top