Firefighters from Mayport Naval Station train at CCAFS
NASA Technical Reports Server (NTRS)
2000-01-01
A Mobile Aircraft Fire Trainer vehicle from Naval Station Mayport, Fla., stands by during fire training exercises at Cape Canaveral Air Force Station Pad 30. In the background is the simulated aircraft that was set on fire for the exercise. Firefighters with the Fire and Emergency Services at the Naval Station (in the background) gather around the site of the extinguished flames.
Resistance training and mitochondrial metabolism
USDA-ARS?s Scientific Manuscript database
Objective: To determine if resistance exercise training improves skeletal muscle substrate oxidative capacity in older adults. Background: A decline in skeletal muscle oxidative capacity occurs with aging. Aerobic exercise increases skeletal muscle’s ability to oxidize multiple substrates. Th...
NASA Astrophysics Data System (ADS)
Shane, Nancy R.
The purpose of this study was to determine how a pilot's educational background, aeronautical experience and recency of experience relate to their performance during initial training at a regional airline. Results show that variables in pilots' educational background, aeronautical experience and recency of experience do predict performance in training. The most significant predictors include years since graduation from college, multi-engine time, total time and whether or not a pilot had military flying experience. Due to the pilot shortage, the pilots entering regional airline training classes since August 2013 have varied backgrounds, aeronautical experience and recency of experience. As explained by Edward Thorndike's law of exercise and the law of recency, pilots who are actively using their aeronautical knowledge and exercising their flying skills should exhibit strong performance in those areas and pilots who have not been actively using their aeronautical knowledge and exercising their flying skills should exhibit degraded performance in those areas. Through correlation, chi-square and multiple regression analysis, this study tests this theory as it relates to performance in initial training at a regional airline.
Hawley, Helen; Skelton, Dawn A; Campbell, Malcolm; Todd, Chris
2012-01-01
Little is known about the relationship between attitudes and characteristics of instructors and uptake and adherence of older people to exercise classes. This article explores these issues. The authors surveyed 731 UK exercise instructors with specialist older adult exercise qualifications. A questionnaire investigated instructors' characteristics and attitudes toward older adults' participation in exercise. For mostly seated classes, EXTEND qualification (B = 0.36, p = .005) had a positive effect on instructors' attitudes. Later Life Training qualification (B = -2.80, p = .003), clinical background (B = -3.99, p = .005), and delivering classes in National Health Services (B = -3.12, p < .001), leisure centers (B = -2.75, p = .002), or nursing homes (B = -2.29, p = .005) had a negative effect on attitudes. For mostly standing classes, experience (B = 0.20, p = .003) and delivering in leisure centers (B = 0.46, p = .032) had a positive and clinical background (B = -1.78, p = .018) had a negative effect on instructors' attitudes. Most instructors have positive attitudes, but training and work context can influence attitudes toward older people's participation in exercise classes both positively and negatively.
Hansen, Dominique; Dendale, Paul; Coninx, Karin; Vanhees, Luc; Piepoli, Massimo F; Niebauer, Josef; Cornelissen, Veronique; Pedretti, Roberto; Geurts, Eva; Ruiz, Gustavo R; Corrà, Ugo; Schmid, Jean-Paul; Greco, Eugenio; Davos, Constantinos H; Edelmann, Frank; Abreu, Ana; Rauch, Bernhard; Ambrosetti, Marco; Braga, Simona S; Barna, Olga; Beckers, Paul; Bussotti, Maurizio; Fagard, Robert; Faggiano, Pompilio; Garcia-Porrero, Esteban; Kouidi, Evangelia; Lamotte, Michel; Neunhäuserer, Daniel; Reibis, Rona; Spruit, Martijn A; Stettler, Christoph; Takken, Tim; Tonoli, Cajsa; Vigorito, Carlo; Völler, Heinz; Doherty, Patrick
2017-07-01
Background Exercise rehabilitation is highly recommended by current guidelines on prevention of cardiovascular disease, but its implementation is still poor. Many clinicians experience difficulties in prescribing exercise in the presence of different concomitant cardiovascular diseases and risk factors within the same patient. It was aimed to develop a digital training and decision support system for exercise prescription in cardiovascular disease patients in clinical practice: the European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool. Methods EXPERT working group members were requested to define (a) diagnostic criteria for specific cardiovascular diseases, cardiovascular disease risk factors, and other chronic non-cardiovascular conditions, (b) primary goals of exercise intervention, (c) disease-specific prescription of exercise training (intensity, frequency, volume, type, session and programme duration), and (d) exercise training safety advices. The impact of exercise tolerance, common cardiovascular medications and adverse events during exercise testing were further taken into account for optimized exercise prescription. Results Exercise training recommendations and safety advices were formulated for 10 cardiovascular diseases, five cardiovascular disease risk factors (type 1 and 2 diabetes, obesity, hypertension, hypercholesterolaemia), and three common chronic non-cardiovascular conditions (lung and renal failure and sarcopaenia), but also accounted for baseline exercise tolerance, common cardiovascular medications and occurrence of adverse events during exercise testing. An algorithm, supported by an interactive tool, was constructed based on these data. This training and decision support system automatically provides an exercise prescription according to the variables provided. Conclusion This digital training and decision support system may contribute in overcoming barriers in exercise implementation in common cardiovascular diseases.
Training transfer: scientific background and insights for practical application.
Issurin, Vladimir B
2013-08-01
Training transfer as an enduring, multilateral, and practically important problem encompasses a large body of research findings and experience, which characterize the process by which improving performance in certain exercises/tasks can affect the performance in alternative exercises or motor tasks. This problem is of paramount importance for the theory of training and for all aspects of its application in practice. Ultimately, training transfer determines how useful or useless each given exercise is for the targeted athletic performance. The methodological background of training transfer encompasses basic concepts related to transfer modality, i.e., positive, neutral, and negative; the generalization of training responses and their persistence over time; factors affecting training transfer such as personality, motivation, social environment, etc. Training transfer in sport is clearly differentiated with regard to the enhancement of motor skills and the development of motor abilities. The studies of bilateral skill transfer have shown cross-transfer effects following one-limb training associated with neural adaptations at cortical, subcortical, spinal, and segmental levels. Implementation of advanced sport technologies such as motor imagery, biofeedback, and exercising in artificial environments can facilitate and reinforce training transfer from appropriate motor tasks to targeted athletic performance. Training transfer of motor abilities has been studied with regard to contralateral effects following one limb training, cross-transfer induced by arm or leg training, the impact of strength/power training on the preparedness of endurance athletes, and the impact of endurance workloads on strength/power performance. The extensive research findings characterizing the interactions of these workloads have shown positive transfer, or its absence, depending on whether the combinations conform to sport-specific demands and physiological adaptations. Finally, cross-training as a form of concurrent exercising in different athletic disciplines has been examined in reference to the enhancement of general fitness, the preparation of recreational athletes, and the preparation of athletes for multi-sport activities such as triathlon, duathlon, etc.
Iliou, Marie C; Vergès-Patois, Bénédicte; Pavy, Bruno; Charles-Nelson, Anais; Monpère, Catherine; Richard, Rudy; Verdier, Jean C
2017-08-01
Background Exercise training as part of a comprehensive cardiac rehabilitation is recommended for patients with cardiac heart failure. It is a valuable method for the improvement of exercise tolerance. Some studies reported a similar improvement with quadricipital electrical myostimulation, but the effect of combined exercise training and electrical myostimulation in cardiac heart failure has not been yet evaluated in a large prospective multicentre study. Purpose The aim of this study was to determine whether the addition of low frequency electrical myostimulation to exercise training may improve exercise capacity and/or muscular strength in cardiac heart failure patients. Methods Ninety-one patients were included (mean age: 58 ± 9 years; New York Heart Association II/III: 52/48%, left ventricular ejection fraction: 30 ± 7%) in a prospective French study. The patients were randomised into two groups: 41 patients in exercise training and 50 in exercise training + electrical myostimulation. All patients underwent 20 exercise training sessions. In addition, in the exercise training + electrical myostimulation group, patients underwent 20 low frequency (10 Hz) quadricipital electrical myostimulation sessions. Each patient underwent a cardiopulmonary exercise test, a six-minute walk test, a muscular function evaluation and a quality of life questionnaire, before and at the end of the study. Results A significant improvement of exercise capacity (Δ peak oxygen uptake+15% in exercise training group and +14% in exercise training + electrical myostimulation group) and of quality of life was observed in both groups without statistically significant differences between the two groups. Mean creatine kinase level increased in the exercise training group whereas it remained stable in the combined group. Conclusions This prospective multicentre study shows that electrical myostimulation on top of exercise training does not demonstrate any significant additional improvement in exercise capacity in cardiac heart failure patients.
A framework for prescription in exercise-oncology research†
Sasso, John P; Eves, Neil D; Christensen, Jesper F; Koelwyn, Graeme J; Scott, Jessica; Jones, Lee W
2015-01-01
The field of exercise-oncology has increased dramatically over the past two decades, with close to 100 published studies investigating the efficacy of structured exercise training interventions in patients with cancer. Of interest, despite considerable differences in study population and primary study end point, the vast majority of studies have tested the efficacy of an exercise prescription that adhered to traditional guidelines consisting of either supervised or home-based endurance (aerobic) training or endurance training combined with resistance training, prescribed at a moderate intensity (50–75% of a predetermined physiological parameter, typically age-predicted heart rate maximum or reserve), for two to three sessions per week, for 10 to 60 min per exercise session, for 12 to 15 weeks. The use of generic exercise prescriptions may, however, be masking the full therapeutic potential of exercise treatment in the oncology setting. Against this background, this opinion paper provides an overview of the fundamental tenets of human exercise physiology known as the principles of training, with specific application of these principles in the design and conduct of clinical trials in exercise-oncology research. We contend that the application of these guidelines will ensure continued progress in the field while optimizing the safety and efficacy of exercise treatment following a cancer diagnosis. PMID:26136187
Effect of exercise training on ventilatory efficiency in patients with heart disease: a review.
Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Furlan, V
2016-06-20
The analysis of ventilatory efficiency in cardiopulmonary exercise testing has proven useful for assessing the presence and severity of cardiorespiratory diseases. During exercise, efficient pulmonary gas exchange is characterized by uniform matching of lung ventilation with perfusion. By contrast, mismatching is marked by inefficient pulmonary gas exchange, requiring increased ventilation for a given CO2 production. The etiology of increased and inefficient ventilatory response to exercise in heart disease is multifactorial, involving both peripheral and central mechanisms. Exercise training has been recommended as non-pharmacological treatment for patients with different chronic cardiopulmonary diseases. In this respect, previous studies have reported improvements in ventilatory efficiency after aerobic exercise training in patients with heart disease. Against this background, the primary objective of the present review was to discuss the pathophysiological mechanisms involved in abnormal ventilatory response to exercise, with an emphasis on both patients with heart failure syndrome and coronary artery disease. Secondly, special focus was dedicated to the role of aerobic exercise training in improving indices of ventilatory efficiency among these patients, as well as to the underlying mechanisms involved.
Miller, Clint T.; Fraser, Steve F.; Levinger, Itamar; Straznicky, Nora E.; Dixon, John B.; Reynolds, John; Selig, Steve E.
2013-01-01
Background Obesity is associated with impairments of physical function, cardiovascular fitness, muscle strength and the capacity to perform activities of daily living. This review examines the specific effects of exercise training in relation to body composition and physical function demonstrated by changes in cardiovascular fitness, and muscle strength when obese adults undergo energy restriction. Methods Electronic databases were searched for randomised controlled trials comparing energy restriction plus exercise training to energy restriction alone. Studies published to May 2013 were included if they used multi-component methods for analysing body composition and assessed measures of fitness in obese adults. Results Fourteen RCTs met the inclusion criteria. Heterogeneity of study characteristics prevented meta-analysis. Energy restriction plus exercise training was more effective than energy restriction alone for improving cardiovascular fitness, muscle strength, and increasing fat mass loss and preserving lean body mass, depending on the type of exercise training. Conclusion Adding exercise training to energy restriction for obese middle-aged and older individuals results in favourable changes to fitness and body composition. Whilst weight loss should be encouraged for obese individuals, exercise training should be included in lifestyle interventions as it offers additional benefits. PMID:24409219
Exercise training does not increase muscle FNDC5 protein or mRNA expression in pigs
Fain, John N.; Company, Joseph M.; Booth, Frank W.; Laughlin, M. Harold; Padilla, Jaume; Jenkins, Nathan T.; Bahouth, Suleiman W.; Sacks, Harold S.
2013-01-01
Background Exercise training elevates circulating irisin and induces the expression of the FNDC5 gene in skeletal muscles of mice. Our objective was to determine whether exercise training also increases FNDC5 protein or mRNA expression in the skeletal muscles of pigs as well as plasma irisin. Methods Castrated male pigs of the Rapacz familial hypercholesterolemic (FHM) strain and normal (Yucatan miniature) pigs were sacrificed after 16–20 weeks of exercise training. Samples of cardiac muscle, deltoid and triceps brachii muscle, subcutaneous and epicardial fat were obtained and FNDC5 mRNA, along with that of 6 other genes, was measured in all tissues of FHM pigs by reverse transcription polymerase chain reaction. FNDC protein in deltoid and triceps brachii was determined by Western blotting in both FHM and normal pigs. Citrate synthase activity was measured in the muscle samples of all pigs as an index of exercise training. Irisin was measured by an ELISA assay. Results There was no statistically significant effect of exercise training on FNDC5 gene expression in epicardial or subcutaneous fat, deltoid muscle, triceps brachii muscle or heart muscle. Exercise-training elevated circulating levels of irisin in the FHM pigs and citrate synthase activity in deltoid and triceps brachii muscle. A similar increase in citrate synthase activity was seen in muscle extracts of exercise-trained normal pigs but there was no alteration in circulating irisin. Conclusion Exercise training in pigs does not increase FNDC5 mRNA or protein in the deltoid or triceps brachii of FHM or normal pigs while increasing circulating irisin only in the FHM pigs. These data indicate that the response to exercise training in normal pigs is not comparable to that seen in mice. PMID:23831442
2000-09-14
KENNEDY SPACE CENTER, FLA. -- A Mobile Aircraft Fire Trainer vehicle from Naval Station Mayport, Fla., stands by during fire training exercises at Cape Canaveral Air Force Station Pad 30. In the background is the simulated aircraft that was set on fire for the exercise. Firefighters with the Fire and Emergency Services at the Naval Station (in the background) gather around the site of the extinguished flames.
2000-09-14
KENNEDY SPACE CENTER, FLA. -- A Mobile Aircraft Fire Trainer vehicle from Naval Station Mayport, Fla., stands by during fire training exercises at Cape Canaveral Air Force Station Pad 30. In the background is the simulated aircraft that was set on fire for the exercise. Firefighters with the Fire and Emergency Services at the Naval Station (in the background) gather around the site of the extinguished flames.
Panagopoulou, Niki; Karatzanos, Eleftherios; Dimopoulos, Stavros; Tasoulis, Athanasios; Tachliabouris, Ioannis; Vakrou, Styliani; Sideris, Antonios; Gratziou, Christina; Nanas, Serafim
2017-05-01
Background Exercise oscillatory ventilation in chronic heart failure has been suggested as a factor related to adverse cardiac events, aggravated prognosis and higher mortality. Exercise training is well known to affect exercise capacity and mechanisms of pathophysiology beneficially in chronic heart failure. Little is known, however, about the exercise training effects on characteristics of exercise oscillatory ventilation in chronic heart failure patients. Design and methods Twenty (out of 38) stable chronic heart failure patients exhibited exercise oscillatory ventilation (age 54 ± 11 years, peak oxygen uptake 15.0 ± 5.0 ml/kg per minute). Patients attended 36 sessions of high intensity interval exercise. All patients underwent cardiopulmonary exercise testing before and after the programme. Assessment of exercise oscillatory ventilation was based on the amplitude of cyclic fluctuations in breathing during rest and exercise. All values are mean ± SD. Results Exercise training reduced ( P < 0.05) the percentage of exercise oscillatory ventilation duration (79.0 ± 13.0 to 50.0 ± 25.0%), while average amplitude (5.2 ± 2.0 to 4.9 ± 1.6 L/minute) and length (44.0 ± 10.9 to 41.0 ± 6.7 seconds) did not change ( P > 0.05). Exercise oscillatory ventilation patients also increased exercise capacity ( P < 0.05). Conclusions A rehabilitation programme based on high intensity interval training improved exercise oscillatory ventilation observed in chronic heart failure patients, as well as cardiopulmonary efficiency and functional capacity.
Enea, C; Boisseau, N; Ottavy, M; Mulliez, J; Millet, C; Ingrand, I; Diaz, V; Dugué, B
2009-06-01
The objective of this study was to ascertain the effects of menstrual cycle, oral contraception, and training status on the exercise-induced changes in circulating DHEA-sulphate and testosterone in young women. Twenty-eight healthy women were assigned to an untrained group (n = 16) or a trained group (n = 12) depending on their training background. The untrained group was composed of nine oral contraceptive users (OC+) and seven eumenorrheic women (OC-). The trained group was composed of OC+ subjects only. All the OC+ subjects were taking the same low-dose oral contraception. Three laboratory sessions were organised in a randomised order: a prolonged exercise test until exhaustion, a short-term exhaustive exercise test, and a control session. Blood specimens were collected before, during and after the exercise tests and at the same time of the day during the control session. Basal circulating testosterone was significantly lower in trained as compared to untrained subjects. In all subjects, the prolonged exhaustive exercise induced a significant increase in circulating DHEA-s and testosterone. The short-term exercise induced a significant increase in circulating DHEA-s in untrained eumenorrheic and in trained OC users only. Menstrual phases in OC- did not influence the responses. It was found that exhaustive physical exercise induced an increase in circulating DHEA-s and testosterone in young women. Oral contraception may limit short-term exercise-induced changes.
Johansson, Anders; Odén, Anders; Dahlgren, Lars-Owe; Sjöström, Björn
2007-10-01
The military emergency care education of nurses is primarily concerned with the treatment of soldiers with combat-related injuries. Even though great progress has been made in military medicine, there is still the pedagogical question of what emergency care education for military nurses should contain and how it should be taught. The aim of this study was to describe and compare experiences of training emergency care in military exercises among conscript nurses with different levels of education. A descriptive study was performed to describe and compare experiences of training emergency care in military exercises among conscript nurses with different levels of education in nursing. There were statistical differences between nurses with general nursing education and nurses with a general nursing education and supplementary education. A reasonable implication of the differences is that the curriculum must be designed differently depending on the educational background of the students. Hence, there is an interaction between background characteristics, e.g., the level of previous education and differences pertaining to clinical experience of the participants, and the impact of the exercise itself.
O'Dwyer, Siobhan T; Burton, Nicola W; Pachana, Nancy A; Brown, Wendy J
2007-01-01
Background Declines in cognitive functioning are a normal part of aging that can affect daily functioning and quality of life. This study will examine the impact of an exercise training program, and a combined exercise and cognitive training program, on the cognitive and physical functioning of older adults. Methods/Design Fit Bodies, Fine Minds is a randomized, controlled trial. Community-dwelling adults, aged between 65 and 75 years, are randomly allocated to one of three groups for 16 weeks. The exercise-only group do three 60-minute exercise sessions per week. The exercise and cognitive training group do two 60-minute exercise sessions and one 60-minute cognitive training session per week. A no-training control group is contacted every 4 weeks. Measures of cognitive functioning, physical fitness and psychological well-being are taken at baseline (0 weeks), post-test (16 weeks) and 6-month follop (40 weeks). Qualitative responses to the program are taken at post-test. Discussion With an increasingly aged population, interventions to improve the functioning and quality of life of older adults are particularly important. Exercise training, either alone or in combination with cognitive training, may be an effective means of optimizing cognitive functioning in older adults. This study will add to the growing evidence base on the effectiveness of these interventions. Trial Registration Australian Clinical Trials Register: ACTRN012607000151437 PMID:17915035
STS-48 crew participates in JSC fire fighting and fire training exercises
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Pilot Kenneth S. Reightler, Jr directs water hose nozzle as Mission Specialist (MS) Charles D. Gemar pulls the hose toward the blaze. In the background, an unidentified fire department Official instructs Commander John O. Creighton and MS Mark N. Brown (wearing cap), manning a second hose, on how to approach the blaze. These fire fighting and fire training exercises were conducted at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207.
Lu, Kim D.; Cooper, Dan; Haddad, Fadia; Zaldivar, Frank; Kraft, Monica; Radom-Aizik, Shlomit
2017-01-01
Background Poor aerobic fitness is associated with worsening of asthma symptoms and fitness training may improve asthma control. The mechanism linking fitness with asthma is not known. We hypothesized that repeated bouts of exercise would lead to a downregulation of glucocorticoid receptor (GR) expression on circulating leukocytes reflecting a reduced responsiveness to stress. Methods In a prospective exercise training intervention of healthy and asthmatic adolescents, GR expression in leukocytes was measured using flow cytometry in response to a brief exercise challenge before and after the training intervention. PBMC gene expression of GR, GRβ, HSP70, and TGFβ1, 2 were determined using RT-PCR. Results Peak V̇O2 increased by 14.6 ± 2.3% indicating an effective training (p<0.01). There was a significant difference in GR expression among leukocyte subtypes, with highest expression in eosinophils. Following the training intervention, there was a significant decrease in baseline GR expression (p<0.05) in leukocyte and monocyte subtypes in both healthy and asthmatic adolescents. Conclusions This is the first study in adolescents to show that exercise training reduces GR expression on circulating leukocytes. We speculate that exercise training downregulates the stress response in general, manifested by decreased GR expression, and may explain why improving fitness improves asthma health. PMID:28796240
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Goetchius, Elizabeth; Crowell, Brent; Hackney, Kyle; Wickwire, Jason; Ploutz-Snyder, Robert; Snyder, Scott
2012-01-01
Background: Known incompatibilities exist between resistance and aerobic training. Of particular importance are findings that concurrent resistance and aerobic training reduces the effectiveness of the resistance training and limits skeletal muscle adaptations (example: Dudley & Djamil, 1985). Numerous unloading studies have documented the effectiveness of resistance training alone for the maintenance of skeletal muscle size and strength. However the practical applications of those studies are limited because long ]duration crew members perform both aerobic and resistance exercise throughout missions/spaceflight. To date, such integrated training on the International Space Station (ISS) has not been fully effective in the maintenance of skeletal muscle function. Purpose: The purpose of this study was to evaluate the efficacy of high intensity concurrent resistance and aerobic training for the maintenance of cardiovascular fitness and skeletal muscle strength, power and endurance over 14 days of strict bed rest. Methods: 9 subjects (8 male and 1 female; 34.5 +/- 8.2 years) underwent 14 days of bed rest with concurrent training. Resistance and aerobic training were integrated as shown in table 1. Days that included 2 exercise sessions had a 4-8 hour rest between exercise bouts. The resistance training consisted of 3 sets of 12 repetitions of squat, heel raise, leg press and hamstring curl exercise. Aerobic exercise consisted of periodized interval training that included 30 sec, 2 min and 4 min intervals alternating by day with continuous aerobic exercise.
Smart, Neil A
2013-01-01
BACKGROUND: Peak oxygen consumption (VO2) is the gold standard measure of cardiorespiratory fitness and a reliable predictor of survival in chronic heart failure patients. Furthermore, any form of physical training usually improves cardiorespiratory fitness, although the magnitude of improvement in peak VO2 may vary across different training prescriptions. OBJECTIVE: To quantify, and subsequently rank, the magnitude of improvement in peak VO2 for different physical training prescriptions using data from published meta-analyses and randomized controlled trials. METHODS: Prospective randomized controlled parallel trials and meta-analyses of exercise training in chronic heart failure patients that provided data on change in peak VO2 for nine a priori comparative analyses were examined. RESULTS: All forms of physical training were beneficial, although the improvement in peak VO2 varied with modality. High-intensity interval exercise yielded the largest increase in peak VO2, followed in descending order by moderate-intensity aerobic exercise, functional electrical stimulation, inspiratory muscle training, combined aerobic and resistance training, and isolated resistance training. With regard to setting, the present study was unable to determine whether outpatient or unsupervised home exercise provided greater benefits in terms of peak VO2 improvment. CONCLUSIONS: Interval exercise is not suitable for all patients, especially the high-intensity variety; however, when indicated, this form of exercise should be adopted to optimize peak VO2 adaptations. Other forms of activity, such as functional electrical stimulation, may be more appropriate for patients who are not capable of high-intensity interval training, especially for severely deconditioned patients who are initially unable to exercise. PMID:24294043
Goh, Jorming; Niksirat, Negin; Campbell, Kristin L
2014-01-01
Observational research suggests that exercise may reduce the risk of breast cancer and improve survival. One proposed mechanism for the protective effect of aerobic exercise related to cancer risk and outcomes, but has not been examined definitively, is the immune response to aerobic exercise. Two prevailing paradigms are proposed. The first considers the host immune response as modifiable by aerobic exercise training. This exercise-modulated immune-tumor crosstalk in the mammary microenvironment may alter the balance between tumor initiation and progression versus tumor suppression. The second paradigm considers the beneficial role of exercise-induced, skeletal muscle-derived cytokines, termed "myokines". These myokines exert endocrine-like effects on multiple organs, including the mammary glands. In this systematic review, we i) define the role of macrophages and T-cells in breast cancer initiation and progression; ii) address the two paradigms that support exercise-induced immunomodulation; iii) systematically assessed the literature for exercise intervention that assessed biomarkers relevant to both paradigms in human intervention trials of aerobic exercise training, in healthy women and women with breast cancer; iv) incorporated pre-clinical animal studies and non-RCTs for background discussion of putative mechanisms, through which aerobic exercise training modulates the immunological crosstalk, or the myokine-tumor interaction in the tumor microenvironment; and v) speculated on the potential biomarkers and mechanisms that define an exercise-induced, anti-tumor "signature", with a view toward developing relevant biomarkers for future aerobic exercise intervention trials.
Mentz, Robert J.; Bittner, Vera; Schulte, Phillip J.; Fleg, Jerome L.; Piña, Ileana L.; Keteyian, Steven J.; Moe, Gordon; Nigam, Anil; Swank, Ann M.; Onwuanyi, Anekwe E.; Fitz-Gerald, Meredith; Kao, Andrew; Ellis, Stephen J.; Kraus, William E.; Whellan, David J.; O'Connor, Christopher M.
2014-01-01
Background The strength of race as an independent predictor of long-term outcomes in a contemporary chronic heart failure (HF) population and its association with exercise training response have not been well established. We aimed to investigate the association between race and outcomes and to explore interactions with exercise training in patients with ambulatory HF. Methods We performed an analysis of HF-ACTION, which randomized 2331 patients with HF having an ejection fraction ≤35% to usual care with or without exercise training. We examined characteristics and outcomes (mortality/hospitalization, mortality, and cardiovascular mortality/HF hospitalization) by race using adjusted Cox models and explored an interaction with exercise training. Results There were 749 self-identified black patients (33%). Blacks were younger with significantly more hypertension and diabetes, less ischemic etiology, and lower socioeconomic status versus whites. Blacks had shorter 6-minute walk distance and lower peak VO2 at baseline. Over a median follow-up of 2.5 years, black race was associated with increased risk for all outcomes except mortality. After multivariable adjustment, black race was associated with increased mortality/hospitalization (hazard ratio [HR] 1.16, 95% CI 1.01–1.33) and cardiovascular mortality/HF hospitalization (HR 1.46, 95% CI 1.20–1.77). The hazard associated with black race was largely caused by increased HF hospitalization (HR 1.58, 95% CI 1.27–1.96), given similar cardiovascular mortality. There was no interaction between race and exercise training on outcomes (P >.5). Conclusions Black race in patients with chronic HF was associated with increased prevalence of modifiable risk factors, lower exercise performance, and increased HF hospitalization, but not increased mortality or a differential response to exercise training. PMID:24016498
Cooper, Lauren B.; Mentz, Robert J.; Sun, Jie-Lena; Schulte, Phillip J; Fleg, Jerome L.; Cooper, Lawton S.; Piña, Ileana L.; Leifer, Eric S.; Kraus, William E.; Whellan, David J.; Keteyian, Steven J.; O’Connor, Christopher M.
2016-01-01
Background Psychosocial factors may influence adherence with exercise training for heart failure patients. We aimed to describe the association between social support and barriers to participation with exercise adherence and clinical outcomes. Methods and Results Of patients enrolled in HF-ACTION, 2279 (97.8%) completed surveys to assess social support and barriers to exercise, resulting in the perceived social support score (PSSS) and barriers to exercise score (BTES). Higher PSSS indicated higher levels of social support, while higher BTES indicated more barriers to exercise. Exercise time at 3 and 12 months correlated with PSSS (r= 0.09 and r= 0.13, respectively) and BTES (r= − 0.11 and r= − 0.12, respectively), with higher exercise time associated with higher PSSS and lower BTES (All p <0.005). For CV death or HF hospitalization, there was a significant interaction between randomization group and BTES (p=0.035), which corresponded to a borderline association between increasing BTES and CV death or HF hospitalization in the exercise group (HR 1.25, 95% CI: 0.99, 1.59) but no association in the usual care group (HR 0.83, 95% CI: 0.66, 1.06). Conclusions Poor social support and high barriers to exercise were associated with lower exercise time. PSSS did not impact the effect of exercise training on outcomes. However, for CV death or HF hospitalization, exercise training had a greater impact on patients with lower BTES. Given that exercise training improves outcomes in heart failure patients, assessment of perceived barriers may facilitate individualized approaches to implement exercise training therapy in clinical practice. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00047437. PMID:26578668
Kahn, Susan R.; Shrier, Ian; Shapiro, Stan; Houweling, Adrielle H.; Hirsch, Andrew M.; Reid, Robert D.; Kearon, Clive; Rabhi, Khalil; Rodger, Marc A.; Kovacs, Michael J.; Anderson, David R.; Wells, Philip S.
2011-01-01
Background Exercise training may have the potential to improve post-thrombotic syndrome, a frequent, chronic complication of deep venous thrombosis. We conducted a randomized controlled two-centre pilot trial to assess the feasibility of a multicentre-based evaluation of a six-month exercise training program to treat post-thrombotic syndrome and to obtain preliminary data on the effectiveness of such a program. Methods Patients were randomized to receive exercise training (a six-month trainer-supervised program) or control treatment (an education session with monthly phone follow-ups). Levels of eligibility, consent, adherence and retention were used as indicators of study feasibility. Primary outcomes were change from baseline to six months in venous disease-specific quality of life (as measured using the Venous Insufficiency Epidemiological and Economic Study Quality of Life [VEINES-QOL] questionnaire) and severity of post-thrombotic syndrome (as measured by scores on the Villalta scale) in the exercise training group versus the control group, assessed by t tests. Secondary outcomes were change in generic quality of life (as measured using the Short-Form Health Survey-36 [SF-36] questionnaire), category of severity of post-thrombotic syndrome, leg strength, leg flexibility and time on treadmill. Results Of 95 patients with post-thrombotic syndrome, 69 were eligible, 43 consented and were randomized, and 39 completed the study. Exercise training was associated with improvement in VEINES-QOL scores (exercise training mean change 6.0, standard deviation [SD] 5.1 v. control mean change 1.4, SD 7.2; difference 4.6, 95% CI 0.54 to 8.7; p = 0.027) and improvement in scores on the Villalta scale (exercise training mean change −3.6, SD 3.7 v. control mean change −1.6, SD 4.3; difference −2.0, 95% CI −4.6 to 0.6; p = 0.14). Most secondary outcomes also showed greater improvement in the exercise training group. Interpretation Exercise training may improve post-thrombotic syndrome. It would be feasible to definitively evaluate exercise training as a treatment for post-thrombotic syndrome in a large multicentre trial. PMID:21098066
Pilutti, Lara A; Paulseth, John E; Dove, Carin; Jiang, Shucui; Rathbone, Michel P; Hicks, Audrey L
2016-01-01
Background: There is evidence of the benefits of exercise training in multiple sclerosis (MS); however, few studies have been conducted in individuals with progressive MS and severe mobility impairment. A potential exercise rehabilitation approach is total-body recumbent stepper training (TBRST). We evaluated the safety and participant-reported experience of TBRST in people with progressive MS and compared the efficacy of TBRST with that of body weight-supported treadmill training (BWSTT) on outcomes of function, fatigue, and health-related quality of life (HRQOL). Methods: Twelve participants with progressive MS (Expanded Disability Status Scale scores, 6.0-8.0) were randomized to receive TBRST or BWSTT. Participants completed three weekly sessions (30 minutes) of exercise training for 12 weeks. Primary outcomes included safety assessed as adverse events and patient-reported exercise experience assessed as postexercise response and evaluation of exercise equipment. Secondary outcomes included the Multiple Sclerosis Functional Composite, the Modified Fatigue Impact Scale, and the Multiple Sclerosis Quality of Life-54 questionnaire scores. Assessments were conducted at baseline and after 12 weeks. Results: Safety was confirmed in both exercise groups. Participants reported enjoying both exercise modalities; however, TBRST was reviewed more favorably. Both interventions reduced fatigue and improved HRQOL (P ≤ .05); there were no changes in function. Conclusions: Both TBRST and BWSTT seem to be safe, well tolerated, and enjoyable for participants with progressive MS with severe disability. Both interventions may also be efficacious for reducing fatigue and improving HRQOL. TBRST should be further explored as an exercise rehabilitation tool for patients with progressive MS.
2014-01-01
Background Exercise training is recommended for non-cystic fibrosis (CF) bronchiectasis, but the long-term effects are unclear. This randomised controlled trial aimed to determine the effects of exercise training and review of airway clearance therapy (ACT) on exercise capacity, health related quality of life (HRQOL) and the incidence of acute exacerbations in people with non-CF bronchiectasis. Methods Participants were randomly allocated to 8 weeks of supervised exercise training and review of ACT, or control. Primary outcomes of exercise capacity and HRQOL (Chronic respiratory disease questionnaire) and secondary outcomes of cough-related QOL (Leicester cough questionnaire) and psychological symptoms (Hospital anxiety and depression scale) were measured at baseline, following completion of the intervention period and at 6 and 12 months follow up. Secondary outcomes of the exacerbation rate and time to first exacerbation were analysed over 12 months. Results Eighty-five participants (mean FEV1 74% predicted; median Modified Medical Research Council Dyspnoea grade of 1 (IQR [1–3]) were included. Exercise training increased the incremental shuttle walk distance (mean difference to control 62 m, 95% CI 24 to 101 m) and the 6-minute walking distance (mean difference to control 41 m, 95% CI 19 to 63 m), but these improvements were not sustained at 6 or 12 months. Exercise training reduced dyspnoea (p = 0.009) and fatigue (p = 0.01) but did not impact on cough-related QOL or mood. Exercise training reduced the frequency of acute exacerbations (median 1[IQR 1–3]) compared to the control group (2[1–3]) over 12 months follow up (p = 0.012), with a longer time to first exacerbation with exercise training of 8 months (95% CI 7 to 9 months) compared to the control group (6 months [95% CI 5 to 7 months], p = 0.047). Conclusions Exercise training in bronchiectasis is associated with short term improvement in exercise capacity, dyspnoea and fatigue and fewer exacerbations over 12 months. Trial registry ClinicalTrials.gov (NCT00885521). PMID:24731015
Lima, Frederico D.; Stamm, Daniel N.; Della-Pace, Iuri D.; Dobrachinski, Fernando; de Carvalho, Nélson R.; Royes, Luiz Fernando F.; Soares, Félix A.; Rocha, João B.; González-Gallego, Javier; Bresciani, Guilherme
2013-01-01
Background and Aims Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. Methods Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. Results Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. Conclusions Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance. PMID:23405192
Usage of an Exercise App in the Care for People With Osteoarthritis: User-Driven Exploratory Study
2018-01-01
Background Exercise has proven to reduce pain and increase quality of life among people living with osteoarthritis (OA). However, one major challenge is adherence to exercise once supervision ends. Objective This study aimed to identify mental and physical barriers and motivational and social aspects of training at home, and to test or further develop an exercise app. Methods The study was inspired from participatory design, engaging users in the research process. Data were collected through focus groups and workshops, and analyzed by systematic text condensation. Results Three main themes were found: competition as motivation, training together, and barriers. The results revealed that the participants wanted to do their training and had knowledge on exercise and pain but found it hard to motivate themselves. They missed the observation, comments, and encouragement by the supervising physiotherapist as well as their peers. Ways to optimize the training app were identified during the workshops as participants shared their experience. Conclusions This study concludes that the long-term continuation of exercising for patients with OA could be improved with the use of a technology tailored to users’ needs, including motivational and other behavioral factors. PMID:29326092
Fujimoto, Naoki; Hastings, Jeffrey L.; Carrick-Ranson, Graeme; Shafer, Keri M.; Shibata, Shigeki; Bhella, Paul S.; Abdullah, Shuaib M.; Barkley, Kyler W.; Adams-Huet, Beverley; Boyd, Kara N.; Livingston, Sheryl A.; Palmer, Dean; Levine, Benjamin D.
2014-01-01
Background Lifelong exercise training maintains a youthful compliance of the left ventricle (LV), whereas a year of exercise training started later in life fails to reverse LV stiffening, possibly because of accumulation of irreversible advanced glycation end products. Alagebrium breaks advanced glycation end product crosslinks and improves LV stiffness in aged animals. However, it is unclear whether a strategy of exercise combined with alagebrium would improve LV stiffness in sedentary older humans. Methods and Results Sixty-two healthy subjects were randomized into 4 groups: sedentary+placebo; sedentary+alagebrium (200 mg/d); exercise+placebo; and exercise+alagebrium. Subjects underwent right heart catheterization to define LV pressure–volume curves; secondary functional outcomes included cardiopulmonary exercise testing and arterial compliance. A total of 57 of 62 subjects (67±6 years; 37 f/20 m) completed 1 year of intervention followed by repeat measurements. Pulmonary capillary wedge pressure and LV end-diastolic volume were measured at baseline, during decreased and increased cardiac filling. LV stiffness was assessed by the slope of LV pressure–volume curve. After intervention, LV mass and end-diastolic volume increased and exercise capacity improved (by ≈8%) only in the exercise groups. Neither LV mass nor exercise capacity was affected by alagebrium. Exercise training had little impact on LV stiffness (training×time effect, P=0.46), whereas alagebrium showed a modest improvement in LV stiffness compared with placebo (medication×time effect, P=0.04). Conclusions Alagebrium had no effect on hemodynamics, LV geometry, or exercise capacity in healthy, previously sedentary seniors. However, it did show a modestly favorable effect on age-associated LV stiffening. PMID:24130005
Efficacy of a Peer-Guided Exercise Programme for Adolescents with Intellectual Disability
ERIC Educational Resources Information Center
Stanish, Heidi I.; Temple, Viviene A.
2012-01-01
Background: Peer support is strongly associated with physical activity of adolescents. This study examined the efficacy of a YMCA-based, peer-guided exercise training programme for increasing health-related physical fitness among adolescents with intellectual disabilities. Materials and Methods: Adolescents with intellectual disabilities and…
Hansen, Dominique; Rovelo Ruiz, Gustavo; Doherty, Patrick; Iliou, Marie-Christine; Vromen, Tom; Hinton, Sally; Frederix, Ines; Wilhelm, Matthias; Schmid, Jean-Paul; Abreu, Ana; Ambrosetti, Marco; Garcia-Porrero, Esteban; Coninx, Karin; Dendale, Paul
2018-05-01
Background Although disease-specific exercise guidelines for cardiovascular disease (CVD) are widely available, it remains uncertain whether these different exercise guidelines are integrated properly for patients with different CVDs. The aim of this study was to assess the inter-clinician variance in exercise prescription for patients with various CVDs and to compare these prescriptions with recommendations from the EXercise Prescription in Everyday practice and Rehabilitative Training (EXPERT) tool, a digital decision support system for integrated state-of-the-art exercise prescription in CVD. Design The study was a prospective observational survey. Methods Fifty-three CV rehabilitation clinicians from nine European countries were asked to prescribe exercise intensity (based on percentage of peak heart rate (HR peak )), frequency, session duration, programme duration and exercise type (endurance or strength training) for the same five patients. Exercise prescriptions were compared between clinicians, and relationships with clinician characteristics were studied. In addition, these exercise prescriptions were compared with recommendations from the EXPERT tool. Results A large inter-clinician variance was found for prescribed exercise intensity (median (interquartile range (IQR)): 83 (13) % of HR peak ), frequency (median (IQR): 4 (2) days/week), session duration (median (IQR): 45 (18) min/session), programme duration (median (IQR): 12 (18) weeks), total exercise volume (median (IQR): 1215 (1961) peak-effort training hours) and prescription of strength training exercises (prescribed in 78% of all cases). Moreover, clinicians' exercise prescriptions were significantly different from those of the EXPERT tool ( p < 0.001). Conclusions This study reveals significant inter-clinician variance in exercise prescription for patients with different CVDs and disagreement with an integrated state-of-the-art system for exercise prescription, justifying the need for standardization efforts regarding integrated exercise prescription in CV rehabilitation.
2014-01-01
Background Health promotion at the work site in terms of physical activity has proven positive effects but optimization of relevant exercise training protocols and implementation for high adherence are still scanty. Methods/Design The aim of this paper is to present a study protocol with a conceptual model for planning the optimal individually tailored physical exercise training for each worker based on individual health check, existing guidelines and state of the art sports science training recommendations in the broad categories of cardiorespiratory fitness, muscle strength in specific body parts, and functional training including balance training. The hypotheses of this research are that individually tailored worksite-based intelligent physical exercise training, IPET, among workers with inactive job categories will: 1) Improve cardiorespiratory fitness and/or individual health risk indicators, 2) Improve muscle strength and decrease musculoskeletal disorders, 3) Succeed in regular adherence to worksite and leisure physical activity training, and 3) Reduce sickness absence and productivity losses (presenteeism) in office workers. The present RCT study enrolled almost 400 employees with sedentary jobs in the private as well as public sectors. The training interventions last 2 years with measures at baseline as well as one and two years follow-up. Discussion If proven effective, the intelligent physical exercise training scheduled as well as the information for its practical implementation can provide meaningful scientifically based information for public health policy. Trial Registration ClinicalTrials.gov, number: NCT01366950. PMID:24964869
2014-01-01
Background Postnatal early overfeeding and physical inactivity are serious risk factors for obesity. Physical activity enhances energy expenditure and consumes fat stocks, thereby decreasing body weight (bw). This study aimed to examine whether low-intensity and moderate exercise training in different post-weaning stages of life is capable of modulating the autonomic nervous system (ANS) activity and inhibiting perinatal overfeeding-induced obesity in rats. Methods The obesity-promoting regimen was begun two days after birth when the litter size was adjusted to 3 pups (small litter, SL) or to 9 pups (normal litter, NL). The rats were organized into exercised groups as follows: from weaning until 90-day-old, from weaning until 50-day-old, or from 60- until 90-days-old. All experimental procedures were performed just one day after the exercise training protocol. Results The SL-no-exercised (SL-N-EXE) group exhibited excess weight and increased fat accumulation. We also observed fasting hyperglycemia and glucose intolerance in these rats. In addition, the SL-N-EXE group exhibited an increase in the vagus nerve firing rate, whereas the firing of the greater splanchnic nerve was not altered. Independent of the timing of exercise and the age of the rats, exercise training was able to significantly blocks obesity onset in the SL rats; even SL animals whose exercise training was stopped at the end of puberty, exhibited resistance to obesity progression. Fasting glycemia was maintained normal in all SL rats that underwent the exercise training, independent of the period. These results demonstrate that moderate exercise, regardless of the time of onset, is capable on improve the vagus nerves imbalanced tonus and blocks the onset of early overfeeding-induced obesity. Conclusions Low-intensity and moderate exercise training can promote the maintenance of glucose homeostasis, reduces the large fat pad stores associated to improvement of the ANS activity in adult rats that were obesity-programmed by early overfeeding. PMID:24914402
Finch, Caroline F; Doyle, Tim LA; Dempsey, Alasdair R; Elliott, Bruce C; Twomey, Dara M; White, Peta E; Diamantopoulou, Kathy; Young, Warren; Lloyd, David G
2014-01-01
Background Players are the targeted end-users and beneficiaries of exercise-training programmes implemented during coach-led training sessions, and the success of programmes depends upon their active participation. Two variants of an exercise-training programme were incorporated into the regular training schedules of 40 community Australian Football teams, over two seasons. One variant replicated common training practices, while the second was an evidence-based programme to alter biomechanical and neuromuscular factors related to risk of knee injuries. This paper describes the structure of the implemented programmes and compares players’ end-of-season views about the programme variants. Methods This study was nested within a larger group-clustered randomised controlled trial of the effectiveness of two exercise-training programmes (control and neuromuscular control (NMC)) for preventing knee injuries. A post-season self-report survey, derived from Health Belief Model constructs, included questions to obtain players’ views about the benefits and physical challenges of the programme in which they participated. Results Compared with control players, those who participated in the NMC programme found it to be less physically challenging but more enjoyable and potentially of more benefit. Suggestions from players about potential improvements to the training programme and its future implementation included reducing duration, increasing range of drills/exercises and promoting its injury prevention and other benefits to players. Conclusions Players provide valuable feedback about the content and focus of implemented exercise-training programmes, that will directly inform the delivery of similar, or more successful, programmes in the future. PMID:24047571
Schellenberg, Florian; Oberhofer, Katja; Taylor, William R.
2015-01-01
Background. Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. Methods. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Results. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. Conclusion. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines. PMID:26417378
Nandrolone excretion in sedentary vs physically trained young women.
Enea, C; Boisseau, N; Bayle, M L; Flament, M M; Grenier-Loustalot, M F; Denjean, A; Diaz, V; Dugué, B
2010-02-01
We investigated the effects of the menstrual cycle, oral contraception and physical training on exhaustive exercise-induced changes in the excretion of nandrolone metabolites [19-norandrosterone (19-NA), and 19-noretiocholanolone (19-NE)] in young women. Twenty-eight women were allocated to an untrained group (n=16) or a trained group (n=12), depending on their physical training background. The untrained group was composed of nine oral contraceptive users (OC+) and seven eumenorrheic women (OC-), while the trained group was entirely composed of OC+ subjects. Three laboratory sessions were conducted in a randomized order: a prolonged exercise test, a short-term exercise test and a control session. Urine specimens were collected before and 30, 60 and 90 min after the exercise test and at the same times of the day during the control session. Urinary concentrations of nandrolone metabolites were determined by gas chromatography coupled to mass spectrometry. Urinary concentrations of 19-NA and 19-NE ranged from undetectable levels to 1.14 and 0.47 ng/mL, respectively. Nandrolone excretion was not affected by the menstrual cycle phase (early follicular vs mid-luteal), prior physical training, oral contraception or acute physical exercise. Therefore, a urinary concentration of 2 ng/mL of 19-NA appears to be fair as the upper acceptable limit in doping control tests for female athletes.
Park, Song-Young; Kwak, Yi-Sub
2016-04-01
Exercise mediates an excessive free radical production leading to oxidative stress (OS). The body has natural antioxidant systems that help decrease OS, and these systems may be enhanced with exercise training. However, only a few studies have investigated the differences in resting OS and antioxidant capacity (AOC) between aerobically trained athletes (ET), anaerobically trained athletes (RT), and untrained individuals (UT). Therefore, this study sought to investigate the resting and postexercise OS and AOC in ET, RT, and UT. Sixty healthy young males (26.6±0.8 yr) participated in this study. Subjects were divided into three groups, ET, RT, and UT by distinct training background. Resting plasma malondialdehyde (MDA) and protein carbonyls (PC) were not significantly different in ET, RT, and UT. However, MDA and PC were significantly increased following a graded exercise test (GXT) in UT but not in ET and RT. Resting total antioxidant capacity (TAC) levels and TAC were not different in ET, RT, and UT. Interestingly, TAC levels significantly decreased after the GXT in all groups. Additionally, UT showed lower post-exercise TAC levels compared to ET and RT. These results showed that ET, RT, and UT have similar OS and AOC at rest. However, both ET and RT have greater AOC against exercise mediated OS compared to UT. These findings may explain, at least in part, why both aerobic and anaerobic types of exercise training improve redox balance. However, it appears there is no specific exercise type effect in terms of redox balance.
Shamsoddini, Alireza; Sobhani, Vahid; Ghamar Chehreh, Mohammad Ebrahim; Alavian, Seyed Moayed; Zaree, Ali
2015-01-01
Background: Nonalcoholic fatty liver disease (NAFLD) has different prevalence rates in various parts of the world and is a risk factor for diabetes and cardiovascular disease that could progress to nonalcoholic steatohepatitis, cirrhosis, and liver failure. Objectives: The current study aimed to investigate the effect of Aerobic Training (AT) and resistance training (RT) on hepatic fat content and liver enzyme levels in Iranian men. Patients and Methods: In a randomized clinical trial study, 30 men with clinically defined NAFLD were allocated into three groups (aerobic, resistance and control). An aerobic group program consisted of 45 minutes of aerobic exercise at 60% - 75% maximum heart rate intensity, a resistance group performed seven resistance exercises at intensity of 50% - 70% of 1 repetition maximum (1RM ) and the control group had no exercise training program during the study. Before and after training, anthropometry, insulin sensitivity, liver enzymes and hepatic fat were elevated. Results: After training, hepatic fat content was markedly reduced, to a similar extent, in both the aerobic and resistance exercise training groups (P ≤ 0.05). In the two exercise training groups, alanine amino transferase and aspartate amino transferase serum levels were significantly decreased compared to the control group (P = 0.002) and (P = 0.02), respectively. Moreover, body fat (%), fat mass (kg), homeostasis model assessment insulin resistance (HOMI-IR) were all improved in the AT and RT. These changes in the AT group were independent of weight loss. Conclusions: This study demonstrated that RT and AT are equally effective in reducing hepatic fat content and liver enzyme levels among patients with NAFLD. However, aerobic exercise specifically improves NAFLD independent of any change in body weight. PMID:26587039
ASCAN Helms with instructor during Elgin AFB water survival training
NASA Technical Reports Server (NTRS)
1990-01-01
1990 Group 13 Astronaut Candidate (ASCAN) Susan J. Helms, wearing helmet with oxygen mask and inflated life jacket, is assisted by training instructor during water survival exercises at Elgin Air Force Base (AFB) in Pensacola, Florida. Helms looks on as the instructor adjusts her parachute harness. When ready, Helms will be dropped from the harness into the pool (in background) to simulate a water landing after T-38 ejection. ASCANs participated in the exercises from 08-14-90 through 08-17-90.
ASCAN Helms with instructor during Elgin AFB water survival training
1990-09-20
1990 Group 13 Astronaut Candidate (ASCAN) Susan J. Helms, wearing helmet with oxygen mask and inflated life jacket, is assisted by training instructor during water survival exercises at Elgin Air Force Base (AFB) in Pensacola, Florida. Helms looks on as the instructor adjusts her parachute harness. When ready, Helms will be dropped from the harness into the pool (in background) to simulate a water landing after T-38 ejection. ASCANs participated in the exercises from 08-14-90 through 08-17-90.
Borges, Juliana Pereira; Masson, Gustavo Santos; Tibiriçá, Eduardo; Lessa, Marcos Adriano
2014-01-01
Background Aerobic interval exercise training has greater benefits on cardiovascular function as compared with aerobic continuous exercise training. Objective The present study aimed at analyzing the effects of both exercise modalities on acute and subacute hemodynamic responses of healthy rats. Methods Thirty male rats were randomly assigned into three groups as follows: continuous exercise (CE, n = 10); interval exercise (IE, n = 10); and control (C, n = 10). Both IE and CE groups performed a 30-minute exercise session. The IE group session consisted of three successive 4-minute periods at 60% of maximal velocity (Max Vel), with 4-minute recovery intervals at 40% of Max Vel. The CE group ran continuously at 50% of Max Vel. Heart rate (HR), blood pressure(BP), and rate pressure product (RPP) were measured before, during and after the exercise session. Results The CE and IE groups showed an increase in systolic BP and RPP during exercise as compared with the baseline values. After the end of exercise, the CE group showed a lower response of systolic BP and RPP as compared with the baseline values, while the IE group showed lower systolic BP and mean BP values. However, only the IE group had a lower response of HR and RPP during recovery. Conclusion In healthy rats, one interval exercise session, as compared with continuous exercise, induced similar hemodynamic responses during exercise. However, during recovery, the interval exercise caused greater reductions in cardiac workload than the continuous exercise. PMID:24270864
Modelling and regulating of cardio-respiratory response for the enhancement of interval training
2014-01-01
Background The interval training method has been a well known exercise protocol which helps strengthen and improve one’s cardiovascular fitness. Purpose To develop an effective training protocol to improve cardiovascular fitness based on modelling and analysis of Heart Rate (HR) and Oxygen Uptake (VO2) dynamics. Methods In order to model the cardiorespiratory response to the onset and offset exercises, the (K4b2, Cosmed) gas analyzer was used to monitor and record the heart rate and oxygen uptake for ten healthy male subjects. An interval training protocol was developed for young health users and was simulated using a proposed RC switching model which was presented to accommodate the variations of the cardiorespiratory dynamics to running exercises. A hybrid system model was presented to describe the adaptation process and a multi-loop PI control scheme was designed for the tuning of interval training regime. Results By observing the original data for each subject, we can clearly identify that all subjects have similar HR and VO2 profiles. The proposed model is capable to simulate the exercise responses during onset and offset exercises; it ensures the continuity of the outputs within the interval training protocol. Under some mild assumptions, a hybrid system model can describe the adaption process and accordingly a multi-loop PI controller can be designed for the tuning of interval training protocol. The self-adaption feature of the proposed controller gives the exerciser the opportunity to reach his desired setpoints after a certain number of training sessions. Conclusions The established interval training protocol targets a range of 70-80% of HRmax which is mainly a training zone for the purpose of cardiovascular system development and improvement. Furthermore, the proposed multi-loop feedback controller has the potential to tune the interval training protocol according to the feedback from an individual exerciser. PMID:24499131
Adherence of older women with strength training and aerobic exercise
Picorelli, Alexandra Miranda Assumpção; Pereira, Daniele Sirineu; Felício, Diogo Carvalho; Dos Anjos, Daniela Maria; Pereira, Danielle Aparecida Gomes; Dias, Rosângela Corrêa; Assis, Marcella Guimarães; Pereira, Leani Souza Máximo
2014-01-01
Background Participation of older people in a program of regular exercise is an effective strategy to minimize the physical decline associated with age. The purpose of this study was to assess adherence rates in older women enrolled in two different exercise programs (one aerobic exercise and one strength training) and identify any associated clinical or functional factors. Methods This was an exploratory observational study in a sample of 231 elderly women of mean age 70.5 years. We used a structured questionnaire with standardized tests to evaluate the relevant clinical and functional measures. A specific adherence questionnaire was developed by the researchers to determine motivators and barriers to exercise adherence. Results The adherence rate was 49.70% in the aerobic exercise group and 56.20% in the strength training group. Multiple logistic regression models for motivation were significant (P=0.003) for the muscle strengthening group (R2=0.310) and also significant (P=0.008) for the aerobic exercise group (R2=0.154). A third regression model for barriers to exercise was significant (P=0.003) only for the muscle strengthening group (R2=0.236). The present study shows no direct relationship between worsening health status and poor adherence. Conclusion Factors related to adherence with exercise in the elderly are multifactorial. PMID:24600212
Coelho, Wagner Santos; Viveiros de Castro, Luis; Deane, Elizabeth; Magno-França, Alexandre; Bassini, Adriana; Cameron, Luiz-Claudio
2016-01-01
(1) Background: We have been using the Sportomics approach to evaluate biochemical and hematological changes in response to exercise. The aim of this study was to evaluate the metabolic and hematologic responses of world-class canoeists during a training session; (2) Methods: Blood samples were taken at different points and analyzed for their hematological properties, activities of selected enzymes, hormones, and metabolites; (3) Results: Muscle stress biomarkers were elevated in response to exercise which correlated with modifications in the profile of white blood cells, where a leukocyte rise was observed after the canoe session. These results were accompanied by an increase in other exercise intensity parameters such as lactatemia and ammonemia. Adrenocorticotropic hormone and cortisol increased during the exercise sessions. The acute rise in both erythrocytes and white blood profile were probably due to muscle cell damage, rather than hepatocyte integrity impairment; (4) Conclusion: The cellular and metabolic responses found here, together with effective nutrition support, are crucial to understanding the effects of exercise in order to assist in the creation of new training and recovery planning. Also we show that Sportomics is a primal tool for training management and performance improvement, as well as to the understanding of metabolic response to exercise. PMID:27845704
The action of aminoguanidine on the liver of trained diabetic rats
2013-01-01
Background This study evaluated the effect of aminoguanidine on liver of diabetic rats subject to physical exercises using histological and histochemical techniques. Methods The rats used in this study were divided into five groups: sedentary control, sedentary diabetic, trained diabetic, sedentary diabetic and treated with aminoguanidine, trained diabetic and treated with aminoguanidine. Results The results showed no effect of aminoguanidine on the liver tissue, although there was improvement with exercise training showing cytological, morpho-histological and histochemical alterations in liver cells of animals from groups trained diabetic and/or treated diabetic compared to those individuals in the sedentary control and sedentary diabetic. These changes included: hepatocytes hypertrophy, presence and distribution of polysaccharides in the hepatocytes cytoplasm and, especially, congestion of the liver blood vessels. Conclusion Our results suggest that aminoguanidine is not hepatotoxic, when used at dosage of 1 g/L for the treatment of diabetes complications, and confirmed that the practice of moderate physical exercise assuaged the damage caused by diabetes without the use of insulin. PMID:23837632
Peng, Chiung-Chi; Chen, Kuan-Chou; Hsieh, Chiu-Lan; Peng, Robert Y.
2012-01-01
Background The renal function of chronic kidney disease (CKD) patients may be improved by a number of rehabilitative mechanisms. Swimming exercise training was supposed to be beneficial to its recovery. Methodology/Principal Findings Doxorubicin-induced CKD (DRCKD) rat model was performed. Swimming training was programmed three days per week, 30 or 60 min per day for a total period of 11 weeks. Serum biochemical and pathological parameters were examined. In DRCKD, hyperlipidemia was observed. Active mesangial cell activation was evidenced by overexpression of PDGFR, P-PDGFR, MMP-2, MMP-9, α-SMA, and CD34 with a huge amount collagen deposition. Apparent myofibroblast transdifferentiation implicating fibrogenesis in the glomerular mesangium, glomerulonephritis and glomeruloscelorosis was observed with highly elevated proteinuria and urinary BUN excretion. The 60-min swimming exercise but not the 30 min equivalent rescued most of the symptoms. To quantify the effectiveness of exercise training, a physical parameter, i.e. “the strenuosity coefficient” or “the myokine releasing coefficient”, was estimated to be 7.154×10−3 pg/mL-J. Conclusions The 60-min swimming exercise may ameliorate DRCKD by inhibiting the transdifferentiation of myofibroblasts in the glomerular mesangium. Moreover, rehabilitative exercise training to rescue CKD is a personalized remedy. Benefits depend on the duration and strength of exercise, and more importantly, on the individual physiological condition. PMID:22761655
2015-01-01
Background Recent advances in information and communication technology have prompted development of Web-based health tools to promote physical activity, the key component of cardiac rehabilitation and chronic disease management. Mobile apps can facilitate behavioral changes and help in exercise monitoring, although actual training usually takes place away from the point of care in specialized gyms or outdoors. Daily participation in conventional physical activities is expensive, time consuming, and mostly relies on self-management abilities of patients who are typically aged, overweight, and unfit. Facilitation of sustained exercise training at the point of care might improve patient engagement in cardiac rehabilitation. Objective In this study we aimed to test the feasibility of execution and automatic monitoring of several exercise regimens on-site using a Web-enabled leg training system. Methods The MedExercise leg rehabilitation machine was equipped with wireless temperature sensors in order to monitor its usage by the rise of temperature in the resistance unit (Δt°). Personal electronic devices such as laptop computers were fitted with wireless gateways and relevant software was installed to monitor the usage of training machines. Cloud-based software allowed monitoring of participant training over the Internet. Seven healthy participants applied the system at various locations with training protocols typically used in cardiac rehabilitation. The heart rates were measured by fingertip pulse oximeters. Results Exercising in home chairs, in bed, and under an office desk was made feasible and resulted in an intensity-dependent increase of participants’ heart rates and Δt° in training machine temperatures. Participants self-controlled their activities on smart devices, while a supervisor monitored them over the Internet. Individual Δt° reached during 30 minutes of moderate-intensity continuous training averaged 7.8°C (SD 1.6). These Δt° were used as personalized daily doses of exercise with automatic email alerts sent upon achieving them. During 1-week training at home, automatic notifications were received on 4.4 days (SD 1.8). Although the high intensity interval training regimen was feasible on-site, it was difficult for self- and remote management. Opportunistic leg exercise under the desk, while working with a computer, and training in bed while viewing television were less intensive than dosed exercise bouts, but allowed prolonged leg mobilization of 73.7 minutes/day (SD 29.7). Conclusions This study demonstrated the feasibility of self-control exercise training on-site, which was accompanied by online monitoring, electronic recording, personalization of exercise doses, and automatic reporting of adherence. The results suggest that this technology and its applications are useful for the delivery of Web-based exercise rehabilitation and cardiac training programs at the point of care. PMID:28582243
Strickland, Justin C.; Abel, Jean M.; Lacy, Ryan T.; Beckmann, Joshua S.; Witte, Maryam A.; Lynch, Wendy J.; Smith, Mark A.
2016-01-01
Background Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Methods Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set “pyramid” in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Results Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. Conclusions These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. PMID:27137405
Kline, Christopher E.; Crowley, E. Patrick; Ewing, Gary B.; Burch, James B.; Blair, Steven N.; Durstine, J. Larry; Davis, J. Mark; Youngstedt, Shawn D.
2012-01-01
Background Obstructive sleep apnea (OSA) predisposes individuals to cardiovascular morbidity, and cardiopulmonary exercise test (CPET) markers prognostic for cardiovascular disease have been found to be abnormal in adults with OSA. Due to the persistence of OSA and its cardiovascular consequences, whether the cardiovascular adaptations normally conferred by exercise are blunted in adults not utilizing established OSA treatment is unknown. The aims of this study were to document whether OSA participants have abnormal CPET responses and determine whether exercise modifies these CPET markers in individuals with OSA. Methods The CPET responses of 43 sedentary, overweight adults (body mass index [BMI]>25) with untreated OSA (apnea-hypopnea index [AHI]≥15) were compared against matched non-OSA controls (n=9). OSA participants were then randomized to a 12-week exercise training (n=27) or stretching control treatment (n=16), followed by a post-intervention CPET. Measures of resting, exercise, and post-exercise recovery heart rate (HRR), blood pressure, and ventilation, as well as peak oxygen consumption (VO2peak), were obtained. Results OSA participants had blunted HRR compared to non-OSA controls at 1 (P=.03), 3 (P=.02), and 5 min post-exercise (P=.03). For OSA participants, exercise training improved VO2peak (P=.04) and HRR at 1 (P=.03), 3 (P<.01), and 5 min post-exercise (P<.001) compared to control. AHI change was associated with change in HRR at 5-min post-exercise (r=−.30, P<.05), but no other CPET markers. Conclusions These results suggest that individuals with OSA have autonomic dysfunction, and that exercise training, by increasing HRR and VO2peak, may attenuate autonomic imbalance and improve functional capacity independent of OSA severity reduction. PMID:22572632
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Ertl, A. C.; Bernauer, E. M.
1996-01-01
BACKGROUND: Maintaining intermediary metabolism is necessary for the health and well-being of astronauts on long-duration spaceflights. While peak oxygen uptake (VO2) is consistently decreased during prolonged bed rest, submaximal VO2 is either unchanged or decreased. METHODS: Submaximal exercise metabolism (61 +/- 3% peak VO2) was measured during ambulation (AMB day-2) and on bed rest days 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N = 5) control, and isotonic exercise (ITE, N = 7) and isokinetic exercise (IKE, N = 7) training groups. Exercise training was conducted supine for two 30-min periods per day for 6 d per week: ITE training was intermittent at 60-90% peak VO2; IKE training was 10 sets of 5 repetitions of peak knee flexion-extension force at a velocity of 100 degrees s-1. Cardiac output was measured with the indirect Fick CO2 method, and plasma volume with Evans blue dye dilution. RESULTS: Supine submaximal exercise VO2 decreased significantly (*p < 0.05) by 10.3%* with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output decrease of 14.5%* (ITE) and 20.3%* (IKE), but different from change in peak VO2 (+1.4% with ITE and -10.2%* with IKE) and decrease in plasma volume of -3.7% (ITE) and -18.0%* (IKE). Reduction of submaximal VO2 during bed rest correlated 0.79 (p < 0.01) with submaximal Qc, but was not related to change in peak VO2 or plasma volume. CONCLUSION: Reduction in submaximal oxygen uptake during prolonged bed rest is related to decrease in exercise but not resting cardiac output; perturbations in active skeletal muscle metabolism may be involved.
USDA-ARS?s Scientific Manuscript database
Background: Reinforcing value is a stronger predictor than hedonic value (liking) for engaging in drug use, gambling, and eating. The associations of reinforcing value and liking with physical activity of adults have not yet been studied and may depend on the mode of exercise available during exerc...
Empowering: the experiences of exercise among heart transplantation patients in Taiwan.
Jeng, Chii; Chu, Fu-Ling; Tsao, Lee-Ing
2002-12-01
To explore the experiences of exercise among Taiwanese heart transplant patients on the basis of a grounded theory. Although studies conducted around the world have proven how important exercise is to heart transplant patients, little information was found about heart transplant patients' exercise experience. In addition, because of different cultural backgrounds, people in Taiwan do not care about 'regular exercise' as much as Americans and Europeans do. Therefore, it is very important to find ways so that they can value 'regular exercise.' In-depth interviews were undertaken with a purposive sample of eight heart transplant patients. Data was analysed by repeated verification. Eight valid cases were separately and thoroughly interviewed while they were exercising at a sports medical centre. The results revealed that 'empowering the new heart' is the core reason for their exercise. During the exercise training process, every participant felt that his or her new heart was filled with power or energy. The 'hardness and endurance' in terms of feeling discomfort in the body was identified at the beginning of post-surgical exercise training. Throughout the process of empowerment, patients experienced the following five interactive behaviour categories: 'self-protection', 'sharing', 'being watched and cared for', 'being aware of the benefits', and 'strengthening the new heart'. Exercise can empower the new heart. After the exercise training, all patients felt that their new hearts were empowered with energy and vigour, and thus were willing to continue exercising. They even expanded their regimen to include folk therapies such as Tai Chi and breathing exercises.
Watson, Emma L.; Viana, Joao L.; Wimbury, David; Martin, Naomi; Greening, Neil J.; Barratt, Jonathan; Smith, Alice C.
2017-01-01
Background: Muscle wasting is a common complication of Chronic Kidney Disease (CKD) and is clinically important given its strong association with morbidity and mortality in many other chronic conditions. Exercise provides physiological benefits for CKD patients, however the molecular response to exercise remains to be fully determined. We investigated the inflammatory and molecular response to resistance exercise before and after training in these patients. Methods: This is a secondary analysis of a randomized trial that investigated the effect of 8 week progressive resistance training on muscle mass and strength compared to non-exercising controls. A sub-set of the cohort consented to vastus lateralis skeletal muscle biopsies (n = 10 exercise, n = 7 control) in which the inflammatory response (IL-6, IL-15, MCP-1 TNF-α), myogenic (MyoD, myogenin, myostatin), anabolic (P-Akt, P-eEf2) and catabolic events (MuRF-1, MAFbx, 14 kDa, ubiquitin conjugates) and overall levels of oxidative stress have been studied. Results: A large inflammatory response to unaccustomed exercise was seen with IL-6, MCP-1, and TNF-α all significantly elevated from baseline by 53-fold (P < 0.001), 25-fold (P < 0.001), and 4-fold (P < 0.001), respectively. This response was reduced following training with IL-6, MCP-1, and TNF-α elevated non-significantly by 2-fold (P = 0.46), 2.4-fold (P = 0.19), and 2.5-fold (P = 0.06), respectively. In the untrained condition, an acute bout of resistance exercise did not result in increased phosphorylation of Akt (P = 0.84), but this was restored following training (P = 0.01). Neither unaccustomed nor accustomed exercise resulted in a change in myogenin or MyoD mRNA expression (P = 0.88, P = 0.90, respectively). There was no evidence that resistance exercise training created a prolonged oxidative stress response within the muscle, or increased catabolism. Conclusions: Unaccustomed exercise creates a large inflammatory response within the muscle, which is no longer present following a period of training. This indicates that resistance exercise does not provoke a detrimental on-going inflammatory response within the muscle. PMID:28804461
Bruder-Nascimento, Thiago; Silva, Samuel T.; Boer, Patrícia A.; Cordellini, Sandra
2015-01-01
Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load), stressed (2 h-immobilization), and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10). Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary). Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed). Indomethacin determined a decrease in sensitivity (EC50) in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination. PMID:26083604
Baguley, Brenton J.; Bolam, Kate A.; Wright, Olivia R. L.
2017-01-01
Background: Improvements in diet and/or exercise are often advocated during prostate cancer treatment, yet the efficacy of, and optimal nutrition and exercise prescription for managing cancer-related fatigue and quality of life remains elusive. The aim of this study is to systematically review the effects of nutrition and/or exercise on cancer-related fatigue and/or quality of life. Methods: A literature search was conducted in six electronic databases. The Delphi quality assessment list was used to evaluate the methodological quality of the literature. The study characteristics and results were summarized in accordance with the review’s Population, Intervention, Control, Outcome (PICO) criteria. Results: A total of 20 articles (one diet only, two combined diet and exercise, and seventeen exercise only studies) were included in the review. Soy supplementation improved quality of life, but resulted in several adverse effects. Prescribing healthy eating guidelines with combined resistance training and aerobic exercise improved cancer-related fatigue, yet its effect on quality of life was inconclusive. Combined resistance training with aerobic exercise showed improvements in cancer-related fatigue and quality of life. In isolation, resistance training appears to be more effective in improving cancer-related fatigue and quality of life than aerobic exercise. Studies that utilised an exercise professional to supervise the exercise sessions were more likely to report improvements in both cancer-related fatigue and quality of life than those prescribing unsupervised or partially supervised sessions. Neither exercise frequency nor duration appeared to influence cancer-related fatigue or quality of life, with further research required to explore the potential dose-response effect of exercise intensity. Conclusion: Supervised moderate-hard resistance training with or without moderate-vigorous aerobic exercise appears to improve cancer-related fatigue and quality of life. Targeted physiological pathways suggest dietary intervention may alleviate cancer-related fatigue and improve quality of life, however the efficacy of nutrition management with or without exercise prescription requires further exploration. PMID:28895922
Melo, Luciana Costa; Dativo-Medeiros, Jaime; Menezes-Silva, Carlos Eduardo; de Sousa-Rodrigues, Célio Fernando
2017-01-01
Background. Type 2 diabetes mellitus (T2DM) is a serious disease associated with high morbidity and mortality. Scientific findings showed that physical exercise is an option for treatment of these patients. This study's objective is to investigate the effects of supervised aerobic and/or resistance physical training on inflammatory markers in subjects with T2DM. Methods. A systematic review was conducted on four databases, MEDLINE, CENTRAL, LILACS, and Scopus, and manual search from 21 to 30 November 2016. Randomized clinical trials involving individuals diagnosed with T2DM, who have undergone supervised training protocols, were selected in this study. Results. Eleven studies were included. Studies that evaluated control group versus aerobic exercise reported controversial results about the effectiveness of physical training in modifying C-reactive protein (CRP) and cytokine levels. The only variable analyzed by the six studies in comparison to the control group versus resistance exercise was CRP. This protein showed no significant difference between groups. Between the two modes of exercise (aerobic and resistance), only one study demonstrated that aerobic exercise was more effective in reducing CRP. Conclusion. The evidence was insufficient to prove that aerobic or resistance exercise improves systemic levels of inflammatory markers in patients with T2DM. PMID:28400914
ERIC Educational Resources Information Center
Garner, Dena; Erck, Elizabeth G.
2008-01-01
Background: Lack of physical activity has been noted in breast cancer survivors and been attributed to decreased physical function. Purpose: This study assessed the effects of a moderate-to-vigorous physical exercise program on body fat percentage, maximal oxygen consumption (VO[subscript 2] max), body mass index, and bone mineral density (BMD) of…
ERIC Educational Resources Information Center
Aasland, Erik; Walseth, Kristin; Engelsrud, Gunn
2017-01-01
Background: Previous research on physical education (PE) teaching practice indicates that an exercise physiology discourse has assumed a dominant position within the field. Research shows that PE teachers are likely to emphasise physical fitness training in their teaching, and PE teachers seem to appreciate pupils who show high levels of physical…
Disease resistance is related to inherent swimming performance in Atlantic salmon
2013-01-01
Background Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. Results An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. Conclusions This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish. PMID:23336751
Mina, Daniel Santa; Connor, Michael K.; Alibhai, Shabbir M.H.; Toren, Paul; Guglietti, Crissa; Matthew, Andrew G.; Trachtenberg, John; Ritvo, Paul
2013-01-01
Background Androgen deprivation therapy (ADT) has significant deleterious effects on body composition that may be accompanied by unfavourable changes in adipokine levels. While exercise has been shown to improve a number of side effects associated with ADT for prostate cancer, no studies have assessed the effect of exercise on adiponectin and leptin levels, which have been shown to alter the mitogenic environment. Methods: Twenty-six men with prostate cancer treated with ADT were randomized to home-based aerobic exercise training or resistance exercise training for 24 weeks. Adiponectin, leptin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3) were analyzed by ELISA (enzyme-linked immunosorbent assay), in addition to physical activity volume, peak aerobic capacity, and anthropometric measurements, at baseline, 3 months and 6 months. Results: Resistance exercise significantly reduced IGF-1 after 3 months (p = 0.019); however, this change was not maintained at 6 months. At 6 months, IGFBP-3 was significantly increased compared to baseline for the resistance training group (p = 0.044). In an exploratory analysis of all exercisers, favourable changes in body composition and aerobic fitness were correlated with favourable levels of leptin, and favourable leptin:adiponectin and IGF-1:IGFBP-3 ratios at 3 and 6 months. Conclusions: Home-based exercise is correlated with positive changes in adipokine levels and the IGF-axis that may be related to healthy changes in physical fitness and body composition. While the improvements of adipokine markers appear to be more apparent with resistance training compared to aerobic exercise, these findings must be considered cautiously and require replication from larger randomized controlled trials to clarify the role of exercise on adipokines and IGF-axis proteins for men with prostate cancer. PMID:24282459
2013-01-01
Background Exercise training is of benefit for patients with restrictive lung disease. However, it tends to be intolerable for those with severe disease. We examined whether providing ventilatory assistance by using negative pressure ventilators (NPV) during exercise training is feasible for such patients and the effects of training. Methods 36 patients with restrictive lung disease were prospectively enrolled for a 12-week multidisciplinary rehabilitation program. During this program, half of them (n:18; 60.3 ± 11.6 years; 6 men; FVC: 32.5 ± 11.7% predicted ) received regular sessions of exercise training under NPV, whilst the 18 others (59.6 ± 12.3 years; 8 men; FVC: 37.7 ± 10.2% predicted) did not. Exercise capacity, pulmonary function, dyspnea and quality of life were measured. The primary endpoint was the between-group difference in change of 6 minute-walk distance (6MWD) after 12 weeks of rehabilitation. Results All patients in the NPV-exercise group were able to tolerate and completed the program. The between-group differences were significantly better in the NPV-exercise group in changes of 6MWD (34.1 ± 12.7 m vs. -32.5 ± 17.5 m; P = 0.011) and St George Score (−14.5 ± 3.6 vs. 11.8 ± 6.0; P < 0.01). There was an improvement in dyspnea sensation (Borg’s scale, from 1.4 ± 1.5 point to 0.8 ± 1.3 point, P = 0.049) and a small increase in FVC (from 0.85 ± 0.09 L to 0.91 ± 0.08 L, P = 0.029) in the NPV-exercise group compared to the control group. Conclusion Exercise training with NPV support is feasible for patients with severe restrictive lung diseases, and improves exercise capacity and health-related quality of life. PMID:23421438
2013-12-13
CAPE CANAVERAL, Fla. – At a training location near Launch Complex 39 at NASA’s Kennedy Space Center in Florida, members of the Emergency Response Team, or ERT, participate in specialized training simulations in order to keep their skills current. They are wearing full protective gear and carrying non-lethal firearms, which are denoted in blue, for the training exercises. In the background, the ERT training supervisor, wearing a bright green vest, monitors the training exercise and reviews procedures. Recently, eight members of the ERT competed in the 31st Annual SWAT Roundup International competition in Orlando, Fla., and received recognition by placing in the top five overall. In keeping with NASA’s commitment to safety and security of workforce and assets, the ERT is part of Kennedy’s security team and is trained to respond in the event of an emergency at the center. Photo credit: NASA/Daniel Casper
2013-12-13
CAPE CANAVERAL, Fla. – At a training location near Launch Complex 39 at NASA’s Kennedy Space Center in Florida, members of the Emergency Response Team, or ERT, participate in specialized training simulations in order to keep their skills current. They are wearing full protective gear and carrying non-lethal firearms, which are denoted in blue, for the training exercises. In the background, the ERT training supervisor, wearing a bright green vest, monitors the training exercise and reviews procedures. Recently, eight members of the ERT competed in the 31st Annual SWAT Roundup International competition in Orlando, Fla., and received recognition by placing in the top five overall. In keeping with NASA’s commitment to safety and security of workforce and assets, the ERT is part of Kennedy’s security team and is trained to respond in the event of an emergency at the center. Photo credit: NASA/Daniel Casper
Reed, Shelby D.; Whellan, David J.; Li, Yanhong; Friedman, Joëlle Y.; Ellis, Stephen J.; Piña, Ileana L.; Settles, Sharon J.; Davidson-Ray, Linda; Johnson, Johanna L.; Cooper, Lawton S.; O’Connor, Christopher M.; Schulman, Kevin A.
2011-01-01
Background HF-ACTION assigned 2331 outpatients with medically stable heart failure to exercise training or usual care. We compared medical resource use and costs incurred by these patients during follow-up. Methods and Results Extensive data on medical resource use and hospital bills were collected throughout the trial for estimates of direct medical costs. Intervention costs were estimated using patient-level trial data, administrative records, and published unit costs. Mean follow-up was 2.5 years. There were 2297 hospitalizations in the exercise group and 2332 in the usual care group (P = .92). The mean number of inpatient days was 13.6 (SD, 27.0) in the exercise group and 15.0 (SD, 31.4) in the usual care group (P = .23). Other measures of resource use were similar between groups, except for trends indicating that fewer patients in the exercise group underwent high-cost inpatient procedures. Total direct medical costs per participant were an estimated $50,857 (SD, $81,488) in the exercise group and $56,177 (SD, $92,749) in the usual care group (95% confidence interval for the difference, $–12,755 to $1547; P = .10). The direct cost of exercise training was an estimated $1006 (SD, $337). Patient time costs were an estimated $5018 (SD, $4600). Conclusions The cost of exercise training was relatively low for the health care system, but patients incurred significant time costs. In this economic evaluation, there was little systematic benefit in terms of overall medical resource use with this intervention. Trial Registration clinicaltrials.gov Identifier: NCT00047437 PMID:20551371
Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes
2013-01-01
Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554
Davis, Jennifer C.; Bryan, Stirling; Marra, Carlo A.; Sharma, Devika; Chan, Alison; Beattie, B. Lynn; Graf, Peter; Liu-Ambrose, Teresa
2013-01-01
Background Mild cognitive impairment (MCI) represents a critical window to intervene against dementia. Exercise training is a promising intervention strategy, but the efficiency (i.e., relationship of costs and consequences) of such types of training remains unknown. Thus, we estimated the incremental cost-effectiveness of resistance training or aerobic training compared with balance and tone exercises in terms of changes in executive cognitive function among senior women with probable MCI. Methods Economic evaluation conducted concurrently with a six-month three arm randomized controlled trial including eighty-six community dwelling women aged 70 to 80 years living in Vancouver, Canada. Participants received twice-weekly resistance training (n = 28), twice weekly aerobic training (n = 30) or twice-weekly balance and tone (control group) classes (n = 28) for 6 months. The primary outcome measure of the Exercise for Cognition and Everyday Living (EXCEL) study assessed executive cognitive function, a test of selective attention and conflict resolution (i.e., Stroop Test). We collected healthcare resource utilization costs over six months. Results Based on the bootstrapped estimates from our base case analysis, we found that both the aerobic training and resistance training interventions were less costly than twice weekly balance and tone classes. Compared with the balance and tone group, the resistance-training group had significantly improved performance on the Stroop Test (p = 0.04). Conclusions Resistance training and aerobic training result in health care cost saving and are more effective than balance and tone classes after only 6 months of intervention. Resistance training is a promising strategy to alter the trajectory of cognitive decline in seniors with MCI. Trial Registration ClinicalTrials.gov NCT00958867. PMID:23690976
Cognitive and memory training in adults at risk of dementia: A Systematic Review
2011-01-01
Background Effective non-pharmacological cognitive interventions to prevent Alzheimer's dementia or slow its progression are an urgent international priority. The aim of this review was to evaluate cognitive training trials in individuals with mild cognitive impairment (MCI), and evaluate the efficacy of training in memory strategies or cognitive exercises to determine if cognitive training could benefit individuals at risk of developing dementia. Methods A systematic review of eligible trials was undertaken, followed by effect size analysis. Cognitive training was differentiated from other cognitive interventions not meeting generally accepted definitions, and included both cognitive exercises and memory strategies. Results Ten studies enrolling a total of 305 subjects met criteria for cognitive training in MCI. Only five of the studies were randomized controlled trials. Meta-analysis was not considered appropriate due to the heterogeneity of interventions. Moderate effects on memory outcomes were identified in seven trials. Cognitive exercises (relative effect sizes ranged from .10 to 1.21) may lead to greater benefits than memory strategies (.88 to -1.18) on memory. Conclusions Previous conclusions of a lack of efficacy for cognitive training in MCI may have been influenced by not clearly defining the intervention. Our systematic review found that cognitive exercises can produce moderate-to-large beneficial effects on memory-related outcomes. However, the number of high quality RCTs remains low, and so further trials must be a priority. Several suggestions for the better design of cognitive training trials are provided. PMID:21942932
Bredin, Shannon S. D.; Warburton, Darren E. R.; Lang, Donna J.
2013-01-01
Background: In addition to the hallmark cognitive and functional impairments mounting evidence indicates that schizophrenia is also associated with an increased risk for the development of secondary complications, in particular cardio-metabolic disease. This is thought to be the result of various factors including physical inactivity and the metabolic side effects of psychotropic medications. Therefore, non-pharmacological approaches to improving brain health, physical health, and overall well-being have been promoted increasingly. Methods: We report on the health-related physical fitness (body composition, blood pressure, heart rate, and aerobic fitness) and lipid profile of persons living with schizophrenia and effective means to address the challenges of exercise training in this population. Results: There was a markedly increased risk for cardio-metabolic disease in 13 persons living with schizophrenia (Age = 31 ± 7 years) including low aerobic fitness (76% ± 34% of predicted), reduced HDL (60% of cohort), elevated resting heart rate (80% of cohort), hypertension (40% of cohort), overweight and obesity (69% of cohort), and abdominal obesity (54% of cohort). Individualized exercise prescription (3 times/week) was well tolerated, with no incidence of adverse exercise-related events. The exercise adherence rate was 81% ± 21% (Range 48%–100%), and 69% of the participants were able to complete the entire exercise training program. Exercise training resulted in clinically important changes in physical activity, aerobic fitness, exercise tolerance, blood pressure, and body composition. Conclusion: Persons living with schizophrenia appear to be at an increased risk for cardio-metabolic disease. An individualized exercise program has shown early promise for the treatment of schizophrenia and the various cognitive, functional, and physiological impairments that ultimately affect health and well-being. PMID:24961427
1969-05-24
S69-34882 (24 May 1969) --- The prime crew of the Apollo 11 lunar landing mission relaxes on the deck of the NASA Motor Vessel Retriever prior to participating in water egress training in the Gulf of Mexico. Left to right, are astronauts Edwin E. Aldrin Jr., lunar module pilot; Neil A. Armstrong, commander; and Michael Collins, command module pilot. In the background is Apollo Boilerplate 1102 which was used in the training exercise.
Aerobic exercise training and burnout: a pilot study with male participants suffering from burnout
2013-01-01
Background Occupational burnout is associated with severe negative health effects. While stress management programs proved to have a positive influence on the well-being of patients suffering from burnout, it remains unclear whether aerobic exercise alleviates burnout severity and other parameters related to occupational burnout. Therefore, the main purpose of this study was to pilot-test the potential outcomes of a 12-week exercise training to generate hypotheses for future larger scale studies. Methods The sample consisted of 12 male participants scoring high on the MBI emotional exhaustion and depersonalization subscales. The training program took place in a private fitness center with a 17.5 kcal/kg minimum requirement of weekly energy expenditure. Results The key findings are that increased exercise reduced overall perceived stress as well as symptoms of burnout and depression. The magnitude of the effects was large, revealing changes of substantial practical relevance. Additionally, profiles of mood states improved considerably after single exercise sessions with a marked shift towards an iceberg profile. Conclusion Among burnout patients, the findings provide preliminary evidence that exercise has the potential to reduce stress and prevent the development of a deeper depression. This has important health implications given that burnout is considered an antecedent of depressive disorders. Trial registration ClinicalTrials.gov Identifier: ISRNCT01575743 PMID:23497731
Ramírez-Campillo, Rodrigo; Vergara-Pedreros, Marcelo; Henríquez-Olguín, Carlos; Martínez-Salazar, Cristian; Alvarez, Cristian; Nakamura, Fábio Yuzo; De La Fuente, Carlos I; Caniuqueo, Alexis; Alonso-Martinez, Alicia M; Izquierdo, Mikel
2016-01-01
In a randomised controlled trial design, effects of 6 weeks of plyometric training on maximal-intensity exercise and endurance performance were compared in male and female soccer players. Young (age 21.1 ± 2.7 years) players with similar training load and competitive background were assigned to training (women, n = 19; men, n = 21) and control (women, n = 19; men, n = 21) groups. Players were evaluated for lower- and upper-body maximal-intensity exercise, 30 m sprint, change of direction speed and endurance performance before and after 6 weeks of training. After intervention, the control groups did not change, whereas both training groups improved jumps (effect size (ES) = 0.35-1.76), throwing (ES = 0.62-0.78), sprint (ES = 0.86-1.44), change of direction speed (ES = 0.46-0.85) and endurance performance (ES = 0.42-0.62). There were no differences in performance improvements between the plyometric training groups. Both plyometric groups improved more in all performance tests than the controls. The results suggest that adaptations to plyometric training do not differ between men and women.
2014-01-01
Background Resistance exercise alters the post-exercise response of anabolic and catabolic hormones. A previous study indicated that the turnover of muscle protein in trained individuals is reduced due to alterations in endocrine factors caused by resistance training, and that muscle protein accumulation varies between trained and untrained individuals due to differences in the timing of protein and carbohydrate intake. We investigated the effect of the timing of protein and carbohydrate intake after resistance exercise on nitrogen balance in trained and untrained young men. Methods Subjects were 10 trained healthy men (mean age, 23 ± 4 years; height, 173.8 ± 3.1 cm; weight, 72.3 ± 4.3 kg) and 10 untrained healthy men (mean age, 23 ± 1 years; height, 171.8 ± 5.0 cm; weight, 64.5 ± 5.0 kg). All subjects performed four sets of 8 to 10 repetitions of a resistance exercise (comprising bench press, shoulder press, triceps pushdown, leg extension, leg press, leg curl, lat pulldown, rowing, and biceps curl) at 80% one-repetition maximum. After each resistance exercise session, subjects were randomly divided into two groups with respect to intake of protein (0.3 g/kg body weight) and carbohydrate (0.8 g/kg body weight) immediately after (P0) or 6 h (P6) after the session. All subjects were on an experimental diet that met their individual total energy requirement. We assessed whole-body protein metabolism by measuring nitrogen balance at P0 and P6 on the last 3 days of exercise training. Results The nitrogen balance was significantly lower in the trained men than in the untrained men at both P0 (P <0.05) and P6 (P <0.01). The nitrogen balance in trained men was significantly higher at P0 than at P6 (P <0.01), whereas that in the untrained men was not significantly different between the two periods. Conclusion The timing of protein and carbohydrate intake after resistance exercise influences nitrogen balance differently in trained and untrained young men. PMID:25096224
Effect of Aerobic Training on Glucose Control and Blood Pressure in T2DDM East African Males
Prista, Antonio; Ranadive, Sushant M.; Damasceno, Albertino; Caupers, Paula; Kanaley, Jill A.; Fernhall, Bo
2014-01-01
Background. Exercise training intervention is underused in the management of type 2 diabetes mellitus in East Africa. Methods. 41 physically-active males with type 2 diabetes mellitus living in Mozambique were recruited and randomly assigned to 12 weeks of supervised exercise of low intensity exercise (LEX), vigorous intensity exercise (VEX), or to a control group (CON). Since there were no differences for any outcome variables between the exercise groups, VEX and LEX were combined into one exercise group (EX). Results. Age and baseline body weight were similar between EX and CON. Plasma glucose at 120 min following glucose load (Glu 120) was significantly reduced in the EX group after training (Glu 120 : 17.3 mmol/L to 15.0 mmol/L, P < 0.05), whereas Glu 120 remained unchanged in the CON (Glu 120 : 16.6 mmol/L to 18.7 mmol/L). After controlling for baseline blood pressure (BP), posttraining systolic BP and diastolic BP were lower in the EX group than in the CON group (EX: 129/77 mm Hg, CON: 152/83 mm Hg, P < 0.05). Conclusion. Adding exercise to already active African men with type 2 diabetes improved glucose control and BP levels without concomitant changes in weight. PMID:24729886
Investigating an outbreak of measles in Margibi County, Liberia, October 2015.
Frimpong, Joseph Asamoah; Amo-Addae, Maame Pokuah; Adewuyi, Peter Adebayo; Park, Meeyoung Mattie; Hall, Casey Daniel; Nagbe, Thomas Knue
2017-01-01
The emergence and re-emergence of infectious diseases highlights the need to have well-trained field epidemiologists who will be at the forefront in the fight against these diseases, especially during an outbreak. Training for outbreak investigation is most effective when participants can develop their competencies in a practical exercise. To that end, this case study was based on a measles outbreak investigation conducted in Liberia during October 2015 by Liberia Frontline Field Epidemiology Training Program (FETP) residents, simulating steps to perform outbreak investigation in a real-life situation as a field epidemiologist. This case study is ideally suited to reinforce principles and skills already covered in a classroom lecture or in background reading by providing a practical training beyond the scope of theoretical learning. It is primarily intended for training novice public health practitioners who should be able to complete the exercises in approximately 3 hours.
The use of periodization in exercise prescriptions for inactive adults: A systematic review
Strohacker, Kelley; Fazzino, Daniel; Breslin, Whitney L.; Xu, Xiaomeng
2015-01-01
Background Periodization of exercise is a method typically used in sports training, but the impact of periodized exercise on health outcomes in untrained adults is unclear. Purpose This review aims to summarize existing research wherein aerobic or resistance exercise was prescribed to inactive adults using a recognized periodization method. Methods A search of relevant databases, conducted between January and February of 2014, yielded 21 studies published between 2000 and 2013 that assessed the impact of periodized exercise on health outcomes in untrained participants. Results Substantial heterogeneity existed between studies, even under the same periodization method. Compared to baseline values or non-training control groups, prescribing periodized resistance or aerobic exercise yielded significant improvements in health outcomes related to traditional and emerging risk factors for cardiovascular disease, low-back and neck/shoulder pain, disease severity, and quality of life, with mixed results for increasing bone mineral density. Conclusions Although it is premature to conclude that periodized exercise is superior to non-periodized exercise for improving health outcomes, periodization appears to be a feasible means of prescribing exercise to inactive adults within an intervention setting. Further research is necessary to understand the effectiveness of periodizing aerobic exercise, the psychological effects of periodization, and the feasibility of implementing flexible non-linear methods. PMID:26844095
Meira, Erik P.; En Gilpin, Hui; Brunette, Meredith
2011-01-01
Background and Purpose: Golf is a popular sport played by hundreds of thousands of individuals of all ages and of varying skill levels. An orthopedic or sports-related injury and/or surgery may limit an individual's sport participation, require him/her to complete a course of rehabilitation, and initiate (or resume) a sport-specific training program. Unlike the availability of evidence to guide postsurgical rehabilitation and sport-specific training of athletes from sports other than golf, there have only been two reports describing outcomes after surgery and for golfers. The purpose of this case report is to present a post-rehabilitation return to sport-training program for a recreational golfer 11-months after a rotator cuff repair. Case Description: The subject, a 67-year old female, injured her right shoulder requiring a rotator cuff repair 11-months prior to her participation in a golf fitness training program. The subject participated in six training sessions over seven week period consisting of general strengthening exercises (including exercises for the rotator cuff), exercises for the core, plyometrics, and power exercises. Outcomes: The subject made improvements in power and muscular endurance of the core. She was able to resume golf at the completion of the training program. Discussion: The subject was able to make functional improvements and return to golf after participation in a comprehensive strength program. Additional studies are necessary to improve program design for golfers who wish to return to sport after shoulder surgery. PMID:22163096
Spee, Ruud F; Niemeijer, Victor M; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M
2016-12-01
Background High-intensity interval training (HIT) improves exercise capacity in patients with chronic heart failure (CHF). Moreover, HIT was associated with improved resting cardiac function. However, the extent to which these improvements actually contribute to training-induced changes in exercise capacity remains to be elucidated. Therefore, we evaluated the effects of HIT on exercising central haemodynamics and skeletal muscle oxygenation. Methods Twenty-six CHF patients were randomised to a 12-week 4 × 4 minute HIT program at 85-95% of peak VO 2 or usual care. Patients performed maximal and submaximal cardiopulmonary exercise testing with simultaneous assessment of cardiac output and skeletal muscle oxygenation by near infrared spectroscopy, using the amplitude of the tissue saturation index (TSIamp). Results Peak workload increased by 11% after HIT ( p between group = 0.01) with a non-significant increase in peak VO 2 (+7%, p between group = 0.19). Cardiac reserve increased by 37% after HIT ( p within group = 0.03, p between group = 0.08); this increase was not related to improvements in peak workload. Oxygen uptake recovery kinetics after submaximal exercise were accelerated by 20% ( p between group = 0.02); this improvement was related to a decrease in TSIamp ( r = 0.71, p = 0.03), but not to changes in cardiac output kinetics. Conclusion HIT induced improvements in maximal exercise capacity and exercising haemodynamics at peak exercise. Improvements in recovery after submaximal exercise were associated with attenuated skeletal muscle deoxygenation during submaximal exercise, but not with changes in cardiac output kinetics, suggesting that the effect of HIT on submaximal exercise capacity is mediated by improved microvascular oxygen delivery-to-utilisation matching.
Apollo 11 crew on ship during water egress training in Gulf of Mexico
NASA Technical Reports Server (NTRS)
1969-01-01
The prime crew of the Apollo 11 lunar landing mission relaxes on the deck of the NASA Motor Vessel Retriever prior to participating in water egress training in the Gulf of Mexico. Left to right, are Astronauts Edwin A. Aldrin Jr., lunar module pilot; Neil A. Armstrong, commander; and Michael Collins, command module pilot. In the background is Apollo Boilerplate 1102 which was used in the training exercise.
Franklin, Ashley; Mishtal, Joanna; Johnson, Teresa; Simms-Cendan, Judith
2017-08-01
Background The American College of Obstetrics and Gynecology notes that pregnant athletes require more supervision due to their involvement in strenuous training schedules throughout pregnancy. Currently, rowing is not mentioned in the guidelines despite its increasing popularity, high cardiovascular demands, and risk for abdominal trauma. Methods This study aimed to elicit information from competitive female rowers regarding exercise, training, and competition during pregnancy. We administered a survey consisting of 122 items to female Masters rowers in the United States, aged 21 to 49 years, from June to December 2013. Results A total of 224 recreational and elite rowers met the inclusion criteria. Pregnant rowers self-reported high levels of exercise engagement: 85.2% (n/N = 98/115) exercised during any past pregnancy; exercise adherence decreased throughout pregnancy with 51.3%, 42.4%, and 15.7% meeting and/or exceeding national guidelines during the first, second, and third trimesters, respectively. Rowers were significantly (p < 0.001) more likely to state that an activity at a specified intensity and trimester was unsafe if they were younger, had less rowing experience, or were nulliparous. Decreased perceived rowing safety was associated with on-water training, higher intensity exercise, competition, and increasing gestational age. Primary safety concerns were the risk of oar-induced abdominal trauma and physiological effects due to high intensities required by the sport. Novel barriers to exercise in pregnancy included guilt towards the team and a mental barrier due to decreased performance. Healthcare providers are the number one information source for rowers regarding exercise during pregnancy. Conclusion Pregnant rowers are a relevant obstetrics population and have barriers and sport-specific safety concerns not previously identified in the literature. Rowers consider exercising in pregnancy to be important and struggle to meet exercise guidelines like the general population, indicating the need for healthcare providers to provide prenatal and antenatal education and interventions to support exercise during pregnancy even amongst athletes.
Mishtal, Joanna; Johnson, Teresa; Simms-Cendan, Judith
2017-01-01
Background The American College of Obstetrics and Gynecology notes that pregnant athletes require more supervision due to their involvement in strenuous training schedules throughout pregnancy. Currently, rowing is not mentioned in the guidelines despite its increasing popularity, high cardiovascular demands, and risk for abdominal trauma. Methods This study aimed to elicit information from competitive female rowers regarding exercise, training, and competition during pregnancy. We administered a survey consisting of 122 items to female Masters rowers in the United States, aged 21 to 49 years, from June to December 2013. Results A total of 224 recreational and elite rowers met the inclusion criteria. Pregnant rowers self-reported high levels of exercise engagement: 85.2% (n/N = 98/115) exercised during any past pregnancy; exercise adherence decreased throughout pregnancy with 51.3%, 42.4%, and 15.7% meeting and/or exceeding national guidelines during the first, second, and third trimesters, respectively. Rowers were significantly (p < 0.001) more likely to state that an activity at a specified intensity and trimester was unsafe if they were younger, had less rowing experience, or were nulliparous. Decreased perceived rowing safety was associated with on-water training, higher intensity exercise, competition, and increasing gestational age. Primary safety concerns were the risk of oar-induced abdominal trauma and physiological effects due to high intensities required by the sport. Novel barriers to exercise in pregnancy included guilt towards the team and a mental barrier due to decreased performance. Healthcare providers are the number one information source for rowers regarding exercise during pregnancy. Conclusion Pregnant rowers are a relevant obstetrics population and have barriers and sport-specific safety concerns not previously identified in the literature. Rowers consider exercising in pregnancy to be important and struggle to meet exercise guidelines like the general population, indicating the need for healthcare providers to provide prenatal and antenatal education and interventions to support exercise during pregnancy even amongst athletes. PMID:28983443
Alesi, Marianna; Battaglia, Giuseppe; Roccella, Michele; Testa, Davide; Palma, Antonio; Pepi, Annamaria
2014-01-01
Background This work examined the efficacy of an integrated exercise training program (coach and family) in three children with Down syndrome to improve their motor and cognitive abilities, in particular reaction time and working memory. Methods The integrated exercise training program was used in three children with Down syndrome, comprising two boys (M1, with a chronological age of 10.3 years and a mental age of 4.7 years; M2, with a chronological age of 14.6 years and a mental age of less than 4 years) and one girl (F1, chronological age 14.0 years and a mental age of less than 4 years). Results Improvements in gross motor ability scores were seen after the training period. Greater improvements in task reaction time were noted for both evaluation parameters, ie, time and omissions. Conclusion There is a close interrelationship between motor and cognitive domains in individuals with atypical development. There is a need to plan intervention programs based on the simultaneous involvement of child and parents and aimed at promoting an active lifestyle in individuals with Down syndrome. PMID:24672238
Suárez Rodríguez, David; del Valle Soto, Miguel
2017-01-01
Background The aim of this study is to find the differences between two specific interval exercises. We begin with the hypothesis that the use of microintervals of work and rest allow for greater intensity of play and a reduction in fatigue. Methods Thirteen competition-level male tennis players took part in two interval training exercises comprising nine 2 min series, which consisted of hitting the ball with cross-court forehand and backhand shots, behind the service box. One was a high-intensity interval training (HIIT), made up of periods of continuous work lasting 2 min, and the other was intermittent interval training (IIT), this time with intermittent 2 min intervals, alternating periods of work with rest periods. Average heart rate (HR) and lactate levels were registered in order to observe the physiological intensity of the two exercises, along with the Borg Scale results for perceived exertion and the number of shots and errors in order to determine the intensity achieved and the degree of fatigue throughout the exercise. Results There were no significant differences in the average heart rate, lactate or the Borg Scale. Significant differences were registered, on the other hand, with a greater number of shots in the first two HIIT series (series 1 p>0.009; series 2 p>0.056), but not in the third. The number of errors was significantly lower in all the IIT series (series 1 p<0.035; series 2 p<0.010; series 3 p<0.001). Conclusion Our study suggests that high-intensity intermittent training allows for greater intensity of play in relation to the real time spent on the exercise, reduced fatigue levels and the maintaining of greater precision in specific tennis-related exercises. PMID:29021912
Fujimoto, Naoki; Prasad, Anand; Hastings, Jeffrey L.; Arbab-Zadeh, Armin; Bhella, Paul S.; Shibata, Shigeki; Palmer, Dean; Levine, Benjamin D.
2013-01-01
Background Healthy but sedentary aging leads to cardiovascular stiffening, whereas life-long endurance training preserves left ventricular (LV) compliance. However, it is unknown whether exercise training started later in life can reverse the effects of sedentary behavior on the heart. Methods and Results Twelve sedentary seniors and 12 Masters athletes were thoroughly screened for comorbidities. Subjects underwent invasive hemodynamic measurements with pulmonary artery catheterization to define Starling and LV pressure-volume curves; secondary functional outcomes included Doppler echocardiography, magnetic resonance imaging assessment of cardiac morphology, arterial stiffness (total aortic compliance and arterial elastance), and maximal exercise testing. Nine of 12 sedentary seniors (70.6±3 years; 6 male, 3 female) completed 1 year of endurance training followed by repeat measurements. Pulmonary capillary wedge pressures and LV end-diastolic volumes were measured at baseline, during decreased cardiac filling with lower-body negative pressure, and increased filling with saline infusion. LV compliance was assessed by the slope of the pressure-volume curve. Before training, V̇O2max, LV mass, LV end-diastolic volume, and stroke volume were significantly smaller and the LV was less compliant in sedentary seniors than Masters athletes. One year of exercise training had little effect on cardiac compliance. However, it reduced arterial elastance and improved V̇O2 max by 19% (22.8±3.4 versus 27.2± 4.3 mL/kg/mL; P<0.001). LV mass increased (10%, 64.5±7.9 versus 71.2±12.3 g/m2; P=0.037) with no change in the mass-volume ratio. Conclusions Although 1 year of vigorous exercise training did not appear to favorably reverse cardiac stiffening in sedentary seniors, it nonetheless induced physiological LV remodeling and imparted favorable effects on arterial function and aerobic exercise capacity. PMID:20956204
Effects of a cognitive training on spatial learning and associated functional brain activations
2013-01-01
Background Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40–55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). Results Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. Conclusions Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults. PMID:23870447
STS-35 Commander Brand is suspended over JSC WETF pool during egress exercise
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Commander Vance D. Brand is suspended via his parachute harness above the pool in JSC's Weightless Environment Training Facility (WETF) Bldg 29 during launch emergency egress exercises. Divers in the pool hold Brand's feet to steady him. In the background and on the poolside is Pilot Guy S. Gardner. Both Brand and Gardner are wearing launch and entry suits (LESs) and launch and entry helmets (LEHs).
STS-47 crew during JSC fire fighting exercises in the Fire Training Pit
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers line up along water hoses during JSC fire fighting exercises held at JSC's Fire Training Pit. In the foreground are (left to right) Pilot Curtis L. Brown, Jr, holding the hose nozzle, Mission Specialist (MS) N. Jan Davis, MS and Payload Commander (PLC) Mark C. Lee, and backup Payload Specialist Stan Koszelak, partially visible at the end of the line. In the background, manning a second hose are backup Payload Specialist Takao Doi, MS Jerome Apt, and Commander Robert L. Gibson. A veteran fire fighter (behind Brown) stands between the two hoses giving instructions. The Fire Training Pit is located across from the Gilruth Center Bldg 207. Doi represents Japan's National Space Development Agency (NASDA).
Mika, Anna; Oleksy, Łukasz; Kielnar, Renata; Wodka-Natkaniec, Ewa; Twardowska, Magdalena; Kamiński, Kamil; Małek, Zbigniew
2016-01-01
Background The aim of this study is to assess if the application of different methods of active recovery (working the same or different muscle groups from those which were active during fatiguing exercise) results in significant differences in muscle performance and if the efficiency of the active recovery method is dependent upon the specific sport activity (training loads). Design A parallel group non-blinded trial with repeated measurements. Methods Thirteen mountain canoeists and twelve football players participated in this study. Measurements of the bioelectrical activity, torque, work and power of the vastus lateralis oblique, vastus medialis oblique, and rectus femoris muscles were performed during isokinetic tests at a velocity of 90°/s. Results Active legs recovery in both groups was effective in reducing fatigue from evaluated muscles, where a significant decrease in fatigue index was observed. The muscles peak torque, work and power parameters did not change significantly after both modes of active recovery, but in both groups significant decrease was seen after passive recovery. Conclusions We suggest that 20 minutes of post-exercise active recovery involving the same muscles that were active during the fatiguing exercise is more effective in fatigue recovery than active exercise using the muscles that were not involved in the exercise. Active arm exercises were less effective in both groups which indicates a lack of a relationship between the different training regimens and the part of the body which is principally used during training. PMID:27706260
Wada, Juliano T; Borges-Santos, Erickson; Porras, Desiderio Cano; Paisani, Denise M; Cukier, Alberto; Lunardi, Adriana C; Carvalho, Celso RF
2016-01-01
Background Patients with COPD present a major recruitment of the inspiratory muscles, predisposing to chest incoordination, increasing the degree of dyspnea and impairing their exercise capacity. Stretching techniques could decrease the respiratory muscle activity and improve their contractile capacity; however, the systemic effects of stretching remain unknown. Objective The aim of this study was to evaluate the effects of aerobic training combined with respiratory muscle stretching on functional exercise capacity and thoracoabdominal kinematics in patients with COPD. Design This study was a randomized and controlled trial. Participants A total of 30 patients were allocated to a treatment group (TG) or a control group (CG; n=15, each group). Intervention The TG was engaged in respiratory muscle stretching and the CG in upper and lower limb muscle stretching. Both groups performed 24 sessions (twice a week, 12 weeks) of aerobic training. Evaluations Functional exercise capacity (6-minute walk test), thoracoabdominal kinematics (optoelectronic plethysmography), and respiratory muscle activity (surface electromyography) were evaluated during exercise. Analysis of covariance was used to compare the groups at a significance level of 5%. Results After the intervention, the TG showed improved abdominal (ABD) contribution, compartmental volume, mobility, and functional exercise capacity with decreased dyspnea when compared with the CG (P<0.01). The TG also showed a decreased respiratory muscle effort required to obtain the same pulmonary volume compared to the CG (P<0.001). Conclusion Our results suggest that aerobic training combined with respiratory muscle stretching increases the functional exercise capacity with decreased dyspnea in patients with COPD. These effects are associated with an increased efficacy of the respiratory muscles and participation of the ABD compartment. PMID:27822031
2013-01-01
Background Training of young Thoroughbred horses must balance development of cardiopulmonary function and aerobic capacity with loading of the musculoskeletal system that can potentially cause structural damage and/or lameness. High-speed equine treadmills are sometimes used to supplement exercise on a track in the training of young Thoroughbreds because the horse can run at high speeds but without the added weight of a rider. We tested the hypothesis that intermittent high-intensity exercise on a treadmill of young Thoroughbred horses entering training can enhance development of aerobic capacity (Vo2max) and running performance more than conventional training under saddle, and do so without causing lameness. Results Twelve yearling Thoroughbreds trained for 8 months with conventional riding (C) only, conventional riding plus a short (2 month, S) interval of once-per-week high-intensity treadmill exercise, or a long (8 month, L) interval of once-per-week high-intensity treadmill exercise. Three treadmill exercise tests evaluated Vo2max, oxygen transport and running performance variables in June of the yearling year (only for L), October of the yearling year and April of the 2-year-old year. No horses experienced lameness during the study. Aerobic capacity increased in all groups after training. In both October and April, Vo2max in L was higher than in C, but did not differ between L and S or S and C. Running speeds eliciting Vo2max also increased in all groups after training, with S (809 ± 3 m/s) and L (804 ± 9 m/s) higher than C (764 ± 27 m/s). Maximum heart rate decreased for all groups after training. Hematocrit and hemoglobin concentration increased for L throughout training. Conclusions Young Thoroughbred horses can increase aerobic capacity and running performance more than by strictly using track training under saddle with the addition of intermittent high-intensity treadmill exercise, and they can do so without experiencing lameness. This finding suggests that young racehorses might be able to achieve higher aerobic fitness during training without subjecting their musculoskeletal systems to increased loading and risk of developing lameness. The findings of this preliminary study do not indicate a specific protocol to best achieve this goal. PMID:23957961
Dedova, Irina V
2016-01-01
Background Sustained cardiac rehabilitation is the key intervention in the prevention and treatment of many human diseases. However, implementation of exercise programs can be challenging because of early fatigability in patients with chronic diseases, overweight individuals, and aged people. Current methods of fatigability assessment are based on subjective self-reporting such as rating of perceived exertion or require specialized laboratory conditions and sophisticated equipment. A practical approach allowing objective measurement of exercise-induced fatigue would be useful for the optimization of sustained delivery of cardiac rehabilitation to improve patient outcomes. Objectives The objective of this study is to develop and validate an innovative approach, allowing for the objective assessment of exercise-induced fatigue using the Web-enabled leg rehabilitation system. Methods MedExercise training devices were equipped with wireless temperature sensors in order to monitor their usage by temperature rise in the resistance unit (Δt°). Since Δt° correlated with the intensity and duration of exercise, this parameter was used to characterize participants’ leg work output (LWO). Personal smart devices such as laptop computers with wireless gateways and relevant software were used for monitoring of self-control training. Connection of smart devices to the Internet and cloud-based software allowed remote monitoring of LWO in participants training at home. Heart rates (HRs) were measured by fingertip pulse oximeters simultaneously with Δt° in 7 healthy volunteers. Results Exercise-induced fatigue manifested as the decline of LWO and/or rising HR, which could be observed in real-time. Conversely, training at the steady-state LWO and HR for the entire duration of exercise bout was considered as fatigue-free. The amounts of recommended daily physical activity were expressed as the individual Δt° values reached during 30-minute fatigue-free exercise of moderate intensity resulting in a mean of 8.1°C (SD 1.5°C, N=7). These Δt° values were applied as the thresholds for sending automatic notifications upon taking the personalized LWO doses by self-control training at home. While the mean time of taking LWO doses was 30.3 (SD 4.1) minutes (n=25), analysis of times required to reach the same Δt° by the same participant revealed that longer durations were due to fatigability, manifesting as reduced LWO at the later stages of training bouts. Typically, exercising in the afternoons associated with no fatigue, although longer durations of evening sessions suggested a diurnal fatigability pattern. Conclusions This pilot study demonstrated the feasibility of objective monitoring of fatigue development in real-time and online as well as retrospective fatigability quantification by the duration of training bouts to reach the same exercise dose. This simple method of leg training at home accompanied by routine fatigue monitoring might be useful for the optimization of exercise interventions in primary care and special populations. PMID:27549345
Exercise as Treatment for Anxiety: Systematic Review and Analysis
Stonerock, Gregory L.; Hoffman, Benson M.; Smith, Patrick J.; Blumenthal, James A.
2015-01-01
Background Exercise has been shown to reduce symptoms of anxiety, but few studies have studied exercise in individuals pre-selected because of their high anxiety. Purpose To review and critically evaluate studies of exercise training in adults with either high levels of anxiety or an anxiety disorder. Methods We conducted a systematic review of randomized clinical trials (RCTs) in which anxious adults were randomized to an exercise or non-exercise control condition. Data were extracted concerning anxiety outcomes and study design. Existing meta-analyses were also reviewed. Results Evidence from 12 RCTs suggested benefits of exercise, for select groups, similar to established treatments and greater than placebo. However, most studies had significant methodological limitations, including small sample sizes, concurrent therapies, and inadequate assessment of adherence and fitness levels. Conclusions Exercise may be a useful treatment for anxiety, but lack of data from rigorous, methodologically sound RCTs precludes any definitive conclusions about its effectiveness. PMID:25697132
Ferreira-Santos, Larissa; Martinez, Daniel G.; Nicolau, José Carlos; Moreira, Humberto G.; Alves, Maria Janieire; Pereira, Alexandre C.; Trombetta, Ivani C.; Negrão, Carlos Eduardo
2017-01-01
Background Gln27Glu (rs1042714) polymorphism of the β2-adrenergic receptor (ADRB2) has been association with cardiovascular functionality in healthy subjects. However, it is unknown whether the presence of the ADRB2 Gln27Glu polymorphism influences neurovascular responses during exercise in patients with acute coronary syndromes (ACS). We tested the hypothesis that patients with ACS homozygous for the Gln allele would have increased muscle sympathetic nerve activity (MSNA) responses and decreased forearm vascular conductance (FVC) responses during exercise compared with patients carrying the Glu allele (Gln27Glu and Glu27Glu). In addition, exercise training would restore these responses in Gln27Gln patients. Methods and results Thirty-days after an ischemic event, 61 patients with ACS without ventricular dysfunction were divided into 2 groups: (1) Gln27Gln (n = 35, 53±1years) and (2) Gln27Glu+Glu27Glu (n = 26, 52±2years). MSNA was directly measured using the microneurography technique, blood pressure (BP) was measured with an automatic oscillometric device, and blood flow was measured using venous occlusion plethysmography. MSNA, mean BP, and FVC were evaluated at rest and during a 3-min handgrip exercise. The MSNA (P = 0.02) and mean BP (P = 0.04) responses during exercise were higher in the Gln27Gln patients compared with that in the Gln27Glu+Glu27Glu patients. No differences were found in FVC. Two months of exercise training significantly decreased the MSNA levels at baseline (P = 0.001) and in their response during exercise (P = 0.02) in Gln27Gln patients, but caused no changes in Gln27Glu+Glu27Glu patients. Exercise training increased FVC responses in Gln27Glu+Glu27Glu patients (P = 0.03), but not in Gln27Gln patients. Conclusion The exaggerated MSNA and mean BP responses during exercise suggest an increased cardiovascular risk in patients with ACS and Gln27Gln polymorphism. Exercise training emerges as an important strategy for restoring this reflex control. Gln27Glu polymorphism of ADRB2 influences exercise-induced vascular adaptation in patients with ACS. PMID:28235084
Holm, Amanda L; Rowe Gorosh, Marla; Brady, Megan; White-Perkins, Denise
2017-03-01
Despite increasing awareness of the social determinants of health, health care disparities among sociocultural groups persist. Health care providers' unconscious bias resulting from unrecognized social privilege is one contributor to these disparities. In 2009, Henry Ford Health System initiated the Healthcare Equity Campaign both to raise employees' awareness of inequalities related to the social determinants of health and to increase their motivation to reduce them. After conducting awareness-raising activities to increase employees' understanding of the social determinants of health, a curriculum team developed the interactive Privilege and Responsibility Curricular Exercise (PRCE) and incorporated it into a series of trainings. The team designed the exercise to enhance participants' awareness of privilege in their lives and work, to improve their understanding of the impact of privilege on their own and others' lived experiences as a step beyond cultural competence toward cultural humility, and to encourage them to leverage their advantages to reduce health care inequities. About 300 participants of diverse professional and personal backgrounds from across the health system completed the training between the spring of 2009 and the spring of 2012, and many provided qualitative feedback about the exercise. Evaluations showed the exercise's potential as a powerful learning experience that might enhance a variety of equity- or diversity-related trainings, and also showed that participants considered the PRCE a highlight of the training. The PRCE is worthy of additional study and could prove valuable to other organizations.
2013-01-01
Background Consumption of moderate amounts of animal-derived protein has been shown to differently influence skeletal muscle hypertrophy during resistance training when compared with nitrogenous and isoenergetic amounts of plant-based protein administered in small to moderate doses. Therefore, the purpose of the study was to determine if the post-exercise consumption of rice protein isolate could increase recovery and elicit adequate changes in body composition compared to equally dosed whey protein isolate if given in large, isocaloric doses. Methods 24 college-aged, resistance trained males were recruited for this study. Subjects were randomly and equally divided into two groups, either consuming 48 g of rice or whey protein isolate (isocaloric and isonitrogenous) on training days. Subjects trained 3 days per week for 8 weeks as a part of a daily undulating periodized resistance-training program. The rice and whey protein supplements were consumed immediately following exercise. Ratings of perceived recovery, soreness, and readiness to train were recorded prior to and following the first training session. Ultrasonography determined muscle thickness, dual emission x-ray absorptiometry determined body composition, and bench press and leg press for upper and lower body strength were recorded during weeks 0, 4, and 8. An ANOVA model was used to measure group, time, and group by time interactions. If any main effects were observed, a Tukey post-hoc was employed to locate where differences occurred. Results No detectable differences were present in psychometric scores of perceived recovery, soreness, or readiness to train (p > 0.05). Significant time effects were observed in which lean body mass, muscle mass, strength and power all increased and fat mass decreased; however, no condition by time interactions were observed (p > 0.05). Conclusion Both whey and rice protein isolate administration post resistance exercise improved indices of body composition and exercise performance; however, there were no differences between the two groups. PMID:23782948
Intensity level for exercise training in fibromyalgia by using mathematical models
2010-01-01
Background It has not been assessed before whether mathematical models described in the literature for prescriptions of exercise can be used for fibromyalgia syndrome patients. The objective of this paper was to determine how age-predicted heart rate formulas can be used with fibromyalgia syndrome populations as well as to find out which mathematical models are more accurate to control exercise intensity. Methods A total of 60 women aged 18-65 years with fibromyalgia syndrome were included; 32 were randomized to walking training at anaerobic threshold. Age-predicted formulas to maximum heart rate ("220 minus age" and "208 minus 0.7 × age") were correlated with achieved maximum heart rate (HRMax) obtained by spiroergometry. Subsequently, six mathematical models using heart rate reserve (HRR) and age-predicted HRMax formulas were studied to estimate the intensity level of exercise training corresponding to heart rate at anaerobic threshold (HRAT) obtained by spiroergometry. Linear and nonlinear regression models were used for correlations and residues analysis for the adequacy of the models. Results Age-predicted HRMax and HRAT formulas had a good correlation with achieved heart rate obtained in spiroergometry (r = 0.642; p < 0.05). For exercise prescription in the anaerobic threshold intensity, the percentages were 52.2-60.6% HRR and 75.5-80.9% HRMax. Formulas using HRR and the achieved HRMax showed better correlation. Furthermore, the percentages of HRMax and HRR were significantly higher for the trained individuals (p < 0.05). Conclusion Age-predicted formulas can be used for estimating HRMax and for exercise prescriptions in women with fibromyalgia syndrome. Karnoven's formula using heart rate achieved in ergometric test showed a better correlation. For the prescription of exercises in the threshold intensity, 52% to 60% HRR or 75% to 80% HRMax must be used in sedentary women with fibromyalgia syndrome and these values are higher and must be corrected for trained patients. PMID:20307323
Shoulder Injuries in Individuals Who Participate in CrossFit Training
Summitt, Ryan J.; Cotton, Ryan A.; Kays, Adam C.; Slaven, Emily J.
2016-01-01
Background: CrossFit, a sport and fitness program, has become increasingly popular both nationally and internationally. Researchers have recently identified significant improvements in health and wellness due to CrossFit. However, some individuals assert that CrossFit poses an inherent risk of injury, specifically to the shoulder, due to the intensity of training. Currently, there is limited evidence to support this assertion. Hypothesis: Exercises performed during CrossFit do not place the shoulder at greater risk for injury. Injury rates are comparable to other sports of similar intensity. Study Design: Descriptive survey study. Level of Evidence: Level 5. Methods: An electronic survey was developed and dispersed to approximately 980 individuals who trained in CrossFit gyms. The survey identified demographic data, training characteristics, and the prevalence of injury over a 6-month period in individuals who participated in CrossFit training. Results: A total of 187 (19.1%) individuals completed the survey. Forty-four (23.5%) indicated that they had experienced a shoulder injury during CrossFit training over the previous 6 months. Of those who reported injury, 17 (38.6%) stated that this injury was an exacerbation of a previous injury sustained prior to starting CrossFit. There was no significant relationship between several demographic and training variables and shoulder injury. All shoulder injuries occurred at a rate of 1.94 per 1000 hours training, while “new” shoulder injuries occurred at a rate of 1.18 per 1000 hours training. The most commonly attributed causes of injury were improper form (33.3%) and exacerbation of a previous injury (33.3%). Twenty-five (64.1%) of those who experienced injury reported 1 month or less of training reduction due to the injury. Conclusion: Shoulder injury rates during CrossFit training are comparable to other methods of recreational exercise. Clinical Relevance: Clinicians should be aware of training demands of exercises in CrossFit and modifications for these exercises to safely progress their patients back to participation. PMID:27578854
Effects of Exercise Rehab on Male Asthmatic Patients: Aerobic Verses Rebound Training
Zolaktaf, Vahid; Ghasemi, Gholam A; Sadeghi, Morteza
2013-01-01
Background: There are some auspicious records on applying aerobic exercise for asthmatic patients. Recently, it is suggested that rebound exercise might even increase the gains. This study was designed to compare the effects of rebound therapy to aerobic training in male asthmatic patients. Methods: Sample included 37 male asthmatic patients (20-40 years) from the same respiratory clinic. After signing the informed consent, subjects volunteered to take part in control, rebound, or aerobic groups. There was no change in the routine medical treatment of patients. Supervised exercise programs continued for 8 weeks, consisting of two sessions of 45 to 60 minutes per week. Criteria measures were assessed pre- and post exercise program. Peak exercise capacity (VO2peak) was estimated by modified Bruce protocol, Forced vital capacity (FVC), Forced expiratory volume in 1 second (FEV1), and FEV1% were measured by spirometer. Data were analyzed by repeated measure analysis of variance (ANOVA). Results: Significant interactions were observed for all 4 criteria measures (P < 0.01), meaning that both the exercise programs were effective in improving FVC, FEV1, FEV1%, and VO2peak. Rebound exercise produced more improvement in FEV1, FEV1%, and VO2peak. Conclusions: Regular exercise strengthens the respiratory muscles and improves the cellular respiration. At the same time, it improves the muscular, respiratory, and cardio-vascular systems. Effects of rebound exercise seem to be promising. Findings suggest that rebound exercise is a useful complementary means for asthmatic male patients. PMID:23717762
STS-35 MS Hoffman drains LES after water egress exercises in JSC's WETF
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman drains his launch and entry suit (LES) by propping himself upside down against a chair. Training personnel (left) and Pilot Guy S. Gardner watch as Hoffman's head stand forces water from his suit. Crewmembers were participating in launch emergency egress procedures in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Various WETF mockups are visible in the background.
2012-01-01
Background Peripheral vestibular hypofunction is a major cause of dizziness. When complicated with postural imbalance, this condition can lead to an increased incidence of falls. In traditional clinical practice, gaze stabilization exercise is commonly used to rehabilitate patients. In this study, we established a computer-aided vestibular rehabilitation system by coupling infrared LEDs to an infrared receiver. This system enabled the subjects’ head-turning actions to be quantified, and the training was performed using vestibular exercise combined with computer games and interactive video games that simulate daily life activities. Methods Three unilateral and one bilateral vestibular hypofunction patients volunteered to participate in this study. The participants received 30 minutes of computer-aided vestibular rehabilitation training 2 days per week for 6 weeks. Pre-training and post-training assessments were completed, and a follow-up assessment was completed 1 month after the end of the training period. Results After 6 weeks of training, significant improvements in balance and dynamic visual acuity (DVA) were observed in the four participants. Self-reports of dizziness, anxiety and depressed mood all decreased significantly. Significant improvements in self-confidence and physical performance were also observed. The effectiveness of this training was maintained for at least 1 month after the end of the training period. Conclusion Real-time monitoring of training performance can be achieved using this rehabilitation platform. Patients demonstrated a reduction in dizziness symptoms after 6 weeks of training with this short-term interactive game approach. This treatment paradigm also improved the patients’ balance function. This system could provide a convenient, safe and affordable treatment option for clinical practitioners. PMID:23043886
2014-01-01
Background Evidence demonstrates that physical exercise and psychological wellbeing are closely interlinked, particularly in older-aged women. However, research investigating how different forms of exercise influence mental health in older-aged women is underdeveloped. Methods/Design A randomized controlled trial (N = 300) will assess the relative effectiveness of two different exercise programs (whole-body vibration and Multicomponent Training) for improving psychological wellbeing in older-aged women. The following outcomes will be assessed at three time points (that is, pre, post, and follow-up): psychological wellbeing, proactive attitude, quality of life, and happiness. Discussion Results will have important implications for preventing psychological and physiological disease in older-aged women and for managing health-related costs for this population group. Trial registration Number NCT01966562 on Clinical Gov database the 8 October 2013 PMID:24886107
Mohammadi, Hamid Reza; Khoshnam, Mohammad Sadegh; Khoshnam, Ebrahim
2018-01-01
Background: Previous studies have indicated that exercise training improves body composition and cardiovascular disease risk factors. The aim of the present study was to investigate the effect of 12 weeks of aerobic, strength and combined training on body composition, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and C-reactive protein (CRP) in sedentary middle-aged men. Methods: Forty-seven male aged 40–60 years voluntarily participated in this study and were divided in four groups: aerobic (n = 12), strength (n = 12), combined (n = 11), and control (n = 12) groups randomly. Body composition, ICAM-1, VCAM-1, and CRP were measured before and after 12 weeks. Data were analyzed using paired t-test and analysis of variance statistical methods. Results: There were significant differences in body weight between aerobic and strength training (P = 0.004) and aerobic and control groups (P = 0.018), body mass index between combined and strength training (P = 0.004) and combined and control groups (P = 0.001), fat percentage between aerobic training and control group (P = 0.017) and combined training and control groups (P = 0.004), and finally, fat-free mass between aerobic and strength training (P = 0.024), aerobic and combined training (P = 0.0001), strength and control groups (P = 0.035), and combined and control groups (P = 0.0001). Conclusions: The results indicated that 12-week workout, 20–60 min/session, 3 days a week of moderate intensity exercise improved body composition, ICAM-1, VCAM-1, and CRP compared to those who did not participate in any training. However, all three types of exercises had small benefits on body composition, ICAM-1, VCAM-1, and CRP in sedentary middle-aged men, and the importance of combined training required further investigations. PMID:29441186
STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.
2009-12-22
JSC2009-E-286974 (22 Dec. 2009) --- Astronauts Ken Ham (left background), STS-132 commander; Tony Antonelli (right background), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
2013-01-01
Background Reaction time, coordination, and cognition performance typically diminish in older adults, which may lead to gait impairments, falls, and injuries. Regular strength–balance exercises are highly recommended to reduce this problem and to improve health, well-being, and independence in old age. However, many older people face a lack of motivation in addition to other strong barriers to exercise. We developed ActiveLifestyle, an information technology (IT)-based system for active and healthy aging aiming at improving balance and strength. ActiveLifestyle is a training app that runs on a tablet and assists, monitors, and motivates older people to follow personalized training plans autonomously at home. Objective The objectives were to (1) investigate which IT-mediated motivation strategies increase adherence to physical exercise training plans in older people, (2) assess the impact of ActiveLifestyle on physical activity behavior change, and (3) demonstrate the effectiveness of the ActiveLifestyle training to improve gait speed. Methods A total of 44 older adults followed personalized, 12-week strength and balance training plans. All participants performed the exercises autonomously at home. Questionnaires were used to assess the technological familiarity and stage of behavior change, as well as the effectiveness of the motivation instruments adopted by ActiveLifestyle. Adherence to the exercise plan was evaluated using performance data collected by the app and through information given by the participants during the study. Pretests and posttests were performed to evaluate gait speed of the participants before and after the study. Results Participants were 75 years (SD 6), predominantly female (64%), held a trade or professional diploma (54%), and their past profession was in a sitting position (43%). Of the 44 participants who enrolled, 33 (75%) completed the study. The app proved to assist and motivate independently living and healthy older adults to autonomously perform strength–balance exercises (median 6 on a 7-point Likert scale). Social motivation strategies proved more effective than individual strategies to stimulate the participants to comply with the training plan, as well as to change their behavior permanently toward a more physically active lifestyle. The exercises were effective to improve preferred and fast gait speed. Conclusions ActiveLifestyle assisted and motivated independently living and healthy older people to autonomously perform strength–balance exercises over 12 weeks and had low dropout rates. The social motivation strategies were more effective to stimulate the participants to comply with the training plan and remain on the intervention. The adoption of assistive technology devices for physical intervention tends to motivate and retain older people exercising for longer periods of time. PMID:23939401
Rehabilitation of the Ankle After Acute Sprain or Chronic Instability.
Mattacola, Carl G; Dwyer, Maureen K
2002-12-01
OBJECTIVE: To outline rehabilitation concepts that are applicable to acute and chronic injury of the ankle, to provide evidence for current techniques used in the rehabilitation of the ankle, and to describe a functional rehabilitation program that progresses from basic to advanced, while taking into consideration empirical data from the literature and clinical practice. BACKGROUND: Important considerations in the rehabilitation of ankle injuries include controlling the acute inflammatory process, regaining full ankle range of motion, increasing muscle strength and power, and improving proprioceptive abilities. These goals can be achieved through various modalities, flexibility exercises, and progressive strength- and balance-training exercises. In this article, we discuss the deleterious effects of ankle injury on ankle-joint proprioception and muscular strength and how these variables can be quantifiably measured to follow progress through a rehabilitation program. Evidence to support the effectiveness of applying orthotics and ankle braces during the acute and subacute phases of ankle rehabilitation is provided, along with recommendations for functional rehabilitation of ankle injuries, including a structured progression of exercises. RECOMMENDATIONS: Early functional rehabilitation of the ankle should include range-of-motion exercises and isometric and isotonic strength-training exercises. In the intermediate stage of rehabilitation, a progression of proprioception-training exercises should be incorporated. Advanced rehabilitation should focus on sport-specific activities to prepare the athlete for return to competition. Although it is important to individualize each rehabilitation program, this well-structured template for ankle rehabilitation can be adapted as needed.
Rehabilitation of the Ankle After Acute Sprain or Chronic Instability
Mattacola, Carl G.; Dwyer, Maureen K.
2002-01-01
Objective: To outline rehabilitation concepts that are applicable to acute and chronic injury of the ankle, to provide evidence for current techniques used in the rehabilitation of the ankle, and to describe a functional rehabilitation program that progresses from basic to advanced, while taking into consideration empirical data from the literature and clinical practice. Background: Important considerations in the rehabilitation of ankle injuries include controlling the acute inflammatory process, regaining full ankle range of motion, increasing muscle strength and power, and improving proprioceptive abilities. These goals can be achieved through various modalities, flexibility exercises, and progressive strength- and balance-training exercises. In this article, we discuss the deleterious effects of ankle injury on ankle-joint proprioception and muscular strength and how these variables can be quantifiably measured to follow progress through a rehabilitation program. Evidence to support the effectiveness of applying orthotics and ankle braces during the acute and subacute phases of ankle rehabilitation is provided, along with recommendations for functional rehabilitation of ankle injuries, including a structured progression of exercises. Recommendations: Early functional rehabilitation of the ankle should include range-of-motion exercises and isometric and isotonic strength-training exercises. In the intermediate stage of rehabilitation, a progression of proprioception-training exercises should be incorporated. Advanced rehabilitation should focus on sport-specific activities to prepare the athlete for return to competition. Although it is important to individualize each rehabilitation program, this well-structured template for ankle rehabilitation can be adapted as needed. PMID:12937563
Whole body vibration for older persons: an open randomized, multicentre, parallel, clinical trial
2011-01-01
Background Institutionalized older persons have a poor functional capacity. Including physical exercise in their routine activities decreases their frailty and improves their quality of life. Whole-body vibration (WBV) training is a type of exercise that seems beneficial in frail older persons to improve their functional mobility, but the evidence is inconclusive. This trial will compare the results of exercise with WBV and exercise without WBV in improving body balance, muscle performance and fall prevention in institutionalized older persons. Methods/Design An open, multicentre and parallel randomized clinical trial with blinded assessment. 160 nursing home residents aged over 65 years and of both sexes will be identified to participate in the study. Participants will be centrally randomised and allocated to interventions (vibration or exercise group) by telephone. The vibration group will perform static/dynamic exercises (balance and resistance training) on a vibratory platform (Frequency: 30-35 Hz; Amplitude: 2-4 mm) over a six-week training period (3 sessions/week). The exercise group will perform the same exercise protocol but without a vibration stimuli platform. The primary outcome measure is the static/dynamic body balance. Secondary outcomes are muscle strength and, number of new falls. Follow-up measurements will be collected at 6 weeks and at 6 months after randomization. Efficacy will be analysed on an intention-to-treat (ITT) basis and 'per protocol'. The effects of the intervention will be evaluated using the "t" test, Mann-Witney test, or Chi-square test, depending on the type of outcome. The final analysis will be performed 6 weeks and 6 months after randomization. Discussion This study will help to clarify whether WBV training improves body balance, gait mobility and muscle strength in frail older persons living in nursing homes. As far as we know, this will be the first study to evaluate the efficacy of WBV for the prevention of falls. Trial Registration ClinicalTrials.gov: NCT01375790 PMID:22192313
Alizadeh, Hamid; Daryanoosh, Farhad; Moatari, Maryam; Hoseinzadeh, Khadijeh
2015-01-01
Background: Herein, we studied the effects of two different exercise protocols on IL-17 and CRP plasma levels along with the anti-inflammatory effects of fish oil. The purpose of the present study was to investigate the effect of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) consumption along with two different types of physical activities on IL-17 and CRP plasma levels in trained male mice. Methods: A total of 130 adult male mice of Syrian race with the age of 2 months and the weight of 35±1 grams were selected. At the beginning, 10 mice were killed in order to determine the amounts of pre-test variables. The rest of the mice were randomly divided into 6 groups including control group (n=20), supplement (n=20), aerobic exercise (n=20), anaerobic exercise (n=20), supplementaerobic exercise (n=20), and supplement-anaerobic exercise (n=20). Blood samples were withdrawn from the tail under intraperitoneal ketamine and xylasine anaesthesia. The anaerobic training program included 8 weeks of running on treadmill, 3 sessions per week; the aerobic training program included 8 weeks of running on treadmill, 5 sessions per week. At the end of the training program, the blood sample from each group was taken in order to measure the CRP and IL-17 levels. The analysis of variance (ANOVA) was used to determine the differences among the groups. Results: The results showed that there was a significant difference in IL-17 and CRP plasma levels between the groups after 8 weeks (P<0.05). Conclusion: Following the two different training programs, both IL-17 and CRP plasma levels increased, although these observed increases were not same for two measured variables. The results might also show that the effect of the supplement depends on the type of training. PMID:26793627
Postural adaptations to long-term training in Prader-Willi patients
2011-01-01
Background Improving balance and reducing risk of falls is a relevant issue in Prader-Willi Syndrome (PWS). The present study aims to quantify the effect of a mixed training program on balance in patients with PWS. Methods Eleven adult PWS patients (mean age: 33.8 ± 4.3 years; mean BMI: 43.3 ± 5.9 Kg/m2) attended a 2-week training program including balance exercises during their hospital stay. At discharge, Group 1 (6 patients) continued the same exercises at home for 6 months, while Group 2 (5 patients) quitted the program. In both groups, a low-calorie, well-balanced diet of 1.200 kcal/day was advised. They were assessed at admission (PRE), after 2 weeks (POST1) and at 6-month (POST2). The assessment consisted of a clinical examination, video recording and 60-second postural evaluation on a force platform. Range of center of pressure (CoP) displacement in the antero-posterior direction (RANGEAP index) and the medio-lateral direction (RANGEML index) and its total trajectory length were computed. Results At POST1, no significant changes in all of the postural parameters were observed. At completion of the home program (POST2), the postural assessment did not reveal significant modifications. No changes in BMI were observed in PWS at POST2. Conclusions Our results showed that a long-term mixed, but predominantly home-based training on PWS individuals was not effective in improving balance capacity. Possible causes of the lack of effectiveness of our intervention include lack of training specificity, an inadequate dose of exercise, an underestimation of the neural and sensory component in planning rehabilitation exercise and failed body weight reduction during the training. Also, the physiology of balance instability in these patients may possibly compose a complex puzzle not affected by our exercise training, mainly targeting muscle weakness. PMID:21575153
Smart, Neil A.; Larsen, Alf I.; Le Maitre, John P.; Ferraz, Almir S.
2011-01-01
Background. We pooled data from four studies, to establish whether exercise training programs were able to modulate systemic cytokine levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). A second aim was to establish if differences in ExT regimens are related to degree of change in cytokines and peak VO2. Methods. Data from four centres relating to training protocol, exercise capacity, and cytokine measures (TNF-alpha and IL-6) were pooled for analysis. Results. Data for 106 CHF patients were collated (98 men, age 62 ± 10 yrs, wt 79 ± 14 Kg). Patients were moderately impaired (peak VO2 16.9 ± 4.4 mls/kg/min), with moderate LV systolic dysfunction (EF 30 ± 6.9%), 78% (83) had ischaemic cardiomyopathy. After ExT, peak VO2 increased 1.4 ± 3.4 ml/kg/min (P < .001), serum TNF-alpha decreased 1.9 ± 8.6 pg/ml (P = .02) and IL-6 was not significantly changed (0.5 ± 5.4 pg/ml, P = .32) for the whole group. Baseline and post-training peak VO2 changes were not correlated with change in cytokine levels. Conclusions. Exercise training reduces levels TNF-alpha but not IL-6 in CHF. However, across a heterogenic patient group, change in peak VO2 was not correlated with alterations in cytokine levels. While greater exercise volume (hours) was superior in improving peak VO2, no particular characteristic of ExT regimes appeared superior in effecting change in serum cytokines. PMID:21403878
Use of a Standardized Patient Exercise to Assess Core Competencies During Fellowship Training
Barry, Curtis T.; Avissar, Uri; Asebrook, Maureen; Sostok, Michael A.; Sherman, Kenneth E.; Zucker, Stephen D.
2010-01-01
Background The Accreditation Council for Graduate Medical Education requires fellows in many specialties to demonstrate attainment of 6 core competencies, yet relatively few validated assessment tools currently exist. We present our initial experience with the design and implementation of a standardized patient (SP) exercise during gastroenterology fellowship that facilitates appraisal of all core clinical competencies. Methods Fellows evaluated an SP trained to portray an individual referred for evaluation of abnormal liver tests. The encounters were independently graded by the SP and a faculty preceptor for patient care, professionalism, and interpersonal and communication skills using quantitative checklist tools. Trainees' consultation notes were scored using predefined key elements (medical knowledge) and subjected to a coding audit (systems-based practice). Practice-based learning and improvement was addressed via verbal feedback from the SP and self-assessment of the videotaped encounter. Results Six trainees completed the exercise. Second-year fellows received significantly higher scores in medical knowledge (55.0 ± 4.2 [standard deviation], P = .05) and patient care skills (19.5 ± 0.7, P = .04) by a faculty evaluator as compared with first-year trainees (46.2 ± 2.3 and 14.7 ± 1.5, respectively). Scores correlated by Spearman rank (0.82, P = .03) with the results of the Gastroenterology Training Examination. Ratings of the fellows by the SP did not differ by level of training, nor did they correlate with faculty scores. Fellows viewed the exercise favorably, with most indicating they would alter their practice based on the experience. Conclusions An SP exercise is an efficient and effective tool for assessing core clinical competencies during fellowship training. PMID:21975896
THE EFFECT OF CAFFEINE SUPPLEMENTATION ON TRAINED INDIVIDUALS SUBJECTED TO MAXIMAL TREADMILL TEST.
Salicio, Viviane Martins Mana; Fett, Carlos Alexandre; Salicio, Marcos Adriano; Brandäo, Camila Fernanda Costa Cunha Moraes; Stoppiglia, Luiz Fabrizio; Fett, Waléria Christiane Rezende; Botelho, and Clovis
2017-01-01
Background: Intense physical training increases oxidative stress and inflammation, resulting into muscle and cellular damage. The aim of this study was to analyze the effect of caffeine supplementation on trained young individuals subjected to two treadmill maximal tests. Materials and Methods: It was a double-blind and crossover study comprising 24 active individuals within the age group 18-30 years. The comparisons were conducted: the effect of exercise (week 1 x 2) and caffeine intake (GC x GP) on thiobarbituric acid (TBARS), interleukin 6 (IL-6), interleukin 10 (IL-10) and superoxide dismutase (SOD) variables during pre-exercise time (30 min. after caffeine or placebo intake) and post-exercise (5 min after treadmill test). Results: The comparison between weeks 1 and 2 showed increase in the first week, in the following items: TBARS, IL-6 and IL-10 in the GC and GP groups. The comparison within the same week showed that GC individuals presented lower post-exercise TBARS values in the first and second weeks; IL- 6 presented higher post-exercise values in the GC group in both weeks. The paired analysis comparing pre- and post-exercise, with and without caffeine showed that IL-6 presented higher post-exercise values in the GC group. Conclusion: Caffeine used by athletes can decrease oxidative stress. The increased IL-6 suggest that this ergogenic supplement may stimulate muscle hypertrophy, since IL-6 has myokine effect. However, the caffeine effect on IL-6 level and muscle hypertrophy increase should be better investigated in future studies. PMID:28480382
Toigo, Marco; Hoppeler, Hans
2017-01-01
Background Mechanical stress, including blood pressure related factors, up-regulate expression of the pro-angiogenic extracellular matrix protein tenascin-C in skeletal muscle. We hypothesized that increased capillarization of skeletal muscle with the repeated augmentation in perfusion during endurance training is associated with blood vessel-related expression of tenascin-C and would be affected by the single-nucleotide polymorphism (SNP) rs2104772, which characterizes the non-synonymous exchange of thymidine (T)-to-adenosine (A) in the amino acid codon 1677 of tenascin-C. Methods Sixty-one healthy, untrained, male white participants of Swiss descent performed thirty 30-min bouts of endurance exercise on consecutive weekdays using a cycling ergometer. Genotype and training interactions were called significant at Bonferroni-corrected p-value of 5% (repeated measures ANOVA). Results Endurance training increased capillary-to-fiber-ratio (+11%), capillary density (+7%), and mitochondrial volume density (+30%) in m. vastus lateralis. Tenascin-C protein expression in this muscle was confined to arterioles and venules (80% of cases) and increased after training in A-allele carriers. Prior to training, volume densities of subsarcolemmal and myofibrillar mitochondria in m. vastus lateralis muscle were 49% and 18%, respectively, higher in A/A homozygotes relative to T-nucleotide carriers (A/T and T/T). Training specifically increased capillary-to-fiber ratio in A-nucleotide carriers but not in T/T homozygotes. Genotype specific regulation of angiogenesis was reflected by the expression response of 8 angiogenesis-associated transcripts after exercise, and confirmed by training-induced alterations of the shear stress related factors, vimentin and VEGF A. Conclusion Our findings provide evidence for a negative influence of T/T homozygosity in rs2104772 on capillary remodeling with endurance exercise. PMID:28384286
Nandrolone Plus Moderate Exercise Increases the Susceptibility to Lethal Arrhythmias
Ghorbani Baravati, Hamideh; Joukar, Siyavash; Fathpour, Hossein; Kordestani, Zeinab
2015-01-01
Background: Until now, no experimental study has directly assessed the arrhythmogenesis of chronic consumption of anabolic androgenic steroids along with moderate-intensity endurance exercise. Objectives: We evaluated the influence of integration of anabolic androgenic steroids along with moderate-intensity endurance exercise on susceptibility to lethal ventricular arrhythmias in rat. Materials and Methods: The animal groups were as follows: control group (CTL); exercise group (EX) which were under 6 weeks of treadmill exercise; nandrolone group (Nan) which received 5 mg/kg of nandrolone decanoate twice a week; vehicle group (Arach) which received Arachis oil (solvent of nandrolone); trained vehicle group (Arach + Ex); and trained nandrolone group (Nan + Ex). One day after ending of the intervention period, arrhythmia was inducted by intravenous infusion of aconitine and ventricular arrhythmias were recorded. Then malondialdehyde (MDA) and glutathione peroxidase (GPX) of heart tissue were measured. Results: Nandrolone, exercise, and their combination were associated with heart hypertrophy. Exercise could prevent the incremental effect of nandrolone on MDA/GPX ratio. Chronic administration of nandrolone with moderate-intensity endurance exercise had no significant effect on blood pressure, heart rate, and basal electrocardiographic parameters. Combination of nandrolone and exercise significantly increased the incidence of ventricular fibrillation (VF) and reduced the VF latency (P < 0.05). Conclusions: The findings suggest that chronic coadministration of nandrolone with moderate-intensity endurance exercise facilitates the VF occurrence in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality. PMID:26396972
The origins of Western mind-body exercise methods.
Hoffman, Jonathan; Gabel, C Philip
2015-11-02
Background: Over recent decades, mind-body exercise methods have gained international popularity and importance in the management of musculoskeletal disorders. Objectives: The scope of this paper was to investigate: the origins of Western mind-body methods, their philosophies, exercises, and relationship with mainstream healthcare over the last two centuries. Major findings: Within a few decades of the turn of the 20th century, a cluster of mind-body exercise methods emerged from at least six pioneering founders: Checkley, Müller, Alexander, Randell, Pilates, and Morris. Each was based upon a similar exercise philosophy and similar functional movement-harmonizing exercises. This renaissance of independent mind-body schools occurred in parallel with the demise of the 18th and 19th century gymnasium Physical Culture movement and the concurrent emergence of bodybuilding and strength training. Even though mostly forgotten today, Western mind-body exercise methods enjoyed celebrated success during the first half of the 20th century, were hailed by medical and allied health practitioners and practiced by millions from society's elite to deprived minorities. Conclusions: Rediscovering the Western mind-body exercise movement is hoped to facilitate official healthcare establishment recognition of this kind of training as an integral entity. This may widen research opportunities and consolidate approaches toward: optimal musculoskeletal rehabilitation and injury prevention, promotion of a healthy active lifestyle environment in the modern world, and enhancement of the natural pain-free human athletic look, feel, and performance.
Kehler, Ainslie K.; Heinrich, Katie M.
2017-01-01
Background Traditional society values have long-held the notion that the pregnant woman is construed as a risk to her growing fetus and is solely responsible for controlling this risk to ensure a healthy pregnancy. It is hard to ignore the participation of pregnant women in sport and exercise today, especially in high-level sports and popular fitness programs such as CrossFit™. This challenges both traditional and modern prenatal exercise guidelines from health care professionals and governing health agencies. The guidelines and perceived limitations of prenatal exercise have drastically evolved since the 1950’s. Aim The goal of this paper is to bring awareness to the idea that much of the information regarding exercise safety during pregnancy is hypersensitive and dated, and the earlier guidelines had no scientific rigor. Research is needed on the upper limits of exercise intensity and exercise frequency, as well as their potential risks (if any) on the woman or fetus. Discussion Pregnant women are physically capable of much more than what was once thought. There is still disagreement about the types of exercise deemed appropriate, the stage at which exercise should begin and cease, the frequency of exercise sessions, as well as the optimal level of intensity during prenatal exercise. Conclusion Research is needed to determine the upper limits of exercise frequency and intensity for pregnant women who are already trained. Healthy women and female athletes can usually maintain their regular training regime once they become pregnant. PMID:26210535
STS-45 MS Foale in EMU prepares for underwater exercises in JSC's WETF pool
1991-02-26
S91-30196 (1 March 1991) --- Astronaut C. Michael Foale, mission specialist, and Kathryn D. Sullivan, payload commander (barely visible in background), stand on a platform (out of frame) which is part of a system that will lower them into a 25-ft. deep pool. The payload commander and mission specialist used the pool in the weightless environment training facility (WET-F) to rehearse a contingency extravehicular activity (EVA). Astronauts wear pressurized spacesuits configured for achieving a neutrally buoyant condition in the water to simulate both planned and contingency EVAs. Two SCUBA-equipped swimmers assisting the training are seen in the background.
Role of Exercise in the Management of Diabetes Mellitus: the Global Scenario
Thent, Zar Chi; Das, Srijit; Henry, Leonard Joseph
2013-01-01
Background Exercise training programs have emerged as a useful therapeutic regimen for the management of type 2 diabetes mellitus (T2DM). Majority of the Western studies highlighted the effective role of exercise in T2DM. Therefore, the main aim was to focus on the extent, type of exercise and its clinical significance in T2DM in order to educate the clinicians from developing countries, especially in Asians. Methods Pubmed, Science Direct, Scopus, ISI Web of Knowledge and Google scholar were searched using the terms “type 2 diabetes mellitus,” “type 2 DM,” “exercise,” and/or “physical activity,” and “type 2 diabetes mellitus with exercise.” Only clinical or human studies published in English language between 2000 and 2012 were included. Certain criteria were assigned to achieve appropriate results. Results Twenty five studies met the selected criteria. The majority of the studies were randomized controlled trial study design (65%). Most of the aerobic exercise based studies showed a beneficial effect in T2DM. Resistance exercise also proved to have positive effect on T2DM patients. Minimal studies related to other types of exercises such as yoga classes, joba riding and endurance-type exercise were found. On the other hand, United States of America (USA) showed strong interest of exercise management towards T2DM. Conclusion Aerobic exercise is more common in clinical practice compared to resistance exercise in managing T2DM. Treatment of T2DM with exercise training showed promising role in USA. A large number of researches are mandatory in the developing countries for incorporating exercise in the effective management of T2DM. PMID:24236181
Judge, Lawrence W; Burke, Jeanmarie R
2010-06-01
To determine the effects of training sessions, involving high-resistance, low-repetition bench press exercise, on strength recovery patterns, as a function of gender and training background. The subjects were 12 athletes (6 males and 6 females) and age-matched college students of both genders (4 males and 4 females). The subjects completed a 3-wk resistance training program involving a bench press exercise, 3 d/wk, to become familiar with the testing procedure. After the completion of the resistance training program, the subjects, on three consecutive weeks, participated in two testing sessions per week, baseline session and recovery session. During the testing sessions, subjects performed five sets of the bench press exercise at 50% to 100% of perceived five repetition maximum (5-RM). Following the weekly baseline sessions, subjects rested during a 4-, 24-, or 48-h recovery period. Strength measurements were estimates of one repetition maximum (1-RM), using equivalent percentages for the number of repetitions completed by the subject at the perceived 5-RM effort of the bench press exercise. The full-factorial ANOVA model revealed a Gender by Recovery Period by Testing Session interaction effect, F(2, 32) = 10.65; P < .05. Among male subjects, decreases in estimated 1-RM were detected at the 4- and 24-h recovery times. There were no differences in muscle strength among the female subjects, regardless of recovery time. For bench press exercises, using different recovery times of 48 h for males and 4 h for females may optimize strength development as a function of gender.
Garnæs, Kirsti Krohn; Mørkved, Siv; Salvesen, Øyvind; Moholdt, Trine
2016-01-01
Background The effectiveness of exercise training for preventing excessive gestational weight gain (GWG) and gestational diabetes mellitus (GDM) is still uncertain. As maternal obesity is associated with both GWG and GDM, there is a special need to assess whether prenatal exercise training programs provided to obese women reduce the risk of adverse pregnancy outcomes. Our primary aim was to assess whether regular supervised exercise training in pregnancy could reduce GWG in women with prepregnancy overweight/obesity. Secondary aims were to examine the effects of exercise in pregnancy on 30 outcomes including GDM incidence, blood pressure, blood measurements, skinfold thickness, and body composition. Methods and Findings This was a single-center study where we randomized (1:1) 91 pregnant women with a prepregnancy body mass index (BMI) ≥ 28 kg/m2 to exercise training (n = 46) or control (standard maternity care) (n = 45). Assessments were done at baseline (pregnancy week 12–18) and in late pregnancy (week 34–37), as well as at delivery. The exercise group was offered thrice weekly supervised sessions of 35 min of moderate intensity endurance exercise and 25 min of strength training. Seventeen women were lost to follow-up (eight in the exercise group and nine in the control group). Our primary endpoint was GWG from baseline testing to delivery. The principal analyses were done as intention-to-treat analyses, with supplementary per protocol analyses where we assessed outcomes in the women who adhered to the exercise program (n = 19) compared to the control group. Mean GWG from baseline to delivery was 10.5 kg in the exercise group and 9.2 kg in the control group, with a mean difference of 0.92 kg (95% CI −1.35, 3.18; p = 0.43). Among the 30 secondary outcomes in late pregnancy, an apparent reduction was recorded in the incidence of GDM (2009 WHO definition) in the exercise group (2 cases; 6.1%) compared to the control group (9 cases; 27.3%), with an odds ratio of 0.1 (95% CI 0.02, 0.95; p = 0.04). Systolic blood pressure was significantly lower in the exercise group (mean 120.4 mm Hg) compared to the control group (mean 128.1 mm Hg), with a mean difference of −7.73 mm Hg (95% CI −13.23, −2.22; p = 0.006). No significant between-group differences were seen in diastolic blood pressure, blood measurements, skinfold thickness, or body composition in late pregnancy. In per protocol analyses, late pregnancy systolic blood pressure was 115.7 (95% CI 110.0, 121.5) mm Hg in the exercise group (significant between-group difference, p = 0.001), and diastolic blood pressure was 75.1 (95% CI 71.6, 78.7) mm Hg (significant between-group difference, p = 0.02). We had planned to recruit 150 women into the trial; hence, under-recruitment represents a major limitation of our results. Another limitation to our study was the low adherence to the exercise program, with only 50% of the women included in the intention-to-treat analysis adhering as described in the study protocol. Conclusions In this trial we did not observe a reduction in GWG among overweight/obese women who received a supervised exercise training program during their pregnancy. The incidence of GDM in late pregnancy seemed to be lower in the women randomized to exercise training than in the women receiving standard maternity care only. Systolic blood pressure in late pregnancy was also apparently lower in the exercise group than in the control group. These results indicate that supervised exercise training might be beneficial as a part of standard pregnancy care for overweight/obese women. Trial Registration ClinicalTrials.gov NCT01243554 PMID:27459375
2012-01-01
Background Women with cancer are significantly more likely to fall than women without cancer placing them at higher risk of fall-related fractures, other injuries and disability. Currently, no evidence-based fall prevention strategies exist that specifically target female cancer survivors. The purpose of the GET FIT (Group Exercise Training for Functional Improvement after Treatment) trial is to compare the efficacy of two distinct types of exercise, tai chi versus strength training, to prevent falls in women who have completed treatment for cancer. The specific aims of this study are to: 1) Determine and compare the efficacy of both tai chi training and strength training to reduce falls in older female cancer survivors, 2) Determine the mechanism(s) by which tai chi and strength training each reduces falls and, 3) Determine whether or not the benefits of each intervention last after structured training stops. Methods/Design We will conduct a three-group, single-blind, parallel design, randomized controlled trial in women, aged 50–75 years old, who have completed chemotherapy for cancer comparing 1) tai chi 2) strength training and 3) a placebo control group of seated stretching exercise. Women will participate in supervised study programs twice per week for six months and will be followed for an additional six months after formal training stops. The primary outcome in this study is falls, which will be prospectively tracked by monthly self-report. Secondary outcomes are maximal leg strength measured by isokinetic dynamometry, postural stability measured by computerized dynamic posturography and physical function measured by the Physical Performance Battery, all measured at baseline, 3, 6 and 12 months. The sample for this trial (N=429, assuming 25% attrition) will provide adequate statistical power to detect at least a 47% reduction in the fall rate over 1 year by being in either of the 2 exercise groups versus the control group. Discussion The GET FIT trial will provide important new knowledge about preventing falls using accessible and implementable exercise interventions for women following chemotherapy for cancer. ClinicalTrials.gov NCT01635413 PMID:23217054
Telemonitoring of home exercise cycle training in patients with COPD
Franke, Karl-Josef; Domanski, Ulrike; Schroeder, Maik; Jansen, Volker; Artmann, Frank; Weber, Uwe; Ettler, Rainer; Nilius, Georg
2016-01-01
Background Regular physical activity is associated with reduced mortality in patients with chronic obstructive pulmonary disease (COPD). Interventions to reduce time spent in sedentary behavior could improve outcomes. The primary purpose was to investigate the impact of telemonitoring with supportive phone calls on daily exercise times with newly established home exercise bicycle training. The secondary aim was to examine the potential improvement in health-related quality of life and physical activity compared to baseline. Methods This prospective crossover-randomized study was performed over 6 months in stable COPD patients. The intervention phase (domiciliary training with supporting telephone calls) and the control phase (training without phone calls) were randomly assigned to the first or the last 3 months. In the intervention phase, patients were called once a week if they did not achieve a real-time monitored daily cycle time of 20 minutes. Secondary aims were evaluated at baseline and after 3 and 6 months. Health-related quality of life was measured by the COPD Assessment Test (CAT), physical activity by the Godin Leisure Time Exercise Questionnaire (GLTEQ). Results Of the 53 included patients, 44 patients completed the study (forced expiratory volume in 1 second 47.5%±15.8% predicted). In the intervention phase, daily exercise time was significantly higher compared to the control phase (24.2±9.4 versus 19.6±10.3 minutes). Compared to baseline (17.6±6.1), the CAT-score improved in the intervention phase to 15.3±7.6 and in the control phase to 15.7±7.3 units. The GLTEQ-score increased from 12.2±12.1 points to 36.3±16.3 and 33.7±17.3. Conclusion Telemonitoring is a simple method to enhance home exercise training and physical activity, improving health-related quality of life. PMID:27956829
Richter, Manuel J.; Grimminger, Jan; Krüger, Britta; Ghofrani, Hossein A.; Mooren, Frank C.; Gall, Henning; Pilat, Christian; Krüger, Karsten
2017-01-01
Pulmonary hypertension (PH) is characterized by severe exercise limitation mainly attributed to the impairment of right ventricular function resulting from a concomitant elevation of pulmonary vascular resistance and pressure. The unquestioned cornerstone in the management of patients with pulmonary arterial hypertension (PAH) is specific vasoactive medical therapy to improve pulmonary hemodynamics and strengthen right ventricular function. Nevertheless, evidence for a beneficial effect of exercise training (ET) on pulmonary hemodynamics and functional capacity in patients with PH has been growing during the past decade. Beneficial effects of ET on regulating factors, inflammation, and metabolism have also been described. Small case-control studies and randomized clinical trials in larger populations of patients with PH demonstrated substantial improvements in functional capacity after ET. These findings were accompanied by several studies that suggested an effect of ET on inflammation, although a direct link between this effect and the therapeutic benefit of ET in PH has not yet been demonstrated. On this background, the aim of the present review is to describe current concepts regarding the effects of exercise on the pulmonary circulation and pathophysiological limitations, as well as the clinical and mechanistic effects of exercise in patients with PH. PMID:28680563
Muscle damage induced by stretch-shortening cycle exercise.
Kyröläinen, H; Takala, T E; Komi, P V
1998-03-01
Strenuous stretch-shortening cycle exercise was used as a model to study the leakage of proteins from skeletal muscle. The analysis included serum levels of creatine kinase (S-CK), myoglobin (S-Mb), and carbonic anhydrase (S-CA III). Blood samples from power- (N=11) and endurance-trained (N=10) athletes were collected before, 0, and 2 h after the exercise, which consisted of a total of 400 jumps. The levels of all determined myocellular proteins increased immediately after the exercise (P < 0.05-0.001) among both subject groups. In the endurance group, the protein levels increased (P < 0.05-0.001) further during the following 2 h after the exercise, and the ratio of S-CA III and S-Mb decreased (P < 0.05) in a before-after comparison. This was not the case among the power group despite their greater mechanical work (P < 0.001) and higher ratio of eccentric and concentric EMG activity of the leg extensor muscles (P < 0.05). The differences of the determined protein levels between the subject groups might be due to obvious differences in the muscle fiber distribution, differences in recruitment order of motor units, and/or differences in training background.
STS 51-G crewmembers participate in training in crew compartment trainer
1985-05-07
S85-31933 (17 May 1985) --- Four members of the STS 51-G crew participate in a training exercise in the shuttle mission simulation and training facility at the Johnson Space Center. Steven R. Nagel, left foreground, is a mission specialist for the flight, while Sultan Salman Abdelazize Al-Saud (right foreground) is a payload specialist. In the background are astronauts Daniel C. Brandenstein (left) in the commander's station and John O. Creighton in the pilot's position. Photo credit: NASA/ Otis Imboden of National Geographic
Apollo 9 prime crew on deck of ship prior to water egress training
1968-11-05
S68-54841 (5 Nov. 1968) --- The prime crew of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission stands on the deck of the NASA Motor Vessel Retriever (MVR) prior to participating in water egress training in the Gulf of Mexico. Left to right, are astronauts Russell L. Schweickart, lunar module pilot; David R. Scott, command module pilot; and James A. McDivitt, commander. In background is the Apollo Command Module (CM) boilerplate which was used in the training exercise.
Kim, Jaeeun; Yim, Jongeun
2017-11-13
BACKGROUND Handgrip strength and walking speed predict and influence cognitive function. We aimed to investigate an exercise protocol for improving handgrip strength and walking speed, applied to patients with chronic stroke who had cognitive function disorder. MATERIAL AND METHODS Twenty-nine patients with cognitive function disorder participated in this study, and were randomly divided into one of two groups: exercise group (n=14) and control group (n=15). Both groups underwent conventional physical therapy for 60 minutes per day. Additionally, the exercise group followed an exercise protocol for handgrip using the hand exerciser, power web exerciser, Digi-Flex (15 minutes); and treadmill-based weight loading training on their less-affected leg (15 minutes) using a sandbag for 30 minutes, three times per day, for six weeks. Outcomes, including cognitive function and gait ability, were measured before and after the training. RESULTS The Korean version of Montreal Cognitive Assessment (K-MoCA), Stroop test (both simple and interference), Trail Making-B, Timed Up and Go, and 10-Meter Walk tests (p<0.05) yielded improved results for the exercise group compared with the control group. Importantly, the K-MoCA, Timed Up and Go, and 10-Meter Walk test results were significantly different between the two groups (p<0.05). CONCLUSIONS The exercise protocol for improving handgrip strength and walking speed had positive effects on cognitive function in patients with chronic stroke.
Mau, Wilfried; Bengel, Jürgen; Pfeifer, Klaus
2017-04-01
In the German health care system, multiprofessional and coordinated rehabilitation care provides support for successful disease management. Against a background of the conditions and strong dynamics of the provision, this article gives an overview of some of the pertinent developments in rehabilitation-related undergraduate education and advanced professional training of physicians, psychologists, and exercise therapy professions in Germany. Frequently, there are few provisions and great variation between different locations. New conditions, such as the National Competence-Based Learning Objectives for Undergraduate Medical Education, the National Guidelines for Graduate Medical Education, and the ongoing reform of the psychotherapists' law emphasizing training in psychotherapy at university, allow the expectation of a positive effect on the competence of rehabilitation professionals. Education in physiotherapy is developing according to international standards aimed at improved evidence-based care. For the widely evidence-based undergraduate education and advanced professional training in sports and exercise therapy better profiling and professionalization should be sought.
STS-47 crew during fire fighting exercises at JSC's Fire Training Pit
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers line up along water hoses to extinguish a blaze in JSC's Fire Training Pit during fire fighting exercises. Manning the hose in the foreground are Payload Specialist Mamoru Mohri, holding the hose nozzle, backup Payload Specialist Takao Doi, Mission Specialist (MS) Jerome Apt, and Commander Robert L. Gibson, at rear. Lined up on the second hose are Pilot Curtis L. Brown, Jr, holding the hose nozzle, followed by MS N. Jan Davis, MS and Payload Commander (PLC) Mark C. Lee, and backup Payload Specialist Stan Koszelak. A veteran firefighter monitors the effort from a position between the two hoses. In the background, backup Payload Specialist Chiaki Naito-Mukai, donning gloves, and MS Mae C. Jemison look on. The Fire Training Pit is located across from the Gilruth Center Bldg 207. Mohri, Doi, and Mukai all represent Japan's National Space Development Agency (NASDA).
NASA Technical Reports Server (NTRS)
Coleman, A. E.
1981-01-01
Training manual used for preflight conditioning of NASA astronauts is written for audience with diverse backgrounds and interests. It suggests programs for various levels of fitness, including sample starter programs, safe progression schedules, and stretching exercises. Related information on equipment needs, environmental coonsiderations, and precautions can help readers design safe and effective running programs.
Exercise counteracts fatty liver disease in rats fed on fructose-rich diet
2010-01-01
Background This study aimed to analyze the effects of exercise at the aerobic/anaerobic transition on the markers of non-alcoholic fatty liver disease (NAFLD), insulin sensitivity and the blood chemistry of rats kept on a fructose-rich diet. Methods We separated 48 Wistar rats into two groups according to diet: a control group (balanced diet AIN-93 G) and a fructose-rich diet group (60% fructose). The animals were tested for maximal lactate-steady state (MLSS) in order to identify the aerobic/anaerobic metabolic transition during swimming exercises at 28 and 90 days of age. One third of the animals of each group were submitted to swimming training at an intensity equivalent to the individual MLSS for 1 hours/day, 5 days/week from 28 to 120 days (early protocol). Another third were submitted to the training from 90 to 120 days (late protocol), and the others remained sedentary. The main assays performed included an insulin tolerance test (ITT) and tests of serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST] activities, serum triglyceride concentrations [TG] and liver total lipid concentrations. Results The fructose-fed rats showed decreased insulin sensitivity, and the late-exercise training protocol counteracted this alteration. There was no difference between the groups in levels of serum ALT, whereas AST and liver lipids increased in the fructose-fed sedentary group when compared with the other groups. Serum triglycerides concentrations were higher in the fructose-fed trained groups when compared with the corresponding control group. Conclusions The late-training protocol was effective in restoring insulin sensitivity to acceptable standards. Considering the markers here evaluated, both training protocols were successful in preventing the emergence of non-alcoholic fatty liver status disease. PMID:20946638
Courneya, Kerry S; Reid, Robert D; Friedenreich, Christine M; Gelmon, Karen; Proulx, Caroline; Vallance, Jeffrey K; McKenzie, Donald C; Segal, Roanne J
2008-01-01
Background Patient preference for group assignment may affect outcomes in unblinded trials but few studies have attempted to understand such preferences. The purpose of the present study was to examine factors associated with breast cancer patients' preference for two types of exercise training during chemotherapy. Methods Breast cancer patients (N = 242) completed a battery of tests including a questionnaire that assessed patient preference and the theory of planned behavior (TPB) prior to being randomized to usual care, resistance exercise training (RET), or aerobic exercise training (AET). Results 99 (40.9%) participants preferred RET, 88 (36.4%) preferred AET, and 55 (22.7%) reported no preference. Past exercisers (p = 0.023), smokers (p = 0.004), and aerobically fitter participants (p = 0.005) were more likely to prefer RET. As hypothesized, participants that preferred AET had more favorable TPB beliefs about AET whereas participants that preferred RET had more favorable TPB beliefs about RET. In multivariate modeling, patient preference for RET versus AET was explained (R2 = .46; p < 0.001) by the difference in motivation for RET versus AET (β = .56; p < 0.001), smoking status (β = .13; p = 0.007), and aerobic fitness (β = .12; p = 0.018). Motivational difference between RET versus AET, in turn, was explained (R2 = .48; p < 0.001) by differences in instrumental attitude (β = .27; p < 0.001), affective attitude (β = .25; p < 0.001), and perceived behavioral control (β = .24; p < 0.001). Conclusion Breast cancer patients' preference for RET versus AET during chemotherapy was predicted largely by a difference in motivation for each type of exercise which, in turn, was based on differences in their beliefs about the anticipated benefits, enjoyment, and difficulty of performing each type of exercise during chemotherapy. These findings may help explain patient preference effects in unblinded behavioral trials. Trial Registration ClinicalTrials.gov Identifier NCT00115713. PMID:18954442
Lundberg Slingsby, M H; Nyberg, M; Egelund, J; Mandrup, C M; Frikke-Schmidt, R; Kirkby, N S; Hellsten, Y
2017-12-01
Essentials It is unknown how regular exercise affects platelet function after menopause. We studied the effect of 3-months of high-intensity exercise in pre- and postmenopausal women. Platelet sensitivity to the inhibitory effect of arterially infused prostacyclin was increased. Reduced basal platelet reactivity was seen in the premenopausal women only. Background The risk of atherothrombotic events increases after the menopause. Regular physical activity has been shown to reduce platelet reactivity in younger women, but it is unknown how regular exercise affects platelet function after the menopause. Objectives To examine the effects of regular aerobic exercise in late premenopausal and recent postmenopausal women by testing basal platelet reactivity and platelet sensitivity to prostacyclin and nitric oxide. Methods Twenty-five sedentary, but healthy, late premenopausal and 24 matched recently postmenopausal women, mean (95% confidence interval) 49.1 (48.2-49.9) and 53.7 (52.5-55.0) years old, participated in an intervention study: 3-month high-intensity supervised aerobic spinning-cycle training (1 h, × 3/week). Basal platelet reactivity was analyzed in platelet-rich plasma from venous blood as agonist-induced % aggregation. In a subgroup of 13 premenopausal and 14 postmenopausal women, platelet reactivity was tested ex vivo after femoral arterial infusion of prostacyclin, acetylcholine, a cyclooxygenase inhibitor, and after acute one-leg knee extensor exercise. Results Basal platelet reactivity (%aggregation) to TRAP-6 (1 μm) was higher in the postmenopausal, 59% (50-68), than the premenopausal women, 45% (35-55). Exercise training reduced basal platelet reactivity to collagen (1 μg mL -1 ) in the premenopausal women only: from 63% (55-71%) to 51% (41-62%). After the training intervention, platelet aggregation was more inhibited by the arterial prostacyclin infusion and the acute exercise in both premenopausal and postmenopausal women. Conclusions These results highlight previously unknown cardioprotective aspects of regular aerobic exercise in premenopausal and postmenopausal women, improving their regulation of platelet reactivity through an increased platelet sensitivity to prostacyclin, which may counterbalance the increased atherothrombotic risk associated with the menopause. © 2017 International Society on Thrombosis and Haemostasis.
Effect of Exercise Training and +Gz Acceleration Training on Men
NASA Technical Reports Server (NTRS)
Greenleaf, John E.; Simonson, Shawn R.; Stocks, Jodie M.; Evans, Joyce; Knapp, Charles F.; Cowell, Stephenie A.; Pemberton, Kendra N.; Wilson, Heather W.; Vener, Jamie M.; Evetts, Simon N.
2001-01-01
Countermeasures for reduction in work capacity (maximal oxygen uptake and strength) during spaceflight and enhanced orthostatic intolerance during re-entry, landing and egress from the return vehicle are continuing problems. The purpose for this study was to test the hypothesis that passive-acceleration training; supine, interval, exercise plus acceleration training and exercise combined with acceleration training would improve orthostatic tolerance in ambulatory men; and that addition of the aerobic exercise conditioning would not alter this improved tolerance from that of passive-acceleration training. Seven men (24-38 yr) underwent "Passive" training on the Ames human-powered centrifuge (HPC) for 30 min, "Exercise" training on the cycle ergometer with constant +Gz acceleration; and "Combined" exercise training at 40% to 90% of the HPC +Gz(max) exercise level. Maximal supine exercise loads increased significant (P<0.05) by 8.3% (Passive), 12.6% (Exercise), and by 15.4% (Combined) after training, but their post-training maximal oxygen uptakes and maximal heart rates were unchanged. Maximal time to fatigue (endurance) was unchanged with Passive was increased (P<0.05) with Exercise and Combined training. Thus, the exercise in the Exercise and Combined training Phases resulted in greater maximal loads and endurance without effect on maximal oxygen uptake or heart rate. There was a 4% to 6% increase (P<0.05) in all four quadriceps muscle volumes (right and left) after post-Combined training. Resting pre-tilt heart rate was elevated by 12.9% (P<0.05) only after Passive training suggesting that the exercise training attenuated the HR response. Plasma volume (% Delta) was uniformly decreased by 8% to 14% (P<0.05) at tilt-tolerance pre- vs. post-training indicating essentially no effect of training on the level of hypovolemia. Post-training tilt-tolerance time and heart rate were increased (P<0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training appeared to attenuate the increased Passive tilt-tolerance.
Integrating Aerobic Training Within Subacute Stroke Rehabilitation: A Feasibility Study
Sage, Michael D.; Brunton, Karen; Fraser, Julia; Howe, Jo-Anne; Bayley, Mark; Brooks, Dina; McIlroy, William E.; Mansfield, Avril; Inness, Elizabeth L.
2014-01-01
Background Aerobic activity positively affects patients recovering from stroke and is part of best practice guidelines, yet this evidence has not been translated to routine practice. Objective The objective of this study was to evaluate the feasibility of a model of care that integrated aerobic training in an inpatient rehabilitation setting for patients in the subacute stage of stroke recovery. Key elements of the program were personalized training prescription based on submaximal test results and supervision within a group setting. Design This was a prospective cohort study. Methods Participants (N=78) completed submaximal exercise testing prior to enrollment, and the test results were used by their treating physical therapists for exercise prescription. Feasibility was evaluated using enrollment, class attendance, adherence to prescription, and participant perceptions. Results Overall, 31 patients (40%) were referred to and completed the exercise program. Cardiac comorbidities were the main reason for nonreferral to the fitness group. Program attendance was 77%; scheduling conflicts were the primary barrier to participation. The majority of participants (63%) achieved 20 minutes of continuous exercise by the end of the program. No adverse events were reported, all participants felt they benefited from the program, and 80% of the participants expressed interest in continuing to exercise regularly after discharge. Limitations Cardiac comorbidities prevented enrollment in the program for 27% of the admitted patients, and strategies for inclusion in exercise programs in this population should be explored. Conclusions This individualized exercise program within a group delivery model was feasible; however, ensuring adequate aerobic targets were met was a challenge, and future work should focus on how best to include individuals with cardiac comorbidities. PMID:25082924
Christensen, Jesper F; Bandak, Mikkel; Campbell, Anna; Jones, Lee W.; Højman, Pernille
2016-01-01
Background Treatment of testicular germ cell cancer constitutes a major success story in modern oncology. Today, the vast majority of patients are cured by a therapeutic strategy using one or more highly effective components including surgery (orchiectomy), radiotherapy and/or chemotherapy. However, the excellent cancer specific survival comes at considerable costs, as individuals with a history of germ cell cancer experience serious long-term complications, including markedly increased risk of cardiovascular morbidities and premature cardiovascular death. The factors responsible, as well as their mode of action, are not fully understood and there is a lack of knowledge concerning optimal evidence-based long-term follow-up strategies. Results Here, we present the growing body of evidence suggesting that germ cell cancer patients as a consequence of the different treatment components, are subjected to toxicities, which individually, and synergistically, can cause physiological impairments leading to sub-clinical or clinical cardiovascular disorders the ‘multiple-hit hypothesis’). Furthermore, we discuss the efficacy and utility of structured exercise training to ameliorate treatment-induced cardiovascular dysfunction to prevent premature onset of clinical cardiovascular disease in germ cell cancer survivors, with a view towards highlighting future directions of exercise-based survivorship research in the germ cell cancer setting. Conclusion Since exercise training may have the potential to ameliorate and/or reverse long-term cardiovascular disease sequelae in germ cell cancer survivors, a strong rationale exists for the promotion of exercise-oncology research in this setting, in order to provide exercise-recommendations for optimal germ cell cancer survivorship. PMID:25751759
Call, Jarrod A.; Chain, Kristopher H.; Martin, Kyle S.; Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Yan, Zhen
2015-01-01
Background Exercise training enhances extracellular superoxide dismutase (EcSOD) expression in skeletal muscle and elicits positive health outcomes in individuals with diabetes. The goal of this study was to determine if enhanced skeletal muscle expression of EcSOD is sufficient to mitigate streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods and Results Exercise training promotes EcSOD expression in skeletal muscle and provides protection against DCM; however, it is not known if enhanced EcSOD expression in skeletal muscle plays a functional role in this protection. Here, we show that skeletal muscle-specific EcSOD transgenic mice (TG) are protected from cardiac hypertrophy, fibrosis and dysfunction under the condition of type-1 diabetes induced by STZ injection. We also show that both exercise training and muscle-specific transgenic expression of EcSOD result in elevated EcSOD protein in the blood and heart without increased transcription in the heart, suggesting enhanced expression of EcSOD from skeletal muscle redistributes to the heart. Importantly, cardiac tissue in TG mice displayed significantly reduced oxidative stress, aberrant cell signaling and inflammatory cytokine expression compared with wild type mice under the same diabetic condition. Conclusions Enhanced expression of EcSOD in skeletal muscle is sufficient to mitigate STZ-induced DCM through attenuation of oxidative stress, aberrant cell signaling and inflammation, suggesting a cross-organ mechanism by which exercise training improves cardiac function in diabetes. PMID:25504759
The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors.
Heisz, Jennifer J; Clark, Ilana B; Bonin, Katija; Paolucci, Emily M; Michalski, Bernadeta; Becker, Suzanna; Fahnestock, Margaret
2017-11-01
This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.
A practical guide to exercise training for heart failure patients.
Smart, Neil; Fang, Zhi You; Marwick, Thomas H
2003-02-01
Exercise training has been shown to improve exercise capacity in patients with heart failure. We sought to examine the optimal strategy of exercise training for patients with heart failure. Review of the published data on the characteristics of the training program, with comparison of physiologic markers of exercise capacity in heart failure patients and healthy individuals and comparison of the change in these characteristics after an exercise training program. Many factors, including the duration, supervision, and venue of exercise training; the volume of working muscle; the delivery mode (eg, continuous vs. intermittent exercise), training intensity; and the concurrent effects of medical treatments may influence the results of exercise training in heart failure. Starting in an individually prescribed and safely monitored hospital-based program, followed by progression to an ongoing and progressive home program of exercise appears to be the best solution to the barriers of anxiety, adherence, and "ease of access" encountered by the heart failure patient. Various exercise training programs have been shown to improve exercise capacity and symptom status in heart failure, but these improvements may only be preserved with an ongoing maintenance program.
Timmermans, Annick AA; Seelen, Henk AM; Willmann, Richard D; Kingma, Herman
2009-01-01
Background It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning. Methods A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007). Results One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems. Conclusion This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills. PMID:19154570
High-intensity exercise training for the prevention of type 2 diabetes mellitus.
Rynders, Corey A; Weltman, Arthur
2014-02-01
Aerobic exercise training and diet are recommended for the primary prevention of type 2 diabetes mellitus and cardiovascular disease. The American Diabetes Association (ADA) recommends that adults with prediabetes engage in ≥ 150 minutes per week of moderate activity and target a 7% weight loss. However, traditional moderate-intensity (MI) exercise training programs are often difficult to sustain for prediabetic adults; a commonly cited barrier to physical activity in this population is the "lack of time" to exercise. When matched for total energy expenditure, high-intensity (HI) exercise training has a lower overall time commitment compared with traditional low-intensity (LI) or MI exercise training. Several recent studies comparing HI exercise training with LI and MI exercise training reported that HI exercise training improves skeletal muscle metabolic control and cardiovascular function in a comparable and/or superior way relative to LI and MI exercise training. Although patients can accrue all exercise benefits by performing LI or MI activities such as walking, HI activities represent a time-efficient alternative to meeting physical activity guidelines. High-intensity exercise training is a potent tool for improving cardiometabolic risk for prediabetic patients with limited time and may be prescribed when appropriate.
Water-based exercise training for chronic obstructive pulmonary disease.
McNamara, Renae J; McKeough, Zoe J; McKenzie, David K; Alison, Jennifer A
2013-12-18
Land-based exercise training improves exercise capacity and quality of life in people with chronic obstructive pulmonary disease (COPD). Water-based exercise training is an alternative mode of physical exercise training that may appeal to the older population attending pulmonary rehabilitation programmes, those who are unable to complete land-based exercise programmes and people with COPD with comorbid physical and medical conditions. To assess the effects of water-based exercise training in people with COPD. A search of the Cochrane Airways Group Specialised Register of trials, which is derived from systematic searches of bibliographic databases, including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED and PsycINFO, was conducted (from inception to August 2013). Handsearching was done to identify further qualifying studies from reference lists of relevant studies. Review authors included randomised or quasi-randomised controlled trials in which water-based exercise training of at least four weeks' duration was compared with no exercise training or any other form of exercise training in people with COPD. Swimming was excluded. We used standard methodological procedures expected by The Cochrane Collaboration. Five studies were included with a total of 176 participants (71 people participated in water-based exercise training and 54 in land-based exercise training; 51 completed no exercise training). All studies compared supervised water-based exercise training versus land-based exercise training and/or no exercise training in people with COPD (with average forced expiratory volume in one second (FEV1) %predicted ranging from 39% to 62%). Sample sizes ranged from 11 to 53 participants. The exercise training programmes lasted from four to 12 weeks, and the mean age of participants ranged from 57 to 73 years. A moderate risk of bias was due to lack of reporting of randomisation, allocation and blinding procedures in some studies, as well as small sample sizes.Compared with no exercise, water-based exercise training improved the six-minute walk distance (mean difference (MD) 62 metres; 95% confidence interval (CI) 44 to 80 metres; three studies; 99 participants; moderate quality evidence), the incremental shuttle walk distance (MD 50 metres; 95% CI 20 to 80 metres; one study; 30 participants; high quality evidence) and the endurance shuttle walk distance (MD 371 metres; 95% CI 121 to 621 metres; one study; 30 participants; high quality evidence). Quality of life was also improved after water-based exercise training compared with no exercise (standardised mean difference (SMD) -0.97, 95% CI -0.37 to -1.57; two studies; 49 participants; low quality evidence). Compared with land-based exercise training, water-based exercise training did not significantly change the six-minute walk distance (MD 11 metres; 95% CI -11 to 33 metres; three studies; 62 participants; moderate quality evidence) or the incremental shuttle walk distance (MD 9 metres; 95% CI -15 to 34 metres; two studies; 59 participants; low quality evidence). However, the endurance shuttle walk distance improved following water-based exercise training compared with land-based exercise training (MD 313 metres; 95% CI 232 to 394 metres; two studies; 59 participants; moderate quality evidence). No significant differences were found between water-based exercise training and land-based exercise training for quality of life, as measured by the St George's Respiratory Questionnaire or by three of four domains of the Chronic Respiratory Disease Questionnaire (CRDQ); however, the fatigue domain of the CRDQ showed a statistically significant difference in favour of water-based exercise (MD -3.00; 95% CI -5.26 to -0.74; one study; 30 participants). Only one study reported long-term outcomes after water-based exercise training for quality of life and body composition, and no significant change was observed between baseline results and six-month follow-up results. One minor adverse event was reported for water-based exercise training (based on reporting from two studies; 20 participants). Impact of disease severity could not be examined because data were insufficient. There is limited quality evidence that water-based exercise training is safe and improves exercise capacity and quality of life in people with COPD immediately after training. There is limited quality evidence that water-based exercise training offers advantages over land-based exercise training in improving endurance exercise capacity, but we remain uncertain as to whether it leads to better quality of life. Little evidence exists examining the long-term effect of water-based exercise training.
Cipryan, Lukas; Tschakert, Gerhard; Hofmann, Peter
2017-01-01
The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s), long HIIT (3min) and constant load exercise (CE). The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇O2, RER) and metabolic (lactate) variables as well as the post-exercise changes (up to 3 h) in the heart rate variability, inflammation (interleukin-6, leucocytes) and muscle damage (creatine kinase, myoglobin) were monitored. Endurance athletes performed exercise interventions with moderately (CE) or largely (both HIIT modes) higher mean V̇O2. These differences were trivial/small when V̇O2 was expressed as a percentage of V̇O2max. Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes. Key points The manner in which each training background (endurance vs. sprint) influences the response to HIIT is not well known. Despite the identical exercise intensity in relative terms, endurance athletes are able to perform HIIT with increased reliance on aerobic metabolic pathways when compared to sprint athletes. The mean V̇O2 (% V̇O2max) and HR as well as markers of the cardiac autonomic regulation, systemic inflammation and muscle damage monitored during the early recovery phase did not demonstrate any differences between endurance and sprint trained individuals. PMID:28630575
The origins of Western mind–body exercise methods
Hoffman, Jonathan; Gabel, C. Philip
2015-01-01
Background: Over recent decades, mind–body exercise methods have gained international popularity and importance in the management of musculoskeletal disorders. Objectives: The scope of this paper was to investigate: the origins of Western mind–body methods, their philosophies, exercises, and relationship with mainstream healthcare over the last two centuries. Major findings: Within a few decades of the turn of the 20th century, a cluster of mind–body exercise methods emerged from at least six pioneering founders: Checkley, Müller, Alexander, Randell, Pilates, and Morris. Each was based upon a similar exercise philosophy and similar functional movement-harmonizing exercises. This renaissance of independent mind–body schools occurred in parallel with the demise of the 18th and 19th century gymnasium Physical Culture movement and the concurrent emergence of bodybuilding and strength training. Even though mostly forgotten today, Western mind–body exercise methods enjoyed celebrated success during the first half of the 20th century, were hailed by medical and allied health practitioners and practiced by millions from society’s elite to deprived minorities. Conclusions: Rediscovering the Western mind–body exercise movement is hoped to facilitate official healthcare establishment recognition of this kind of training as an integral entity. This may widen research opportunities and consolidate approaches toward: optimal musculoskeletal rehabilitation and injury prevention, promotion of a healthy active lifestyle environment in the modern world, and enhancement of the natural pain-free human athletic look, feel, and performance. PMID:27695277
Aerobic exercise enhances neural correlates of motor skill learning.
Singh, Amaya M; Neva, Jason L; Staines, W Richard
2016-03-15
Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.
Laufer, Yocheved; Dar, Gali; Kodesh, Einat
2014-01-01
Background Exercise programs that challenge an individual’s balance have been shown to reduce the risk of falls among older adults. Virtual reality computer-based technology that provides the user with opportunities to interact with virtual objects is used extensively for entertainment. There is a growing interest in the potential of virtual reality-based interventions for balance training in older adults. This work comprises a systematic review of the literature to determine the effects of intervention programs utilizing the Nintendo Wii console on balance control and functional performance in independently functioning older adults. Methods Studies were obtained by searching the following databases: PubMed, CINAHL, PEDro, EMBASE, SPORTdiscus, and Google Scholar, followed by a hand search of bibliographic references of the included studies. Included were randomized controlled trials written in English in which Nintendo Wii Fit was used to enhance standing balance performance in older adults and compared with an alternative exercise treatment, placebo, or no treatment. Results Seven relevant studies were retrieved. The four studies examining the effect of Wii-based exercise compared with no exercise reported positive effects on at least one outcome measure related to balance performance in older adults. Studies comparing Wii-based training with alternative exercise programs generally indicated that the balance improvements achieved by Wii-based training are comparable with those achieved by other exercise programs. Conclusion The review indicates that Wii-based exercise programs may serve as an alternative to more conventional forms of exercise aimed at improving balance control. However, due to the great variability between studies in terms of the intervention protocols and outcome measures, as well as methodological limitations, definitive recommendations as to optimal treatment protocols and the potential of such an intervention as a safe and effective home-based treatment cannot be made at this point. PMID:25364238
Iop, Rodrigo da Rosa; de Oliveira, Laiana Cândido; Boll, Alice Mathea; de Alvarenga, José Gustavo Souza; Gutierres Filho, Paulo José Barbosa; de Melo, Lídia Mara Aguiar Bezerra; Xavier, André Junqueira; da Silva, Rudney
2018-01-01
Background Given the relative importance of cognitive impairment, there was considerable interest in identifying the cognitive profile of PD patients, in order to ensure specific and appropriate therapeutic interventions. Purpose To determine the effects of physical exercise programs on cognitive function in PD patients, compared with the control group. Data sources Medline, Cochrane, Scopus, PEDro and Web of Science (last searched in September 2016). Study selection Randomized clinical trials examining the effects of physical exercise programs and cognitive function in PD patients. Nine studies fulfilled the selection criteria and were included in this review. Data extraction Characteristics of the publication, characteristics of the participants, test used for cognitive screening, cognitive domain assessed, tools used to assess cognitive function, characteristics of the experimental intervention, characteristics of the control group, mean results and standard deviation of function cognitive. The PEDro score was used to evaluate methodological quality. Data synthesis Most eligible studies showed good methodological quality based on the PEDro scale. Studies have shown that adapted tango for PD patients, cognitive training combined with motor training, and treadmill training promote the preservation or improvement of cognitive function in PD patients. Limitations The diversity of cognitive tests used to assess cognitive function and the high heterogeneity identified between the physical exercise programs. Conclusions Physical exercise programs promote positive and significant effects on global cognitive function, processing speed, sustained attention and mental flexibility in PD patients, at a mild to moderate stage for patients with a 6-year clinical diagnosis of PD. However, treadmill training performed 3 times a week for about 60 minutes and for a period of 24 weeks produced larger improvements in cognition. PMID:29486000
Team-Based Learning Exercise Efficiently Teaches Brief Intervention Skills to Medicine Residents
ERIC Educational Resources Information Center
Wamsley, Maria A.; Julian, Katherine A.; O'Sullivan, Patricia; McCance-Katz, Elinore F.; Batki, Steven L.; Satre, Derek D.; Satterfield, Jason
2013-01-01
Background: Evaluations of substance use screening and brief intervention (SBI) curricula typically focus on learner attitudes and knowledge, although effects on clinical skills are of greater interest and utility. Moreover, these curricula often require large amounts of training time and teaching resources. This study examined whether a 3-hour…
USDA-ARS?s Scientific Manuscript database
BACKGROUND: HMG-CoA reductase inhibitors (statins) are among the most commonly prescribed classes of medications. Although their cardiovascular benefits and myalgia risks are well documented, their effects on older adults initiating an exercise training program are less understood. METHODS: 1,635 s...
Bronas, Ulf G; Hirsch, Alan T; Murphy, Timothy; Badenhop, Dalynn; Collins, Tracie C; Ehrman, Jonathan K; Ershow, Abby G; Lewis, Beth; Treat-Jacobson, Diane J; Walsh, M Eileen; Oldenburg, Niki; Regensteiner, Judith G
2009-11-01
The CLaudication: Exercise Vs Endoluminal Revascularization (CLEVER) study is the first randomized, controlled, clinical, multicenter trial that is evaluating a supervised exercise program compared with revascularization procedures to treat claudication. In this report, the methods and dissemination techniques of the supervised exercise training intervention are described. A total of 217 participants are being recruited and randomized to one of three arms: (1) optimal medical care; (2) aortoiliac revascularization with stent; or (3) supervised exercise training. Of the enrolled patients, 84 will receive supervised exercise therapy. Supervised exercise will be administered according to a protocol designed by a central CLEVER exercise training committee based on validated methods previously used in single center randomized control trials. The protocol will be implemented at each site by an exercise committee member using training methods developed and standardized by the exercise training committee. The exercise training committee reviews progress and compliance with the protocol of each participant weekly. In conclusion, a multicenter approach to disseminate the supervised exercise training technique and to evaluate its efficacy, safety and cost-effectiveness for patients with claudication due to peripheral arterial disease (PAD) is being evaluated for the first time in CLEVER. The CLEVER study will further establish the role of supervised exercise training in the treatment of claudication resulting from PAD and provide standardized methods for use of supervised exercise training in future PAD clinical trials as well as in clinical practice.
Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.
2013-01-01
Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057
Seron, Bruna Barboza; Goessler, Karla Fabiana; Modesto, Everaldo Lambert; Almeida, Eloise Werle; Greguol, Márcia
2015-01-01
Background Cardiovascular diseases affect people worldwide. Individuals with Down Syndrome (DS) have an up to sixteen-time greater risk of mortality from cardiovascular diseases. Objective To evaluate the effects of aerobic and resistance exercises on blood pressure and hemodynamic variables of young individuals with DS. Methods A total of 29 young individuals with DS participated in the study. They were divided into two groups: aerobic training (AT) (n = 14), and resistance training (TR) (n = 15). Their mean age was 15.7 ± 2.82 years. The training program lasted 12 weeks, and had a frequency of three times a week for AT and twice a week for RT. AT was performed in treadmill/ bicycle ergometer, at an intensity between 50%-70% of the HR reserve. RT comprised nine exercises with three sets of 12 repetition-maximum. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP) and hemodynamic variables were assessed beat-to-beat using the Finometer device before/after the training program. Descriptive analysis, the Shapiro-Wilk test to check the normality of data, and the two-way ANOVA for repeated measures were used to compare pre- and post-training variables. The Pearson’s correlation coefficient was calculated to correlate hemodynamic variables. The SPSS version 18.0 was used with the significance level set at p < 0.05. Results After twelve weeks of aerobic and/or resistance training, significant reductions in variables SBP, DBP and MBP were observed. Conclusion This study suggests a chronic hypotensive effect of moderate aerobic and resistance exercises on young individuals with DS. PMID:26131704
2013-01-01
Background Although out-of-lab investigation of the human circadian clock at the clock gene expression level remains difficult, a recent method using hair follicle cells might be useful. While exercise may function as an entrainment cue for circadian rhythms, it remains unclear whether exercise affects human circadian clock gene expression. Methods Efforts to observe apparent effects of exercise on clock gene expression require that several specific conditions be met: intense exercise should be habitually performed at a relatively uncommon time of day over an extended period; and any relative phase shift thereby observed should be validated by comparison of exercise and no-exercise periods. Wake-up and meal times should be kept almost constant over the experimental period. The present study was conducted using a professional fighter who met these strict criteria as subject. Facial hair samples were collected at 4-h intervals around the clock to ascertain rhythms of clock gene expression. Results During a period in which nighttime training (from 20:00 to 22:00) was habitually performed, circadian clock gene expression was phase-delayed by 2 to 4 h compared with that during a no-exercise period. Maximum level and circadian amplitude of clock gene expression were not affected by the nighttime training. Conclusion Our trial observations illustrate the possibility that heavy physical exercise might strongly affect the circadian phase of clock gene expression. Exercise might be therefore effective for the clinical care of circadian disorders. The results also suggest that athletes may require careful scheduling of heavy physical exercise to maintain normal circadian phase and ensure optimal athletic performance. PMID:24004634
Polyphenol supplementation: benefits for exercise performance or oxidative stress?
Myburgh, Kathryn H
2014-05-01
Supplement use among athletes is widespread, including non-traditional and biological compounds. Despite increasing research, a comprehensive and critical review on polyphenol supplementation and exercise is still lacking. This review is relevant for researchers directly involved in the topic, as well as those with a broad interest in athletic performance enhancement and sports nutrition. The purpose of this review is to present background information on groups of polyphenols and their derivatives because their differing chemical structures influence mechanisms of action; to discuss the potential of plant, fruit and vegetable-based biological supplements, high in polyphenol content, to affect exercise performance and biomarkers of oxidative stress and exercise-induced muscle damage; and to critically discuss the exercise studies and biomarkers used. Subjects in the studies reviewed were either sedentary, healthy individuals, or active, recreationally trained or well-trained athletes. Polyphenol supplementation in exercise studies included mainly extracts (multicomponent or purified), juices, infusions or an increased intake of polyphenol-rich foods. This review includes details of supplement doses and exercise test protocols. Many studies considered only the performance or one or two selected biomarkers of antioxidant capacity instead of a comprehensive choice of biomarkers to assess damage to lipids or proteins. Evidence is insufficient to make recommendations for or against the use of polyphenol supplementation (neither specific polyphenols nor specific doses) for either recreational, competitive or elite athletes. Polyphenols have multiple biological effects, and future exercise studies must be designed appropriately and specifically to determine physiological interactions between exercise and the selected supplement, rather than considering performance alone.
Exercise Training during Normobaric Hypoxic Confinement Does Not Alter Hormonal Appetite Regulation
Debevec, Tadej; Simpson, Elizabeth J.; Macdonald, Ian A.; Eiken, Ola; Mekjavic, Igor B.
2014-01-01
Background Both exposure to hypoxia and exercise training have the potential to modulate appetite and induce beneficial metabolic adaptations. The purpose of this study was to determine whether daily moderate exercise training performed during a 10-day exposure to normobaric hypoxia alters hormonal appetite regulation and augments metabolic health. Methods Fourteen healthy, male participants underwent a 10-day hypoxic confinement at ∼4000 m simulated altitude (FIO2 = 0.139±0.003%) either combined with daily moderate intensity exercise (Exercise group; N = 8, Age = 25.8±2.4 yrs, BMI = 22.9±1.2 kg·m−2) or without any exercise (Sedentary group; N = 6 Age = 24.8±3.1 yrs, BMI = 22.3±2.5 kg·m−2). A meal tolerance test was performed before (Pre) and after the confinement (Post) to quantify fasting and postprandial concentrations of selected appetite-related hormones and metabolic risk markers. 13C-Glucose was dissolved in the test meal and 13CO2 determined in breath samples. Perceived appetite ratings were obtained throughout the meal tolerance tests. Results While body mass decreased in both groups (−1.4 kg; p = 0.01) following the confinement, whole body fat mass was only reduced in the Exercise group (−1.5 kg; p = 0.01). At Post, postprandial serum insulin was reduced in the Sedentary group (−49%; p = 0.01) and postprandial plasma glucose in the Exercise group (−19%; p = 0.03). Fasting serum total cholesterol levels were reduced (−12%; p = 0.01) at Post in the Exercise group only, secondary to low-density lipoprotein cholesterol reduction (−16%; p = 0.01). No differences between groups or testing periods were noted in fasting and/or postprandial concentrations of total ghrelin, peptide YY, and glucagon-like peptide-1, leptin, adiponectin, expired 13CO2 as well as perceived appetite ratings (p>0.05). Conclusion These findings suggest that performing daily moderate intensity exercise training during continuous hypoxic exposure does not alter hormonal appetite regulation but can improve the lipid profile in healthy young males. PMID:24887106
Exercise and type 2 diabetes: new prescription for an old problem.
Bird, Stephen R; Hawley, John A
2012-08-01
During the past 50 years, the prevalence of a cluster of chronic, inactivity-related diseases including obesity, insulin resistance and type 2 diabetes mellitus (T2DM), collectively referred to as 'metabolic syndrome' (MetS) has reached global epidemic proportions. Appropriate exercise training is a clinically proven, cost-effective, primary intervention that delays and in many cases prevents the health burdens associated with MetS. Indeed, there is no single intervention with greater efficacy than physical exercise to reduce the risk of virtually all chronic diseases simultaneously. However compliance to National guidelines for physical activity remains low, with "a lack of time" the most frequently cited barrier to exercise participation by adults, irrespective of age, sex and ethnic background. Part of the growing apathy to modify lifestyle habits is that current public health recommendations may be unrealistic and unattainable for the majority of the populace. Hence, there is an urgent need for innovations in exercise prescription that can be incorporated into daily living and induce clinically beneficial health outcomes. Here we focus attention on a novel form of exercise prescription, high-intensity interval training (HIT), and provide evidence that HIT is a time-efficient and well-tolerated therapeutic intervention to improve cardio-metabolic health in a number of pre-clinical and clinical populations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis.
Smart, Neil A; Dieberg, Gudrun; Giallauria, Francesco
2013-06-20
We conducted a meta-analysis of randomized, controlled trials of combined strength and intermittent aerobic training, intermittent aerobic training only and continuous exercise training in heart failure patients. A systematic search was conducted of Medline (Ovid) (1950-September 2011), Embase.com (1974-September 2011), Cochrane Central Register of Controlled Trials and CINAHL (1981-September 19 2011). The search strategy included a mix of MeSH and free text terms for the key concepts heart failure, exercise training, interval training and intermittent exercise training. The included studies contained an aggregate of 446 patients, 212 completed intermittent exercise training, 66 only continuous exercise training, 59 completed combined intermittent and strength training and 109 sedentary controls. Weighted mean difference (MD) in Peak VO2 was 1.04mlkg(-1)min(-1) and (95% C.I.) was 0.42-1.66 (p=0.0009) in intermittent versus continuous exercise training respectively. Weighted mean difference in Peak VO2 was -1.10mlkg(-1)min(-1) (95% C.I.) was -1.83-0.37 p=0.003 for intermittent only versus intermittent and strength (combined) training respectively. In studies reporting VE/VCO2 for intermittent versus control groups, MD was -1.50 [(95% C.I. -2.64, -0.37), p=0.01] and for intermittent versus continuous exercise training MD was -1.35 [(95% C.I. -2.15, -0.55), p=0.001]. Change in peak VO2 was positively correlated with weekly exercise energy expenditure for intermittent exercise groups (r=0.48, p=0.05). Combined strength and intermittent exercise appears superior for peak VO2 changes when compared to intermittent exercise of similar exercise energy expenditure. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Silva, P F; Furlan, V
2016-02-01
The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.
33 CFR 155.5061 - Alternative Training and Exercise Program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Alternative Training and Exercise... Nontank Vessel Response Plans § 155.5061 Alternative Training and Exercise Program. (a) Owners or... exercise requirements of §§ 155.5055 and 155.5060, may meet an Alternative Training and Exercise Program...
de Aguiar, Rafael Alves; Lisbôa, Felipe Domingos; Turnes, Tiago; Cruz, Rogério Santos de Oliveira; Caputo, Fabrizio
2015-01-01
To investigate the impact of different training backgrounds on pulmonary oxygen uptake (V̇O2) responses during all-out and supramaximal constant-velocity running exercises, nine sprinters (SPRs) and eight endurance runners (ENDs) performed an incremental test for maximal aerobic velocity (MAV) assessment and two supramaximal running exercises (1-min all-out test and constant-velocity exercise). The V̇O2 responses were continuously determined during the tests (K4b2, Cosmed, Italy). A mono-exponential function was used to describe the V̇O2 onset kinetics during constant-velocity test at 110%MAV, while during 1-min all-out test the peak of V̇O2 (V̇O2peak), the time to achieve the V̇O2peak (tV̇O2peak) and the V̇O2 decrease at last of the test was determined to characterize the V̇O2 response. During constant-velocity exercise, ENDs had a faster V̇O2 kinetics than SPRs (12.7 ± 3.0 vs. 19.3 ± 5.6 s; p < 0.001). During the 1-min all-out test, ENDs presented slower tV̇O2peak than SPRs (40.6 ± 6.8 and 28.8 ± 6.4 s, respectively; p = 0.002) and had a similar V̇O2peak relative to the V̇O2max (88 ± 8 and 83 ± 6%, respectively; p = 0.157). Finally, SPRs was the only group that presented a V̇O2 decrease in the last half of the test (-1.8 ± 2.3 and 3.5 ± 2.3 ml.kg-1.min-1, respectively; p < 0.001). In summary, SPRs have a faster V̇O2 response when maximum intensity is required and a high maximum intensity during all-out running exercise seems to lead to a higher decrease in V̇O2 in the last part of the exercise. PMID:26252001
Strasser, Barbara; Geiger, Daniela; Schauer, Markus; Gostner, Johanna M.; Gatterer, Hannes; Burtscher, Martin; Fuchs, Dietmar
2016-01-01
Background: Prolonged intense exercise has been associated with transient suppression of immune function and an increased risk of infections. In this context, the catabolism of amino acid tryptophan via kynurenine may play an important role. The present study examined the effect of a probiotic supplement on the incidence of upper respiratory tract infections (URTI) and the metabolism of aromatic amino acids after exhaustive aerobic exercise in trained athletes during three months of winter training. Methods: Thirty-three highly trained individuals were randomly assigned to probiotic (PRO, n = 17) or placebo (PLA, n = 16) groups using double blind procedures, receiving either 1 × 1010 colony forming units (CFU) of a multi-species probiotic (Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Enterococcus faecium W54, Lactobacillus acidophilus W22, Lactobacillus brevis W63, and Lactococcus lactis W58) or placebo once per day for 12 weeks. The serum concentrations of tryptophan, phenylalanine and their primary catabolites kynurenine and tyrosine, as well as the concentration of the immune activation marker neopterin were determined at baseline and after 12 weeks, both at rest and immediately after exercise. Participants completed a daily diary to identify any infectious symptoms. Results: After 12 weeks of treatment, post-exercise tryptophan levels were lowered by 11% (a significant change) in the PLA group compared to the concentrations measured before the intervention (p = 0.02), but remained unchanged in the PRO group. The ratio of subjects taking the placebo who experienced one or more URTI symptoms was increased 2.2-fold compared to those on probiotics (PLA 0.79, PRO 0.35; p = 0.02). Conclusion: Data indicate reduced exercise-induced tryptophan degradation rates in the PRO group. Daily supplementation with probiotics limited exercise-induced drops in tryptophan levels and reduced the incidence of URTI, however, did not benefit athletic performance. PMID:27886064
Murach, Kevin A; Bagley, James R
2016-08-01
Over the last 30+ years, it has become axiomatic that performing aerobic exercise within the same training program as resistance exercise (termed concurrent exercise training) interferes with the hypertrophic adaptations associated with resistance exercise training. However, a close examination of the literature reveals that the interference effect of concurrent exercise training on muscle growth in humans is not as compelling as previously thought. Moreover, recent studies show that, under certain conditions, concurrent exercise may augment resistance exercise-induced hypertrophy in healthy human skeletal muscle. The purpose of this article is to outline the contrary evidence for an acute and chronic interference effect of concurrent exercise on skeletal muscle growth in humans and provide practical literature-based recommendations for maximizing hypertrophy when training concurrently.
Ma, Delin; Shuler, Jeffrey M.; Kumar, Aishwarya; Stanford, Quincy R.; Tungtur, Sudheer; Nishimune, Hiroshi; Stanford, John A.
2016-01-01
Background The use of exercise in Amyotrophic Lateral Sclerosis (ALS) is controversial. Although moderate exercise appears to be beneficial for limb muscles in ALS, the effects of exercise on bulbar muscles such as the tongue have not been studied. Objective The aim of this study was to determine the effects of tongue force training on bulbar motor function in the SOD1-G93A rat model of ALS. Methods We compared the effects of tongue force training on bulbar motor function and neuromuscular junction (NMJ) innervation in female SOD1-G93A rats and age-matched female wild-type controls. Half of each group underwent afternoon tongue force training sessions, while all rats were tested under minimal force conditions in the mornings. Results Tongue force did not differ between the SOD1-G93A rats and healthy controls during the morning testing sessions, nor was it affected by training. Surprisingly, decreases in tongue motility, the number of licks per session, and body weight were greater in the tongue force-trained SOD1-G93A rats. Forelimb grip force, survival, and denervation of the genioglossus muscle did not differ between the trained and untrained SOD1-G93A rats. Genioglossus innervation was correlated with changes in tongue force but not tongue motility in SOD1-G93A rats at end stage. Conclusions The results indicate a potential deleterious effect of tongue force training on tongue motility in female SOD1-G93A rats. The lack of relationship between genioglossus innervation and tongue motility suggest that factors other than lower motor neuron integrity likely accounted for this effect. PMID:27573800
Haas, Christian T.
2017-01-01
Background. Although people with Multiple Sclerosis (pwMS) benefit from physical exercise, they still show reduced physical activity and exercise behaviour. This study aimed to investigate short- and long-term effects of an exercise-based patient education programme (ePEP) that focuses on empowering pwMS to a sustainable and self-regulated exercise training management. Methods. Fourteen pwMS were randomly assigned to immediate experimental group (EG-I: n = 8) and waitlist-control group (EG-W: n = 6) and attended biweekly in a six-week ePEP. All participants were measured for walking ability, quality of life, fatigue, and self-efficacy towards physical exercise before and after the ePEP, after 12 weeks, and one year after baseline. Short-term effects were analysed in a randomised control trial and long-term effects of all ePEP participants (EG-I + EG-W = EG-all) in a quasi-experimental design. Results. Only functional gait significantly improved in EG-I compared to EG-W (p = 0.008, r = −0.67). Moderate to large effects were found in EG-all for walking ability. Not significant, however, relevant changes were detected for quality of life and fatigue. Self-efficacy showed no changes. Conclusion. The ePEP seems to be a feasible option to empower pwMS to a self-regulated and sustainable exercise training management shown in long-term walking improvements. PMID:28900546
Perspectives on high-intensity interval exercise for health promotion in children and adolescents
Bond, Bert; Weston, Kathryn L; Williams, Craig A; Barker, Alan R
2017-01-01
Physical activity lowers future cardiovascular disease (CVD) risk; however, few children and adolescents achieve the recommended minimum amount of daily activity. Accordingly, there is virtue in identifying the efficacy of small volumes of high-intensity exercise for health benefits in children and adolescents for the primary prevention of CVD risk. The purpose of this narrative review is to provide a novel overview of the available literature concerning high-intensity interval-exercise (HIIE) interventions in children and adolescents. Specifically, the following areas are addressed: 1) outlining the health benefits observed following a single bout of HIIE, 2) reviewing the role of HIIE training in the management of pediatric obesity, and 3) discussing the effectiveness of school-based HIIE training. In total, 39 HIIE intervention studies were included in this review. Based upon the available data, a single bout of high-intensity exercise provides a potent stimulus for favorable, acute changes across a range of cardiometabolic outcomes that are often superior to a comparative bout of moderate-intensity exercise (14 studies reviewed). HIIE also promotes improvements in cardiorespiratory fitness and cardiometabolic health status in overweight and obese children and adolescents (10 studies reviewed) and when delivered in the school setting (15 studies reviewed). We thus conclude that high-intensity exercise is a feasible and potent method of improving a range of cardiometabolic outcomes in children and adolescents. However, further work is needed to optimize the delivery of HIIE interventions in terms of participant enjoyment and acceptability, to include a wider range of health outcomes, and to control for important confounding variables (eg, changes in diet and habitual physical activity). Finally, research into the application of HIIE training interventions to children and adolescents of different ages, sexes, pubertal status, and sociocultural backgrounds is required. PMID:29225481
κ-opioid receptor is involved in the cardioprotection induced by exercise training
Li, Juan; Tian, Fei; Feng, Na; Fan, Rong; Jia, Min; Guo, Haitao; Cheng, Liang; Liu, Jincheng; Chen, Wensheng; Pei, Jianming
2017-01-01
The present study was designed to test the hypothesis that exercise training elicited a cardioprotective effect against ischemia and reperfusion (I/R) via the κ-opioid receptor (κ-OR)-mediated signaling pathway. Rats were randomly divided into four groups: the control group, the moderate intensity exercise (ME) group, the high intensity exercise (HE) group, and the acute exercise (AE) group. For the exercise training protocols, the rats were subjected to one week of adaptive treadmill training, while from the second week, the ME and HE groups were subjected to eight weeks of exercise training, and the AE group was subjected to three days of adaptive treadmill training and one day of vigorous exercise. After these protocols, the three exercise training groups were divided into different treatment groups, and the rats were subjected to 30 min of ischemia and 120 min of reperfusion. Changes in infarct size and serum cTnT (cardiac troponin T) caused by I/R were reduced by exercise training. Moreover, cardiac dysfunction caused by I/R was also alleviated by exercise training. These effects of exercise training were reversed by nor-BNI (a selective κ-OR antagonist), Compound C (a selective AMPK inhibitor), Akt inhibitor and L-NAME (a non-selective eNOS inhibitor). Expression of κ-OR and phosphorylation of AMPK, Akt and eNOS were significantly increased in the ME, HE and AE groups. These findings demonstrated that the cardioprotective effect of exercise training is possibly mediated by the κ-OR-AMPK-Akt-eNOS signaling pathway. PMID:28301473
Rojas, Manuel J.; Cardenas P., Fernando
2017-01-01
Background Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis), causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. Methods An experimental design with two groups was developed: the experimental group (n = 12) was subject to a forced exercise program for five days, whereas the control group (n = 9) stayed in the home cage. Six to eight weeks after training, the rats’ working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. Results No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding), or in the levels of BrdU positive cells. Discussion Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level. PMID:28503368
Finch, C; Lloyd, D; Elliott, B
2009-01-01
Background: Knee injuries are a major injury concern for Australian Football players and participants of many other sports worldwide. There is increasing evidence from laboratory and biomechanically focused studies about the likely benefit of targeted exercise programmes to prevent knee injuries. However, there have been few international studies that have evaluated the effectiveness of such programmes in the real-world context of community sport that have combined epidemiological, behavioural and biomechanical approaches. Objective: To implement a fully piloted and tested exercise training intervention to reduce the number of football-related knee injuries. In so doing, to evaluate the intervention’s effectiveness in the real-world context of community football and to determine if the underlying neural and biomechanical training adaptations are associated with decreased risk of injury. Setting: Adult players from community-level Australian Football clubs in two Australian states over the 2007–08 playing seasons. Methods: A group-clustered randomised controlled trial with teams of players randomly allocated to either a coach-delivered targeted exercise programme or usual behaviour (control). Epidemiological component: field-based injury surveillance and monitoring of training/game exposures. Behavioural component: evaluation of player and coach attitudes, knowledge, behaviours and compliance, both before and after the intervention is implemented. Biomechanical component: biomechanical, game mobility and neuromuscular parameters assessed to determine the fundamental effect of training on these factors and injury risk. Outcome measures: The rate and severity of injury in the intervention group compared with the control group. Changes, if any, in behavioural components. Process evaluation: coach delivery factors and likely sustainability. PMID:19494090
Grisbrook, Tiffany L; Gittings, Paul M; Wood, Fiona M; Edgar, Dale W
2017-02-01
Session-rating of perceived exertion (RPE) is a method frequently utilised in exercise and sports science to quantify training load of an entire aerobic exercise session. It has also been demonstrated that session-RPE is a valid and reliable method to quantify training load during resistance exercise, in healthy and athletic populations. This study aimed to investigate the effectiveness of session-RPE as a method to quantify exercise intensity during resistance training in patients with acute burns. Twenty burns patients (mean age=31.65 (±10.09) years), with a mean TBSA of 16.4% (range=6-40%) were recruited for this study. Patients were randomly allocated to the resistance training (n=10) or control group (n=10). All patients completed a four week resistance training programme. Training load (session-RPE×session duration), resistance training session-volume and pre-exercise pain were recorded for each exercise session. The influence of; age, gender, %TBSA, exercise group (resistance training vs. control), pre-exercise pain, resistance training history and session-volume on training load were analysed using a multilevel mixed-effects linear regression. Session-volume did not influence training load in the final regression model, however training load was significantly greater in the resistance training group, compared with the control group (p<0.001). Pre-exercise pain significantly influenced training load, where increasing pain was associated with a higher session-RPE (p=0.004). Further research is indicated to determine the exact relationship between pain, resistance training history, exercise intensity and session-RPE and training load before it can be used as a method to monitor and prescribe resistance training load in acute burns patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Van Craenenbroeck, Emeline M; Hoymans, Vicky Y; Beckers, Paul J; Possemiers, Nadine M; Wuyts, Kurt; Paelinck, Bernard P; Vrints, Christiaan J; Conraads, Viviane M
2010-09-01
Alterations in circulating angiogenic cells (CAC) and endothelial progenitor cells (EPC), known to contribute to endothelial repair, could explain the reversal of endothelial function in response to exercise training. Moreover, training-induced vascular remodeling might affect the acute response of EPC and CAC following a single exercise bout. We studied the impact of exercise training on CAC function and numbers of CD34(+)/KDR(+) EPC in patients with chronic heart failure (CHF) and we assessed the effect of acute exercise on CAC and EPC in sedentary and trained patients. Twenty-one sedentary CHF patients underwent 6-month exercise training and were compared to a non-trained control group (n = 17) and 10 healthy age-matched subjects. At baseline and follow-up, flow-mediated dilation was assessed and graded exercise testing (GXT) was performed. Before and immediately after GXT, CAC migratory capacity was assessed in vitro and circulating CD34(+)/KDR(+) EPC were quantified using flow cytometry. At baseline, CAC migration was significantly impaired in sedentary CHF patients but normalized acutely after GXT. Training corrected endothelial dysfunction, which coincided with a 77% increase in CAC migration (P = 0.0001). Moreover, the GXT-induced improvement detected at baseline was no longer observed after training. Numbers of CD34(+)/KDR(+) EPC increased following 6-month exercise training (P = 0.021), but were not affected by GXT, either prior or post-training. In conclusion, the present findings demonstrate for the first time that exercise training in CHF reverses CAC dysfunction and increases numbers of CD34(+)/KDR(+) EPC, which is accompanied by improvement of peripheral endothelial function. The acute exercise-induced changes in CAC function wane with exercise training, suggesting that repetitive exercise bouts progressively lead to functional endothelial repair.
ERIC Educational Resources Information Center
Seguin, Rebecca A.; Heidkamp-Young, Eleanor; Kuder, Julia; Nelson, Miriam E.
2012-01-01
Background: Strength training (ST) is an important health behavior for aging women; it helps maintain strength and function and reduces risk for chronic diseases. This study assessed change in physical fitness following participation in a ST program implemented and evaluated by community leaders. Method: The StrongWomen Program is a nationally…
ERIC Educational Resources Information Center
Vashdi, E.; Hutzler, Y.; Roth, D.
2008-01-01
Background: Individuals with Intellectual Disability (ID) exhibit reduced levels of compliance to exercise, including treadmill walking. The purpose of this study was to measure the effects of several training conditions on compliance to participation in treadmill walking of children with moderate to severe ID. Method: Criteria for compliance were…
Strength Training Following Hematopoietic Stem Cell Transplantation
Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa
2010-01-01
Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175
Woessner, Mary N; VanBruggen, Mitch D; Pieper, Carl F; O'Reilly, Erin K; Kraus, William E
2017-01-01
Background Peripheral artery disease (PAD) is caused by atherosclerotic occlusions in the legs. It affects approximately 8-12 million people in the United States alone, one-third of whom suffer from intermittent claudication (IC), defined as ischemic leg pain that occurs with walking and improves with rest. Patients with IC suffer a markedly impaired quality of life and a high perception of disability. Improving pain-free walking time is a primary goal of rehabilitation in this population. Objective The nitric oxide (NO)-PAD trial is designed to compare the effects that 12 weeks of supervised exercise training, in combination with a high inorganic nitrate-content (beetroot [BR] juice) beverage or placebo (PL) beverage, has on clinical outcomes of exercise and functional capacity in two groups of PAD+IC patients: exercise training plus beetroot (EX+BR) and exercise training plus placebo (EX+PL). The primary aims of this randomized controlled, double-blind pilot study are to determine group differences following 12 weeks of EX+BR versus EX+PL in the changes for (1) exercise capacity: pain-free walking time (claudication onset time, COT), peak walk time (PWT), and maximal exercise capacity (peak oxygen uptake, VO2peak) during a maximal-graded cardiopulmonary exercise test (max CPX) and (2) functional capacity: 6-minute walk (6MW) distance. The secondary aims will provide mechanistic insights into the exercise outcome measures and will include (1) gastrocnemius muscle oxygenation during exercise via near-infrared spectroscopy (NIRS); (2) gastrocnemius muscle angiogenesis: capillaries per unit area and per muscle fiber, and relative fraction of type I, IIa, IIb, and IId/x fibers; and (3) vascular health/function via brachial artery flow-mediated dilation, lower-limb blood flow via plethysmography, and pulse wave velocity and reflection. Methods A total of 30 subjects between 40 and 80 years of age with PAD who are limited by IC will undergo exercise training 3 days per week for 12 weeks (ie, 36 sessions). They will be randomized to either the EX+BR or EX+PL group where participants will consume a beverage high in inorganic nitrate (4.2 mmol) or a low-nitrate placebo, respectively, 3 hours prior to each training session. Results Data collection from this study has been completed and is in the process of analysis and write-up. While the study is too underpowered—EX+BR, n=11; EX+PL, n=13—to determine between-group differences in the primary outcomes of COT, PWT, and 6MW, preliminary observations are promising with Cohen d effect sizes of medium to large. Conclusions Exercise training is currently the most effective therapy to increase functional capacity in PAD+IC. If the addition of inorganic nitrate to an exercise regimen elicits greater benefits, it may redefine the current standard of care for PAD+IC. Trial Registration ClinicalTrials.gov NCT01684930; https://clinicaltrials.gov/ct2/show/NCT01684930 (Archived by WebCite at http://www.webcitation.org/6raXFyEcP) PMID:28974486
Low Volume Aerobic Training Heightens Muscle Deoxygenation in Early Post-Angina Pectoris Patients.
Takagi, Shun; Murase, Norio; Kime, Ryotaro; Niwayama, Masatsugu; Osada, Takuya; Katsumura, Toshihito
2016-01-01
The aim of this study was to investigate the effect of low volume aerobic exercise training on muscle O2 dynamics during exercise in early post-angina pectoris (AP) patients, as a pilot study. Seven AP patients (age: 72 ± 6 years) participated in aerobic exercise training for 12 weeks. Training consisted of continuous cycling exercise for 30 min at the individual's estimated lactate threshold, and the subjects trained for 15 ± 5 exercise sessions over 12 weeks. Before and after training, the subjects performed ramp cycling exercise until exhaustion. Muscle O2 saturation (SmO2) and relative changes from rest in deoxygenated hemoglobin concentration (∆Deoxy-Hb) and total hemoglobin concentration (∆Total-Hb) were monitored at the vastus lateralis by near infrared spatial resolved spectroscopy during exercise. The SmO2 was significantly lower and ∆Deoxy-Hb was significantly higher after training than before training, while there were no significant changes in ∆Total-Hb. These results indicated that muscle deoxygenation and muscle O2 extraction were potentially heightened by aerobic exercise training in AP patients, even though the exercise training volume was low.
Exercise training in children and adolescents with cystic fibrosis: theory into practice.
Williams, Craig A; Benden, Christian; Stevens, Daniel; Radtke, Thomas
2010-01-01
Physical activity and exercise training play an important role in the clinical management of patients with cystic fibrosis (CF). Exercise training is more common and recognized as an essential part of rehabilitation programmes and overall CF care. Regular exercise training is associated with improved aerobic and anaerobic capacity, higher pulmonary function, and enhanced airway mucus clearance. Furthermore, patients with higher aerobic fitness have an improved survival. Aerobic and anaerobic training may have different effects, while the combination of both have been reported to be beneficial in CF. However, exercise training remains underutilised and not always incorporated into routine CF management. We provide an update on aerobic and anaerobic responses to exercise and general training recommendations in children and adolescents with CF. We propose that an active lifestyle and exercise training are an efficacious part of regular CF patient management.
Exercise Prescriptions for Training and Rehabilitation in Patients with Heart and Lung Disease.
Palermo, Pietro; Corrà, Ugo
2017-07-01
Rehabilitation in patients with advanced cardiac and pulmonary disease has been shown to increase survival and improve quality of life, among many other benefits. Exercise training is the fundamental ingredient in these rehabilitation programs. However, determining the amount of exercise is not straightforward or uniform. Most rehabilitation and training programs fix the time of exercise and set the exercise intensity to the goals of the rehabilitation program and the exercise-related hurdles of the individual. The exercise training intensity prescription must balance the desired gain in conditioning with safety. Symptom-limited cardiopulmonary exercise testing is the fundamental tool to identify the exercise intensity and define the appropriate training. In addition, cardiopulmonary exercise testing provides an understanding of the systems involved in oxygen transport and utilization, making it possible to identify the factors limiting exercise capacity in individual patients.
Ahmetov, II; Zmijewski, P
2016-01-01
Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary. PMID:27601774
Leońska-Duniec, A; Ahmetov, I I; Zmijewski, P
2016-09-01
Frequent and regular physical activity has significant benefits for health, including improvement of body composition and help in weight control. Consequently, promoting training programmes, particularly in those who are genetically predisposed, is a significant step towards controlling the presently increasing epidemic of obesity. Although the physiological responses of the human body to exercise are quite well described, the genetic background of these reactions still remains mostly unknown. This review not only summarizes the current evidence, through a literature review and the results of our studies on the influence of gene variants on the characteristics and range of the body's adaptive response to training, but also explores research organization problems, future trends, and possibilities. We describe the most reliable candidate genetic markers that are involved in energy balance pathways and body composition changes in response to training programmes, such as FTO, MC4R, ACE, PPARG, LEP, LEPR, ADRB2, and ADRB3. This knowledge can have an enormous impact not only on individualization of exercise programmes to make them more efficient and safer, but also on improved recovery, traumatology, medical care, diet, supplementation and many other areas. Nevertheless, the current studies still represent only the first steps towards a better understanding of the genetic factors that influence obesity-related traits, as well as gene variant x physical activity interactions, so further research is necessary.
Dinoff, Adam; Herrmann, Nathan; Swardfager, Walter; Liu, Celina S.; Sherman, Chelsea; Chan, Sarah; Lanctôt, Krista L.
2016-01-01
Background The mechanisms through which physical activity supports healthy brain function remain to be elucidated. One hypothesis suggests that increased brain-derived neurotrophic factor (BDNF) mediates some cognitive and mood benefits. This meta-analysis sought to determine the effect of exercise training on resting concentrations of BDNF in peripheral blood. Methods MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after exercise interventions ≥ 2 weeks. Risk of bias was assessed using standardized criteria. Standardized mean differences (SMDs) were generated from random effects models. Risk of publication bias was assessed using funnel plots and Egger’s test. Potential sources of heterogeneity were explored in subgroup analyses. Results In 29 studies that met inclusion criteria, resting concentrations of peripheral blood BDNF were higher after intervention (SMD = 0.39, 95% CI: 0.17–0.60, p < 0.001). Subgroup analyses suggested a significant effect in aerobic (SMD = 0.66, 95% CI: 0.33–0.99, p < 0.001) but not resistance training (SMD = 0.07, 95% CI: -0.15–0.30, p = 0.52) interventions. No significant difference in effect was observed between males and females, nor in serum vs plasma. Conclusion Aerobic but not resistance training interventions increased resting BDNF concentrations in peripheral blood. PMID:27658238
Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.
2012-01-01
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255
Parfitt, Gaynor; Alrumh, Amnah; Rowlands, Alex V
2012-11-01
Affect-regulated exercise to feel 'good' can be used to control exercise intensity amongst both active and sedentary individuals and should support exercise adherence. It is not known, however, whether affect-regulated exercise training can lead to physical health gains. The aim of this study was to examine if affect-regulated exercise to feel 'good' leads to improved fitness over the course of an 8-week training programme. A repeated measures design (pretest-posttest) with independent groups (training and control). 20 sedentary females completed a submaximal graded exercise test and were then allocated to either a training group or control group. The training group completed two supervised sessions and one unsupervised session per week for 8 weeks. Exercise intensity was affect-regulated to feel 'good'. Following the 8 weeks of training, both groups completed a second submaximal graded exercise test. Repeated measures analyses of variance indicated a significant increase in the time to reach ventilatory threshold in the training group (318 ± 23.7s) compared to control (248 ± 16.9s). Overall compliance to training was high (>92%). Participants in the training group exercised at intensities that would be classified as being in the lower range of the recommended guidelines (≈ 50% V˙O(2) max) for cardiovascular health. Affect-regulated exercise to feel 'good' can be used in a training programme to regulate exercise intensity. This approach led to a 19% increase in time to reach ventilatory threshold, which is indicative of improved fitness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Baschung Pfister, Pierrette; de Bruin, Eling D; Tobler-Ammann, Bernadette C; Maurer, Britta; Knols, Ruud H
2015-10-01
Physical exercise seems to be a safe and effective intervention in patients with inflammatory myopathy (IM). However, the optimal training intervention is not clear. To achieve an optimum training effect, physical exercise training principles must be considered and to replicate research findings, FITT components (frequency, intensity, time, and type) of exercise training should be reported. This review aims to evaluate exercise interventions in studies with IM patients in relation to (1) the application of principles of exercise training, (2) the reporting of FITT components, (3) the adherence of participants to the intervention, and (4) to assess the methodological quality of the included studies. The literature was searched for exercise studies in IM patients. Data were extracted to evaluate the application of the training principles, the reporting of and the adherence to the exercise prescription. The Downs and Black checklist was used to assess methodological quality of the included studies. From the 14 included studies, four focused on resistance, two on endurance, and eight on combined training. In terms of principles of exercise training, 93 % reported specificity, 50 % progression and overload, and 79 % initial values. Reversibility and diminishing returns were never reported. Six articles reported all FITT components in the prescription of the training though no study described adherence to all of these components. Incomplete application of the exercise training principles and insufficient reporting of the exercise intervention prescribed and completed hamper the reproducibility of the intervention and the ability to determine the optimal dose of exercise.
Nordvall Strömberg, Petronella; Fjellman-Wiklund, Anncristine; Wadell, Karin
2015-01-01
The purpose of this study is to describe thoughts and attitudes of patients with chronic obstructive pulmonary disease (COPD) when talking about exercise training as treatment. Semi-structured interviews were performed and analyzed with the grounded theory method. Four men and six women were interviewed (ages 66-84 years), with moderate to severe COPD, and no experience of organized exercise training as treatment for COPD. The analysis resulted in one core category, unknown territory, and three categories, good for those who can, but not for me; fear of future; and mastering. Exercise training as treatment was perceived by the participants as something unknown. It was also described as important for others but not for them. Their perceptions were that they could not perform exercise training, and did not have the knowledge of what or how to perform exercise that was good for them. Patients with COPD, with no previous experience of exercise training as treatment for their disease, describe exercise training as something unknown and unimportant for them. The results provide important knowledge for healthcare professionals regarding how to educate patients with COPD about the content and benefits of exercise training as treatment. Implications for Rehabilitation Exercise training is effective for patients with chronic obstructive pulmonary disease (COPD) with regard to dyspnea, physical capacity, health-related quality of life, and health care use. Patients with COPD perceive a lack of information regarding exercise training as treatment. The information and the presentation of exercise training as treatment might be of importance to get better adherence to this treatment.
Emtner, Margareta; Porszasz, Janos; Burns, Mary; Somfay, Attila; Casaburi, Richard
2003-11-01
Supplemental oxygen improves exercise tolerance of normoxemic and hypoxemic chronic obstructive pulmonary disease (COPD) patients. We determined whether nonhypoxemic COPD patients undergoing exercise training while breathing supplemental oxygen achieve higher intensity and therefore improve exercise capacity more than patients breathing air. A double-blinded trial was performed involving 29 nonhypoxemic patients (67 years, exercise SaO2 > 88%) with COPD (FEV1 = 36% predicted). All exercised on cycle ergometers for 45 minutes, 3 times per week for 7 weeks at high-intensity targets. During exercise, they received oxygen (3 L/minute) (n = 14) or compressed air (3 L/minute) (n = 15). Both groups had a higher exercise tolerance after training and when breathing oxygen. However, the oxygen-trained group increased the training work rate more rapidly than the air-trained group. The mean +/- SD work rate during the last week was 62 +/- 19 W (oxygen-trained group) and 52 +/- 22 W (air-trained group) (p < 0.01). After training, endurance in constant work rate tests increased more in the oxygen-trained group (14.5 minutes) than in the air-trained group (10.5 minutes) (p < 0.05). At isotime, the breathing rate decreased four breaths per minute in the oxygen-trained group and one breath per minute in the air-trained group (p = 0.001). We conclude that supplemental oxygen provided during high-intensity training yields higher training intensity and evidence of gains in exercise tolerance in laboratory testing.
Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long
2014-10-01
Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.
Tait, Jamie L; Duckham, Rachel L; Milte, Catherine M; Main, Luana C; Daly, Robin M
2017-01-01
Emerging research indicates that exercise combined with cognitive training may improve cognitive function in older adults. Typically these programs have incorporated sequential training, where exercise and cognitive training are undertaken separately. However, simultaneous or dual-task training, where cognitive and/or motor training are performed simultaneously with exercise, may offer greater benefits. This review summary provides an overview of the effects of combined simultaneous vs. sequential training on cognitive function in older adults. Based on the available evidence, there are inconsistent findings with regard to the cognitive benefits of sequential training in comparison to cognitive or exercise training alone. In contrast, simultaneous training interventions, particularly multimodal exercise programs in combination with secondary tasks regulated by sensory cues, have significantly improved cognition in both healthy older and clinical populations. However, further research is needed to determine the optimal characteristics of a successful simultaneous training program for optimizing cognitive function in older people.
Exercise training during rehabilitation of patients with COPD: a current perspective.
Spruit, Martijn A; Troosters, Thierry; Trappenburg, Jacob C A; Decramer, Marc; Gosselink, Rik
2004-03-01
Patients with chronic obstructive pulmonary disease (COPD) suffer frequently from physiologic and psychological impairments, such as dyspnea, peripheral muscle weakness, exercise intolerance, decreased health-related quality of life (HRQOL) and emotional distress. Rehabilitation programmes have shown to result in significant changes in perceived dyspnea and fatigue, utilisation of healthcare resources, exercise performance and HRQOL. Exercise training, which consists of whole-body exercise training and local resistance training, is the cornerstone of these programmes. Regrettably, the positive effects of respiratory rehabilitation deteriorate over time, especially after short programmes. Hence, attention should be given to the aftercare of these patients to prevent them to revert again to a sedentary lifestyle. On empirical basis three possibilities seem to be clinically feasible: (1) continuous outpatient exercise training; (2) exercise training in a home-based or community-based setting; or (3) exercise training sessions in a group of asthma and COPD patients.
NASA Technical Reports Server (NTRS)
Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.
1994-01-01
To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.
Bernauer, E M; Walby, W F; Ertl, A C; Dempster, P T; Bond, M; Greenleaf, J E
1994-12-01
To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.
NASA Technical Reports Server (NTRS)
Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.
1994-01-01
To determine if daily isotonic exercise or isokinetic exercise training coupled with daily log proprioceptive training, would influence log proprioceptive tracking responses during Bed Rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a NO-Exercise (NOE) training control group (n = 5), and IsoTanic Exercise (ITE, n = 7) and IsoKinetic Exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min period / d, 5 d /week. Only the IKE group performed proprioceptive training using a now isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pro-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p less than 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9 +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.50, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both lsotonic exercise training (without additional propriaceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.
Cornelissen, V A; Verheyden, B; Aubert, A E; Fagard, R H
2010-03-01
We aimed to investigate the effects of endurance training intensity (1) on systolic blood pressure (SBP) and heart rate (HR) at rest before exercise, and during and after a maximal exercise test; and (2) on measures of HR variability at rest before exercise and during recovery from the exercise test, in at least 55-year-old healthy sedentary men and women. A randomized crossover study comprising three 10-week periods was performed. In the first and third period, participants exercised at lower or higher intensity (33% or 66% of HR reserve) in random order, with a sedentary period in between. Training programmes were identical except for intensity, and were performed under supervision thrice for 1 h per week. The results show that in the three conditions, that is, at rest before exercise, during exercise and during recovery, we found endurance training at lower and higher intensity to reduce SBP significantly (P<0.05) and to a similar extent. Further, SBP during recovery was, on average, not lower than at rest before exercise, and chronic endurance training did not affect the response of SBP after an acute bout of exercise. The effect of training on HR at rest, during exercise and recovery was more pronounced (P<0.05) with higher intensity. Finally, endurance training had no significant effect on sympathovagal balance. In conclusion, in participants at higher age, both training programmes exert similar effects on SBP at rest, during exercise and during post-exercise recovery, whereas the effects on HR are more pronounced after higher intensity training.
Eggenberger, Patrick; Schumacher, Vera; Angst, Marius; Theill, Nathan; de Bruin, Eling D
2015-01-01
Background Cognitive impairment is a health problem that concerns almost every second elderly person. Physical and cognitive training have differential positive effects on cognition, but have been rarely applied in combination. This study evaluates synergistic effects of multicomponent physical exercise complemented with novel simultaneous cognitive training on cognition in older adults. We hypothesized that simultaneous cognitive–physical components would add training specific cognitive benefits compared to exclusively physical training. Methods Seniors, older than 70 years, without cognitive impairment, were randomly assigned to either: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Cognitive performance was assessed at baseline, after 3 and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were calculated. Results Eighty-nine participants were randomized to the three groups initially, 71 completed the training, while 47 were available at 1-year follow-up. Advantages of the simultaneous cognitive–physical programs were found in two dimensions of executive function. “Shifting attention” showed a time×intervention interaction in favor of DANCE/MEMORY versus PHYS (F[2, 68] =1.95, trend P=0.075, r=0.17); and “working memory” showed a time×intervention interaction in favor of DANCE versus MEMORY (F[1, 136] =2.71, trend P=0.051, R2=0.006). Performance improvements in executive functions, long-term visual memory (episodic memory), and processing speed were maintained at follow-up in all groups. Conclusion Particular executive functions benefit from simultaneous cognitive–physical training compared to exclusively physical multicomponent training. Cognitive–physical training programs may counteract widespread cognitive impairments in the elderly. PMID:26316729
Psychophysiological Responses to Group Exercise Training Sessions: Does Exercise Intensity Matter?
Vandoni, Matteo; Codrons, Erwan; Marin, Luca; Correale, Luca; Bigliassi, Marcelo; Buzzachera, Cosme Franklim
2016-01-01
Group exercise training programs were introduced as a strategy for improving health and fitness and potentially reducing dropout rates. This study examined the psychophysiological responses to group exercise training sessions. Twenty-seven adults completed two group exercise training sessions of moderate and vigorous exercise intensities in a random and counterbalanced order. The %HRR and the exertional and arousal responses to vigorous session were higher than those during the moderate session (p<0.05). Consequently, the affective responses to vigorous session were less pleasant than those during moderate session (p<0.05). These results suggest that the psychophysiological responses to group exercise training sessions are intensity-dependent. From an adherence perspective, interventionists are encouraged to emphasize group exercise training sessions at a moderate intensity to maximize affective responses and to minimize exertional responses, which in turn may positively affect future exercise behavior.
Francois, Monique E; Durrer, Cody; Pistawka, Kevin J; Halperin, Frank A; Chang, Courtney; Little, Jonathan P
2017-01-01
Background: High-intensity interval training (HIIT) can improve several aspects of cardiometabolic health. Previous studies have suggested that adaptations to exercise training can be augmented with post-exercise milk or protein consumption, but whether this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2 diabetes is unknown. Objective: To determine if the addition of a post-exercise milk or protein beverage to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in individuals with type 2 diabetes. Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated type 2 diabetes were randomized to one of three nutritional beverages (500 mL skim-milk, macronutrient control, or flavored water placebo) consumed after exercise (3 days/week) during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity intervals separated by 1-min low-intensity recovery periods. Two sessions per week were cardio-based (at ~90% of heart rate max) and one session involved resistance-based exercises (at RPE of 5-6; CR-10 scale) in the same interval pattern. Continuous glucose monitoring (CGM), glycosylated hemoglobin (HbA 1c ), body composition (dual-energy X-ray absorptiometry), cardiorespiratory fitness ([Formula: see text]), blood pressure, and endothelial function (%FMD) were measured before and after the intervention. Results: There were significant main effects of time (all p < 0.05) but no difference between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (-0.5 ± 1.1 mmol/L), HbA 1c (-0.2 ± 0.4%), percent body fat (-0.8 ± 1.6%), and lean mass (+1.1 ± 2.8 kg). Similarly, [Formula: see text] (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were increased, and mean arterial blood pressure reduced (-6 ± 7 mmHg), after 12 weeks of HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11). Conclusion: High-intensity interval training is a potent stimulus for improving several important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of HIIT are not augmented by the addition of post-exercise protein.
Francois, Monique E.; Durrer, Cody; Pistawka, Kevin J.; Halperin, Frank A.; Chang, Courtney; Little, Jonathan P.
2017-01-01
Background: High-intensity interval training (HIIT) can improve several aspects of cardiometabolic health. Previous studies have suggested that adaptations to exercise training can be augmented with post-exercise milk or protein consumption, but whether this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2 diabetes is unknown. Objective: To determine if the addition of a post-exercise milk or protein beverage to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in individuals with type 2 diabetes. Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated type 2 diabetes were randomized to one of three nutritional beverages (500 mL skim-milk, macronutrient control, or flavored water placebo) consumed after exercise (3 days/week) during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity intervals separated by 1-min low-intensity recovery periods. Two sessions per week were cardio-based (at ~90% of heart rate max) and one session involved resistance-based exercises (at RPE of 5–6; CR-10 scale) in the same interval pattern. Continuous glucose monitoring (CGM), glycosylated hemoglobin (HbA1c), body composition (dual-energy X-ray absorptiometry), cardiorespiratory fitness (V˙O2peak), blood pressure, and endothelial function (%FMD) were measured before and after the intervention. Results: There were significant main effects of time (all p < 0.05) but no difference between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (−0.5 ± 1.1 mmol/L), HbA1c (−0.2 ± 0.4%), percent body fat (−0.8 ± 1.6%), and lean mass (+1.1 ± 2.8 kg). Similarly, V˙O2peak (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were increased, and mean arterial blood pressure reduced (−6 ± 7 mmHg), after 12 weeks of HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11). Conclusion: High-intensity interval training is a potent stimulus for improving several important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of HIIT are not augmented by the addition of post-exercise protein. PMID:28790929
Messer, Daniel J; Bourne, Matthew N; Williams, Morgan D; Al Najjar, Aiman; Shield, Anthony J
2018-04-23
Study Design Cross-sectional study. Background Understanding hamstring muscle activation patterns in resistance training exercises may have implications for the design of strength training and injury prevention programs. Unfortunately, surface electromyography studies have reported conflicting results with regard to hamstring muscle activation patterns in women. Objectives To determine the spatial patterns of hamstring muscle activity during the 45º hip-extension and Nordic hamstring exercises, in females using functional magnetic resonance imaging. Methods Six recreationally active females with no history of lower limb injury underwent functional magnetic resonance imaging (fMRI) on both thighs before and immediately after 5 sets of 6 bilateral eccentric contractions of the 45º hip-extension or Nordic exercises. Using fMRI, the transverse (T2) relaxation times were measured from pre- and post- exercise scans and the percentage increase in T2 was used as an index of muscle activation. Results fMRI revealed a significantly higher biceps femoris long head (BF LongHead ) to semitendinosus ratio during the 45° hip-extension than the Nordic exercise (P = .028). The T2 increase after 45° hip-extension was greater for BF LongHead (P < .001), semitendinosus and semimembranosus (P = .001) than that of biceps femoris short head (BF ShortHead ). During the Nordic exercise, the T2 increase for semitendinosus was greater than that of BF ShortHead (P < .001) and BF LongHead (P = .001). Conclusion While both exercises involve high levels of semitendinosus activation in women, the Nordic exercise preferentially recruits that muscle while the hip extension more evenly activates all of the biarticular hamstrings. J Orthop Sports Phys Ther, Epub 23 Apr 2018. doi:10.2519/jospt.2018.7748.
Creatine supplementation and oxidative stress in rat liver
2013-01-01
Background The objective of this study was to determine the effects of creatine supplementation on liver biomarkers of oxidative stress in exercise-trained rats. Methods Forty 90-day-old adult male Wistar rats were assigned to four groups for the eight-week experiment. Control group (C) rats received a balanced control diet; creatine control group (CCr) rats received a balanced diet supplemented with 2% creatine; trained group (T) rats received a balanced diet and intense exercise training equivalent to the maximal lactate steady state phase; and supplemented-trained (TCr) rats were given a balanced diet supplemented with 2% creatine and subjected to intense exercise training equivalent to the maximal lactate steady state phase. At the end of the experimental period, concentrations of creatine, hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS) were measured as well as the enzyme activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-GPx) and catalase (CAT). Liver tissue levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and the GSH/GSSG ratio were also determined. Results Hepatic creatine levels were highest in the CCr and TCr groups with increased concentration of H2O2 observed in the T and TCr animal groups. SOD activity was decreased in the TCr group. GSH-GPx activity was increased in the T and TCr groups while CAT was elevated in the CCr and TCr groups. GSH, GGS and the GSH/GSSG ratio did not differ between all animal subsets. Conclusions Our results demonstrate that creatine supplementation acts in an additive manner to physical training to raise antioxidant enzymes in rat liver. However, because markers of liver oxidative stress were unchanged, this finding may also indicate that training-induced oxidative stress cannot be ameliorated by creatine supplementation. PMID:24325803
2013-01-01
Background Anterior cruciate ligament reconstruction (ACLR) is standard practice for athletes that wish to return to high-level activities; however functional outcomes after ACLR are poor. Quadriceps strength weakness, abnormal movement patterns and below normal knee function is reported in the months and years after ACLR. Second ACL injuries are common with even worse outcomes than primary ACLR. Modifiable limb-to-limb asymmetries have been identified in individuals who re-injure after primary ACLR, suggesting a neuromuscular training program is needed to improve post-operative outcomes. Pre-operative perturbation training, a neuromuscular training program, has been successful at improving limb symmetry prior to surgery, though benefits are not lasting after surgery. Implementing perturbation training after surgery may be successful in addressing post-operative deficits that contribute to poor functional outcomes and second ACL injury risk. Methods/Design 80 athletes that have undergone a unilateral ACLR and wish to return to level 1 or 2 activities will be recruited for this study and randomized to one of two treatment groups. A standard care group will receive prevention exercises, quadriceps strengthening and agility exercises, while the perturbation group will receive the same exercise program with the addition of perturbation training. The primary outcomes measures will include gait biomechanics, clinical and functional measures, and knee joint loading. Return to sport rates, return to pre-injury level of activity rates, and second injury rates will be secondary measures. Discussion The results of this ACL-Specialized Post-Operative Return To Sports (ACL-SPORTS) Training program will help clinicians to better determine an effective post-operative treatment program that will improve modifiable impairments that influence outcomes after ACLR. Trial registration Randomized Control Trial NIH 5R01AR048212-07. ClinicalTrials.gov: NCT01773317 PMID:23522373
Gielen, Stephan; Laughlin, M Harold; O'Conner, Christopher; Duncker, Dirk J
2015-01-01
Over the last decades exercise training has evolved into an established evidence-based therapeutic strategy with prognostic benefits in many cardiovascular diseases (CVDs): In stable coronary artery disease (CAD) exercise training attenuates disease progression by beneficially influencing CVD risk factors (i.e., hyperlipidemia, hypertension) and coronary endothelial function. In heart failure (HF) with reduced ejection fraction (HFrEF) training prevents the progressive loss of exercise capacity by antagonizing peripheral skeletal muscle wasting and by promoting left ventricular reverse remodeling with reduction in cardiomegaly and improvement of ejection fraction. Novel areas for exercise training interventions include HF with preserved ejection fraction (HFpEF), pulmonary hypertension, and valvular heart disease. In HFpEF, randomized studies indicate a lusitropic effect of training on left ventricular diastolic function associated with symptomatic improvement of exercise capacity. In pulmonary hypertension, reductions in pulmonary artery pressure were observed following endurance exercise training. Recently, innovative training methods such as high-intensity interval training, resistance training and others have been introduced. Although their prognostic value still needs to be determined, these approaches may achieve superior improvements in aerobic exercise capacity and gain in muscle mass, respectively. In this review, we give an overview of the prognostic and symptomatic benefits of exercise training in the most common cardiac disease entities. Additionally, key guideline recommendations for the initiation of training programs are summarized. Copyright © 2014 Elsevier Inc. All rights reserved.
Kelley, George A; Kelley, Kristi S; Pate, Russell R
2017-05-01
Examine the effects of selected types of exercise (aerobic, strength training, both) on BMI z-score in overweight and obese children and adolescents. Randomized exercise intervention trials ≥ 4 weeks were included. Studies were retrieved by searching six electronic databases, cross-referencing and expert review. Dual selection and abstraction occurred. Risk of bias and confidence in cumulative evidence were assessed. Network meta-analysis was performed using multivariate random-effects meta-regression models while surface under the cumulative ranking curves were used to calculate a hierarchy of exercise treatments. The number needed to treat (NNT) and percentile improvement (U 3 ) were also calculated. Thirty-four studies representing 2,239 participants were included. Median exercise occurred 3 times per week, 50 minutes per session over a 12-week period. Statistically significant reductions in BMI z-score were found for aerobic exercise and combined aerobic and strength exercise, but not strength training alone (M±SD, 95% CI: aerobic, -0.10, -0.15 to -0.05; aerobic and strength, -0.11, -0.19 to -0.03; strength, 0.04, -0.07 to 0.15). Combined aerobic and strength training was ranked best, followed by aerobic exercise and strength training. The NNT was 2 for both aerobic exercise and combined aerobic exercise and strength training. Percentile improvements were 28.8% for aerobic exercise and 31.5% for combined aerobic exercise and strength training. Confidence in effect estimates was ranked as low for aerobic exercise and very low for combined aerobic and strength training as well as strength training. Aerobic exercise and combined aerobic exercise and strength training are associated with reductions in BMI z-score. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
George, Kelley; Kristi, Kelley; Russell, Pate
2017-01-01
Aim Examine the effects of selected types of exercise (aerobic, strength training, both) on BMI z-score in overweight and obese children and adolescents. Methods Randomized exercise intervention trials ≥ 4 weeks were included. Studies were retrieved by searching six electronic databases, cross-referencing and expert review. Dual selection and abstraction occurred. Risk of bias and confidence in cumulative evidence were assessed. Network meta-analysis was performed using multivariate random-effects meta-regression models while surface under the cumulative ranking curves were used to calculate a hierarchy of exercise treatments. The number needed to treat (NNT) and percentile improvement (U3) were also calculated. Results Thirty-four studies representing 2,239 participants were included. Median exercise occurred 3 times per week, 50 minutes per session over a 12-week period. Statistically significant reductions in BMI z-score were found for aerobic exercise and combined aerobic and strength exercise, but not strength training alone (M±SD, 95% CI: aerobic, -0.10, -0.15 to -0.05; aerobic and strength, -0.11, -0.19, -0.03; strength, 0.04, -0.07 to 0.15). Combined aerobic and strength training was ranked best, followed by aerobic exercise and strength training. The NNT was 2 for both aerobic exercise and combined aerobic exercise and strength training. Percentile improvements were 28.8% for aerobic exercise and 31.5% for combined aerobic exercise and strength training. Confidence in effect estimates was ranked as low for aerobic exercise and very low for combined aerobic and strength training as well as strength training. Conclusions Aerobic exercise and combined aerobic exercise and strength training are associated with reductions in BMI z-score. PMID:27792271
Cardiac Remodeling in Response to 1 Year of Intensive Endurance Training
Arbab-Zadeh, Armin; Perhonen, Merja; Howden, Erin; Peshock, Ronald M.; Zhang, Rong; Adams-Huet, Beverly; Haykowsky, Mark J.; Levine, Benjamin D.
2017-01-01
Background It is unclear whether, and to what extent, the striking cardiac morphological manifestations of endurance athletes are a result of exercise training or a genetically determined characteristic of talented athletes. We hypothesized that prolonged and intensive endurance training in previously sedentary healthy young individuals could induce cardiac remodeling similar to that observed cross-sectionally in elite endurance athletes. Methods and Results Twelve previously sedentary subjects (aged 29±6 years; 7 men and 5 women) trained progressively and intensively for 12 months such that they could compete in a marathon. Magnetic resonance images for assessment of right and left ventricular mass and volumes were obtained at baseline and after 3, 6, 9, and 12 months of training. Maximum oxygen uptake (V̇o2 max) and cardiac output at rest and during exercise (C2H2 rebreathing) were measured at the same time periods. Pulmonary artery catheterization was performed before and after 1 year of training, and pressure-volume and Starling curves were constructed during decreases (lower body negative pressure) and increases (saline infusion) in cardiac volume. Mean V̇o2 max rose from 40.3±1.6 to 48.7±2.5 mL/kg per minute after 1 year (P<0.00001), associated with an increase in both maximal cardiac output and stroke volume. Left and right ventricular mass increased progressively with training duration and intensity and reached levels similar to those observed in elite endurance athletes. In contrast, left ventricular volume did not change significantly until 6 months of training, although right ventricular volume increased progressively from the outset; Starling and pressure-volume curves approached but did not match those of elite athletes. Conclusions One year of prolonged and intensive endurance training leads to cardiac morphological adaptations in previously sedentary young subjects similar to those observed in elite endurance athletes; however, it is not sufficient to achieve similar levels of cardiac compliance and performance. Contrary to conventional thinking, the left ventricle responds to exercise with initial concentric but not eccentric remodeling during the first 6 to 9 months after commencement of endurance training depending on the duration and intensity of exercise. Thereafter, the left ventricle dilates and restores the baseline mass-to-volume ratio. In contrast, the right ventricle responds to endurance training with eccentric remodeling at all levels of training. PMID:25281664
Osugi, Tomohiro; Iwamoto, Jun; Yamazaki, Michio; Takakuwa, Masayuki
2014-01-01
A randomized controlled trial was conducted to clarify the beneficial effect of whole body vibration (WBV) exercise plus squat training on body balance, muscle power, and walking ability in the elderly with knee osteoarthritis and/or spondylosis. Of 35 ambulatory patients (14 men and 21 women) who were recruited at our outpatient clinic, 28 (80.0%, 12 men and 16 women) participated in the trial. The subjects (mean age 72.4 years) were randomly divided into two groups (n=14 in each group), ie, a WBV exercise alone group and a WBV exercise plus squat training group. A 4-minute WBV exercise (frequency 20 Hz) was performed 2 days per week in both groups; squat training (20 times per minute) was added during the 4-minute WBV training session in the WBV exercise plus squat training group. The duration of the trial was 6 months. The exercise and training program was safe and well tolerated. WBV exercise alone improved indices of body balance and walking velocity from baseline values. However, WBV exercise plus squat training was more effective for improving tandem gait step number and chair-rising time compared with WBV exercise alone. These results suggest the benefit and safety of WBV exercise plus squat training for improving physical function in terms of body balance and muscle power in the elderly.
Spielmanns, Marc; Gloeckl, Rainer; Gropp, Jana Marie; Nell, Christoph; Koczulla, Andreas Rembert; Boeselt, Tobias; Storre, Jan Hendrik; Windisch, Wolfram
2017-01-01
Background The aim of the study was to investigate whether whole-body vibration training (WBVT) can be applied beneficially within an outpatient low frequency exercise program. Methods In a prospective, controlled, randomized study, WBVT effectiveness and safety were investigated in COPD stage II-IV patients undergoing a 3-month training program. Participants took part in a 90-min circuit training once a week. On top patients were randomized to either perform squats with WBVT, or without (conventional training group (CTG)). Before and after the intervention, a sit-to-stand test (STST), a 6-min walk test (6-MWT), the COPD assessment test (CAT), and the chronic respiratory disease questionnaire (CRQ) were evaluated. Results Twenty-eight out of 55 patients completed the study (n = 12 WBTV, n = 16 CTG). The STST time remained nearly constant for the CTG (Δ -0.8 ± 3.1 s) and the WBVT (Δ 1.4 ± 3.2 s; P = 0.227), respectively. Similarly, for both WBVT and CTG, the 6-min walk distance remained unchanged (Δ 7 ± 55 m vs. 9 ± 45 m, P = 0.961). In three out of four categories, the CRQ scores showed a significant improvement within WBVT, and in one category when comparing across groups. The CAT score dropped by -0.8 ± 2.9 points within CTG and by 2.4 ± 2.7 points within WBVT (P = 0.105). There were no adverse events related to WBVT. Conclusion The implementation of WBVT in the context of an outpatient low frequency exercise program did not significantly improve the patients’ exercise capacity. An improvement in CAT and partially in CRQ was shown within WBVT. However, regarding the high dropout rate (49%), these results must be interpreted with caution. PMID:28392859
Eslami, Saghar; Esa, Norhaizan Mohd; Marandi, Seyed Mohammad; Ghasemi, Gholamali; Eslami, Sepehr
2014-01-01
Background & objectives: Enhanced muscle strength is seen when resistance exercise is combined with the consumption of nutritional supplements. Although there is a limited number of studies available about the efficacy of gamma oryzanol supplementation with resistance exercise in humans, but its usage as a nutritional supplement for strength is common in athletes. The aim of this study was to determine the effects of gamma oryzanol supplementation during 9-week resistance training on muscular strength and anthropometric measurements of young healthy males. Methods: In this double-blind clinical trial, changes of anthropometric measurements and muscular strength were studied after chronic resistance exercise and gamma oryzanol supplementation in 30 healthy volunteers (16 in supplement and 14 in placebo). Each day, gamma oryzanol supplement (600 mg) and placebo (the same amount of lactose) were consumed after training. The participants exercised with 80 per cent 1-Repetition Maximum (1-RM), for one hour and four days/week. Anthropometric measurements and subjects’ 1-RM for muscular strength were determined at the commencement and end of the 9-week study. Results: There was no significant difference between the baseline characteristics and target variables at baseline between the two groups. After gamma oryzanol supplementation, there was no significant difference in the means of anthropometric and skin fold measurements between the supplement and placebo groups. However, there were significant differences between the supplement and placebo groups for 1-RM of bench press and leg curl, which showed that gamma oryzanol improved muscle strength following resistance training. Interpretation & conclusions: Our findings indicated that 600 mg/day gamma oryzanol supplementation during the 9-week resistance training did not change anthropometric and body measurements, but it increased muscular strength in young healthy males. Further, studies need to be done in trained athletes, women, and in patients who suffer from muscular fatigue. PMID:25109720
Brandou, F; Savy-Pacaux, A M; Marie, J; Bauloz, M; Maret-Fleuret, I; Borrocoso, S; Mercier, J; Brun, J F
2005-09-01
We assessed the effect of two programs combining a hypocaloric diet with low-intensity (LI) or high-intensity (HI) exercise training, during two months, on substrate utilization at exercise in obese children. Fifteen obese boys participated in a combined program of exercise and caloric restriction-induced weight loss (diet starting two weeks before the training program). The maximal fat oxidation point (Lipox max) was determined to individualize exercise training. Training consisted of cycling at either LI (Lipox max) for seven children or HI (Lipoxmax+40% Lipox max) for eight children. All children exhibited a decrease in weight (LI: -5.2 kg +/- 0.7 (P<0.01), HI: -7 kg +/- 0.7 (P<0.01)). While in the LI group, both fat and CHO oxidation were unchanged after training, HI group oxidize less fat and more CHO after training when exercising at 20% and 30% Wmax th (P = 0.02). While a LI exercise training program maintains (but does not improve) the ability to oxidize fat at exercise, HI training actually shifts towards CHO the balance of substrate oxidation during exercise. Thus, a low intensity training protocol seems to counteract to some extent the decline in lipid oxidation at exercise that occurs after a hypocaloric diet, and is thus likely to be synergistic to diet in the weight lowering strategy.
Effectiveness of Interval Exercise Training in Patients with COPD
Kortianou, Eleni A.; Nasis, Ioannis G.; Spetsioti, Stavroula T.; Daskalakis, Andreas M.; Vogiatzis, Ioannis
2010-01-01
Physical training is beneficial and should be included in the comprehensive management of all patients with COPD independently of disease severity. Different rehabilitative strategies and training modalities have been proposed to optimize exercise tolerance. Interval exercise training has been used as an effective alternative modality to continuous exercise in patients with moderate and severe COPD. Although in healthy elderly individuals and patients with chronic heart failure there is evidence that this training modality is superior to continuous exercise in terms of physiological training effects, in patients with COPD, there is not such evidence. Nevertheless, in patients with COPD application of interval training has been shown to be equally effective to continuous exercise as it induces equivalent physiological training effects but with less symptoms of dyspnea and leg discomfort during training. The main purpose of this review is to summarize previous studies of the effectiveness of interval training in COPD and also to provide arguments in support of the application of interval training to overcome the respiratory and peripheral muscle limiting factors of exercise capacity. To this end we make recommendations on how best to implement interval training in the COPD population in the rehabilitation setting so as to maximize training effects. PMID:20957074
Aquatic exercise training and stable heart failure: A systematic review and meta-analysis.
Adsett, Julie A; Mudge, Alison M; Morris, Norman; Kuys, Suzanne; Paratz, Jennifer D
2015-01-01
A meta-analysis and review of the evidence was conducted to determine the efficacy of aquatic exercise training for individuals with heart failure compared to traditional land-based programmes. A systematic search was conducted for studies published prior to March 2014, using MEDLINE, PUBMED, Cochrane Library, CINAHL and PEDro databases. Key words and synonyms relating to aquatic exercise and heart failure comprised the search strategy. Interventions included aquatic exercise or a combination of aquatic plus land-based training, whilst comparator protocols included usual care, no exercise or land-based training alone. The primary outcome of interest was exercise performance. Studies reporting on muscle strength, quality of life and a range of haemodynamic and physiological parameters were also reviewed. Eight studies met criteria, accounting for 156 participants. Meta-analysis identified studies including aquatic exercise to be superior to comparator protocols for 6 minute walk test (p < 0.004) and peak power (p < 0.044). Compared to land-based training programmes, aquatic exercise training provided similar benefits for VO(2peak), muscle strength and quality of life, though was not superior. Cardiac dimensions, left ventricular ejection fraction, cardiac output and BNP were not influenced by aquatic exercise training. For those with stable heart failure, aquatic exercise training can improve exercise capacity, muscle strength and quality of life similar to land-based training programmes. This form of exercise may provide a safe and effective alternative for those unable to participate in traditional exercise programmes. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Iwamoto, Gary A.; Vongpatanasin, Wanpen; Mitchell, Jere H.; Smith, Scott A.
2015-01-01
Cardiovascular responses to exercise are exaggerated in hypertension. We previously demonstrated that this heightened cardiovascular response to exercise is mediated by an abnormal skeletal muscle exercise pressor reflex (EPR) with important contributions from its mechanically and chemically sensitive components. Exercise training attenuates exercise pressor reflex function in healthy subjects as well as in heart failure rats. However, whether exercise training has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the EPR overactivity manifest in hypertension is mitigated by exercise training. Changes in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in response to muscle contraction, passive muscle stretch, and hindlimb intra-arterial capsaicin administration were examined in untrained normotensive Wistar-Kyoto rats (WKYUT; n = 6), exercise-trained WKY (WKYET; n = 7), untrained spontaneously hypertensive rats (SHRUT; n = 8), and exercise-trained SHR (SHRET; n = 7). Baseline MAP after decerebration was significantly decreased by 3 mo of wheel running in SHRET (104 ± 9 mmHg) compared with SHRUT (125 ± 10 mmHg). As previously reported, the pressor and renal sympathetic responses to muscle contraction, stretch, and capsaicin administration were significantly higher in SHRUT than WKYUT. Exercise training significantly attenuated the enhanced contraction-induced elevations in MAP (SHRUT: 53 ± 11 mmHg; SHRET: 19 ± 3 mmHg) and RSNA (SHRUT: 145 ± 32%; SHRET: 57 ± 11%). Training produced similar attenuating effects in SHR during passive stretch and capsaicin administration. These data demonstrate that the abnormally exaggerated EPR function that develops in hypertensive rats is significantly diminished by exercise training. PMID:26163445
Chaouachi, Mehdi; Granacher, Urs; Makhlouf, Issam; Hammami, Raouf; Behm, David G; Chaouachi, Anis
2017-01-01
The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players (13.9 ± 0.3 years) participated in an 8-week training program that either alternated individual balance (e.g., exercises on unstable surfaces) and plyometric (e.g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately >30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence. Key points The combination of balance and plyometric exercises can induce significant and substantial training improvements in muscle strength, power, speed, agility, and balance with adolescent youth athletes The within training session sequence of balance and plyometric exercises does not substantially affect these training improvements. PMID:28344461
Dellal, Alexandre; Casamichana, David; Castellano, Julen; Haddad, Monoem; Moalla, Wassim; Chamari, Karim
2015-01-01
Background: The cardiac parasympathetic reactivation is currently used in soccer with a daily or weekly monitoring. However, previous studies have not investigated how this cardiac parasympathetic reactivation is in elite soccer players along different types of traditional high-intensity training exercise and specific tests. In this context, the present study aim to analyse it and to determine the interests and limits of this type of physiological information. Objectives: The present study aims to examine how different traditional training exercise modes affect the cardiac parasympathetic reactivation function in elite soccer players. Materials and Methods: Twenty-two international soccer players participating in UEFA Champion’s League took part in this study (age: 24.3 ± 4.2 years; height: 178.1 ± 6.2 cm; body mass: 80.3 ± 5.7 kg). Players performed different training methods including: short-duration intermittent exercises (INT) in-line and with changes of direction (COD) (10 - 10 seconds, 15 - 15 seconds, 30 - 30 seconds, e.g. an alternance of 10 - 10 seconds is 10 seconds of running according to the maximal aerobic speed (MAS) and 10-sec of recovery), INT including agility and technical skills (8 - 24-seconds), small-sided-games (SSGs) with and without goalkeepers (2 vs. 2, 3 vs. 3, 4 vs. 4), and repeated sprint ability (RSA) efforts (10 × 20 m, 10 × 30 m, 15 × 20 m). Heart rate (HR) decline was recorded 3 minutes after each exercise. Results: HR declines were greater after the RSA compared to SSGs (P < 0.001) and INT (P < 0.01), especially at 1 min post-exercise. In addition, when the analysis focused on each type of exercise, greater HR declines were observed in on-field players at 1 minute when there was: inclusion of goalkeepers in SSGs (for 2 vs. 2 and 3 vs. 3, P < 0.01); increase of sprint distances or number of sprint repetitions in RSA (P < 0.01); increase of intensity (% of maximal aerobic speed), and the use of COD or inclusion of technical skills during INT, especially for the 30 - 30-seconds. Conclusions: This study revealed that cardiac parasympathetic reactivation function varied after INT, RSA and SSG, but also according to the rules manipulation. Therefore, this study provides interesting information for the training monitoring and players’ recovery profile, with the aim of facilitating a more efficient planning and manipulation of training recovery strategies according to their fitness markers. PMID:26715972
Liu-Ambrose, Teresa; Khan, Karim M; Eng, Janice J; Lord, SR; McKay, HA
2012-01-01
Background While the fear of falling is a common psychological consequence of falling, older adults who have not fallen also frequently report this fear. Fear of falling can lead to activity restriction that is self-imposed rather than due to actual physical impairments. Evidence suggests that exercise can significantly improve balance confidence, as measured by falls-related self-efficacy scales. However, there are no prospective reports that correlate change in balance confidence with changes in fall risk and physical abilities as induced by participating in a group-based exercise program. Objective The primary purpose of this prospective study was to examine the relationship between the change in balance confidence and the changes in fall risk and physical abilities in older women with confirmed low bone mass after 13 weeks of exercise participation. The secondary purpose of this study was to examine the relationship between the change in balance confidence and the change in physical activity level. Methods The sample comprised 98 women aged 75 to 85 years old women with low bone mass. Participants were randomly assigned to one of three groups: Resistance Training (n=32), Agility Training (n=34), and Stretching (sham) exercises (n=32). The 50-minute exercise classes for each study arm were held twice weekly at a local YMCA community centre. Results Both resistance training and agility training significantly improved balance confidence by 6% from baseline after 13 weeks. However, the change in balance confidence was only weakly correlated with improved general physical function and not significantly correlated with the changes in fall risk score, postural stability, gait speed, or physical activity level. As well, we observed balance confidence enhancement in the presence of increased fall risk or deterioration in physical abilities. Conclusions Two different types of exercise training improved balance confidence in older women with low bone mass. This change in balance confidence was significantly correlated with change in general physical function. Because of the observation of discordance between balance confidence change and changes in fall risk and physical abilities, those who design group-based exercise programs for community-dwelling older adults may wish to consider including an education component on factors that influence fear of falling. Objective changes in fall risk factors cannot be assumed to mirror change of fear of falling and physical abilities in older adults in the short-term. PMID:15477698
Pelvic floor muscle training exercises
... this page: //medlineplus.gov/ency/article/003975.htm Pelvic floor muscle training exercises To use the sharing features on this page, please enable JavaScript. Pelvic floor muscle training exercises are a series of exercises designed to ...
Exercise Versus +Gz Acceleration Training
NASA Technical Reports Server (NTRS)
Greenleaf, John E.; Simonson, S. R.; Stocks, J. M.; Evans, J. M.; Knapp, C. F.; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
Decreased working capacity and "orthostatic" intolerance are two major problems for astronauts during and after landing from spaceflight in a return vehicle. The purpose was to test the hypotheses that (1) supine-passive-acceleration training, supine-interval-exercise plus acceleration training, and supine exercise plus acceleration training will improve orthostatic tolerance (OT) in ambulatory men; and that (2) addition of aerobic exercise conditioning will not influence this enhanced OT from that of passive-acceleration training. Seven untrained men (24-38 yr) underwent 3 training regimens (30 min/d x 5d/wk x 3wk on the human-powered centrifuge - HPC): (a) Passive acceleration (alternating +1.0 Gz to 50% Gzmax); (b) Exercise acceleration (alternating 40% - 90% V02max leg cycle exercise plus 50% of HPCmax acceleration); and (c) Combined intermittent exercise-acceleration at 40% to 90% HPCmax. Maximal supine exercise workloads increased (P < 0.05) by 8.3% with Passive, by 12.6% with Exercise, and by 15.4% with Combined; but maximal V02 and HR were unchanged in all groups. Maximal endurance (time to cessation) was unchanged with Passive, but increased (P < 0.05) with Exercise and Combined. Resting pre-tilt HR was elevated by 12.9% (P < 0.05) only after Passive training, suggesting that exercise training attenuated this HR response. All resting pre-tilt blood pressures (SBP, DBP, MAP) were not different pre- vs. post-training. Post-training tilt-tolerance time and HR were increased (P < 0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training attenuated the increased Passive tilt tolerance. Resting (pre-tilt) and post-tilt cardiac R-R interval, stroke volume, end-diastolic volume, and cardiac output were all uniformly reduced (P < 0.05) while peripheral resistance was uniformly increased (P < 0.05) pre-and post-training for the three regimens indicating no effect of any training regimen on those cardiovascular variables. Plasma volume (% delta) was uniformly decreased by 8% to 14% (P < 0.05) at tilt-tolerance pre- vs. post-training for all regimens indicating no effect of these training regimens on the level of vascular fluid shifts.
COPD and exercise: does it make a difference?
Burtin, Chris; De Boever, Patrick; Langer, Daniël; Vogiatzis, Ioannis; Wouters, Emiel F.M.; Franssen, Frits M.E.
2016-01-01
Key points Physiological changes are observed following a structured exercise training programme in patients with COPD, without changes in resting lung function. Exercise training is the cornerstone of a comprehensive pulmonary rehabilitation programme in patients with COPD. Most comorbidities in patients referred for pulmonary rehabilitation remain undiagnosed and untreated. After careful screening, it is safe for COPD patients with comorbidities to obtain significant and clinically relevant improvements in functional exercise capacity and health status after an exercise-based pulmonary rehabilitation programme. Educational aims To inform readers of the positive effects of exercise-based pulmonary rehabilitation in patients with COPD, even with comorbid conditions. To inform readers of the importance of physical activity in patients with COPD. Exercise training is widely regarded as the cornerstone of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease (COPD). Indeed, exercise training has been identified as the best available means of improving muscle function and exercise tolerance in patients with COPD. So, exercise training truly makes a difference in the life of patients with COPD. In this review, an overview is provided on the history of exercise training (as standalone intervention or as part of a comprehensive pulmonary rehabilitation programme), exercise training in comorbid patients with COPD, and the impact of physical activity counselling in a clean air environment. PMID:27408645
Luo, Yu-wen; Wang, Mei; Hu, Yu-he; Xu, Wen-hui; Zhou, Lu-qian; Chen, Rong-chang; Chen, Xin
2017-01-01
Background Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Materials and methods Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Results Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group (P<0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPImax [maximal inspiratory pressure] 5.20±0.89 cmH2O vs 1.32±0.91 cmH2O; P<0.05). However, there were no significant differences in the other indices between the two groups (P>0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness (P>0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program (P>0.05). Conclusion Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT. PMID:28919733
Shafer, K M; Janssen, L; Carrick-Ranson, G; Rahmani, S; Palmer, D; Fujimoto, N; Livingston, S; Matulevicius, S A; Forbess, L W; Brickner, B; Levine, B D
2015-01-01
We aimed to assess the haemodynamic effects of exercise training in transposition of the great arteries (TGA) patients with systemic right ventricles (SRVs). TGA patients have limited exercise tolerance and early mortality due to systemic (right) ventricular failure. Whether exercise training enhances or injures the SRV is unclear. Fourteen asymptomatic patients (34 ± 10 years) with TGA and SRV were enrolled in a 12 week exercise training programme (moderate and high-intensity workouts). Controls were matched on age, gender, BMI and physical activity. Exercise testing pre- and post- training included: (a) submaximal and peak; (b) prolonged (60 min) submaximal endurance and (c) high-intensity intervals. Oxygen uptake (; Douglas bag technique), cardiac output (, foreign-gas rebreathing), ventricular function (echocardiography and cardiac MRI) and serum biomarkers were assessed. TGA patients had lower peak , , and stroke volume (SV), a blunted / slope, and diminished SV response to exercise (SV increase from rest: TGA = 15.2%, controls = 68.9%, P < 0.001) compared with controls. After training, TGA patients increased peak by 6 ± 8.5%, similar to controls (interaction P = 0.24). The magnitude of SV reserve on initial testing correlated with training response (r = 0.58, P = 0.047), though overall, no change in peak was observed. High-sensitivity troponin T (hs-TnT) and N-terminal prohormone of brain naturetic peptide (NT pro-BNP) were low and did not change with acute exercise or after training. Our data show that TGA patients with SRVs in this study safely participated in exercise training and improved peak . Neither prolonged submaximal exercise, nor high-intensity intervals, nor short-term exercise training seem to injure the systemic right ventricle. Key Points Patients with transposition of the great arteries (TGA) and systemic right ventricles have premature congestive heart failure; there is also a growing concern that athletes who perform extraordinary endurance exercise may injure the right ventricle. Therefore we felt it essential to determine whether exercise training might injure a systemic right ventricle which is loaded with every heartbeat. Previous studies have shown that short term exercise training is feasible in TGA patients, but its effect on ventricular function is unclear. We demonstrate that systemic right ventricular function is preserved (and may be improved) in TGA patients with exercise training programmes that are typical of recreational and sports participation, with no evidence of injury on biomarker assessment. Stroke volume reserve during exercise correlates with exercise training response in our TGA patients, identifying this as a marker of a systemic right ventricle (SRV) that may most tolerate (and possibly even be improved by) exercise training. PMID:25809342
Naugle, Keith E.; Naugle, Kelly M.; Wikstrom, Erik A.
2014-01-01
Naugle, KE, Naugle, KM, and Wikstrom, EA. Cardiovascular and affective outcomes of active gaming: Using the Nintendo Wii as a cardiovascular training tool. J Strength Cond Res 28(2): 443–451, 2014–Active-video gaming is purported to produce similar cardiovascular responses as aerobic fitness activities. This study compared the emotional and cardiovascular effects of Wii games with those of traditional exercise in college-aged adults with different exercise backgrounds. Specifically, the percentage of heart rate reserve, rate of perceived exertion (RPE), level of enjoyment, and Positive and Negative Affect Schedule scores were compared between subjects who reported exercising frequently at high intensities (high-intensity exerciser group: age = 20.18 years [0.87]; Height = 165.23 cm [9.97]; Mass = 62.37 kg [11.61]), N = 11 and those who exercise more often at lower intensities (low-intensity exercisers group: age = 20.72 years [1.19]; Height = 164.39 cm [8.05]; Mass = 68.04 kg [10.71]), N = 11. The subjects completed six 20-minute exercises sessions: treadmill walking, stationary cycling, and Wii's Tennis, Boxing, Cycling, and Step. The low-intensity exerciser group achieved a greater percentage of heart rate reserve (a) during traditional exercise compared with that during Wii boxing, (b) playing Wii boxing compared with that for Wii tennis, and (c) playing Wii boxing compared with that when the high-intensity exercisers group played any Wii games (p < 0.05). The RPE was greater for boxing and cycling compared with that for tennis and step (p < 0.05). Ratings of enjoyment and the increase in positive emotion were greater for boxing and for tennis compared with those for traditional exercises (p < 0.05). Results suggest that Wii boxing shows the greatest potential as a cardiovascular fitness tool among the Wii games, particularly for individuals who typically exercise at lower intensities. PMID:23660574
Exercise following myocardial infarction. Current recommendations.
Leon, A S
2000-05-01
Cardiac rehabilitation services are comprehensive long term programmes designed to limit the physiological and psychological effects of cardiovascular disease (CVD), control cardiac symptoms and reduce the risk of subsequent CVD events by stabilising or partially reversing the underlying atherosclerosis process through risk factor modification. Exercise training is the cornerstone of such programmes. Ideally, exercise conditioning or training for the stable cardiac patient should include a combination of cardiorespiratory endurance (aerobic) training, arm exercises and muscular conditioning resistance (strength) training. Flexibility exercises should also be performed, usually as part of the warm-up and cool-down routines preceding and following endurance and strength training. This review discusses the potential physiological, psychological and health benefits of regular exercise and provides guidelines for exercise training for the rehabilitation of post-myocardial infarction patients following hospitalisation.
Benefits of Exercise Training in Multiple Sclerosis.
Motl, Robert W; Sandroff, Brian M
2015-09-01
Exercise training represents a behavioral approach for safely managing many of the functional, symptomatic, and quality of life consequences of multiple sclerosis (MS). This topical review paper summarizes evidence from literature reviews and meta-analyses, supplemented by recent individual studies, indicating that exercise training can yield small but important improvements in walking, balance, cognition, fatigue, depression, and quality of life in MS. The paper highlights limitations of research on exercise training and its consequences and future research directions and provides an overview for promotion of exercise training in MS based on recent prescriptive guidelines. Collectively, the evidence for the benefits of exercise training in MS suggests that the time is ripe for the promotion of exercise by healthcare providers, particularly neurologists as a central part of the clinical care and management of MS patients.
2012-01-01
Background Exercise causes a variety of physiological and metabolic changes that can in turn reduce exercise tolerance. One of the potential mechanisms responsible for fatigue is “exercise-induced hyperammonemia”. Previous studies have shown that supplementation with amino acids can increase training tolerance. The α-keto acids are biochemical analogs of amino acids and can be converted to amino acids through transamination, thus reducing the cellular ammonia level. This double blind, placebo-controlled study was designed to investigate the effects of α-keto acid supplementation (KAS) on training tolerance, training effect, and stress-recovery state. Methods Thirty-three untrained young male adults underwent four weeks of training (5 sessions/week; 30 minutes running at the individual anaerobic threshold followed by 3 x 3 minute sprints/each session). Throughout the 4 weeks of training and one week of recovery, subjects took α-ketoglutarate (AKG group, 0.2 g/kg/d, n = 9), branched-chain keto acids (BCKA group, 0.2 g/kg/d, n = 12) or isocaloric placebo (control group, n = 12) daily. Results The 4th week training volume, maximum power output and muscle torque were higher in the AKG group (175 ± 42 min, 412 ± 49 Watts and 293 ± 58 Newton meters, respectively, P<0.05) and the BCKA group (158 ± 35, 390 ± 29 and 273 ± 47, P<0.05) than in the control group (92 ± 70, 381 ± 67 and 233 ± 43). The general stress and emotional exhaustion as assessed by the rest-stress-questionnaire-sport after the 3rd week of training increased significantly in the control group (P<0.05), but not in the KAS groups. Conclusions Under KAS, subjects could bear a higher training volume and reach a higher power output and peak muscle torque, accompanied by a better stress-recovery-state. Thus, KAS improves exercise tolerance and training effects along with a better stress-recovery state. Whether the improved training tolerance by KAS is associated with effects on ammonia homeostasis requires further observation. PMID:22857787
Melzer, Itshak; Elbar, Ori; Tsedek, Irit; Oddsson, Lars IE
2008-01-01
Background Gait and balance impairments may increase the risk of falls, the leading cause of accidental death in the elderly population. Fall-related injuries constitute a serious public health problem associated with high costs for society as well as human suffering. A rapid step is the most important protective postural strategy, acting to recover equilibrium and prevent a fall from initiating. It can arise from large perturbations, but also frequently as a consequence of volitional movements. We propose to use a novel water-based training program which includes specific perturbation exercises that will target the stepping responses that could potentially have a profound effect in reducing risk of falling. We describe the water-based balance training program and a study protocol to evaluate its efficacy (Trial registration number #NCT00708136). Methods/Design The proposed water-based training program involves use of unpredictable, multi-directional perturbations in a group setting to evoke compensatory and volitional stepping responses. Perturbations are made by pushing slightly the subjects and by water turbulence, in 24 training sessions conducted over 12 weeks. Concurrent cognitive tasks during movement tasks are included. Principles of physical training and exercise including awareness, continuity, motivation, overload, periodicity, progression and specificity were used in the development of this novel program. Specific goals are to increase the speed of stepping responses and improve the postural control mechanism and physical functioning. A prospective, randomized, cross-over trial with concealed allocation, assessor blinding and intention-to-treat analysis will be performed to evaluate the efficacy of the water-based training program. A total of 36 community-dwelling adults (age 65–88) with no recent history of instability or falling will be assigned to either the perturbation-based training or a control group (no training). Voluntary step reaction times and postural stability using stabiliogram diffusion analysis will be tested before and after the 12 weeks of training. Discussion This study will determine whether a water-based balance training program that includes perturbation exercises, in a group setting, can improve speed of voluntary stepping responses and improve balance control. Results will help guide the development of more cost-effective interventions that can prevent the occurrence of falls in the elderly. PMID:18706103
Tait, Jamie L.; Duckham, Rachel L.; Milte, Catherine M.; Main, Luana C.; Daly, Robin M.
2017-01-01
Emerging research indicates that exercise combined with cognitive training may improve cognitive function in older adults. Typically these programs have incorporated sequential training, where exercise and cognitive training are undertaken separately. However, simultaneous or dual-task training, where cognitive and/or motor training are performed simultaneously with exercise, may offer greater benefits. This review summary provides an overview of the effects of combined simultaneous vs. sequential training on cognitive function in older adults. Based on the available evidence, there are inconsistent findings with regard to the cognitive benefits of sequential training in comparison to cognitive or exercise training alone. In contrast, simultaneous training interventions, particularly multimodal exercise programs in combination with secondary tasks regulated by sensory cues, have significantly improved cognition in both healthy older and clinical populations. However, further research is needed to determine the optimal characteristics of a successful simultaneous training program for optimizing cognitive function in older people. PMID:29163146
Smart, Neil
2011-01-01
Significant benefits can be derived by heart failure patients from exercise training. This paper provides an evidence-based assessment of expected clinical benefits of exercise training for heart failure patients. Meta-analyses and randomized, controlled trials of exercise training in heart failure patients were reviewed from a search of PubMed, Cochrane Controlled Trial Registry (CCTR), CINAHL, and EMBASE. Exercise training improves functional capacity, quality of life, hospitalization, and systolic and diastolic function in heart failure patients. Heart failure patients with preserved systolic function (HFnEF) participating in exercise training studies are more likely to be women and are 5–7 years older than their systolic heart failure (CHF) counterparts. All patients exhibit low functional capacities, although in HFnEF patients this may be age related, therefore subtle differences in exercise prescriptions are required. Published works report that exercise training is beneficial for heart failure patients with and without systolic dysfunction. PMID:20953365
Sympathetic adaptations to one-legged training
NASA Technical Reports Server (NTRS)
Ray, C. A.
1999-01-01
The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.
Rosset, Robin; Lecoultre, Virgile; Egli, Léonie; Cros, Jérémy; Rey, Valentine; Stefanoni, Nathalie; Sauvinet, Valérie; Laville, Martine; Schneiter, Philippe; Tappy, Luc
2017-04-20
Glucose-fructose ingestion increases glucose and lactate oxidation during exercise. We hypothesized that training with glucose-fructose would induce key adaptations in lactate metabolism. Two groups of eight sedentary males were endurance-trained for three weeks while ingesting either glucose-fructose (GF) or water (C). Effects of glucose-fructose on lactate appearance, oxidation, and clearance were measured at rest and during exercise, pre-training, and post-training. Pre-training, resting lactate appearance was 3.6 ± 0.5 vs. 3.6 ± 0.4 mg·kg -1 ·min -1 in GF and C, and was increased to 11.2 ± 1.4 vs. 8.8 ± 0.7 mg·kg -1 ·min -1 by exercise (Exercise: p < 0.01). Lactate oxidation represented 20.6% ± 1.0% and 17.5% ± 1.7% of lactate appearance at rest, and 86.3% ± 3.8% and 86.8% ± 6.6% during exercise (Exercise: p < 0.01) in GF and C, respectively. Training with GF increased resting lactate appearance and oxidation (Training × Intervention: both p < 0.05), but not during exercise (Training × Intervention: both p > 0.05). Training with GF and C had similar effects to increase lactate clearance during exercise (+15.5 ± 9.2 and +10.1 ± 5.9 mL·kg -1 ·min -1 ; Training: p < 0.01; Training × Intervention: p = 0.97). The findings of this study show that in sedentary participants, glucose-fructose ingestion leads to high systemic lactate appearance, most of which is disposed non-oxidatively at rest and is oxidized during exercise. Training with or without glucose-fructose increases lactate clearance, without altering lactate appearance and oxidation during exercise.
Rosset, Robin; Lecoultre, Virgile; Egli, Léonie; Cros, Jérémy; Rey, Valentine; Stefanoni, Nathalie; Sauvinet, Valérie; Laville, Martine; Schneiter, Philippe; Tappy, Luc
2017-01-01
Glucose-fructose ingestion increases glucose and lactate oxidation during exercise. We hypothesized that training with glucose-fructose would induce key adaptations in lactate metabolism. Two groups of eight sedentary males were endurance-trained for three weeks while ingesting either glucose-fructose (GF) or water (C). Effects of glucose-fructose on lactate appearance, oxidation, and clearance were measured at rest and during exercise, pre-training, and post-training. Pre-training, resting lactate appearance was 3.6 ± 0.5 vs. 3.6 ± 0.4 mg·kg−1·min−1 in GF and C, and was increased to 11.2 ± 1.4 vs. 8.8 ± 0.7 mg·kg−1·min−1 by exercise (Exercise: p < 0.01). Lactate oxidation represented 20.6 ± 1.0% and 17.5 ± 1.7% of lactate appearance at rest, and 86.3 ± 3.8% and 86.8 ± 6.6% during exercise (Exercise: p < 0.01) in GF and C, respectively. Training with GF increased resting lactate appearance and oxidation (Training × Intervention: both p < 0.05), but not during exercise (Training × Intervention: both p > 0.05). Training with GF and C had similar effects to increase lactate clearance during exercise (+15.5 ± 9.2 and +10.1 ± 5.9 mL·kg−1·min−1; Training: p < 0.01; Training × Intervention: p = 0.97). The findings of this study show that in sedentary participants, glucose-fructose ingestion leads to high systemic lactate appearance, most of which is disposed non-oxidatively at rest and is oxidized during exercise. Training with or without glucose-fructose increases lactate clearance, without altering lactate appearance and oxidation during exercise. PMID:28425966
Malin, Steven K.; Niemi, Nicole; Solomon, Thomas P.J.; Haus, Jacob M.; Kelly, Karen R.; Filion, Julianne; Rocco, Michael; Kashyap, Sangeeta R.; Barkoukis, Hope; Kirwan, John P.
2012-01-01
Background The efficacy of combining carbohydrate quality with exercise on metabolic syndrome risk is unclear. Thus, we determined the effects of exercise training with a low or high glycemic diet on metabolic syndrome severity (Z-score). Methods Twenty-one adults (66.2 ± 1.1 yr; BMI = 35.3 ± 0.9 kg/m2) with metabolic syndrome were randomized to 12 weeks of exercise (60 minutes/d for 5 d/week at ~85% HRmax) and provided a low-glycemic (n=11; LoGIx) or high glycemic (n=10; HiGIx) diet. Z-scores were determined from: blood pressure, triglycerides (TG), high-density lipoproteins (HDL), fasting plasma glucose (FPG), and waist circumference (WC) before and after the intervention. Body composition, aerobic fitness, insulin resistance, and non-esterfied fatty acid (NEFA) suppression were also assessed. Results LoGIx and HiGIx decreased body mass and insulin resistance and increased aerobic fitness comparably (p < 0.05). LoGIx and HiGIx decreased the Z-score similarly, as each intervention decreased blood pressure, TG, FPG, and WC (p < 0.05). HiGIx tended to suppress NEFA during insulin stimulation compared to LoGIx (p = 0.06). Conclusions Our findings highlight that exercise with weight loss reduces metabolic syndrome severity whether individuals were randomized to a high or low glycemic index diet. PMID:23036993
Effect of Aerobic Exercise Training on Mood in People With Traumatic Brain Injury: A Pilot Study.
Weinstein, Ali A; Chin, Lisa M K; Collins, John; Goel, Divya; Keyser, Randall E; Chan, Leighton
Exercise training is associated with elevations in mood in patients with various chronic illnesses and disabilities. However, little is known regarding the effect of exercise training on short and long-term mood changes in those with traumatic brain injury (TBI). The purpose of this study was to examine the time course of mood alterations in response to a vigorous, 12-week aerobic exercise training regimen in ambulatory individuals with chronic TBI (>6 months postinjury). Short and long-term mood changes were measured using the Profile of Mood States-Short Form, before and after specific aerobic exercise bouts performed during the 12-week training regimen. Ten subjects with nonpenetrating TBI (6.6 ± 6.8 years after injury) completed the training regimen. A significant improvement in overall mood was observed following 12 weeks of aerobic exercise training (P = .04), with moderate to large effect sizes observed for short-term mood improvements following individual bouts of exercise. Specific improvements in long-term mood state and short-term mood responses following individual exercise sessions were observed in these individuals with TBI. The largest improvement in overall mood was observed at 12 weeks of exercise training, with improvements emerging as early as 4 weeks into the training regimen.
Leggio, Massimo; Mazza, Andrea; Cruciani, Giancarlo; Sgorbini, Luca; Pugliese, Marco; Bendini, Maria Grazia; Severi, Paolo; Jesi, Anna Patrizia
2014-07-01
There is a lack of detailed data regarding the effect of exercise training in pharmacologically treated hypertensive patients. Therefore, the aim of this study was to evaluate the effects of exercise training on left and right ventricular morphologic and functional parameters by means of conventional echocardiography and sensitive new echocardiographic techniques including tissue Doppler velocity and strain imaging, that were performed in pharmacologically treated hypertensive patients at baseline and at the end of a specific exercise training protocol for primary prevention of cardiovascular disease. We selected 116 pharmacologically treated hypertensive patients who completed the exercise training protocol. All patients underwent a clinical history and examination; transthoracic echocardiography and exercise testing were performed at baseline and at the end of the exercise training protocol. Conventional echocardiography revealed a mild degree of diastolic dysfunction without significant differences or variations from baseline to the end of the exercise training protocol. In contrast, tissue Doppler velocity and strain imaging measurements demonstrated and highlighted the positive influence of exercise training: for both left and right ventricle myocardial early peak diastolic velocities (Em), the ratio of myocardial early-late peak diastolic velocity (Em/Am), myocardial peak systolic velocities (Sm) and peak strain and strain rate values significantly increased at the end of the exercise training protocol, suggesting a relationship between exercise capacity and both left and right ventricular systo-diastolic function. Our study, by means of newer more sensitive echocardiographic techniques, clearly demonstrated the positive impact of exercise training on both left and right ventricular systo-diastolic function, in terms of adjunctive subclinical improvement, in pharmacologically treated hypertensive patients.
Clinical Utility of Exercise Training in Heart Failure with Reduced and Preserved Ejection Fraction
Asrar Ul Haq, Muhammad; Goh, Cheng Yee; Levinger, Itamar; Wong, Chiew; Hare, David L
2015-01-01
Reduced exercise tolerance is an independent predictor of hospital readmission and mortality in patients with heart failure (HF). Exercise training for HF patients is well established as an adjunct therapy, and there is sufficient evidence to support the favorable role of exercise training programs for HF patients over and above the optimal medical therapy. Some of the documented benefits include improved functional capacity, quality of life (QoL), fatigue, and dyspnea. Major trials to assess exercise training in HF have, however, focused on heart failure with reduced ejection fraction (HFREF). At least half of the patients presenting with HF have heart failure with preserved ejection fraction (HFPEF) and experience similar symptoms of exercise intolerance, dyspnea, and early fatigue, and similar mortality risk and rehospitalization rates. The role of exercise training in the management of HFPEF remains less clear. This article provides a brief overview of pathophysiology of reduced exercise tolerance in HFREF and heart failure with preserved ejection fraction (HFPEF), and summarizes the evidence and mechanisms by which exercise training can improve symptoms and HF. Clinical and practical aspects of exercise training prescription are also discussed. PMID:25698883
McNamara, Renae J; McKeough, Zoe J; McKenzie, David K; Alison, Jennifer A
2015-06-01
Water-based exercise training is a relatively new concept in the management of people with COPD. This study aimed to examine the acceptability of the aquatic environment as a medium for exercise training in people with COPD with physical comorbidities. Following a supervised eight week, three times a week, water-based exercise training programme conducted in a hospital hydrotherapy pool as part of a randomised controlled trial, participants completed a questionnaire about their experience with exercise training in the pool including adverse events, barriers and factors enabling exercise programme completion, satisfaction with the aquatic environment and their preference for an exercise training environment. All 18 participants (mean (SD) age 72 (10) years; FEV1% predicted 60 (10) %) who commenced the water-based exercise training programme completed the questionnaire. Three participants withdrew from training. High acceptability of the water and air temperature, shower and change-room facilities, staff assistance and modes of pool entry was reported (94% to 100%). Six factors were highly rated as enabling exercise programme adherence and completion: staff support (chosen by 93% of participants), enjoyment (80%), sense of achievement (80%), noticeable improvements (73%), personal motivation (73%) and participant support (53%). Eighty-nine percent of the participants indicated they would continue with water-based exercise. This study provides the first insight into the acceptability of the aquatic environment for exercise training in people with COPD and indicates water-based exercise and the aquatic environment is well accepted. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok
2015-10-01
[Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus.
Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok
2015-01-01
[Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. PMID:26644644
2013-01-01
Background The cardiovascular (CV) and metabolic health benefits or risks associated with consumption of multi-ingredient performance supplements (MIPS) in conjunction with periodized resistance training (RT) in resistance-trained men are unknown. This population is a major target audience for performance supplements, and therefore, the purpose of this study was to investigate the combined effect of RT and commercially available pre- and post-exercise performance supplements on CV health and body fat in resistance-trained men. Methods Twenty-four resistance-trained men completed six weeks (three times/week) of periodized RT while either ingesting SHOT 15-min pre-exercise and SYN immediately post-exercise (multi-ingredient performance supplement group: MIPS) or an isocaloric maltodextrin placebo 15-min pre-exercise and immediately post-exercise (Placebo group). Before and after six weeks of RT and supplementation, resting heart rate (HR), blood pressure (BP), total body fat, android fat, gynoid fat, fat-free mass (FFM) and fasting blood measures of glucose, lipids, nitrate/nitrite (NOx), cortisol and high sensitivity C-reactive protein (hs-CRP) were measured. Statistical analysis was conducted using a one-way ANOVA for baseline differences and a 2 × 2 (group × time) repeated measures ANOVA and Tukey post-hoc tests where appropriate. Significance was set at p < 0.05. Results There was no group × time interaction for HR, BP, blood glucose, lipids, NOx, hs-CRP, cortisol concentrations or body fat. However, there was a time effect where significant decreases in body fat (mean ± SD; MIPS: -1.2 ± 1.2%; Placebo: -0.9 ± 1.1%), android fat (MIPS: -1.8 ± 2.1%; Placebo: -1.6 ± 2.0%), and gynoid fat (MIPS: -1.3 ± 1.6%; Placebo: -1.0 ± 1.4%) for both groups were observed. FFM increased in both groups, and a group × time interaction was observed with MIPS increasing significantly more than the Placebo group (4.2% vs. 1.9%). Conclusions Six weeks of MIPS ingestion and periodized RT does not alter CV health parameters or blood indices of health or body fat more than a Placebo treatment in healthy, resistance-trained men. However, MIPS significantly increased FFM more than Placebo. PMID:23680036
Marcus, Robin L; Smith, Sheldon; Morrell, Glen; Addison, Odessa; Dibble, Leland E; Wahoff-Stice, Donna; LaStayo, Paul C
2008-01-01
Background and Purpose: The purpose of this study was to compare the outcomes between a diabetes exercise training program using combined aerobic and high-force eccentric resistance exercise and a program of aerobic exercise only. Subjects and Methods: Fifteen participants with type 2 diabetes mellitus (T2DM) participated in a 16-week supervised exercise training program: 7 (mean age=50.7 years, SD=6.9) in a combined aerobic and eccentric resistance exercise program (AE/RE group) and 8 (mean age=58.5 years, SD=6.2) in a program of aerobic exercise only (AE group). Outcome measures included thigh lean tissue and intramuscular fat (IMF), glycosylated hemoglobin, body mass index (BMI), and 6-minute walk distance. Results: Both groups experienced decreases in mean glycosylated hemoglobin after training (AE/RE group: −0.59% [95% confidence interval (CI)=−1.5 to 0.28]; AE group: −0.31% [95% CI=−0.60 to −0.03]), with no significant between-group differences. There was an interaction between group and time with respect to change in thigh lean tissue cross-sectional area, with the AE/RE group gaining more lean tissue (AE/RE group: 15.1 cm2 [95% CI=7.6 to 22.5]; AE group: −5.6 cm2 [95% CI=−10.4 to 0.76]). Both groups experienced decreases in mean thigh IMF cross-sectional area (AE/RE group: −1.2 cm2 [95% CI=−2.6 to 0.26]; AE group: −2.2 cm2 [95% CI=−3.5 to −0.84]) and increases in 6-minute walk distance (AE/RE group: 45.5 m [95% CI=7.5 to 83.6]; AE group: 29.9 m [95% CI=−7.7 to 67.5]) after training, with no between-group differences. There was an interaction between group and time with respect to change in BMI, with the AE/RE group experiencing a greater decrease in BMI. Discussion and Conclusion: Significant improvements in long-term glycemic control, thigh composition, and physical performance were demonstrated in both groups after participating in a 16-week exercise program. Subjects in the AE/RE group demonstrated additional improvements in thigh lean tissue and BMI. Improvements in thigh lean tissue may be important in this population as a means to increase resting metabolic rate, protein reserve, exercise tolerance, and functional mobility. PMID:18801851
Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo
2014-01-01
Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal muscle.
Davis, Jennifer C; Hsiung, Ging-Yuek Robin; Bryan, Stirling; Best, John R; Eng, Janice J; Munkacsy, Michelle; Cheung, Winnie; Chiu, Bryan; Jacova, Claudia; Lee, Philip; Liu-Ambrose, Teresa
2017-01-01
Background/objectives Evidence suggests that aerobic exercise may slow the progression of subcortical ischaemic vascular cognitive impairment (SIVCI) by modifying cardiovascular risk factors. Yet the economic consequences relating to aerobic training (AT) remain unknown. Therefore, our primary objective was to estimate the incremental cost per quality-adjusted life years (QALYs) gained of a thrice weekly AT intervention compared with usual care. Design Cost–utility analysis alongside a randomised trial. Setting Vancouver, British Columbia, Canada. Participants 70 adults (mean age of 74 years, 51% women) who meet the diagnostic criteria for mild SIVCI. Intervention A 6-month, thrice weekly, progressive aerobic exercise training programme compared with usual care (CON; comparator) with a follow-up assessment 6 months after formal cessation of aerobic exercise training. Measurements Healthcare resource usage was estimated over the 6-month intervention and 6-month follow-up period. Health status (using the EQ-5D-3L) at baseline and trial completion and 6-month follow-up was used to calculate QALYs. The incremental cost–utility ratio (cost per QALY gained) was calculated. Results QALYs were both modestly greater, indicating a health gain. Total healthcare costs (ie, 1791±1369 {2015 $CAD} at 6 months) were greater, indicating a greater cost for the thrice weekly AT group compared with CON. From the Canadian healthcare system perspective, the incremental cost–utility ratios for thrice weekly AT were cost-effective compared with CON, when using a willingness to pay threshold of $CAD 20 000 per QALY gained or higher. Conclusions AT represents an attractive and potentially cost-effective strategy for older adults with mild SIVCI. Trial registration number NCT01027858. PMID:28360247
Franklin, Nina C.; Robinson, Austin T.; Bian, Jing-Tan; Ali, Mohamed M.; Norkeviciute, Edita; McGinty, Patrick
2015-01-01
Abstract Background: Cardiovascular disease (CVD) is a leading cause of preventable death among young women in the United States. Habitual resistance exercise training is known to have beneficial effects on endothelial function and CVD risk factors, including obesity; however, previous studies show that acute resistance exercise impairs endothelial function in obese adults who are sedentary, a response that may be linked to inflammation. We sought to determine if circuit-based resistance training (CRT) attenuates acute resistance exercise-induced reductions in endothelial function in a population of young, obese, sedentary women and whether or not inflammation plays a role in this response. Methods: Eighteen obese [body mass index (BMI) 30.0–40.0 kg·m−2] young premenopausal women were randomly assigned to either a CRT group or a no-exercise control group (CON). Conduit artery endothelial function was assessed using brachial artery flow-mediated dilation (FMD) determined by ultrasound before and after a single bout of strenuous weightlifting (SWL). In addition, circulating inflammatory mediators (tumor necrosis factor-α and C-reactive protein), blood pressure, fasting blood lipids, glucose, waist circumference, body composition, and aerobic capacity were assessed. Results: Among participants randomized to the CRT group, 8 weeks of training led to considerable increases in FMD after SWL (P=0.001) compared to the CON group. However, no significant differences between the groups were observed in circulating inflammatory mediators, blood pressure, fasting blood lipids, or other physical and physiological characteristics. Conclusions: This study shows that CRT alleviates acute exertion-induced reductions in endothelial function among obese sedentary women in the absence of changes in inflammation. PMID:25844686
Goron, Arthur; Lamarche, Frédéric; Cunin, Valérie; Dubouchaud, Hervé; Hourdé, Christophe; Noirez, Philippe; Corne, Christelle; Couturier, Karine; Sève, Michel; Fontaine, Eric; Moinard, Christophe
2017-04-25
Background: Exercise and citrulline (CIT) are both regulators of muscle protein metabolism. However, the combination of both has been under-studied yet may have synergistic effects on muscle metabolism and performance. Methods: Three-month-old healthy male rats were randomly assigned to be fed ad libitum for 4 weeks with either a citrulline-enriched diet (1 g·kg -1 ·day -1 ) ( CIT ) or an isonitrogenous standard diet (by addition of nonessential amino acid) ( Ctrl ) and trained (running on treadmill 5 days·week -1 ) ( ex ) or not. Maximal endurance activity and body composition were assessed, and muscle protein metabolism (protein synthesis, proteomic approach) and energy metabolism [energy expenditure, mitochondrial metabolism] were explored. Results: Body composition was affected by exercise but not by CIT supplementation. Endurance training was associated with a higher maximal endurance capacity than sedentary groups ( P <0.001), and running time was 14% higher in the CITex group than the Ctrlex group (139±4 min versus 122±6 min, P <0.05). Both endurance training and CIT supplementation alone increased muscle protein synthesis (by +27% and +33%, respectively, versus Ctrl , P <0.05) with an additive effect (+48% versus Ctrl , P <0.05). Mitochondrial metabolism was modulated by exercise but not directly by CIT supplementation. However, the proteomic approach demonstrated that CIT supplementation was able to affect energy metabolism, probably due to activation of pathways generating acetyl-CoA. Conclusion: CIT supplementation and endurance training in healthy male rats modulates both muscle protein and energy metabolisms, with synergic effects on an array of parameters, including performance and protein synthesis. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Vromen, T; Kraal, J J; Kuiper, J; Spee, R F; Peek, N; Kemps, H M
2016-04-01
Although aerobic exercise training has shown to be an effective treatment for chronic heart failure patients, there has been a debate about the design of training programs and which training characteristics are the strongest determinants of improvement in exercise capacity. Therefore, we performed a meta-regression analysis to determine a ranking of the individual effect of the training characteristics on the improvement in exercise capacity of an aerobic exercise training program in chronic heart failure patients. We focused on four training characteristics; session frequency, session duration, training intensity and program length, and their product; total energy expenditure. A systematic literature search was performed for randomized controlled trials comparing continuous aerobic exercise training with usual care. Seventeen unique articles were included in our analysis. Total energy expenditure appeared the only training characteristic with a significant effect on improvement in exercise capacity. However, the results were strongly dominated by one trial (HF-action trial), accounting for 90% of the total patient population and showing controversial results compared to other studies. A repeated analysis excluding the HF-action trial confirmed that the increase in exercise capacity is primarily determined by total energy expenditure, followed by session frequency, session duration and session intensity. These results suggest that the design of a training program requires high total energy expenditure as a main goal. Increases in training frequency and session duration appear to yield the largest improvement in exercise capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing
2010-12-01
Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (P<.05, n=8). In contrast, neither the short-arm centrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.
Ansley, L; Petersen, D; Thomas, A; Gibson, A St Clair; Robson‐Ansley, P; Noakes, T D
2007-01-01
Background The role of the perception of breathing effort in the regulation of performance of maximal exercise remains unclear. Aims To determine whether the perceived effort of ventilation is altered through substituting a less dense gas for normal ambient air and whether this substitution affects performance of maximal incremental exercise in trained athletes. Methods Eight highly trained cyclists (mean SD) maximal oxygen consumption (VO2max) = 69.9 (7.9) (mlO2/kg/min) performed two randomised maximal tests in a hyperbaric chamber breathing ambient air composed of either 35% O2/65% N2 (nitrox) or 35% O2/65% He (heliox). A ramp protocol was used in which power output was incremented at 0.5 W/s. The trials were separated by at least 48 h. The perceived effort of breathing was obtained via Borg Category Ratio Scales at 3‐min intervals and at fatigue. Oxygen consumption (VO2) and minute ventilation (VE) were monitored continuously. Results Breathing heliox did not change the sensation of dyspnoea: there were no differences between trials for the Borg scales at any time point. Exercise performance was not different between the nitrox and heliox trials (peak power output = 451 (58) and 453 (56) W), nor was VO2max (4.96 (0.61) and 4.88 (0.65) l/min) or maximal VE (157 (24) and 163 (22) l/min). Between‐trial variability in peak power output was less than either VO2max or maximal VE. Conclusion Breathing a less dense gas does not improve maximal performance of exercise or reduce the perception of breathing effort in highly trained athletes, although an attenuated submaximal tidal volume and VE with a concomitant reduction in VO2 suggests an improved gas exchange and reduced O2 cost of ventilation when breathing heliox. PMID:17062658
Adherence to exercise and affective responses: comparison between outdoor and indoor training.
Lacharité-Lemieux, Marianne; Brunelle, Jean-Pierre; Dionne, Isabelle J
2015-07-01
Postmenopausal women, despite their increased cardiovascular risk, do not meet physical activity recommendations. Outdoor exercise bouts induce more positive affective responses than the same indoor exercise. Outdoor training could therefore increase exercise adherence. This study aims to compare the long-term effects of outdoor and indoor training on affective outcomes and adherence to exercise training in postmenopausal women. In a 12-week randomized trial, 23 healthy (body mass index, 22-29 kg/m) postmenopausal women (aged 52-69 y) were assigned to either outdoor training or indoor training and performed three weekly 1-hour sessions of identical aerobic and resistance training. Adherence, affective valence (Feeling Scale), affective states (Exercise-Induced Feeling Inventory), and rating of perceived exertion were measured during exercise sessions, whereas depression symptoms (Beck Depression Inventory) and physical activity level (Physical Activity Scale for the Elderly) were assessed before and after the intervention. After 12 weeks of training, exercise-induced changes in affective valence were higher for the outdoor training group (P ≤ 0.05). A significant group-by-time interaction was found for postexercise tranquility (P ≤ 0.01), with a significant increase outdoors and a significant decrease indoors (both P ≤ 0.05). A time effect was revealed for positive engagement, which decreased across time in the indoor group (P ≤ 0.05). Adherence to training (97% vs 91%) was significantly higher outdoors (P ≤ 0.01). Between baseline and week 12, depression symptoms decreased and physical activity level increased only for the outdoor group (P ≤ 0.01 and P ≤ 0.05, respectively). Outdoor training enhances affective responses to exercise and leads to greater exercise adherence than indoor training in postmenopausal women.
2014-01-01
Background Different types of exercises can help manage chronic neck pain. Supervised exercise interventions are widely used, but these protocols require substantial resources. The aim of this trial, which focused on adherence, was to evaluate two home exercise interventions. Methods This parallel group randomized controlled trial included 57 women randomly allocated into two groups – a strength training group (STRENGTH, 34 subjects) and a stretching group (STRETCH, 23 subjects). The interventions focused on the neck and shoulder muscles and lasted for 12 months. The STRENGTH group performed weight training and ended each session with stretching exercises. These stretching exercises constituted the entirety of the STRETCH group’s training session. Both groups were instructed to exercise three times per week. All the participants kept an exercise diary. In addition, all participants were offered support via phone and e-mail. The primary outcomes were pain intensity and function. The trial included a four- to six-month and a twelve-month follow-up. A completer in this study exercised at least 1,5 times per week during eight unbroken weeks. A responder in this study reported clinically significant improvements on pain and function. The statistical analyses used the Mann Whitney U-test, Wilcoxon signed-rank test, and X 2 test. Results At four- to six-months, the numbers of completers were 19 in the STRENGTH group and 17 in the STRETCH group. At twelve months, the corresponding numbers were 11 (STRENGTH) and 10 (STRETCH). At four- to six-months, the proportions of subjects reporting clinically important changes (STRENGTH and STRETCH) were for neck pain: 47% and 41%, shoulder pain: 47% and 47%, function: 37% and 29%. At twelve months, the corresponding numbers were for neck pain: 45% and 40%, shoulder pain: 55% and 50%, function: 55% and 20%. Conclusions No differences in the two primary outcomes between the two interventions were found, a finding that may be due to the insufficient statistical power of the study. Both interventions based on home exercises improved the two primary outcomes, but the adherences were relatively low. Future studies should investigate ways to improve adherence to home exercise treatments. Trial registration ClinicalTrials.gov Id: NCT01876680 PMID:24400934
2012-01-01
Background Sport drinks are ubiquitous within the recreational and competitive fitness and sporting world. Most are manufactured and artificially flavored carbohydrate-electrolyte beverages. Recently, attention has been given to coconut water, a natural alternative to manufactured sport drinks, with initial evidence indicating efficacy with regard to maintaining hydration. We compared coconut water and a carbohydrate-electrolyte sport drink on measures of hydration and physical performance in exercise-trained men. Methods Following a 60-minute bout of dehydrating treadmill exercise, 12 exercise-trained men (26.6 ± 5.7 yrs) received bottled water (BW), pure coconut water (VitaCoco®: CW), coconut water from concentrate (CWC), or a carbohydrate-electrolyte sport drink (SD) [a fluid amount based on body mass loss during the dehydrating exercise] on four occasions (separated by at least 5 days) in a random order, single blind (subject and not investigators), cross-over design. Hydration status (body mass, fluid retention, plasma osmolality, urine specific gravity) and performance (treadmill time to exhaustion; assessed after rehydration) were determined during the recovery period. Subjective measures of thirst, bloatedness, refreshed, stomach upset, and tiredness were also determined using a 5-point visual analog scale. Results Subjects lost approximately 1.7 kg (~2% of body mass) during the dehydrating exercise and regained this amount in a relatively similar manner following consumption of all conditions. No differences were noted between coconut water (CW or CWC) and SD for any measures of fluid retention (p > 0.05). Regarding exercise performance, no significant difference (p > 0.05) was noted between BW (11.9 ± 5.9 min), CW (12.3 ± 5.8 min), CWC (11.9 ± 6.0 min), and SD (12.8 ± 4.9 min). In general, subjects reported feeling more bloated and experienced greater stomach upset with the CW and CWC conditions. Conclusion All tested beverages are capable of promoting rehydration and supporting subsequent exercise. Little difference is noted between the four tested conditions with regard to markers of hydration or exercise performance in a sample of young, healthy men. Additional study inclusive of a more demanding dehydration protocol, as well as a time trial test as the measure of exercise performance, may more specifically determine the efficacy of these beverages on enhancing hydration and performance following dehydrating exercise. PMID:22257640
Foster B Sc, Evan; Fraser, Julia E; Inness PhD, Elizabeth L; Munce, Sarah; Biasin, Louis; Poon, Vivien; Bayley, Mark
2018-04-03
To determine the frequency of physiotherapist-administered aerobic exercise testing/training, the proportion of physiotherapists who administer this testing/training, and the barriers that currently exist across different practice environments. A secondary objective is to identify the learning needs of physiotherapists for the development of an education curriculum in aerobic exercise testing and training with electrocardiograph (ECG) administration and interpretation. National, cross-sectional survey. Registered physiotherapists practicing in Canada. Out of 137 participants, most (75%) physiotherapists prescribed aerobic exercise on a regular basis (weekly); however, 65% had never conducted an aerobic exercise test. There were no significant differences in frequency of aerobic exercise testing across different practice environments or across years of physiotherapy experience. Physiotherapists perceived the main barriers to aerobic exercise testing as being a lack of equipment/space (78%), time (65%), and knowledge (56%). Although most (82%) were uncomfortable administering 12-lead ECG-monitored aerobic exercise tests, 60% stated they would be interested in learning more about ECG interpretation. This study found that physiotherapists are regularly implementing aerobic exercise. This exercise was infrequently guided by formal aerobic exercise testing, which could increase access to safe and effective exercise within the optimal aerobic training zone. As well, this could facilitate training in patients with cardiovascular diagnoses that require additional testing for medical clearance. Increased ECG training and access to equipment for physiotherapists may augment pre-screening aerobic exercise testing. This training should include learning the key arrhythmias for aerobic exercise test termination as defined by the American College of Sports Medicine.
Moreau, David; Kirk, Ian J; Waldie, Karen E
2017-01-01
Background: Exercise-induced cognitive improvements have traditionally been observed following aerobic exercise interventions; that is, sustained sessions of moderate intensity. Here, we tested the effect of a 6 week high-intensity training (HIT) regimen on measures of cognitive control and working memory in a multicenter, randomized (1:1 allocation), placebo-controlled trial. Methods: 318 children aged 7-13 years were randomly assigned to a HIT or an active control group matched for enjoyment and motivation. In the primary analysis, we compared improvements on six cognitive tasks representing two cognitive constructs (N = 305). Secondary outcomes included genetic data and physiological measurements. Results: The 6-week HIT regimen resulted in improvements on measures of cognitive control [BFM = 3.38, g = 0.31 (0.09, 0.54)] and working memory [BFM = 5233.68, g = 0.54 (0.31, 0.77)], moderated by BDNF genotype, with met66 carriers showing larger gains post-exercise than val66 homozygotes. Conclusion: This study suggests a promising alternative to enhance cognition, via short and potent exercise regimens. Clinical Trial Registration: Protocol #015078, University of Auckland. Funding: Centre for Brain Research: David Moreau and Karen E Waldie (9133-3706255). DOI: http://dx.doi.org/10.7554/eLife.25062.001 PMID:28825973
Chaouachi, Mehdi; Granacher, Urs; Makhlouf, Issam; Hammami, Raouf; Behm, David G; Chaouachi, Anis
2017-03-01
The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players (13.9 ± 0.3 years) participated in an 8-week training program that either alternated individual balance (e.g., exercises on unstable surfaces) and plyometric (e.g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately >30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence.
Edwards, Thomas; Pilutti, Lara A
2017-08-01
There is evidence for the benefits of exercise training in persons with multiple sclerosis (MS). However, these benefits have primarily been established in individuals with mild-to-moderate disability (i.e., Expanded Disability Status Scale [EDSS] scores 1.0-5.5), rather than among those with significant mobility impairment. Further, the approaches to exercise training that have been effective in persons with mild-to-moderate MS disability may not be physically accessible for individuals with mobility limitations. Therefore, there is a demand for an evidence-base on the benefits of physically accessible exercise training approaches for managing disability in people with MS with mobility impairment. To conduct a systematic review of the current literature pertaining to exercise training in individuals with multiple sclerosis (MS) with severe mobility disability. Four electronic databases (PubMed, EMBASE, OvidMEDLINE, and PsychINFO) were searched for relevant articles published up until October 2016. The review focused on English-language studies that examined the effect of exercise training in people with MS with severe mobility disability, characterized as the need for assistance in ambulation or EDSS score ≥ 6.0. The inclusion criteria involved full-text articles that: (i) included participants with a diagnosis of MS; (ii) included primarily participants with a reported EDSS score ≥ 6.0 and/or definitively described disability consistent with this level of neurological impairment; and (iii) implemented a prospective, structured exercise intervention. Data were analyzed using a descriptive approach and summarized by exercise training modality (conventional or adapted exercise training), and by outcome (disability, physical fitness, physical function, and symptoms and participation). Initially, 1164 articles were identified and after removal of duplicates, 530 articles remained. In total, 512 articles did not meet the inclusion criteria. 19 articles were included in the final review. Five studies examined conventional exercise training (aerobic and resistance training), and thirteen studies examined adapted exercise modalities including body-weight support treadmill training (BWSTT), total-body recumbent stepper training (TBRST), and electrical stimulation cycling (ESAC). Outcomes related to mobility, fatigue, and quality of life (QOL) were most frequently reported. Two of five studies examining conventional resistance exercise training reported significant improvements in physical fitness, physical function, and/or symptomatic and participatory outcomes. Nine of 13 studies examining adapted exercise training reported significant improvements in disability, physical fitness, physical function, and/or symptomatic and participatory outcomes. There is limited, but promising evidence for the benefits of exercise training in persons with MS with severe mobility disability. Considering the lack of effective therapeutic strategies for managing long-term disability accumulation, exercise training could be considered as an alternative approach. Further research is necessary to optimize the prescription and efficacy of exercise training for adults with MS with severe mobility disability. Copyright © 2017. Published by Elsevier B.V.
Hagberg, Jan; Axén, Iben; Kwak, Lydia; Lohela-Karlsson, Malin; Skillgate, Eva; Dahlgren, Gunilla; Jensen, Irene
2017-01-01
Background Exercise is effective in improving non-specific low back pain (LBP). Certain components of physical exercise, such as the type, intensity and frequency of exercise, are likely to influence participation among working adults with non-specific LBP, but the value and relative importance of these components remain unknown. The study’s aim was to examine such specific components and their influence on individual preferences for exercise for secondary prevention of non-specific LBP among working adults. Methods In a discrete choice experiment, working individuals with non-specific LBP answered a web-based questionnaire. Each respondent was given ten pairs of hypothetical exercise programs and asked to choose one option from each pair. The choices comprised six attributes of exercise (i.e., type of training, design, intensity, frequency, proximity and incentives), each with either three or four levels. A conditional logit regression that reflected the random utility model was used to analyze the responses. Results The final study population consisted of 112 participants. The participants’ preferred exercise option was aerobic (i.e., cardiovascular) rather than strength training, group exercise with trainer supervision, rather than individual or unsupervised exercise. They also preferred high intensity exercise performed at least once or twice per week. The most popular types of incentive were exercise during working hours and a wellness allowance rather than coupons for sports goods. The results show that the relative value of some attribute levels differed between young adults (age ≤ 44 years) and older adults (age ≥ 45 years) in terms of the level of trainer supervision required, exercise intensity, travel time to exercise location and financial incentives. For active study participants, exercise frequency (i.e., twice per week, 1.15; CI: 0.25; 2.06) influenced choice of exercise. For individuals with more than one child, travel time (i.e., 20 minutes, -0.55; CI: 0.65; 3.26) was also an influential attribute for choice of exercise, showing that people with children at home preferred to exercise close to home. Conclusions This study adds to our knowledge about what types of exercise working adults with back pain are most likely to participate in. The exercise should be a cardiovascular type of training carried out in a group with trainer supervision. It should also be of high intensity and preferably performed twice per week during working hours. Coupons for sports goods do not appear to motivate physical activity among workers with LBP. The findings of the study could have a substantial impact on the planning and development of exercise provision and promotion strategies to improve non-specific LBP. Providers and employers may be able to improve participation in exercise programs for adults with non-specific LBP by focusing on the exercise components which are the most attractive. This in turn would improve satisfaction and adherence to exercise interventions aimed at preventing recurrent non-specific LBP. PMID:29244841
Ansari, Basit; Qureshi, Masood A; Zohra, Raheela Rahmat
2014-11-01
The aim of the present study is to compare the effect of exercise training program in post-Cardiac Rehabilitation Exercise Training (CRET), post-CABG patients with normal & subnormal ejection fraction (EF >50% or <50%) who have undergoing coronary artery bypass grafting (CABG) surgery. The study was conducted on 100 cardiac patients of both sexes (age: 57-65 years) who after CABG surgery, were referred to the department of Physiotherapy and Rehabilitation between 2008 and 2010 at Liaquat National Hospital & Medical College, Karachi. The patients undertook exercise training program (using treadmill, Recumbent Bike), keeping in view the Borg's scale of perceived exertion, for 6 weeks. Heart Rate (HR) and Blood Pressure (BP) were measured & compared in post CABG Patients with EF (>50% or <50%) at the start and end of the exercise training program. Statistical formulae were applied to analyze the improvement in cardiac functional indicators. Exercise significantly restores the values of HR and BP (systolic) in post CABGT Patients with EF (>50% or <50%) from the baseline to the last session of the training program. There appeared significant improvement in cardiac function four to six weeks of treadmill exercise training program. After CABG all patients showed similar improvement in cardiac function with exercise training program. The exercise training program is beneficial for improving exercise capacity linked with recovery cardiac function in Pakistani CABG patients.
Ozaki, Kenichi; Kondo, Izumi; Hirano, Satoshi; Kagaya, Hitoshi; Saitoh, Eiichi; Osawa, Aiko; Fujinori, Yoichi
2017-11-01
To examine the efficacy of postural strategy training using a balance exercise assist robot (BEAR) as compared with conventional balance training for frail older adults. The present study was designed as a cross-over trial without a washout term. A total of 27 community-dwelling frail or prefrail elderly residents (7 men, 20 women; age range 65-85 years) were selected from a volunteer sample. Two exercises were prepared for interventions: robotic exercise moving the center of gravity by the balance exercise assist robot system; and conventional balance training combining muscle-strengthening exercise, postural strategy training and applied motion exercise. Each exercise was carried out twice a week for 6 weeks. Participants were allocated randomly to either the robotic exercise first group or the conventional balance exercise first group. preferred and maximal gait speeds, tandem gait speeds, timed up-and-go test, functional reach test, functional base of support, center of pressure, and muscle strength of the lower extremities were assessed before and after completion of each exercise program. Robotic exercise achieved significant improvements for tandem gait speed (P = 0.012), functional reach test (P = 0.002), timed up-and-go test (P = 0.023) and muscle strength of the lower extremities (P = 0.001-0.030) compared with conventional exercise. In frail or prefrail older adults, robotic exercise was more effective for improving dynamic balance and lower extremity muscle strength than conventional exercise. These findings suggest that postural strategy training with the balance exercise assist robot is effective to improve the gait instability and muscle weakness often seen in frail older adults. Geriatr Gerontol Int 2017; 17: 1982-1990. © 2017 The Authors. Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.
Westhoff-Bleck, Mechthild; Schieffer, Bernhard; Tegtbur, Uwe; Meyer, Gerd Peter; Hoy, Ludwig; Schaefer, Arnd; Tallone, Ezequiel Marcello; Tutarel, Oktay; Mertins, Ramona; Wilmink, Lena Mara; Anker, Stefan D; Bauersachs, Johann; Roentgen, Philipp
2013-12-05
Exercise training safely and efficiently improves symptoms in patients with heart failure due to left ventricular dysfunction. However, studies in congenital heart disease with systemic right ventricle are scarce and results are controversial. In a randomised controlled study we investigated the effect of aerobic exercise training on exercise capacity and systemic right ventricular function in adults with d-transposition of the great arteries after atrial redirection surgery (28.2 ± 3.0 years after Mustard procedure). 48 patients (31 male, age 29.3 ± 3.4 years) were randomly allocated to 24 weeks of structured exercise training or usual care. Primary endpoint was the change in maximum oxygen uptake (peak VO2). Secondary endpoints were systemic right ventricular diameters determined by cardiac magnetic resonance imaging (CMR). Data were analysed per intention to treat analysis. At baseline peak VO2 was 25.5 ± 4.7 ml/kg/min in control and 24.0 ± 5 ml/kg/min in the training group (p=0.3). Training significantly improved exercise capacity (treatment effect for peak VO2 3.8 ml/kg/min, 95% CI: 1.8 to 5.7; p=0.001), work load (p=0.002), maximum exercise time (p=0.002), and NYHA class (p=0.046). Systemic ventricular function and volumes determined by CMR remained unchanged. None of the patients developed signs of cardiac decompensation or arrhythmias while on exercise training. Aerobic exercise training did not detrimentally affect systemic right ventricular function, but significantly improved exercise capacity and heart failure symptoms. Aerobic exercise training can be recommended for patients following atrial redirection surgery to improve exercise capacity and to lessen or prevent heart failure symptoms. ( ClinicalTrials.gov #NCT00837603). © 2013.
Effects of exercise training in patients with idiopathic pulmonary arterial hypertension.
de Man, F S; Handoko, M L; Groepenhoff, H; van 't Hul, A J; Abbink, J; Koppers, R J H; Grotjohan, H P; Twisk, J W R; Bogaard, H-J; Boonstra, A; Postmus, P E; Westerhof, N; van der Laarse, W J; Vonk-Noordegraaf, A
2009-09-01
We determined the physiological effects of exercise training on exercise capacity and quadriceps muscle function in patients with idiopathic pulmonary arterial hypertension (iPAH). In total, 19 clinically stable iPAH patients (New York Heart Association II-III) underwent a supervised exercise training programme for the duration of 12 weeks. Maximal capacity, endurance capacity and quadriceps function were assessed at baseline and after 12 weeks. In 12 patients, serial quadriceps muscle biopsies were obtained. 6-min walk distance and peak exercise capacity did not change after training. However, endurance capacity improved significantly after training, demonstrated by a shift of the anaerobic threshold to a higher workload (from 32+/-5 to 46+/-6 W; p = 0.003) together with an increase in exercise endurance time (p<0.001). Moreover, exercise training increased quadriceps strength by 13% (p = 0.005) and quadriceps endurance by 34% (p = 0.001). Training enhanced aerobic capacity of the quadriceps, by increasing capillarisation (1.36+/-0.10 to 1.78+/-0.13 capillaries per muscle fibre; p<0.001) and oxidative enzyme activity, especially of the type-I (slow) muscle fibres. No changes were found in cross-sectional area and fibre type distribution. Exercise training in iPAH improves exercise endurance and quadriceps muscle function, which is also reflected by structural changes of the quadriceps.
NASA Technical Reports Server (NTRS)
Mondon, C. E.; Dolkas, C. B.; Reaven, G. M.
1983-01-01
The effect of confinement in small cages (simulating the size to be used in future space Shuttle missions) on insulin sensitivity was studied in rats having an increased insulin sensitivity due to exercise training prior to confinement. Oral glucose tolerance tests (OGTT) were given to both control and exercise-trained rats before and after placement in the small cages for 7 days. The insulin resistance was assessed by the product of the area of the insulin and glucose curves of the OGTT (IG index). Results show that the values obtained before confinement were one-half as high in exercise-trained rats as those in control rats, reflecting an increased sensitivity to insulin with exercise training. After 7 days confinement, the IG index was found to be not significantly different from initial values for both control and exercise-trained rats. These findings suggest that increased insulin sensitivity in exercise-trained rats persists 7 days after cessation of running activity. The data also indicate that exercise training, before flight, may be beneficial in minimizing the loss of insulin sensitivity expected with decreased use of gravity dependent muscles during exposure to hypogravity in space flight.
Quinteiro, Hugo; Buzin, Morgana; Conti, Filipe Fernandes; Dias, Danielle da Silva; Figueroa, Diego; Llesuy, Susana; Irigoyen, Maria-Cláudia; Sanches, Iris Callado; De Angelis, Kátia
2015-05-01
The aim of this study was to evaluate the effects of aerobic exercise training or resistance exercise training on cardiac morphometric, functional, and oxidative stress parameters in rats with ovarian hormone deprivation and diabetes. Female Wistar rats (200-220 g) were divided into a sham-operated group (euglycemic sham-operated sedentary [ES]; n = 8) and three ovariectomized (bilateral removal of ovaries) and diabetic (streptozotocin 50 mg/kg IV) groups as follows: diabetic ovariectomized sedentary (DOS; n = 8), diabetic ovariectomized undergoing aerobic exercise training (DOTA; n = 8), and diabetic ovariectomized undergoing resistance exercise training (DOTR; n = 8). After 8 weeks of resistance (ladder) or aerobic (treadmill) exercise training, left ventricle function and morphometry were evaluated by echocardiography, whereas oxidative stress was evaluated at the left ventricle. The DOS group presented with increased left ventricle cavity in diastole and relative wall thickness (RWT), and these changes were attenuated in both DOTA and DOTR groups. Systolic and diastolic function was impaired in the DOS group compared with the ES group, and only the DOTA group was able to reverse this dysfunction. Lipoperoxidation and glutathione redox balance were improved in both trained groups compared with the DOS group. Glutathione peroxidase and superoxide dismutase were higher in the DOTA group than in the other studied groups. Correlations were observed between lipoperoxidation and left ventricle cavity in diastole (r = 0.55), between redox balance and RWT (r = 0.62), and between lipoperoxidation and RWT (r = -0.60). Aerobic exercise training and resistance exercise training promote attenuation of cardiac morphometric dysfunction associated with a reduction in oxidative stress in an experimental model of diabetes and menopause. However, only dynamic aerobic exercise training is able to attenuate systolic and diastolic dysfunction under this condition.
Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training
Zhang, Ying
2018-01-01
High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training. PMID:29849885
Plasma lactic dehydrogenase activities in men during bed rest with exercise training
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Juhos, L. T.; Young, H. L.
1985-01-01
Peak oxygen uptake and the activity of lactic dehydrogenase (LDH-T) and its five isoenzymes were measured by spectrophotometer in seven men before, during, and after bed rest and exercise training. Exercise training consisted of isometric leg exercises of 250 kcal/hr for a period of one hour per day. It is found that LDH-T was reduced by 0.05 percent in all three regimens by day 10 of bed rest, and that the decrease occurred at different rates. The earliest reduction in LDH-T activity in the no-exercise regimen was associated with a decrease in peak oxygen uptake of 12.3 percent. It is concluded that isometric (aerobic) muscular strength training appear to maintain skeletal muscle integrity better during bed rest than isotonic exercise training. Reduced hydrostatic pressure during bed rest, however, ultimately counteracts the effects of both moderate isometric and isotonic exercise training, and may result in decreased LDH-T activity.
2013-01-01
BACKGROUND Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. METHODS Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120–139mm Hg or diastolic blood pressure (DBP) = 80–89mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 18–35 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. RESULTS PHRT and PHET reduced resting SBP by 9.6±3.6mm Hg and 11.9±3.4mm Hg, respectively, and DBP by 8.0±5.1mm Hg and 7.2±3.4mm Hg, respectively (P < 0.05). PHRT and PHET decreased augmentation index (AIx) by 7.5% ± 2.8% and 8.1% ± 3.2% (P < 0.05), AIx@75 by 8.0% ± 3.2% and 9.2% ± 3.8% (P < 0.05), and left ventricular wasted pressure energy, an index of extra left ventricular myocardial oxygen requirement due to early systolic wave reflection, by 573±161 dynes s/cm2 and 612±167 dynes s/cm2 (P < 0.05), respectively. PHRT and PHET reduced carotid–radial PWV by 1.02±0.32 m/sec and 0.92±0.36 m/sec (P < 0.05) and femoral–distal PWV by 1.04±0.31 m/sec and 1.34±0.33 m/sec (P < 0.05), respectively. No significant changes were observed in the time-control groups. CONCLUSIONS This study suggests that both resistance and endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects. PMID:23736111
Exercise Training and Energy Expenditure following Weight Loss
Hunter, Gary R.; Fisher, Gordon; Neumeier, William H.; Carter, Stephen J.; Plaisance, Eric P.
2015-01-01
Purpose Determine the effects of aerobic or resistance training on activity related energy expenditure (AEE, kcal/d) and physical activity index (ARTE) following weight loss. It was hypothesized that weight loss without exercise training would be accompanied by a decrease in AEE, ARTE, and non-training physical activity energy expenditure (NEAT) and that exercise training would prevent decreases in free living energy expenditure. Methods 140 pre-menopausal women underwent an average of 25 pound weight loss during an 800 kcal/day diet of furnished food. One group aerobically trained 3 times/wk (40 min/d), another resistance trained 3 times/wk (10 exercises/2 sets x10 repetitions) and the third group did not exercise. DXA was used to measure body composition, indirect calorimetry to measure resting (REE) and walking energy expenditure, and doubly labeled water to measure total energy expenditure (TEE). AEE, ARTE, and non-training physical activity energy expenditure (NEAT) were calculated. Results TEE, REE, and NEAT all decreased following weight loss for the no exercise group, but not for the aerobic and resistance trainers. Only REE decreased in the two exercise groups. The resistance trainers increased ARTE. Heart rate and oxygen uptake while walking on the flat and up a grade were consistently related to TEE, AEE, NEAT, and ARTE. Conclusion Exercise training prevents a decrease in energy expenditure, including free living energy expenditure separate from the exercise training, following weight loss. Resistance training increased physical activity, while ease and economy in walking associates with increased TEE, AEE, NEAT, and ARTE. PMID:25606816
Exercise-Trained Men and Women: Role of Exercise and Diet on Appetite and Energy Intake
Howe, Stephanie M.; Hand, Taryn M.; Manore, Melinda M.
2014-01-01
The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals. PMID:25389897
Exercise-trained men and women: role of exercise and diet on appetite and energy intake.
Howe, Stephanie M; Hand, Taryn M; Manore, Melinda M
2014-11-10
The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals.
Leech, Kristan A.; Kinnaird, Catherine R.; Holleran, Carey L.; Kahn, Jennifer
2016-01-01
Background High-intensity stepping practice may be a critical component to improve gait following motor incomplete spinal cord injury (iSCI). However, such practice is discouraged by traditional theories of rehabilitation that suggest high-intensity locomotor exercise degrades gait performance. Accordingly, such training is thought to reinforce abnormal movement patterns, although evidence to support this notion is limited. Objective The purposes of this study were: (1) to evaluate the effects of short-term manipulations in locomotor intensity on gait performance in people with iSCI and (2) to evaluate potential detrimental effects of high-intensity locomotor training on walking performance. Design A single-day, repeated-measures, pretraining-posttraining study design was used. Methods Nineteen individuals with chronic iSCI performed a graded-intensity locomotor exercise task with simultaneous collection of lower extremity kinematic and electromyographic data. Measures of interest were compared across intensity levels of 33%, 67%, and 100% of peak gait speed. A subset of 9 individuals participated in 12 weeks of high-intensity locomotor training. Similar measurements were collected and compared between pretraining and posttraining evaluations. Results The results indicate that short-term increases in intensity led to significant improvements in muscle activity, spatiotemporal metrics, and joint excursions, with selected improvements in measures of locomotor coordination. High-intensity locomotor training led to significant increases in peak gait speed (0.64–0.80 m/s), and spatiotemporal and kinematic metrics indicate a trend for improved coordination. Limitations Measures of gait performance were assessed during treadmill ambulation and not compared with a control group. Generalizability of these results to overground ambulation is unknown. Conclusions High-intensity locomotor exercise and training does not degrade, but rather improves, locomotor function and quality in individuals with iSCI, which contrasts with traditional theories of motor dysfunction following neurologic injury. PMID:27313241
2017-07-29
exercise prescription and training. 15. SUBJECT TERMS cognitive, physical training, BDNF, Val66Val, Val66Met, VO2Max 16. SECURITY CLASSIFICATION...Key Words: Functional agility training, physical training, cognitive upregulation, brain-derived neurotrophic factor, BDNF, Val66Val, Val66Met...cognitive output [21,29,30]. Met carriers may also experience better physical function recovery post-brain injury event [31]. Importantly, exercise may
Bove, Allyn M; Lynch, Andrew D; DePaul, Samantha M; Terhorst, Lauren; Irrgang, James J; Fitzgerald, G Kelley
2016-09-01
Study Design Clinical measurement. Background It has been suggested that rating of perceived exertion (RPE) may be a useful alternative to 1-repetition maximum (1RM) to determine proper resistance exercise dosage. However, the test-retest reliability of RPE for resistance exercise has not been determined. Additionally, prior research regarding the relationship between 1RM and RPE is conflicting. Objectives The purpose of this study was to (1) determine test-retest reliability of RPE related to resistance exercise and (2) assess agreement between percentages of 1RM and RPE during quadriceps resistance exercise. Methods A sample of participants with and without knee pathology completed a series of knee extension exercises and rated the perceived difficulty of each exercise on a 0-to-10 RPE scale, then repeated the procedure 1 to 2 weeks later for test-retest reliability. To determine agreement between RPE and 1RM, participants completed knee extension exercises at various percentages of their 1RM (10% to 130% of predicted 1RM) and rated the perceived difficulty of each exercise on a 0-to-10 RPE scale. Percent agreement was calculated between the 1RM and RPE at each resistance interval. Results The intraclass correlation coefficient indicated excellent test-retest reliability of RPE for quadriceps resistance exercises (intraclass correlation coefficient = 0.895; 95% confidence interval: 0.866, 0.918). Overall percent agreement between RPE and 1RM was 60%, but agreement was poor within the ranges that would typically be used for training (50% 1RM for muscle endurance, 70% 1RM and greater for strength). Conclusion Test-retest reliability of perceived exertion during quadriceps resistance exercise was excellent. However, agreement between the RPE and 1RM was poor, especially in common training zones for knee extensor strengthening. J Orthop Sports Phys Ther 2016;46(9):768-774. Epub 5 Aug 2016. doi:10.2519/jospt.2016.6498.
Ryals, Janelle M.; Gajewski, Byron J.; Wright, Douglas E.
2010-01-01
Background Present literature and clinical practice provide strong support for the use of aerobic exercise in reducing pain and improving function for individuals with chronic musculoskeletal pain syndromes. However, the molecular basis for the positive actions of exercise remains poorly understood. Recent studies suggest that neurotrophin-3 (NT-3) may act in an analgesic fashion in various pain states. Objective The purpose of the present study was to examine the effects of moderate-intensity aerobic exercise on pain-like behavior and NT-3 in an animal model of widespread pain. Design This was a repeated-measures, observational cross-sectional study. Methods Forty female mice were injected with either normal (pH 7.2; n=20) or acidic (pH 4.0; n=20) saline in the gastrocnemius muscle to induce widespread hyperalgesia and exercised for 3 weeks. Cutaneous (von Frey monofilament) and muscular (forceps compression) mechanical sensitivity were assessed. Neurotrophin-3 was quantified in 2 hind-limb skeletal muscles for both messenger RNA (mRNA) and protein levels after exercise training. Data were analyzed with 2-factor analysis of variance for repeated measures (group × time). Results Moderate-intensity aerobic exercise reduced cutaneous and deep tissue hyperalgesia induced by acidic saline and stimulated NT-3 synthesis in skeletal muscle. The increase in NT-3 was more pronounced at the protein level compared with mRNA expression. In addition, the increase in NT-3 protein was significant in the gastrocnemius muscle but not in the soleus muscle, suggesting that exercise can preferentially target NT-3 synthesis in specific muscle types. Limitations Results are limited to animal models and cannot be generalized to chronic pain syndromes in humans. Conclusions This is the first study demonstrating the effect of exercise on deep tissue mechanical hyperalgesia in a rodent model of pain and providing a possible molecular basis for exercise training in reducing muscular pain. PMID:20338916
Kraal, Jos J; Vromen, Tom; Spee, Ruud; Kemps, Hareld M C; Peek, Niels
2017-10-15
Although exercise-based cardiac rehabilitation improves exercise capacity of coronary artery disease patients, it is unclear which training characteristic determines this improvement. Total energy expenditure and its constituent training characteristics (training intensity, session frequency, session duration and programme length) vary considerably among clinical trials, making it hard to compare studies directly. Therefore, we performed a systematic review and meta-regression analysis to assess the effect of total energy expenditure and its constituent training characteristics on exercise capacity. We identified randomised controlled trials comparing continuous aerobic exercise training with usual care for patients with coronary artery disease. Studies were included when training intensity, session frequency, session duration and programme length was described, and exercise capacity was reported in peakVO 2 . Energy expenditure was calculated from the four training characteristics. The effect of training characteristics on exercise capacity was determined using mixed effects linear regression analyses. The analyses were performed with and without total energy expenditure as covariate. Twenty studies were included in the analyses. The mean difference in peakVO 2 between the intervention group and control group was 3.97ml·min -1 ·kg -1 (p<0.01, 95% CI 2.86 to 5.07). Total energy expenditure was significantly related to improvement of exercise capacity (effect size 0.91ml·min -1 ·kg -1 per 100J·kg, p<0.01, 95% CI 0.77 to 1.06), no effect was found for its constituent training characteristics after adjustment for total energy expenditure. We conclude that the design of an exercise programme should primarily be aimed at optimising total energy expenditure rather than on one specific training characteristic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Beneficial effects of exercise training in heart failure are lost in male diabetic rats.
Boudia, Dalila; Domergue, Valérie; Mateo, Philippe; Fazal, Loubina; Prud'homme, Mathilde; Prigent, Héloïse; Delcayre, Claude; Cohen-Solal, Alain; Garnier, Anne; Ventura-Clapier, Renée; Samuel, Jane-Lise
2017-12-01
Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.
Laparoscopic Skills Are Improved With LapMentor™ Training
Andreatta, Pamela B.; Woodrum, Derek T.; Birkmeyer, John D.; Yellamanchilli, Rajani K.; Doherty, Gerard M.; Gauger, Paul G.; Minter, Rebecca M.
2006-01-01
Objective: To determine if prior training on the LapMentor™ laparoscopic simulator leads to improved performance of basic laparoscopic skills in the animate operating room environment. Summary Background Data: Numerous influences have led to the development of computer-aided laparoscopic simulators: a need for greater efficiency in training, the unique and complex nature of laparoscopic surgery, and the increasing demand that surgeons demonstrate competence before proceeding to the operating room. The LapMentor™ simulator is expensive, however, and its use must be validated and justified prior to implementation into surgical training programs. Methods: Nineteen surgical interns were randomized to training on the LapMentor™ laparoscopic simulator (n = 10) or to a control group (no simulator training, n = 9). Subjects randomized to the LapMentor™ trained to expert criterion levels 2 consecutive times on 6 designated basic skills modules. All subjects then completed a series of laparoscopic exercises in a live porcine model, and performance was assessed independently by 2 blinded reviewers. Time, accuracy rates, and global assessments of performance were recorded with an interrater reliability between reviewers of 0.99. Results: LapMentor™ trained interns completed the 30° camera navigation exercise in significantly less time than control interns (166 ± 52 vs. 220 ± 39 seconds, P < 0.05); they also achieved higher accuracy rates in identifying the required objects with the laparoscope (96% ± 8% vs. 82% ± 15%, P < 0.05). Similarly, on the two-handed object transfer exercise, task completion time for LapMentor™ trained versus control interns was 130 ± 23 versus 184 ± 43 seconds (P < 0.01) with an accuracy rate of 98% ± 5% versus 80% ± 13% (P < 0.001). Additionally, LapMentor™ trained interns outperformed control subjects with regard to camera navigation skills, efficiency of motion, optimal instrument handling, perceptual ability, and performance of safe electrocautery. Conclusions: This study demonstrates that prior training on the LapMentor™ laparoscopic simulator leads to improved resident performance of basic skills in the animate operating room environment. This work marks the first prospective, randomized evaluation of the LapMentor™ simulator, and provides evidence that LapMentor™ training may lead to improved operating room performance. PMID:16772789
Animal Models of Resistance Exercise and their Application to Neuroscience Research
Strickland, Justin C.; Smith, Mark A.
2016-01-01
Background Numerous studies have demonstrated that participation in regular resistance exercise (e.g., strength training) is associated with improvements in mental health, memory, and cognition. However, less is known about the neurobiological mechanisms mediating these effects. The goal of this mini-review is to describe and evaluate the available animal models of resistance exercise that may prove useful for examining CNS activity. New Method Various models have been developed to examine resistance exercise in laboratory animals. Comparison with Existing Methods Resistance exercise models vary in how the resistance manipulation is applied, either through direct stimulation of the muscle (e.g., in situ models) or through behavior maintained by operant contingencies (e.g., whole organism models). Each model presents distinct advantages and disadvantages for examining central nervous system (CNS) activity, and consideration of these attributes is essential for the future investigation of underlying neurobiological substrates. Results Potential neurobiological mechanisms mediating the effects of resistance exercise on pain, anxiety, memory, and drug use have been efficiently and effectively investigated using resistance exercise models that minimize stress and maximize the relative contribution of resistance over aerobic factors. Conclusions Whole organism resistance exercise models that (1) limit the use of potentially stressful stimuli and (2) minimize the contribution of aerobic factors will be critical for examining resistance exercise and CNS function. PMID:27498037
Exploring Outcome Measures for Exercise Intervention in People with Parkinson's Disease
King, L. A.; Salarian, A.; Mancini, M.; Priest, K. C.; Nutt, J.; Serdar, A.; Wilhelm, J.; Schlimgen, J.; Smith, M.; Horak, F. B.
2013-01-01
Background. It is widely believed that exercise improves mobility in people with Parkinson's disease (PD). However, it is difficult to determine whether a specific type of exercise is the most effective. The purpose of this study was to determine which outcome measures were sensitive to exercise intervention and to explore the effects of two different exercise programs for improving mobility in patients with PD. Methods. Participants were randomized into either the Agility Boot Camp (ABC) or treadmill training; 4x/week for 4 weeks. Outcome measures were grouped by the International Classification of Function/Disability (ICF). To determine the responsiveness to exercise, we calculated the standardized response means. t-tests were used to compare the relative benefits of each exercise program. Results. Four of five variables at the structure/function level changed after exercise: turn duration (P = 0.03), stride velocity (P = 0.001), peak arm speed (P = 0.001), and horizontal trunk ROM during gait (P = 0.02). Most measures improved similarly for both interventions. The only variable that detected a difference between groups was postural sway in ABC group (F = 4.95; P = 0.03). Conclusion. Outcome measures at ICF body structure/function level were most effective at detecting change after exercise and revealing differences in improvement between interventions. PMID:23738230
Exercise for Those with Chronic Heart Failure: Matching Programs to Patients.
ERIC Educational Resources Information Center
Braith, Randy W.
2002-01-01
Exercise training increases functional capacity and improves symptoms in selected patients with chronic heart failure and moderate-to-severe left ventricular systolic dysfunction. Aerobic training forms the basis of such a program. This paper describes contributors to exercise intolerance, responses to exercise training, favorable outcomes with…
Swift, Damon L.; Earnest, Conrad P.; Katzmarzyk, Peter T.; Rankinen, Tuomo; Blair, Steven N.; Church, Timothy S.
2011-01-01
Objective Abnormally elevated exercise blood pressure is associated with increased risk of cardiovascular disease. Aerobic exercise training has been shown to reduce exercise blood pressure. However, it is unknown if these improvements occur in a dose dependent manner. The purpose of the present study is to determine the effect of different doses of aerobic exercise training on exercise blood pressure in obese postmenopausal women. Methods Participants (n=404) were randomized to one of 4 groups: 4, 8, or 12 kilocalories per kilogram of energy expenditure per week (kcal/kg/week) or the non-exercise control group for 6 months. Exercise blood pressure was obtained during the 50 watts stage of a cycle ergometer maximal exercise test. Results There was a significant reduction in systolic blood pressure at 50 watts in the 4 kcal/kg/week (−10.9 mmHg, p< 0.001), 8 kcal/kg/week (−9.9 mmHg, p= 0.022), and 12 kcal/kg/week (−13.7 mmHg, p<0.001) compared to control (−4.2 mmHg). Only the highest exercise training dose significantly reduced diastolic blood pressure (−4.3 mmHg, p= 0.033) compared to control. Additionally, resting blood pressure was not altered following exercise training (p>0.05) compared to control, and was not associated with changes in exercise systolic (r=0.09, p=0.09) or diastolic (r=0.10, p=0.08) blood pressure. Conclusions Aerobic exercise training reduces exercise blood pressure and may be more modifiable than changes in resting blood pressure. A high dose of aerobic exercise is recommended to successfully reduce both exercise systolic and diastolic blood pressure, and therefore may attenuate the CVD risk associated with abnormally elevated exercise blood pressure. PMID:22547251
Gaskill, S E; Walker, A J; Serfass, R A; Bouchard, C; Gagnon, J; Rao, D C; Skinner, J S; Wilmore, J H; Leon, A S
2001-11-01
The purpose of this study was to evaluate the effect of exercise training intensity relative to the ventilatory threshold (VT) on changes in work (watts) and VO2 at the ventilatory threshold and at maximal exercise in previously sedentary participants in the HERITAGE Family Study. We hypothesized that those who exercised below their VT would improve less in VO2 at the ventilatory threshold (VO2vt) and VO2max than those who trained at an intensity greater than their VT. Supervised cycle ergometer training was performed at the 4 participating clinical centers, 3 times a week for 20 weeks. Exercise training progressed from the HR corresponding to 55% VO2max for 30 minutes to the HR associated with 75% VO2max for 50 minutes for the final 6 weeks. VT was determined at baseline and after exercise training using standardized methods. 432 sedentary white and black men (n = 224) and women (n = 208), aged 17 to 65 years, were retrospectively divided into groups based on whether exercise training was initiated below, at, or above VT. 1) Training intensity (relative to VT) accounting for about 26% of the improvement in VO2vt (R2 = 0.26, p < 0.0001). 2) The absolute intensity of training in watts (W) accounted for approximately 56% of the training effect at VT (R2 = 0.56, p < 0.0001) with post-training watts at VT (VT(watts)) being not significantly different than W during training (p > 0.70). 3) Training intensity (relative to VT) had no effect on DeltaVO2max. These data clearly show that as a result of aerobic training both the VO2 and W associated with VT respond and become similar to the absolute intensity of sustained (3 x /week for 50 min) aerobic exercise training. Higher intensities of exercise, relative to VT, result in larger gains in VO2vt but not in VO2max.
Puhan, M; Schunemann, H; Frey, M; Scharplatz, M; Bachmann, L
2005-01-01
Background: Physical exercise is an important component of respiratory rehabilitation because it reverses skeletal muscle dysfunction, a clinically important manifestation of COPD associated with reduced health-related quality of life (HRQL) and survival. However, there is controversy regarding the components of the optimal exercise protocol. A study was undertaken to systematically evaluate and summarise randomised controlled trials (RCTs) comparing different exercise protocols for COPD patients. Methods: Six electronic databases, congress proceedings and bibliographies of included studies were searched without imposing language restrictions. Two reviewers independently screened all records and extracted data on study samples, interventions and methodological characteristics of included studies. Results: The methodological quality of the 15 included RCTs was low to moderate. Strength exercise led to larger improvements of HRQL than endurance exercise (weighted mean difference for Chronic Respiratory Questionnaire 0.27, 95% CI 0.02 to 0.52). Interval exercise seems to be of similar effectiveness as continuous exercise, but there are few data on clinically relevant outcomes. One small RCT which included patients with mild COPD compared the effect of high and low intensity exercise (at 80% and 40% of the maximum exercise capacity, respectively) and found larger physiological training effects from high intensity exercise. Conclusions: Strength exercise should be routinely incorporated in respiratory rehabilitation. There is insufficient evidence to recommend high intensity exercise for COPD patients and investigators should conduct larger high quality trials to evaluate exercise intensities in patients with moderate to severe COPD. PMID:15860711
de Bruin, Eling D.; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A.; Hunt, Kenneth J.
2015-01-01
Background and Purpose: Cardiovascular fitness is greatly reduced after stroke. Although individuals with mild to moderate impairments benefit from conventional cardiovascular exercise interventions, there is a lack of effective approaches for persons with severely impaired physical function. This randomized controlled pilot trial investigated efficacy and feasibility of feedback-controlled robotics-assisted treadmill exercise (FC-RATE) for cardiovascular rehabilitation in persons with severe impairments early after stroke. Methods: Twenty individuals (age 61 ± 11 years; 52 ± 31 days poststroke) with severe motor limitations (Functional Ambulation Classification 0-2) were recruited for FC-RATE or conventional robotics-assisted treadmill exercise (RATE) (4 weeks, 3 × 30-minute sessions/wk). Outcome measures focused on peak cardiopulmonary performance parameters, training intensity, and feasibility, with examiners blinded to allocation. Results: All 14 allocated participants (70% of recruited) completed the intervention (7/group, withdrawals unrelated to intervention), without serious adverse events occurring. Cardiovascular fitness increased significantly in both groups, with peak oxygen uptake increasing from 14.6 to 17.7 mL · kg−1 · min−1 (+17.8%) after 4 weeks (45.8%-55.7% of predicted maximal aerobic capacity; time effect P = 0.01; no group-time interaction). Training intensity (% heart rate reserve) was significantly higher for FC-RATE (40% ± 3%) than for conventional RATE (14% ± 2%) (P = 0.001). Discussion and Conclusions: Substantive overall increases in the main cardiopulmonary performance parameters were observed, but there were no significant between-group differences when comparing FC-RATE and conventional RATE. Feedback-controlled robotics-assisted treadmill exercise significantly increased exercise intensity, but recommended intensity levels for cardiovascular training were not consistently achieved. Future research should focus on appropriate algorithms within advanced robotic systems to promote optimal cardiovascular stress. Video abstract available for more insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A107). PMID:26050073
Widman, Lana M; McDonald, Craig M; Abresch, R. Ted
2006-01-01
Background/Objective: To determine whether a new upper extremity exercise device integrated with a video game (GameCycle) requires sufficient metabolic demand and effort to induce an aerobic training effect and to explore the feasibility of using this system as an exercise modality in an exercise intervention. Design: Pre-post intervention. Setting: University-based research facility. Subject Population: A referred sample of 8 adolescent subjects with spina bifida (4 girls, 15.5 ± 0.6 years; 4 boys, 17.5 ± 0.9 years) was recruited to participate in the project. All subjects had some level of mobility impairment that did not allow them to participate in mainstream sports available to their nondisabled peers. Five subjects used a wheelchair full time, one used a wheelchair occasionally, but walked with forearm crutches, and 2 were fully ambulatory, but had impaired gait. Main Outcome Measures: Peak oxygen uptake, maximum work output, aerobic endurance, peak heart rate, rating of perceived exertion, and user satisfaction. Results: Six of the 8 subjects were able to reach a Vo2 of at least 50% of their Vo2 reserve while using the GameCycle. Seven of the 8 subjects reached a heart rate of at least 50% of their heart rate reserve. One subject did not reach either 50% of Vo2 reserve or 50% of heart rate reserve. Seven of the 8 subjects increased their maximum work capability after training with the GameCycle at least 3 times per week for 16 weeks. Conclusions: The data suggest that the GameCycle seems to be adequate as an exercise device to improve oxygen uptake and maximum work capability in adolescents with lower extremity disability caused by spinal cord dysfunction. The subjects in this study reported that the video game component was enjoyable and provided a motivation to exercise. PMID:17044386
Exercise training increases basal tone in arterioles distal to chronic coronary occlusion
Heaps, Cristine L.; Mattox, Mildred L.; Kelly, Katherine A.; Meininger, Cynthia J.; Parker, Janet L.
2014-01-01
Endurance exercise training increases basal active tone in coronary arteries and enhances myogenic tone in coronary arterioles of control animals. Paradoxically, exercise training has also been shown to augment nitric oxide production and nitric oxide-mediated relaxation in coronary arterioles. The purpose of the present study was to examine the effect of exercise training on basal active tone of arterioles (~150 µm ID) isolated from the collateral-dependent region of hearts exposed to chronic coronary occlusion. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of miniature swine. Arterioles were isolated from both the collateral-dependent and nonoccluded myocardial regions of sedentary (pen confined) and exercise-trained (treadmill run; 14 wk) pigs. Coronary tone was studied in isolated arterioles using microvessel myographs and standard isometric techniques. Exposure to nominally Ca2+-free external solution reduced resting tension in all arterioles; decreases were most profound (P < 0.05) in arterioles from the collateral-dependent region of exercise-trained animals. Furthermore, nitric oxide synthase (NOS) inhibition (Nω-nitro-l-arginine methylester; 100 µM) unmasked markedly increased nitric oxide-sensitive tone in arterioles from the collateral-dependent region of exercise-trained swine. Blockade of K+ channels revealed significantly enhanced K+ channel contribution to basal tone in collateral-dependent arterioles of exercise-trained pigs. Protein content of endothelial NOS (eNOS) and phosphorylated eNOS (pS1179), determined by immunoblot, was elevated in arterioles from exercise-trained animals with the greatest effect in collateral-dependent vasculature. Taken together, we demonstrate the interaction of opposing exercise training-enhanced arteriolar basal active tone, nitric oxide production, and K+ channel activity in chronic coronary occlusion, potentially enhancing the capacity to regulate blood flow to collateral-dependent myocardium. PMID:16243909
Lindheimer, Jacob B; O'Connor, Patrick J; Dishman, Rod K
2015-05-01
The placebo effect could account for some or all of the psychological benefits attributed to exercise training. The magnitude of the placebo effect in psychological outcomes of randomized controlled exercise training trials has not been quantified. The aim of this investigation was to estimate the magnitude of the population placebo effect in psychological outcomes from placebo conditions used in exercise training studies and compare it to the observed effect of exercise training. Articles published before 1 July 2013 were located using Google Scholar, MEDLINE, PsycINFO, and The Cochrane Library. To be included in the analysis, studies were required to have (1) a design that randomly assigned participants to exercise training, placebo, and control conditions and (2) an assessment of a subjective (i.e., anxiety, depression, energy, fatigue) or an objective (i.e., cognitive) psychological outcome. Meta-analytic and multi-level modeling techniques were used to analyze effects from nine studies involving 661 participants. Hedges' d effect sizes were calculated, and random effects models were used to estimate the overall magnitude of the placebo and exercise training effects. After adjusting for nesting effects, the placebo mean effect size was 0.20 (95% confidence interval [CI] -0.02, 0.41) and the observed effect of exercise training was 0.37 (95% CI 0.11, 0.63). A small body of research suggests both that (1) the placebo effect is approximately half of the observed psychological benefits of exercise training and (2) there is an urgent need for creative research specifically aimed at better understanding the role of the placebo effect in the mental health consequences of exercise training.
Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar
2016-08-01
The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.
A Scientific Rationale to Improve Resistance Training Prescription in Exercise Oncology.
Fairman, Ciaran M; Zourdos, Michael C; Helms, Eric R; Focht, Brian C
2017-08-01
To date, the prevailing evidence in the field of exercise oncology supports the safety and efficacy of resistance training to attenuate many oncology treatment-related adverse effects, such as risk for cardiovascular disease, increased fatigue, and diminished physical functioning and quality of life. Moreover, findings in the extant literature supporting the benefits of exercise for survivors of and patients with cancer have resulted in the release of exercise guidelines from several international agencies. However, despite research progression and international recognition, current exercise oncology-based exercise prescriptions remain relatively basic and underdeveloped, particularly in regards to resistance training. Recent publications have called for a more precise manipulation of training variables such as volume, intensity, and frequency (i.e., periodization), given the large heterogeneity of a cancer population, to truly optimize clinically relevant patient-reported outcomes. Indeed, increased attention to integrating fundamental principles of exercise physiology into the exercise prescription process could optimize the safety and efficacy of resistance training during cancer care. The purpose of this article is to give an overview of the current state of resistance training prescription and discuss novel methods that can contribute to improving approaches to exercise prescription. We hope this article may facilitate further evaluation of best practice regarding resistance training prescription, monitoring, and modification to ultimately optimize the efficacy of integrating resistance training as a supportive care intervention for survivors or and patients with cancer.
Walliczek-Dworschak, U; Schmitt, M; Dworschak, P; Diogo, I; Ecke, A; Mandapathil, M; Teymoortash, A; Güldner, C
2017-06-01
Increasing usage of robotic surgery presents surgeons with the question of how to acquire the special skills required. This study aimed to analyze the effect of different exercises on their performance outcomes. This prospective study was conducted on the da Vinci Skills Simulator from December 2014 till August 2015. Sixty robotic novices were included and randomized to three groups of 20 participants each. Each group performed three different exercises with comparable difficulty levels. The exercises were performed three times in a row within two training sessions, with an interval of 1 week in between. On the final training day, two new exercises were added and a questionnaire was completed. Technical metrics of performance (overall score, time to complete, economy of motion, instrument collisions, excessive instrument force, instruments out of view, master work space range, drops, missed targets, misapplied energy time, blood loss and broken vessels) were recorded by the simulator software for further analysis. Training with different exercises led to comparable results in performance metrics for the final exercises among the three groups. A significant skills gain was recorded between the first and last exercises, with improved performance in overall score, time to complete and economy of motion for all exercises in all three groups. As training with different exercises led to comparable results in robotic training, the type of exercise seems to play a minor role in the outcome. For a robotic training curriculum, it might be important to choose exercises with comparable difficulty levels. In addition, it seems to be advantageous to limit the duration of the training to maintain the concentration throughout the entire session.
The influence of age, gender, and training on exercise efficiency.
Woo, J Susie; Derleth, Christina; Stratton, John R; Levy, Wayne C
2006-03-07
The aim of this study was to determine whether changes in oxygen efficiency occur with aging or exercise training in healthy young and older subjects. Exercise capacity declines with age and improves with exercise training. Whether changes in oxygen efficiency, defined as the oxygen cost per unit work, contributes to the effects of aging or training has not yet been defined. Sixty-one healthy subjects were recruited into four groups of younger women (ages 20 to 33 years, n = 15), younger men (ages 20 to 30 years, n = 12), older women (ages 65 to 79 years, n = 16), and older men (ages 65 to 77 years, n = 18). All subjects underwent cardiopulmonary exercise testing to analyze aerobic parameters before and after three to six months of supervised aerobic exercise training. Before training, younger subjects had a much higher exercise capacity, as shown by a 42% higher peak oxygen consumption (VO2) (ml/kg/min, p < 0.0001). This was associated with an 11% lower work VO2/W (p = 0.02) and an 8% higher efficiency than older subjects (p = 0.03). With training, older subjects displayed a larger increase in peak W/kg (+29% vs. +12%, p = 0.001), a larger decrease in work VO2/W (-24% vs. -2%, p < 0.0001), and a greater improvement in exercise efficiency (+30% vs. 2%, p < 0.0001) compared to the young. Older age is associated with a decreased exercise efficiency and an increase in the oxygen cost of exercise, which contribute to a decreased exercise capacity. These age-related changes are reversed with exercise training, which improves efficiency to a greater degree in the elderly than in the young.
NASA Astrophysics Data System (ADS)
Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru
2015-02-01
Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.
Shill, Daniel D; Southern, W Michael; Willingham, T Bradley; Lansford, Kasey A; McCully, Kevin K; Jenkins, Nathan T
2016-12-01
Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non-specific antioxidants on exercise training-induced vascular adaptations remain elusive. Circulating angiogenic cells (CACs) are an exercise-inducible subset of white blood cells that maintain vascular integrity. We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men. We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole-body aerobic adaptations to exercise training. These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training-induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3 + , CD3 + /CD31 + , CD14 + /CD31 + , CD31 + , CD34 + /VEGFR2 + and CD62E + peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m -2 , and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14 + /CD31 + , CD62E + and CD34 + /VEGFR2 + CACs, respectively, and reduced CD3 + /CD31 - PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial-targeted antioxidant does not influence skeletal muscle or whole-body aerobic adaptations to exercise training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
The role of exercise training in the treatment of hypertension: an update.
Hagberg, J M; Park, J J; Brown, M D
2000-09-01
Hypertension is a very prevalent cardiovascular (CV) disease risk factor in developed countries. All current treatment guidelines emphasise the role of nonpharmacological interventions, including physical activity, in the treatment of hypertension. Since our most recent review of the effects of exercise training on patients with hypertension, 15 studies have been published in the English literature. These results continue to indicate that exercise training decreases blood pressure (BP) in approximately 75% of individuals with hypertension, with systolic and diastolic BP reductions averaging approximately 11 and 8mm Hg, respectively. Women may reduce BP more with exercise training than men, and middle-aged people with hypertension may obtain greater benefits than young or older people. Low to moderate intensity training appears to be as, if not more, beneficial as higher intensity training for reducing BP in individuals with hypertension. BP reductions are rapidly evident although, at least for systolic BP, there is a tendency for greater reductions with more prolonged training. However, sustained BP reductions are evident during the 24 hours following a single bout of exercise in patients with hypertension. Asian and Pacific Island patients with hypertension reduce BP, especially systolic BP, more and more consistently than Caucasian patients. The minimal data also indicate that African-American patients reduce BP with exercise training. Some evidence indicates that common genetic variations may identify individuals with hypertension likely to reduce BP with exercise training. Patients with hypertension also improve plasma lipoprotein-lipid profiles and improve insulin sensitivity to the same degree as normotensive individuals with exercise training. Some evidence also indicates that exercise training in hypertensive patients may result in regression of pathological left ventricular hypertrophy. These results continue to support the recommendation that exercise training is an important initial or adjunctive step that is highly efficacious in the treatment of individuals with mild to moderate elevations in BP.
Sharing a Personal Trainer: Personal and Social Benefits of Individualized, Small-Group Training.
Wayment, Heidi A; McDonald, Rachael L
2017-11-01
Wayment, HA and McDonald, RL. Sharing a personal trainer: personal and social benefits of individualized, small-group training. J Strength Cond Res 31(11): 3137-3145, 2017-We examined a novel personal fitness training program that combines personal training principles in a small-group training environment. In a typical training session, exercisers warm-up together but receive individualized training for 50 minutes with 1-5 other adults who range in age, exercise experience, and goals for participation. Study participants were 98 regularly exercising adult members of a fitness studio in the southwestern United States (64 women and 32 men), aged 19-78 years (mean, 46.52 years; SD = 14.15). Average membership time was 2 years (range, 1-75 months; mean, 23.54 months; SD = 20.10). In collaboration with the program directors, we developed a scale to assess satisfaction with key features of this unique training program. Participants completed an online survey in Fall 2015. Hypotheses were tested with a serial mediator model (model 6) using the SPSS PROCESS module. In support of the basic tenets of self-determination theory, satisfaction with small-group, individualized training supported basic psychological needs, which in turn were associated with greater autonomous exercise motivation and life satisfaction. Satisfaction with this unique training method was also associated with greater exercise self-efficacy. Autonomous exercise motivation was associated with both exercise self-efficacy and greater self-reported health and energy. Discussion focuses on why exercise programs that foster a sense of social belonging (in addition to motivation and efficacy) may be helpful for successful adherence to an exercise program.
Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso
2014-08-01
Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p < 0.05). Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p < 0.05). Additionally, the training program preserved the pressure and bradycardia responses to autonomic blockade in obese rats (p < 0.05). An exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.
Martins, Caroline Curry; Bagatini, Margarete Dulce; Cardoso, Andréia Machado; Zanini, Daniela; Abdalla, Fátima Husein; Baldissarelli, Jucimara; Dalenogare, Diéssica Padilha; Farinha, Juliano Boufleur; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria
2016-02-15
Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training (P<0.001). Additionally, an increase in platelet aggregation was observed in the MetS patients (P<0.001) and the exercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.
The Diurnal Variation on Cardiovascular Endurance Performance of Secondary School Athlete Student
Chin, Chun-Yip; Chow, Gary Chi-Ching; Hung, Kwong-Chung; Kam, Lik-Hang; Chan, Ka-Chun; Mok, Yuen-Ting; Cheng, Nga-Mei
2015-01-01
Background: The previous investigations in diurnal variation of endurance sports performance did not reach a consensus and have been limited. This study would be a valuable resource for endurance sports trainers and event managers to plan their training and competition in a specific time of day. Objectives: The aim of this study is to find out the diurnal variation in cardiovascular endurance performance in the young athletes. Materials and Methods: Thirty five athlete students (15.17 ± 1.62 years) participated in this study. Maximal oxygen uptake (VO2max), post-exercise percentage of maximal heart rate (MHR% post-ex), post-exercise body temperature (BTemppost-ex), and post exercise blood lactic acid level (LApost-ex) were measured in this study. Three non-consecutive testings: A) Morning (09:00-10:00; AM), B) Noon (12:00-13:00; NN) and C) Afternoon (16:00-17:00; PM) were conducted. Participants were required to follow the meal plan and resting schedule for all testing days. Results: VO2max was significantly higher at NN (F2. 68 = 3.29, P < 0.05, η2 = 0.088) in comparison with PM. The MHR%post-ex, BTemppost-ex, LApost-ex was not significantly different among three times of day. Conclusions: Diurnal effect on endurance performance was found and the highest exercise VO2max was identified at noon. Secondary school students or young athletes are recommended to have sports training related to VO2max at noon for the purpose of maximizing training effectiveness. PMID:26448833
Markvardsen, Lars H; Overgaard, Kristian; Heje, Karen; Sindrup, Søren H; Christiansen, Ingelise; Vissing, John; Andersen, Henning
2018-01-01
We investigated the effects of aerobic and resistance exercise in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Eighteen CIDP patients treated with subcutaneous immunoglobulin performed 12 weeks of aerobic exercise and 12 weeks of resistance exercise after a run-in period of 12 weeks without exercise. Three times weekly the participants performed aerobic exercise on an ergometer bike or resistance exercise with unilateral training of knee and elbow flexion/extension. Primary outcomes were maximal oxygen consumption velocity (VO 2 -max) and maximal combined isokinetic muscle strength (cIKS) of knee and elbow flexion/extension. VO 2 -max and muscle strength were unchanged during run-in (-4.9% ± 10.3%, P = 0.80 and -3.7% ± 10.1%, P = 0.17, respectively). Aerobic exercise increased VO 2 -max by 11.0% ± 14.7% (P = 0.02). Resistance exercise resulted in an increase of 13.8% ± 16.0% (P = 0.0004) in cIKS. Aerobic exercise training and resistance exercise training improve fitness and strength in CIDP patients. Muscle Nerve 57: 70-76, 2018. © 2017 Wiley Periodicals, Inc.
van Loon, Luc J C; Tipton, Kevin D
2013-01-01
Nutrition plays a key role in allowing the numerous training hours to be translated into useful adaptive responses of various tissues in the individual athlete. Research over the last decade has shown many examples of the impact of dietary interventions to modulate the skeletal muscle adaptive response to prolonged exercise training. Proper nutritional coaching should be applied throughout both training and competition, each with their specific requirements regarding nutrient provision. Such dietary support will improve exercise training efficiency and, as such, further increase performance capacity. Here, we provide an overview on the properties of various nutritional interventions that may be useful to support the adaptive response to exercise training and competition and, as such, to augment exercise training efficiency. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.
Fabre, Claudine; Chehere, Baptiste; Bart, Frédéric; Mucci, Patrick; Wallaert, Benoit; Grosbois, Jean Marie
2017-01-01
Background It has been scientifically proven that pulmonary rehabilitation improves exercise tolerance and facilitates the carrying out of daily physical activities. To optimize the physical and physiological benefits, it is necessary to individualize the training intensity for each patient. The aim of this study is to compare the heart rate (HR) responses to three exercise modalities measuring aerobic fitness in chronic obstructive pulmonary disease patients, in order to easily prescribe individual target HRs for endurance training. Patients and method Fifty COPD patients (mean age: 60.1±8.5 years) were included in the study. Each patient carried out a cardiopulmonary exercise test, a 6-minute walk test (6MWT) and a 6-minute stepper test (6MST). During these tests, HR was recorded continuously. After the cardiopulmonary exercise test, the HR was noted at the ventilatory threshold (VT) and at the end of the two exercise field tests (6MWTpeak and 6MSTpeak). The values of the HR during the last 3 minutes of both field tests were averaged (6MWT456 and 6MST456). Finally, the HR at 60% of the HR reserve was calculated with the values of the HR measured during 6MWT and 6MST (HRr60%walk, HRr60%step). Results The HRs measured during the 6MST were significantly higher than those measured during the 6MWT. The HRr60%step was not significantly different from 6MWT456 and 6MWTpeak HR (P=0.51; P=0.48). A significant correlation was observed between 6MWT456 and 6MWTpeak (r=0.58). The 6MWT456 and 6MWTpeak HR were correlated with HRr60%step (r=0.68 and r=0.62). The VT could be determined in 28 patients. The HRVT was not different from 6MWT456, 6MWTpeak, and HRr60%step (P=0.57, P=0.41 and P=0.88) and was correlated to 6MWT456, 6MWTpeak, and HRr60%step (r=0.45, r=0.40, r=0.48). Conclusion An individualized target HR for endurance training can be prescribed from the HR measured during routine tests, such as 6MWT or 6MST. PMID:28553100
Colberg, Sheri R.; Sigal, Ronald J.
2015-01-01
IN BRIEF Traditionally, aerobic training has been a central focus of exercise promotion for diabetes management. However, people with diabetes have much to gain from other forms of exercise. This article reviews the evidence and recommendations on resistance, balance, and flexibility training, as well as other, less traditional, forms of exercise such as yoga and Tai Chi. PMID:25717274
Cardiac parasympathetic reactivation following exercise: implications for training prescription.
Stanley, Jamie; Peake, Jonathan M; Buchheit, Martin
2013-12-01
The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0-90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1-48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24-48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.
Aerobic Training Improves Quality of Life in Women with Polycystic Ovary Syndrome.
Costa, Eduardo Caldas; de Sá, Joceline Cássia Ferezini; Stepto, Nigel Keith; Costa, Ingrid Bezerra Barbosa; Farias-Junior, Luiz Fernando; da Nóbrega Tomaz Moreira, Simone; Soares, Elvira Maria Mafaldo; Lemos, Telma Maria Araújo Moura; Browne, Rodrigo Alberto Vieira; Azevedo, George Dantas
2018-02-13
To investigate the effects of a supervised aerobic exercise training intervention on health-related quality of life (HRQL), cardiorespiratory fitness, cardiometabolic profile, and affective response in overweight/obese women with polycystic ovary syndrome (PCOS). Twenty-seven overweight/obese inactive women with PCOS (body mass index, BMI ≥ 25 kg/m; aged from 18 to 34 years) were allocated into an exercise group (n = 14) and a control group (n = 13). Progressive aerobic exercise training was performed three times per week (~150 min/week) over 16 weeks. Cardiorespiratory fitness, HRQL, and cardiometabolic profile were evaluated before and after the intervention. Affective response (i.e., feeling of pleasure/displeasure) was evaluated during the exercise sessions. The exercise group improved 21 ± 12% of cardiorespiratory fitness (p < 0.001) and HRQL in the following domains: physical-functioning, general health, and mental health (p < 0.05). Moreover, the exercise group decreased BMI, waist circumference, systolic and diastolic blood pressure, and total cholesterol level (p < 0.05). The affective response varied from "good" to "fairly good" (i.e., positive affective response) in an exercise intensity dependent manner during the exercise training sessions. Progressive aerobic exercise training improved HRQL, cardiorespiratory fitness, and cardiometabolic profile of overweight/obese women with PCOS. Moreover, the participants reported the exercise training sessions as pleasant over the intervention. These results reinforce the importance of supervised exercise training as a therapeutic approach for overweight/obese women with PCOS.
Donnelly, Joseph E.; Herrmann, Stephen D.; Lambourne, Kate; Szabo, Amanda N.; Honas, Jeffery J.; Washburn, Richard A.
2014-01-01
Background The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. Objective To address the question: Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? Data Sources PubMed and Embase were searched (January 1990–January 2013) for studies that presented data on energy and/or macronutrient intake by level of exercise, physical activity or change in response to exercise. Ninety-nine articles (103 studies) were included. Study Eligibility Criteria Primary source articles published in English in peer-reviewed journals. Articles that presented data on energy and/or macronutrient intake by level of exercise or physical activity or changes in energy or macronutrient intake in response to acute exercise or exercise training in healthy (non-athlete) adults (mean age 18–64 years). Study Appraisal and Synthesis Methods Articles were grouped by study design: cross-sectional, acute/short term, non-randomized, and randomized trials. Considerable heterogeneity existed within study groups for several important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and presented by study design. Results No effect of physical activity, exercise or exercise training on energy intake was shown in 59% of cross-sectional studies (n = 17), 69% of acute (n = 40), 50% of short-term (n = 10), 92% of non-randomized (n = 12) and 75% of randomized trials (n = 24). Ninety-four percent of acute, 57% of short-term, 100% of non-randomized and 74% of randomized trials found no effect of exercise on macronutrient intake. Forty-six percent of cross-sectional trials found lower fat intake with increased physical activity. Limitations The literature is limited by the lack of adequately powered trials of sufficient duration, which have prescribed and measured exercise energy expenditure, or employed adequate assessment methods for energy and macronutrient intake. Conclusions We found no consistent evidence that increased physical activity or exercise effects energy or macronutrient intake. PMID:24454704
The Feasibility of performing resistance exercise with acutely ill hospitalized older adults
Mallery, Laurie H; MacDonald, Elizabeth A; Hubley-Kozey, Cheryl L; Earl, Marie E; Rockwood, Kenneth; MacKnight, Chris
2003-01-01
Background For older adults, hospitalization frequently results in deterioration of mobility and function. Nevertheless, there are little data about how older adults exercise in the hospital and definitive studies are not yet available to determine what type of physical activity will prevent hospital related decline. Strengthening exercise may prevent deconditioning and Pilates exercise, which focuses on proper body mechanics and posture, may promote safety. Methods A hospital-based resistance exercise program, which incorporates principles of resistance training and Pilates exercise, was developed and administered to intervention subjects to determine whether acutely-ill older patients can perform resistance exercise while in the hospital. Exercises were designed to be reproducible and easily performed in bed. The primary outcome measures were adherence and participation. Results Thirty-nine ill patients, recently admitted to an acute care hospital, who were over age 70 [mean age of 82.0 (SD= 7.3)] and ambulatory prior to admission, were randomized to the resistance exercise group (19) or passive range of motion (ROM) group (20). For the resistance exercise group, participation was 71% (p = 0.004) and adherence was 63% (p = 0.020). Participation and adherence for ROM exercises was 96% and 95%, respectively. Conclusion Using a standardized and simple exercise regimen, selected, ill, older adults in the hospital are able to comply with resistance exercise. Further studies are needed to determine if resistance exercise can prevent or treat hospital-related deterioration in mobility and function. PMID:14531932
Massett, Michael P.; Avila, Joshua J.; Kim, Seung Kyum
2015-01-01
Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training. PMID:26710100
Distractive Auditory Stimuli in the Form of Music in Individuals With COPD: A Systematic Review.
Lee, Annemarie L; Desveaux, Laura; Goldstein, Roger S; Brooks, Dina
2015-08-01
Music has been used as a distractive auditory stimulus (DAS) in patients with COPD, but its effects are unclear. This systematic review aimed to establish the effect of DAS on exercise capacity, symptoms, and health-related quality of life (HRQOL) under three conditions: (1) during exercise training, (2) during exercise testing, and (3) for symptom management at rest. Randomized controlled or crossover trials as well as cohort studies of DAS during exercise training, during formal exercise testing, and for symptom management among individuals with COPD were identified from a search of seven databases. Two reviewers independently assessed study quality. Weighted mean differences (WMDs) with 95% CIs were calculated using a random-effects model. Thirteen studies (12 of which were randomized controlled or crossover trials) in 415 participants were included. DAS increased exercise capacity when applied over at least 2 months of exercise training (WMD, 98 m; 95% CI, 47-150 m). HRQOL improved only after a training duration of 3 months. Less dyspnea was noted with DAS during exercise training, but this was not consistently observed in short-term exercise testing or as a symptom management strategy at rest. DAS appears to reduce symptoms of dyspnea and fatigue when used during exercise training, with benefits observed in exercise capacity and HRQOL. When applied during exercise testing, the effects on exercise capacity and symptoms and as a strategy for symptom management at rest are inconsistent.
Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.
2013-01-01
Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169
Lampman, R M; Schteingart, D E
1991-06-01
Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.
2012-01-01
Background Physical exercise has the potential to affect cognitive function, but most evidence to date focuses on cognitive effects of fitness training. Cognitive exercise also may influence cognitive function, but many cognitive training paradigms have failed to provide carry-over to daily cognitive function. Video games provide a broader, more contextual approach to cognitive training that may induce cognitive gains and have carry over to daily function. Most video games do not involve physical exercise, but some novel forms of interactive video games combine physical activity and cognitive challenge. Methods/Design This paper describes a randomized clinical trial in 168 postmenopausal sedentary overweight women that compares an interactive video dance game with brisk walking and delayed entry controls. The primary endpoint is adherence to activity at six months. Additional endpoints include aspects of physical and mental health. We focus this report primarily on the rationale and plans for assessment of multiple cognitive functions. Discussion This randomized clinical trial may provide new information about the cognitive effects of interactive videodance. It is also the first trial to examine physical and cognitive effects in older women. Interactive video games may offer novel strategies to promote physical activity and health across the life span. The study is IRB approved and the number is: PRO08080012 ClinicalTrials.gov Identifier: NCT01443455 PMID:22672287
Bea, Jennifer W.; Lohman, Timothy G.; Cussler, Ellen C.; Going, Scott B.; Thompson, Patricia A.
2013-01-01
Genetic variations in the adrenergic receptor (ADR) have been associated with body composition in cross-sectional studies. Recent findings suggest that ADR variants may also modify body composition response to lifestyle. We assessed the role of ADR variants in body composition response to 12 months of resistance training versus control in previously sedentary postmenopausal women. Randomized trial completers were genotyped for A2BGlu9/12 by fragment length analysis, and B2Gln27Glu and B3Trp64Arg by TaqMan (n=148, 54% hormone therapy users). Associations between genotypes and body composition, by dual energy X-ray absorptiometry, were analyzed using univariate models. There was no main effect of individual genes on change in body composition, however, gene × exercise interactions were observed for A2BGlu9/12 and B2Gln27Glu on change in lean soft tissue (LST, p=0.02); exercisers on the A2BGlu9- background gained LST compared to a loss among controls over 12 months (p<0.05), with no significant intervention effect on the A2B Glu9+ background. Similarly, there was a significant LST gain with exercise on the B2Glu27+ background compared to loss among controls and no intervention effect on the B2Glu27- background. A non-significant association between total body fat (TBF) and B3Trp64Arg persisted among sedentary controls only when intervention groups were separated (%TBF gain with B3Arg 64+ carriage, p=0.03); exercisers lost TBF regardless of genotype. In summary, effect modification by lifestyle was demonstrated on ADR A2B, B2, and B3 genetic backgrounds. Individuals with certain ADR genotypes may be more vulnerable to adverse changes in body composition with sedentary behavior, thus these candidate genes warrant further study. PMID:20401689
Kikuchi, Naoki; Nakazato, Koichi
2015-01-01
Training variants (type, intensity, and duration of exercise) can be selected according to individual aims and fitness assessment. Recently, various methods of resistance and endurance training have been used for muscle hypertrophy and VO2max improvement. Although several genetic variants are associated with elite athletic performance and muscle phenotypes, genetic background has not been used as variant for physical training. ACTN3 R577X is a well-studied genetic polymorphism. It is the only genotype associated with elite athletic performance in multiple cohorts. This association is strongly supported by mechanistic data from an Actn3-knockout mouse model. In this review, possible guidelines are discussed for effective utilization of ACTN3 R577X polymorphism for physical training. PMID:26526670
Giallauria, Francesco; Smart, Neil Andrew; Cittadini, Antonio; Vigorito, Carlo
2016-10-14
Exercise training (ET) is strongly recommended in patients with chronic heart failure (CHF). Moderate-intensity aerobic continuous ET is the best established training modality in CHF patients. In the last decade, however, high-intensity interval exercise training (HIIT) has aroused considerable interest in cardiac rehabilitation community. Basically, HIIT consists of repeated bouts of high-intensity exercise alternated with recovery periods. In CHF patients, HIIT exerts larger improvements in exercise capacity compared to moderate-continuous ET. These results are intriguing, mostly considering that better functional capacity translates into an improvement of symptoms and quality of life. Notably, HIIT did not reveal major safety issues; although CHF patients should be clinically stable, have had recent exposure to at least regular moderate-intensity exercise, and appropriate supervision and monitoring during and after the exercise session are mandatory. The impact of HIIT on cardiac dimensions and function and on endothelial function remains uncertain. HIIT should not replace other training modalities in heart failure but should rather complement them. Combining and tailoring different ET modalities according to each patient's baseline clinical characteristics (i.e. exercise capacity, personal needs, preferences and goals) seem the most astute approach to exercise prescription.
Ensari, Ipek; Sandroff, Brian M.
2016-01-01
Background: Little is known about the acute or immediate effects of walking exercise and yoga on mood in people with multiple sclerosis (MS). Such an examination is important for identifying an exercise modality for inclusion in exercise-training interventions that yields mood benefits in MS. We examined the effects of single bouts of treadmill walking and yoga compared with a quiet, seated-rest control condition on acute mood symptoms in MS. Methods: Twenty-four participants with MS completed 20 minutes of treadmill walking, yoga, or quiet rest in a randomized, counterbalanced order with 1 week between sessions. Participants completed the Profile of Mood States questionnaire before and immediately after each condition. Total mood disturbance (TMD) and the six subscales of the Profile of Mood States were analyzed using repeated-measures analysis of variance and paired-samples t tests. Results: There was a significant condition × time interaction on TMD scores (ηp2 = 0.13). Walking and yoga conditions yielded comparable reductions in TMD scores. There was a significant condition × time interaction on vigor (ηp2 = 0.23) whereby walking but not yoga yielded an improvement in vigor. There was a significant main effect of time on anger, confusion, depression, and tension (P < .05) but not on fatigue. Conclusions: Walking and yoga yielded similar improvements in overall acute mood symptoms, and walking improved feelings of vigor. These effects should be further investigated in long-term exercise-training studies. PMID:26917992
Effect of exercise training on saliva brain derived neurotrophic factor, catalase and vitamin c.
Babaei, Parvin; Damirchi, Arsalan; Soltani Tehrani, Bahram; Nazari, Yazgaldi; Sariri, Reyhaneh; Hoseini, Rastegar
2016-01-01
Background: The balance between production of Reactive Oxygen Species (ROS) and antioxidant defense in the body has important health implications. The aim of this study was to investigate the changes in salivary antioxidants: catalase, vitamin C and brain-derived neurotrophic factor (BDNF), in sedentary men at rest and after acute exhaustive exercise. Methods: This randomized controlled clinical trial (The registry code IRCT2011053212431N1) recruited twenty-five sedentary men (age=21±3yrs; height=172±8cm; weight=66±9kg; VO2 max=37.6±7.4mL•kgkg -1 •min -1 ) participated in a double-blind randomized experiment. Unstimulated whole saliva samples were collected before, immediately and 1 hour after exhaustive treadmill running. Catalase, vitamin C (Vit C) concentration, and BDNF concentrations were determined using biochemical assays and ELISA respectively. Repeated measures ANOVA and Bonferroni posthoc test were used to analyze data. Results: The results of the present study showed that an acute intensive exercise causes a reduction in salivary catalase, Vit C and also BDNF concentration (p<0.05) compared with pre-exercise. Both catalase and Vit C showed a tendency to return to pre-exercise value after one hour. However, BDNF continued to reduction at least 1 hour after the ending of the training. Conclusion: Reduction in antioxidants capacity of saliva might reflects disturbance in natural antioxidant defense mechanisms of the body after an acute intensive physical stress and possible further health threatening consequences.
Hansen, D; Dendale, P; Jonkers, R A M; Beelen, M; Manders, R J F; Corluy, L; Mullens, A; Berger, J; Meeusen, R; van Loon, L J C
2009-09-01
Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. Fifty male obese type 2 diabetes patients (age 59 +/- 8 years, BMI 32 +/- 4 kg/m(2)) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake (VO(2)peak (low to moderate intensity) or 40 min at 75% of VO(2)peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO(2)peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p < 0.05). No differences were observed between the groups training at low to moderate or moderate to high intensity. When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. ISRCTN32206301 None.
Negrao, Marcelo V; Alves, Cleber R; Alves, Guilherme B; Pereira, Alexandre C; Dias, Rodrigo G; Laterza, Mateus C; Mota, Gloria F; Oliveira, Edilamar M; Bassaneze, Vinícius; Krieger, Jose E; Negrao, Carlos E; Rondon, Maria Urbana P B
2010-09-01
Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT (n = 37; age 27 ± 1 yr) and CT+CC (n = 35; age 26 ± 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure (P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT+CC individuals (0.39 ± 0.12 vs. 1.08 ± 0.27 units, P = 0.01). Exercise training significantly increased peak VO(2) in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals (P = 0.03), but not in CT+CC individuals (P = 0.49), leading to an equivalent FVC response between TT and CT+CC individuals (1.05 ± 0.18 vs. 1.59 ± 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.
Höchsmann, Christoph; Rossmeissl, Anja; Baumann, Sandra; Infanger, Denis; Schmidt-Trucksäss, Arno
2018-03-15
To examine cardiorespiratory exertion during mini trampoline exercises of different intensities in both endurance-trained athletes and overweight-obese adults. Physically healthy participants (Group A: normal-weight, endurance-trained athletes; Group B: inactive, overweight-obese adults) participated in two measurement appointments and three training sessions in between appointments, in which participants familiarized themselves with the use of the mini trampoline and the execution of the exercises. The primary outcome was the ⩒O 2peak for each of the six mini trampoline exercises relative to the ⩒O 2peak as established during an all-out exercise test on a bike ergometer during the first measurement appointment. Secondary outcomes were average ⩒O 2 as well as maximum and average heart rate. The six mini trampoline exercises generated ⩒O 2peak values between 42% and 81% in the endurance-trained athletes and between 58% and 87% in the overweight-obese participants, both in relation to the bike ergometer ⩒O 2peak . Average ⩒O 2 values ranged from 35% to 69% (endurance-trained athletes) and from 48% to 71% (overweight-obese participants), depending on exercise. Average heart rate likewise lay in a range that can be categorized as moderate-to-vigorous aerobic exercise for both groups. A moderate-to-strong correlation (0.658 to 0.875, depending on exercise) between bike ergometer ⩒O 2peak and mini trampoline ⩒O 2peak was found for all six exercises. Mini trampoline exercise has the potential to produce training intensities that concur with established exercise guidelines. The exercise intensity is self-adjusting and allows for an effective and safe workout for different users with a wide range of fitness levels.
Jørgensen, Peter B; Bogh, Søren B; Kierkegaard, Signe; Sørensen, Henrik; Odgaard, Anders; Søballe, Kjeld; Mechlenburg, Inger
2017-01-01
To examine if supervised progressive resistance training was superior to home-based exercise in rehabilitation after unicompartmental knee arthroplasty. Single blinded, randomized clinical trial. Surgery, progressive resistance training and testing was carried out at Aarhus University Hospital and home-based exercise was carried out in the home of the patient. Fifty five patients were randomized to either progressive resistance training or home-based exercise. Patients were randomized to either progressive resistance training (home based exercise five days/week and progressive resistance training two days/week) or control group (home based exercise seven days/week). Preoperative assessment, 10-week (primary endpoint) and one-year follow-up were performed for leg extension power, spatiotemporal gait parameters and knee injury and osteoarthritis outcome score (KOOS). Forty patients (73%) completed 1-year follow-up. Patients in the progressive resistance training group participated in average 11 of 16 training sessions. Leg extension power increased from baseline to 10-week follow-up in progressive resistance training group (progressive resistance training: 0.28 W/kg, P= 0.01, control group: 0.01 W/kg, P=0.93) with no between-group difference. Walking speed and KOOS scores increased from baseline to 10-week follow-up in both groups with no between-group difference (six minutes walk test P=0.63, KOOS P>0.29). Progressive resistance training two days/week combined with home based exercise five days/week was not superior to home based exercise seven days/week in improving leg extension power of the operated leg.
Vilela, Thais Ceresér; Muller, Alexandre Pastoris; Damiani, Adriani Paganini; Macan, Tamires Pavei; da Silva, Sabrina; Canteiro, Paula Bortoluzzi; de Sena Casagrande, Alisson; Pedroso, Giulia Dos Santos; Nesi, Renata Tiscoski; de Andrade, Vanessa Moraes; de Pinho, Ricardo Aurino
2017-12-01
Aging is associated with impaired cognition and memory and increased susceptibility to neurodegenerative disorders. Physical exercise is neuroprotective; however, the major evidence of this effect involves studies of only aerobic training in young animals. The benefits of other exercise protocols such as strength training in aged animals remains unknown. Here, we investigated the effect of aerobic and strength training on spatial memory and hippocampal plasticity in aging rats. Aging Wistar rats performed aerobic or strength training for 50 min 3 to 4 days/week for 8 weeks. Spatial memory and neurotrophic and glutamatergic signaling in the hippocampus of aged rats were evaluated after aerobic or strength training. Both aerobic and strength training improved cognition during the performance of a spatial memory task. Remarkably, the improvement in spatial memory was accompanied by an increase in synaptic plasticity proteins within the hippocampus after exercise training, with some differences in the intracellular functions of those proteins between the two exercise protocols. Moreover, neurotrophic signaling (CREB, BDNF, and the P75 NTR receptor) increased after training for both exercise protocols, and aerobic exercise specifically increased glutamatergic proteins (NMDA receptor and PSD-95). We also observed a decrease in DNA damage after aerobic training. In contrast, strength training increased levels of PKCα and the proinflammatory factors TNF-α and IL-1β. Overall, our results show that both aerobic and strength training improved spatial memory in aging rats through inducing distinct molecular mechanisms of neuroplasticity. Our findings extend the idea that exercise protocols can be used to improve cognition during aging.
Elevated central venous pressure: a consequence of exercise training-induced hypervolemia?
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Mack, G. W.; Nadel, E. R.
1991-01-01
Resting blood volumes and arterial and central venous pressures (CVP) were measured in 14 men before and after exercise training to determine whether training-induced hypervolemia is accompanied by a change in total vascular capacitance. In addition, resting levels of plasma arginine vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (Ald), and norepinephrine (NE) were measured. The same measurements were conducted in seven subjects who did not undergo exercise and acted as controls. Exercise training consisted of 10 wk of controlled cycle exercise for 30 min/day, 4 days/wk at 75-80% of maximal O2 uptake (VO2max). A training effect was verified by a 20% increase in VO2max, a resting bradycardia, and a 9% increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased by 16% (P less than 0.05). The percent change in blood volume from before to after training was linearly related to the percent change in CVP (r = 0.903, P less than 0.05). As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was unchanged after exercise training. Plasma AVP, ANP, Ald, and NE were unaltered. Our results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance.
Yeşilyaprak, Sevgi Sevi; Yıldırım, Meriç Şenduran; Tomruk, Murat; Ertekin, Özge; Algun, Z Candan
2016-01-01
There is limited information on effective balance training techniques including virtual reality (VR)-based balance exercises in residential settings and no studies have been designed to compare the effects of VR-based balance exercises with conventional balance exercises in older adults living in nursing homes in Turkey. The objective of our study was to investigate the effects of VR-based balance exercises on balance and fall risk in comparison to conventional balance exercises in older adults living in nursing homes. A total sample of 18 subjects (65-82 years of age) with fall history who were randomly assigned to either the VR group (Group 1, n = 7) or the conventional exercise group (Group 2, n = 11) completed the exercise training. In both groups, Berg balance score (BBS), timed up & go duration, and left leg stance and tandem stance duration with eyes closed significantly improved with time (p < 0.05), but changes were similar in both groups (p > 0.05) after training, indicating that neither the exercise method was superior. Similar improvements were found in balance and fall risk with VR-based balance training and conventional balance training in older adults living in the nursing home. Both exercise trainings can be preferable by health care professionals considering fall prevention. Appropriate patient selection is essential.
Khaghani Far, Iman; Ibarra, Francisco; Ferron, Michela; Didino, Daniele; Casati, Fabio
2017-01-01
Background Intervention programs to promote physical activity in older adults, either in group or home settings, have shown equivalent health outcomes but different results when considering adherence. Group-based interventions seem to achieve higher participation in the long-term. However, there are many factors that can make of group exercises a challenging setting for older adults. A major one, due to the heterogeneity of this particular population, is the difference in the level of skills. In this paper we report on the physical, psychological and social wellbeing outcomes of a technology-based intervention that enable online group exercises in older adults with different levels of skills. Methods A total of 37 older adults between 65 and 87 years old followed a personalized exercise program based on the OTAGO program for fall prevention, for a period of eight weeks. Participants could join online group exercises using a tablet-based application. Participants were assigned either to the Control group, representing the traditional individual home-based training program, or the Social group, representing the online group exercising. Pre- and post- measurements were taken to analyze the physical, psychological and social wellbeing outcomes. Results After the eight-weeks training program there were improvements in both the Social and Control groups in terms of physical outcomes, given the high level of adherence of both groups. Considering the baseline measures, however, the results suggest that while in the Control group fitter individuals tended to adhere more to the training, this was not the case for the Social group, where the initial level had no effect on adherence. For psychological outcomes there were improvements on both groups, regardless of the application used. There was no significant difference between groups in social wellbeing outcomes, both groups seeing a decrease in loneliness despite the presence of social features in the Social group. However, online social interactions have shown to be correlated to the decrease in loneliness in the Social group. Conclusion The results indicate that technology-supported online group-exercising which conceals individual differences in physical skills is effective in motivating and enabling individuals who are less fit to train as much as fitter individuals. This not only indicates the feasibility of training together despite differences in physical skills but also suggests that online exercise might reduce the effect of skills on adherence in a social context. However, results from this pilot are limited to a small sample size and therefore are not conclusive. Longer term interventions with more participants are instead recommended to assess impacts on wellbeing and behavior change. PMID:28392983
Time to adapt exercise training regimens in pulmonary rehabilitation – a review of the literature
Lee, Annemarie L; Holland, Anne E
2014-01-01
Exercise intolerance, exertional dyspnea, reduced health-related quality of life, and acute exacerbations are features characteristic of chronic obstructive pulmonary disease (COPD). Patients with a primary diagnosis of COPD often report comorbidities and other secondary manifestations, which diversifies the clinical presentation. Pulmonary rehabilitation that includes whole body exercise training is a critical part of management, and core programs involve endurance and resistance training for the upper and lower limbs. Improvement in maximal and submaximal exercise capacity, dyspnea, fatigue, health-related quality of life, and psychological symptoms are outcomes associated with exercise training in pulmonary rehabilitation, irrespective of the clinical state in which it is commenced. There may be benefits for the health care system as well as the individual patient, with fewer exacerbations and subsequent hospitalization reported with exercise training. The varying clinical profile of COPD may direct the need for modification to traditional training strategies for some patients. Interval training, one-legged cycling (partitioning) and non-linear periodized training appear to be equally or more effective than continuous training. Inspiratory muscle training may have a role as an adjunct to whole body training in selected patients. The benefits of balance training are also emerging. Strategies to ensure that health enhancing behaviors are adopted and maintained are essential. These may include training for an extended duration, alternative environments to undertake the initial program, maintenance programs following initial exercise training, program repetition, and incorporation of approaches to address behavioral change. This may be complemented by methods designed to maximize uptake and completion of a pulmonary rehabilitation program. PMID:25419125
Time to adapt exercise training regimens in pulmonary rehabilitation--a review of the literature.
Lee, Annemarie L; Holland, Anne E
2014-01-01
Exercise intolerance, exertional dyspnea, reduced health-related quality of life, and acute exacerbations are features characteristic of chronic obstructive pulmonary disease (COPD). Patients with a primary diagnosis of COPD often report comorbidities and other secondary manifestations, which diversifies the clinical presentation. Pulmonary rehabilitation that includes whole body exercise training is a critical part of management, and core programs involve endurance and resistance training for the upper and lower limbs. Improvement in maximal and submaximal exercise capacity, dyspnea, fatigue, health-related quality of life, and psychological symptoms are outcomes associated with exercise training in pulmonary rehabilitation, irrespective of the clinical state in which it is commenced. There may be benefits for the health care system as well as the individual patient, with fewer exacerbations and subsequent hospitalization reported with exercise training. The varying clinical profile of COPD may direct the need for modification to traditional training strategies for some patients. Interval training, one-legged cycling (partitioning) and non-linear periodized training appear to be equally or more effective than continuous training. Inspiratory muscle training may have a role as an adjunct to whole body training in selected patients. The benefits of balance training are also emerging. Strategies to ensure that health enhancing behaviors are adopted and maintained are essential. These may include training for an extended duration, alternative environments to undertake the initial program, maintenance programs following initial exercise training, program repetition, and incorporation of approaches to address behavioral change. This may be complemented by methods designed to maximize uptake and completion of a pulmonary rehabilitation program.
Saeterbakken, Atle Hole; Andersen, Vidar; Behm, David G; Krohn-Hansen, Espen Krogseth; Smaamo, Mats; Fimland, Marius Steiro
2016-12-01
The aim of the study was to assess the task-specificity (greater improvements in trained compared to non-trained tasks), transferability and time-course adaptations of resistance-training programs with varying instability requirements. Thirty-six resistance-trained men were randomized to train chest press 2 days week -1 for 10 week (6 repetitions × 4 series) using a Swiss ball, Smith machine or dumbbells. A six-repetition maximum-strength test with the aforementioned exercises and traditional barbell chest press were performed by all participants at the first, 7th, 14th and final training session in addition to electromyographic activities of the prime movers measured during isometric bench press. The groups training with the unstable Swiss-ball and dumbbells, but not the stable Smith-machine, demonstrated task-specificity, which became apparent in the early phase and remained throughout the study. The improvements in the trained exercise tended to increase more with instability (dumbbells vs. Smith machine, p = 0.061). The group training with Smith machine had similar improvements in the non-trained exercises. Greater improvements were observed in the early phase of the strength-training program (first-7th session) for all groups in all three exercises, but most notably for the unstable exercises. No differences were observed between the groups or testing times for EMG activity. These findings suggest that among resistance-trained individuals, the concept of task-specificity could be most relevant in resistance training with greater stability requirements, particularly due to rapid strength improvements for unstable resistance exercises.
Waryasz, Gregory R; Daniels, Alan H; Gil, Joseph A; Suric, Vladimir; Eberson, Craig P
2016-10-01
NCAA strength and conditioning coaches are responsible for the day-to-day conditioning and strength training of collegiate athletes. NCAA regulations will likely require all strength and conditioning coaches to have a strength and conditioning certification. NCAA strength and conditioning coaches have varied philosophies on exercise programming based on educational background. The study aims to further evaluate the backgrounds and exercise philosophies of NCAA strength and conditioning coaches. A survey (Survey Monkey®, Palo Alto, CA, USA) was distributed to NCAA strength and conditioning professionals to evaluate their education background, current practice trends, use of specific equipment and footwear, and what injuries occurred during sessions. Of the 208 survey participants, 77.9% were male with an average age of 34.5±9.1 years old. An exercise-related bachelor's degree was held by 80.4% and an exercise-related master's degree by 72.4%. Over 89% had a strength and conditioning certification. Having a master's, bachelor's, or type strength and conditioning certification had no difference in 1-repetition maximal practice with athletes. Lower extremity injuries made up the highest percentage (58.9%) of injuries seen by NCAA Strength and Conditioning Coaches than lumbar spine injuries (16.7%). The five most common injuries reported during workouts were lumbar strain (N.=431, 14.7%), hamstring strain (N.=332, 11.3%), ankle sprain (N.=299, 10.2%), patellar tendonitis (N.=232, 7.9%), and shin splints (N.=226, 7.7%). Collegiate education and certifications have impact on practice patterns of strength and conditioning coaches in the NCAA.
Effects of endurance training and competition on exercise tests in relatively untrained people.
Verstappen, F T; Janssen, G M; Does, R J
1989-10-01
One hundred fourteen subjects (34 +/- 8 years) without any competition background took part in an endurance training study to be completed after 1.5 years with running a marathon. Ultimately, 60 males and 18 females achieved that goal. The training program, carefully supervised, was divided into three phases with a maximum of 45, 70, and 110 km/week training volume and concluded with a performance race of 15, 25, and 42.195 km, respectively. Three days before and 3 and 5 days after each race, 35 subjects were selected to perform a progressive treadmill test and the remaining subjects participated in performing field tests of running 400 and 1000 m. The maximal velocity achieved in the treadmill test was 4.75 +/- 0.36 m.s-1 for males and 4.18 +/- 0.28 m.s-1 for females; it remained constant throughout the study. However, the running velocity at 4 mmol.1(-1) plasma lactate concentration increased about 10% from phase 1 to 3. In the females this rise already appeared to be completed in phase 2. Heart rate showed a tendency to increase at both submaximal and maximal exercise from training phase 1 to 2 and 3, whereas plasma lactate concentration showed a decreasing tendency. Three days after the 25 km and the marathon race the maximal running velocity in the exercise test was 2%-4% lower compared with the pre-race test (P less than 0.05). Five days after the race this difference again faded away. This small decline in running performance was not reflected in changes of physiologic responses such as heart rate or plasma lactate concentration.
Lamina, S; Okoye, GC
2012-01-01
Background: Chronic psychosocial stress and serum uric acid (SUA) level have been implicated in the etiology and cardiovascular events risk factors in hypertension. Studies have reported significant benefit of exercise in the overall management of hypertension. However, studies on the effect of exercise on psychosocial stress and SUA in the management of hypertension seem scanty. Aim: The aim of this study was to determine the effect of continuous training program on SUA and psychosocial status of black African (Nigerian) population with hypertension. Subjects and Methods: Age-matched randomized controlled trial was used; subjects with diagnosis of hypertension attending the hypertensive clinic of Murtala Muhammed Specialist Hospital (MMSH), Kano, Nigeria form the population for the study. Two hundred and seventeen subjects with mild to moderate (systolic blood pressure (SBP) between 140 and180 and diastolic blood pressure (DBP) between 90 and 109 mmHg) essential hypertension were grouped into continuous (112) and control groups (105). The continuous group involved in an 8 weeks continuous training (60%-79% HR max) of between 45 and 60 min, 3 times per week, while the controls group remain sedentary. SBP, DBP, SUA, VO2 max and psychosocial status were assessed. Student t-test and Pearson correlation test were used in data analysis. Results: The study revealed significant beneficial effect of continuous training programs on VO2 max, SBP, DBP, SUA, and psychosocial status (P < 0.05). Psychosocial status and SUA was significantly and positively and negatively correlated respectively with VO2 max at P < 0.01. Conclusions: This study concludes and supports the recommendations of moderate intensity (continuous) training program in blood pressure reduction, SUA and psychosocial stress management in hypertension. PMID:23439606
Aalizadeh, Bahman; Mohammadzadeh, Hassan; Khazani, Ali; Dadras, Ali
2016-01-01
Background: Physical exercises can influence some anthropometric and fitness components differently. The aim of present study was to evaluate how a relatively long-term training program in 11-14-year-old male Iranian students affects their anthropometric and motor performance measures. Methods: Measurements were conducted on the anthropometric and fitness components of participants (n = 28) prior to and following the program. They trained 20 weeks, 1.5 h/session with 10 min rest, in 4 times trampoline training programs per week. Motor performance of all participants was assessed using standing long jump and vertical jump based on Eurofit Test Battery. Results: The analysis of variance (ANOVA) repeated measurement test showed a statistically significant main effect of time in calf girth P = 0.001, fat% P = 0.01, vertical jump P = 0.001, and long jump P = 0.001. The ANOVA repeated measurement test revealed a statistically significant main effect of group in fat% P = 0.001. Post hoc paired t-tests indicated statistical significant differences in trampoline group between the two measurements about calf girth (t = −4.35, P = 0.001), fat% (t = 5.87, P = 0.001), vertical jump (t = −5.53, P = 0.001), and long jump (t = −10.00, P = 0.001). Conclusions: We can conclude that 20-week trampoline training with four physical activity sessions/week in 11–14-year-old students seems to have a significant effect on body fat% reduction and effective results in terms of anaerobic physical fitness. Therefore, it is suggested that different training model approach such as trampoline exercises can help students to promote the level of health and motor performance. PMID:27512557
STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.
2009-12-22
JSC2009-E-286962 (22 Dec. 2009) --- Astronauts Ken Ham (right background), STS-132 commander; Tony Antonelli (left), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.
2009-12-22
JSC2009-E-286976 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (right background), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.
2009-12-22
JSC2009-E-286972 (22 Dec. 2009) --- Astronauts Ken Ham (right background), STS-132 commander; Tony Antonelli (left), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.
Web-enabled Exercise Generation Tool for Battle Command Training
2010-08-01
perceived as fair. Some non-instructional bells and whistles, such as background music and two-dimensional animation, should be judiciously...modify the current image by changing its size or adding a caption (Figure 12). Second, the trainer can upload a new image from his/her computer and...specify properties such as size, caption , image credit, and whether the image is searchable and usable by other trainers (Figure 13). Finally, the
The effects of whey protein with or without carbohydrates on resistance training adaptations.
Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki
2015-01-01
Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P < 0.05). However, the whey protein group reduced more total and abdominal area fat when compared to the carbohydrate group independent of the type of RT (P < 0.05). Thus, a larger relative increase (per kg bodyweight) in fat-free mass was observed in the protein vs. carbohydrate group (P < 0.05) without significant differences to the combined group. No systematic effects of the interventions were found for serum lipids. The RT type did not have an effect on the adaptations in response to different supplementation paradigms. Post-exercise supplementation with whey proteins when compared to carbohydrates or combination of proteins and carbohydrates did not have a major effect on muscle size or strength when ingested two to three times a week. However, whey proteins may increase abdominal fat loss and relative fat-free mass adaptations in response to resistance training when compared to fast-acting carbohydrates.
2013-01-01
Background Significant restriction in the ability to participate in home, work and community life results from pain, fatigue, joint damage, stiffness and reduced joint range of motion and muscle strength in people with rheumatoid arthritis or osteoarthritis of the hand. With modest evidence on the therapeutic effectiveness of conventional hand exercises, a task-oriented training program via real life object manipulations has been developed for people with arthritis. An innovative, computer-based gaming platform that allows a broad range of common objects to be seamlessly transformed into therapeutic input devices through instrumentation with a motion-sense mouse has also been designed. Personalized objects are selected to target specific training goals such as graded finger mobility, strength, endurance or fine/gross dexterous functions. The movements and object manipulation tasks that replicate common situations in everyday living will then be used to control and play any computer game, making practice challenging and engaging. Methods/Design The ongoing study is a 6-week, single-center, parallel-group, equally allocated and assessor-blinded pilot randomized controlled trial. Thirty people with rheumatoid arthritis or osteoarthritis affecting the hand will be randomized to receive either conventional hand exercises or the task-oriented training. The purpose is to determine a preliminary estimation of therapeutic effectiveness and feasibility of the task-oriented training program. Performance based and self-reported hand function, and exercise compliance are the study outcomes. Changes in outcomes (pre to post intervention) within each group will be assessed by paired Student t test or Wilcoxon signed-rank test and between groups (control versus experimental) post intervention using unpaired Student t test or Mann–Whitney U test. Discussion The study findings will inform decisions on the feasibility, safety and completion rate and will also provide preliminary data on the treatment effects of the task-oriented training compared with conventional hand exercises in people with rheumatoid arthritis or osteoarthritis of the hand. Trial registration ClinicalTrials.gov: NCT01635582 PMID:23497529
del Rey-Moya, Luz Maria; Castilla-Álvarez, Carmen; Pichiule-Castañeda, Myrian; Rico-Blázquez, Milagros; Escortell-Mayor, Esperanza; Gómez-Quevedo, Rosa
2013-08-01
To determine the effect of a seven-week-long, group-delivered, nurse-monitored, exercise training programme on the adherence of obese women to physical exercise routines at 12 months. The worldwide obesity epidemic is posing huge public health challenges. The main cause of obesity in Europe is very possibly a sedentary lifestyle. Uncertainty exists regarding whether people will continue to exercise once a structured intervention programme of physical activity ends. No-control-group (before-after) intervention study. One Hundred Seventy-Four women from the Madrid region (Spain) aged ≥ 45 years with a body mass index of ≥30 undertook a maximum of 21 × 1 hour exercise training programme sessions (three per week) over seven weeks starting in February 2009. The number of women making use of exercise training programme before the intervention, and at 6 and 12 months postintervention, was recorded using the Nursing Outcome Classification. Information was collected by interviewing the study subjects. Bivariate (McNemar and Student's t-tests) and multivariate (binary logistic regression) analyses were then performed. The Nursing Outcome Classification Indicator 'Does the subject follow an exercise training programme?' showed that at the end of one year, the percentage of women who remained adhered to exercise training programme increased in those who completed the study (from 11-41%). As the number of programmed exercise training programme sessions completed increased beyond 14, so too did the likelihood of adhering to an exercise training programme regime at one year. The results show that an exercise training programme intervention can encourage obese women to continue exercising after exercise interventions end. This type of intervention could provide a valuable means of helping women lose weight and improve their health. It may also have important economic benefits for health systems. Clinical trials with longer follow-up times and in other populations are needed to confirm the present results. © 2013 John Wiley & Sons Ltd.
Reyna, Sara M; Tantiwong, Puntip; Cersosimo, Eugenio; Defronzo, Ralph A; Sriwijitkamol, Apiradee; Musi, Nicolas
2013-01-01
Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD). Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC) were obtained for determination of Toll-like receptor (TLR) 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK) phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals.
Concurrent exercise training: do opposites distract?
Coffey, Vernon G; Hawley, John A
2017-05-01
Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when 'phenotype specificity' occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance-based exercise) and increased muscle mass (through resistance-based exercise), typically termed 'concurrent training'. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this 'interference' effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Structural remodeling of coronary resistance arteries: effects of age and exercise training
Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.
2014-01-01
Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239
ERIC Educational Resources Information Center
Kemmler, Wolfgang; Engelke, Klaus; Lauber, Dirk; Weineck, Juergen; Hensen, Johannes; Kalender, Willi A.
2002-01-01
Investigated the effect of intense exercise training on physical fitness, coronary heart disease, bone mineral density (BMD), and parameters related to quality of life in early postmenopausal women with osteopenia. Data on woman in control and exercise training groups indicated that the intense exercise training program was effective in improving…
Zielinski, Mark R.; Davis, J. Mark; Fadel, James R.; Youngstedt, Shawn D.
2013-01-01
Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (~4 h loss/day) vs. ad libitum sleep] × 2 [exercise (1 h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. PMID:23644185
Sakamoto, S; Minami, K; Niwa, Y; Ohnaka, M; Nakaya, Y; Mizuno, A; Kuwajima, M; Shima, K
1998-01-01
We investigated whether endothelial function may be impaired in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous NIDDM. The effect of exercise training and food restriction on endothelial function was also studied. OLETF rats were divided into three groups at age 16 weeks: sedentary, exercise trained, and food restricted (70% of the food intake of sedentary rats). Otsuka Long-Evans Tokushima rats were used as the age-matched nondiabetic controls. Endothelium-dependent relaxation of the thoracic aorta induced by histamine was significantly attenuated in the sedentary or food-restricted rats, and exercise training improved endothelial function. Relaxation induced by sodium nitroprusside, a donor of nitric oxide, did not differ significantly among groups. Both exercise training and food restriction significantly suppressed plasma levels of glucose and insulin and serum levels of triacylglycerol and cholesterol and reduced the accumulation of abdominal fat. Insulin sensitivity, as measured by the hyperinsulinemic-euglycemic clamp technique, was significantly decreased in sedentary rats but was enhanced in exercise-trained and food-restricted rats. The urinary excretion of nitrite was significantly decreased in sedentary and food-restricted rats compared with nondiabetic rats and was significantly increased in exercise-trained rats. These results indicate that exercise training, but not food restriction, prevents endothelial dysfunction in NIDDM rats, presumably due to the exercise-induced increase in the production of nitric oxide.
Concurrent exercise training: do opposites distract?
Coffey, Vernon G.
2016-01-01
Abstract Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when ‘phenotype specificity’ occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance‐based exercise) and increased muscle mass (through resistance‐based exercise), typically termed ‘concurrent training’. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this ‘interference’ effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. PMID:27506998
Cardiovascular responses to static exercise in distance runners and weight lifters
NASA Technical Reports Server (NTRS)
Longhurst, J. C.; Kelly, A. R.; Gonyea, W. J.; Mitchell, J. H.
1980-01-01
Three groups of athletes including long-distance runners, competitive and amateur weight lifters, and age- and sex-matched control subjects have been studied by hemodynamic and echocardiographic methods in order to determine the effect of the training programs on the cardiovascular response to static exercise. Blood pressure, heart rate, and double product data at rest and at fatigue suggest that competitive endurance (dynamic exercise) training alters the cardiovascular response to static exercise. In contrast to endurance exercise, weight lifting (static exercise) training does not alter the cardiovascular response to static exercise: weight lifters responded to static exercise in a manner very similar to that of the control subjects.
Jansen, Mariette J; Viechtbauer, Wolfgang; Lenssen, Antoine F; Hendriks, Erik J M; de Bie, Rob A
2011-01-01
What are the effects of strength training alone, exercise therapy alone, and exercise with additional passive manual mobilisation on pain and function in people with knee osteoarthritis compared to control? What are the effects of these interventions relative to each other? A meta-analysis of randomised controlled trials. Adults with osteoarthritis of the knee. INTERVENTION TYPES: Strength training alone, exercise therapy alone (combination of strength training with active range of motion exercises and aerobic activity), or exercise with additional passive manual mobilisation, versus any non-exercise control. Comparisons between the three interventions were also sought. The primary outcome measures were pain and physical function. 12 trials compared one of the interventions against control. The effect size on pain was 0.38 (95% CI 0.23 to 0.54) for strength training, 0.34 (95% CI 0.19 to 0.49) for exercise, and 0.69 (95% CI 0.42 to 0.96) for exercise plus manual mobilisation. Each intervention also improved physical function significantly. No randomised comparisons of the three interventions were identified. However, meta-regression indicated that exercise plus manual mobilisations improved pain significantly more than exercise alone (p = 0.03). The remaining comparisons between the three interventions for pain and physical function were not significant. Exercise therapy plus manual mobilisation showed a moderate effect size on pain compared to the small effect sizes for strength training or exercise therapy alone. To achieve better pain relief in patients with knee osteoarthritis physiotherapists or manual therapists might consider adding manual mobilisation to optimise supervised active exercise programs. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.
Gorostegi-Anduaga, Ilargi; Corres, Pablo; MartinezAguirre-Betolaza, Aitor; Pérez-Asenjo, Javier; Aispuru, G Rodrigo; Fryer, Simon M; Maldonado-Martín, Sara
2018-03-01
Background Both exercise training and diet are recommended to prevent and control hypertension and overweight/obesity. Purpose The purpose of this study was to determine the effectiveness of different 16-week aerobic exercise programmes with hypocaloric diet on blood pressure, body composition, cardiorespiratory fitness and pharmacological treatment. Methods Overweight/obese, sedentary participants ( n = 175, aged 54.0 ± 8.2 years) with hypertension were randomly assigned into an attention control group (physical activity recommendations) or one of three supervised exercise groups (2 days/week: high-volume with 45 minutes of moderate-intensity continuous training (MICT), high-volume and high-intensity interval training (HIIT), alternating high and moderate intensities, and low-volume HIIT (20 minutes)). All variables were assessed pre- and post-intervention. All participants received the same hypocaloric diet. Results Following the intervention, there was a significant reduction in blood pressure and body mass in all groups with no between-group differences for blood pressure. However, body mass was significantly less reduced in the attention control group compared with all exercise groups (attention control -6.6%, high-volume MICT -8.3%, high-volume HIIT -9.7%, low-volume HIIT -6.9%). HIIT groups had significantly higher cardiorespiratory fitness than high-volume MICT, but there were no significant between-HIIT differences (attention control 16.4%, high-volume MICT 23.6%, high-volume HIIT 36.7%, low-volume HIIT 30.5%). Medication was removed in 7.6% and reduced in 37.7% of the participants. Conclusions The combination of hypocaloric diet with supervised aerobic exercise 2 days/week offers an optimal non-pharmacological tool in the management of blood pressure, cardiorespiratory fitness and body composition in overweight/obese and sedentary individuals with hypertension. High-volume HIIT seems to be better for reducing body mass compared with low-volume HIIT. The exercise-induced improvement in cardiorespiratory fitness is intensity dependent with low-volume HIIT as a time-efficient method in this population. ClinicalTrials.gov Registration: NCT02283047.
Halling, Jens Frey; Ringholm, Stine; Olesen, Jesper; Prats, Clara; Pilegaard, Henriette
2017-10-01
Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effects of aging and exercise training on mitochondrial network structure remain unclear. This study examined the effects of aging and exercise training on mitochondrial network structure using confocal microscopy on mitochondria-specific stains in single muscle fibers from PGC-1α KO and WT mice. Hyperfragmentation of mitochondrial networks was observed in aged relative to young animals while exercise training normalized mitochondrial network structure in WT, but not in PGC-1α KO. Mitochondrial fission protein content (FIS1 and DRP1) relative to mitochondrial content was increased with aging in both WT and PGC-1α KO mice, while exercise training lowered mitochondrial fission protein content relative to mitochondrial content only in WT. Mitochondrial fusion protein content (MFN1/2 and OPA1) was unaffected by aging and lifelong exercise training in both PGC-1α KO and WT mice. The present results provide evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Salgueiro, Rafael Barrera; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Castro Barbosa, Thais; Nunes, Maria Tereza
2017-12-15
L-Arginine has emerged as an important supplement for athletes and non-athletes in order to improve performance. Arginine has been extensively used as substrate for nitric oxide synthesis, leading to increased vasodilatation and hormonal secretion. However, the chronic consumption of arginine has been shown to impair insulin sensitivity. In the present study, we aimed to evaluate whether chronic arginine supplementation associated with exercise training would have a beneficial impact on insulin sensitivity. We, therefore, treated Wistar rats for 4weeks with arginine, associated or not with exercise training (treadmill). We assessed the somatotropic activation, by evaluating growth hormone (GH) gene expression and protein content in the pituitary, as well is GH concentration in the serum. Additionally, we evaluate whole-body insulin sensitivity, by performing an insulin tolerance test. Skeletal muscle morpho-physiological parameters were also assessed. Insulin sensitivity was impaired in the arginine-treated rats. However, exercise training reversed the negative effects of arginine. Arginine and exercise training increased somatotropic axis function, muscle mass and body weight gain. The combination arginine and exercise training further decreased total fat mass. Our results confirm that chronic arginine supplementation leads to insulin resistance, which can be reversed in the association with exercise training. We provide further evidence that exercise training is an important tool to improve whole-body metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Evaluation of different time schedules in training with the Da Vinci simulator.
Güldner, C; Orth, A; Dworschak, P; Diogo, I; Mandapathil, M; Teymoortash, A; Walliczek-Dworschak, U
2017-10-01
This prospective study analyzed the effect of different time schedules in training on the main performance outcomes: overall score, time to complete, and economy of motion. The study was performed on the da Vinci Skills Simulator from December 2014 to April 2016. Forty robotic novices were randomized into two groups of 20 participants, which trained in the same three exercises but with different intervals between their training sessions. Each group performed training in Peg Board 1 in their first week, Match Board 2 in their second week, and Ring and Rail 2 in their third week. On their last day, Needle Targeting and Energy Dissection 2, for which no previous training had been received, were performed. Regarding the different training intervals, group 1 trained each exercise six times in a row once a week. Group 2 performed their training once a day for 5 days. Technical performance parameters were recorded by the Mimics simulator software for further analysis. In addition, the participants were asked to fill out a questionnaire concerning the robotics training. Group 2 performed significantly better compared to group 1 in the main metrics in the more advanced exercises. For the easier exercises, the training frequency did not lead to significant differences in performance outcome. A significant skills gain was seen between the first and last training sessions for all exercises in both groups. Performance in the final exercise NT was significantly better in group 2 than group 1. Regarding ED 2, no difference was found between the two groups. As the training of group 2 led to significantly better outcomes, we suggest that, especially for advanced exercises, it seems to be more favorable to perform training every day for a short period than to train once a week six times in a row.
Community-based group exercise for persons with Parkinson disease: a randomized controlled trial.
Combs, Stephanie A; Diehl, M Dyer; Chrzastowski, Casey; Didrick, Nora; McCoin, Brittany; Mox, Nicholas; Staples, William H; Wayman, Jessica
2013-01-01
The purpose of this study was to compare group boxing training to traditional group exercise on function and quality of life in persons with Parkinson disease (PD). A convenience sample of adults with PD (n = 31) were randomly assigned to boxing training or traditional exercise for 24-36 sessions, each lasting 90 minutes, over 12 weeks. Boxing training included: stretching, boxing (e.g. lateral foot work, punching bags), resistance exercises, and aerobic training. Traditional exercise included: stretching, resistance exercises, aerobic training, and balance activities. Participants were tested before and after completion of training on balance, balance confidence, mobility, gait velocity, gait endurance, and quality of life. The traditional exercise group demonstrated significantly greater gains in balance confidence than the boxing group (p < 0.025). Only the boxing group demonstrated significant improvements in gait velocity and endurance over time with a medium between-group effect size for the gait endurance (d = 0.65). Both groups demonstrated significant improvements with the balance, mobility, and quality of life with large within-group effect sizes (d ≥ 0.80). While groups significantly differed in balance confidence after training, both groups demonstrated improvements in most outcome measures. Supporting options for long-term community-based group exercise for persons with PD will be an important future consideration for rehabilitation professionals.
Adachi, H; Sakurai, S; Tanehata, M; Oshima, S; Taniguchi, K
2000-11-01
Blood viscosity (etaB) is low in athletes, but the effect of exercise training on etaB during endurance exercise at an anaerobic threshold (AT) intensity in non-athletes is not well known, although it is known that exercise training sometimes induces the hyperviscosity syndrome. Fourteen subjects were recruited and divided into 2 groups: those who trained at an AT intensity for 30 min/day, 3 times weekly for 1 year (Group T, n=8), and sedentary subjects (Group C, n=6). The test protocol consisted of a single 30-min treadmill exercise at each individual's AT intensity, which was determined in advance. The etaB, plasma viscosity (etaP), and hematocrit were measured just before and at the end of the treadmill exercise. The subjects were not allowed to drink any water before exercise. In the Group C subjects, the hematocrit and etaP increased significantly and the etaB tended to increase. However, in the Group T subjects, the hematocrit and etaP did not increase and the etaB decreased significantly. These data indicate that long-term exercise training attenuates the increase in blood viscosity during exercise.
Rocco, D D F M; Okuda, L S; Pinto, R S; Ferreira, F D; Kubo, S K; Nakandakare, E R; Quintão, E C R; Catanozi, S; Passarelli, M
2011-07-01
We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of ¹⁴C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [³H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [³H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [³H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.
Benefits of HIV testing during military exercises.
Gross, M L; Rendin, R W; Childress, C W; Kerstein, M D
1989-12-01
During U.S. Marine Corps Reserve summer 2-week active duty for training periods, 6,482 people were tested for human immunodeficiency virus (HIV). Testing at an initial exercise, Solar Flare, trained a cadre of contact teams to, in turn, train other personnel in phlebotomy and the HIV protocol at three other exercises (141 Navy Reserve and Inspector-Instructor hospital corpsmen were trained). Corpsmen could be trained with an indoctrination of 120 minutes and a mean of 15 phlebotomies. After 50 phlebotomies, the administration, identification, and labeling process plus phlebotomy could be completed in 90 seconds. HIV testing during military exercises is both good for training and cost-effective.
Subjective Memory Impairment and Well-Being in Community-Dwelling Older Adults
Zuniga, Krystle E.; Mackenzie, Michael; Kramer, Arthur; McAuley, Edward
2015-01-01
Background The relationship between subjective memory impairment (SMI), future cognitive decline and negative health status provides an opportunity for interventions to reduce memory complaints in high risk groups. This study aimed to examine the relationship between subjective memory impairment (SMI) and indicators of well-being in older adults enrolled in an exercise trial. Additionally, the study examined whether two different modes of exercise training, aerobic walking or non-aerobic flexibility, toning, and balance, differentially influenced subjective memory across the trial. Methods Community-dwelling older adults (n=179, Mage=66.4) were randomly assigned to a walking or flexibility, toning, and balance group for 12 months. Subjective memory, happiness, perceived stress, and symptom reporting were measured at baseline, 6 months and 12 months. Results A main effect of subjective memory indicated that individuals with the fewest memory complaints had lower perceived stress (P<0.001) and physical symptom reporting (P<0.001), and higher happiness (P<0.001) across all measurement occasions. Both main and interaction effects of time and group on SMI were not significant, suggesting SMI remained stable across the intervention and was not significantly impacted by participation in exercise training. Conclusions SMI was not responsive to exercise interventions, and the relationship between subjective memory impairment (SMI) and negative well- being demonstrates a need for interventions to reduce memory complaints in high risk groups. PMID:25737426
Performance and mood-state parameters during 30-day 6 deg head-down bed rest with exercise training
NASA Technical Reports Server (NTRS)
Deroshia, Charles W.; Greenleaf, J. E.
1993-01-01
A study aimed at determining if the performance and mood impairments occur in bed-rested subjects, and if different exercise-training regimens modify or prevent them is presented. Eighteen healthy men were divided into three groups performing no exercise, isotonic exercise, and isokinetic exercise. Few deleterious changes occurred in performance and mood of the three groups which did not exceed baseline ambulatory levels. It is concluded that mood and performance did not deteriorate in response to prolonged bedrest and were not altered by exercise training.
Cook, Christian J; Beaven, C Martyn; Kilduff, Liam P
2013-05-01
Eccentric and overspeed training modalities are effective in improving components of muscular power. Eccentric training induces specific training adaptations relating to muscular force, whereas overspeed stimuli target the velocity component of power expression. We aimed to compare the effects of traditional or eccentric training with volume-matched training that incorporated overspeed exercises. Twenty team-sport athletes performed 4 counterbalanced 3-week training blocks consecutively as part of a preseason training period: (1) traditional resistance training; (2) eccentric-only resistance training; (3) traditional resistance training with overspeed exercises; and (4) eccentric resistance training with overspeed exercises. The overspeed exercises performed were assisted countermovement jumps and downhill running. Improvements in bench press (15.0 ± 5.1 kg; effect size [ES]: 1.52), squat (19.5 ± 9.1 kg; ES: 1.12), and peak power in the countermovement jump (447 ± 248 W; ES: 0.94) were observed following the 12-week training period. Greater strength increases were observed as a result of the eccentric training modalities (ES: 0.72-1.09) with no effect of the overspeed stimuli on these measures (p > 0.05). Eccentric training with overspeed stimuli was more effective than traditional resistance training in increasing peak power in the countermovement jump (94 ± 55 W; ES: 0.95). Eccentric training induced no beneficial training response in maximal running speed (p > 0.05); however, the addition of overspeed exercises salvaged this relatively negative effect when compared with eccentric training alone (0.03 ± 0.01 seconds; ES: 1.33). These training results achieved in 3-week training blocks suggest that it is important to target-specific aspects of both force and movement velocity to enhance functional measures of power expression.
Physical Exercise as Therapy for Frailty.
Aguirre, Lina E; Villareal, Dennis T
2015-01-01
Longitudinal studies demonstrate that regular physical exercise extends longevity and reduces the risk of physical disability. Decline in physical activity with aging is associated with a decrease in exercise capacity that predisposes to frailty. The frailty syndrome includes a lowered activity level, poor exercise tolerance, and loss of lean body and muscle mass. Poor exercise tolerance is related to aerobic endurance. Aerobic endurance training can significantly improve peak oxygen consumption by ∼10-15%. Resistance training is the best way to increase muscle strength and mass. Although the increase in muscle mass in response to resistance training may be attenuated in frail older adults, resistance training can significantly improve muscle strength, particularly in institutionalized patients, by ∼110%. Because both aerobic and resistance training target specific components of frailty, studies combining aerobic and resistance training provide the most promising evidence with respect to successfully treating frailty. At the molecular level, exercise reduces frailty by decreasing muscle inflammation, increasing anabolism, and increasing muscle protein synthesis. More studies are needed to determine which exercises are best suited, most effective, and safe for this population. Based on the available studies, an individualized multicomponent exercise program that includes aerobic activity, strength exercises, and flexibility is recommended to treat frailty. © 2015 Michael E. DeBakey VA Medical Center (US Government) Published by S. Karger AG, Basel.
Miller, Benjamin F; Ehrlicher, Sarah E; Drake, Joshua C; Peelor, Frederick F; Biela, Laurie M; Pratt-Phillips, Shannon; Davis, Michael; Hamilton, Karyn L
2015-04-01
Canis lupus familiaris, the domesticated dog, is capable of extreme endurance performance. The ability to perform sustained aerobic exercise is dependent on a well-developed mitochondrial reticulum. In this study we examined the cumulative muscle protein and DNA synthesis in groups of athletic dogs at the onset of an exercise training program and following a strenuous exercise training program. We hypothesized that both at the onset and during an exercise training program there would be greater mitochondrial protein synthesis rates compared with sedentary control with no difference in mixed or cytoplasmic protein synthesis rates. Protein synthetic rates of three protein fractions and DNA synthesis were determined over 1 wk using (2)H2O in competitive Alaskan Huskies and Labrador Retrievers trained for explosive device detection. Both groups of dogs had very high rates of skeletal muscle protein synthesis in the sedentary state [Alaskan Huskies: Mixed = 2.28 ± 0.12, cytoplasmic (Cyto) = 2.91 ± 0.10, and mitochondrial (Mito) = 2.62 ± 0.07; Labrador Retrievers: Mixed = 3.88 ± 0.37, Cyto = 3.85 ± 0.06, and Mito = 2.92 ± 0.20%/day]. Mitochondrial (Mito) protein synthesis rates did not increase at the onset of an exercise training program. Exercise-trained dogs maintained Mito protein synthesis during exercise training when mixed (Mixed) and cytosolic (Cyto) fractions decreased, and this coincided with a decrease in p-RpS6 but also a decrease in p-ACC signaling. Contrary to our hypothesis, canines did not have large increases in mitochondrial protein synthesis at the onset or during an exercise training program. However, dogs have a high rate of protein synthesis compared with humans that perhaps does not necessitate an extra increase in protein synthesis at the onset of aerobic exercise training. Copyright © 2015 the American Physiological Society.
Du, Shu-Fang; Yu, Qing; Chuan, Kai; Ye, Chang-Lin; He, Ze-Jia; Liu, Shu-Juan; Zhu, Xiao-Yan; Liu, Yu-Jian
2017-10-01
Exercise training is advocated for treating chronic inflammation and obesity-related metabolic syndromes. Glucocorticoids (GCs), the anti-inflammatory hormones, are synthesized or metabolized in extra-adrenal organs. This study aims to examine whether exercise training affects obesity-associated pulmonary inflammation by regulating local GC synthesis or metabolism. We found that sedentary obese ( ob/ob ) mice exhibited increased levels of interleukin (IL)-1β, IL-18, monocyte chemotactic protein (MCP)-1, and leukocyte infiltration in lung tissues compared with lean mice, which was alleviated by 6 wk of exercise training. Pulmonary corticosterone levels were decreased in ob/ob mice. Exercise training increased pulmonary corticosterone levels in both lean and ob/ob mice. Pulmonary corticosterone levels were negatively correlated with IL-1β, IL-18, and MCP-1. Immunohistochemical staining of the adult mouse lung sections revealed positive immunoreactivities for the steroidogenic acute regulatory protein, the cholesterol side-chain cleavage enzyme (CYP11A1), the steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (3β-HSD), and type 1 and type 2 11β-hydroxysteroid dehydrogenase (11β-HSD) but not for 11β-hydroxylase (CYP11B1). Exercise training significantly increased pulmonary 11β-HSD1 expression in both lean and ob/ob mice. In contrast, exercise training per se had no effect on pulmonary 11β-HSD2 expression, although pulmonary 11β-HSD2 levels in ob/ob mice were significantly higher than in lean mice. RU486, a glucocorticoid receptor antagonist, blocked the anti-inflammatory effects of exercise training in lung tissues of obese mice and increased inflammatory cytokines in lean exercised mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local GC activation and suppression of pulmonary inflammation in obese mice. NEW & NOTEWORTHY Treadmill training leads to a significant increase in pulmonary corticosterone levels in ob/ob mice, which is in parallel with the favorable effects of exercise on obesity-associated pulmonary inflammation. Exercise training increases pulmonary 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression but has no significant effect on 11β-HSD2 expression in both lean and ob/ob mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local glucocorticoid activation and suppression of pulmonary inflammation in obese mice. Copyright © 2017 the American Physiological Society.
PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle
Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette
2017-01-01
The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322
Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium.
Rush, James W E; Turk, James R; Laughlin, M Harold
2003-04-01
Vascular oxidative stress contributes to endothelial dysfunction. Aerobic exercise training improves vascular function. The purpose of this study was to test the hypothesis that exercise training would improve the balance of antioxidant to prooxidant enzymes and reduce markers of oxidative stress in aortic endothelial cells (AEC). Female Yucatan miniature pigs either remained sedentary (SED) or were exercise trained (EX) for 16-19 wk. EX pigs had increased AEC SOD-1 protein levels and Cu/Zn SOD activity of the whole aorta compared with SED pigs. Protein levels of other antioxidant enzymes (SOD-2, catalase) were not affected by exercise training. Protein levels of p67(phox), a subunit of the prooxidant enzyme NAD(P)H oxidase, were reduced in EX vs. SED AEC. These EX adaptations were associated with lower AEC malondialdehyde levels and decreased phosphorylation of ERK-1/2. Endothelial nitric oxide synthase protein, protein nitrotyrosine content, and heme oxygenase-1 protein were not different in EX vs. SED pigs. We conclude that chronic aerobic exercise training influenced both antioxidant and prooxidant enzymes and decreased indexes of oxidative stress in AEC. These adaptations may contribute to improved endothelial function with exercise training.
Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A
2016-09-01
This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Zempo-Miyaki, A; Fujie, S; Sato, K; Hasegawa, N; Sanada, K; Maeda, S; Hamaoka, T; Iemitsu, M
2016-09-01
Regular exercise improves aging-induced deterioration of arterial stiffness, and is associated with elevated production of pentraxin 3 (PTX3) and anti-inflammatory as well as anti-atherosclerotic effects. However, the time-dependent effect of exercise training on arterial stiffness and PTX3 production remains unclear. The purpose of this study was to investigate the time course of the association between the effects of training on the circulating PTX3 level and arterial stiffness in middle-aged and older adults. Thirty-two healthy Japanese subjects (66.2±1.3 year) were randomly divided into two groups: training (exercise intervention) and sedentary controls. Subjects in the training group completed 8 weeks of aerobic exercise training (60-70% peak oxygen uptake (VO2peak) for 45 min, 3 days per week); during the training period, we evaluated plasma PTX3 concentration and carotid-femoral pulse wave velocity (cfPWV) every 2 wk. cfPWV gradually declined over the 8-week training period, and was significantly reduced after 6 and 8 week of exercise intervention (P<0.05). Plasma PTX3 level was significantly increased after 4 weeks of the intervention (P<0.05). In addition, the exercise training-induced reduction in cfPWV was negatively correlated with the percent change in plasma PTX3 level after 6 week (r=-0.54, P<0.05) and 8 weeks (r=-0.51, P<0.05) of the intervention, but not correlated at 4 weeks. Plasma PTX3 level was elevated at the early stage of the exercise training intervention, and was subsequently associated with training-induced alteration of arterial stiffness in middle-aged and older adults.
Hansen, Ane H; Nyberg, Michael; Bangsbo, Jens; Saltin, Bengt; Hellsten, Ylva
2011-11-01
The effects of physical training on the formation of vasodilating and vasoconstricting compounds, as well as on related proteins important for vascular function, were examined in skeletal muscle of individuals with essential hypertension (n=10). Muscle microdialysis samples were obtained from subjects with hypertension before and after 16 weeks of physical training. Muscle dialysates were analyzed for thromboxane A(2), prostacyclin, nucleotides, and nitrite/nitrate. Protein levels of thromboxane synthase, prostacyclin synthase, cyclooxygenase 1 and 2, endothelial nitric oxide synthase (eNOS), cystathionine-γ-lyase, cytochrome P450 4A and 2C9, and the purinergic receptors P2X1 and P2Y2 were determined in skeletal muscle. The protein levels were compared with those of normotensive control subjects (n=12). Resting muscle dialysate thromboxane A(2) and prostacyclin concentrations were lower (P<0.05) after training compared with before training. Before training, dialysate thromboxane A(2) decreased with acute exercise, whereas after training, no changes were found. Before training, dialysate prostacyclin levels did not increase with acute exercise, whereas after training there was an 82% (P<0.05) increase from rest to exercise. The exercise-induced increase in ATP and ADP was markedly reduced after training (P<0.05). The amount of eNOS protein in the hypertensive subjects was 40% lower (P<0.05) than in the normotensive control subjects, whereas cystathionine-γ-lyase levels were 25% higher (P<0.05), potentially compensating for the lower eNOS level. We conclude that exercise training alters the balance between vasodilating and vasoconstricting compounds as evidenced by a decrease in the level of thromboxane, reduction in the exercise-induced increase in ATP and a greater exercise-induced increase in prostacyclin.
Mortensen, Stefan P; Nyberg, Michael; Gliemann, Lasse; Thaning, Pia; Saltin, Bengt; Hellsten, Ylva
2014-01-01
Essential hypertension is linked to an increased sympathetic vasoconstrictor activity and reduced tissue perfusion. We investigated the role of exercise training on functional sympatholysis and postjunctional α-adrenergic responsiveness in individuals with essential hypertension. Leg haemodynamics were measured before and after 8 weeks of aerobic training (3–4 times per week) in eight hypertensive (47 ± 2 years) and eight normotensive untrained individuals (46 ± 1 years) during arterial tyramine infusion, arterial ATP infusion and/or one-legged knee extensions. Before training, exercise hyperaemia and leg vascular conductance (LVC) were lower in the hypertensive individuals (P < 0.05) and tyramine lowered exercise hyperaemia and LVC in both groups (P < 0.05). Training lowered blood pressure in the hypertensive individuals (P < 0.05) and exercise hyperaemia was similar to the normotensive individuals in the trained state. After training, tyramine did not reduce exercise hyperaemia or LVC in either group. When tyramine was infused at rest, the reduction in blood flow and LVC was similar between groups, but exercise training lowered the magnitude of the reduction in blood flow and LVC (P < 0.05). There was no difference in the vasodilatory response to infused ATP or in muscle P2Y2 receptor content between the groups before and after training. However, training lowered the vasodilatory response to ATP and increased skeletal muscle P2Y2 receptor content in both groups (P < 0.05). These results demonstrate that exercise training improves functional sympatholysis and reduces postjunctional α-adrenergic responsiveness in both normo- and hypertensive individuals. The ability for functional sympatholysis and the vasodilator and sympatholytic effect of intravascular ATP appear not to be altered in essential hypertension. PMID:24860173
Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L.
2015-01-01
ABSTRACT Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. PMID:25987736
McFarlan, Jay T.; Yoshida, Yuko; Jain, Swati S.; Han, Xioa-Xia; Snook, Laelie A.; Lally, James; Smith, Brennan K.; Glatz, Jan F. C.; Luiken, Joost J. F. P.; Sayer, Ryan A.; Tupling, A. Russell; Chabowski, Adrian; Holloway, Graham P.; Bonen, Arend
2012-01-01
For ∼40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (−21%) and oxidation (−25%), intramuscular lipids (less than or equal to −31%), and hepatic glycogen (−20%); but muscle glycogen, VO2max, and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO2max) CD36-KO mice, fatty acid transport (−41%), oxidation (−37%), and exercise duration (−44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27–55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84–90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO. PMID:22584574
Weatherwax, Ryan M; Harris, Nigel K; Kilding, Andrew E; Dalleck, Lance C
2016-12-19
There is individual variability to cardiorespiratory fitness (CRF) training, but the underlying cause is not well understood. Traditionally, a standardized approach to exercise prescription has utilized relative percentages of maximal heart rate, heart rate reserve (HRR), maximal oxygen uptake (VO 2 max), or VO 2 reserve to establish exercise intensity. However, this model fails to take into consideration individual metabolic responses to exercise and may attribute to the variability in training responses. It has been proposed that an individualized approach would take into consideration metabolic responses to exercises to increase responsiveness to training. In this randomized control trial, participants will undergo a 12-week exercise intervention using individualized (ventilatory thresholds) and standardized (HRR) methods to prescribe CRF training intensity. Following the intervention, participants will be categorized as responders or non-responders based on changes in maximal aerobic abilities. Participants who are non-responders will complete a second 12-week intervention in a crossover design to determine whether they can become responders with a differing exercise prescription. There are four main research outcomes: (1) determine the cohort-specific technical error to use in the categorization of response rate; (2) determine if an individualized intensity prescription is superior to a standard approach in regards to VO 2 max and cardiometabolic risk factors; (3) investigate the time course changes throughout 12 weeks of CRF training between the two intervention groups; and (4) determine if non-responders can become responders if the exercise prescription is modified. The findings from this research will provide evidence on the effectiveness of individualized exercise prescription related to training responsiveness of VO 2 max and cardiometabolic risk factors compared to a standardized approach and further our understanding of individual exercise responses. If the individualized approach proposed is deemed effective, it may change the way exercise specialists prescribe exercise intensity to enhance training responsiveness. ClinicalTrials.gov, NCT02868710 . Registered on 15 August 2016.
Kanaley, Jill A; Goulopoulou, Styliani; Franklin, Ruth; Baynard, Tracy; Carhart, Robert L; Weinstock, Ruth S; Fernhall, Bo
2012-12-01
Women with type 2 diabetes (T2D) show greater rates of mortality due to ischemic heart disease than men with T2D. We aimed to examine cardiovascular and autonomic function responses to isometric handgrip (IHG) exercise between men and women with T2D, before and after an exercise training program. Hemodynamic responses were measured in 22 men and women with T2D during and following a 3-min IHG test, and before and after 16 wks of aerobic exercise training. Women had a smaller decrease in mean arterial pressure (MAP) and systolic blood pressure (BP) during recovery from IHG (ΔMAP(REC)) than men pre- and post-training (P<0.05). Men showed a greater reduction in diastolic BP during recovery from IHG (P<0.05), and exercise training improved this response in men but not in women (men, pre-training: -13.9±1.8, post-training: -20.5±5.3 mmHg vs. women, pre-training: -10.7±1.7, post-training: -4.1±4.9 mmHg; P<0.05). Men had a greater reduction in sympathetic modulation of vasomotor tone (P<0.05), as estimated by blood pressure variability, following IHG. This response was accentuated after training, while this training effect was not seen in women. Post-training ΔMAP(REC) was correlated with recovery of low frequency component of the BP spectrum (ΔLF(SBPrec), r=0.52, P<0.05). Differences in BP recovery immediately following IHG may be attributed to gender differences in cardiovascular autonomic modulation. An improvement in these responses occurs following aerobic exercise training in obese men, but not in obese women with T2D which reflects a better adaptive autonomic response to exercise training. Copyright © 2012 Elsevier Inc. All rights reserved.
Acute hormonal responses in elite junior weightlifters.
Kraemer, W J; Fry, A C; Warren, B J; Stone, M H; Fleck, S J; Kearney, J T; Conroy, B P; Maresh, C M; Weseman, C A; Triplett, N T
1992-02-01
To date, no published studies have demonstrated resistance exercise-induced increases in serum testosterone in adolescent males. Furthermore, few data are available on the effects of training experience and lifting performance on acute hormonal responses to weightlifting in young males. Twenty-eight junior elite male Olympic-style weightlifters (17.3 +/- 1.4 yrs) volunteered for the study. An acute weightlifting exercise protocol using moderate to high intensity loads and low volume, characteristic of many weightlifting training sessions, was examined. The exercise protocol was directed toward the training associated with the snatch lift weightlifting exercise. Blood samples were obtained from a superficial arm vein at 7 a.m. (for baseline measurements), and again at pre-exercise, 5 min post-, and 15 min post-exercise time points for determination of serum testosterone, cortisol, growth hormone, plasma beta-endorphin, and whole blood lactate. The exercise protocol elicited significant (p less than or equal to 0.05) increases in each of the hormones and whole blood lactate compared to pre-exercise measures. While not being significantly older, subsequent analysis revealed that subjects with greater than 2 years training experience exhibited significant exercise-induced increases in serum testosterone from pre-exercise to 5 min post-exercise (16.2 +/- 6.2 to 21.4 +/- 7.9 nmol.l-1), while those with less than or equal to 2 years training showed no significant serum testosterone differences. None of the other hormones or whole blood lactate appear to be influenced by training experience.(ABSTRACT TRUNCATED AT 250 WORDS)
Babu, Abraham Samuel; Padmakumar, Ramachandran; Maiya, Arun G; Mohapatra, Aswini Kumar; Kamath, R L
2016-04-01
Pulmonary arterial hypertension (PAH) causes profound functional limitations and poor quality of life. Yet, there is only a limited literature available on the role of exercise training. This paper systematically reviews the effects of exercise training on exercise capacity in PAH. A systematic search of databases (PubMed, CINAHL, CENTRAL, Web of Science and PEDRo) was undertaken for English language articles published between 1(st) January 1980 and 31(st) March 2015. Quality rating for all articles was done using the Downs and Black scoring system. Fifteen articles of good (n=4), moderate (n=6) and poor (n=5) quality were included in the review. Exercise interventions included aerobic, resistance, inspiratory muscle training or a combination, for 6-18 weeks. Improvements were seen in exercise capacity (six minute walk distance (6MWD) and peak VO2) by 17-96m and 1.1-2.1ml/Kg/min, functional class by one class and quality of life, with minimal adverse events. There is evidence to recommend the use of exercise training as an adjunct to medical treatment in PAH. More clinical trials and research are required to assess the effects of different types of exercise programs in patients with PAH, while focussing on strong exercise endpoints to quantify the improvements seen with exercise training. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle.
Kraniou, Giorgos N; Cameron-Smith, David; Hargreaves, Mark
2004-09-01
Six untrained, male subjects (23 +/- 1 years old, 84 +/- 5 kg, (O(2)peak)= 3.7 +/- 0.8 l min(-1)) exercised for 60 min at 75 +/- 1%(O(2)peak) on 7 consecutive days. Muscle samples were obtained before the start of cycle exercise training and 24 h after the first and seventh exercise sessions and analysed for citrate synthase activity, glycogen and glucose transporter 4 (GLUT-4) mRNA and protein expression. Exercise training increased (P < 0.05) citrate synthase by approximately 20% and muscle glycogen concentration by approximately 40%. GLUT-4 mRNA levels 24 h after the first and seventh exercise sessions were similar to those measured before the start of exercise training. In contrast, GLUT-4 protein expression was increased after 7 days of exercise training (12.4 +/- 1.5 versus 3.4 +/- 1.0 arbitray units (a.u.), P < 0.05) and although it tended to be higher 24 h after the first exercise session (6.0 +/- 3.0 versus 3.4 +/- 1.0 a.u.), this was not significantly different (P= 0.09). These results support the suggestion that the adaptive increase in skeletal muscle GLUT-4 protein expression with short-term exercise training arises from the repeated, transient increases in GLUT-gene transcription following each exercise bout leading to a gradual accumulation of GLUT-4 protein, despite GLUT-4 mRNA returning to basal levels between exercise stimuli.
Huynh, Virginia C; Fuhr, Desi P; Byers, Bradley W; Selzler, Anne-Marie; Moore, Linn E; Stickland, Michael K
2018-04-11
Some patients with chronic obstructive pulmonary disease (COPD) fail to achieve health benefits with pulmonary rehabilitation (PR). Exercise intensity and load represent stimulus for adaptation but it is unclear whether inappropriate exercise intensity and/or load are affected by severity of COPD, which may affect health benefits. The purpose was to determine whether COPD severity and/or the severity of pulmonary limitation to exercise (PLE) impacted exercising intensity or load and whether resultant intensity/load affected health outcomes derived from PR. Patients with COPD (n = 58, age = 67 ± 7 y, forced expiratory volume in the first second of expiration [FEV1] % predicted = 52 ± 21%) were recruited upon referral to PR. Primary health outcomes evaluated were 6-min walk distance and St George's Respiratory Questionnaire. Patients were stratified for disease severity using Global Initiative for Obstructive Lung Disease (GOLD) staging and PLE severity by change in inspiratory capacity during exercise. Exercise intensity and load were calculated from daily exercise records. Participants achieved comparable training duration and load regardless of GOLD severity. Patients with more severe PLE achieved greater training duration (more severe: 546 ± 143 min., less severe: 451 ± 109 min., P = .036), and relative training load (more severe: 2200.8 ± 595.3 kcal, less severe: 1648.3 ± 597.8 kcal, P = .007). Greater overall training load was associated with greater improvements in 6-min walk distance (r = 0.24, P = .035). No significant relationships were observed between PLE, GOLD severity, training parameters, and St George's Respiratory Questionnaire response. Improvements in exercise tolerance can be explained by achieving greater training loads, demonstrating the importance of appropriate training load to maximize health outcomes in PR.
Functional training improves club head speed and functional fitness in older golfers.
Thompson, Christian J; Cobb, Karen Myers; Blackwell, John
2007-02-01
Functional training programs have been used in a variety of rehabilitation settings with documented success. Based on that success, the concept of functional training has gained popularity in applied fitness settings to enhance sport performance. However, there has been little or no research studying the efficacy of functional training programs on the improvement of sport performance or functional fitness. Thus, it was the purpose of this study to determine the effect of a progressive functional training program on club head speed and functional fitness in older male golfers. Eighteen male golfers (age: 70.7 +/- 9.1 [SD] years) were randomly assigned to an exercise (N = 11) or control (N = 7) group. The exercise group participated in an 8-week progressive functional training program including flexibility exercises, core stability exercises, balance exercises, and resistance exercises. Pre- and postmeasurements included club head speed of a driver by radar (exercise and Control) and Fullerton Senior Fitness Test measurements (exercise only). One-way analysis of covariance was performed on club head speed measurements using pretest measurements as the covariate. Paired t-tests were performed to analyze Senior Fitness Test variables. After the intervention, maximal club head speed increased in the exercise group (127.3 +/- 13.4 to 133.6 +/- 14.2 km x hr(-1)) compared with the control group (134.5 +/- 14.6 to 133.3 +/- 11.2 km x hr(-1); p < 0.05). Additionally, improvements (p < 0.05) were detected for most Senior Fitness Test variables in the exercise group. In summary, this functional training program resulted in significant improvements in club head speed and several components of functional fitness. Future research should continue to examine the effect of functional training programs on sport performance and functional fitness in older adults.
Stanton, Robert; Rosenbaum, Simon; Lederman, Oscar; Happell, Brenda
2018-04-01
Accredited Exercise Physiologists (AEPs) are trained to deliver exercise and physical activity interventions for people with chronic and complex health conditions including those with mental illness. However, their views on exercise for mental illness, their exercise prescription practices, and need for further training are unknown. To examine the way in which Australian AEPs prescribe exercise for people with mental illness. Eighty-one AEPs (33.3 ± 10.4 years) completed an online version of the Exercise in Mental Illness Questionnaire. Findings are reported using descriptive statistics. AEPs report a high level of knowledge and confidence in prescribing exercise for people with mental illness. AEPs rate exercise to be at least of equal value to many established treatments for mental illness, and frequently prescribe exercise based on current best-practice principles. A need for additional training was identified. The response rate was low (2.4%) making generalisations from the findings difficult. Exercise prescription practices utilised by AEPs are consistent with current best-practice guidelines and there is frequent consultation with consumers to individualise exercise based on their preferences and available resources. Further training is deemed important.
Exercise Training and Energy Expenditure following Weight Loss.
Hunter, Gary R; Fisher, Gordon; Neumeier, William H; Carter, Stephen J; Plaisance, Eric P
2015-09-01
This study aims to determine the effects of aerobic or resistance training on activity-related energy expenditure (AEE; kcal·d(-1)) and physical activity index (activity-related time equivalent (ARTE)) following weight loss. It was hypothesized that weight loss without exercise training would be accompanied by decreases in AEE, ARTE, and nontraining physical activity energy expenditure (nonexercise activity thermogenesis (NEAT)) and that exercise training would prevent decreases in free-living energy expenditure. One hundred forty premenopausal women had an average weight loss of 25 lb during a diet (800 kcal·d(-1)) of furnished food. One group aerobically trained 3 times per week (40 min·d(-1)), another group resistance-trained 3 times per week (10 exercises/2 sets × 10 repetitions), and the third group did not exercise. Dual-energy x-ray absorptiometry was used to measure body composition, indirect calorimetry was used to measure resting energy expenditure (REE) and walking energy expenditure, and doubly labeled water was used to measure total energy expenditure (TEE). AEE, ARTE, and nontraining physical activity energy expenditure (NEAT) were calculated. TEE, REE, and NEAT all decreased following weight loss for the no-exercise group, but not for aerobic and resistance trainers. Only REE decreased in the two exercise groups. Resistance trainers increased ARTE. HR and oxygen uptake while walking on the flat and up a grade were consistently related to TEE, AEE, NEAT, and ARTE. Exercise training prevents a decrease in energy expenditure, including free-living energy expenditure separate from exercise training, following weight loss. Resistance training increases physical activity, whereas economy/ease of walking is associated with increased TEE, AEE, NEAT, and ARTE.
Sonnenschein, Kristina; Horváth, Tibor; Mueller, Maja; Markowski, Andrea; Siegmund, Tina; Jacob, Christian; Drexler, Helmut; Landmesser, Ulf
2011-06-01
Endothelial dysfunction and injury are considered to contribute considerably to the development and progression of atherosclerosis. It has been suggested that intense exercise training can increase the number and angiogenic properties of early endothelial progenitor cells (EPCs). However, whether exercise training stimulates the capacity of early EPCs to promote repair of endothelial damage and potential underlying mechanisms remain to be determined. The present study was designed to evaluate the effects of moderate exercise training on in vivo endothelial repair capacity of early EPCs, and their nitric oxide and superoxide production as characterized by electron spin resonance spectroscopy analysis in subjects with metabolic syndrome. Twenty-four subjects with metabolic syndrome were randomized to an 8 weeks exercise training or a control group. Superoxide production and nitric oxide (NO) availability of early EPCs were characterized by using electron spin resonance (ESR) spectroscopy analysis. In vivo endothelial repair capacity of EPCs was examined by transplantation into nude mice with defined carotid endothelial injury. Endothelium-dependent, flow-mediated vasodilation was analysed using high-resolution ultrasound. Importantly, exercise training resulted in a substantially improved in vivo endothelial repair capacity of early EPCs (24.0 vs 12.7%; p < 0.05) and improved endothelium-dependent vasodilation. Nitric oxide production of EPCs was substantially increased after exercise training, but not in the control group. Moreover, exercise training reduced superoxide production of EPCs, which was not observed in the control group. The present study suggests for the first time that moderate exercise training increases nitric oxide production of early endothelial progenitor cells and reduces their superoxide production. Importantly, this is associated with a marked beneficial effect on the in vivo endothelial repair capacity of early EPCs in subjects with metabolic syndrome.
USDA-ARS?s Scientific Manuscript database
The Training Interventions and Genetics of Exercise Response (TIGER) study is an exercise program designed to introduce sedentary college students to regular physical activity and to identify genetic factors that influence response to exercise. A multiracial/ethnic cohort (N = 1,567; 39% male), age ...
Rogan, Slavko
2015-01-01
Background: High intensity intermittent aerobic exercise is an elementary endurance training exercise to build soccer endurance. Many studies exist with professional soccer players. But limited research has been conducted with amateur soccer players. Objectives: The aim of this study was to compare and assess the effects of the shuttle-run method and the Hoff-track method on the ability to recover in amateur soccer players within three weeks. Patients and Methods: Two amateur soccer teams were randomly assigned to shuttle-run group (n = 24; SRG) (SRG: shuttle-run group) or Hoff-track group (n = 18; HTG) (HTG: hoff-track group). They performed 2 times/week over three weeks their program. SRG performed a 20 m high speed shuttle-run until exhaustion and HTG covered at their highest speed level an obstacle track. Before and after training the yo-yo intermittent recovery test level 2 (YYIRTL2) was conducted. Results: Significant differences were observed within (P < 0.05) and between the groups (P = 0.06; ES = 0.50) in distance covering during YYIRTL2. Conclusions: Both training methods seem to improve the ability to recover in amateur soccer players within a short time period during the competition season. PMID:26448831
Zielinski, Mark R; Davis, J Mark; Fadel, James R; Youngstedt, Shawn D
2013-08-01
Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (∼4h loss/day) vs. ad libitum sleep] × 2 [exercise (1h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. Published by Elsevier B.V.
Cadore, Eduardo Lusa; Rodríguez-Mañas, Leocadio; Sinclair, Alan; Izquierdo, Mikel
2013-04-01
The aim of this review was to recommend training strategies that improve the functional capacity in physically frail older adults based on scientific literature, focusing specially in supervised exercise programs that improved muscle strength, fall risk, balance, and gait ability. Scielo, Science Citation Index, MEDLINE, Scopus, Sport Discus, and ScienceDirect databases were searched from 1990 to 2012. Studies must have mentioned the effects of exercise training on at least one of the following four parameters: Incidence of falls, gait, balance, and lower-body strength. Twenty studies that investigated the effects of multi-component exercise training (10), resistance training (6), endurance training (1), and balance training (3) were included in the present revision. Ten trials investigated the effects of exercise on the incidence of falls in elderly with physical frailty. Seven of them have found a fewer falls incidence after physical training when compared with the control group. Eleven trials investigated the effects of exercise intervention on the gait ability. Six of them showed enhancements in the gait ability. Ten trials investigated the effects of exercise intervention on the balance performance and seven of them demonstrated enhanced balance. Thirteen trials investigated the effects of exercise intervention on the muscle strength and nine of them showed increases in the muscle strength. The multi-component exercise intervention composed by strength, endurance and balance training seems to be the best strategy to improve rate of falls, gait ability, balance, and strength performance in physically frail older adults.
Cadore, Eduardo Lusa; Rodríguez-Mañas, Leocadio; Sinclair, Alan
2013-01-01
Abstract The aim of this review was to recommend training strategies that improve the functional capacity in physically frail older adults based on scientific literature, focusing specially in supervised exercise programs that improved muscle strength, fall risk, balance, and gait ability. Scielo, Science Citation Index, MEDLINE, Scopus, Sport Discus, and ScienceDirect databases were searched from 1990 to 2012. Studies must have mentioned the effects of exercise training on at least one of the following four parameters: Incidence of falls, gait, balance, and lower-body strength. Twenty studies that investigated the effects of multi-component exercise training (10), resistance training (6), endurance training (1), and balance training (3) were included in the present revision. Ten trials investigated the effects of exercise on the incidence of falls in elderly with physical frailty. Seven of them have found a fewer falls incidence after physical training when compared with the control group. Eleven trials investigated the effects of exercise intervention on the gait ability. Six of them showed enhancements in the gait ability. Ten trials investigated the effects of exercise intervention on the balance performance and seven of them demonstrated enhanced balance. Thirteen trials investigated the effects of exercise intervention on the muscle strength and nine of them showed increases in the muscle strength. The multi-component exercise intervention composed by strength, endurance and balance training seems to be the best strategy to improve rate of falls, gait ability, balance, and strength performance in physically frail older adults. PMID:23327448
Metastability in plyometric training on unstable surfaces: a pilot study
2014-01-01
Background In the past, plyometric training (PT) has been predominantly performed on stable surfaces. The purpose of this pilot study was to examine effects of a 7-week lower body PT on stable vs. unstable surfaces. This type of exercise condition may be denoted as metastable equilibrium. Methods Thirty-three physically active male sport science students (age: 24.1 ± 3.8 years) were randomly assigned to a PT group (n = 13) exercising on stable (STAB) and a PT group (n = 20) on unstable surfaces (INST). Both groups trained countermovement jumps, drop jumps, and practiced a hurdle jump course. In addition, high bar squats were performed. Physical fitness tests on stable surfaces (hexagonal obstacle test, countermovement jump, hurdle drop jump, left-right hop, dynamic and static balance tests, and leg extension strength) were used to examine the training effects. Results Significant main effects of time (ANOVA) were found for the countermovement jump, hurdle drop jump, hexagonal test, dynamic balance, and leg extension strength. A significant interaction of time and training mode was detected for the countermovement jump in favor of the INST group. No significant improvements were evident for either group in the left-right hop and in the static balance test. Conclusions These results show that lower body PT on unstable surfaces is a safe and efficient way to improve physical performance on stable surfaces. PMID:25089202
Exercise Training During +Gz Acceleration
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.
1999-01-01
The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.
Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats.
Frantz, Eliete Dalla Corte; Medeiros, Renata Frauches; Giori, Isabele Gomes; Lima, Juliana Bittencourt Silveira; Bento-Bernardes, Thais; Gaique, Thaiane Gadioli; Fernandes-Santos, Caroline; Fernandes, Tiago; Oliveira, Edilamar Menezes; Vieira, Carla Paulo; Conte-Junior, Carlos Adam; Oliveira, Karen Jesus; Nobrega, Antonio Claudio Lucas
2017-09-01
What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l -1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day -1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and glycogen accumulation. Furthermore, exercise improved the response to the deleterious effects of HFr overload by normalizing the gluconeogenesis pathway and the protein levels of interleukin-6 and tumour necrosis factor-α. The HFr rats displayed increased hepatic ACE activity and protein expression and angiotensin II concentration, which were attenuated by exercise training. Exercise training restored the ACE2/angiotensin-(1-7)/Mas receptor axis. Exercise training may favour the counter-regulatory ACE2/angiotensin-(1-7)/Mas receptor axis over the classical RAS (ACE/angiotensin II/angiotensin II type 1 receptor axis), which could be responsible for the reduction of metabolic dysfunction and the prevention of non-alcoholic fatty liver disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Elevated central venous pressure: A consequence of exercise training-induced hypervolemia
NASA Technical Reports Server (NTRS)
Convertino, Victor A.; Mack, Gary W.; Nadel, Ethan R.
1990-01-01
Resting plasma volumes, and arterial and central venous pressures (CVP) were measured in 16 men before and after exercise training to determine if training-induced hypervolemia could be explained by a change in total vascular capacitance. In addition, resting levels of plasma vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (ALD), and norepinephrine (NE) were measured before and after training. The same measurements of vacular volume, pressures, and plasma hormones were measured in 8 subjects who did not undergo exercise and acted as controls. The exercise training program consisted of 10 weeks of controlled cycle exercise for 30 min/d, 4 d/wk at 75 to 80 percent of maximal oxygen uptake (VO2max). A training effect was verified by a 20 percent increase in VO2max, a resting bradycardia, and a 370 ml (9 percent) increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased. The percent change in blood volume from before to after training was linearly related to the percent change in CVP. As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was essentially unchanged following exercise training. Plasma AVP, ANP, ALD, and NE were unaltered. Results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance. This may represent a resetting of the pressure-volume stimulus-response relation for regulation of blood volume.
Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs.
Jankord, Ryan; Ganjam, Venkataseshu K; Turk, James R; Hamilton, Marc T; Laughlin, M Harold
2008-06-01
Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo-pituitary-adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16-20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals.
Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs
Jankord, Ryan; Ganjam, Venkataseshu K.; Turk, James R.; Hamilton, Marc T.; Laughlin, M. Harold
2009-01-01
Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo–pituitary–adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16–20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals. PMID:18461098
Alsara, Osama; Perez-Terzic, Carmen; Squires, Ray W; Dandamudi, Sanjay; Miranda, William R; Park, Soon J; Thomas, Randal J
2014-01-01
Because a limited number of patients receive heart transplantation, alternative therapies, such as left ventricular assist device (LVAD) therapy, have emerged. Published studies have shown that LVAD implantation, by itself, improves exercise tolerance to the point where it is comparable to those with mild heart failure. The improvement in exercise capacity is maximally achieved 12 weeks after LVAD therapy and can continue even after explantation of the device. This effect varies, depending on the type of LVAD and exercise training. The available data in the literature on safety and benefits of exercise training in patients after LVAD implantation are limited, but the data that are available suggest that training trends to be safe and have an impact on exercise capacity in LVAD patients. Although no studies were identified on the role of cardiac rehabilitation programs in the management of LVAD patients, it appears that cardiac rehabilitation programs offer an ideal setting for the provision of supervised exercise training in this patient group.
Preparing for Large-Force Exercises with Distributed Simulation: A Panel Presentation
2010-07-01
Preparing for Large Force Exercises with Distributed Simulation: A Panel Presentation Peter Crane, Winston Bennett, Michael France Air Force...used distributed simulation training to complement live-fly exercises to prepare for LFEs. In this panel presentation , the speakers will describe... presentations on how detailed analysis of training needs is necessary to structure simulator scenarios and how future training exercises could be made more
Lee, Annemarie L; Hill, Catherine J; Cecins, Nola; Jenkins, Sue; McDonald, Christine F; Burge, Angela T; Rautela, Linda; Stirling, Robert G; Thompson, Philip J; Holland, Anne E
2014-04-15
Exercise training is recommended for non-cystic fibrosis (CF) bronchiectasis, but the long-term effects are unclear. This randomised controlled trial aimed to determine the effects of exercise training and review of airway clearance therapy (ACT) on exercise capacity, health related quality of life (HRQOL) and the incidence of acute exacerbations in people with non-CF bronchiectasis. Participants were randomly allocated to 8 weeks of supervised exercise training and review of ACT, or control. Primary outcomes of exercise capacity and HRQOL (Chronic respiratory disease questionnaire) and secondary outcomes of cough-related QOL (Leicester cough questionnaire) and psychological symptoms (Hospital anxiety and depression scale) were measured at baseline, following completion of the intervention period and at 6 and 12 months follow up. Secondary outcomes of the exacerbation rate and time to first exacerbation were analysed over 12 months. Eighty-five participants (mean FEV1 74% predicted; median Modified Medical Research Council Dyspnoea grade of 1 (IQR [1-3]) were included. Exercise training increased the incremental shuttle walk distance (mean difference to control 62 m, 95% CI 24 to 101 m) and the 6-minute walking distance (mean difference to control 41 m, 95% CI 19 to 63 m), but these improvements were not sustained at 6 or 12 months. Exercise training reduced dyspnoea (p = 0.009) and fatigue (p = 0.01) but did not impact on cough-related QOL or mood. Exercise training reduced the frequency of acute exacerbations (median 1[IQR 1-3]) compared to the control group (2[1-3]) over 12 months follow up (p = 0.012), with a longer time to first exacerbation with exercise training of 8 months (95% CI 7 to 9 months) compared to the control group (6 months [95% CI 5 to 7 months], p = 0.047). Exercise training in bronchiectasis is associated with short term improvement in exercise capacity, dyspnoea and fatigue and fewer exacerbations over 12 months. ClinicalTrials.gov (NCT00885521).
Lee, Ya-Yun; Wu, Ching-Yi; Teng, Ching-Hung; Hsu, Wen-Chuin; Chang, Ku-Chou; Chen, Poyu
2016-10-28
Nonpharmacologic interventions, such as cognitive training or physical exercise, are effective in improving cognitive functions for older adults with mild cognitive impairment (MCI). Some researchers have proposed that combining physical exercise with cognitive training may augment the benefits of cognition. However, strong evidence is lacking regarding whether a combined therapy is superior to a single type of training for older adults with MCI. Moreover, which combination approach - combining physical exercise with cognitive training sequentially or simultaneously - is more advantageous for cognitive improvement is not yet clear. This proposed study is designed to clarify these questions. This study is a single-blinded, multicenter, randomized controlled trial. Eighty individuals with MCI will be recruited and randomly assigned to cognitive training (COG), physical exercise training (PE), sequential training (SEQ), and dual-task training (DUAL) groups. The intervention programs will be 90 min/day, 2-3 days/week, for a total of 36 training sessions. The participants in the SEQ group will first perform 45 min of physical exercise followed by 45 min of cognitive training, whereas those in the DUAL group will perform physical exercise and cognitive training simultaneously. Participants will be assessed at baseline, after the intervention, and at 6-month follow-up. The primary cognitive outcome tests will include the Montreal Cognitive Assessment and the color-naming Stroop test. Other outcomes will include assessments that evaluate the cognitive, physical, and daily functions of older adults with MCI. The results of this proposed study will provide important information regarding the feasibility and intervention effects of combining physical exercise and cognitive training for older individuals with MCI. ClinicalTrials.gov Identifier: NCT02512627 , registered on 20 July 2015.
Cell-derived microparticles promote coagulation after moderate exercise.
Sossdorf, Maik; Otto, Gordon P; Claus, Ralf A; Gabriel, Holger H W; Lösche, Wolfgang
2011-07-01
Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.
Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D
2015-01-01
Background About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive–physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Methods Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Results Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (−77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Conclusion Long-term multicomponent cognitive–physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning. PMID:26604719
Silva, Bruna S de Alencar; Lira, Fábio S; Rossi, Fabrício E; Ramos, Dionei; Uzeloto, Juliana S; Freire, Ana P C F; de Lima, Fabiano F; Gobbo, Luís A; Ramos, Ercy M C
2018-01-01
Background: Low-grade inflammation can be present in chronic obstructive pulmonary disease (COPD), which may affect the regulation of muscle protein and body metabolism. Regular exercise show improvement in muscle strength and dyspnea in patients with COPD, however, the response to training on inflammatory and metabolic disorders is unclear. In this study, we compared the effects of resistance training using weight machines and elastic resistance (bands and tubes) on the inflammatory and metabolic responses in patients with COPD. Methods: Patients with COPD were randomized into three groups: elastic band group (EBG), elastic tube group (ETG), and weight machines equipment group (MG). EBG and ETG were analyzed together [elastic group (EG)]. The participants were evaluated for pulmonary function (spirometry), peripheral muscle strength (digital dynamometry), IL-6, TNF-α, IL-10, IL-15 (Immunoassay), glucose, triacylglycerol, total cholesterol, HDL-c, and albumin levels (Enzymatic colorimetric). Blood samples were collected to assess the acute and chronic exercise responses after 12 weeks of training protocol. Results: The patient's mean age was 71.53 ± 6.97 years old. FEV 1 (percent predicted) was 50.69 ± 16.67 and 45.40 ± 15.15% for EG and MG, respectively ( p = 0.28). All groups increased muscle strength ( p < 0.05) with no differences between groups. The acute response to exercise after 12 weeks of training showed improvement of inflammation when compared to baseline. Regarding the chronic effects, it was observed a decrease of all cytokines, except IL-10 ( p < 0.05). After 12 weeks of training, the analysis of the metabolic profile presented a reduction in glucose concentration ( p < 0.01), with no differences between groups ( p = 0.30) and a decrease in triacylglycerol for the EG ( p > 0.01). Conclusions: Training with elastic resistances or conventional weight machines showed improvement of inflammation response after 12 weeks of training. Chronically, both training groups showed anti-inflammatory effects, with the EG showing a strong tendency to improve IL-10/TNF-α ratio and IL-10 levels. RBR-6V9SJJ.
Irisin in response to acute and chronic whole-body vibration exercise in humans.
Huh, Joo Young; Mougios, Vassilis; Skraparlis, Athanasios; Kabasakalis, Athanasios; Mantzoros, Christos S
2014-07-01
Irisin is a recently identified myokine, suggested to mediate the beneficial effects of exercise by inducing browning of white adipocytes and thus increasing energy expenditure. In humans, the regulation of irisin by exercise is not completely understood. We investigated the effect of acute and chronic whole-body vibration exercise, a moderate-intensity exercise that resembles shivering, on circulating irisin levels in young healthy subjects. Healthy untrained females participated in a 6-week program of whole-body vibration exercise training. Blood was drawn before and immediately after an acute bout of exercise at baseline (week 0) and after 6 weeks of training. The resting irisin levels were not different at baseline (week 0) and after 6 weeks of training. At both 0 and 6 weeks of training, an acute bout of vibration exercise significantly elevated circulating irisin levels by 9.5% and 18.1%, respectively (p=0.05 for the percent change of irisin levels). Acute bouts of whole-body vibration exercise are effective in increasing circulating irisin levels but chronic training does not change levels of baseline irisin levels in humans. Copyright © 2014 Elsevier Inc. All rights reserved.
Combined exercise for people with type 2 diabetes mellitus: a systematic review.
Oliveira, César; Simões, Mário; Carvalho, Joana; Ribeiro, José
2012-11-01
Type 2 diabetes mellitus has emerged as a major non-communicable chronic diseases in many countries. The importance of exercise in the prevention and management of this disease is evident. This paper briefly reviews the effects of combining aerobic and resistance exercises on glycemic control, and details the training and characteristics of various interventions in adults with type 2 diabetes mellitus. Literature searches were performed using electronic databases between the 1st of January 1950 and the 15th of September 2011. Of the 403 articles retrieved, 28 studies met our inclusion criteria. Combined exercise protocols seem to improve glycemic control to a greater extent than isolated forms of exercise. Nevertheless, length, duration, intensity, mode, number of exercises, sets and repetitions varied markedly among studies. Supervised training sessions, recommended structured exercises, and splitting aerobic and resistance training in separate sessions may be relevant for best results. Future studies should analyze the effects of different aerobic and resistance training modes, different training and progression methods, and whether one type of exercise is optimal, as these issues are likely to convey greater knowledge on type 2 diabetes mellitus management through combined exercise. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Martins, C C; Bagatini, M D; Cardoso, A M; Zanini, D; Abdalla, F H; Baldissarelli, J; Dalenogare, D P; Dos Santos, D L; Schetinger, M R C; Morsch, V M M
2016-11-01
In this study, we investigated the cardiovascular risk factors as well as ectonucleotidase activities in lymphocytes of metabolic syndrome (MetS) patients before and after an exercise intervention. 20 MetS patients, who performed regular concurrent exercise training for 30 weeks, 3 times/week, were studied. Anthropometric, biochemical, inflammatory and hepatic parameters and hydrolysis of adenine nucleotides and nucleoside in lymphocytes were collected from patients before and after 15 and 30 weeks of the exercise intervention as well as from participants of the control group. An increase in the hydrolysis of ATP and ADP, and a decrease in adenosine deamination in lymphocytes of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training after 30 weeks of intervention. Additionally, exercise training reduced the inflammatory and hepatic markers to baseline levels after 30 weeks of exercise. Our results clearly indicated alteration in ectonucleotidase enzymes in lymphocytes in the MetS, whereas regular exercise training had a protective effect on the enzymatic alterations and on inflammatory and hepatic parameters, especially if it is performed regularly and for a long period. © Georg Thieme Verlag KG Stuttgart · New York.
Nutritional strategies to support concurrent training.
Perez-Schindler, Joaquin; Hamilton, D Lee; Moore, Daniel R; Baar, Keith; Philp, Andrew
2015-01-01
Concurrent training (the combination of endurance exercise to resistance training) is a common practice for athletes looking to maximise strength and endurance. Over 20 years ago, it was first observed that performing endurance exercise after resistance exercise could have detrimental effects on strength gains. At the cellular level, specific protein candidates have been suggested to mediate this training interference; however, at present, the physiological reason(s) behind the concurrent training effect remain largely unknown. Even less is known regarding the optimal nutritional strategies to support concurrent training and whether unique nutritional approaches are needed to support endurance and resistance exercise during concurrent training approaches. In this review, we will discuss the importance of protein supplementation for both endurance and resistance training adaptation and highlight additional nutritional strategies that may support concurrent training. Finally, we will attempt to synergise current understanding of the interaction between physiological responses and nutritional approaches into practical recommendations for concurrent training.
Nagamatsu, Lindsay S.; Weinstein, Andrea M.; Erickson, Kirk I.; Fanning, Jason; Awick, Elizabeth A.; Kramer, Arthur F.; McAuley, Edward
2015-01-01
Background Identifying effective intervention strategies to combat age-related decline in mobility and brain health is a priority. The primary aim of our study was to examine whether 12 months of aerobic training (AT) versus balance and toning (BAT) exercises moderates the relationship between change in mobility and change in basal ganglia volume in older adults. Design Secondary analysis of a randomized controlled trial. Setting Champaign-Urbana, Illinois. Participants Community-dwelling older adults (N = 101; mean age = 66.41 years) Intervention 12-month exercise trial with two groups: AT and BAT. Measurements Mobility was assessed by the Timed Up and Go (TUG) test. Basal ganglia (putamen, caudate nucleus, pallidum) was segmented from T1-weighted MR images using FIRST. Measurements were obtained at baseline and trial completion. Hierarchical multiple regression was conducted to examine whether exercise mode moderates the relationship between change in mobility and change in basal ganglia volume over 12 months. Age, sex, and education were included as covariates. Results Exercise mode significantly moderated the relationship between change in mobility and change in left putamen volume. Specifically, for the AT group, volume of the left putamen did not change, regardless of change in mobility. Similarly, in the BAT group, those who improved their mobility most over 12 months had no change in left putamen volume; however, those who declined in mobility levels significantly decreased in left putamen volume. Conclusion Our primary finding that older adults who engage in 12 months of balance and tone training and improve mobility exhibit maintenance of brain volume in a key region responsible for motor control provides compelling evidence that such exercises can contribute to the promotion of functional independence and healthy aging. PMID:26782858
Brach, Jennifer S.; Van Swearingen, Jessie M.; Perera, Subashan; Wert, David M.; Studenski, Stephanie
2013-01-01
Background Current exercise recommendationsfocus on endurance and strength, but rarely incorporate principles of motor learning. Motor learning exerciseis designed to address neurological aspects of movement. Motor learning exercise has not been evaluated in older adults with subclinical gait dysfunction. Objectives Tocompare motor learning versus standard exercise on measures of mobility and perceived function and disability. Design Single-blind randomized trial. Setting University research center. Participants Olderadults (n=40), mean age 77.1±6.0 years), who had normal walking speed (≥1.0 m/s) and impaired motor skill (Figure of 8 walk time > 8 s). Interventions The motor learning program (ML) incorporated goal-oriented stepping and walking to promote timing and coordination within the phases of the gait cycle. The standard program (S) employed endurance training by treadmill walking.Both included strength training and were offered twice weekly for one hour for 12 weeks. Measurements Primary outcomes included mobility performance (gait efficiency, motor skill in walking, gait speed, and walking endurance)and secondary outcomes included perceived function and disability (Late Life Function and Disability Instrument). Results 38 of 40 participants completed the trial (ML, n=18; S, n=20). ML improved more than Sin gait speed (0.13 vs. 0.05 m/s, p=0.008) and motor skill (−2.2 vs. −0.89 s, p<0.0001). Both groups improved in walking endurance (28.3 and 22.9m, but did not differ significantly p=0.14). Changes in gait efficiency and perceived function and disability were not different between the groups (p>0.10). Conclusion In older adults with subclinical gait dysfunction, motor learning exercise improved some parameters of mobility performance more than standard exercise. PMID:24219189
Stephens, Natalie A; Sparks, Lauren M
2015-01-01
Exercise benefits most, but not all, individuals with type 2 diabetes (T2D). The beneficial effects are well studied, but why some individuals do not respond favorably to exercise training is largely unexplored. It is critical to treatment and prevention strategies to identify individuals with T2D that have a blunted metabolic response to exercise and investigate the underlying mechanisms that might predict this "programmed response to fail." We carried out a systematic review of classic and contemporary primary reports on clinical human and animal exercise studies. We also referenced unpublished data from our previous studies, as well those of collaborators. Genetic and epigenetic components and their associations with the exercise response were also examined. As evidence of the exercise resistance premise, we and others found that supervised exercise training results in substantial response variations in glucose homeostasis, insulin sensitivity, and muscle mitochondrial density, wherein approximately 15-20% of individuals fail to improve their metabolic health with exercise. Classic genetic studies have shown that the extent of the exercise training response is largely heritable, whereas new evidence demonstrates that DNA hypomethylation is linked to the exercise response in skeletal muscle. DNA sequence variation and/or epigenetic modifications may, therefore, dictate the exercise training response. Studies dedicated to uncovering the mechanisms of exercise resistance will advance the field of exercise and T2D, allowing interventions to be targeted to those most likely to benefit and identify novel approaches to treat those who do not experience metabolic improvements after exercise training.
Xie, Wei; Parker, Janet L.; Heaps, Cristine L.
2012-01-01
Objective Test the hypothesis that exercise training increases the contribution of large-conductance, Ca2+-dependent K+ (BKCa) channels to endothelium-mediated dilation in coronary arterioles from collateral-dependent myocardial regions of chronically occluded pig hearts and may function downstream of H2O2. Methods An ameroid constrictor was placed around the proximal left circumflex coronary artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomly assigned to sedentary or exercise training (treadmill; 14 wk) regimens. Results Exercise training significantly enhanced bradykinin-mediated dilation in collateral-dependent arterioles (~125 μm diameter) compared with sedentary pigs. The BKCa-channel blocker, iberiotoxin alone or in combination with the H2O2 scavenger, polyethylene glycol catalase, reversed exercise training-enhanced dilation in collateral-dependent arterioles. Iberiotoxin-sensitive whole-cell K+ currents (i.e., BKCa-channel currents) were not different between smooth muscle cells of nonoccluded and collateral-dependent arterioles of sedentary and exercise trained groups. Conclusions These data provide evidence that BKCa-channel activity contributes to exercise training-enhanced endothelium-dependent dilation in collateral-dependent coronary arterioles despite no change in smooth muscle BKCa-channel current. Taken together, our findings suggest that a component of the bradykinin signaling pathway, which stimulates BKCa channels, is enhanced by exercise training in collateral-dependent arterioles and suggest a potential role for H2O2 as the mediator. PMID:23002811
Effect of training and sudden detraining on the patellar tendon and its enthesis in rats
2011-01-01
Background Different conditions may alter tendon characteristics. Clinical evidence suggests that tendon injuries are more frequent in athletes that change type, intensity and duration of training. Aim of the study was the assessment of training and especially detraining on the patellar tendon (PT) and its enthesis. Methods 27 male adult Sprague-Dawley rats were divided into 3 groups: 20 rats were trained on a treadmill for 10 weeks. Of these, 10 rats were euthanized immediately after training (trained group), and 10 were caged without exercise for 4 weeks before being euthanized (de-trained group). The remaining 7 rats were used as controls (untrained rats). PT insertion, structure (collagen fiber organization and proteoglycan, PG, content), PT thickness, enthesis area, and subchondral bone volume at the enthesis were measured by histomorphometry and microtomography. Results Both PG content and collagen fiber organization were significantly lower in untrained and detrained animals than in trained ones (p < 0.05 and p < 0.0001). In the detrained group, fiber organization and PG content were worse than that of the untrained groups and the untrained group showed a significantly higher score than the detrained group (p < 0.05). In the trained group, the PT was significantly thicker than in untrained group (p < 0.05). No significant differences in the enthesis area and subchondral bone volume among the three groups were seen. Conclusions Moderate exercise exerts a protective effect on the PT structure while sudden discontinuation of physical activity has a negative effect on tendons. The present results suggest that after a period of sudden de-training (such as after an injury) physical activity should be restarted with caution and with appropriate rehabilitation programs. PMID:21247475
Aerobic Exercise Training and Arterial Changes in African-Americans versus Caucasians
Ranadive, Sushant M.; Yan, Huimin; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo
2015-01-01
African-Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared to their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. Purpose The purpose of this study was to examine the effect of 8 weeks of moderate-high intensity aerobic training in young healthy sedentary AA and CA men and women. Methods Sixty-four healthy volunteers (men = 28, women = 36) with mean age = 24 underwent measures of arterial structure, function and blood pressure variables at baseline, post-4 week control period and 8 weeks post-training. Results There was a significant increase in VO2peak amongst both groups post exercise training. Brachial systolic blood pressure decreased significantly following control period in both groups but not following exercise training. Carotid pulse pressure decreased significantly in both groups post exercise training as compared to baseline. There was no change in any of the other blood pressure variables. AAs had a higher intima-media thickness at baseline and post-control period, but significantly decreased following exercise training compared to CAs. AAs had significantly lower baseline forearm blood flow and RH compared to CAs, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (cPWV) and wave-reflection (AIx) between the two groups at any time point. Conclusions This is the first study to show that, 8 weeks of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AAs, making it comparable to the CAs and with minimal effects on blood pressure variables. PMID:26225767
Aerobic Exercise Training and Arterial Changes in African Americans versus Caucasians.
Ranadive, Sushant M; Yan, Huimin; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, B O
2016-01-01
African Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared with their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. The purpose of this study was to examine the effect of 8 wk of moderate- to high-intensity aerobic training in young healthy sedentary AA and CA men and women. Sixty-four healthy volunteers (men, 28; women, 36) with mean age 24 yr underwent measures of arterial structure, function, and blood pressure (BP) variables at baseline, after the 4-wk control period, and 8 wk after training. There was a significant increase in VO2peak among both groups after exercise training. Brachial systolic BP decreased significantly after the control period in both groups but not after exercise training. Carotid pulse pressure decreased significantly in both groups after exercise training as compared with that in baseline. There was no change in any of the other BP variables. AA had higher intima-media thickness at baseline and after the control period but it significantly decreased after exercise training compared with that of CA. AA had significantly lower baseline forearm blood flow and reactive hyperemia compared with those of CA, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (central pulse wave velocity) and wave-reflection (augmentation index) between the two groups at any time point. This is the first study to show that 8 wk of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AA, making it comparable with the CA and with minimal effects on BP variables.
The use of instability to train the core musculature.
Behm, David G; Drinkwater, Eric J; Willardson, Jeffrey M; Cowley, Patrick M
2010-02-01
Training of the trunk or core muscles for enhanced health, rehabilitation, and athletic performance has received renewed emphasis. Instability resistance exercises have become a popular means of training the core and improving balance. Whether instability resistance training is as, more, or less effective than traditional ground-based resistance training is not fully resolved. The purpose of this review is to address the effectiveness of instability resistance training for athletic, nonathletic, and rehabilitation conditioning. The anatomical core is defined as the axial skeleton and all soft tissues with a proximal attachment on the axial skeleton. Spinal stability is an interaction of passive and active muscle and neural subsystems. Training programs must prepare athletes for a wide variety of postures and external forces, and should include exercises with a destabilizing component. While unstable devices have been shown to be effective in decreasing the incidence of low back pain and increasing the sensory efficiency of soft tissues, they are not recommended as the primary exercises for hypertrophy, absolute strength, or power, especially in trained athletes. For athletes, ground-based free-weight exercises with moderate levels of instability should form the foundation of exercises to train the core musculature. Instability resistance exercises can play an important role in periodization and rehabilitation, and as alternative exercises for the recreationally active individual with less interest or access to ground-based free-weight exercises. Based on the relatively high proportion of type I fibers, the core musculature might respond well to multiple sets with high repetitions (e.g., >15 per set); however, a particular sport may necessitate fewer repetitions.
Rivero, José-Luis L; Ruz, Antonio; Martí-Korff, Silvia; Estepa, José-Carlos; Aguilera-Tejero, Escolástico; Werkman, Jutta; Sobotta, Mathias; Lindner, Arno
2007-05-01
This study examined the effects of the intensity and duration of exercise on the nature and magnitude of training adaptations in muscle of adolescent (2-3 yr old) racehorses. Six thoroughbreds that had been pretrained for 2 mo performed six consecutive conditioning programs of varying lactate-guided intensities [velocities eliciting blood lactate concentrations of 2.5 mmol/l (v2.5) and 4 mmol/l (v4), respectively] and durations (5, 15, 25 min). Pre- and posttraining gluteus muscle biopsies were analyzed for myosin heavy chain content, fiber-type composition, fiber size, capillarization, and fiber histochemical oxidative and glycolytic capabilities. Although training adaptations were similar in nature, they varied greatly in magnitude among the different training protocols. Overall, the use of v4 as the exercise intensity for 25 min elicited the most consistent training adaptations in muscle, whereas the minimal training stimulus that evoked any significant change was identified with exercises of 15 min at v2.5. Within this range, muscular adaptations showed significant trends to be proportional to the exercise load of specific training programs. Taken together, these data suggest that muscular adaptations to training in horses occur on a continuum that is based on the exercise intensity and duration of training. The practical implications of this study are that exercises for 15 to 25 min/day at velocities between v2.5 and v4 can improve in the short term (3 wk) the muscular stamina in thoroughbreds. However, exercises of 5-15 min at v4 are necessary to enhance muscular features related to strength (hypertrophy).
Level of Interleukins IL-6 and IL-15 in Blood Plasma of Mice after Forced Swimming Test.
Kapilevich, L V; Kironenko, T A; Zakharova, A N; Kabachkova, A V; Orlov, S N
2017-05-01
We measured the concentrations of IL-6 and IL-15 in blood plasma of mice at different terms after forced swimming, taking into account exercise intensity and preliminary training. It was shown that training was an important factor affecting blood plasma level of IL both at rest and after single forced swimming: in trained animals, the concentration of both myokines increased immediately after swimming, while in untrained animals, this increase was observed only after 5 h. Changes in cytokine production against the background of training can be associated with various factors, including neuroendocrine mechanisms, stress, modification of intracellular signaling, as well as reorganization of transcriptional mechanisms in muscle fibers. The most important factor is shift in the ratio of monovalent cations (sodium and potassium) in the cytoplasm.
Motl, Robert W; Sandroff, Brian M; DeLuca, John
2016-07-01
The current review develops a rationale and framework for examining the independent and combined effects of exercise training and cognitive rehabilitation on walking and cognitive functions in persons with multiple sclerosis (MS). To do so, we first review evidence for improvements in walking and cognitive outcomes with exercise training and cognitive rehabilitation in MS. We then review evidence regarding cognitive-motor coupling and possible cross-modality transfer effects of exercise training and cognitive rehabilitation. We lastly present a macro-level framework for considering mechanisms that might explain improvements in walking and cognitive dysfunction with exercise and cognitive rehabilitation individually and combined in MS. We conclude that researchers should consider examining the effects of exercise training and cognitive rehabilitation on walking, cognition, and cognitive-motor interactions in MS and the possible physiological and central mechanisms for improving these functions. © The Author(s) 2015.
Pompano, Laura M; Haas, Jere D
2017-12-01
Background: Despite its known detrimental effects, iron deficiency remains the most common micronutrient deficiency in the world. Many interventions that aim to improve iron status involve physically active populations. Intense aerobic exercise training negatively affects iron status; however, the impact of regular moderate aerobic exercise on the effectiveness of iron supplementation remains unclear. Objective: This study aimed to determine whether aerobic training modifies the assessment of the effectiveness of iron supplementation in improving conventional iron status measures. Design: Seventy-two iron-depleted, nonanemic Chinese women [serum ferritin (sFer) <25 μg/L and hemoglobin >110 g/L] were included in an 8-wk, partially blinded, randomized controlled trial with a 2 × 2 factorial design including iron supplements (42 mg elemental Fe/d) or placebo and aerobic training (five 25-min sessions/wk at 75-85% of maximum heart rate) or no training. Linear mixed models were used to evaluate the relation between supplement type, training, and changes in iron status over time, measured by sFer, hemoglobin, soluble transferrin receptor (sTfR), and estimated total body iron. Results: After treatment, both the iron-supplemented trained and untrained groups showed significantly improved sFer, sTfR, and body iron values compared with either of the placebo groups. Similarly, trained participants had significantly higher aerobic fitness measures than untrained participants. Training modified the sFer response to supplementation (training by supplement interaction, P = 0.07), with the iron-supplemented trained group having significantly lower sFer than the iron-supplemented untrained group at week 8 (mean ± SD: 31.8 ± 13.5 and 47.6 ± 15.7 μg/L, respectively; P = 0.042), whereas there was no significant difference between the placebo trained and untrained groups (21.3 ± 12.2 and 20.3 ± 7.0 μg/L, respectively; P = 1.00). Conclusions: Regular aerobic training reduces the apparent effectiveness of iron supplementation in improving sFer and calls into question whether conventional measures of iron status accurately reflect iron metabolism in physically active, nonanemic women. This trial was registered at clinicaltrials.gov as NCT03002090. © 2017 American Society for Nutrition.
China’s Foreign Conventional Arms Acquisitions: Background and Analysis
2001-11-06
such as the quality, education, and training of PLA Navy personnel, the realism and sophistication of PLA naval exercises, and the capabilities of...accordingly.... In particular, Prof. Seleznyov indicated that all the cinematic [kinematic] characteristics of the 3M-80 have been optimised for the specific...regards detection range, processing speed and reaction times (I judged it indelicate to enquire about how these data were obtained), as well as cinematic
Astronaut William Pogue using Skylab Viewfinder Tracking System experiment
1973-09-10
S73-32854 (10 Sept. 1973) --- Astronaut William R. Pogue, Skylab 4 pilot, uses the Skylab Viewfinder Tracking System (S191 experiment) during a training exercise in the Multiple Docking Adapter (MDA) one-G trainer at Johnson Space Center. In the background is astronaut Gerald P. Carr, seated at the control panel for the Earth Resources Experiments Package (EREP). Carr is Skylab 4 crew commander, and Gibson is science pilot. Photo credit: NASA
Effects of regular aerobic exercise on visual perceptual learning.
Connell, Charlotte J W; Thompson, Benjamin; Green, Hayden; Sullivan, Rachel K; Gant, Nicholas
2017-12-02
This study investigated the influence of five days of moderate intensity aerobic exercise on the acquisition and consolidation of visual perceptual learning using a motion direction discrimination (MDD) task. The timing of exercise relative to learning was manipulated by administering exercise either before or after perceptual training. Within a matched-subjects design, twenty-seven healthy participants (n = 9 per group) completed five consecutive days of perceptual training on a MDD task under one of three interventions: no exercise, exercise before the MDD task, or exercise after the MDD task. MDD task accuracy improved in all groups over the five-day period, but there was a trend for impaired learning when exercise was performed before visual perceptual training. MDD task accuracy (mean ± SD) increased in exercise before by 4.5 ± 6.5%; exercise after by 11.8 ± 6.4%; and no exercise by 11.3 ± 7.2%. All intervention groups displayed similar MDD threshold reductions for the trained and untrained motion axes after training. These findings suggest that moderate daily exercise does not enhance the rate of visual perceptual learning for an MDD task or the transfer of learning to an untrained motion axis. Furthermore, exercise performed immediately prior to a visual perceptual learning task may impair learning. Further research with larger groups is required in order to better understand these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physiological adaptations to interval training and the role of exercise intensity.
MacInnis, Martin J; Gibala, Martin J
2017-05-01
Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Physiological adaptations to interval training and the role of exercise intensity
MacInnis, Martin J.
2016-01-01
Abstract Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high‐intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training (SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate‐intensity continuous training (MICT) such as increased aerobic capacity (V˙O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched‐work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole‐body level, V˙O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V˙O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. PMID:27748956
Miller, Clint T; Teychenne, Megan; Maple, Jaimie-Lee
2018-01-01
Exercise training is an essential component of falls prevention strategies, but they do not fully address components of physical function that leads to falls. The training approaches to achieve this may not be perceived as appropriate or even feasible in older adults. This study aims to assess the perceived feasibility and acceptability of novel exercise training approaches not usually prescribed to older adults. Fourteen adults were exposed to conceptually and physically demanding exercises. Interviews were then conducted to determine perceptions and acceptability of individual exercise tasks. Qualitative thematic analysis was used to identify themes. Safety and confidence, acceptability, and population participation were the key themes identified. Staff knowledge, presence, program design, and overt safety equipment were important for alleviating initial apprehension. Although physically demanding, participants expressed satisfaction when challenged. Prior disposition, understanding the value, and the appeal of novel exercises were perceived to influence program engagement. Given the evidence for acceptability, this type of training is feasible and may be appropriate as part of an exercise training program for older adults. Further research should be conducted to confirm that the physical adaptations to exercise training approaches as presented in this study occur in a similar manner to that observed in younger adults, and to also determine whether these adaptations lead to prolonged independence and reduced falls in older adults compared to usual care.
Sales, Allan R K; Silva, Bruno M; Neves, Fabricia J; Rocha, Natália G; Medeiros, Renata F; Castro, Renata R T; Nóbrega, Antonio C L
2012-09-01
Despite mortality from heart disease has been decreasing, the decline in death in women remains lower than in men. Hypertension (HT) is a major risk factor for cardiovascular disease. Therefore, approaches to prevent or delay the onset of HT would be valuable in women. Given this background, we investigated the effect of diet and exercise training on blood pressure (BP) and autonomic modulation in women with prehypertension (PHT). Ten women with PHT (39 ± 6 years, mean ± standard deviation) and ten with normotension (NT) (35 ± 11 years) underwent diet and exercise training for 12 weeks. Autonomic modulation was assessed through heart rate (HR) and systolic BP (SBP) variability, using time and frequency domain analyses. At preintervention, women with PHT had higher SBP (PHT: 128 ± 7 vs. NT: 111 ± 6 mmHg, p < 0.05) and lower HR variability [standard deviation of normal-to-normal beats (SDNN), PHT: 41 ± 18 vs. NT: 60 ± 19 ms, p < 0.05]. At post-intervention, peak oxygen consumption and muscular strength increased (p < 0.05), while body mass index decreased in both groups (p < 0.05). However, SBP decreased (118 ± 8 mmHg, p < 0.05 vs. preintervention) and total HR variability tended to increase (total power: 1,397 ± 570 vs. 2,137 ± 1,110 ms(2), p = 0.08) only in the group with PHT; consequently, HR variability became similar between groups at post-intervention (p > 0.05). Moreover, reduction in SBP was associated with augmentation in SDNN (r = -0.46, p < 0.05) and reduction in low-frequency power [LF (n.u.); r = 0.46, p < 0.05]. In conclusion, diet and exercise training reduced SBP in women with PHT, and this was associated with augmentation in parasympathetic and probably reduction in sympathetic cardiac modulation.
A pilot study on quantification of training load: The use of HRV in training practice.
Saboul, Damien; Balducci, Pascal; Millet, Grégoire; Pialoux, Vincent; Hautier, Christophe
2016-01-01
Recent laboratory studies have suggested that heart rate variability (HRV) may be an appropriate criterion for training load (TL) quantification. The aim of this study was to validate a novel HRV index that may be used to assess TL in field conditions. Eleven well-trained long-distance male runners performed four exercises of different duration and intensity. TL was evaluated using Foster and Banister methods. In addition, HRV measurements were performed 5 minutes before exercise and 5 and 30 minutes after exercise. We calculated HRV index (TLHRV) based on the ratio between HRV decrease during exercise and HRV increase during recovery. HRV decrease during exercise was strongly correlated with exercise intensity (R = -0.70; p < 0.01) but not with exercise duration or training volume. TLHRV index was correlated with Foster (R = 0.61; p = 0.01) and Banister (R = 0.57; p = 0.01) methods. This study confirms that HRV changes during exercise and recovery phase are affected by both intensity and physiological impact of the exercise. Since the TLHRV formula takes into account the disturbance and the return to homeostatic balance induced by exercise, this new method provides an objective and rational TL index. However, some simplification of the protocol measurement could be envisaged for field use.
Ehlken, Nicola; Lichtblau, Mona; Klose, Hans; Weidenhammer, Johannes; Fischer, Christine; Nechwatal, Robert; Uiker, Sören; Halank, Michael; Olsson, Karen; Seeger, Werner; Gall, Henning; Rosenkranz, Stephan; Wilkens, Heinrike; Mertens, Dirk; Seyfarth, Hans-Jürgen; Opitz, Christian; Ulrich, Silvia; Egenlauf, Benjamin; Grünig, Ekkehard
2016-01-01
Abstract Aims The impact of exercise training on the right heart and pulmonary circulation has not yet been invasively assessed in patients with pulmonary hypertension (PH) and right heart failure. This prospective randomized controlled study investigates the effects of exercise training on peak VO2/kg, haemodynamics, and further clinically relevant parameters in PH patients. Methods and results Eighty-seven patients with pulmonary arterial hypertension and inoperable chronic thrombo-embolic PH (54% female, 56 ± 15 years, 84% World Health Organization functional class III/IV, 53% combination therapy) on stable disease-targeted medication were randomly assigned to a control and training group. Medication remained unchanged during the study period. Non-invasive assessments and right heart catheterization at rest and during exercise were performed at baseline and after 15 weeks. Primary endpoint was the change in peak VO2/kg. Secondary endpoints included changes in haemodynamics. For missing data, multiple imputation and responder analyses were performed. The study results showed a significant improvement of peak VO2/kg in the training group (difference from baseline to 15 weeks: training +3.1 ± 2.7 mL/min/kg equals +24.3% vs. control −0.2 ± 2.3 mL/min/kg equals +0.9%, P < 0.001). Cardiac index (CI) at rest and during exercise, mean pulmonary arterial pressure, pulmonary vascular resistance, 6 min walking distance, quality of life, and exercise capacity significantly improved by exercise training. Conclusion Low-dose exercise training at 4–7 days/week significantly improved peak VO2/kg, haemodynamics, and further clinically relevant parameters. The improvements of CI at rest and during exercise indicate that exercise training may improve the right ventricular function. Further, large multicentre trials are necessary to confirm these results. PMID:26231884
Motivational and psychological correlates of bodybuilding dependence
EMINI, NEIM N.; BOND, MALCOLM J.
2014-01-01
Abstract Background and aims: Exercise may become physically and psychologically maladaptive if taken to extremes. One example is the dependence reported by some individuals who engage in weight training. The current study explored potential psychological, motivational, emotional and behavioural concomitants of bodybuilding dependence, with a particular focus on motives for weight training. Using a path analysis paradigm, putative causal models sought to explain associations among key study variables. Methods: A convenience sample of 101 men aged between 18 and 67 years was assembled from gymnasia in Adelaide, South Australia. Active weight trainers voluntarily completed a questionnaire that included measures of bodybuilding dependence (social dependency, training dependency, and mastery), anger, hostility and aggression, stress and motivations for weight training. Results: Three motives for weight training were identified: mood control, physique anxiety and personal challenge. Of these, personal challenge and mood control were the most directly salient to dependence. Social dependency was particularly relevant to personal challenge, whereas training dependency was associated with both personal challenge and mood control. Mastery demonstrated a direct link with physique anxiety, thus reflecting a unique component of exercise dependence. Conclusions: While it was not possible to determine causality with the available data, the joint roles of variables that influence, or are influenced by, bodybuilding dependence are identified. Results highlight unique motivations for bodybuilding and suggest that dependence could be a result of, and way of coping with, stress manifesting as aggression. A potential framework for future research is provided through the demonstration of plausible causal linkages among these variables. PMID:25317342
McQuade, Kevin James; de Oliveira, Anamaria Siriani
2011-01-01
Background The goal of this study was to determine if increasing strength in primary knee extensors and flexors would directly affect net knee joint moments during a common functional task in persons with knee osteoarthritis. Methods An exploratory single sample clinical trial with pre-post treatment measures was used to study volunteers with clinical diagnosis of mild knee OA in one knee. Subjects participated in an individually supervised training program 3 times a week for eight weeks consisting of progressive resistive exercises for knee extensors and knee flexors. Pre and post training outcome assessments included: 1. Net internal knee joint moments, 2. Electromyography of primary knee extensors and flexors, and 3. Self-report measures of knee pain and function. The distribution of lower extremity joint moments as a percent of the total support moment was also investigated. Findings Pain, symptoms, activities of daily life, quality of life, stiffness, and function scores showed significant improvement following strength training. Knee internal valgus and hip internal rotation moments showed increasing but non-statistically significant changes post-training. There were no significant differences in muscle co-contraction activation of the Quadriceps and Hamstrings. Interpretations While exercise continues to be an important element of OA management, the results of this study suggest improvements in function, pain, and other symptoms, as a result of strength training may not be causally related to specific biomechanical changes in net joint moments. PMID:21514018
Military Applicability of Interval Training for Health and Performance.
Gibala, Martin J; Gagnon, Patrick J; Nindl, Bradley C
2015-11-01
Militaries from around the globe have predominantly used endurance training as their primary mode of aerobic physical conditioning, with historical emphasis placed on the long distance run. In contrast to this traditional exercise approach to training, interval training is characterized by brief, intermittent bouts of intense exercise, separated by periods of lower intensity exercise or rest for recovery. Although hardly a novel concept, research over the past decade has shed new light on the potency of interval training to elicit physiological adaptations in a time-efficient manner. This work has largely focused on the benefits of low-volume interval training, which involves a relatively small total amount of exercise, as compared with the traditional high-volume approach to training historically favored by militaries. Studies that have directly compared interval and moderate-intensity continuous training have shown similar improvements in cardiorespiratory fitness and the capacity for aerobic energy metabolism, despite large differences in total exercise and training time commitment. Interval training can also be applied in a calisthenics manner to improve cardiorespiratory fitness and strength, and this approach could easily be incorporated into a military conditioning environment. Although interval training can elicit physiological changes in men and women, the potential for sex-specific adaptations in the adaptive response to interval training warrants further investigation. Additional work is needed to clarify adaptations occurring over the longer term; however, interval training deserves consideration from a military applicability standpoint as a time-efficient training strategy to enhance soldier health and performance. There is value for military leaders in identifying strategies that reduce the time required for exercise, but nonetheless provide an effective training stimulus.
Rizk, Amanda K; Wardini, Rima; Chan-Thim, Emilie; Bacon, Simon L; Lavoie, Kim L; Pepin, Véronique
2015-11-01
The objectives of our study were to (i) compare, in chronic obstructive pulmonary disease (COPD) patients, acute responses to continuous training at high intensity (CTHI), continuous training at ventilatory threshold (CTVT) and interval training (IT); (ii) examine associations between acute responses and 12-week adherence; and (iii) investigate whether the relationship between acute responses and adherence is mediated/moderated by affect/vigour. Thirty-five COPD patients (forced expiratory volume in 1 second = 60.2 ± 15.8% predicted), underwent baseline assessments, were randomly assigned to CTHI, CTVT or IT, were monitored throughout about before training, and underwent 12 weeks of exercise training during which adherence was tracked. Compared with CTHI, CTVT was associated with lower respiratory exchange ratio, heart rate and respiratory rate (RR), while IT induced higher [Formula: see text], [Formula: see text]maximal voluntary ventilation, RR and lower pulse oxygen saturation. From pre- to post-exercise, positive affect increased (F = 9.74, p < 0.001) and negative affect decreased (F = 6.43, p = 0.005) across groups. CTVT reported greater end-exercise vigour compared to CTHI (p = 0.01) and IT (p = 0.02). IT exhibited lowest post-exercise vigour (p = 0.04 versus CTHI, p = 0.02 versus CTVT) and adherence rate (F = 6.69, p = 0.004). Mean [Formula: see text] (r = -0.466, p = 0.007) and end-exercise vigour (r = 0.420, p = 0.017) were most strongly correlated with adherence. End-exercise vigour moderated the relationship between [Formula: see text] and adherence (β = 2.74, t(32) = 2.32, p = 0.03). In summary, CTHI, CTVT and IT improved affective valence from rest to post-exercise and induced a significant 12-week exercise training effect. However, they elicited different acute physiological responses, which in turn were associated with differences in 12-week adherence to the target training intensity. This association was moderated by acute end-exercise vigour. © The Author(s) 2015.
Moderate Load Eccentric Exercise; A Distinct Novel Training Modality
Hoppeler, Hans
2016-01-01
Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400–500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20–30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery. PMID:27899894
Gomes-Neto, Mansueto; Conceição, Cristiano Sena; Carvalho, Vitor Oliveira; Brites, Carlos
2013-01-01
Several studies have reported the benefits of exercise training for adults with HIV, although there is no consensus regarding the most efficient modalities. The aim of this study was to determine the effects of different types of exercise on physiologic and functional measurements in patients with HIV using a systematic strategy for searching randomized controlled trials. The sources used in this review were the Cochrane Library, EMBASE, MEDLINE, and PEDro from 1950 to August 2012. We selected randomized controlled trials examining the effects of exercise on body composition, muscle strength, aerobic capacity, and/or quality of life in adults with HIV. Two independent reviewers screened the abstracts using the Cochrane Collaboration's protocol. The PEDro score was used to evaluate methodological quality. In total, 29 studies fulfilled the inclusion criteria. Individual studies suggested that exercise training contributed to improvement of physiologic and functional parameters, but that the gains were specific to the type of exercise performed. Resistance exercise training improved outcomes related to body composition and muscle strength, with little impact on quality of life. Aerobic exercise training improved body composition and aerobic capacity. Concurrent training produced significant gains in all outcomes evaluated, although moderate intensity and a long duration were necessary. We concluded that exercise training was shown to be a safe and beneficial intervention in the treatment of patients with HIV. PMID:24037014
Comparison of two techniques of robot-aided upper limb exercise training after stroke.
Stein, Joel; Krebs, Hermano Igo; Frontera, Walter R; Fasoli, Susan E; Hughes, Richard; Hogan, Neville
2004-09-01
This study examined whether incorporating progressive resistive training into robot-aided exercise training provides incremental benefits over active-assisted robot-aided exercise for the upper limb after stroke. A total of 47 individuals at least 1 yr poststroke were enrolled in this 6-wk training protocol. Paretic upper limb motor abilities were evaluated using clinical measures and a robot-based assessment to determine eligibility for robot-aided progressive resistive training at study entry. Subjects capable of participating in resistance training were randomized to receive either active-assisted robot-aided exercises or robot-aided progressive resistance training. Subjects who were incapable of participating in resistance training underwent active-assisted robotic therapy and were again screened for eligibility after 3 wks of robotic therapy. Those subjects capable of participating in resistance training at 3 wks were then randomized to receive either robot-aided resistance training or to continue with robot-aided active-assisted training. One subject withdrew due to unrelated medical issues, and data for the remaining 46 subjects were analyzed. Subjects in all groups showed improvement in measures of motor control (mean increase in Fugl-Meyer of 3.3; 95% confidence interval, 2.2-4.4) and maximal force (mean increase in maximal force of 3.5 N, P = 0.027) over the course of robot-aided exercise training. No differences in outcome measures were observed between the resistance training groups and the matched active-assisted training groups. Subjects' ability to perform the robotic task at the time of group assignment predicted the magnitude of the gain in motor control. The incorporation of robot-aided progressive resistance exercises into a program of robot-aided exercise did not favorably or negatively affect the gains in motor control or strength associated with this training, though interpretation of these results is limited by sample size. Individuals with better motor control at baseline experienced greater increases in motor control with robotic training.
Williams, N I; Caston-Balderrama, A L; Helmreich, D L; Parfitt, D B; Nosbisch, C; Cameron, J L
2001-06-01
Cross-sectional studies of exercise-induced reproductive dysfunction have documented a high proportion of menstrual cycle disturbances in women involved in strenuous exercise training. However, longitudinal studies have been needed to examine individual susceptibility to exercise-induced reproductive dysfunction and to elucidate the progression of changes in reproductive function that occur with strenuous exercise training. Using the female cynomolgus monkey (Macaca fascicularis), we documented changes in menstrual cyclicity and patterns of LH, FSH, estradiol, and progesterone secretion as the animals developed exercise-induced amenorrhea. As monkeys gradually increased running to 12.3 +/- 0.9 km/day, body weight did not change significantly although food intake remained constant. The time spent training until amenorrhea developed varied widely among animals (7-24 months; mean = 14.3 +/- 2.2 months) and was not correlated with initial body weight, training distance, or food intake. Consistent changes in function of the reproductive axis occurred abruptly, one to two menstrual cycles before the development of amenorrhea. These included significant declines in plasma reproductive hormone concentrations, an increase in follicular phase length, and a decrease in luteal phase progesterone secretion. These data document a high level of interindividual variability in the development of exercise-induced reproductive dysfunction, delineate the progression of changes in reproductive hormone secretion that occur with exercise training, and illustrate an abrupt transition from normal cyclicity to an amenorrheic state in exercising individuals, that is not necessarily associated with weight loss.
NASA Technical Reports Server (NTRS)
Loehr, J. A.; Lee, S. M. C.; English, K. E.; Leach, M.; Bentley, J.; Nash, R.; Hagan, R. D.
2008-01-01
The advanced Resistive Exercise Device (aRED) is a resistive exercise system designed to maintain muscle mass and strength in microgravity by simulating free weight (FW) exercise. aRED utilizes vacuum cylinders and inertial flywheels to replicate the constant mass and inertial components, respectively, of FW exercise in normal gravity. PURPOSE: To compare the effectiveness of aRED and FW resistive exercise training in ambulatory subjects. METHODS: Untrained subjects were assigned to two groups, FW (6 males, 3 females) and aRED (8 males, 3 females), and performed squat (SQ), heel raise (HR), and deadlift (DL) exercises 3 d wk-1 for 16 wks. SQ, HR and DL strength (1RM) were measured using FW hardware pre-, mid- and post-training. Subjects participated in a periodized training protocol with the exercise prescription based on a percentage of 1RM. Thigh and lower leg muscle volume were assessed using Magnetic Resonance Imaging (MRI), and leg (LLM) and total body lean mass (BLM) were measured using Dual Energy X-ray Absorptiometry (DXA) pre- and post-training. RESULTS: SQ 1RM increased in both FW (48.9+/-6.1%) and aRED (31.2+/-3.8%) groups, and there was a greater training response in FW compared with aRED (p=0.01). HR and DL 1RM increased in FW (HR: 12.3+/-2.4%, DL: 23.3+/-4.4%) and aRED (HR: 18.0+/-1.6%, DL: 23.2+'-2.8%), but there were no differences between groups. Thigh muscle volume was greater following training in both groups (FW: 9.8+/-0.9%, aRED: 7.1+/-1.2%) but lower leg muscle volume increased only in the FW group (3.0+/-1.1%). Lean tissue mass increased in both FW (LLM: 3.9+/-1.1%, BLM: 2.5+/-0.7%) and aRED (LLM: 4.8+/-0.7%, BLM: 2.6 0.7%). There were no between group differences in muscle volume or lean mass in response to training. CONCLUSIONS: In general, the increase in muscle strength, muscle volume, and lean tissue mass when training with aRED was not different than when using the same training protocol with FW. The smaller increase in SQ 1RM in the aRED group may be the result of undersizing the aRED flywheels which were intended to mimic the inertial component of the SQ movement when performing FW exercises. However, the biomechanical differences observed in body position during the performance of the aRED SQ, which may have affected training and testing, cannot be excluded as a factor that may have affected SQ 1RM results. PRACTICAL APPLICATIONS: Improvements in muscle strength, muscle volume and lean mass similar to FW exercise training may be elicited using an alternative source of resistance during exercise training. The acceleration of a mass during resistive exercise may result in greater muscle tension when changing the direction of movement resulting in enhanced strength gains. Therefore, to maximize the benefits of resistive exercise, the inertial components of FW exercise should be considered during exercise selection and hardware design. ACKNOWLEDGEMENT: This investigation was supported by NASA-JSC s Exercise Countermeasures Project.
Applied physiology of triathlon.
O'Toole, M L; Douglas, P S
1995-04-01
The triathlon is a 3-event endurance sport in which athletes compete sequentially in swimming, cycling and running. The primary determinant of success is the ability to sustain a high rate of energy expenditure for prolonged periods of time. Exercise training-induced physiological adaptations in virtually all systems of the body allow the athlete to accomplish this. Aerobic capacity (measured as maximal oxygen uptake, VO2max), economy of motion (submaximal VO2) and fractional utilisation of maximal capacity (%VO2max) reflect the integrated responses of these physiological adaptations. Numerous studies have reported relatively high mean VO2max values for various groups of triathletes that are comparable to those reported for athletes in single-event endurance sports and clearly above those reported for untrained individuals. In shorter distance triathlons and in studies using recreational (rather than elite) triathletes, VO2max is related to performance in the corresponding event of the triathlon (e.g. tethered swimming VO2max with swim time). In longer events and with more elite triathletes, VO2max correlates less well with performance. The physiological adaptations that correspond to and facilitate improved VO2max occur centrally in the cardiovascular system, centred on increased maximal cardiac output, and peripherally in the metabolic systems, centred around increased arterio-venous O2 (a-v O2) difference. While a high VO2max in individuals is clearly of importance to triathlon performance, energy output must be sustained for long periods of time, making economy of motion also very important. Studies suggests that competitive swimmers have better swimming economy than triathletes. However, since many triathletes have previously been competitive swimmers this finding is questionable. The finding suggests that triathletes from nonswimming backgrounds would benefit from improving swimming technique rather than concentrating training workouts solely on distance. In cycling and running, comparison studies have not been done. Economy of motion in swimming, cycling and running have all been found to be correlated with comparable event performance. Training to improve swimming economy can be done without prior exercise, but training to improve swimming economy can be done without prior exercise, but training to improve cycling and running economy should take the multimode nature of a triathlon into consideration. That is, swimming should precede cycling economy training, and cycling should precede running economy training. Cardiovascular, metabolic and neuromuscular adaptations are the main physiological correlates of improved movement economy. Since exercise-induced stress on most physiological systems is based on relative, rather than absolute, exercise intensity, training and racing intensities are frequently quantified as a percentage of maximal capacity of %VO2max.(ABSTRACT TRUNCATED AT 400 WORDS)
Röhling, M; Herder, C; Roden, M; Stemper, T; Müssig, K
2016-09-01
Aim: Physical activity is one of the cornerstones in the prevention and management of diabetes mellitus, but the effects of different training forms on metabolic control still remain unclear. The aims of this review are to summarize the recommendations of 5 selected diabetes associations and to systematically review the effects of long-term supervised exercise interventions without calorie-restriction on glycemic control in people with type 1 and 2 diabetes focusing on resistance, endurance and combined training consisting of both endurance and resistance training. Methods: Literature searches were performed using MEDLINE for articles published between January 1, 2000 and March 17, 2015. Of 76 articles retrieved, 15 randomized and controlled studies met the inclusion criteria and allowed for examining the effect of exercise training in type 1 and 2 diabetes. Results: Diabetes associations recommend volume-focused exercise in their guidelines. In our analysis, all 3 training forms have the potential to improve the glycemic control, as assessed by HbA 1c (absolute changes in HbA 1c ranging from -0.1% to -1.1% (-1.1 to -12 mmol/mol) in resistance training, from -0.2% to -1.6% (-2.2 to -17.5 mmol/mol) in endurance training and from +0.1% to -1.5% (+1.1 to -16.4 mmol/mol) in combined training, respectively). Conclusions: There is evidence that combined exercise training may improve glycemic control to a greater extent than single forms of exercise, especially under moderate-intensive training conditions with equal training durations. In addition, intensity of training appears to be an important determinant of the degree of metabolic improvement. Nonetheless, it is still unknown to what extent exercise effects glycemic homeostasis. © Georg Thieme Verlag KG Stuttgart · New York.
Interservice/Industry Training, Simulation and Conference. Abstracts.
1999-12-02
solutions in the areas of military training, exercises and planning. The resulting loss of the ’reality’ in conventional live exercises due to...view, such as that required for driver training or aerial combat. VR headsets have a distracting weight and inertia that makes them unsuitable for...exercises and planning. The resulting loss of the ’reality’ in conventional live exercises due to restrictions in the availability of supporting
Novaković, Marko; Prokšelj, Katja; Rajkovič, Uroš; Vižintin Cuderman, Tjaša; Janša Trontelj, Katja; Fras, Zlatko; Jug, Borut
2018-03-15
Adults with repaired tetralogy of Fallot (ToF) have impaired exercise capacity, vascular and cardiac autonomic function, and quality of life (QoL). Specific effects of high-intensity interval or moderate continuous exercise training on these parameters in adults with repaired ToF remain unknown. Thirty adults with repaired ToF were randomized to either high-intensity interval, moderate intensity continuous training (36 sessions, 2-3 times a week) or usual care (no supervised exercise). Exercise capacity, flow-mediated vasodilation, pulse wave velocity, NT-proBNP and fibrinogen levels, heart rate variability and recovery, and QoL (SF-36 questionnaire) were determined at baseline and after the intervention period. Twenty-seven patients (mean age 39±9years, 63% females, 9 from each group) completed this pilot study. Both training groups improved in at least some parameters of cardiovascular health compared to no exercise. Interval-but not continuous-training improved VO2peak (21.2 to 22.9ml/kg/min, p=0.004), flow-mediated vasodilation (8.4 to 12.9%, p=0.019), pulse wave velocity (5.4 to 4.8m/s, p=0.028), NT-proBNP (202 to 190ng/L, p=0.032) and fibrinogen levels (2.67 to 2.46g/L, p=0.018). Conversely, continuous-but not interval-training improved heart rate variability (low-frequency domain, 0.32 to 0.22, p=0.039), heart rate recovery after 2min post-exercise (40 to 47 beats, p=0.023) and mental domain of SF-36 (87 to 95, p=0.028). Both interval and continuous exercise training modalities were safe. Interval training seems more efficacious in improving exercise capacity, vascular function, NT-proBNP and fibrinogen levels, while continuous training seems more efficacious in improving cardiac autonomic function and QoL. (Clinicaltrials.gov, NCT02643810). Copyright © 2018 Elsevier Ireland Ltd. All rights reserved.
Risks and Benefits of Exercise Training in Adults With Congenital Heart Disease.
Chaix, Marie-A; Marcotte, François; Dore, Annie; Mongeon, François-Pierre; Mondésert, Blandine; Mercier, Lise-Andrée; Khairy, Paul
2016-04-01
Exercise capacity in adults with various forms of congenital heart disease is substantially lower than that of the general population. Although the underlying congenital heart defect, and its sequelae, certainly contribute to observed exercise limitations, there is evidence suggesting that deconditioning and a sedentary lifestyle are important implicated factors. The prevalence of acquired cardiovascular comorbidities is on the increase in the aging population with congenital heart disease, such that obesity and a sedentary lifestyle confer increased risk. Health fears and misconceptions are common barriers to regular physical activity in adults with congenital heart disease, despite evidence linking lower functional capacity to poor outcomes, and data supporting the safety and efficacy of exercise in bestowing numerous physical and psychosocial rewards. With few exceptions, adults with congenital heart disease should be counselled to exercise regularly. In this contemporary review, we provide a practical approach to assessing adults with congenital heart disease before exercise training. We examine available evidence supporting the safety and benefits of exercise training. Risks associated with exercise training in adults with congenital heart disease are discussed, particularly with regard to sudden cardiac death. Finally, recommendations for exercise training are provided, with consideration for the type of congenital heart disease, the nature (ie, static vs dynamic) and intensity (ie, low, medium, high) of the physical activity, and associated factors such as systemic ventricular dysfunction and residual defects. Further research is required to determine optimal exercise regimens and to identify effective strategies to implement exercise training as a key determinant of healthy living. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L
2015-07-01
Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. © 2015. Published by The Company of Biologists Ltd.
Adsett, Julie; Morris, Norman; Kuys, Suzanne; Hwang, Rita; Mullins, Robert; Khatun, Mohsina; Paratz, Jennifer; Mudge, Alison
2017-06-01
Providing flexible models and a variety of exercise options are fundamental to supporting long-term exercise participation for patients with heart failure (HF). The aim of this pilot study was to determine the feasibility and efficacy of aquatic exercise training during a maintenance phase for a clinical heart failure population. In this 2 x 2 crossover design trial, individuals who had previously completed HF rehabilitation were randomised into either a land-based or aquatic training program once per week for six weeks, after which time they changed to the alternate exercise training protocol for an additional six weeks. Six-minute walk test (6MWT), grip strength, walk speed, and measures of balance were compared for the two training protocols. Fifty-one participants (43 males, mean age 69.2 yrs) contributed data for the analysis. Both groups maintained function during the follow-up period, however improvements in 6MWT were greater in the land-based training group (95% CI: 0.7, 22.5; p=0.038), by a mean difference of 10.8 metres. No significant difference was observed for other parameters when the two training protocols were compared. Attending an aquatic exercise program once per week is feasible for patients with stable HF and may provide a suitable option to maintain functional performance in select patients. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Effects of Directional Exercise on Lingual Strength
ERIC Educational Resources Information Center
Clark, Heather M.; O'Brien, Katy; Calleja, Aimee; Corrie, Sarah Newcomb
2009-01-01
Purpose: To examine the application of known muscle training principles to tongue strengthening exercises and to answer the following research questions: (a) Did lingual strength increase following 9 weeks of training? (b) Did training conducted using an exercise moving the tongue in one direction result in strength changes for tongue movements in…
Thomson, Rebecca L; Bellenger, Clint R; Howe, Peter R C; Karavirta, Laura; Buckley, Jonathan D
2016-03-01
The recovery of heart rate (HRR) after exercise is a potential indicator of fitness which has been shown to respond to changes in training. This study investigated the within-individual association between HRR and exercise performance following three different training loads. 11 male cyclists/triathletes were tested after two weeks of light training, two weeks of heavy training and two days of rest. Exercise performance was measured using a 5-min maximal cycling time-trial. HRR was measured over 60s during supine recovery. Exercise performance decreased 2.2±2.5% following heavy training compared with post-light training (p=0.01), and then increased 4.0±4.2% following rest (p=0.004). Most HRR indices indicated a more rapid recovery of heart rate (HR) following heavy training, and reverted to post light training levels following two days of rest. HRR indices did not differ between post-light training and after the rest period (p>0.6). There were inverse within-subject relationships between indices of HRR and performance (r=-0.6, p≤0.004). Peak HR decreased 3.2±5.1bpm following heavy training (p=0.06) and significantly increased 4.9±4.3bpm following recovery (p=0.004). There was a moderate within-subject relationship between peak HR and exercise performance (r=0.7, p≤0.001). Controlling for peak HR reduced the relationships between HRR and performance (r=-0.4-0.5, p<0.05). This study demonstrated that HRR tracks short-term changes in exercise performance within-individuals, such that increases in HRR are associated with poorer exercise performance following heavy training. Peak HR can be compromised under conditions of fatigue, and needs to be taken into account in HRR analyses. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Twomey, Dara M; Fortington, Lauren V; Doyle, Tim L A; Elliott, Bruce C; Akram, Muhammad; Lloyd, David G
2016-01-01
Background Exercise-based training programmes are commonly used to prevent sports injuries but programme effectiveness within community men's team sport is largely unknown. Objective To present the intention-to-treat analysis of injury outcomes from a clustered randomised controlled trial in community Australian football. Methods Players from 18 male, non-elite, community Australian football clubs across two states were randomly allocated to either a neuromuscular control (NMC) (intervention n=679 players) or standard-practice (control n=885 players) exercise training programme delivered as part of regular team training sessions (2× weekly for 8-week preseason and 18-week regular-season). All game-related injuries and hours of game participation were recorded. Generalised estimating equations, adjusted for clustering (club unit), were used to compute injury incidence rates (IIRs) for all injuries, lower limb injuries (LLIs) and knee injuries sustained during games. The IIRs were compared across groups with cluster-adjusted Injury Rate Ratios (IRRs). Results Overall, 773 game injuries were recorded. The lower limb was the most frequent body region injured, accounting for 50% of injuries overall, 96 (12%) of which were knee injuries. The NMC players had a reduced LLI rate compared with control players (IRR: 0.78 (95% CI 0.56 to 1.08), p=0.14.) The knee IIR was also reduced for NMC compared with control players (IRR: 0.50 (95% CI 0.24 to 1.05), p=0.07). Conclusions These intention-to-treat results indicate that positive outcomes can be achieved from targeted training programmes for reducing knee and LLI injury rates in men's community sport. While not statistically significant, reducing the knee injury rate by 50% and the LLI rate by 22% is still a clinically important outcome. Further injury reductions could be achieved with improved training attendance and participation in the programme. PMID:26399611
Cravana, Cristina; Medica, P; Ragonese, G; Fazio, E
2017-01-01
To investigate the effects of training sessions on circulating β-endorphin changes in sport horses before and after competition and to ascertain whether competition would affect this response. A total of 24 trained jumping horses were randomly assigned to one of two training groups: Group A (competing) and Group B (not competing). To determined plasma β-endorphin concentrations, two pre- and post-competition training weeks at aerobic workout and two competitive show jumping event days at anaerobic workout were measured before, 5 and 30 min after exercise. Exercise intensity is described using lactate concentrations and heart rate. The circuit design, intensity, and duration of training sessions were the same for both groups. In Group A, one-way analysis of variance for repeated measures (RM-ANOVA) showed significant effects of exercise on β-endorphin changes (F=14.41; p<0.001), only in the post-competition training sessions, while in Group B showed no significant effects. Two-way RM-ANOVA showed, after post-competition training sessions, a significant difference between Group A and Group B (F=6.235; p=0.023), with higher β-endorphin changes in Group A, compared to Group B. During the competitive show jumping sessions, one-way RM ANOVA showed significant effects of exercise on β-endorphin changes (F=51.10; p<0.001). The statistical analysis, in Group A, showed a significant difference between post-competition training and competitive exercise (F=6.32; p=0.024) with higher β-endorphin values in competitive sessions compared to those of post-competition training. Lactate concentrations seem to be the main factors being correlated with the raise of β-endorphin during anaerobic exercise of competitive events. Exercise of low intensity, as well as that one of training sessions, does not appear to stimulate a significant increased release of β-endorphin and it may depend on the duration of the exercise program. Moreover, the responses during exercise in the course of post-competition training sessions seem to be significantly different from those the pre-competition training. These data show that the preliminary competitive stress induced additional significant changes of β-endorphin pattern. It would reflect the need of a long-lasting modulation of fatigue and pain perception related to the effect of an additional physical and mental effort for the consecutive competitive and training sessions.
Enhanced Training for Cyber Situational Awareness in Red versus Blue Team Exercises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajal, Armida J.; Stevens-Adams, Susan Marie; Silva, Austin Ray
This report summarizes research conducted through the Sandia National Laboratories Enhanced Training for Cyber Situational Awareness in Red Versus Blue Team Exercises Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding concerning how to best structure training for cyber defenders. Two modes of training were considered. The baseline training condition (Tool-Based training) was based on current practices where classroom instruction focuses on the functions of a software tool with various exercises in which students apply those functions. In the second training condition (Narrative-Based training), classroom instruction addressed software functions, but in the contextmore » of adversary tactics and techniques. It was hypothesized that students receiving narrative-based training would gain a deeper conceptual understanding of the software tools and this would be reflected in better performance within a red versus blue team exercise.« less
Physical activity participation and constraints among athletic training students.
Stanek, Justin; Rogers, Katherine; Anderson, Jordan
2015-02-01
Researchers have examined the physical activity (PA) habits of certified athletic trainers; however, none have looked specifically at athletic training students. To assess PA participation and constraints to participation among athletic training students. Cross-sectional study. Entry-level athletic training education programs (undergraduate and graduate) across the United States. Participants were 1125 entry-level athletic training students. Self-reported PA participation, including a calculated PA index based on a typical week. Leisure constraints and demographic data were also collected. Only 22.8% (252/1105) of athletic training students were meeting the American College of Sports Medicine recommendations for PA through moderate-intensity cardiorespiratory exercise. Although 52.3% (580/1105) were meeting the recommendations through vigorous-intensity cardiorespiratory exercise, 60.5% (681/1125) were meeting the recommendations based on the combined total of moderate or vigorous cardiorespiratory exercise. In addition, 57.2% (643/1125) of respondents met the recommendations for resistance exercise. Exercise habits of athletic training students appear to be better than the national average and similar to those of practicing athletic trainers. Students reported structural constraints such as lack of time due to work or studies as the most significant barrier to exercise participation. Athletic training students experienced similar constraints to PA participation as practicing athletic trainers, and these constraints appeared to influence their exercise participation during their entry-level education. Athletic training students may benefit from a greater emphasis on work-life balance during their entry-level education to promote better health and fitness habits.
Eguchi, Tomoaki; Kumagai, Chiaki; Fujihara, Takashi; Takemasa, Thoru; Ozawa, Tetsuo; Numata, Osamu
2013-01-01
Aerobic exercise can promote "fast-to-slow transition" in skeletal muscles, i.e. an increase in oxidative fibers, mitochondria, and myoglobin and improvement in glucose and lipid metabolism. Here, we found that mice administered Mitochondria Activation Factor (MAF) combined with exercise training could run longer distances and for a longer time compared with the exercise only group; MAF is a high-molecular-weight polyphenol purified from black tea. Furthermore, MAF intake combined with exercise training increased phosphorylation of AMPK and mRNA level of glucose transporter 4 (GLUT4). Thus, our data demonstrate for the first time that MAF activates exercise training-induced intracellular signaling pathways that involve AMPK, and improves endurance capacity.
Mendelson, M; Borowik, A; Michallet, A-S; Perrin, C; Monneret, D; Faure, P; Levy, P; Pépin, J-L; Wuyam, B; Flore, P
2016-02-01
Decreased sleep duration and altered sleep quality are risk factors for obesity in youth. Structured exercise training has been shown to increase sleep duration and improve sleep quality. This study aimed at evaluating the impact of exercise training for improving sleep duration, sleep quality and physical activity in obese adolescents (OB). Twenty OB (age: 14.5 ± 1.5 years; body mass index: 34.0 ± 4.7 kg m(-2) ) and 20 healthy-weight adolescents (HW) completed an overnight polysomnography and wore an accelerometer (SenseWear Bodymedia) for 7 days. OB participated in a 12-week supervised exercise-training programme consisting of 180 min of exercise weekly. Exercise training was a combination of aerobic exercise and resistance training. Sleep duration was greater in HW compared with OB (P < 0.05). OB presented higher apnoea-hypopnoea index than HW (P < 0.05). Physical activity (average daily metabolic equivalent of tasks [METs]) by accelerometer was lower in OB (P < 0.05). After exercise training, obese adolescents increased their sleep duration (+64.4 min; effect size: 0.88; P = 0.025) and sleep efficiency (+7.6%; effect size: 0.76; P = 0.028). Physical activity levels were increased in OB as evidenced by increased steps per day and average daily METs (P < 0.05). Improved sleep duration was associated with improved average daily METs (r = 0.48, P = 0.04). The present study confirms altered sleep duration and quality in OB. Exercise training improves sleep duration, sleep quality and physical activity. © 2015 World Obesity.
Figueroa, Arturo; Kalfon, Roy; Madzima, Takudzwa A; Wong, Alexei
2014-02-01
The purpose of this study was to examine the impact of whole-body vibration (WBV) exercise training on arterial stiffness (pulse wave velocity [PWV]), blood pressure (BP), and leg muscle function in postmenopausal women. Twenty-five postmenopausal women with prehypertension and hypertension (mean [SE]; age, 56 [1] y; systolic BP, 139 [2] mm Hg; body mass index, 34.7 [0.8] kg/m2) were randomized to 12 weeks of WBV exercise training (n = 13) or to the no-exercise control group. Systolic BP, diastolic BP, mean arterial pressure, heart rate, carotid-femoral PWV, brachial-ankle PWV, femoral-ankle PWV (legPWV), leg lean mass, and leg muscle strength were measured before and after 12 weeks. There was a group-by-time interaction (P < 0.05) for arterial stiffness, BP, and strength as brachial-ankle PWV (-1.3 [0.3] m/s, P < 0.01), legPWV (-0.81 [0.22] m/s, P < 0.01), systolic BP (-12 [3] mm Hg, P < 0.01), diastolic BP (-6 [2] mm Hg, P < 0.01), and mean arterial pressure (-9 [3] mm Hg, P < 0.01) decreased and as strength increased (21.0% [2.2%], P < 0.001) after WBV exercise training compared with no change after control. Heart rate decreased (-3 [1] beats/min, P < 0.05) after WBV exercise training, but there was no interaction (P > 0.05). Leg lean mass and carotid-femoral PWV were not significantly (P > 0.05) affected by WBV exercise training or control. Our findings indicate that WBV exercise training improves systemic and leg arterial stiffness, BP, and leg muscle strength in postmenopausal women with prehypertension or hypertension. WBV exercise training may decrease cardiovascular and disability risks in postmenopausal women by reducing legPWV and increasing leg muscle strength.
Kawanishi, Noriaki; Niihara, Hiroyuki; Mizokami, Tsubasa; Yada, Koichi; Suzuki, Katsuhiko
2015-01-01
The innate immune system is associated with the development of local inflammation. Neutrophils play an essential role in the development of the adipose tissue (AT) inflammation associated with obesity by producing elastase, which can promote the activation and infiltration of macrophages. Exercise training attenuates AT inflammation via suppression of macrophage infiltration. However, the mechanisms driving this phenomenon remains to be elucidated. Here, we evaluated the effects of exercise training on the infiltration of neutrophils and elastase expression in an obese mouse model. Four-week-old male C57BL/6J mice were randomly assigned to one of three groups that either received a normal diet (ND) plus sedentary activity (n = 15), a high-fat diet (HFD) plus sedentary activity (n = 15), or a HFD plus exercise training (n = 15). Mice were fed the ND or HFD from the age of 4 weeks until 20 weeks. Mice in the exercise group ran on a treadmill for 60 min/day, 5 days/week over the same experimental period. Mice fed with the HFD had increased content of macrophages in the AT and increased inflammatory cytokine mRNA levels, which were reduced by exercise training. Similarly, AT from the HFD sedentary mice contained more neutrophils than AT from the ND mice, and the amount of neutrophils in this tissue in HFD-fed mice was lowered by exercise training. The mRNA levels of neutrophil elastase in AT were lower in the HFD exercise-trained mice than those in the HFD sedentary mice. These results suggest that exercise training plays a critical role in reducing macrophage infiltration and AT inflammation by regulating the infiltration of neutrophils. PMID:26341995
Effects of exercise training on the glutathione antioxidant system.
Elokda, Ahmed S; Nielsen, David H
2007-10-01
The glutathione (GSH) antioxidant system has been shown to play an important role in the maintenance of good health and disease prevention. Various approaches have been used to enhance GSH availability including diet, nutritional supplementation, and drug administration, with minor to moderate success. Exercise training has evolved as a new approach. The purpose of this study was to investigate the effects of aerobic exercise training (AET), circuit weight training (CWT), and combined training (AET+CWT) on general adaptations, and resistance to acutely induced oxidative stress, as assessed by changes in the GSH antioxidant system. Eighty healthy sedentary volunteers participated in the study who were randomly assigned to four groups: control (no exercise); AET, CWT, and AET+CWT. Exercise training programs were designed to simulate outpatient cardiac rehabilitation (40 min x 3 days x 6 weeks). Venous blood sampling was taken at rest and post maximal graded exercise test (GXT). A new improved spectrophotometric venous assay analysis technique was used. A mixed model repeated measures analysis of variance design was used with t-tests for preplanned comparisons evaluated at Bonferroni-adjusted alpha levels. Effectiveness of the exercise training programs was demonstrated by significant between-group (exercise group versus control) comparisons. AET, CWT, and AET+CWT showed significant pretraining-posttraining increases in resting GSH and glutathione-glutathione disulfide ratio (GSH:GSSG), and significant decreases in GSSG levels (P<0.005). AET+CWT showed the most pronounced effect compared with AET or CWT alone (P<0.025). This study represents the first longitudinal investigation involving the effects of multiple modes of exercise training on the GSH antioxidant system with evidence, suggesting the GHS:GSSG ratio as the most sensitive change marker. The significant findings of this study have potential clinical implications to individuals involved in cardiac and pulmonary rehabilitation.
Ho, Chiung-Fang; Maa, Suh-Hwa
2016-08-01
Exercise training improves the management of stable chronic obstructive pulmonary disease (COPD). COPD patients benefit from exercise training programs in terms of improved VO2 peak values and decreased dyspnea, fatigue, hospital admissions, and rates of mortality, increasing exercise capacity and health-related quality of life (HRQOL). COPD is often associated with impairment in exercise tolerance. About 51% of patients have a limited capacity for normal activity, which often further degrades exercise capacity, creating a vicious circle. Exercise testing is highly recommended to assess a patient's individualized functions and limitations in order to determine the optimal level of training intensity prior to initiating an exercise-training regimen. The outcomes of exercise testing provide a powerful indicator of prognosis in COPD patients. The six-minute walking test (6MWT) and the incremental shuttle-walking test (ISWT) are widely used in exercise testing to measure a patient's exercise ability by walking distances. While nursing-related articles published in Taiwan frequently cite and use the 6MWT to assess exercise capacity in COPD patients, the ISWT is rarely used. This paper introduces the testing method, strengths and weaknesses, and application of the two tests in order to provide clinical guidelines for assessing the current exercise capacity of COPD patients.
Benefits of Exercise in Rheumatoid Arthritis
Cooney, Jennifer K.; Law, Rebecca-Jane; Matschke, Verena; Lemmey, Andrew B.; Moore, Jonathan P.; Ahmad, Yasmeen; Jones, Jeremy G.; Maddison, Peter; Thom, Jeanette M.
2011-01-01
This paper aims to highlight the importance of exercise in patients with rheumatoid arthritis (RA) and to demonstrate the multitude of beneficial effects that properly designed exercise training has in this population. RA is a chronic, systemic, autoimmune disease characterised by decrements to joint health including joint pain and inflammation, fatigue, increased incidence and progression of cardiovascular disease, and accelerated loss of muscle mass, that is, “rheumatoid cachexia”. These factors contribute to functional limitation, disability, comorbidities, and reduced quality of life. Exercise training for RA patients has been shown to be efficacious in reversing cachexia and substantially improving function without exacerbating disease activity and is likely to reduce cardiovascular risk. Thus, all RA patients should be encouraged to include aerobic and resistance exercise training as part of routine care. Understanding the perceptions of RA patients and health professionals to exercise is key to patients initiating and adhering to effective exercise training. PMID:21403833
Broman-Fulks, Joshua J; Kelso, Kerry; Zawilinski, Laci
2015-01-01
The purpose of this study was to compare the relative effects of a single bout of aerobic exercise versus resistance training on cognitive vulnerabilities for anxiety disorders. Seventy-seven participants (60% female; 84% Caucasian) were randomized to complete 20 min of moderate-intensity aerobic exercise, resistance training, or rest, followed by a 35% CO2/65% O2 inhalation challenge task. Results indicated that aerobic exercise and resistance training were significantly and equally effective in reducing anxiety sensitivity (AS) compared with rest ((η(2)(p ) = 52), though only aerobic exercise significantly attenuated reactivity to the CO2 challenge task. Neither form of exercise generated observable effects on distress tolerance, discomfort intolerance, or state anxiety (all ps >.10). The results of this study are discussed with regard to their implications for the use of exercise interventions for anxiety and related forms of psychopathology, and potential directions for future research are discussed.
Effect of exercise training on walking mobility in multiple sclerosis: a meta-analysis.
Snook, Erin M; Motl, Robert W
2009-02-01
The study used meta-analytic procedures to examine the overall effect of exercise training interventions on walking mobility among individuals with multiple sclerosis. A search was conducted for published exercise training studies from 1960 to November 2007 using MEDLINE, PsychINFO, CINAHL, and Current Contents Plus. Studies were selected if they measured walking mobility, using instruments identified as acceptable walking mobility constructs and outcome measures for individuals with neurologic disorders, before and after an intervention that included exercise training. Forty-two published articles were located and reviewed, and 22 provided enough data to compute effect sizes expressed as Cohen's d. Sixty-six effect sizes were retrieved from the 22 publications with 600 multiple sclerosis participants and yielded a weighted mean effect size of g = 0.19 (95% confidence interval, 0.09-0.28). There were larger effects associated with supervised exercise training ( g = 0.32), exercise programs that were less than 3 months in duration (g = 0.28), and mixed samples of relapsing-remitting and progressive multiple sclerosis (g = 0.52). The cumulative evidence supports that exercise training is associated with a small improvement in walking mobility among individuals with multiple sclerosis.
Ma, Wan-li; Cai, Peng-cheng; Xiong, Xian-zhi; Ye, Hong
2013-02-01
FIZZ/RELM is a new gene family named "found in inflammatory zone" (FIZZ) or "resistin-like molecule" (RELM). FIZZ1/RELMα is specifically expressed in lung tissue and associated with pulmonary inflammation. Chronic cigarette smoking up-regulates FIZZ1/RELMα expression in rat lung tissues, the mechanism of which is related to cigarette smoking-induced airway hyperresponsiveness. To investigate the effect of exercise training on chronic cigarette smoking-induced airway hyperresponsiveness and up-regulation of FIZZ1/RELMα, rat chronic cigarette smoking model was established. The rats were treated with regular exercise training and their airway responsiveness was measured. Hematoxylin and eosin (HE) staining, immunohistochemistry and in situ hybridization of lung tissues were performed to detect the expression of FIZZ1/RELMα. Results revealed that proper exercise training decreased airway hyperresponsiveness and pulmonary inflammation in rat chronic cigarette smoking model. Cigarette smoking increased the mRNA and protein levels of FIZZ1/RELMα, which were reversed by the proper exercise. It is concluded that proper exercise training prevents up-regulation of FIZZ1/RELMα induced by cigarette smoking, which may be involved in the mechanism of proper exercise training modulating airway hyperresponsiveness.
Scholtes, Vanessa A; Dallmeijer, Annet J; Rameckers, Eugene A; Verschuren, Olaf; Tempelaars, Els; Hensen, Maartje; Becher, Jules G
2008-01-01
Background Until recently, strength training in children with cerebral palsy (CP) was considered to be inappropriate, because it could lead to increased spasticity or abnormal movement patterns. However, the results of recent studies suggest that progressive strength training can lead to increased strength and improved function, but low methodological quality and incomplete reporting on the training protocols hampers adequate interpretation of the results. This paper describes the design and training protocol of a randomized controlled trial to assess the effects of a school-based progressive functional strength training program for children with CP. Methods/Results Fifty-one children with Gross Motor Function Classification Systems levels I to III, aged of 6 to 13 years, were recruited. Using stratified randomization, each child was assigned to an intervention group (strength training) or a control group (usual care). The strength training was given in groups of 4–5 children, 3 times a week, for a period of 12 weeks. Each training session focussed on four exercises out of a 5-exercise circuit. The training load was gradually increased based on the child's maximum level of strength, as determined by the 8 Repetition Maximum (8 RM). To evaluate the effectiveness of the training, all children were evaluated before, during, directly after, and 6 weeks after the intervention period. Primary outcomes in this study were gross motor function (measured with the Gross Motor Function Measure and functional muscle strength tests) and walking ability (measured with the 10-meter, the 1-minute and the timed stair test). Secondary outcomes were lower limb muscle strength (measured with a 6 RM test, isometric strength tests, and a sprint capacity test), mobility (measured with a mobility questionnaire), and sport activities (measured with the Children's Assessment of Participation and Enjoyment). Spasticity and range of motion were assessed to evaluate any adverse events. Conclusion Randomized clinical trials are considered to present the highest level of evidence. Nevertheless, it is of utmost importance to report on the design, the applied evaluation methods, and all elements of the intervention, to ensure adequate interpretation of the results and to facilitate implementation of the intervention in clinical practice if the results are positive. Trial Registration Trial Register NTR1403 PMID:18842125
Chen, Yen-Huey; Lin, Hui-Ling; Hsiao, Hsiu-Feng; Chou, Lan-Ti; Kao, Kuo-Chin; Huang, Chung-Chi; Tsai, Ying-Huang
2012-05-01
The functional status and outcomes in patients with prolonged mechanical ventilation (PMV) are often limited by poor endurance and pulmonary mechanics, which result from the primary diseases or prolonged time bedridden. We evaluate the impact of exercise training on pulmonary mechanics, physical functional status, and hospitalization outcomes in PMV patients. Twenty-seven subjects with PMV in our respiratory care center (RCC) were divided randomly into an exercise training group (n = 12) and a control group (n = 15). The exercise program comprised 10 sessions of exercise training. The measurement of pulmonary mechanics and physical functional status (Functional Independence Measurement and Barthel index) were performed pre-study and post-study. The hospitalization outcomes included: days of mechanical ventilation, hospitalization days, and weaning and mortality rates during RCC stay. The training group had significant improvement in tidal volume (143.6 mL vs 192.5 mL, P = .02) and rapid shallow breathing index after training (162.2 vs 110.6, P = .009). No significant change was found in the control group except respiratory rate. Both groups had significant improvement in functional status during the study. However, the training group had greater changes in FIM score than the control group (44.6 vs 34.2, P = .024). The training group also had shorter RCC stay and higher weaning and survival rates than the control group, although no statistical difference was found. Subjects with PMV in our RCC demonstrated significant improvement in pulmonary mechanics and functional status after exercise training. The application of exercise training may be helpful for PMV patients to improve hospitalization outcomes.
Exercise Testing, Training, and Beta-Adrenergic Blockade.
ERIC Educational Resources Information Center
Wilmore, Jack H.
1988-01-01
This article summarizes the current knowledge on the effects of beta-adrenergic blocking drugs, used widely for treatment of cardiovascular diseases, on exercise performance, training benefits, and exercise prescription. (IAH)
Pasco, Susan; Wallack, Cory; Sartin, Robert M; Dayton, Rebecca
2012-01-01
In an effort to identify students at risk for suicide, many colleges are implementing suicide prevention training for campus gatekeepers. This study evaluated the efficacy of a 3-hour, experiential-based gatekeeper training that included an emphasis on enhancing communication skills and relational connection in addition to the didactic foci of standard gatekeeper training. Sixty-five college student resident advisors (RAs) were trained with Campus Connect. The training was dismantled to examine the specific contribution of experiential exercises on training outcomes. Compared to didactic training alone, following participation in experiential exercises RAs' training outcome scores exhibited additional improvement on the Suicide Intervention Response Inventory-2 and a 14-item self-report measure of self-efficacy for specific suicide- and crisis-related knowledge and skills. In gatekeeper training, experiential exercises emphasizing awareness and empathic responding and practice of these skills contribute to an improvement in crisis response skills above and beyond that of didactic training alone.
ERIC Educational Resources Information Center
Sailors, Mary H.; Jackson, Andrew S.; McFarlin, Brian K.; Turpin, Ian; Ellis, Kenneth J.; Foreyt, John P.; Hoelscher, Deanna M.; Bray, Molly S.
2010-01-01
Objective: The Training Interventions and Genetics of Exercise Response (TIGER) study is an exercise program designed to introduce sedentary college students to regular physical activity and to identify genetic factors that influence response to exercise. Participants: A multiracial/ethnic cohort (N = 1,567; 39% male), age 18 to 35 years,…
Artistico, Daniele; Pinto, Angela Marinilli; Douek, Jill; Black, Justin; Pezzuti, Lina
2012-01-01
The objective of the study was to develop a novel procedure to increase self-efficacy for exercise. Gains in one’s ability to resolve day-to-day obstacles for entering an exercise routine were expected to cause an increase in self-efficacy for exercise. Fifty-five sedentary participants (did not exercise regularly for at least 4 months prior to the study) who expressed an intention to exercise in the near future were selected for the study. Participants were randomly assigned to one of three conditions: (1) an Experimental Group in which they received a problem-solving training session to learn new strategies for solving day-to-day obstacles that interfere with exercise, (2) a Control Group with Problem-Solving Training which received a problem-solving training session focused on a typical day-to-day problem unrelated to exercise, or (3) a Control Group which did not receive any problem-solving training. Assessment of obstacles to exercise and perceived self-efficacy for exercise were conducted at baseline; perceived self-efficacy for exercise was reassessed post-intervention (1 week later). No differences in perceived challenges posed by obstacles to exercise or self-efficacy for exercise were observed across groups at baseline. The Experimental Group reported greater improvement in self-efficacy for exercise compared to the Control Group with Training and the Control Group. Results of this study suggest that a novel procedure that focuses on removing obstacles to intended planned fitness activities is effective in increasing self-efficacy to engage in exercise among sedentary adults. Implications of these findings for use in applied settings and treatment studies are discussed. PMID:23372560
Artistico, Daniele; Pinto, Angela Marinilli; Douek, Jill; Black, Justin; Pezzuti, Lina
2013-01-01
The objective of the study was to develop a novel procedure to increase self-efficacy for exercise. Gains in one's ability to resolve day-to-day obstacles for entering an exercise routine were expected to cause an increase in self-efficacy for exercise. Fifty-five sedentary participants (did not exercise regularly for at least 4 months prior to the study) who expressed an intention to exercise in the near future were selected for the study. Participants were randomly assigned to one of three conditions: (1) an Experimental Group in which they received a problem-solving training session to learn new strategies for solving day-to-day obstacles that interfere with exercise, (2) a Control Group with Problem-Solving Training which received a problem-solving training session focused on a typical day-to-day problem unrelated to exercise, or (3) a Control Group which did not receive any problem-solving training. Assessment of obstacles to exercise and perceived self-efficacy for exercise were conducted at baseline; perceived self-efficacy for exercise was reassessed post-intervention (1 week later). No differences in perceived challenges posed by obstacles to exercise or self-efficacy for exercise were observed across groups at baseline. The Experimental Group reported greater improvement in self-efficacy for exercise compared to the Control Group with Training and the Control Group. Results of this study suggest that a novel procedure that focuses on removing obstacles to intended planned fitness activities is effective in increasing self-efficacy to engage in exercise among sedentary adults. Implications of these findings for use in applied settings and treatment studies are discussed.
Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J
2018-01-01
There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that exercise training in pediatric brain tumor patients treated with radiation has a beneficial impact on brain structure. We argue that exercise training should be incorporated into the development of neuro-rehabilitative treatments for long-term pediatric brain tumor survivors and other populations with acquired brain injury. (ClinicalTrials.gov, NCT01944761).
Huffman, Kim M.; Hawk, Victoria H.; Henes, Sarah T.; Ocampo, Christine I.; Orenduff, Melissa C.; Slentz, Cris A.; Johnson, Johanna L.; Houmard, Joseph A.; Samsa, Gregory P.; Kraus, William E.; Bales, Connie W.
2012-01-01
Background The standard clinical approach for reducing cardiovascular disease risk due to dyslipidemia is to prescribe changes in diet and physical activity. The purpose of the current study was to determine if, across a range of dietary patterns, there were variable lipoprotein responses to an aerobic exercise training intervention. Methods Subjects were participants in the Studies of a Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE I), a supervised exercise program in sedentary, overweight subjects randomized to 6 months of inactivity or one of 3 aerobic exercise programs. To characterize diet patterns observed during the study, we calculated a modified z-score that included intakes of total fat, saturated fat, trans fatty acids, cholesterol, omega-3 fatty acids and fiber as compared to the 2006 AHA diet recommendations. Linear models were used to evaluate relationships between diet patterns and exercise effects on lipoproteins/lipids. Results Independent of diet, exercise had beneficial effects on LDL-cholesterol particle number, LDL-cholesterol size, HDL-cholesterol, HDL-cholesterol size, and triglycerides (P<0.05 for all). However, having a diet pattern that closely adhered to AHA recommendations was not related to changes in these or any other serum lipids or lipoproteins in any of the exercise groups. Conclusions We found that even in sedentary individuals whose habitual diets vary in the extent of adherence to AHA dietary recommendations, a rigorous, supervised exercise intervention can achieve significant beneficial lipid effects. PMID:22795291
Stoutenberg, Mark; Warne, James; Vidot, Denise; Jimenez, Erika; Read, Jennifer P
2015-02-01
Alcohol use disorders (AUD) are a major public health concern due to their association with several acute and chronic health conditions. Exercise training offers a myriad of physical and mental health benefits, and may be a promising adjunct intervention for those in AUD treatment. The purpose of this study was to explore the possible role of exercise training as a treatment strategy by examining the attitudes, beliefs, and preferences of individuals entering residential AUD treatment. Surveys were administered to eligible individuals with AUD within 2days of intake to one of two residential treatment centers. The survey asked respondents about their attitudes, beliefs, and preferences towards exercise training as a part of their residential treatment. Respondents were in favor of receiving exercise counseling as part of their treatment (70.6%), in a face-to-face format (90.0%), and from an exercise counselor at the treatment center (55.5%). The top reported benefits included: improved health, feeling good about oneself, and feeling more confident. The most commonly reported barriers to exercise training included transportation issues, lack of motivation, knowledge, and proper equipment, and cost. Our study supports previous work in individuals with substance abuse disorders and suggests that exercise training would be widely accepted as a part of residential treatment for AUD. This study also identified several strategies that can be used to individualize exercise training programs to better meet the needs of AUD patients and maximize their participation in future interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
Shill, Daniel D.; Southern, W. Michael; Willingham, T. Bradley; Lansford, Kasey A.; McCully, Kevin K.
2016-01-01
Key points Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non‐specific antioxidants on exercise training‐induced vascular adaptations remain elusive.Circulating angiogenic cells (CACs) are an exercise‐inducible subset of white blood cells that maintain vascular integrity.We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men.We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole‐body aerobic adaptations to exercise training.These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Abstract Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training‐induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3+, CD3+/CD31+, CD14+/CD31+, CD31+, CD34+/VEGFR2+ and CD62E+ peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m–2, and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14+/CD31+, CD62E+ and CD34+/VEGFR2+ CACs, respectively, and reduced CD3+/CD31− PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial‐targeted antioxidant does not influence skeletal muscle or whole‐body aerobic adaptations to exercise training. PMID:27501153
Amadio, Eliane Martins; Serra, Andrey Jorge; Guaraldo, Simone A; Silva, José Antônio; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo
2015-04-01
The aim of the present study was to determine whether low-level laser therapy (LLLT), when used in conjunction with aerobic training, interferes with the expression of inflammatory markers IL-6 and TNF-α, thereby influencing the performance of old rats participating in swimming. A total of 30 Wistar rats (Rattus norvegicus albinus) were used for this study: 24 aged rats, and 6 young rats. The older animals were randomly divided into four groups designated as follows: aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise group, and young-control animals. Aerobic capacity (VO2max) was analyzed before and after training period. The aged-exercise and aged-LLLT/exercise groups were trained for 6 weeks. LLLT laser was applied before each training session with 808 nm and 4 J of energy to the indicated groups throughout training. The rats were euthanized, and muscle tissue and serum were collected for muscle cross-sectional area and IL-6 and TNF-α protein analysis. In VO2 showed statistical difference between young- and aged-control groups (used as baseline) (p < 0.05). The same difference can be observed in the young control group compared with all intervention groups (exercise, LLLT and LLLT + exercise). In comparison with the aged-control group, a difference was observed only for comparison with the exercise group (p < 0.05), and exercise associated with LLLT group (p < 0.001). Levels of IL-6 and TNF-α for the aged-exercise and the aged-LLLT/exercise groups were significantly decreased compared to the aged-control group (p < 0.05). Analysis of the transverse section of the gastrocnemius muscle showed a significant difference between the aged-exercise and aged-LLLT/exercise groups (p < 0.001). These results suggest that laser therapy in conjunction with aerobic training may provide a therapeutic approach for reducing the inflammatory markers (IL-6 and TNF-α), however, LLLT without exercise was not able to improve physical performance of aged rats.
Vanhees, L; Rauch, B; Piepoli, M; van Buuren, F; Takken, T; Börjesson, M; Bjarnason-Wehrens, B; Doherty, P; Dugmore, D; Halle, M
2012-12-01
The beneficial effect of exercise training and exercise-based cardiac rehabilitation on symptom-free exercise capacity,cardiovascular and skeletal muscle function, quality of life, general healthy lifestyle, and reduction of depressive symptoms and psychosocial stress is nowadays well recognized. However, it remains largely obscure, which characteristics of physical activity (PA) and exercise training--frequency, intensity, time (duration), type (mode), and volume (dose: intensity x duration) of exercise--are the most effective. The present paper, therefore, will deal with these exercise characteristics in the management of individuals with cardiovascular disease, i.e. coronary artery disease and chronic heart failure patients, but also in patients with congenital or valvular heart disease. Based on the current literature, and if sufficient evidence is available, recommendations from the European Association on Cardiovascular Prevention and Rehabilitation are formulated regarding frequency, intensity, time and type of PA, and safety aspects during exercise inpatients with cardiovascular disease. This paper is the third in a series of three papers, all devoted to the same theme: the importance of the exercise characteristics in the management of cardiovascular health. Part I is directed to the general population and Part II to individuals with cardiovascular risk factors. In general, PA recommendations and exercise training programmes for patients with coronary artery disease or chronic heart failure need to be tailored to the individual's exercise capacity and risk profile, with the aim to reach and maintain the individually highest fitness level possible and to perform endurance exercise training 30–60 min daily (3–5 days per week) in combination with resistance training 2–3 times a week. Because of the frequently reported dose–response relationship between training effect and exercise intensity, one should seek sufficiently high training intensities, although more scientific evidence on effect sizes and safety is warranted. At present, there is insufficient data to give more specific recommendations on type, dosage, and intensity of exercise in some other cardiovascular diseases, such as congenital heart disease, valve disease, cardiomyopathies, channelopathies, and patients with implanted devices.
Exercise training in older adults, what effects on muscle oxygenation? A systematic review.
Fiogbé, Elie; de Vassimon-Barroso, Verena; de Medeiros Takahashi, Anielle Cristhine
2017-07-01
To determine the effects of different modality of exercise training programs on muscle oxygenation in older adults. Relevant articles were searched in PubMed, Web of Science, Science Direct and Scopus, using the keywords: "Aged" AND "Muscle oxygenation" AND (Exercise OR "Exercise therapy" OR "Exercise Movement Techniques" OR Hydrotherapy), without limitation concerning the publication date. To be included in the full analysis, the study had to be a randomized controlled trial in which older adults participants (mean age: 65 years at least) were submitted to an exercise-training program and muscle oxygenation assessment. The searches resulted in 1238 articles from which 7 met all the inclusion criteria. The trials involved 370 older adults (68.7±1.7years), healthy and with peripheral arterial disease. Studies included resistance and endurance exercises as well as walking sessions. Training sessions were 2-6 time per week, lasted 3-24 months and with different training intensity throughout studies. After a long-term resistance training, healthy older adults showed enhanced muscle oxygen extraction capacity, regulation of vessels and vascular endothelium function; endurance training is reported to improve microvascular blood flow and matching of oxygen delivery to oxygen utilization, muscle oxidative capacity and muscle saturation, and walking sessions results in better muscle oxygen availability and muscle oxygen extraction capacity in older adults with peripheral arterial disease. This review supports the fact that depending on the clinical status of the participants and the modality, exercise training improves different aspects of the muscle oxygenation in older adults. Copyright © 2017 Elsevier B.V. All rights reserved.
McDonald, Matthew W; Murray, Michael R; Hall, Katharine E; Noble, Earl G; Melling, C W James
2014-01-01
Regular exercise has been shown to improve many complications of Type 1 diabetes mellitus (T1DM) including enhanced glucose tolerance and increased cardiac function. While exercise training has been shown to increase insulin content in pancreatic islets of rats with T1DM, experimental models were severely hyperglycemic and not undergoing insulin treatment. Further, research to date has yet to determine how exercise training alters glucagon content in pancreatic islets. The purpose of the present investigation was to determine the impact of a 10-week aerobic training program on pancreatic islet composition in insulin-treated rats with T1DM. Second, it was determined whether the acute, exercise-mediated reduction in blood glucose experienced in rats with T1DM would become larger in magnitude following aerobic exercise training. Diabetes was induced in male Sprague-Dawley rats by multiple low dose injections of streptozotocin (20mg/kg i.p.) and moderate intensity aerobic exercise training was performed on a motorized treadmill for one hour per day for a total of 10 weeks. Rats with T1DM demonstrated significantly less islet insulin, and significantly more islet glucagon hormone content compared with non-T1DM rats, which did not significantly change following aerobic training. The reduction in blood glucose in response to a single exercise bout was similar across 10 weeks of training. Results also support the view that different subpopulations of islets exist, as small islets (<50 μm diameter) had significantly more insulin and glucagon in rats with and without T1DM.
Does exercise training affect resting metabolic rate in adolescents with obesity?
Alberga, Angela S; Prud'homme, Denis; Sigal, Ronald J; Goldfield, Gary S; Hadjiyannakis, Stasia; Gougeon, Réjeanne; Phillips, Penny; Malcolm, Janine; Wells, George A; Doucette, Steve; Ma, Jinhui; Kenny, Glen P
2017-01-01
We evaluated the hypothesis that resistance exercise training performed alone or in combination with aerobic exercise training would increase resting metabolic rate (RMR) relative to aerobic-only and nonexercising control groups. Postpubertal adolescents (N = 304) aged 14-18 years with obesity (body mass index (BMI) ≥ 95th percentile) or overweight (BMI ≥ 85th percentile + additional diabetes risk factor(s)) were randomized to 4 groups for 22 weeks: Aerobic exercise training, Resistance exercise training, Combined aerobic and resistance exercise training, or Control. All participants received dietary counselling targeting a daily energy deficit of 250 kcal. RMR was measured by indirect calorimetry and body composition by magnetic resonance imaging. There was no significant change in RMR in any group, in spite of significant within-group increases in fat-free mass in the Aerobic, Resistance, and Combined exercise training groups. RMR at baseline and 6 months were Aerobic: 1972 ± 38 and 1990 ± 41; Resistance: 2024 ± 37 and 1992 ± 41; Combined: 2023 ± 38 and 1995 ± 38; Control: 2075 ± 38 and 2073 ± 39 kcal/day (p > 0.05). There were no between-group differences in RMR after adjustment for total body weight or fat-free mass between groups over time. Per-protocol analyses including only participants with ≥70% adherence, and analyses stratified by sex, also showed no within- or between-group differences in RMR. In conclusion, despite an increase in fat-free mass in all exercise groups, 6 months of aerobic, resistance, or combined training with modest dietary restriction did not increase RMR compared with diet only in adolescents with obesity.
Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze
2014-08-01
Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.
Stray-Gundersen, James; Parsons, Dora Beth; Thompson, Jeffrey R.
2016-01-01
Patients treated with hemodialysis develop severely reduced functional capacity, which can be partially ameliorated by correcting anemia and through exercise training. In this study, we determined perturbations of an erythroid-stimulating agent and exercise training to examine if and where limitation to oxygen transport exists in patients on hemodialysis. Twenty-seven patients on hemodialysis completed a crossover study consisting of two exercise training phases at two hematocrit (Hct) values: 30% (anemic) and 42% (physiologic; normalized by treatment with erythroid-stimulating agent). To determine primary outcome measures of peak power and oxygen consumption (VO2) and secondary measures related to components of oxygen transport and utilization, all patients underwent numerous tests at five time points: baseline, untrained at Hct of 30%, after training at Hct of 30%, untrained at Hct of 42%, and after training at Hct of 42%. Hct normalization, exercise training, or the combination thereof significantly improved peak power and VO2 relative to values in the untrained anemic phase. Hct normalization increased peak arterial oxygen and arteriovenous oxygen difference, whereas exercise training improved cardiac output, citrate synthase activity, and peak tissue diffusing capacity. However, although the increase in arterial oxygen observed in the combination phase reached a value similar to that in healthy sedentary controls, the increase in peak arteriovenous oxygen difference did not. Muscle biopsy specimens showed markedly thickened endothelium and electron–dense interstitial deposits. In conclusion, exercise and Hct normalization had positive effects but failed to normalize exercise capacity in patients on hemodialysis. This effect may be caused by abnormalities identified within skeletal muscle. PMID:27153927
Reyna, Sara M.; Tantiwong, Puntip; Cersosimo, Eugenio; DeFronzo, Ralph A.; Sriwijitkamol, Apiradee; Musi, Nicolas
2013-01-01
Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD). Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC) were obtained for determination of Toll-like receptor (TLR) 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK) phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals. PMID:23671849
Arthur, Heather M; Gunn, Elizabeth; Thorpe, Kevin E; Ginis, Kathleen Martin; Mataseje, Lin; McCartney, Neil; McKelvie, Robert S
2007-11-01
To compare the effect and sustainability of 6 months combined aerobic/strength training vs aerobic training alone on quality of life in women after coronary artery by-pass graft surgery or myocardial infarction. Prospective, 2-group, randomized controlled trial. Ninety-two women who were 8-10 weeks post-coronary artery by-pass graft surgery or myocardial infarction, able to attend supervised exercise, and fluent in English. The aerobic training alone group had supervised exercise twice a week for 6 months. The aerobic/strength training group received aerobic training plus upper and lower body resistance exercises. The amount of active exercise time was matched between groups. The primary outcome, quality of life, was measured by the MOS SF-36; secondary outcomes were self-efficacy, strength and exercise capacity. After 6 months of supervised exercise training both groups showed statistically significant improvements in physical quality of life (p = 0.0002), peak VO2 (19% in aerobic/strength training vs 22% in aerobic training alone), strength (p < 0.0001) and self-efficacy for stair climbing (p = 0.0024), lifting (p < 0.0001) and walking (p = 0.0012). However, by 1-year follow-up there was a statistically significant difference in physical quality of life in favor of the aerobic/strength training group (p = 0.05). Women with coronary artery disease stand to benefit from both aerobic training alone and aerobic/strength training. However, continued improvement in physical quality of life may be achieved through combined strength and aerobic training.
Gayda, Mathieu; Ribeiro, Paula A B; Juneau, Martin; Nigam, Anil
2016-04-01
In this review, we discuss the most recent forms of exercise training available to patients with cardiac disease and their comparison or their combination (or both) during short- and long-term (phase II and III) cardiac rehabilitation programs. Exercise training modalities to be discussed include inspiratory muscle training (IMT), resistance training (RT), continuous aerobic exercise training (CAET), and high-intensity interval training (HIIT). Particular emphasis is placed on HIIT compared or combined (or both) with other forms such as CAET or RT. For example, IMT combined with CAET was shown to be superior to CAET alone for improving functional capacity, ventilatory function, and quality of life in patients with chronic heart failure. Similarly, RT combined with CAET was shown to optimize benefits with respect to functional capacity, muscle function, and quality of life. Furthermore, in recent years, HIIT has emerged as an alternative or complementary (or both) exercise modality to CAET, providing equivalent if not superior benefits to conventional continuous aerobic training with respect to aerobic fitness, cardiovascular function, quality of life, efficiency, safety, tolerance, and exercise adherence in both short- and long-term training studies. Finally, short-interval HIIT was shown to be useful in the initiation and improvement phases of cardiac rehabilitation, whereas moderate- or longer-interval (or both) HIIT protocols appear to be more appropriate for the improvement and maintenance phases because of their high physiological stimulus. We now propose progressive models of exercise training (phases II-III) for patients with cardiac disease, including a more appropriate application of HIIT based on the scientific literature in the context of a multimodal cardiac rehabilitation program. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Fedewa, Michael V; Hathaway, Elizabeth D; Williams, Tyler D; Schmidt, Michael D
2017-06-01
Many overweight and obese individuals use exercise when attempting to lose weight. However, the improvements in weight and body composition are often far less than expected. Levels of physical activity outside of the structured exercise program are believed to change and may be responsible for the unsuccessful weight loss. The purpose of this meta-analysis was to provide a quantitative estimate of the change in non-exercise physical activity (NEPA) during exercise interventions. All studies included in the meta-analysis were peer-reviewed and published in English. Participants were randomized to a non-exercise comparison group or exercise training group with an intervention lasting ≥2 weeks. NEPA was measured at baseline and at various times during the study. Hedges' d effect size (ES) was used to adjust for small sample bias, and random-effects models were used to calculate the mean ES and explore potential moderators. The cumulative results of 44 effects gathered from ten studies published between 1997 and 2015 indicated that NEPA did not change significantly during exercise training (ES = 0.02, 95% confidence interval [CI] -0.09 to 0.13; p = 0.723). Duration of the exercise session (β = -0.0039), intervention length (β = 0.0543), and an age × sex (β = -0.0005) interaction indicated that the increase in NEPA may be attenuated in older women during exercise training and during shorter exercise interventions with longer sessions (all p < 0.005). On average, no statistically or clinically significant mean change in NEPA occurs during exercise training. However, session duration and intervention length, age, and sex should be accounted for when designing exercise programs to improve long-term sustainability and improve the likelihood of weight loss success, as the initial decrease in NEPA appears to dissipate with continued training.
High-intensity exercise training induces morphological and biochemical changes in skeletal muscles.
Toti, L; Bartalucci, A; Ferrucci, M; Fulceri, F; Lazzeri, G; Lenzi, P; Soldani, P; Gobbi, P; La Torre, A; Gesi, M
2013-12-01
IN THE PRESENT STUDY WE INVESTIGATED THE EFFECT OF TWO DIFFERENT EXERCISE PROTOCOLS ON FIBRE COMPOSITION AND METABOLISM OF TWO SPECIFIC MUSCLES OF MICE: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P < 0.0001 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P < 0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.
Abd El-Kader, Shehab M; Al-Jiffri, Osama H; Al-Shreef, Fadwa M
2016-06-01
Chronic obstructive pulmonary disease (COPD) is a main risk for morbidity, associated with alterations in systemic inflammation. Recent studies proved that morbidity and mortality of COPD is related to systemic inflammation as it contributes to the pathogenesis of atherosclerosis and cardiovascular disease. However, increase of inflammatory cytokines adversely affects quality of life, alteration in ventilatory and skeletal muscles functions. Moreover, exercise training has many beneficial effects in correction of the adverse effects of COPD. This study aimed to compare the response of inflammatory cytokines of COPD to aerobic versus resisted exercises. One hundred COPD diseased patients participated in this study and were randomly included in two groups; the first group received aerobic exercise, whereas the second group received resisted exercise training for 12 weeks. The mean values of TNF-α, Il-2, IL-4, IL-6 and CRP were significantly decreased in both groups. Also; there was a significant difference between both groups at the end of the study with more reduction in patients who received aerobic exercise training. Aerobic exercise is more appropriate than resisted exercise training in modulating inflammatory cytokines level in patients with chronic obstructive pulmonary disease.
Core Muscle Activation in Suspension Training Exercises.
Cugliari, Giovanni; Boccia, Gennaro
2017-02-01
A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles.
[Exercise therapy as a therapeutic concept].
Reer, R; Ziegler, M; Braumann, K-M
2005-08-01
Lack of exercise is a primary cause for today's level of morbidity and mortality in the Western world. Thus, exercise as a therapeutic modality has an important role. Beneficial effects of exercise have been extensively documented, specifically in primary and secondary prevention of coronary heart disease (CHD), diabetes mellitus, hypertension, disorders of fat metabolism, heart insufficiency, cancer, etc. A regular (at least 3 x per week) endurance training program of 30-40 min duration at an intensity of 65-70% of VO(2)max involving large muscle groups is recommended. The specific exercise activity can also positively affect individuals with orthopedic disease patterns, i.e., osteoporosis, back pain, postoperative rehabilitation, etc. Endurance strength training in the form of sequential training involving approx. 8-10 different exercises for the most important muscle groups 2 x per week is a suitable exercise therapy. One to three sets with 8-12 repetitions per exercise should be performed until volitional exhaustion of the trained muscle groups among healthy adults and 15-20 repetitions among older and cardiac patients. Apart from a positive effect on the locomotor system, this type of strength training has positive effects on CHD, diabetes mellitus, and cancer.
Solberg, E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I
2000-01-01
Objective—To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Methods—Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. Results—After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Conclusion—Meditation training may reduce the lactate response to a standardised exercise bout. Key Words: autogenic training; lactate; meditation; recovery; relaxation; psychology PMID:10953899
The essential role of exercise in the management of type 2 diabetes.
Kirwan, John P; Sacks, Jessica; Nieuwoudt, Stephan
2017-07-01
Exercise is typically one of the first management strategies advised for patients newly diagnosed with type 2 diabetes. Together with diet and behavior modification, exercise is an essential component of all diabetes and obesity prevention and lifestyle intervention programs. Exercise training, whether aerobic or resistance training or a combination, facilitates improved glucose regulation. High-intensity interval training is also effective and has the added benefit of being very time-efficient. While the efficacy, scalability, and affordability of exercise for the prevention and management of type 2 diabetes are well established, sustainability of exercise recommendations for patients remains elusive. Copyright © 2017 Cleveland Clinic.
Adams, Volker; Reich, Bernhard; Uhlemann, Madlen; Niebauer, Josef
2017-07-01
For decades, we have known that exercise training exerts beneficial effects on the human body, and clear evidence is available that a higher fitness level is associated with a lower incidence of suffering premature cardiovascular death. Despite this knowledge, it took some time to also incorporate physical exercise training into the treatment plan for patients with cardiovascular disease (CVD). In recent years, in addition to continuous exercise training, further training modalities such as high-intensity interval training and pyramid training have been introduced for coronary artery disease patients. The beneficial effect for patients with CVD is clearly documented, and during the last years, we have also started to understand the molecular mechanisms occurring in the skeletal muscle (limb muscle and diaphragm) and endothelium, two systems contributing to exercise intolerance in these patients. In the present review, we describe the effects of the different training modalities in CVD and summarize the molecular effects mainly in the skeletal muscle and cardiovascular system. Copyright © 2017 the American Physiological Society.
Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle.
Cobley, James N; Sakellariou, George K; Murray, Scott; Waldron, Sarah; Gregson, Warren; Burniston, Jatin G; Morton, James P; Iwanejko, Lesley A; Close, Graeme L
2013-07-12
The aim of the present study was to determine the influence of age and habitual activity level, at rest and following a single bout of high-intensity exercise, on the levels of three proteins poly(ADP-ribose) polymerase-1 (PARP-1), cleaved-PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), involved in the DNA repair and cell death responses to stress and genotoxic insults. Muscle biopsies were obtained from the vastus lateralis of young trained (22 ± 3 years, n = 6), young untrained (24 ± 4 years, n = 6), old trained (64 ± 3 years, n = 6) and old untrained (65 ± 6 years, n = 6) healthy males before, immediately after and three days following a high-intensity interval exercise bout. PARP-1, which catalyzes poly(ADP-ribosyl)ation of proteins and DNA in response to a range of intrinsic and extrinsic stresses, was increased at baseline in old trained and old untrained compared with young trained and young untrained participants (P ≤ 0.05). Following exercise, PARP-1 levels remained unchanged in young trained participants, in contrast to old trained and old untrained where levels decreased and young untrained where levels increased (P ≤ 0.05). Interestingly, baseline levels of the cleaved PARP-1, a marker of apoptosis, and PARG, responsible for polymer degradation, were both significantly elevated in old untrained compared with old trained, young trained and young untrained (P ≤ 0.05). Despite this baseline difference in PARG, there was no change in any group following exercise. There was a non-significant statistical trend (P = 0.072) towards increased cleaved-PARP-1 expression post-exercise in younger but not old persons, regardless of training status. Collectively, these results show that exercise slows the progression towards a chronically stressed state but has no impact on the age-related attenuated response to acute exercise. Our findings provide valuable insight into how habitual exercise training could protect skeletal muscle from chronic damage to macromolecules and may reduce sarcopenia in older people.
Swift, Damon L; Dover, Sara E; Nevels, Tyara R; Solar, Chelsey A; Brophy, Patricia M; Hall, Tyler R; Houmard, Joseph A; Lutes, Lesley D
2015-11-01
Recent data has suggested that prolonged sedentary behavior is independent risk factor for cardiovascular and all-cause mortality independent of adequate amounts of moderate to vigorous physical activity. However, few studies have prospectively evaluated if exercise training and increasing non-exercise physical activity leads to greater reduction in cardiometabolic risk compared to aerobic training alone. The purpose of the Intervention Composed of Aerobic Training and Non-Exercise Physical Activity (I-CAN) study is to determine whether a physical activity program composed of both aerobic training (consistent with public health recommendations) and increasing non-exercise physical activity (3000 steps above baseline levels) leads to enhanced improvements in waist circumference, oral glucose tolerance, systemic inflammation, body composition, and fitness compared to aerobic training alone in obese adults (N=45). Commercially available accelerometers (Fitbits) will be used to monitor physical activity levels and behavioral coaching will be used to develop strategies of how to increase non-exercise physical activity levels. In this manuscript, we describe the design, rationale, and methodology associated with the I-CAN study. Copyright © 2015 Elsevier Inc. All rights reserved.
Yaylalı, Yalın Tolga; Fındıkoğlu, Gülin; Yurtdaş, Mustafa; Konukçu, Sibel; Şenol, Hande
2015-09-01
It is unclear which exercise training protocol yields superior heart rate recovery (HRR) improvement in heart failure (HF) patients. Whether baseline HRR normality plays a role in the improvement is unknown. We hypothesized that an exercise training protocol and baseline HRR normality would be factors in altering HRR in HF patients. In this prospective, randomized, controlled and 3 group parallel study, 41 stable HF patients were randomly assigned to 3-times-weekly training sessions for 12 weeks, consisting of i) 30 minutes of interval training (IT) (n=17, 63.7±8.8 years old) versus ii) 30 minutes of continuous training (CT) (n=13, 59.6±6.8 years old) versus iii) no training (CON) (n=11, 60.6±9.9 years old). Each patient had cardiopulmonary exercise testing before and after the training program. Maximum heart rates attained during the test and heart rates at 1 and 2 min (HRR1 and HRR2) during the recovery phase were recorded. Paired samples t-test or Wilcoxon signed-rank test was used for comparisons before and after training. One-way ANOVA or Kruskal-Wallis variance analysis was used for comparisons among groups. HRR1 was unchanged after training. HRR2 improved in the IT group after training, and post-training HRR2 values were significantly faster in the IT group than in controls. Both HRR1 and HRR2 was significantly faster, irrespective of exercise protocol in patients with abnormal baseline values after training. HRR1 did not improve after training. HRR2 improved only in the IT group. Both HRRs in patients with abnormal baseline values improved after both exercise protocols. IT might be superior to CT in improving HRR2. Baseline HRR might play a role in its response to exercise.
Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise
NASA Technical Reports Server (NTRS)
Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.
1996-01-01
We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.
Endurance exercise training induces fat depot-specific differences in basal autophagic activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Goki; Kato, Hisashi; Izawa, Tetsuya, E-mail: tizawa@mail.doshisha.ac.jp
The purpose of this study was to uncover the effect of exercise training on the expression of autophagy marker proteins in epididymal white adipose tissue (eWAT), inguinal WAT (iWAT), and the stromal vascular fraction (SVF) collected from eWAT. Male Wistar rats aged 4–5 weeks were randomly divided into two groups, sedentary control (n = 7) and exercise-trained (n = 7). Rats in the exercise-trained group were exercised on a treadmill set at a 5° incline 5 days/week for 9 weeks. We determined that the expression levels of an autophagosome-associating form of microtubule-associated protein 1 light chain 3 (LC3)-II and of p62 were significantly highermore » in eWAT from exercise-trained than from control rats, while those of adipose-specific deletion of autophagy-related protein (ATG7) and lysosomal-associated membrane protein type 2A (LAMP2a) showed no difference between groups. However, in iWAT, the expression levels of LC3-II and ATG7 were significantly higher in exercise-trained than in control rats. The expression of p62 was highly correlated with that of peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and lipid metabolism, in both WAT types (eWAT, r = 0.856, P < 0.05; iWAT, r = 0.762, P < 0.05), whereas LC3-II and PPARγ levels were highly correlated in eWAT (r = 0.765, P < 0.05) but not in iWAT (r = −0.306, ns). In SVF, the expression levels of LC3II, ATG7, and LAMP2a were significantly higher in exercise-trained than in control rats. These results suggest that exercise training suppresses basal autophagy activity in eWAT, but that this activity is enhanced in iWAT and SVF collected from eWAT. Thus, the adaptation of basal autophagic activity following exercise training exhibits fat depot-specific differences. - Highlights: • Autophagy has been associated with obesity and associated diseases. • We examined exercise-associated rat white adipose tissue (WAT) autophagy markers. • Exercise increased autophagosome associated LC3-II in WAT. • Exercise-induced changes in p62 and ATG7 were WAT-type specific. • Exercise-induced basal autophagic activity shows fat depot-specific differences.« less
Paes, Lorena da Silva; Borges, Juliana Pereira; dos Santos, Fernanda Monteiro; de Oliveira, Taciana Pinto; Dupin, Jaciara Gomes; Harris, Elizabeth Assumpção; Farinatti, Paulo
2015-01-01
Background : There is a lack of research investigating long-term effects of exercise training upon the body composition and muscle function in HIV-infected patients (PHIV). The study investigated the influence of a 2-year supervised exercise program on body composition and strength of PHIV under highly active antiretroviral therapy (HAART). Methods : A training program including aerobic, strength and flexibility exercises was performed by 27 PHIV (17 men/ 10 women; age: 48.7±7.0 years; HAART: 150.7±65.3 months) during 1 year and 18 PHIV (10 men/ 8 women; age: 50.6±5.2 years; HAART: 176.6±53.1 months) during 2 years. Body composition and knee isokinetic strength were assessed at baseline and at the end of each year of intervention. Results : Body composition remained stable along the whole experiment vs baseline (1-year - total muscle mass: Δ men=1.1%, P=0.21; Δ women=1.4%, P=0.06; trunk fat: Δ men=-0.1%, P=0.65; Δ women=-1.5%, P=0.45; 2 years - total muscle mass: Δ men=2.7%, P=0.54; Δ women=-1.9%, P=0.71; trunk fat: Δ men=4.4%, P=0.96; Δ women=10.0%, P=0.30). After 1-year, peak torque increased in men (Δ extension=4.2%, P=0.01; Δ flexion=12.2%, P=0.04) and total work reduced in women (Δ extension=-15.4%, P=0.01, Δ flexion=-17.5%, P=0.05). All strength markers remained stable vs baseline after 2 years of intervention (P>0.05). Only men showed significant reduction in the risk of disability due to sarcopenia (P=0.05) after 1 year of intervention, which remained stable after 2 years. Conclusion : Long-term exercise training preserved strength and muscle mass in PHIV under HAART. Exercise programs should be part of HIV therapy to prevent sarcopenia of this population along the years. Trial Registration : ACTRN12610000683033; UTN U1111-1116-4416. PMID:26587076
Platz, T; Eickhof, C; van Kaick, S; Engel, U; Pinkowski, C; Kalok, S; Pause, M
2005-10-01
To study the effects of augmented exercise therapy time for arm rehabilitation as either Bobath therapy or the impairment-oriented training (Arm BASIS training) in stroke patients with arm severe paresis. Single blind, multicentre randomized control trial. Three inpatient neurorehabilitation centres. Sixty-two anterior circulation ischaemic stroke patients. Random assignment to three group: (A) no augmented exercise therapy time, (B) augmented exercise therapy time as Bobath therapy and (C) augmented exercise therapy time as Arm BASIS training. Fugl-Meyer arm motor score. Secondary measure: Action Research Arm Test (ARA). Ancillary measures: Fugl-Meyer arm sensation and joint motion/pain scores and the Ashworth Scale (elbow flexors). An overall effect of augmented exercise therapy time on Fugl-Meyer scores after four weeks was not corroborated (mean and 95% confidence interval (CI) of change scores: no augmented exercise therapy time (n=20) 8.8, 5.2-12.3; augmented exercise therapy time (n=40) 9.9, 6.8-13.9; p = 0.2657). The group who received the augmented exercise therapy time as Arm BASIS training (n=20) had, however, higher gains than the group receiving the augmented exercise therapy time as Bobath therapy (n=20) (mean and 95% CI of change scores: Bobath 7.2, 2.6-11.8; BASIS 12.6, 8.4-16.8; p = 0.0432). Passive joint motion/pain deteriorated less in the group who received BASIS training (mean and 95% CI of change scores: Bobath -3.2, -5.2 to -1.1; BASIS 0.1, -1.8-2.0; p = 0.0090). ARA, Fugl-Meyer arm sensation, and Ashworth Scale scores were not differentially affected. The augmented exercise therapy time as Arm BASIS training enhanced selective motor control. Type of training was more relevant for recovery of motor control than therapeutic time spent.
Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H.
2018-01-01
Water pipe smoking is a tobacco smoking method commonly used in Eastern countries and is gaining popularity in Europe and North America, in particular among adolescents and young adults. Several clinical and experimental studies have reported that exposure to water pipe smoke (WPS) induces lung inflammation and impairment of pulmonary function. However, the mechanisms of such effects are not understood, as are data on the possible palliative effect of exercise training. The present study evaluated the effects of regular aerobic exercise training (treadmill: 5 days/week, 40 min/day) on subchronic exposure to WPS (30 minutes/day, 5 days/week for 2 months). C57BL/6 mice were exposed to air or WPS with or without exercise training. Airway resistance measured using forced oscillation technique was significantly and dose-dependently increased in the WPS-exposed group when compared with the air-exposed one. Exercise training significantly prevented the effect of WPS on airway resistance. Histologically, the lungs of WPS-exposed mice had focal moderate interstitial inflammatory cell infiltration consisting of neutrophil polymorphs, plasma cells, and lymphocytes. There was a mild increase in intra-alveolar macrophages and a focal damage to alveolar septae in some foci. Exercise training significantly alleviated these effects and also decreased the WPS-induced increase of tumor necrosis factor α and interleukin 6 concentrations and attenuated the increase of 8-isoprostane in lung homogenates. Likewise, the lung DNA damage induced by WPS was significantly inhibited by exercise training. Moreover, exercise training inhibited nuclear factor kappa-B (NF-κB) expression induced by WPS and increased that of nuclear factor erythroid 2-related factor 2 (Nrf2). Our findings suggest that exercise training significantly mitigated WPS-induced increase in airway resistance, inflammation, oxidative stress, and DNA damage via mechanisms that include inhibiting NF-κB and activating Nrf2 signalling pathways. PMID:29692875
Nemet, Dan; Eliakim, Alon
2010-01-01
Physical activity plays an important role in tissue anabolism, growth and development, but the mechanisms that link patterns of exercise with tissue anabolism are not completely understood. The effectiveness of physical training depends on the training load and on the individual ability to tolerate it, and an imbalance between the two may lead to under or over-training. Therefore, many efforts have been made to find objective parameters to quantify the balance between training load and the athlete's tolerance. One of the unique features of exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise stimulates anabolic components of the growth hormone (GH) → IGF-1 (insulin-like growth factor-1) axis. On the other hand, exercise elevates catabolic pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-1 and tumor necrosis factor-α (TNF-α). This emphasizes probably the importance of optimal adaptation to exercise in particularly during adolescence. The very fine balance between the anabolic and inflammatory/catabolic response to exercise will determine the effectiveness of exercise training and the health consequences of exercise. If the anabolic response is stronger, exercise will probably lead ultimately to increased muscle mass and improved fitness. A greater catabolic response, in particularly if persists for long duration, may lead to overtraining. Therefore, changes in the anabolic-catabolic hormonal balance and in circulating inflammatory cytokines can be used by adolescent athletes and/or their coaches to gauge the training intensity in individual and team sports. Copyright © 2010 S. Karger AG, Basel.
2010-01-01
Background A mismatch between individual physical capacities and physical work demands enhance the risk for musculoskeletal disorders, poor work ability and sickness absence, termed physical deterioration. However, effective intervention strategies for preventing physical deterioration in job groups with high physical demands remains to be established. This paper describes the background, design and conceptual model of the FINALE programme, a framework for health promoting interventions at 4 Danish job groups (i.e. cleaners, health-care workers, construction workers and industrial workers) characterized by high physical work demands, musculoskeletal disorders, poor work ability and sickness absence. Methods/Design A novel approach of the FINALE programme is that the interventions, i.e. 3 randomized controlled trials (RCT) and 1 exploratory case-control study are tailored to the physical work demands, physical capacities and health profile of workers in each job-group. The RCT among cleaners, characterized by repetitive work tasks and musculoskeletal disorders, aims at making the cleaners less susceptible to musculoskeletal disorders by physical coordination training or cognitive behavioral theory based training (CBTr). Because health-care workers are reported to have high prevalence of overweight and heavy lifts, the aim of the RCT is long-term weight-loss by combined physical exercise training, CBTr and diet. Construction work, characterized by heavy lifting, pushing and pulling, the RCT aims at improving physical capacity and promoting musculoskeletal and cardiovascular health. At the industrial work-place characterized by repetitive work tasks, the intervention aims at reducing physical exertion and musculoskeletal disorders by combined physical exercise training, CBTr and participatory ergonomics. The overall aim of the FINALE programme is to improve the safety margin between individual resources (i.e. physical capacities, and cognitive and behavioral skills) and physical work demands, and thereby reduce the physical deterioration in a long term perspective by interventions tailored for each respective job-group. Discussion The FINALE programme has the potential to provide evidence-based knowledge of significant importance for public health policy and health promotion strategies for employees at high risk for physical deterioration. Trial registrations ISRCTN96241850, NCT01015716 and NCT01007669 PMID:20214807
Blood flow restriction training and the exercise pressor reflex: a call for concern.
Spranger, Marty D; Krishnan, Abhinav C; Levy, Phillip D; O'Leary, Donal S; Smith, Scott A
2015-11-01
Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. Therefore, the premise of BFR training is to simulate and receive the benefits of high-intensity resistance exercise while merely performing low-intensity resistance exercise. This technique has also been purported to provide health benefits to the elderly, individuals recovering from joint injuries, and patients undergoing cardiac rehabilitation. Since the seminal work of Alam and Smirk in the 1930s, it has been well established that reductions in blood flow to exercising muscle engage the exercise pressor reflex (EPR), a reflex that significantly contributes to the autonomic cardiovascular response to exercise. However, the EPR and its likely contribution to the BFR-mediated cardiovascular response to exercise is glaringly missing from the scientific literature. Inasmuch as the EPR has been shown to generate exaggerated increases in sympathetic nerve activity in disease states such as hypertension (HTN), heart failure (HF), and peripheral artery disease (PAD), concerns are raised that BFR training can be used safely for the rehabilitation of patients with cardiovascular disease, as has been suggested. Abnormal BFR-induced and EPR-mediated cardiovascular complications generated during exercise could precipitate adverse cardiovascular or cerebrovascular events (e.g., cardiac arrhythmia, myocardial infarction, stroke and sudden cardiac death). Moreover, although altered EPR function in HTN, HF, and PAD underlies our concern for the widespread implementation of BFR, use of this training mechanism may also have negative consequences in the absence of disease. That is, even normal, healthy individuals performing resistance training exercise with BFR are potentially at increased risk for deleterious cardiovascular events. This review provides a brief yet detailed overview of the mechanisms underlying the autonomic cardiovascular response to exercise with BFR. A more complete understanding of the consequences of BFR training is needed before this technique is passively explored by the layman athlete or prescribed by a health care professional. Copyright © 2015 the American Physiological Society.
An exploration of exercise training effects in coronary heart disease.
Piperidou, Eleana; Bliss, Julie
2008-06-01
Coronary Heart Disease (CHD) remains the most common cause of death and disability in many developed and developing countries. The evidence presented so far, clearly shows that exercise training leads to favourable improvements in exercise capacity, lipid levels, weight and psychosocial variables for CHD patients. Nevertheless, despite recommendations and government support, the lack of physical activity remains a major health problem, particularly for people with established CHD. The aim of this review was to explore the effects of exercise training on physical and psychosocial function among CHD patients, by analysing the content of relevant research reports. The findings showed that although there is sufficient evidence that exercise training has a number of effects that are beneficial in treatment and secondary prevention of CHD, different aspects of exercise characteristics (mode, frequency, intensity and duration) for different cardiac patient groups, warrant additional investigation.
Suppressed heat shock protein response in the kidney of exercise-trained diabetic rats.
Lappalainen, J; Oksala, N K J; Laaksonen, D E; Khanna, S; Kokkola, T; Kaarniranta, K; Sen, C K; Atalay, M
2018-07-01
Impaired expression of heat shock proteins (HSPs) and increased oxidative stress may contribute to the pathophysiology of diabetes by disrupted tissue protection. Acute exercise induces oxidative stress, whereas exercise training up-regulates endogenous antioxidant defenses and HSP expression. Although diabetic nephropathy is a major contributor to diabetic morbidity, information regarding the effect of HSPs on kidney protection is limited. This study evaluated the effects of eight-week exercise training on kidney HSP expression and markers of oxidative stress at rest and after acute exercise in rats with or without streptozotocin-induced diabetes. Induction of diabetes increased DNA-binding activity of heat shock factor-1, but decreased the expression of HSP72, HSP60, and HSP90. The inflammatory markers IL-6 and TNF-alpha were increased in the kidney tissue of diabetic animals. Both exercise training and acute exercise increased HSP72 and HSP90 protein levels only in non-diabetic rats. On the other hand, exercise training appeared to reverse the diabetes-induced histological changes together with decreased expression of TGF-beta as a key inducer of glomerulosclerosis, and decreased levels of IL-6 and TNF-alpha. Notably, HSP72 and TGF-beta were negatively correlated. In conclusion, impaired HSP defense seems to contribute to kidney injury vulnerability in diabetes and exercise training does not up-regulate kidney HSP expression despite the improvements in histopathological and inflammatory markers. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The effect of preseason training on mucosal immunity in male basketball players.
Azarbayjani, M; Nikbakht, H; Rasaee, M J
2011-12-01
This study examined the effects of pre season training on restring level and acute response of mucosal immunity in male basketball players. Twenty male basketball players performed 8 weeks progressive exercise training, consisting of interval and continuous parts. Five mL un-stimulated saliva was collected from each subject before, immediately and one hour after the end of one bout of exercise to exhaustion on treadmill at the beginning of the first week and end of 8 weeks to determine the acute responses. At the beginning of each 2 weeks (resting state) induced changes in basal mucosal immunity was evaluated. The concentration of sIgA and total protein was measured by the ELISA and Bradford methods respectively. One bout exercise training at beginning of first week decreased significantly sIgA level but not at the end of 8th week. Total protein did not change significantly at 1st week after exercise, but at eight week significantly increased and remained at high level until one hour after exercise. sIgA to total protein ratio at first week significantly decreased and remained constant one hour after exercise. At the eight week sIgA decreased significantly immediately after exercise and remained low until one hour after exercise. The comparison of sIgA and total protein levels indicates significant decrease after eight weeks training. These results suggest that repetition of single bout of exercise training have a cumulative effect on the mucosal immune system.
Dedov, Vadim N; Dedova, Irina V
2015-11-23
Recent advances in information and communication technology have prompted development of Web-based health tools to promote physical activity, the key component of cardiac rehabilitation and chronic disease management. Mobile apps can facilitate behavioral changes and help in exercise monitoring, although actual training usually takes place away from the point of care in specialized gyms or outdoors. Daily participation in conventional physical activities is expensive, time consuming, and mostly relies on self-management abilities of patients who are typically aged, overweight, and unfit. Facilitation of sustained exercise training at the point of care might improve patient engagement in cardiac rehabilitation. In this study we aimed to test the feasibility of execution and automatic monitoring of several exercise regimens on-site using a Web-enabled leg training system. The MedExercise leg rehabilitation machine was equipped with wireless temperature sensors in order to monitor its usage by the rise of temperature in the resistance unit (Δt°). Personal electronic devices such as laptop computers were fitted with wireless gateways and relevant software was installed to monitor the usage of training machines. Cloud-based software allowed monitoring of participant training over the Internet. Seven healthy participants applied the system at various locations with training protocols typically used in cardiac rehabilitation. The heart rates were measured by fingertip pulse oximeters. Exercising in home chairs, in bed, and under an office desk was made feasible and resulted in an intensity-dependent increase of participants' heart rates and Δt° in training machine temperatures. Participants self-controlled their activities on smart devices, while a supervisor monitored them over the Internet. Individual Δt° reached during 30 minutes of moderate-intensity continuous training averaged 7.8°C (SD 1.6). These Δt° were used as personalized daily doses of exercise with automatic email alerts sent upon achieving them. During 1-week training at home, automatic notifications were received on 4.4 days (SD 1.8). Although the high intensity interval training regimen was feasible on-site, it was difficult for self- and remote management. Opportunistic leg exercise under the desk, while working with a computer, and training in bed while viewing television were less intensive than dosed exercise bouts, but allowed prolonged leg mobilization of 73.7 minutes/day (SD 29.7). This study demonstrated the feasibility of self-control exercise training on-site, which was accompanied by online monitoring, electronic recording, personalization of exercise doses, and automatic reporting of adherence. The results suggest that this technology and its applications are useful for the delivery of Web-based exercise rehabilitation and cardiac training programs at the point of care. ©Vadim N Dedov, Irina V Dedova. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 23.11.2015.
Exercise-Induced Oxidative Stress Responses in the Pediatric Population
Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.
2017-01-01
Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721
A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.
Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi
2010-09-01
Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.
Exercise training enhances aerobic capacity in juvenile estuarine crocodiles (Crocodylus porosus).
Owerkowicz, Tomasz; Baudinette, Russell V
2008-06-01
Aerobic capacity (VO2max) of endothermic vertebrates is known to increase with exercise training, but this effect has not been found to-date in non-avian reptiles. We exercised juvenile estuarine crocodiles (Crocodylus porosus) to walk at 0.75-0.88 km/h on a treadmill for up to 20 min a day over 16 weeks, and compared their aerobic performance with that of unexercised crocodiles. In the exercised group, VO2max increased from 6.9 to 8.5 mLO2/kg/min (+28%), and locomotor endurance increased from 3.8 to 6.9 min (+82%). Neither VO2max nor endurance changed significantly in the sedentary group. This finding extends the exercise training effect onto another vertebrate clade, and demonstrates that ectothermic amniotes are capable of elevating their aerobic capacity in response to exercise training. We propose that differences in cardiopulmonary structure and function in non-avian reptiles may be responsible for the absence (in squamates) or presence (in crocodilians) of a strong training effect on aerobic capacity.
Promoting training adaptations through nutritional interventions.
Hawley, John A; Tipton, Kevin D; Millard-Stafford, Mindy L
2006-07-01
Training and nutrition are highly interrelated in that optimal adaptation to the demands of repeated training sessions typically requires a diet that can sustain muscle energy reserves. As nutrient stores (i.e. muscle and liver glycogen) play a predominant role in the performance of prolonged, intense, intermittent exercise typical of the patterns of soccer match-play, and in the replenishment of energy reserves for subsequent training sessions, the extent to which acutely altering substrate availability might modify the training impulse has been a key research area among exercise physiologists and sport nutritionists for several decades. Although the major perturbations to cellular homeostasis and muscle substrate stores occur during exercise, the activation of several major signalling pathways important for chronic training adaptations take place during the first few hours of recovery, returning to baseline values within 24 h after exercise. This has led to the paradigm that many chronic training adaptations are generated by the cumulative effects of the transient events that occur during recovery from each (acute) exercise bout. Evidence is accumulating that nutrient supplementation can serve as a potent modulator of many of the acute responses to both endurance and resistance training. In this article, we review the molecular and cellular events that occur in skeletal muscle during exercise and subsequent recovery, and the potential for nutrient supplementation (e.g. carbohydrate, fat, protein) to affect many of the adaptive responses to training.
STS-135 crew during Rendezvous Training session in Building 16 dome
2011-03-23
JSC2011-E-028144 (23 March 2011) --- NASA astronauts Chris Ferguson (left foreground), STS-135 commander; Doug Hurley (left background), pilot; and Sandy Magnus (left), mission specialist, speak with news media representatives during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration
Donato, Anthony J.; Uberoi, Abhimanyu; Bailey, Damian M.; Walter Wray, D.
2010-01-01
Aging, vascular function, and exercise are thought to have a common link in oxidative stress. Of the 28 subjects studied (young, 26 ± 2 yr; old, 71 ± 6 yr), 12 took part in a study to validate an antioxidant cocktail (AOC: vitamins C, E, and α-lipoic acid), while the remaining 8 young and 8 old subjects performed submaximal forearm handgrip exercise with placebo or AOC. Old subjects repeated forearm exercise with placebo or AOC following knee-extensor (KE) exercise training. Brachial arterial diameter and blood velocity (Doppler ultrasound) were measured at rest and during exercise. During handgrip exercise, brachial artery vasodilation in the old subjects was attenuated compared with that in young subjects following placebo (maximum = ∼3.0 and ∼6.0%, respectively). In contrast to the previously documented attenuation in exercise-induced brachial artery vasodilation in the young group with AOC, in the old subjects the AOC restored vasodilation (maximum = ∼7.0%) to match the young. KE training also improved exercise-induced brachial artery vasodilation. However, in the trained state, AOC administration no longer augmented brachial artery vasodilation in the elderly, but rather attenuated it. These data reveal an age-related pro-/antioxidant imbalance that impacts vascular function and show that exercise training is capable of restoring equilibrium such that vascular function is improved and the AOC-mediated reduction in free radicals now negatively impacts brachial artery vasodilation, as seen in the young. PMID:19966056
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.
2016-03-08
Abstract Several hundred simulated radioxenon beta-gamma data files were developed to assist in evaluating the performance and results from radioxenon concentration calculation analysis at the International Data Center (IDC) and other National Data Centers (NDC). PNNL developed a Beta-Gamma Simulator (BGSim) that incorporated GEANT-modeled data sets from radioxenon decay chains, as well as functionality to use nuclear detector-acquired data sets to create new beta-gamma spectra with varying amounts of background, 133Xe, 131mXe, 133mXe, 135Xe, and 222Rn and its decay products. The program has been implemented on a web-based applications platform and allows the user to create very specific data setsmore » that incorporate most of the operational parameters for the current beta-gamma systems deployed in the International Monitoring System (IMS) and the On-site Inspection (OSI) equipment. After an initial beta-gamma simulations program was developed, additional uses began to be identified for the program output: training sets of two-dimensional spectra for data analysts at the IDC and other NDC, spectra for exercises such as the Integrated Field Exercise 2014 (IFE14) held in Jordan at the Dead Sea, and testing new analysis methods and algorithms« less
Exercise Training and Bone Mineral Density.
ERIC Educational Resources Information Center
Lohman, Timothy G.
1995-01-01
The effect of exercise on total and regional bone mineral density (BMD) in postmenopausal women is reviewed. Studies on non-estrogen-replete postmenopausal women show 1-2% changes in regional BMD with 1 year of weight-bearing exercises. Studies of exercise training in the estrogen-replete postmenopausal population suggest large BMD changes.…