Science.gov

Sample records for background explorer cobe

  1. The Cosmic Background Explorer /COBE/

    NASA Technical Reports Server (NTRS)

    Mather, J. C.

    1982-01-01

    The Cosmic Background Explorer (COBE) satellite, under study by NASA since 1976, will map the spectrum and the angular distribution of diffuse radiation from the universe over the entire wavelength range from 1 micron to 1.3 cm. It carries three instruments: a set of differential microwave radiometers (DMR) at 23.5, 31.4, 53, and 90GHz, a far infrared absolute spectrophotometer (FIRAS) covering 1 to 100 per cm, and a diffuse infrared background experiment (DIRBE) covering 1 to 300 microns. They will use the ideal space environment, a one year lifetime, and standard instrument techniques to achieve orders of magnitude improvements in sensitivity and accuracy, providing a fundamental data base for cosmology. The instruments are united by common purpose as well as similar environmental and orbital requirements. The data from all three experiments will be analyzed together, to distinguish nearby sources of radiation from the cosmologically interesting diffuse background radiations. Construction is planned to begin in 1982 for a launch in 1988.

  2. Cosmic Background Explorer (COBE) press kit

    NASA Technical Reports Server (NTRS)

    1989-01-01

    COBE, the Cosmic Background Explorer spacecraft, and its mission are described. COBE was designed to study the origin and dynamics of the universe including the theory that the universe began with a cataclysmic explosion referred to as the Big Bang. To this end, earth's cosmic background - the infrared radiation that bombards earth from every direction - will be measured by three sophisticated instruments: the Differential Microwave Radiometer (DMR), the Far Infrared Absolute Spectrophotometer (FIRAS), and the Diffuse Infrared Background Experiment (DIRBE).

  3. Cosmic Background Explorer (COBE): Emergency support

    NASA Technical Reports Server (NTRS)

    Stanford, R.; Mattson, R.

    1991-01-01

    The Cosmic Background Explorer (COBE) Mission will measure the diffuse radiation from the universe in the wavelength band 1 micron to 9.6 mm. The band includes the 3 K cosmic background radiation, the known relic of the primeval cosmic explosion. The COBE satellite will be launched from the Western Space and Missile Center (EWSMC) via a Delta launch vehicle into a circular parking orbit of about 300 km. COBE will be placed into a 900-km altitude circular orbit. Coverage will be provided by the Deep Space Network (DSN) for COBE emergencies that would prevent communications via the normal channels of the Tracking and Data Relay Satellite System (TDRSS). Emergency support will be provided by the DSN 26-m subnetwork. Information is given in tabular form for DSN network support, frequency assignments, telemetry, and command.

  4. Cosmology and the Cosmic Background Explorer (COBE)

    NASA Technical Reports Server (NTRS)

    Boggess, Nancy W.

    1989-01-01

    COBE, planned for launch aboard a Delta rocket, is NASA's first space mission specifically designed to study the diffuse IR and microwave background radiation. COBE has three instruments for performing precision measurements of the spectrum and angular distribution of the 3 K cosmic background radiation and for making an all-sky survey of the diffuse IR emission at wavelengths of 1-300 microns. COBE will carry differential microwave radiameters to search for anisotropies to a sensitivity per 7-deg pixel of 0.15 mK at frequencies of 53 and 90 GHz and of 0.3 mK at 32 GHz.

  5. Scientific results from the Cosmic Background Explorer (COBE)

    PubMed Central

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Smoot, G. F.; Weiss, R.; Wright, E. L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. PMID:11607383

  6. Science objectives lead to contamination requirements for the Cosmic Background Explorer (COBE)

    NASA Technical Reports Server (NTRS)

    Abrams, Eve M.; Carosso, Nancy J. P.

    1990-01-01

    The mission aims and related requirements of the Cosmic Background Explorer (COBE) are described in order to assess the measure needed for adequate control of optical system contamination. Instrument requirements are set forth so that the Diffuse IR Background Experiment (DIRBE), the Far IR Absolute Spectrophotometer (FIRAS), and the Differential Microwave Radiometers (DMRs) can achieve performance goals. The BRDF requirement for the primary mirror of the DIRBE is a maximum change of 50 percent on clean versus contaminated mirrors. The most critical components of the FIRAS and the DMR are discussed which are the sky horn and the antennae throats, respectively. The contamination-control devices include contamination covers, cleanroom assembly, and retractable cover assembly. The COBE is not found to perform unreliably due to contamination problems which suggests that the contamination program is effective.

  7. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    NASA Technical Reports Server (NTRS)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.

    1990-01-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.

  8. Anomalous on-orbit behaviour of the NASA Cosmic Background Explorer (COBE) Dewar

    NASA Technical Reports Server (NTRS)

    Volz, S. M.; Dipirro, M. J.

    1992-01-01

    A brief summary of the nominal cryogenic performance of the Dewar is presented, with emphasis on several aspects of the helium and spacecraft dynamical behavior. The occurrence of temperature and pressure oscillators in the Dewar porous plug is examined. The impact of the internal instrument malfunctions and of external radiation sources on the performance of the Dewar and of the instruments is reviewed. From measurements of the COBE spacecraft spin rate, the spin coupling of the liquid helium to the walls of the Dewar was monitored. The spin measurements are analyzed and a model for the coupling is presented. A number of 'lessons learned' from the COBE mission are reviewed, and the applicability of these lessons to future missions involving cryogenic payloads is addressed.

  9. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  10. Cosmic background explorer (COBE) navigation with TDRSS one-way return-link Doppler in the post-helium-venting phase

    NASA Technical Reports Server (NTRS)

    Nemesure, M.; Dunham, J.; Maher, M.; Teles, J.; Jackson, J.

    1991-01-01

    A navigation experiment was performed which establishes Ultra-Stable Oscillator (USO) frequency stabilized one way return link Doppler TDRSS tracking data as a feasible option for mission orbit determination support at the Goddard Space Center Flight Dynamics Facility. The study was conducted using both one way and two way Tracking and Data Relay Satellite System (TDRSS) tracking measurements for the Cosmic Background Explorer (COBE) spacecraft. Tracking data for a 4 week period immediately follow the depletion of the helium supply was used. The study showed that, for both definitive orbit solution and short term orbit prediction (up to 4 weeks), orbit determination results based on one way return link Doppler tracking measurements are comparable to orbit determination results based on two way range and two way Doppler tracking measurements.

  11. Search for the Cosmic Infrared Background Radiation using COBE Data

    NASA Technical Reports Server (NTRS)

    Hauser, Michael

    2001-01-01

    This project was initiated to allow completion of the primary investigation of the Diffuse Infrared Background Experiment (DIRBE) on NASA's Cosmic Background Explorer (CORE) mission, and to study the implications of those findings. The Principal Investigator (PI) on this grant was also the Principal Investigator on the DIRBE team. The project had two specific goals: Goal 1: Seek improved limits upon, or detections of, the cosmic infrared background radiation using data from the COBE Diffuse Infrared Background Experiment (DIRBE). Goal 2: Explore the implications of the limits and measured values of the cosmic infrared background for energy releases in the Universe since the formation of the first luminous sources. Both of these goals have been successfully accomplished.

  12. Microwave and theoretical studies for Cosmic Background Explorer satellite

    NASA Technical Reports Server (NTRS)

    Wilkinson, D. T.

    1983-01-01

    The Cosmic Background Explorer (COBE) satellite, its instruments, and its scientific mission are discussed. The COBE radiometer is considered, and measurement of galactic radio emission with masers is reviewed. Extragalactic radiation and zodiacal dust are mentioned briefly.

  13. One-way return-link Doppler navigation with the Tracking and Data Satellite System (TDRSS) - The ultrastable oscillator (USO) experiment on the Cosmic Background Explorer (COBE)

    NASA Technical Reports Server (NTRS)

    Dunham, J. B.; Nemesure, M.; Teles, J.; Brown-Conwell, E. R.; Jackson, J. A.; Reamy, V. L.; Maher, M. J.; Elrod, B. D.

    1990-01-01

    The principal objectives of the USO experiment on the COBE spacecraft are defined, and results of space qualification studies for the COBE USO experiment are summarized. The principal objectives of the experiment are: (1) to determine flight performance of the USO coupled to the second-generation TDRSS transponder; (2) space qualify TDRSS noncoherent one-way return-link Doppler tracking; and (3) analyze algorithms for one-way navigation with real data. The three objectives of the experiment have been met in the first stage of the experiment analysis.

  14. COBE: 20 Years Ago

    NASA Video Gallery

    NASA's Cosmic Background Explorer (COBE) satellite rocketed into Earth orbit on Nov. 18, 1989, and quickly revolutionized our understanding of the early cosmos. This archival video was reissued by ...

  15. Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.

  16. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument

    NASA Technical Reports Server (NTRS)

    Mather, J. C.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Fixsen, D. J.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Meyer, S. S.; Noerdlinger, P. D.

    1994-01-01

    The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).

  17. The cosmic background explorer

    SciTech Connect

    Gulkis, G. ); Lubin, P.M. ); Meyer, S.S. ); Silverberg, R.F.

    1990-01-01

    Late last year the National Aeronautics and Space Administration launched its first satellite dedicated to the study of phenomena related to the origins of the universe. The satellite, called the Cosmic Background Explorer (COBE), carries three complementary detectors that will make fundamental measurements of the celestial radiation. Part of that radiation is believed to have originated in processes that occurred at the very dawn of the universe. By measuring the remnant radiation at wavelengths from one micrometer to one centimeter across the entire sky, scientists hope to be able to solve many mysteries regarding the origin and evolution of the early universe. Unfortunately, these radiative relics of the early universe are weak and veiled by local astrophysical and terrestrial sources of radiation. The wavelengths of the various cosmic components may also overlap, thereby making the understanding of the diffuse celestial radiation a challenge. Nevertheless, the COBE instruments, with their full-sky coverage, high sensitivity to a wide range of wavelengths and freedom from interference from the earth's atmosphere, will constitute for astrophysicists an observatory of unprecedented sensitivity and scope. The interesting cosmic signals will then be separated from one another and from noncosmic radiation sources by a comprehensive analysis of the data.

  18. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.

    1992-01-01

    The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.

  19. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  20. The {ital COBE} Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections

    SciTech Connect

    Hauser, M.G.; Arendt, R.G.; Kelsall, T.; Dwek, E.; Odegard, N.; Weiland, J.L.; Freudenreich, H.T.; Reach, W.T.; Pei, Y.C.; Lubin, P.; Mather, J.C.; Shafer, R.A.; Smoot, G.F.; Weiss, R.; Wilkinson, D.T.; Wright, E.L.

    1998-11-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer ({ital COBE}) spacecraft was designed primarily to conduct a systematic search for an isotropic cosmic infrared background (CIB) in 10 photometric bands from 1.25 to 240 {mu}m. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 {mu}m ({nu}{ital I}{sub {nu}} {lt} 64 nW m{sup {minus}2} sr{sup {minus}1}, 95{percent} confidence level) and at 240 {mu}m ({nu}{ital I}{sub {nu}} {lt} 28 nW m{sup {minus}2} sr{sup {minus}1}, 95{percent} confidence level). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 {mu}m data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 {mu}m. No plausible solar system or Galactic source of the observed 140 and 240 {mu}m residuals can be identified, leading to the conclusion that the CIB has been detected at levels of {nu}{ital I}{sub {nu}} = 25 {plus_minus} 7 and 14 {plus_minus} 3 nW m{sup {minus}2} sr{sup {minus}1} at 140 and 240 {mu}m, respectively. The integrated energy from 140 to 240 {mu}m, 10.3 nW m{sup {minus}2} sr{sup {minus}1}, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust

  1. Cold dark matter and degree-scale cosmic microwave background anisotropy statistics after COBE

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Stompor, Radoslaw; Juszkiewicz, Roman

    1993-01-01

    We conduct a Monte Carlo simulation of the cosmic microwave background (CMB) anisotropy in the UCSB South Pole 1991 degree-scale experiment. We examine cold dark matter cosmology with large-scale structure seeded by the Harrison-Zel'dovich hierarchy of Gaussian-distributed primordial inhomogeneities normalized to the COBE-DMR measurement of large-angle CMB anisotropy. We find it statistically implausible (in the sense of low cumulative probability F lower than 5 percent, of not measuring a cosmological delta-T/T signal) that the degree-scale cosmological CMB anisotropy predicted in such models could have escaped a detection at the level of sensitivity achieved in the South Pole 1991 experiment.

  2. COBE looks back to the Big Bang

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    1993-01-01

    An overview is presented of NASA-Goddard's Cosmic Background Explorer (COBE), the first NASA satellite designed to observe the primeval explosion of the universe. The spacecraft carries three extremely sensitive IR and microwave instruments designed to measure the faint residual radiation from the Big Bang and to search for the formation of the first galaxies. COBE's far IR absolute spectrophotometer has shown that the Big Bang radiation has a blackbody spectrum, proving that there was no large energy release after the explosion.

  3. Near- and far-infrared observations of interplanetary dust bands from the COBE diffuse infrared background experiment

    NASA Technical Reports Server (NTRS)

    Spiesman, William J.; Hauser, Michael G.; Kelsall, Thomas; Lisse, Carey M.; Moseley, S. Harvey, Jr.; Reach, William T.; Silverberg, Robert F.; Stemwedel, Sally W.; Weiland, Janet L.

    1995-01-01

    Data from the Diffuse Infrared Background Experiment (DIRBE) instrument aboard the Cosmic Background Explorer Satellite (COBE) spacecraft have been used to examine the near and far infrared signatures of the interplanetary dust (IPD) bands. Images of the dust band pairs at ecliptic latitudes of +/- 1.4 deg and +/- 10 deg have been produced at DIRBE wavelengths from 1.25 to 100 micrometers. The observations at the shorter wavelengths provide the first evidence of scattered sunlight from particles responsible for the dust bands. It is found that the grains in the bands and those in the smooth IPD cloud have similar spectral energy distributions, suggesting similar compositions and possibly a common origin. The scattering albedos from 1.25 to 3.5 micrometers for the grains in the dust bands and those in the IPD cloud are 0.22 and 0.29, respectively. The 10 deg band pair is cooler (185 +/- 10 K) than the smooth interplanetary dust cloud (259 +/- 10 K). From both parallactic and thermal analyses, the implied location of the grains responsible for the peak brightness of the 10 deg band pair is 2.1 +/- 0.1 AU the Sun A parallactic distance of 1.4 +/- 0.2 AU is found for the peak of the 1.4 deg band pair.

  4. A Study of External Galaxies Detected by the {ital COBE} Diffuse Infrared Background Experiment

    SciTech Connect

    Odenwald, S.; Newmark, J.; Smoot, G.

    1998-06-01

    A comparison of the {ital COBE} Diffuse Infrared Background Experiment (DIRBE) all-sky survey with the locations of known galaxies in the {ital IRAS} Catalog of Extragalactic Objects and the Center for Astrophysics Catalog of Galaxies led to the detection of as many as 57 galaxies. In this paper, we present the photometric data for these galaxies and an analysis of the seven galaxies that were detected at {lambda} {gt} 100 {mu}m. Estimates of the ratio of the mass of the cold dust (CD) component detected at {ital T}{sub {ital d}} = 20{endash}30 K to a very cold dust (VCD) component with {ital T}{sub {ital d}} {approx} 10{endash}15 K suggest that between 2{percent}{endash}100{percent} of the cirrus-like CD mass can also exist in many of these galaxies as VCD. In one galaxy, M33, the DIRBE photometry at 240 {mu}m suggests as much as 26 times as much VCD may be present as compared to the cirrus-like component. Further submillimeter measurements of this galaxy are required to verify such a large population of VCD. We also present 10 galaxies that were detected in the sky region not previously surveyed by {ital IRAS} and that can be used to construct a flux-limited all-sky catalog of galaxies brighter than 1000 Jy with a modest completeness limit of about 65{percent}. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  5. Determination of the Far-Infrared Cosmic Background Using COBE/DIRBE and WHAM Data

    NASA Technical Reports Server (NTRS)

    Odegard, N.; Arendt, R. G.; Dwek, E.; Haffner, L. M.; Hauser, M. G.; Reynolds, R. J.

    2007-01-01

    Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of the far infrared CIB (e.g., Hauser et al. 1998) were based on the detection of residual isotropic emission in skymaps from which the emission from interplanetary dust and the neutral interstellar medium were removed. In this paper we use the Wisconsin H(alpha) Mapper (WHAM) Northern Sky Survey as a tracer of the ionized medium to examine the effect of this foreground component on determination of the CIB. We decompose the DIRBE far infrared data for five high Galactic latitude regions into HI- and H(alpha)- correlated components and a residual component. Eased on FUSE H2 absorption line observations, the contribution of a11 H2-correlated component is expected to he negligible. We find the H(alpha)-correlated component to be consistent with zero for each region, and we find that addition of an H(alpha)-correlated component in modeling the foreground emission has negligible effect on derived CIB results. Our CIB detections and 2(sigma) upper limits are essentially the same as those derived by Hauser et al. and are given by (nu)I(sub nu)(nW/sq m/sr) < 75, < 32, 25+/-8, and 13+/-3 at gamma = 60, 100, 140, and 240 microns, respectively. Our residuals have not been subjected to a detailed anisotropy test, so our CIB results do not supersede those of Hauser et al. Mie derive upper limits on the 100 micron emissivity of the ionized medium that are typically about 40% of the 100 micron emissivity of the neutral atomic medium. This low value may be caused in part by a lower dust-to-gas mass ratio in the ionized medium than in the neutral medium, and in part by a shortcoming of using H(alpha) intensity as a tracer of far infrared emission. If H(alpha) is not a reliable tracer, our analysis would underestimate the emissivity of

  6. Will COBE challenge the inflationary paradigm - Cosmic microwave background anisotropies versus large-scale streaming motions revisited

    SciTech Connect

    Gorski, K.M. )

    1991-03-01

    The relation between cosmic microwave background (CMB) anisotropies and large-scale galaxy streaming motions is examined within the framework of inflationary cosmology. The minimal Sachs and Wolfe (1967) CMB anisotropies at large angular scales in the models with initial Harrison-Zel'dovich spectrum of inhomogeneity normalized to the local large-scale bulk flow, which are independent of the Hubble constant and specific nature of dark matter, are found to be within the anticipated ultimate sensitivity limits of COBE's Differential Microwave Radiometer experiment. For example, the most likely value of the quadrupole coefficient is predicted to be a2 not less than 7 x 10 to the -6th, where equality applies to the limiting minimal model. If (1) COBE's DMR instruments perform well throughout the two-year period; (2) the anisotropy data are not marred by the systematic errors; (3) the large-scale motions retain their present observational status; (4) there is no statistical conspiracy in a sense of the measured bulk flow being of untypically high and the large-scale anisotropy of untypically low amplitudes; and (5) the low-order multipoles in the all-sky primordial fireball temperature map are not detected, the inflationary paradigm will have to be questioned. 19 refs.

  7. The gravitational wave contribution to cosmic microwave background anisotropies and the amplitude of mass fluctuations from COBE results

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia

    1992-01-01

    A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.

  8. COBE On-Orbit Engineering Performance, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Cosmic Background Explorer (COBE) was successfully launched on Nov. 18, 1989. The Delta Launch Vehicle performed flawlessly, and observatory deployments occurred as planned. The dewar cover successfully deployed on day 4, as planned, and the cryogen temperature is currently at 1.41 K. All three instruments are operating and acquiring science data, and the Payload Operational Control Center (POCC)/Network support has been excellent. Various performance aspects of the COBE are presented in view graph form.

  9. First results of the COBE satellite measurement of the anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Aymon, J.; De Amici, G.; Bennett, C. L.; Kogut, A.; Gulkis, S.; Backus, C.; Galuk, K.; Jackson, P. D.; Keegstra, P.

    1991-01-01

    The concept and operation of the Differential Microwave Radiometers (DMR) instrument aboard NASA's Cosmic Background Explorer satellite are reviewed, with emphasis on the software identification and subtraction of potential systematic effects. Preliminary results obtained from the first six months of DMR data are presented, and implications for cosmology are discussed.

  10. COBE nonspinning attitude propagation

    NASA Technical Reports Server (NTRS)

    Chu, D.

    1989-01-01

    The Cosmic Background Explorer (COBE) spacecraft will exhibit complex attitude motion consisting of a spin rate of approximately -0.8 revolution per minute (rpm) about the x-axis and simultaneous precession of the spin axis at a rate of one revolution per orbit (rpo) about the nearly perpendicular spacecraft-to-Sun vector. The effect of the combined spinning and precession is to make accurate attitude propagation difficult and the 1-degree (3 sigma) solution accuracy goal problematic. To improve this situation, an intermediate reference frame is introduced, and the angular velocity divided into two parts. The nonspinning part is that which would be observed if there were no rotation about the X-axis. The spinning part is simply the X-axis component of the angular velocity. The two are propagated independently and combined whenever the complete attitude is needed. This approach is better than the usual one-step method because each of the two angular velocities look nearly constant in their respective reference frames. Since the angular velocities are almost constant, the approximations made in discrete time propagation are more nearly true. To demonstrate the advantages of this nonspinning method, attitude is propagated as outlined above and is then compared with the results of the one-step method. Over the 100-minute COBE orbit, the one-step error grows to several degrees while the nonspinning error remains negligible.

  11. COBE Final Report: DIRBE Celestial Calibration

    NASA Astrophysics Data System (ADS)

    Burdick, Shawn V.; Murdock, Thomas L.

    1997-03-01

    We report the results of a comparative study of the COsmic Background Explorer/Diffuse InfraRed Background Experiment (COBE/DIRBE) photometric calibration over about 100 selected stellar and non-stellar calibration objects across a wide range of the DIRBE instrument dynamic range, wavelength coverage, and source temperature. A statistical comparison of the DIRBE-reported flux to the accepted values from the literature (as summarized in the CIO) provides an independent verification of the DIRBE point source calibration.

  12. The Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  13. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  14. Systems aspects of COBE science data compression

    NASA Technical Reports Server (NTRS)

    Freedman, I.; Boggess, E.; Seiler, E.

    1993-01-01

    A general approach to compression of diverse data from large scientific projects has been developed and this paper addresses the appropriate system and scientific constraints together with the algorithm development and test strategy. This framework has been implemented for the COsmic Background Explorer spacecraft (COBE) by retrofitting the existing VAS-based data management system with high-performance compression software permitting random access to the data. Algorithms which incorporate scientific knowledge and consume relatively few system resources are preferred over ad hoc methods. COBE exceeded its planned storage by a large and growing factor and the retrieval of data significantly affects the processing, delaying the availability of data for scientific usage and software test. Embedded compression software is planned to make the project tractable by reducing the data storage volume to an acceptable level during normal processing.

  15. Contamination control program for the Cosmic Background Explorer: An overview

    NASA Technical Reports Server (NTRS)

    Barney, Richard D.

    1990-01-01

    Each of the three state of the art instruments flown aboard NASA's Cosmic Background Explorer (COBE) were designed, fabricated, and integrated using unique contamination control procedures to ensure accurate characterization of the diffuse radiation in the universe. The most stringent surface level cleanliness specifications ever attempted by NASA were required by the Diffuse Infrared Background Experiment (DRIBE) which is located inside a liquid helium cooled dewar along with the Far Infrared Absolute Spectrophotometer (FIRAS). The DRIBE instrument required complex stray radiation suppression that defined a cold primary optical baffle system surface cleanliness level of 100A. The cleanliness levels of the cryogenic FIRAS instrument and the Differential Microwave Radiometer (DMR) which were positioned symmetrically around the dewar were less stringent ranging from 300 to 500A. To achieve these instrument cleanliness levels, the entire flight spacecraft was maintained at level 500A throughout each phase of development. The COBE contamination control program is described along with the difficulties experienced in maintaining the cleanliness quality of personnel and flight hardware throughout instrument assembly.

  16. Contamination control program for the Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Barney, Richard D.

    1991-01-01

    Each of the three state of the art instruments flown aboard NASA's Cosmic Background Explorer (COBE) were designed, fabricated, and integrated using unique contamination control procedures to ensure accurate characterization of the diffuse radiation in the universe. The most stringent surface level cleanliness specifications ever attempted by NASA were required by the Diffuse Infrared Background Experiment (DRIBE) which is located inside a liquid helium cooled dewar along with the Far Infrared Absolute Spectrophotometer (FIRAS). The DRIBE instrument required complex stray radiation suppression that defined a cold primary optical baffle system surface cleanliness level of 100A. The cleanliness levels of the cryogenic FIRAS instrument and the Differential Microwave Radiometer (DMR) which were positioned symmetrically around the dewar were less stringent ranging from 300 to 500A. To achieve these instrument cleanliness levels, the entire flight spacecraft was maintained at level 500A throughout each phase of development. The COBE contamination control program is described along with the difficulties experienced in maintaining the cleanliness quality of personnel and flight hardware throughout instrument assembly.

  17. Preliminary results from the COBE differential microwave radiometers - Large angular scale isotropy of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Aymon, J.; Bennett, C. L.; Kogut, A.; Backus, C.

    1991-01-01

    Preliminary but precise micowave maps are presented of the sky, and thus of the early universe, derived as the first results from the Differential Microwave Radiometers experiment aboard COBE. The dipole anisotropy attributed to the motion of the solar system with respect to the CMB reference frame shows strongly in all six sky maps and is consistent with a Doppler-shifted thermal spectrum. The best-fitted dipole has amplitude 3.3 + or - 0.2 mK in the direction (alpha, delta) = 11.2 h + or - 0.2 h, -7 deg + or - 2 deg (J2000) or (l,b) = 265 deg + or - 2 deg, 48 deg + or - 2 deg. There is no clear evidence in the maps for any other large angular-scale feature. Limits on Delta T/T0 of 3 x 10 to the -5th (T0 = 2.735 K), 4 x 10 to the -5th, and 4 x 10 to the -5th are found for the rms quadrupole amplitude, monochromatic fluctuations, and Gaussian fluctuations, respectively. These measurements place the most severe constraints to date on many potential physical processes in the early universe.

  18. COBE's search for structure in the Big Bang

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Guerny, Gene (Editor); Keating, Thomas (Editor); Moe, Karen (Editor); Sullivan, Walter (Editor); Truszkowski, Walt (Editor)

    1989-01-01

    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle.

  19. Microwave anisotropies in the light of the data from the COBE satellite

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1993-01-01

    The recent measurement of anisotropies in the cosmic microwave background by the Cosmic Background Explorer (COBE) satellite and the recent South Pole experiment offer an excellent opportunity to probe cosmological theories. We test a class of theories in which the universe today is flat and matter dominated, and primordial perturbations are adiabatic parameterized by an index n. In this class of theories the predicted signal in the South Pole experiment depends on n, the Hubble constant, and the baryon density. For n = 1 a large region of this parameter space is ruled out, but there is still a window open which satisfies constraints from COBE, the South Pole experiment, and big bang nucleosynthesis.

  20. COBE anisotropy from supercluster gas

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1992-01-01

    It is suggested that the microwave background anisotropy detected by the COBE DMR might be dominated not by the direct gravitational effect of primordial fluctuations in the last scattering surface, but by scattering off of moving electrons in optically thin, nearby superclusters. Hot diffuse clouds of ionized gas created during supercluster collapse produce Sunyaev-Zel'dovich and Doppler background anisotropy whose properties may closely mimic those of primordial anisotropy in current data. Strategies for and difficulties in separating the effects are discussed, based on the anisotropy spectrum, autocorrelation, correlation with galaxy catalogs, X-ray emission, and integrated spectral distortions.

  1. COBE Differential Microwave Radiometer (DMR) data processing techniques

    NASA Technical Reports Server (NTRS)

    Jackson, P. D.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Keegstra, P. B.; Kogut, A.; Lineweaver, C.

    1992-01-01

    The purpose of the Differential Microwave Radiometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite is to make whole-sky maps, at frequencies of 31.5, 53, and 90 GHz, of any departures of the Cosmic Microwave Background (CMB) from its mean value of 2.735 K. An elaborate software system is necessary to calibrate and invert the differential measurements, so as to make sky maps free from large scale systematic errors to levels less than a millionth of the CMB.

  2. Investigating Galactic Structure with COBE/DIRBE and Simulation

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1999-01-01

    In this work I applied the current version of the SKY model of the point source sky to the interpretation of the diffuse all-sky emission observed by COBE/DIRBE (Cosmic Background Explorer Satellite/Diffuse Infrared Background Experiment). The goal was to refine the SKY model using the all-sky DIRBE maps of the Galaxy, in order that a search could be made for an isotropic cosmic background."Faint Source Model" [FSM] was constructed to remove Galactic fore ground stars from the ZSMA products. The FSM mimics SKY version 1 but it was inadequate to seek cosmic background emission because of the sizeable residual emission in the ZSMA products after this starlight subtraction. At this point I can only support that such models are currently inadequate to reveal a cosmic background. Even SKY5 yields the same disappointing result.

  3. COBE'S INFRARED VIEW OF THE UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These three pictures are maps of the full sky as seen in infrared light. The top two are composite images taken in wavelengths of 60, 100, and 240 micrometers. The 60-micrometer brightness is shown in blue, the 100- micrometer brightness in green, and the 240-micrometer brightness in red. The bottom image shows just the 240-micrometer brightness after foreground light from the solar system and Galaxy has been removed. The images were compiled from data taken between December 1989 and September 1990 by the Diffuse Infrared Background Experiment (DIRBE) on board NASA's Cosmic Background Explorer (COBE). They illustrate the steps scientists used to find the cosmic infrared background, which is a radiative fossil containing cumulative starlight which now appears in the infrared due to the cosmic redshift and by absorption and re-emission by dust in the universe since the Big Bang. The top picture represents the brightness of the full sky as seen in infrared light. The bright yellow-orange line across the center of the image arises from interstellar dust in the plane of our Milky Way Galaxy, with the center of the Galaxy at the center of the image. The red color above and below this line shows additional wispy clouds of interstellar dust. The blue S-shaped color arises from interplanetary dust in the solar system. The middle picture represents a view of the sky after the foreground glow of the solar system dust has been extracted. This image is dominated by emission from interstellar dust in the Milky Way Galaxy. The two bright objects in the center of the lower right quadrant are nearby galaxies, the Large and Small Magellanic Clouds. After the infrared light from our solar system and galaxy has been removed, what remains is a uniform cosmic infrared background. The line across the center is an artifact from removal of galactic light. The DIRBE team reports detection of this cosmic background light also at 140 micrometers, and has set limits to its brightness at eight

  4. COBE attitude as seen from the FDF

    NASA Astrophysics Data System (ADS)

    Sedlak, J.; Chu, D.; Scheidker, E.

    1990-12-01

    The goal of the Flight Dynamics Facility (FDF) attitude support is twofold: to determine spacecraft attitude and to explain deviations from nominal attitude behavior. Attitude determination often requires resolving contradictions in the sensor observations. This may be accomplished by applying calibration corrections or by revising the observation models. After accounting for all known sources of error, solution accuracy should be limited only by observation and propagation noise. The second half of the goal is to explain why the attitude may not be as originally intended. Reasons for such deviations include sensor or actuator misalignments and control system performance. In these cases, the ability to explain the behavior should, in principle, be limited only by knowledge of the sensor and actuator data and external torques. Documented here are some results obtained to date in support of the Cosmic Background Explorer (COBE). Advantages and shortcomings of the integrated attitude determination/sensor calibration software are discussed. Some preliminary attitude solutions using data from the Diffuse Infrared Background Experiment (DIRBE) instrument are presented and compared to solutions using Sun and Earth sensors. A dynamical model is constructed to illustrate the relative importance of the various sensor imprefections. This model also shows the connection between the high- and low-frequency attitude oscillations.

  5. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    NASA Technical Reports Server (NTRS)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  6. COBE Differential Microwave Radiometers - Instrument design and implementation

    NASA Technical Reports Server (NTRS)

    Smoot, G.; Bennett, Charles; Weber, R.; Maruschak, John; Ratliff, Roger; Janssen, M.

    1990-01-01

    Differential Microwave Radiometers (DMRs) at frequencies of 31.5, 53, and 90 GHz have been designed and built to map the large angular scale variations in the brightness temperature of the cosmic microwave background radiation. The instrument is being flown aboard NASA's Cosmic Background Explorer (COBE) satellite, launched on November 18, 1989. Each receiver input is switched between two antennas pointing 60 deg apart on the sky. The satellite is in near-polar orbit with the orbital plane precessing at 1 deg per day, causing the beams to scan the entire sky in 6 months. In 1 year of observation, the instruments are capable of mapping the sky to an rms sensitivity of 0.1 mK per 7 deg field of view. The mission and the instrument have been carefully designed to minimize the need for systematic corrections to the data.

  7. Capabilities of the cosmic background explorer

    NASA Technical Reports Server (NTRS)

    Mather, J. C.

    1987-01-01

    The cosmic background explorer, now being redesigned for a launch on a Delta rocket in 1989, will carry three instruments to measure the cosmic infrared and microwave background radiation and other diffuse sources from 1 micron to 1 cm wavelength. These instruments will be orders of magnitude more sensitive and accurate than previous equipment and will help determine the structure of the early universe. The instruments are (1) an absolute spectrophotometer, covering 100 microns to 1 cm, (2) an absolute infrared radiometer covering 1 to 300 microns, and (3) differential microwave radiometers at 32, 53, and 90 GHz. They will measure the large scale anisotropy and the spectrum of the 3 K cosmic background, and search for the extragalactic infrared background, to a sensitivity limited by the astrophysical environment. The first two instruments require liquid helium cooling, limiting their lifetime to about 14 months.

  8. The COBE normalization for standard cold dark matter

    NASA Technical Reports Server (NTRS)

    Bunn, Emory F.; Scott, Douglas; White, Martin

    1995-01-01

    The Cosmic Background Explorer Satellite (COBE) detection of microwave anisotropies provides the best way of fixing the amplitude of cosmological fluctuations on the largest scales. This normalization is usually given for an n = 1 spectrum, including only the anisotropy caused by the Sachs-Wolfe effect. This is certainly not a good approximation for a model containing any reasonable amount of baryonic matter. In fact, even tilted Sachs-Wolfe spectra are not a good fit to models like cold dark matter (CDM). Here, we normalize standard CDM (sCDM) to the two-year COBE data and quote the best amplitude in terms of the conventionally used measures of power. We also give normalizations for some specific variants of this standard model, and we indicate how the normalization depends on the assumed values on n, Omega(sub B) and H(sub 0). For sCDM we find the mean value of Q = 19.9 +/- 1.5 micro-K, corresponding to sigma(sub 8) = 1.34 +/- 0.10, with the normalization at large scales being B = (8.16 +/- 1.04) x 10(exp 5)(Mpc/h)(exp 4), and other numbers given in the table. The measured rms temperature fluctuation smoothed on 10 deg is a little low relative to this normalization. This is mainly due to the low quadrupole in the data: when the quadrupole is removed, the measured value of sigma(10 deg) is quite consistent with the best-fitting the mean value of Q. The use of the mean value of Q should be preferred over sigma(10 deg), when its value can be determined for a particular theory, since it makes full use of the data.

  9. An IDL-based analysis package for COBE and other skycube-formatted astronomical data

    NASA Technical Reports Server (NTRS)

    Ewing, J. A.; Isaacman, Richard B.; Gales, J. M.

    1992-01-01

    UIMAGE is a data analysis package written in IDL for the Cosmic Background Explorer (COBE) project. COBE has extraordinarily stringent accuracy requirements: 1 percent mid-infrared absolute photometry, 0.01 percent submillimeter absolute spectrometry, and 0.0001 percent submillimeter relative photometry. Thus, many of the transformations and image enhancements common to analysis of large data sets must be done with special care. UIMAGE is unusual in this sense in that it performs as many of its operations as possible on the data in its native format and projection, which in the case of COBE is the quadrilateralized sphereical cube ('skycube'). That is, after reprojecting the data, e.g., onto an Aitoff map, the user who performs an operation such as taking a crosscut or extracting data from a pixel is transparently acting upon the skycube data from which the projection was made, thereby preserving the accuracy of the result. Current plans call for formatting external data bases such as CO maps into the skycube format with a high-accuracy transformation, thereby allowing Guest Investigators to use UIMAGE for direct comparison of the COBE maps with those at other wavelengths from other instruments. It is completely menu-driven so that its use requires no knowledge of IDL. Its functionality includes I/O from the COBE archives, FITS files, and IDL save sets as well as standard analysis operations such as smoothing, reprojection, zooming, statistics of areas, spectral analysis, etc. One of UIMAGE's more advanced and attractive features is its terminal independence. Most of the operations (e.g., menu-item selection or pixel selection) that are driven by the mouse on an X-windows terminal are also available using arrow keys and keyboard entry (e.g., pixel coordinates) on VT200 and Tektronix-class terminals. Even limited grey scales of images are available this way. Obviously, image processing is very limited on this type of terminal, but it is nonetheless surprising how

  10. Test facility requirements for the thermal vacuum thermal balance test of the Cosmic Background Explorer Observatory

    NASA Technical Reports Server (NTRS)

    Milam, Laura J.

    1991-01-01

    The Cosmic Background Explorer Observatory (COBE) underwant a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.

  11. COBE AND THE GALACTIC INTERSTELLAR MEDIUM: GEOMETRY OF THE SPIRAL ARMS FROM FIR COOLING LINES

    SciTech Connect

    Steiman-Cameron, Thomas Y.; Wolfire, Mark; Hollenbach, David E-mail: mr@astro.umd.ed

    2010-10-20

    We present a new model for the spiral structure of the Milky Way based upon the essentially all-sky intensity maps of the [C II] 158 {mu}m and [N II] 205 {mu}m lines of the interstellar medium (ISM) obtained by the FIRAS instrument of the Cosmic Background Explorer (COBE), with ancillary data from the Balloon-borne Infrared Carbon Explorer, and Infrared Space Observatory. These lines are important coolants of the ISM and strong tracers of the spiral structure. The model provides the volume emissivity of these species as a function of position within the Galaxy. Two-, three-, and four-arm models are examined, using a number of spiral functional forms. Two-arm models are found to be inconsistent with the COBE/FIRAS data. A three-arm model can be constructed that reproduces the [C II] and [N II] intensity profiles along the Galactic plane. This model, however, is discounted by historical observations of the Perseus and Cygnus ('Outer') arms. A four-arm model, with arms defined by logarithmic spiral forms, reproduce the observations extremely well. Models of the Milky Way's spiral geometry proposed from {approx}1980 to the present are examined in light of the COBE data and compared with the model presented herein. The preponderance of the evidence supports the existence of four well-defined logarithmic spiral arms in the gaseous component of the ISM. We note that essentially all two-arm models proposed since the mid-1980s are based upon observations of older evolved stars. We address the question of why studies based upon observations of stellar densities yield two-arm models while models based upon observations of more traditional tracers of spiral arms, i.e., enhanced gas and dust densities, star formation, and young stellar populations, yield four-arm models.

  12. The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)

    SciTech Connect

    Smoot, George

    2007-03-05

    Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theory of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.

  13. The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)

    ScienceCinema

    Smoot, George

    2016-07-12

    Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theory of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.

  14. Exploring the moon. [personal historical background perspective

    NASA Technical Reports Server (NTRS)

    Jastrow, R.

    1981-01-01

    The genesis of lunar exploration programs is described. The idea that the dead moon could give important clues about the origin of the solar system germinated into plans for a soft landing on the moon and then into the Apollo program. The exchanges between NASA scientists and other astronomers that led to these plans are recounted.

  15. Inflation after COBE: Lectures on inflationary cosmology

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1992-01-01

    In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the initial data'' for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.

  16. Inflation after COBE: Lectures on inflationary cosmology

    SciTech Connect

    Turner, M.S. |

    1992-12-31

    In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ``initial data`` for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.

  17. Wiener filtering of the COBE Differential Microwave Radiometer data

    NASA Technical Reports Server (NTRS)

    Bunn, Emory F.; Fisher, Karl B.; Hoffman, Yehuda; Lahav, Ofer; Silk, Joseph; Zaroubi, Saleem

    1994-01-01

    We derive an optimal linear filter to suppress the noise from the cosmic background explorer satellite (COBE) Differential Microwave Radiometer (DMR) sky maps for a given power spectrum. We then apply the filter to the first-year DMR data, after removing pixels within 20 deg of the Galactic plane from the data. We are able to identify particular hot and cold spots in the filtered maps at a level 2 to 3 times the noise level. We use the formalism of constrained realizations of Gaussian random fields to assess the uncertainty in the filtered sky maps. In addition to improving the signal-to-noise ratio of the map as a whole, these techniques allow us to recover some information about the cosmic microwave background anisotropy in the missing Galactic plane region. From these maps we are able to determine which hot and cold spots in the data are statistically significant, and which may have been produced by noise. In addition, the filtered maps can be used for comparison with other experiments on similar angular scales.

  18. Conceptual design study for the use of COBE rocket engines on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of this conceptual design study is to verify that the Cosmic Background Explorer (COBE) Hydrazine Propulsion Subsystem (HPS) Rocket Engine Assembly (REA) will satisfy the Tropical Rainfall Measuring Mission (TRMM) requirements and to develop a preliminary thruster module design using the existing REAs. The performance of the COBE HPS 5 lbf thrusters meet the TRMM mission requirements. The preliminary design consists of a single 5 lbf REA REM which is isolation mounted to a spacecraft interface angle bracket (5 or 10 deg angle). The REM incorporates a catalyst bed heater and sensor assembly, and propellant thermal control is achieved by thermostatically controlled heaters on the thruster valves. A ROM cost of approx. $950 K has been estimated for the phase 2 program to finalize the design, fabricate, and test the hardware using mechanical thermostats for thermal control. In the event that solid state thermostats are used, the cost is estimated to be $160 K higher. A ROM cost is approx. $145 K is estimated to study the effects of using Japanese manufactured hydrazine for the TRMM mission.

  19. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  20. COBE differential microwave radiometers - Calibration techniques

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Smoot, G. F.; Janssen, M.; Gulkis, S.; Kogut, A.; Hinshaw, G.; Backus, C.; Hauser, M. G.; Mather, J. C.; Rokke, L.

    1992-01-01

    The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earth's motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.

  1. COBE DMR results and implications. [Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Smoot, George F.

    1992-01-01

    This lecture presents early results obtained from the first six months of measurements of the Cosmic Microwave Background (CMB) by Differential Microwave Radiometers (DMR) aboard COBE and discusses significant cosmological implications. The DMR maps show the dipole anisotropy and some galactic emission but otherwise a spatially smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. Maps of galactic and local emission such as those produced by the FIRAS and DIRBE instruments will be needed to identify foregrounds from extragalactic emission and thus to interpret the results in terms of events in the early universe. The current DMR results are significant for Cosmology.

  2. CMB Anisotropies Two Years after Cobe: Observations, Theory and the Future - Proceedings of the 1994 Cwru Workshop

    NASA Astrophysics Data System (ADS)

    Krauss, Lawrence M.

    1995-01-01

    The Table of Contents for the book is as follows: * Preface * I. The Experimental Situation Two Years After COBE: Anisotropies, and the CMB Power Spectrum * COBE DMR Data, Signal and Noise: Color Plates * CMB Two Years After the COBE Discovery of Anisotropies * Comparison of Spectral Index Determinations * Two-Point Correlations in the COBE-DMR Two-Year Anisotropy Maps * A Preliminary Analysis of UCSB's South Pole 1993-94 Results * CMB Anisotropy Measurements During the Fourth Flight of MAX * Observations of the Anisotropy in the Cosmic Microwave Background by the Firs, SK93, and MSAM-I Experiments * The Python Microwave Background Anisotropy Experiment * II. Theoretical Implications and Cosmology: The Early Universe, Large Scale Structure and Dark Matter * Testing Inflationary Cosmology and Measuring Cosmological Parameters Using the Cosmic Microwave Background * Inflation Confronts the CMB: An Analysis Including the Effects of Foreground * Testing Inflation with MSAM, MAX Tenerife and COBE * CMBR Anisotropy Due to Gravitational Radiation in Inflationary Cosmologies * Black Holes From Blue Spectra * Cosmic Microwave Background Anisotropies and the Geometry of the Universe * Ω and Cosmic Microwave Background Anisotropies * CDM Cosmogony in an Open Universe * Cosmic Microwave Background Radiation Anisotropy Induced by Cosmic Strings * Temperature Anisotropies in a Universe with Global Defects * The Nature Versus Nurture of Anisotropies * The Existence of Baryons at z = 1000 * Polarization-Temperature Correlations in the Microwave Background * III. Related Issues: BBN Limits on ΩB, and Comparing Theoretical Predictions and Observations * Big Bang Nucleosynthesis and ΩB: A Guide for CMB Interpreters * Quoting Experimental Information

  3. On the rms anisotropy at 7 deg and 10 deg observed in the COBE-DMR two year sky maps

    NASA Technical Reports Server (NTRS)

    Banday, A. J.; Gorski, K. M.; Tenorio, L.; Wright, E. L.; Smoot, G. F.; Lineweaver, C. H.; Kogut, A.; Hinshaw, G.; Bennett, C. L.

    1994-01-01

    The frequency-independent rms temperature fluctuations determined from the Cosmic Background Explorer-Differential Microwave Radiometer (COBE-DMR) two-year sky maps are used to infer the parameter Q(sub rms-PS), which characterizes the normalization of power-law models of primordial cosmological temperature anisotropy, for a forced fit to a scale-invariant Harrison-Zel'dovich (n = 1) spectral model. Using a joint analysis of the 7 deg and 10 deg 'cross'-rms derived from both the 53 and 90 GHz sky maps, we find Q(sub rms-PS) = 17.0(sub -2.1 sup +2.5) micro Kelvin when the low quadrupole is included, and Q(sub rms-PS) = 19.4(sub -2.1 sup +2.3) micro Kelvin excluding the quadrupole. These results are consistent with the n = 1 fits from more sensitive methods. The effect of the low quadrupole derived from the COBE-DMR data on the inferred Q(sub rms-PS) normalization is investigated. A bias to lower Q(sub rms-PS) is found when the quadrupole is included. The higher normalization for a forced n = 1 fit is then favored by the cross-rms technique.

  4. Assessment of Models of Galactic Thermal Dust Emission Using COBE/FIRAS and COBE/DIRBE Observations

    NASA Astrophysics Data System (ADS)

    Odegard, N.; Kogut, A.; Chuss, D. T.; Miller, N. J.

    2016-09-01

    Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for cosmic microwave background (CMB) measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE/FIRAS and COBE/DIRBE observations from 3 mm to 100 μm and compare the quality of the fits. We consider the two-level systems (TLS) model because it provides a physically motivated explanation for the observed long wavelength flattening of the dust spectrum and the anti-correlation between emissivity index and dust temperature. We consider the model of Finkbeiner et al. because it has been widely used for CMB studies, and the generalized version of this model that was recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the other models. The Meisner and Finkbeiner model and the TLS model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have a sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.

  5. Optical design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Miller, M. S.; Evans, D. C.; Moseley, H.; Ludwig, U. W.

    1982-01-01

    The conceptual design for a ten-band absolute filter photometer (the Diffuse Infrared Background Experiment) to operate at 2 K and measure galactic and extragalactic infrared radiation in the 1 to 300-micron range and polarization in the 1 to 3.5-micron range is presented, as part of the NASA Cosmic Background Explorer. The telescope optical design, a Gregorian design incorporating bafffles and shades to provide high stray-light rejection, is described. Pupil nonuniformity in the detector-assembly optical design has been limited. It is determined that detector sensitiity requirements can be met, and that the problem of radiation-induced responsivity variations can be solved by minimizing detector-assembly size, providing for in situ thermal annealing, and allowing for frequent detector calibration. Limitations on mirror performance are to be met by fabricating mirrors and structure from the same aluminum 6061 ingot.

  6. The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe

    NASA Technical Reports Server (NTRS)

    Bennett, Charles L.; Smoot, George F.

    1989-01-01

    Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.

  7. COBE navigation with one-way return-link Doppler in the post-helium-venting phase

    NASA Technical Reports Server (NTRS)

    Dunham, Joan; Nemesure, M.; Samii, M. V.; Maher, M.; Teles, Jerome; Jackson, J.

    1991-01-01

    The results of a navigation experiment with one way return link Doppler tracking measurements for operational orbit determination of the Cosmic Background Explorer (COBE) spacecraft are presented. The frequency of the tracking signal for the one way measurements was stabilized with an Ultrastable Oscillator (USO), and the signal was relayed by the Tracking and Data Relay Satellite System (TDRSS). The study achieved three objectives: space qualification of TDRSS noncoherent one way return link Doppler tracking; determination of flight performance of the USO coupled to the second generation TDRSS compatible user transponder; and verification of algorithms for navigation using actual one way tracking data. Orbit determination and the inflight USO performance evaluation results are presented.

  8. Cosmic microwave background probes models of inflation

    NASA Technical Reports Server (NTRS)

    Davis, Richard L.; Hodges, Hardy M.; Smoot, George F.; Steinhardt, Paul J.; Turner, Michael S.

    1992-01-01

    Inflation creates both scalar (density) and tensor (gravity wave) metric perturbations. We find that the tensor-mode contribution to the cosmic microwave background anisotropy on large-angular scales can only exceed that of the scalar mode in models where the spectrum of perturbations deviates significantly from scale invariance. If the tensor mode dominates at large-angular scales, then the value of DeltaT/T predicted on 1 deg is less than if the scalar mode dominates, and, for cold-dark-matter models, bias factors greater than 1 can be made consistent with Cosmic Background Explorer (COBE) DMR results.

  9. COBE limits on explosive structure formation scenarios

    NASA Technical Reports Server (NTRS)

    Levin, Janna J.; Freese, Katherine; Spergle, David N.

    1992-01-01

    The Compton y-distortion that would result from an epoch of explosions at moderate redshifts is estimated and compared to recent measurements of the CBR spectrum made by the COBE satellite. The temperature anisotropy on large angular scales is estimated, and it is found that in general the limits on the overall spectral distortion are more constraining than those on the temperature anisotropy. It is found that most of the y-distortion is produced during the early, noncosmological phase of bubble evolution. An expression is obtained for the y-distortion including the effects of Compton cooling. The implications of the findings are discussed.

  10. Cosmic microwave background and first molecules in the early universe

    NASA Astrophysics Data System (ADS)

    Signore, Monique; Puy, Denis

    2009-01-01

    Besides the Hubble expansion of the universe, the main evidence in favor of the big-bang theory was the discovery, by Penzias and Wilson, of the cosmic microwave background (hereafter CMB) radiation. In 1990, the COBE satellite (Cosmic Background Explorer) revealed an accurate black-body behavior with a temperature around 2.7 K. Although the microwave background is very smooth, the COBE satellite did detect small variations—at the level of one part in 100 000—in the temperature of the CMB from place to place in the sky. These ripples are caused by acoustic oscillations in the primordial plasma. While COBE was only sensitive to long-wavelength waves, the Wilkinson Microwave Anisotropy Probe (WMAP)—with its much higher resolution—reveals that the CMB temperature variations follow the distinctive pattern predicted by cosmological theory. Moreover, the existence of the microwave background allows cosmologists to deduce the conditions present in the early stages of the big bang and, in particular, helps to account for the chemistry of the universe. This report summarizes the latest measurements and studies of the CMB with the new calculations about the formation of primordial molecules. The PLANCK mission—planned to be launched in 2009—is also presented.

  11. Constraints from microlensing on the COBE bar

    NASA Astrophysics Data System (ADS)

    Zhao, H. S.

    Since the first review of converging evidences for a bar in the center of the Galaxy by de Zeeuw (1992) at the IAU Sym. 153 in Gent five years ago, the Galactic bar idea has been put on a solid footing by an influx of new data (COBE/DIRBE maps, star count data of bulge red clump giants, microlensing optical depth, and bulge stellar proper motions, etc.) and a burst of increasingly sophisticated theoretical models (triaxial luminosity models of Dwek et al. 1994, and Binney, Gerhard & Spergel 1997, steady state stellar bar dynamical model of Zhao 1996, combined luminosity, microlensing and gas kinematics models of Zhao, Rich & Spergel 1996, and Bissantz et al. 1997, etc.), which fit new data and improve upon earlier simple bulge/bar models (Kent 1992, Binney et al. 1991, Blitz & Spergel 1991). While research in this field shifts more and more to constraining the exact phase space and parameter space of the bar, both the non-uniqueness of and the mismatches among bars from different datasets start to show up. I compare the bar from microlensing data with the COBE bar and point out the effects the non-uniqueness.

  12. Calibration and systematic error analysis for the COBE(1) DMR 4year sky maps

    SciTech Connect

    Kogut, A.; Banday, A.J.; Bennett, C.L.; Gorski, K.M.; Hinshaw,G.; Jackson, P.D.; Keegstra, P.; Lineweaver, C.; Smoot, G.F.; Tenorio,L.; Wright, E.L.

    1996-01-04

    The Differential Microwave Radiometers (DMR) instrument aboard the Cosmic Background Explorer (COBE) has mapped the full microwave sky to mean sensitivity 26 mu K per 7 degrees held of view. The absolute calibration is determined to 0.7 percent with drifts smaller than 0.2 percent per year. We have analyzed both the raw differential data and the pixelized sky maps for evidence of contaminating sources such as solar system foregrounds, instrumental susceptibilities, and artifacts from data recovery and processing. Most systematic effects couple only weakly to the sky maps. The largest uncertainties in the maps result from the instrument susceptibility to Earth's magnetic field, microwave emission from Earth, and upper limits to potential effects at the spacecraft spin period. Systematic effects in the maps are small compared to either the noise or the celestial signal: the 95 percent confidence upper limit for the pixel-pixel rms from all identified systematics is less than 6 mu K in the worst channel. A power spectrum analysis of the (A-B)/2 difference maps shows no evidence for additional undetected systematic effects.

  13. Comments on the statistical analysis of excess variance in the COBE differential microwave radiometer maps

    NASA Astrophysics Data System (ADS)

    Wright, E. L.; Smoot, G. F.; Kogut, A.; Hinshaw, G.; Tenorio, L.; Lineweaver, C.; Bennett, C. L.; Lubin, P. M.

    1994-01-01

    Cosmic anisotrophy produces an excess variance sq sigmasky in the Delta maps produced by the Differential Microwave Radiometer (DMR) on cosmic background explorer (COBE) that is over and above the instrument noise. After smoothing to an effective resolution of 10 deg, this excess sigmasky(10 deg), provides an estimate for the amplitude of the primordial density perturbation power spectrum with a cosmic uncertainty of only 12%. We employ detailed Monte Carlo techniques to express the amplitude derived from this statistic in terms of the universal root mean square (rms) quadrupole amplitude, (Q sq/RMS)0.5. The effects of monopole and dipole subtraction and the non-Gaussian shape of the DMR beam cause the derived (Q sq/RMS)0.5 to be 5%-10% larger than would be derived using simplified analytic approximations. We also investigate the properties of two other map statistics: the actual quadrupole and the Boughn-Cottingham statistic. Both the sigmasky(10 deg) statistic and the Boughn-Cottingham statistic are consistent with the (Q sq/RMS)0.5 = 17 +/- 5 micro K reported by Smoot et al. (1992) and Wright et al. (1992).

  14. SNAP sky background at the north ecliptic pole

    SciTech Connect

    Aldering, Greg

    2002-07-01

    I summarize the extant direct and indirect data on the sky background SNAP will see at the North Ecliptic Pole over the wavelength range 0.4 < {lambda} < 1.7 {micro}m. At the spatial resolution of SNAP the sky background due to stars and galaxies is resolved, so the only source considered is zodiacal light. Several models are explored to provide interpolation in wavelength between the broadband data from HST and COBE observations. I believe the input data are now established well enough that the accuracy of the sky background presented here is sufficient for SNAP simulations, and that it will stand up to scrutiny by reviewers.

  15. American Holidays: Exploring Traditions, Customs and Backgrounds. Vocabureader Workbook 3.

    ERIC Educational Resources Information Center

    Klebanow, Barbara; Fischer, Sara

    The workbook is an English vocabulary development text focusing on words associated with traditions, customs, and background of holidays celebrated in the United States, and in some cases also in Canada and elsewhere. The special vocabulary is presented in seventeen readings, written in repetitive style so the student can learn the definitions of…

  16. Exploring Career Success of Late Bloomers from the TVET Background

    ERIC Educational Resources Information Center

    Omar, Zoharah; Krauss, Steven Eric; Sail, Rahim M.; Ismail, Ismi Arif

    2011-01-01

    Purpose: The purpose of this paper is to explore objective and subjective career success and to identify factors contributing to career success among a sample of technical and vocational education and training (TVET) "late bloomers" working in Malaysia. Design/methodology/approach: Incorporating a mixed method design, the authors quantitatively…

  17. Port Arthur Alive: Exploring Past and Present, 3. Background.

    ERIC Educational Resources Information Center

    Tasmanian Education Dept., Hobart (Australia).

    Part 3 of this five part project asks students of the Tasmanian region of Australia to explore the history of Port Arthur, a 19th century penal colony located in Tasmania. The project is based on three ideas: (1) studying history can be educational and enjoyable; (2) imagination is an essential part of studying history; and (3) history is most of…

  18. Statistics and topology of the COBE differential microwave radiometer first-year sky maps

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Tenorio, L.; Banday, A. J.; Kogut, A.; Wright, E. L.; Hinshaw, G.; Bennett, C. L.

    1994-01-01

    We use statistical and topological quantities to test the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) first-year sky maps against the hypothesis that the observed temperature fluctuations reflect Gaussian initial density perturbations with random phases. Recent papers discuss specific quantities as discriminators between Gaussian and non-Gaussian behavior, but the treatment of instrumental noise on the data is largely ignored. The presence of noise in the data biases many statistical quantities in a manner dependent on both the noise properties and the unknown cosmic microwave background temperature field. Appropriate weighting schemes can minimize this effect, but it cannot be completely eliminated. Analytic expressions are presented for these biases, and Monte Carlo simulations are used to assess the best strategy for determining cosmologically interesting information from noisy data. The genus is a robust discriminator that can be used to estimate the power-law quadrupole-normalized amplitude, Q(sub rms-PS), independently of the two-point correlation function. The genus of the DMR data is consistent with Gaussian initial fluctuations with Q(sub rms-PS) = (15.7 +/- 2.2) - (6.6 +/- 0.3)(n - 1) micro-K, where n is the power-law index. Fitting the rms temperature variations at various smoothing angles gives Q(sub rms-PS) = 13.2 +/- 2.5 micro-K and n = 1.7(sup (+0.3) sub (-0.6)). While consistent with Gaussian fluctuations, the first year data are only sufficient to rule out strongly non-Gaussian distributions of fluctuations.

  19. Latest COBE results, large-scale data, and predictions of inflation

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1992-01-01

    One of the predictions of the inflationary scenario of cosmology is that the initial spectrum of primordial density fluctuations (PDFs) must have the Harrison-Zeldovich (HZ) form. Here, in order to test the inflationary scenario, predictions of the microwave background radiation (MBR) anisotropies measured by COBE are computed based on large-scale data for the universe and assuming Omega-1 and the HZ spectrum on large scales. It is found that the minimal scale where the spectrum can first enter the HZ regime is found, constraining the power spectrum of the mass distribution to within the bias factor b. This factor is determined and used to predict parameters of the MBR anisotropy field. For the spectrum of PDFs that reaches the HZ regime immediately after the scale accessible to the APM catalog, the numbers on MBR anisotropies are consistent with the COBE detections and thus the standard inflation can indeed be considered a viable theory for the origin of the large-scale structure in the universe.

  20. The microwave background anisotropies: observations.

    PubMed

    Wilkinson, D

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation-fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 microK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1 degrees and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe--the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century.

  1. Comparing and combining the Saskatoon, QMAP, and COBE CMB maps

    SciTech Connect

    Xu, Yongzhong; Tegmark, Max; de Oliveira-Costa, Angelica; Devlin, Mark J.; Herbig, Thomas; Miller, Amber D.; Netterfield, C. Barth; Page, Lyman

    2001-05-15

    We present a method for comparing and combining maps with different resolutions and beam shapes, and apply it to the Saskatoon, QMAP, and COBE-DMR data sets. Although the Saskatoon and QMAP maps detect signals at the 21{sigma} and 40{sigma} levels, respectively, their difference is consistent with pure noise, placing strong limits on possible systematic errors. In particular, we obtain quantitative upper limits on relative calibration and pointing errors. Splitting the combined data by frequency shows similar consistency between the Ka and Q bands, placing limits on foreground contamination. The visual agreement between the maps is equally striking. Our combined QMAP+Saskatoon map, nicknamed QMASK, is publicly available on the web together with its 6495x6495 noise covariance matrix. This thoroughly tested data set covers a large enough area (648 square degrees -- currently the largest degree-scale map available) to allow a statistical comparison with COBE-DMR, showing good agreement.

  2. Exploring Effects of Background Context Familiarity and Signaling on Comprehension, Recall, and Cognitive Load

    ERIC Educational Resources Information Center

    Song, Minjung; Bruning, Roger

    2016-01-01

    This study was designed to explore the effects of different geographical background contexts and signalling for information about global warming on comprehension, recall and cognitive load. Two different geographical contexts, US and Korean, were employed to frame explanations of global warming phenomena to US students. Two signalling conditions…

  3. The cryo-testing of infrared filters and beamsplitters for the cosmic background explorer's instruments

    NASA Technical Reports Server (NTRS)

    Heaney, James B.; Stewart, Kenneth P.; Boucarut, Rene A.; Alley, Phillip W.; Korb, Andrew R.

    1986-01-01

    The cryooptical methods used to measure the spectral transmittances of filters and beamsplitters for the Cosmic Background Explorer's instruments are described. Measured results demonstrate the temperature sensitivity, or insensitivity, of various infrared filter designs within the wavelength range from 1 to 1000 microns.

  4. A Case Study Exploring Science Competence and Science Confidence of Middle School Girls from Marginalized Backgrounds

    ERIC Educational Resources Information Center

    Garcia, Yeni Violeta

    2013-01-01

    The inclusion of learners from underrepresented background in biology field research experiences has not been widely explored in the literature. Increased access and equity to experiences for groups historically underrepresented in science, technology, engineering, and mathematics (STEM) has been identified as a priority for many, yet little is…

  5. Characteristic microwave-background distortions from collapsing spherical domain walls

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Notzold, Dirk

    1990-01-01

    The redshift distortion induced by collapsing spherical domain walls is calculated. The most frequent microwave background distortions are found to occur at large angles in the form of blue disks. This is the angular region currently measured by the COBE satellite. COBE could therefore detect signals predicted here for domain walls with surface energy density of the order of MeV. Such values for sigma are proposed in the late-time phase-transition scenario of Hill et al. (1989).

  6. The implications of the COBE diffuse microwave radiation results for cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.

    1992-01-01

    We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.

  7. The dipole observed in the {ital COBE} DMR 4 year data

    SciTech Connect

    Lineweaver, C.H.; Tenorio, L.; Smoot, G.F.; Keegstra, P.

    1996-10-01

    The largest anisotropy in the cosmic microwave background (CMB) is the {approx_equal}3 mK dipole assumed to be due to our velocity with respect to the CMB. Using the 4 year data set from all six channels of the {ital COBE} Differential Microwave Radiometers (DMR), we obtain a best-fit dipole amplitude 3.358{plus_minus}0.001{plus_minus}0.023 mK in the direction ({ital l},{ital b})=(264.31{degrees}{plus_minus}0.04{degree}{plus_minus}0.16{degree} +48.05{degrees}{plus_minus}0.02{degree}{plus_minus}0.09{degree}), where the first uncertainties are statistical and the second include calibration and combined systematic uncertainties. This measurement is consistent with previous DMR and FIRAS results. {copyright} {ital 1996 The American Astronomical Society.}

  8. Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwavebackground observations

    SciTech Connect

    Jaffe, A.H.; Ade, P.A.R.; Balbi, A.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B.P.; de, Bernardis, P.; Farese, P.; Ferreira, P.G.; Ganga, K.; Giacometti, M.; Hanany, S.; Hivon,E.; Hristov, V.V.; Iacoangeli, A.; Lange, A.E.; Lee, A.T.; Martinis, L.; Masi, S.; Mauskopf, P.D.; Melchiorri, A.; Montroy, T.; Netterfield, C.B.; Oh, S.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Prunet, S.; Rabii, B.; Rao, S.; Richards, P.L.; Romeo, G.; Ruhl, JE.; Scaramuzzi, F.; Sforna,D.; Smoot, G.F.; Stompor, R.; Winant, C.D.; Wu, J.H.P.

    2000-07-23

    Recent results from BOOMERANG-98 and MAXIMA-1, taken together with COBE DMR, provide consistent and high signal-to-noise measurements of the cosmic microwave background power spectrum at spherical harmonic multipole bands over 2 < l < less than or similar to > 800. Analysis of the combined data yields 68 percent (95 percent) confidence limits on the total density, Omega (tot) similar or equal to 1.11 +/- 0.07 ((+0.13)(-0.12)), the baryon density, Omega(b)h(2) similar or equal to 0.032(-0.004+)(0.005) ((+0.009)(-0.008)), and the scalar spectral tilt, n(s) similar or equal to 1.01(-0.07)(+0.09)((+0.17)(-0.14)). These data are consistent with inflationary initial conditions for structure formation. Taken together with other cosmological observations, they imply the existence of both nonbaryonic dark matter and dark energy in the Universe.

  9. Investigation of the diffuse ultraviolet background using satellite data: Dynamics explorer guest investigator program

    NASA Technical Reports Server (NTRS)

    Fix, J. D.

    1986-01-01

    The imaging instrumentation for the Dynamics Explorer Mission was designed primarily to obtain global auroral images. The instrument, however, was also used successfully to study marine bioluminescence, the geocorona, and the global distribution of atmospheric ozone. The imager has considerable potential for the study of astronomical sources of ultraviolet radiation as well. The data produced by the imager is used to study the brightness and isotrophy of the diffuse ultraviolet background.

  10. Bone marrow processing for transplantation using Cobe Spectra cell separator.

    PubMed

    Veljković, Dobrila; Nonković, Olivera Šerbić; Radonjić, Zorica; Kuzmanović, Miloš; Zečević, Zeljko

    2013-06-01

    Concentration of bone marrow aspirates is an important prerequisite prior to infusion of ABO incompatible allogeneic marrow and prior to cryopreservation and storage of autologous marrow. In this paper we present our experience in processing 15 harvested bone marrow for ABO incompatible allogeneic and autologous bone marrow (BM) transplantation using Cobe Spectra® cell separator. BM processing resulted in the median recovery of 91.5% CD34+ cells, erythrocyte depletion of 91% and volume reduction of 81%. BM processing using cell separator is safe and effective technique providing high rate of erythrocyte depletion and volume reduction, and acceptable recovery of the CD34+ cells.

  11. COBE DMR-normalized open inflation cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Ratra, Bharat; Sugiyama, Naoshi; Banday, Anthony J.

    1995-01-01

    A cut-sky orthogonal mode analysis of the 2 year COBE DMR 53 and 90 GHz sky maps (in Galactic coordinates) is used to determine the normalization of an open inflation model based on the cold dark matter (CDM) scenario. The normalized model is compared to measures of large-scale structure in the universe. Although the DMR data alone does not provide sufficient discriminative power to prefer a particular value of the mass density parameter, the open model appears to be reasonably consistent with observations when Omega(sub 0) is approximately 0.3-0.4 and merits further study.

  12. The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations

    SciTech Connect

    Kogut, A.; Fixsen, D.J.; Chuss, D.T.; Dwek, E.; Moseley, S.H.; Wollack, E.J. E-mail: Dale.J.Fixsen@nasa.gov E-mail: Eliahu.Dwek-1@nasa.gov; and others

    2011-07-01

    The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 μm wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10{sup −3} at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.

  13. The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.; Fixsen, D. J.; Chuss, D. T.; Dotson, J.; Dwek, E.; Halpern, M.; Hinshaw, G. F.; Meyer, S. M.; Moseley, S. H.; Seiffert, M. D.; Spergel, D. N.; Wollack, E. J.

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10..3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.

  14. The microwave background anisotropies: Observations

    PubMed Central

    Wilkinson, David

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation—fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 μK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1° and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe—the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century. PMID:9419320

  15. Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Kogut, A.; Hinshaw, G.; Banday, A. J.; Wright, E. L.; Gorski, K. M.; Wilkinson, D. T.; Weiss, R.; Smoot, G. F.; Meyer, S. S.

    1994-01-01

    The first two years of Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) observations of the cosmic microwave background (CMB) anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy detected CMB temperature fluctuations. The 2 yr 53 GHz data are characterized by rms temperature fluctuations of (delta-T)(sub rms) (7 deg) = 44 +/- 7 micro-K and (delta-T)(sub rms) (10 deg) = 30.5 +/- 2.7 micro-K at 7 deg and 10 deg angular resolution, respectively. The 53 x 90 GHz cross-correlation amplitude at zero lag is C(0)(sup 1/2) = 36 +/- 5 micro-K (68% CL) for the unsmoothed (7 deg resolution) DMR data. We perform a likelihood analysis of the cross-correlation function, with Monte Carlo simulations to infer biases of the method, for a power-law model of initial density fluctuations, P(k) proportional to R(exp n). The Monte Carlo simulations indicate that derived estimates of n are biased by +0.11 +/- 0.01, while the subset of simulations with a low quadrupole (as observed) indicate a bias of +0.31+/- 0.04. Derived values for 68% confidence intervals are given corrected (and not corrected) for our estimated biases. Including the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 14.3(sup + 5.2 sub -3.3) micro-K (12.8(sup + 5.2 sub -3.3) micro-K0 with a spectral index n = 1.42(sup + 0.49 sub -0.55)(n = 1.53(sup + 0.49 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.2 +/- 11.5 micro-K (17.4 +/- 1.5 micro-K). The marginal likelihood of n is 1.42 +/- 0.37 (1.53 +/- 0.37). Excluding the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 17.4(sup + 7.5 sub -5.2) micro-K (15.8(sup + 7.5 sub -5.2) micro-K) with a spectral index n = 1.11(sup + 0.60 sub -0.55) (n = 1.22(sup + 0.60 sub -0.55). With n fixed to 1.0 the most likely

  16. Stray light analysis of the Diffuse Infrared Background Experiment (DIRBE)

    NASA Technical Reports Server (NTRS)

    Breault, R. P.

    1984-01-01

    The straylight analysis of the diffuse infrared background experiment (DIRBE) on the cosmic background explorer (COBE) mission is discussed. From the statement of work (SOW), the purpose of DIRBE is to measure, or set upper limits on, the spectral and spatial character of the diffuse extra galactic infrared radiation. Diffuse infrared sources within our own galaxy are measured. The required reduction of the unwanted radiation imposes severe design and operating restrictions on the DIRBE instrument. To accomplish its missions, it will operate at a multitude of wavelengths ranging from 1.25 um out to 200 to 300 microns. The operating bands and the required point source normalized irradiance transmittance (PSNIT) are shown. The important straylight concepts in the DIRBE design are reviewed. The model and assumptions used in APART analysis are explained. The limitations due to the scalar theory used in the analysis are outlined.

  17. A case study exploring science competence and science confidence of middle school girls from marginalized backgrounds

    NASA Astrophysics Data System (ADS)

    Garcia, Yeni Violeta

    The inclusion of learners from underrepresented background in biology field research experiences has not been widely explored in the literature. Increased access and equity to experiences for groups historically underrepresented in science, technology, engineering, and mathematics (STEM) has been identified as a priority for many, yet little is known about the components these experiences should have and what types of transformations participants undergo as a result of these experiences. This dissertation explored the systemic creation of an intervention purposely designed to serve middle school girls from underrepresented backgrounds, the implementation of such intervention, and effect on the girls' science competence and science confidence. El Espejo, Spanish for "The Mirror," was an ongoing field ecology research program for middle schools girls founded in 2009 at a local interdisciplinary learning center. Girls from all walks of life had the opportunity to be apprentice researchers and to work with scientists and science educators from the local community. All activities were strategically designed to promote student-led inquiry, career awareness, cultural awareness, and opportunities for research and mentorship for girls from underrepresented backgrounds. An increased understanding of if, how, and why this experience was perceived by the girls to be life changing was of importance to add to the conversations that seek ways to inspire and prepare this generation of students to be the next generation of scientists. The study built on systems theory, and on theories that were embedded in the participants' system: critical race theory, identity theory, and experiential learning theory, grounded in the context of the lived experiences of girls from underrepresented backgrounds. The girls' experiences were captured through journals, observer participant notes, photo-documentation, artifacts (posters, videos) created by the girls, and by using science perception

  18. Cosmic microwave background theory.

    PubMed

    Bond, J R

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in -space are consistent with a DeltaT flat in frequency and broadly follow inflation-based expectations. That the levels are approximately (10(-5))2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Lambda cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 +/- 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 +/- 0.08 for DMR plus the SK95 experiment; 1.00 +/- 0.04 for DMR plus all smaller angle experiments; 1.00 +/- 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Lambda and moderate constraints on Omegatot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.

  19. Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Johnson, N. J. E.

    1980-01-01

    Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.

  20. Report on 3- and 4-Point Correlation Statistics in COBE DMR Anisotropy Maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary; Gorski, Krzystof M.; Bennett, Charles L.; Banday, Anthony J.

    1996-01-01

    As part of the work performed under this contract, we have computed the 3- and 4-point correlation functions of the COBE-DMR 2-year and 4-year anisotropy maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data.

  1. Detector response and cosmogenic backgrounds in the exploration of rare event physics

    NASA Astrophysics Data System (ADS)

    Barker, D'Ann

    The next generation of ultra-low background physics experiments will reach energy regions and detector sensitivities beyond those previously used to solve many relevant problems of science. For instance, exploring the nature of dark matter, and answering the question of charge-parity (CP) violation of neutrinos in the lepton sector, require ultra-low background rates in the region of interest of detectors. This thesis studies two aspects related to rare event physics. First, a model of ionization efficiency was developed for low energy nuclear recoils in germanium, a common dark matter target. The fundamental physics processes of stopping power below 100 keV were investigated; it was observed that a component of nuclear stopping power contributes to ionization efficiency. To correctly interpret the experimental threshold, a reliable model for ionization efficiency is necessary. Experimental verification of this model was completed using a neutron source incident on a germanium detector. A Monte Carlo simulation was carried out in parallel by another member of the research group. We used shape analysis to compare the experimental data with the proposed Barker-Mei model and an established model for ionization efficiency, Lindhard et al. with k = 0.159. We found agreement between the experimental data and the Monte Carlo simulations to within 4% for both models. Thus, we conclude that the models are valid for the range of 1 keV to 100 keV. The second component was the evaluation of cosmogenic background events from muons and muon-induced neutrons in liquid argon for a long baseline neutrino oscillation experiment. Analytical models were developed to calculate the background event rates of cosmogenically produced nuclei, particularly 40Cl, with rock overburdens of 0.712 km water equivalent (km.w.e.) and 4.3 km.w.e. The predicted rates were compared to a Monte Carlo simulation of a liquid argon target at similar overburden depths performed by another member of the

  2. First spectral observations of the diffuse background with the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Jelinksy, P.; Vallerga, J. V.; Edelstein, J.

    1995-01-01

    We present the first results from the analysis of the spectroscopic observations of diffuse extreme ultraviolet (EUV) emission taken with the Extreme Ultraviolet Explorer (EUVE) spectrometers in the wavelength range 160-740 A. Although not designed or optimized for diffuse observation, the EUVE spectrometers are the most sensitive diffuse EUV spectrometer in orbit. The spectral resolution for diffuse emission of the medium and long-wavelength spectrometers are 17 and 34 A FWHM, respectively. During the period from 1992 July 25 to 1992 August 19, the spectrometers surveyed a 2 x 20 deg field scanned from (l, b) = (24 deg, -28 deg) to (44 deg, -74 deg) with a total effective exposure time of 575,232 s. The only emission lines detected were those of He I and He II (584, 537, 304 A) with intensities consistent with local geocoronal and/or interplanetary scattering of solar radiation (584 A = 1.30 rayleighs; 537 A = 0.040 R; and 304 A = 0.029 R). Models of the soft X-ray background, which results from a 10(exp 6) K plasma (Local Bubble) surrounding the neutral gas near the Sun (Local Cloud), predict that most of the flux from the hot plasma appears as emission lines in the EUV. We have compared these spectral predictions with our observations to place limits on the emission measure versus temperature of the proposed hot plasma. Using the same plasma model, we derived emissions measures for our data and the C and B soft X-ray bands of the Wisconsin rocket survey. We find that our limits for the plasma emission measure are a factor of 5-10 below the C- and B-band emission measures over the temperature range from 10(exp 5.7) to 10(exp 6.4) K. We explore possible scenarios that could reconcile our results with the X-ray surveys and conclude that depletion or a nonequilibrium plasma state rather than absorption are the more likely explanations of the discrepancy. We also show that our spectrum is inconsistent with the spectrum from the approximately 10(exp 5) K gas at the

  3. The Effects of Nearby Clusters of Galaxies on the Microwave Background Radiation

    NASA Technical Reports Server (NTRS)

    Birkinshaw, M.

    1999-01-01

    This project proposed to use the COBE (Cosmic Background Explorer) DMR sky-maps to measure the anisotropies introduced into the microwave background radiation by the Sunyaev-Zel'dovich and Rees-Sciama effects of nearby clusters and superclusters of galaxies. We intended to seek these effects by making maps of the best-fit anisotropies on particular angular scales and comparing the apparent anisotropies near target clusters and superclusters with the statistical noise and sky variance. The locations of the clusters and superclusters were to be found using HEAO-1 (High Energy Astronomy Observatory) A2 and Einstein X-ray maps. Checks against biases were to be made using radio and X-ray sky-maps as guides to the properties of the clusters and superclusters. Any signals detected would have implications for the gas properties and baryonic masses of clusters and superclusters. The scientific background, project activities and references to published papers are included.

  4. Cosmic Microwave Background Data Analysis

    NASA Astrophysics Data System (ADS)

    Paykari, Paniez; Starck, Jean-Luc Starck

    2012-03-01

    About 400,000 years after the Big Bang the temperature of the Universe fell to about a few thousand degrees. As a result, the previously free electrons and protons combined and the Universe became neutral. This released a radiation which we now observe as the cosmic microwave background (CMB). The tiny fluctuations* in the temperature and polarization of the CMB carry a wealth of cosmological information. These so-called temperature anisotropies were predicted as the imprints of the initial density perturbations which gave rise to the present large-scale structures such as galaxies and clusters of galaxies. This relation between the present-day Universe and its initial conditions has made the CMB radiation one of the most preferred tools to understand the history of the Universe. The CMB radiation was discovered by radio astronomers Arno Penzias and Robert Wilson in 1965 [72] and earned them the 1978 Nobel Prize. This discovery was in support of the Big Bang theory and ruled out the only other available theory at that time - the steady-state theory. The crucial observations of the CMB radiation were made by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite [86]- orbited in 1989-1996. COBE made the most accurate measurements of the CMB frequency spectrum and confirmed it as being a black-body to within experimental limits. This made the CMB spectrum the most precisely measured black-body spectrum in nature. The CMB has a thermal black-body spectrum at a temperature of 2.725 K: the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9mmwavelength. The results of COBE inspired a series of ground- and balloon-based experiments, which measured CMB anisotropies on smaller scales over the next decade. During the 1990s, the first acoustic peak of the CMB power spectrum (see Figure 5.1) was measured with increasing sensitivity and by 2000 the BOOMERanG experiment [26] reported

  5. Another look at distortions of the Cosmic Microwave Background spectrum

    NASA Astrophysics Data System (ADS)

    De Zotti, G.; Negrello, M.; Castex, G.; Lapi, A.; Bonato, M.

    2016-03-01

    We review aspects of Cosmic Microwave Background (CMB) spectral distortions which do not appear to have been fully explored in the literature. In particular, implications of recent evidences of heating of the intergalactic medium (IGM) by feedback from active galactic nuclei are investigated. Taking also into account the IGM heating associated to structure formation, we argue that values of the y parameter of several × 10-6, i.e. a factor of a few below the COBE/FIRAS upper limit, are to be expected. The Compton scattering by the re-ionized plasma also re-processes primordial distortions, adding a y-type contribution. Hence no pure Bose-Einstein-like distortions are to be expected. An assessment of Galactic and extragalactic foregrounds, taking into account the latest results from the Planck satellite as well as the contributions from the strong CII and CO lines from star-forming galaxies, demonstrates that a foreground subtraction accurate enough to fully exploit the PIXIE sensitivity will be extremely challenging. Motivated by this fact we also discuss methods to detect spectral distortions not requiring absolute measurements and show that accurate determinations of the frequency spectrum of the CMB dipole amplitude may substantially improve over COBE/FIRAS limits on distortion parameters. Such improvements may be at reach of next generation CMB anisotropy experiments. The estimated amplitude of the Cosmic Infrared Background (CIB) dipole might be detectable by careful analyses of Planck maps at the highest frequencies. Thus Planck might provide interesting constraints on the CIB intensity, currently known with a simeq 30% uncertainty.

  6. Power spectrum constraints from spectral distortions in the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Hu, Wayne; Scott, Douglas; Silk, Joseph

    1994-01-01

    Using recent experimental limits on chemical potential distortions from Cosmic Background Explorer (COBE) Far Infrared Astronomy Satellite (FIRAS), and the large lever-arm spanning the damping of sub-Jeans scale fluctuations to the COBE DMR fluctuations, we set a constraint on the slope of the primordial power spectrum n. It is possible to analytically calculate the contribution over the full range of scales and redshifts, correctly taking into account fluctuation growth and damping as well as thermalization processes. Assuming conservatively that mu is less than 1.76 x 10(exp -4), we find that the 95% upper limit on n is only weakly dependent on other cosmological parameters, e.g., n is less than 1.60 (h=0.5) and n is less than 1.63 (h=1.0) for Omega(sub 0) = 1, with marginally weaker constraints for Omega(sub 0) is less than 1 in a flat model with a cosmological constant.

  7. Exploring the Effect of Background Knowledge and Text Cohesion on Learning from Texts in Computer Science

    ERIC Educational Resources Information Center

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2013-01-01

    In this study, we examine the effect of background knowledge and local cohesion on learning from texts. The study is based on construction-integration model. Participants were 176 undergraduate students who read a Computer Science text. Half of the participants read a text of maximum local cohesion and the other a text of minimum local cohesion.…

  8. Exploring Anti-Semitism in the Classroom: A Case Study among Norwegian Adolescents from Minority Backgrounds

    ERIC Educational Resources Information Center

    Thomas, Paul

    2016-01-01

    This study explores high school students' views of Jews in one minority-dominated school in Oslo, Norway. Employing a qualitative approach, semistructured interview guides and classroom-based discussions teased out attitudes toward Jews drawing on questions from a nationwide research conducted by The Center for Studies of the Holocaust and…

  9. School Achievement and Family Background in Greece: A New Exploration of an Omnipresent Relationship

    ERIC Educational Resources Information Center

    Gouvias, Dionysios; Katsis, Athanassios; Limakopoulou, Aristea

    2012-01-01

    This paper presents some of the findings that emerged out of a national survey carried out in the school year 2005-2006 in various parts of Greece. The main aim of the study was to explore the effects of various "family" factors on the "student performance" in the (national) higher education entrance examinations. From the analysis of data it…

  10. From ISO to SIRTF Cosmological Surveys: Exploring the Cosmic Infrared Background

    NASA Astrophysics Data System (ADS)

    Dole, H.

    2003-06-01

    Understanding and observing the sources contributing to the extragalactic background at all wavelengths has become one of the most rapidly evolving fields in observational cosmology since the discovery of the Cosmic Infrared Background (CIB, Puget et al, 1996; Hauser & Dwek, 2000). Cosmological surveys conducted from space with ISO (Infrared Space Observatory) and from the ground in the mm/submm range, together with observations at other wavelengths for source identification, begin to provide a global view of galaxy evolution. In particular, ISO (Genzel & Cesarsky, 2000, Franceschini et al, 2001) performed many deep surveys in the mid and far infrared, mainly at 15 mu m (Elbaz et al, 2002) and at 170 mu m (Dole et al, 2001).

  11. Correlation function analysis of the COBE differential microwave radiometer sky maps

    SciTech Connect

    Lineweaver, C.H. |

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than {approximately}20{degree} is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9{sigma}, > 10{sigma} and > 18{sigma} above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60{degree} due to the 60{degree} separation of the DMR horns. The mean covariance of 60{degree} is 0.45%{sub {minus}0.14}{sup +0.18} of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  12. Exploration of Gamburtsev Subglacial Mountains, East Antarctica: Background and Plans for the Near Future

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Li, Yuansheng; Cao, Pinlu; Xu, Huiwen; Zheng, Zhichuan; Wang, Rusheng; Zhang, Nan; Markov, Alexey; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Gong, Da; Hong, Jialing; Liu, Chunpeng; Han, Junjie; Yu, Chengfeng; Wang, Lili

    2014-05-01

    The Gamburtsev Subglacial Mountains (GSM), located in the central part of East Antarctica, were discovered by the Soviet team of the 3rd Complex Antarctic Expedition in 1958-1959. The GSM has highly dissected Alpine topography reaching maximum elevations of 3000 m and are completely covered by over 600 m of ice and snow. The mechanism driving uplift of the young-shaped GSM in the middle of the old East Antarctic Shield is unknown. With only limited constraints available on the topography, geology, and lithospheric structure, the origin of the GSM has been a matter of considerable speculation. The latest interpretation suggested that the GSM were formed during Permian and Cretaceous (roughly 250-100 Ma ago) due to the combination of rift-flank uplift, root buoyancy and the isostatic response. Later on, the Antarctic Ice Sheet covered the range and protected it from erosion. However, this theory cannot explain lack of erosion process during many millions years in between uplifting and beginning of glaciation. The next step of the GSM exploration focuses on the direct observation of ice sheet bed by drilling. In order to penetrate into subglacial bedrock in the GSM region the development activity already has been started in China. Drilling operations in Antarctica are complicated by extremely low temperature at the surface and within ice sheet, by ice flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. All that are the reasons that up to the present moment bedrock cores were never obtained at inland of Antarctica. It is proposed to use cable-suspended drilling technology in which an armored cable with a winch is used instead of a pipe-string to provide power to the down-hole motor system and to retrieve the down-hole unit. It is assumed to choose the drill site with the ice thickness at most of 1000 m and to pierce into the mountain slope to a depth of few meters. Proposed borehole construction includes five following steps: (1) dry core

  13. LoCuSS: Exploring the selection of faint blue background galaxies for cluster weak-lensing

    NASA Astrophysics Data System (ADS)

    Ziparo, Felicia; Smith, Graham P.; Okabe, Nobuhiro; Haines, Chris P.; Pereira, Maria J.; Egami, Eiichi

    2016-10-01

    Cosmological constraints from galaxy clusters rely on accurate measurements of the mass and internal structure of clusters. An important source of systematic uncertainty in cluster mass and structure measurements is the secure selection of background galaxies that are gravitationally lensed by clusters. This issue has been shown to be particular severe for faint blue galaxies. We therefore explore the selection of faint blue background galaxies, by reference to photometric redshift catalogues derived from the COSMOS survey and our own observations of massive galaxy clusters at z ≃ 0.2. We show that methods relying on photometric redshifts of galaxies in/behind clusters based on observations through five filters, and on deep 30-band COSMOS photometric redshifts are both inadequate to safely identify faint blue background galaxies with the same 1 per cent contamination level that we have achieved with red galaxies. This is due to the small number of filters used by the former, and absence of massive galaxy clusters at redshifts of interest in the latter. Nevertheless, our least contaminated blue galaxy sample yields stacked weak-lensing results consistent with our previously published results based on red galaxies, and we show that the stacked clustercentric number density profile of these faint blue galaxies is consistent with expectations from consideration of the lens magnification signal of the clusters. Indeed, the observed number density of blue background galaxies changes by ˜10 - 30 per cent across the radial range over which other surveys assume it to be flat.

  14. Large-scale traces of Solar system cold dust on cosmic microwave background anisotropies

    NASA Astrophysics Data System (ADS)

    Maris, M.; Burigana, C.; Gruppuso, A.; Finelli, F.; Diego, J. M.

    2011-08-01

    We explore the microwave anisotropies on large angular scales produced by the emission from cold and large dust grains, expected to exist in the outer parts of the Solar system, using a simple toy model for this diffuse emission. Its amplitude is constrained in the far-IR by the COBE data and is compatible with simulations found in the literature. We analyse the templates derived after subtracting our model from the WMAP ILC 7-yr maps and investigate on the cosmological implications of such a possible foreground. The anomalies related to the low quadrupole of the angular power spectrum, the two-point correlation function, the parity and the excess of signal found in the ecliptic plane are significantly alleviated. An impact of this foreground on some cosmological parameters characterizing the spectrum of primordial density perturbations, relevant for on-going and future cosmic microwave background anisotropy experiments, is found.

  15. Cross-correlation between the 170 GHz survey map and the COBE differential microwave radiometer first-year maps

    NASA Technical Reports Server (NTRS)

    Ganga, Ken; Cheng, ED; Meyer, Stephan; Page, Lyman

    1993-01-01

    This letter describes results of a cross-correlation between the 170 GHz partial-sky survey, made with a 3.8 deg beam balloon-borne instrument, and the COBE DMR 'Fit Technique' reduced galaxy all-sky map with a beam of 7 deg. The strong correlation between the data sets implies that the observed structure is consistent with thermal variations in a 2.7 K emitter. A chi-square analysis applied to the correlation function rules out the assumption that there is no structure in either of the two maps. A second test shows that if the DMR map has structure but the 170 GHz map does not, the probability of obtaining the observed correlation is small. Further analyses support the assumption that both maps have structure and that the 170 GHz-DMR cross-correlation is consistent with the analogous DMR correlation function. Maps containing various combinations of noise and Harrison-Zel'dovich power spectra are simulated and correlated to reinforce the result. The correlation provides compelling evidence that both instruments have observed fluctuations consistent with anisotropies in the cosmic microwave background.

  16. Introducing 3D U-statistic method for separating anomaly from background in exploration geochemical data with associated software development

    NASA Astrophysics Data System (ADS)

    Ghannadpour, Seyyed Saeed; Hezarkhani, Ardeshir

    2016-03-01

    The U-statistic method is one of the most important structural methods to separate the anomaly from the background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, to use U-statistic method in three-dimensional (3D) condition, U-statistic is applied on the grade of two ideal test examples, by considering sample Z values (elevation). So far, this is the first time that this method has been applied on a 3D condition. To evaluate the performance of 3D U-statistic method and in order to compare U-statistic with one non-structural method, the method of threshold assessment based on median and standard deviation (MSD method) is applied on the two example tests. Results show that the samples indicated by U-statistic method as anomalous are more regular and involve less dispersion than those indicated by the MSD method. So that, according to the location of anomalous samples, denser areas of them can be determined as promising zones. Moreover, results show that at a threshold of U = 0, the total error of misclassification for U-statistic method is much smaller than the total error of criteria of bar {x}+n× s. Finally, 3D model of two test examples for separating anomaly from background using 3D U-statistic method is provided. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the 3D U-spatial statistic method, is additionally provided. This software is compatible with all the geochemical varieties and can be used in similar exploration projects.

  17. Non-Gaussian microwave background fluctuations from nonlinear gravitational effects

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.; Kunstatter, G. (Editor)

    1991-01-01

    Whether the statistics of primordial fluctuations for structure formation are Gaussian or otherwise may be determined if the Cosmic Background Explorer (COBE) Satellite makes a detection of the cosmic microwave-background temperature anisotropy delta T(sub CMB)/T(sub CMB). Non-Gaussian fluctuations may be generated in the chaotic inflationary model if two scalar fields interact nonlinearly with gravity. Theoretical contour maps are calculated for the resulting Sachs-Wolfe temperature fluctuations at large angular scales (greater than 3 degrees). In the long-wavelength approximation, one can confidently determine the nonlinear evolution of quantum noise with gravity during the inflationary epoch because: (1) different spatial points are no longer in causal contact; and (2) quantum gravity corrections are typically small-- it is sufficient to model the system using classical random fields. If the potential for two scalar fields V(phi sub 1, phi sub 2) possesses a sharp feature, then non-Gaussian fluctuations may arise. An explicit model is given where cold spots in delta T(sub CMB)/T(sub CMB) maps are suppressed as compared to the Gaussian case. The fluctuations are essentially scale-invariant.

  18. Principles of stray light suppression and conceptual application to the design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Evans, D. C.

    1983-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is a 10 band filter photometer that will operate at superfluid helium temperatures. Diffuse galactic and extragalactic infrared radiation in the 1-300 micrometer wavelength region will be measured by the instrument. Polarization measurements will be made for 3 bands in the 1-4 micrometer spectral region. The main sources of unwanted radiation are the sun, earth, thermal radiation from an external sun shield, the moon, the brighter planets and stars, and sky light itself from outside the instrument's nominal one degree square field of view. The system level engineering concepts and the principles of stray light suppression that resulted in the instrument design are presented.

  19. Report on 3 and 4-point correlation statistics in the COBE DMR anisotrophy maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary (Principal Investigator); Gorski, Krzystof M.; Banday, Anthony J.; Bennett, Charles L.

    1996-01-01

    As part of the work performed under NASA contract # NAS5-32648, we have computed the 3-point and 4-point correlation functions of the COBE-DNIR 2-year and 4-year anisotropy maps. The motivation for this study was to search for evidence of non-Gaussian statistical fluctuations in the temperature maps: skewness or asymmetry in the case of the 3-point function, kurtosis in the case of the 4-point function. Such behavior would have very significant implications for our understanding of the processes of galaxy formation, because our current models of galaxy formation predict that non-Gaussian features should not be present in the DMR maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data. Our computation and analysis of 3-point correlations in the 2-year DMR maps was published in the Astrophysical Journal Letters, volume 446, page L67, 1995. Our computation and analysis of 3-point correlations in the 4-year DMR maps will be published, together with some additional tests, in the June 10, 1996 issue of the Astrophysical Journal Letters. Copies of both of these papers are attached as an appendix to this report.

  20. [Therapeutic thrombocytapheresis in patients with myeloproliferative diseases with the cell separators Fresenius AS 104 and Cobe Spectra: biocompatibility and safety].

    PubMed

    Ullrich, H; Kadar, J; Waxenberger, Y; Hohe, R; Saueressig, C; Heyder, M; Wiebecke, D

    1992-01-01

    We studied biocompatibility, safety and efficiency of the two cell separators AS 104 (Fresenius) and Spectra (Cobe) during therapeutic thrombocytaphereses. Although some patients have very high platelet levels and coagulation as well as circulatory equilibrium is easily disturbed, no important activation of coagulation or complement was observed. In respect to patient's safety both cell separators performed very well.

  1. [Therapeutic thrombocytapheresis in patients with myeloproliferative diseases with the cell separators Fresenius AS 104 and Cobe Spectra: biocompatibility and safety].

    PubMed

    Ullrich, H; Kadar, J; Waxenberger, Y; Hohe, R; Saueressig, C; Heyder, M; Wiebecke, D

    1992-01-01

    We studied biocompatibility, safety and efficiency of the two cell separators AS 104 (Fresenius) and Spectra (Cobe) during therapeutic thrombocytaphereses. Although some patients have very high platelet levels and coagulation as well as circulatory equilibrium is easily disturbed, no important activation of coagulation or complement was observed. In respect to patient's safety both cell separators performed very well. PMID:1284723

  2. SURFACE GEOPHYSICAL EXPLORATION OF SX TANK FARM AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    SciTech Connect

    MYERS DA; RUCKER D; LEVIT M; CUBBAGE B; HENDERSON C

    2009-09-24

    This report presents the results of the background characterization of the cribs and trenches surrounding the SX tank farm prepared by HydroGEOPHYSICS Inc, Columbia Energy & Environmental Services Inc and Washington River Protection Solutions.

  3. A new blackbody radiation law based on fractional calculus and its application to NASA COBE data

    NASA Astrophysics Data System (ADS)

    Biyajima, Minoru; Mizoguchi, Takuya; Suzuki, Naomichi

    2015-12-01

    By applying fractional calculus to the equation proposed by M. Planck in 1900, we obtain a new blackbody radiation law described by a Mittag-Leffler (ML) function. We have analyzed NASA COBE data by means of a non-extensive formula with a parameter (q - 1) , a formula proposed by Ertik et al. with a fractional parameter (α - 1) , and our new formula including a parameter (p - 1) , as well as the Bose-Einstein distribution with a dimensionless chemical potential μ. It can be said that one role of the fractional parameter (p - 1) is almost the same as that of chemical potential (μ) as well as that of the parameter (q - 1) in the non-extensive approach.

  4. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2001-01-01

    Part of an annual review of mines and mineral resources in the U.S. An overview of nonfuel-mineral exploration in 2000 is presented. Principal exploration target was gold exploration in Latin America, Australia, and the U.S. There was a decrease of 18 percent in the exploration budget for gold as compared with the budget for 1999. Statistical information on nonfuel-mineral exploration worldwide is presented, analyzed, and interpreted.

  5. SURFACE GEOPHYSICAL EXPLORATION OF B & BX & BY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    SciTech Connect

    MYERS DA

    2007-09-28

    This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around the site with large metallic subsurface debris or metallic infrastructure.

  6. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.; Porter, K.E.

    1999-01-01

    This summary of international nonfuel mineral exploration activities for 1998 draws on available data from literature, industry and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.

  7. Crystallization and preliminary structure analysis of CobE, an essential protein of cobalamin (vitamin B{sub 12}) biosynthesis

    SciTech Connect

    Vévodová, Jitka; Graham, Ross M.; Raux, Evelyne; Warren, Martin J.; Wilson, Keith S.

    2005-04-01

    P. aeruginosa CobE, a protein implicated in vitamin B{sub 12} biosynthesis, has been crystallized and data on the native and SeMet forms recorded to resolutions of 1.9 and 1.7 Å, respectively. The anomalous measurements will be used for phasing. CobE, a protein implicated in vitamin B{sub 12} biosynthesis, from Pseudomonas aeruginosa has been overexpressed in Escherichia coli, purified and crystallized using hanging-drop vapour diffusion. The crystals belong to the primitive orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 31.86, b = 41.07, c = 87.41 Å. The diffraction extends to a resolution of 1.9 Å. There is one molecule per asymmetric unit and the estimated solvent content is 35%. SeMet-labelled CobE has been prepared and crystallizes under the same conditions as the native protein with diffraction to 1.7 Å. The anomalous measurements will be used for phasing.

  8. Extragalactic Backgrounds in the Far UV and Exploring Star Formation at High Redshifts with Gamma-ray Observations

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2006-01-01

    The determination of the intergalactic photon densities from the FIR to the UV which is produced by stellar emission and dust reradiation at various redshifts can provide an independent measure of the star formation history of the universe. Using recent Spitzer and GALEX data in conjunction with other observational inputs, Stecker, Malkan and Scully have calculated the intergalactic photon density as a function of both energy and redshift for 0 < zeta < 6 for photon energies from 0.003 eV to the Lyman limit cutoff at 13.6 eV in a ACDM universe with Omega(sub Lambda) = 0.7 and Omega(sub m) = 0.3. Their results are based on backwards evolution models for galaxies which were developed by Malkan and Stecker previously. The calculated background SEDs at zeta = 0 are in good agreement with the present observational data and limits. The calculated intergalactic photon densities as a function of redshift were used to predict to extend the absorption of high energy 7-rays in intergalactic space from sources such as blazars and quasars, this absorption being produced by interactions the y-rays with the intergalactic FIR-UV photons having the calculated densities. The results are in excellent agreement with absorption features found in the low gamma-ray spectra of Mkn 421, Mkn 501 at, zeta = 0.03 and PKS

  9. Exploring occupation roles of hospice family caregivers from Māori, Chinese and Tongan ethnic backgrounds living in New Zealand.

    PubMed

    Angelo, Jennifer; Wilson, Linda

    2014-06-01

    A major challenge to occupational therapists working in palliative care is determining the best ways to help family caregivers who are caring for family members. The purpose of this study was to explore palliative caregiver occupations among Māori, Chinese and Tongan ethnicities. Six informants participated, one woman and one man from each ethnic group. In each of their homes, informants were asked to discuss what it was like caring for their dying family member. The occupational themes resulting from these interviews were food preparation, spirituality and family gathering. Therapists need to be aware of the differences in how people care for family members within their ethnicity. Implications are that occupational therapists can help families identify activities important to them within the main occupational themes: different types of foods and their preparations, various ways to express spirituality and how families gather together members of their extended family. Further, clinicians need to take on the role of a "not-knowing" but curious health-care provider in order to meet the needs of caregivers. The limitation was the small number of participants who all lived in one geographic area. Future studies should include a wider group of ethnicities.

  10. Exploring occupation roles of hospice family caregivers from Māori, Chinese and Tongan ethnic backgrounds living in New Zealand.

    PubMed

    Angelo, Jennifer; Wilson, Linda

    2014-06-01

    A major challenge to occupational therapists working in palliative care is determining the best ways to help family caregivers who are caring for family members. The purpose of this study was to explore palliative caregiver occupations among Māori, Chinese and Tongan ethnicities. Six informants participated, one woman and one man from each ethnic group. In each of their homes, informants were asked to discuss what it was like caring for their dying family member. The occupational themes resulting from these interviews were food preparation, spirituality and family gathering. Therapists need to be aware of the differences in how people care for family members within their ethnicity. Implications are that occupational therapists can help families identify activities important to them within the main occupational themes: different types of foods and their preparations, various ways to express spirituality and how families gather together members of their extended family. Further, clinicians need to take on the role of a "not-knowing" but curious health-care provider in order to meet the needs of caregivers. The limitation was the small number of participants who all lived in one geographic area. Future studies should include a wider group of ethnicities. PMID:24578104

  11. Derivation of a Large Isotopic Diffuse Sky Emission Component at 1.25 and 2.2um from the COBE/DIRBE Data

    NASA Astrophysics Data System (ADS)

    Sano, K.; Kawara, K.; Matsuura, S.; Kataza, H.; Arai, T.; Matsuoka, Y.

    2015-10-01

    Using all-sky maps obtained with COBE/DIRBE, we reanalyzed the diffuse sky brightness at 1.25 and 2.2 μ {{m}}, which consists of zodiacal light, diffuse Galactic light (DGL), integrated starlight (ISL), and isotropic emission including the extragalactic background light. Our new analysis including an improved estimate of the DGL and the ISL with the 2MASS data showed that deviations of the isotropic emission from isotropy were less than 10% in the entire sky at high Galactic latitude (| b| \\gt 35^\\circ ). We derived the DGL to 100 μm brightness ratios of ˜4.79 and ˜1.49 n W m-2 MJy-1 at 1.25 and 2.2 μm, respectively. The result of our analysis revealed a significantly large isotropic component at 1.25 and 2.2 μ {{m}} with intensities of 60.15 ± 16.14 and 27.68+/- 6.21 {{n}} {{W}} {{{m}}}-2 {{sr}}-1, respectively. This intensity is larger than the integrated galaxy light, upper limits from γ-ray observation, and potential contribution from exotic sources (i.e., Population III stars, intrahalo light, direct collapse black holes, and dark stars). We therefore conclude that the excess light may originate from the local universe: the Milky Way and/or the solar system.

  12. Exploring the background features of acidic and basic air pollutants around an industrial complex using data mining approach.

    PubMed

    Chen, Ho-Wen; Tsai, Ching-Tsan; She, Chin-Wen; Lin, Yo-Chen; Chiang, Chow-Feng

    2010-11-01

    Air pollution data around a monitored site are normally difficult to analyze due to highly inter-related meteorological and topographical factors on top of many complicated atmospheric chemical interactions occurred in local and regional wind fields. The challenge prompts this study to develop a comprehensive data-mining algorithm of cluster analysis followed by meteorological and interspecies correlations to mitigate the inherent data complexity and dissimilarity. This study investigated the background features of acidic and basic air pollutants around a high-tech industrial park in Taiwan. Monthly samplings were taken at 10 sites around the park in a year. The temporal distribution plots show a baseline with two characteristic groups of high and low peaks. Hierarchical cluster analysis confirms that high peaks were primarily associated with low speed south wind in summer for all the chemical species, except for F(-), Cl(-), NH(3) and HF. Crosschecking with the topographical map identifies several major external sources in south and southwest. Further meteorological correlation suggests that HCl is highly positively associated with humidity, while Cl(-) is highly negatively associated with temperature, both for most stations. Interestingly, HNO(3) is highly negatively associated with wind speed for most stations and the hotspot was found in summer and around the foothill of Da-Tu Mountain in the northwest, a stagnant pocket on the study site. However, F(-) is highly positively associated with wind speed at downwind stations to the prevailing north wind in winter, indicating an internal source from the north. The presence of NH(4)(+) stimulates the formation of NO(3)(-), SO(4)(-2) (R=0.7), and HNO(3), H(2)SO(4), NH(3) (R=0.3-0.4). As H(2)SO(4) could be elevated to a level as high as 40% of the regulated standard, species interactions may be a dominate mechanism responsible for the substantial increase in summer from external sources.

  13. Microwave background fluctuations due to the Sunyaev-Zel'dovich effects in pancakes

    NASA Technical Reports Server (NTRS)

    Subbarao, M. U.; Szalay, A. S.; Schaefer, R. K.; Gulkis, S.; Von Gronefeld, P.

    1994-01-01

    We calculate distortions in the microwave background radiation from the Sunyaev-Zel'dovich effect, produced by hot gas in large (approximately 100 Mpc) pancakes. The large-scale distribution of the pancakes is taken to be that of a Voronoi foam. Fluctuations for this scenario are estimated to be on the order of delta T/T is approximately 10(exp -5). Using computer simulations, we produce several 32 deg x 32 deg images with 0.25 deg resolution. These images show characteristic linear features produced when a pancake is viewed nearly edge-on. By calculating the two-point and the degenerate three-point correlation functions, we are able to statistically detect such non-Gaussian features even in the presence of a relatively large amount of Gaussian noise. The degenerate three-point correlation function is found to be particularly useful since it is insensitive to correlated Gaussian noise. We also smooth our data over a 7 deg Full Width at Half Maximum (FWHM) Gaussian window to simulate the Cosmic Background Explorer Satellite (COBE) observations. We find that under such low-resolution conditions, the features are highly suppressed.

  14. Cosmic background radiation anisotropy at degree angular scales - Further results from the South Pole

    NASA Technical Reports Server (NTRS)

    Schuster, Jeffrey; Gaier, Todd; Gundersen, Joshua; Meinhold, Peter; Koch, Timothy; Seiffert, Michael; Wuensche, Carlos A.; Lubin, Philip

    1993-01-01

    We report further results from the University of California at Santa Barbara program to measure anisotropy in the cosmic background radiation at angular scales near 1 deg, an angular range corresponding to the largest scales where structure is observed. A 30 GHz high electron mobility transistor amplifier-based detector was coupled to the Advanced Cosmic Microwave Explorer, a 1 m off-axis Gregorian telescope. We present data that represent 64 of the total of 500 hr acquired with this system during the 1990-1991 season. The data have a statistical error of 13.5/micro-K/pixel. These are the smallest error bars of any data set of this type published to date. The data contain a significant signal with a maximum likelihood Delta T/T roughly 1 x 10 exp -5. The spectrum of the signal seen in slightly less than 2 sigma away from the thermal spectrum expected of primordial fluctuations in the cosmic background radiation. If the source of the fluctuations is primordial, then the data are consistent with cold dark matter scenarios when normalized to the large-scale anisotropy observed by COBE, while if the origin of the signal is foreground emission or another form of contaminant then the data are marginally inconsistent with standard cold dark matter models. In either case, the data are sufficiently sensitive to provide a crucial test of many models.

  15. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2005-01-01

    The worldwide budget for nonferrous, nonfuel mineral exploration was expected to increase by 58 percent in 2004 from the 2003 budget, according to Metals Economics Group (MEG) of Halifax, Nova Scotia. The increase comes two years after a five-year period of declining spending for mineral exploration (1998 to 2002). Figures suggest a subsequent 27 percent increase in budgeted expenditures from 2002 to 2003. For the second consecutive year, all regional exploration budget estimates were anticipated to increase.

  16. Estimating Background and Lunar Contribution to Neutrons Detected by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) Instrument

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Mitrofanov, I. G.; Chin, G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sagdeev, R.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2014-12-01

    The fraction of hydrogen-bearing species embedded in planetary regolith can be determined from the ratio between measured epithermal neutron leakage flux and the flux measured from similar dry regolith. The Lunar Reconnaissance Orbiter (LRO) spacecraft is equipped with the Lunar Exploration Neutron Detector (LEND) instrument to measure embedded hydrogen in the Moon's polar regions and elsewhere. We have investigated the relative contribution of lunar and non-lunar (spacecraft-sourced) neutrons by modeling maps of the measured count rate from three of the LEND detector systems using linear combinations of maps compiled from the Lunar Prospector Neutron Spectrometer (LPNS) and the LEND detectors, demonstrating that the two systems are compatible and enabling reference signal to be inferred to enable detecting hydrogen and hydrogen-bearing volatiles. The pole-to-equator contrast ratio in epithermal neutrons indicates that the average concentration of hydrogen in the Moon's polar regolith above 80° north or south latitude is ~110 ppmw, or 0.10±0.01 wt% water-equivalent hydrogen. Above 88° north or south, the concentration increases to ~140 ppmw, or 0.13±0.02 wt% water-equivalent hydrogen. Nearly identical suppression of neutron flux at both the north and south poles, despite differences in topography and distribution of permanently-shadowed regions, supports the contention that hydrogen is broadly distributed in the polar regions and increasingly concentrated approaching the poles. Similarity in the degree of neutron suppression in low-energy and high-energy epithermal neutrons suggests that the hydrogen fraction is relatively uniform with depth down to ~1 m; the neutron leakage flux is insensitive to greater depth.

  17. Collection of peripheral progenitor cells: a comparison between Amicus and Cobe-Spectra blood cell separators.

    PubMed

    Adorno, Gaspare; Del Proposto, Gianpaolo; Palombi, Francesca; Bruno, Antonio; Ballatore, Giovanna; Postorino, Massimiliano; Tendas, Andrea; Del Poeta, Giovanni; Isacchi, Giancarlo; Amadori, Sergio

    2004-04-01

    The authors compared the efficiency of two different blood cell separators (Amicus and Cobe-Spectra) in collecting peripheral blood progenitor cells for autologous or homologous transplantation. A total number of 129 procedures were performed, 36 with Spectra, 93 with Amicus. There was no difference between Spectra and Amicus efficiencies for CD34+ cell collection (46.685% vs 46.235%; p=n.s) but the platelet efficiencies were 17.31% and 12.54% respectively (p=0.04) and, if autologous and allogeneic collections were considered separately, a marked difference resulted in allogeneic platelet efficiency between 6 Spectra and 23 Amicus procedures (26.83% vs 8.68%, p=0.0004). The authors were able to demonstrate that in 70 Amicus autologous collections there was a different platelet efficiency, if peripheral count was considered: 12 procedures performed with a platelet count > 100 x 10(9)/l had a very low efficiency (6.86%), but this value increased if platelet count lowered (13.02% if between 100 and 50 x 10(9)/l, 22.63% if between 50 and 0 x 10(9)/l, 23 and 35 procedures respectively). The study is preliminary and the number of collections is little, but the overall data suggest that Spectra (AutoPBSC, V 6.0) and Amicus separators have the same efficiency for collecting CD34+ cells while Amicus procedures have a very low platelet contamination, especially with donors.

  18. Cosmic Ray Exposure & Linear-Energy-Transfer Evaluations for the COBE Mission

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. M.

    1984-01-01

    Magnetospherically attenuated, orbit integrated, surface incident cosmic ray fluxes of galactic origin were determined for the COBE mission. All heavy ions up to Nickel (z=28) were considered in this, evaluation. In order to provide worst case approximations, estimates were based on solar minimum conditions. Transport and material shielding calculations were then performed for these vehicle encountered particles, for a simple spherical 3-D aluminum geometry, and the materially attenuated cosmic ray distributions emerging behind selected shield thicknesses were obtained. Finally, Linear-Energy-Transfer (LET) spectra were evaluated for the energy spectra of each ion specie and these were, in turn, integrated into the sum-total LET distribution contained in this report. The results are presented in tabular and graphical form for eight (8) different shield thicknesses from.01 to 10.0 gm/cm2 of aluminum. They show most conclusively, and not unexpectedly, that material shielding has virtually no 'effect on the final LET spectrum, at least not for aluminum shields. This was predictable. Please note that in the LET graphs, two curves were plotted. Of these, please ignore the one labeled "grazing" and use only the one labeled "normal". Again, it should be remembered that the end results contain contributions from all elements up to Nickel (z=28).

  19. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2002-01-01

    Exploration budgets fell for a fourth successive year in 2001. These decreases reflected low mineral commodity prices, mineral-market investment reluctance, company failures and a continued trend of company mergers and takeovers.

  20. Frontopolar cortex and decision-making efficiency: comparing brain activity of experts with different professional background during an exploration-exploitation task.

    PubMed

    Laureiro-Martínez, Daniella; Canessa, Nicola; Brusoni, Stefano; Zollo, Maurizio; Hare, Todd; Alemanno, Federica; Cappa, Stefano F

    2013-01-01

    An optimal balance between efficient exploitation of available resources and creative exploration of alternatives is critical for adaptation and survival. Previous studies associated these behavioral drives with, respectively, the dopaminergic mesocorticolimbic system and frontopolar-intraparietal networks. We study the activation of these systems in two age and gender-matched groups of experienced decision-makers differing in prior professional background, with the aim to understand the neural bases of individual differences in decision-making efficiency (performance divided by response time). We compare brain activity of entrepreneurs (who currently manage the organization they founded based on their venture idea) and managers (who are constantly involved in making strategic decisions but have no venture experience) engaged in a gambling-task assessing exploitative vs. explorative decision-making. Compared with managers, entrepreneurs showed higher decision-making efficiency, and a stronger activation in regions of frontopolar cortex (FPC) previously associated with explorative choice. Moreover, activity across a network of regions previously linked to explore/exploit tradeoffs explained individual differences in choice efficiency. These results suggest new avenues for the study of individual differences in the neural antecedents of efficient decision-making.

  1. Frontopolar cortex and decision-making efficiency: comparing brain activity of experts with different professional background during an exploration-exploitation task.

    PubMed

    Laureiro-Martínez, Daniella; Canessa, Nicola; Brusoni, Stefano; Zollo, Maurizio; Hare, Todd; Alemanno, Federica; Cappa, Stefano F

    2013-01-01

    An optimal balance between efficient exploitation of available resources and creative exploration of alternatives is critical for adaptation and survival. Previous studies associated these behavioral drives with, respectively, the dopaminergic mesocorticolimbic system and frontopolar-intraparietal networks. We study the activation of these systems in two age and gender-matched groups of experienced decision-makers differing in prior professional background, with the aim to understand the neural bases of individual differences in decision-making efficiency (performance divided by response time). We compare brain activity of entrepreneurs (who currently manage the organization they founded based on their venture idea) and managers (who are constantly involved in making strategic decisions but have no venture experience) engaged in a gambling-task assessing exploitative vs. explorative decision-making. Compared with managers, entrepreneurs showed higher decision-making efficiency, and a stronger activation in regions of frontopolar cortex (FPC) previously associated with explorative choice. Moreover, activity across a network of regions previously linked to explore/exploit tradeoffs explained individual differences in choice efficiency. These results suggest new avenues for the study of individual differences in the neural antecedents of efficient decision-making. PMID:24478664

  2. Frontopolar cortex and decision-making efficiency: comparing brain activity of experts with different professional background during an exploration-exploitation task

    PubMed Central

    Laureiro-Martínez, Daniella; Canessa, Nicola; Brusoni, Stefano; Zollo, Maurizio; Hare, Todd; Alemanno, Federica; Cappa, Stefano F.

    2014-01-01

    An optimal balance between efficient exploitation of available resources and creative exploration of alternatives is critical for adaptation and survival. Previous studies associated these behavioral drives with, respectively, the dopaminergic mesocorticolimbic system and frontopolar-intraparietal networks. We study the activation of these systems in two age and gender-matched groups of experienced decision-makers differing in prior professional background, with the aim to understand the neural bases of individual differences in decision-making efficiency (performance divided by response time). We compare brain activity of entrepreneurs (who currently manage the organization they founded based on their venture idea) and managers (who are constantly involved in making strategic decisions but have no venture experience) engaged in a gambling-task assessing exploitative vs. explorative decision-making. Compared with managers, entrepreneurs showed higher decision-making efficiency, and a stronger activation in regions of frontopolar cortex (FPC) previously associated with explorative choice. Moreover, activity across a network of regions previously linked to explore/exploit tradeoffs explained individual differences in choice efficiency. These results suggest new avenues for the study of individual differences in the neural antecedents of efficient decision-making. PMID:24478664

  3. Cosmic microwave background anisotropies in cold dark matter models with cosmological constant: The intermediate versus large angular scales

    NASA Technical Reports Server (NTRS)

    Stompor, Radoslaw; Gorski, Krzysztof M.

    1994-01-01

    We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.

  4. [Comparison of the effect of Cobe Spectra and Fenwal CS 3000 plus blood cell separators in collection of peripheral blood stem cell components].

    PubMed

    Yang, Shen-Miao; Liu, Kai-Yan; Lu, Dao-Pei

    2005-04-01

    To evaluate the hematopoietic stem/progenitor cell apheresis effect of Cobe Spectra (Version 6.1) and Fenwal CS 3000 Plus cell separators, fourty-two procedures on twenty donors using Cobe Spectra cell separator and twenty-two procedures on sixteen donors using Fenwal CS 3000 Plus cell separator were retrospectively analyzed. The number of CD34(+) cells collected, the collection efficiency (CE) of CD34(+) cells and the contaminations of red blood cell and platelet in the stem/progenitor cell products of two devices were compared. The results showed that there were no significant differences in the total number of CD34(+) cells collected and the CD34(+) cell CE between the two devices. There were positive correlations between the count of peripheral blood cells including leukocyte, monocyte, hematopoietic progenitor cell and CD34(+) cell after mobilization and the total number of CD34(+) cells collected. The stepwise multiple variable analyses revealed the peripheral blood stem/progenitor cell count emerged as the only significant independent predictive factor for CE. A negative correlation was seen between the peripheral blood monocyte count and the CD34(+) cell CE for the Fenwal CS 3000 Plus. The Fenwal CS 3000 Plus product contained more red blood cells than that of the Cobe Spectra. The decrease in the peripheral platelet count after Fenwal CS 3000 Plus apheresis was also greater. It is concluded that collection efficacy of Cobe Spectra (Version 6.1) and Fenwal CS 3000 Plus was similar. Cobe Spectra shall be used preferably to assure higher CD34(+) cell CE at a high peripheral blood monocyte count. The Cobe Spectra cell separator is better for the donors with mismatched blood type and the donors with thrombocytopenia.

  5. Control and optimization of apheresis procedures in a COBE 2997 cell separator.

    PubMed

    Wooten, S L; Petersen, J N; Van Wie, B J

    1991-02-01

    To obtain more efficient operation of a COBE Model 2997 clinical cell separator using either a Single Stage II (SS II) or a Dual Stage separation chamber, modifications were made to allow complete computer control. Product cell density was detected using an optical sensor and controlled by automatic feedback through a microcomputer interface. Control was accomplished by automatically adjusting the red blood cell (RBC) and plasma product flow rates using a proportional-integral (PI) algorithm. Results show that, using either chamber, the product cell density can be maintained at a preselected value for extended periods of time without operator intervention. This system allowed investigation of optimal operating regions for plateletpheresis and leukapheresis procedures. The effects of centrifuge rpm and controller set point on centrifuge operation were investigated using a second order factorial experimental design. Theoretical significance of model parameters was assessed with the aid of a hindered settling model and simple reasoning about the interface position relative to the collection port. The results suggest that, in either chamber, the optimum operating region for plateletpheresis procedures occurs at moderate controller set points and high centrifuge rpm. The resultant operating efficiency and product purity values are approximately 63 percent and 0.65 respectively in the SS II chamber and approximately 70 percent and 0.70 respectively in the Dual Chamber. In the SS II, the optimum operating region for leukapheresis procedures occurred at high controller set point values for any centrifuge rpm above 1200 with an operating efficiency near 100 percent. However, in the Dual Chamber, the optimum operating region for leukapheresis procedures occurred at high controller set points and high centrifuge rpm's, again providing an operating efficiency near 100 percent.

  6. The Zodiacal Emission Spectrum as Determined by COBE and its Implications

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Dwek, Eli; Oliversen, R. (Technical Monitor)

    2002-01-01

    We combine observations from the DIRBE and FIRAS instruments on the COBE satellite to derive an annually-averaged spectrum of the zodiacal cloud in the 10 to 1000 micron wavelength region. The spectrum exhibits a break at approx. 150 microns which indicates a sharp break in the dust size distribution at a radius of about 30 microns The spectrum can be fit with a single blackbody with a lambda(exp -2) emissivity law beyond 150 microns and a temperature of 240 K. We also used a more realistic characterization of the cloud to fit the spectrum, including a distribution of dust temperatures, representing different dust compositions and distances from the sun, as well as a realistic representation of the spatial distribution of the dust. We show that amorphous carbon and silicate dust with respective temperatures of 280 and 274 K at 1 AU, and size distributions with a break at grain radii of 14 and 32 microns, can provide a good fit to the average zodiacal dust spectrum. The total mass of the zodiacal cloud is 2 to 11 Eg (Eg=10(exp 18) g), depending on the grain composition. The lifetime of the cloud, against particle loss by Poynting- Robertson drag and the effects of solar wind, is about 10(exp 5) yr. The required replenishment rate is approx. 10(exp 14) g/yr. If this is provided by asteroid belt alone, the asteroids lifetime would be approx. 3 x 10(exp 10) yr. But comets and Kuiper belt objects may also contribute to the zodiacal cloud.

  7. On the calibration of the COBE/IRAS dust emission reddening maps

    NASA Astrophysics Data System (ADS)

    Dutra, C. M.; Ahumada, A. V.; Clariá, J. J.; Bica, E.; Barbuy, B.

    2003-09-01

    In this work we study the spectral properties (3600-6800 Å) of the nuclear region of early-type galaxies at low (|b|<25deg), intermediate (including surroundings of the Magellanic Clouds) and high (South Polar Cap) Galactic latitudes. We determine the E(B-V) reddening values of the galaxies by matching their continuum distribution with respect to those of reddening-free spectral galaxy templates with similar stellar populations. We also compare the spectroscopic reddening value of each galaxy with that derived from 100 mu m dust emission (E(B-V)FIR) in its line of sight, and we find that there is agreement up to E(B-V)=0.25. Beyond this limit E(B-V)FIR values are higher. Taking into account the data up to E(B-V) ~ 0.7, we derive a calibration factor of 0.016 between the spectroscopic E(B-V) values and Schlegel et al.'s (\\cite{Schlegel1998}) opacities. By combining this result with an AK extinction map built within ten degrees of the Galactic centre using Bulge giants as probes (Dutra et al. \\cite{Dutra2003}), we extended the calibration of dust emission reddening maps to low Galactic latitudes down to |b|=4deg and E(B-V)= 1.6 (AV ~ 5). According to this new calibration, a multiplicative factor of ~0.75 must be applied to the COBE/IRAS dust emission reddening maps. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Pata, Córdoba and San Juan, Argentina.

  8. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10-7, where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  9. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  10. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

    PubMed

    Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N

    2015-12-31

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time. PMID:26764983

  11. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

    PubMed

    Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N

    2015-12-31

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.

  12. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Hill, J. Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N.

    2015-12-01

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000 σ ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230 σ , this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30 σ , which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.

  13. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  14. An exploration of the impact of family background factors on the science achievement of Afro-Caribbean and African American students in the United States

    NASA Astrophysics Data System (ADS)

    Pinder, Patrice J.

    Ogbu and Simons (1998) defined voluntary immigrants as individuals who chose to migrate to the United States (U.S.). Involuntary immigrants are defined as individuals whose ancestors were brought to the U.S. by force (Obgu & Simons, 1998). There have been recent reports indicating that voluntary immigrants are outperforming involuntary immigrants (Fisher, 2005; Williams, Fleming, Jones, & Griffin, 2007). There seems to be a trend in voluntary immigrants exhibiting a higher academic achievement pattern than involuntary immigrants (Fisher, 2005; Rong & Preissle, 1998; Williams et al., 2007). However, the reason for the groups' differences in achievement has not been extensively explored. The primary objective of this research study was to explore the impact of family background on the academic achievement patterns of Afro-Caribbean and African American students in the United States. The study utilized two research designs; a causal-comparative and a correlational design. A questionnaire was distributed to a sample of eighty-seven high school students. Eighteen of the participants were Afro-Caribbean students, and sixty-seven were African American students. Chemistry test scores for the students were also provided. The results of the study indicated that Afro-Caribbean students outperformed African American students on the test of science achievement. The difference was statistically significant (t= 2.43, p<0.05). Additionally, results suggested that there were a few significant differences in Afro-Caribbean and African American students' family backgrounds. Moreover, the findings of this study suggest that the positive impact of arrival status on the first-generation of Afro-Caribbean immigrants may be influencing their children's academic success in science. The present study holds a few implications for parents and teachers of immigrant minority students. Additionally, the current researcher has offered several implications for future research on ethnicity

  15. The Primordial Inflation Explorer (PIXIE)

    NASA Astrophysics Data System (ADS)

    Kogut, Alan; Chluba, Jens; Fixsen, Dale J.; Meyer, Stephan; Spergel, David

    2016-07-01

    The Primordial Inflation Explorer is an Explorer-class mission to open new windows on the early universe through measurements of the polarization and absolute frequency spectrum of the cosmic microwave background. PIXIE will measure the gravitational-wave signature of primordial inflation through its distinctive imprint in linear polarization, and characterize the thermal history of the universe through precision measurements of distortions in the blackbody spectrum. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning over 7 octaves in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce systematic errors to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6° and sensitivity 70 nK per 1° square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10-3 at 5 standard deviations. The PIXIE mission complements anticipated ground-based polarization measurements such as CMB- S4, providing a cosmic-variance-limited determination of the large-scale E-mode signal to measure the optical depth, constrain models of reionization, and provide a firm detection of the neutrino mass (the last unknown parameter in the Standard Model of particle physics). In addition, PIXIE will measure the absolute frequency spectrum to characterize deviations from a blackbody with sensitivity 3 orders of magnitude beyond the seminal COBE/FIRAS limits. The sky cannot be black at this level; the expected results will constrain physical processes ranging from

  16. Analysis of small-scale microwave background radiation anisotropy in the presence of foreground contamination

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Stebbins, Albert

    1994-01-01

    Many of the current round of experiments searching for anisotropies in the microwave background radiation (MBR) are confronting the problem of how to disentangle the cosmic signal from contamination due to Galactic and intergalactic foreground sources. Here we show how commonly used likelihood function techniques can be generalized to account for foreground. Specifically we set some restrictions on the spectrum of foreground contamination but allow the amplitude to vary arbitrarily. The likelihood function thus generalized gives reasonable limits on the MBR anisotropy which, in some cases, are not much less restrictive than what one would get from more detailed modeling of the foreground. Furthermore, the likelihood function is exactly the same as one would obtain by simply projecting out foreground contamination and looking at the reduced data set. We apply this generalized analysis to the recent medium-angle data sets of ACME-HEMT (Gaier et al. 1992; Schuster et al. 1993) and MAX (Meinhold et al. 1993; Gunderson et al. 1993). The resulting analysis constrains the one free parameter in the standard cold dark matter theory to be Q(sub rms-ps) = 18(sub -5 sup +8) microKelvin. This best fit value, although in striking agreement with the normalization from Cosmic Background Explorer (COBE), is not a very good fit, with an overall chi-squared/degrees of freedom = 208/168. We also argue against three commonly used methods of dealing with foreground: (1) ignoring it completely; (2) subtracting off a best-fit foreground and treating the residuals as if uncontaminated; and (3) culling data which appears to be contaminated by foreground.

  17. Re-Imagining Otherness: An Exploration of the Global Imaginaries of Children from Immigrant Backgrounds in Primary Schools in France and England

    ERIC Educational Resources Information Center

    Welply, Oakleigh

    2015-01-01

    This article examines the role of global representations in immigrant-background children's social imaginaries in primary schools in France and England. Increased globalisation, mobility and migration hold strong implications in terms of identity and belonging for children from immigrant backgrounds in schools in European countries, based on…

  18. Constraints on vacuum decay from the microwave background

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.; Bowyer, S.

    1993-01-01

    We consider the possible decay of a vacuum with nonzero energy density into radiation. This is one way to introduce a time-varying cosmological constant, which has been suggested as a means of resolving the cosmological constant problem. We concentrate on the model of Freese et al., in which the vacuum energy density is given as a fraction x/(1 - x) of the energy density of radiation. Using equations for the visible extragalactic background light and assuming that the vacuum decay energy is converted entirely into photons with a Planckian spectrum, we show that the decay process would be capable of contributing significantly to the intensity of the cosmic microwave background. Comparison with COBE observations leads to the constraint x is equal to or less than 0.001, which is stronger than the upper limit of 0.07 obtained previously by Freese et al. from considerations of primordial nucleosynthesis.

  19. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    SciTech Connect

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  20. PROBING THE UNIVERSE'S TILT WITH THE COSMIC INFRARED BACKGROUND DIPOLE

    SciTech Connect

    Fixsen, D. J.; Kashlinsky, A. E-mail: alexander.kashlinsky@nasa.gov

    2011-06-10

    Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypotheses is whether other cosmic dipoles produced by collapsed structures later than the last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to {approx}30% by the COBE satellite. Over the 100-500 {mu}m wavelength range its spectral energy distribution can provide a probe of its alignment with the CMB. This is tested with the COBE FIRAS data set which is available for such a measurement because of its low noise and frequency resolution which are important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A similar analysis is performed with DIRBE, which-because of the limited frequency coverage-provides a poorer data set. We discuss strategies for measuring the CIB dipole with future instruments to probe the tilt and apply it to the Planck, Herschel, and the proposed Pixie missions. We demonstrate that a future FIRAS-like instrument with instrument noise a factor of {approx}10 lower than FIRAS would make a statistically significant measurement of the CIB dipole. We find that the Planck and Herschel data sets will not allow a robust CIB dipole measurement. The Pixie instrument promises a determination of the CIB dipole and its alignment with either the CMB dipole or the dipole galaxy acceleration vector.

  1. Visual search for real world targets under conditions of high target-background similarity: Exploring training and transfer in younger and older adults.

    PubMed

    Neider, Mark B; Boot, Walter R; Kramer, Arthur F

    2010-05-01

    Real world visual search tasks often require observers to locate a target that blends in with its surrounding environment. However, studies of the effect of target-background similarity on search processes have been relatively rare and have ignored potential age-related differences. We trained younger and older adults to search displays comprised of real world objects on either homogenous backgrounds or backgrounds that camouflaged the target. Training was followed by a transfer session in which participants searched for novel camouflaged objects. Although older adults were slower to locate the target compared to younger adults, all participants improved substantially with training. Surprisingly, camouflage-trained younger and older adults showed no performance decrements when transferred to novel camouflage displays, suggesting that observers learned age-invariant, generalizable skills relevant for searching under conditions of high target-background similarity. Camouflage training benefits at transfer for older adults appeared to be related to improvements in attentional guidance and target recognition rather than a more efficient search strategy.

  2. National Research Council Dialogue to Assess Progesss on NASA's Human Exploration Systems and Mobility Capability Roadmap Development: General Background and Introduction

    NASA Technical Reports Server (NTRS)

    Inman, Thomas

    2005-01-01

    General Background and Introduction of Capability Roadmaps: Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Technology and Capability Readiness Levels. Relationships Between Roadmaps. Purpose of NRC Review. Capability Roadmap Development (Team Progress to Date).

  3. Deep-sequencing method for quantifying background abundances of symbiodinium types: exploring the rare symbiodinium biosphere in reef-building corals.

    PubMed

    Quigley, Kate M; Davies, Sarah W; Kenkel, Carly D; Willis, Bette L; Matz, Mikhail V; Bay, Line K

    2014-01-01

    The capacity of reef-building corals to associate with environmentally-appropriate types of endosymbionts from the dinoflagellate genus Symbiodinium contributes significantly to their success at local scales. Additionally, some corals are able to acclimatize to environmental perturbations by shuffling the relative proportions of different Symbiodinium types hosted. Understanding the dynamics of these symbioses requires a sensitive and quantitative method of Symbiodinium genotyping. Electrophoresis methods, still widely utilized for this purpose, are predominantly qualitative and cannot guarantee detection of a background type below 10% of the total Symbiodinium population. Here, the relative abundances of four Symbiodinium types (A13, C1, C3, and D1) in mixed samples of known composition were quantified using deep sequencing of the internal transcribed spacer of the ribosomal RNA gene (ITS-2) by means of Next Generation Sequencing (NGS) using Roche 454. In samples dominated by each of the four Symbiodinium types tested, background levels of the other three types were detected when present at 5%, 1%, and 0.1% levels, and their relative abundances were quantified with high (A13, C1, D1) to variable (C3) accuracy. The potential of this deep sequencing method for resolving fine-scale genetic diversity within a symbiont type was further demonstrated in a natural symbiosis using ITS-1, and uncovered reef-specific differences in the composition of Symbiodinium microadriaticum in two species of acroporid corals (Acropora digitifera and A. hyacinthus) from Palau. The ability of deep sequencing of the ITS locus (1 and 2) to detect and quantify low-abundant Symbiodinium types, as well as finer-scale diversity below the type level, will enable more robust quantification of local genetic diversity in Symbiodinium populations. This method will help to elucidate the role that background types have in maximizing coral fitness across diverse environments and in response to

  4. Deep-Sequencing Method for Quantifying Background Abundances of Symbiodinium Types: Exploring the Rare Symbiodinium Biosphere in Reef-Building Corals

    PubMed Central

    Quigley, Kate M.; Davies, Sarah W.; Kenkel, Carly D.; Willis, Bette L.; Matz, Mikhail V.; Bay, Line K.

    2014-01-01

    The capacity of reef-building corals to associate with environmentally-appropriate types of endosymbionts from the dinoflagellate genus Symbiodinium contributes significantly to their success at local scales. Additionally, some corals are able to acclimatize to environmental perturbations by shuffling the relative proportions of different Symbiodinium types hosted. Understanding the dynamics of these symbioses requires a sensitive and quantitative method of Symbiodinium genotyping. Electrophoresis methods, still widely utilized for this purpose, are predominantly qualitative and cannot guarantee detection of a background type below 10% of the total Symbiodinium population. Here, the relative abundances of four Symbiodinium types (A13, C1, C3, and D1) in mixed samples of known composition were quantified using deep sequencing of the internal transcribed spacer of the ribosomal RNA gene (ITS-2) by means of Next Generation Sequencing (NGS) using Roche 454. In samples dominated by each of the four Symbiodinium types tested, background levels of the other three types were detected when present at 5%, 1%, and 0.1% levels, and their relative abundances were quantified with high (A13, C1, D1) to variable (C3) accuracy. The potential of this deep sequencing method for resolving fine-scale genetic diversity within a symbiont type was further demonstrated in a natural symbiosis using ITS-1, and uncovered reef-specific differences in the composition of Symbiodinium microadriaticum in two species of acroporid corals (Acropora digitifera and A. hyacinthus) from Palau. The ability of deep sequencing of the ITS locus (1 and 2) to detect and quantify low-abundant Symbiodinium types, as well as finer-scale diversity below the type level, will enable more robust quantification of local genetic diversity in Symbiodinium populations. This method will help to elucidate the role that background types have in maximizing coral fitness across diverse environments and in response to

  5. Integrating the molecular background of targeted therapy and immunotherapy in lung cancer: a way to explore the impact of mutational landscape on tumor immunogenicity

    PubMed Central

    Pilotto, Sara; Molina-Vila, Miguel Angel; Karachaliou, Niki; Carbognin, Luisa; Viteri, Santiago; González-Cao, Maria; Bria, Emilio; Tortora, Giampaolo

    2015-01-01

    The results of randomized clinical trials employing immune checkpoint inhibitors for pre-treated advanced non-small-cell lung cancer (NSCLC) have recently revolutionised the standard available option for this disease setting. Nevertheless, the validation of reliable predictive biomarkers, able to define that proportion of patients most likely to benefit from immunotherapy, represents a crucial and still unsolved issue. This intensive research aimed at selecting potentially predictive biomarkers for immunotherapy is developed together with a wide range of analyses investigating the molecular profiling of lung cancer, leading to the spontaneous question of how these two parallel aspects of the same disease may coexist and influence one another. The potential impact of the mutational landscape of lung cancer on tumor immunogenicity (in both oncogene-addicted and molecularly unselected disease) will be explored and discussed in this review in order to begin to answer the unsolved questions. PMID:26798581

  6. Integrating the molecular background of targeted therapy and immunotherapy in lung cancer: a way to explore the impact of mutational landscape on tumor immunogenicity.

    PubMed

    Pilotto, Sara; Molina-Vila, Miguel Angel; Karachaliou, Niki; Carbognin, Luisa; Viteri, Santiago; González-Cao, Maria; Bria, Emilio; Tortora, Giampaolo; Rosell, Rafael

    2015-12-01

    The results of randomized clinical trials employing immune checkpoint inhibitors for pre-treated advanced non-small-cell lung cancer (NSCLC) have recently revolutionised the standard available option for this disease setting. Nevertheless, the validation of reliable predictive biomarkers, able to define that proportion of patients most likely to benefit from immunotherapy, represents a crucial and still unsolved issue. This intensive research aimed at selecting potentially predictive biomarkers for immunotherapy is developed together with a wide range of analyses investigating the molecular profiling of lung cancer, leading to the spontaneous question of how these two parallel aspects of the same disease may coexist and influence one another. The potential impact of the mutational landscape of lung cancer on tumor immunogenicity (in both oncogene-addicted and molecularly unselected disease) will be explored and discussed in this review in order to begin to answer the unsolved questions.

  7. Clustering of the Diffuse Infrared Light from the COBE DIRBE Maps. 3; Power Spectrum Analysis and Excess Isotropic Component of Fluctuations

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Mather, J. C.; Odenwald, S.

    1999-01-01

    The cosmic infrared background (CIB) radiation is the cosmic repository for energy release throughout the history of the universe. The spatial fluctuations of the CIB resulting from galaxy clustering are expected to be at least a few percent on scales of a degree, depending on the luminosity and clustering history of the early universe. Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100 microns we attempt to measure the CIB fluctuations. In the near-IR, foreground emission is dominated by small scale structure due to stars in the Galaxy. There we find a strong correlation between the amplitude of the fluctuations and Galactic latitude after removing bright foreground stars. Using data outside the Galactic plane (absolute value of b > 20 deg) and away from the center (90 deg < l < 270 deg) we extrapolate the amplitude of the fluctuations to cosec absolute value of b = 0. We find a positive intercept of delta.F(sub rms) = 15.5(sup +3.7, sub -7.0), 5.9(sup +1.6, sub -3.7), 2.4(sup +0.5, sub -0.9), 2.0(sup +0.25, sub -0.5) nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively, where the errors are the range of 92% confidence limits. For color subtracted maps between band 1 and 2 we find the isotropic part of the fluctuations at 7.6(sup +1.2, sub -2.4) nW/sq m.sr. Based on detailed numerical and analytic models, this residual is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We demonstrate that the residuals from the fit used in the extrapolation are distributed isotropically and suggest that this extra variance may result from structure in the CIB. We also obtain a positive intercept from a linear combination of maps at 1.25 and 2.2 microns. For 2 deg < theta < 15 deg, a power-spectrum analysis yields limits of (theta/5 deg) x delta.F(sub rms)(theta) < 6, 2.5, 0.8, 0.5 nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively. From 10 - 100 microns, the dominant foregrounds are emission by dust

  8. Cold dark matter confronts the cosmic microwave background - Large-angular-scale anisotropies in Omega sub 0 + lambda 1 models

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola

    1992-01-01

    A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.

  9. Disconnection of Cobe SMARxT® Tubing from the Venous Outlet of the Terumo Capiox® SX25RX Oxygenator During Cardiopulmonary Bypass

    PubMed Central

    Ottens, Jane; Baker, Robert A.; Sanderson, Andrew J.; Newland, Richard F.

    2010-01-01

    Abstract: The use of surface modified, biocompatible tubing in cardiopulmonary bypass has been reported to decrease the inflammatory responses caused by blood contact with the non endothelial surface of poly vinyl chloride (PVC) tubing. The combination of advances in biocompatible tubing and increased affordability resulted in a change to our cardiopulmonary bypass circuit, with the Terumo Capiox® SX25 oxygenator and Cobe PVC tubing being replaced with a Terumo Capiox® SX25RX (with X coating) and Cobe SMARxT® tubing. Prior to the introduction of the coated oxygenator, no connection problems had been evident. One unrelated disconnection involving coated tubing was reported in June 2005 to the Australian and New Zealand College of Perfusionists Perfusion Incident Reporting System. At this time we revised all of our set up protocols and the recommended actions from manufacturers. We further report three separate incidents of pump boot disconnection from the venous reservoir outlet of the oxygenator during bypass (that occurred within a 13-month period), and an outline of immediate and prospective evaluation of the probable cause. We propose that SMARxT® 3/8″ × 3/32″ tubing should not be used on the venous outlet connector of Terumo Capiox® SX25RX oxygenators. It appears as though the design of the outlet combined with the properties of SMARxT® tubing may contribute to the disconnection. PMID:20648902

  10. The cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1989-01-01

    Recent observational and theoretical investigations of the cosmic microwave background radiation (CMBR) are reviewed. Particular attention is given to spectral distortions and CMBR temperature anisotropies at large, intermediate, and small angular scales. The implications of the observations for inflationary cosmological models with curvature fluctuation are explored, and it is shown that the limits determined for intermediate-scale CMBR anisotropy almost rule out a baryon-dominated cosmology.

  11. Studying the Fine Structure and Temporal Variations of the Zodiacal Cloud and Asteroidal Dust Bands Using the 3-Year Near-IR COBE-DIRBE Data

    NASA Technical Reports Server (NTRS)

    Jayaraman, Sumita

    1999-01-01

    The report presents the results of the data analyses of the DIRBE-COBE data set to study the structure of the zodiacal cloud in the near-infrared wavebands at 1.2, 2.2, and 3.4 microns. The cloud has been divided into two components which have been analyzed and studied separately. The annual variation of the flux in the smooth or low frequency component has been measured in all three bands and the presence of any asymmetries due to the Earth's resonant ring have been studied. The high frequency component which primarily consisted of the asteroidal dust bands. Extensive and careful co-addition was done to extract the central bands in all three wavebands. The ten-degree bands are present in the 1.2 and 2.2 microns but not in the 3.4 micron waveband.

  12. Intracluster Comptonization of the Cosmic Microwave Background: Mean Spectral Distortion and Cluster Number Counts

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Mazzotta, P.; Rephaeli, Y.; Vittorio, N.

    1997-04-01

    The mean sky-averaged Comptonization parameter, ȳ, describing the scattering of the cosmic microwave background (CMB) by hot gas in clusters of galaxies, is calculated in an array of flat and open cosmological and dark matter models. The models are globally normalized to fit cluster X-ray data, and intracluster gas is assumed to have evolved in a manner consistent with current observations. We predict values of ȳ lower than the COBE/FIRAS upper limit. The corresponding values of the overall optical thickness to Compton scattering are <~10-4 for relevant parameter values. Of more practical importance are number counts of clusters across which a net flux (with respect to the CMB) higher than some limiting value can be detected. Such number counts are specifically predicted for the COBRAS/SAMBA and BOOMERANG missions.

  13. [Erythrocyte removal from bone marrow by density gradient separation using the COBE 2991 cell processor with the triple-bag processing set].

    PubMed

    Cappellesso-Fleury, S; Rage, C; Tschaggeny, F; Gaudé, J; Gomez, M; Bourin, P

    2009-03-01

    ABO-incompatible bone marrow transplantation requires red blood cell depletion. Lots of laboratory adopted the technique of density gradient centrifugation (Ficoll-hypaque) using the COBE 2991 cell processor with simple-bag processing set. However, tubing of this set is not adapted to the currently available peristaltic pumps. Moreover, two other sets are required: one for the buffy-coat and one for postgradient cell washing. We developed a method using triple-bag processing set to conduct whole-step procedure (concentration, Ficoll and washing). Peristaltic PVC tubing is provided in one line of the set allowing a safe processing without several connections thus reducing risks of microbial contamination. First, we used buffy-coat of total blood for training, then, we carried out red cell depletion of healthy bone marrow donors. The red blood cell depletion was 97.9+/-1.1% and CD34+ recovery was 89.6+/-8.7%. These results are very close to those obtained with the simple-bag set (red cell depletion.=94.0+/-6.8% and CD34+ recovery=95.9+/-20.3%). We conclude that the triple-bag system, very little used in France, is practical, simplified the manipulation and is more safety than the simple-bag set.

  14. Hemopoietic stem cell processing: comparison of progenitor cell recovery using the Cobe 2991 cell washer and the Haemonetics V50 apheresis system.

    PubMed

    Preti, R A; Ahmed, T; Ayello, J; Helson, L; Argani, I; Wuest, D; Ciavarella, D

    1992-05-01

    Using 24 bone marrow (BM) harvests intended for cryopreservation and transplantation, we compared the use of the Cobe 2991 cell washer (2991) and the Haemonetics V50 apheresis system (HV50) for automated BM processing. Our in vitro data indicate that while the mononuclear cell (MNC) concentration of the HV50 product was significantly greater than that of the 2991, the overall MNC recovery of the two products was equivalent. In addition, although the concentration of CFU-GM and BFU-E in the products was equivalent, recovery of these progenitors in the 2991 product was significantly greater than those of the HV50 product. There was no significant difference in either the final product concentration or the overall recovery of cells bearing the primitive myeloid antigens, CD33 or CD34, between the two methods. The HV50 product volume, the red cell and the granulocyte mass were significantly lower than those of the 2991. We conclude that the advantages gained through the use of each machine should be evaluated within the context of the specific intention for the graft. Future advances in the identification and understanding of the primitive stem cell will aid in attempts to evaluate the methods used to isolate these cells.

  15. The impact of non-Planckian effects on cosmological radio background

    NASA Astrophysics Data System (ADS)

    Colafrancesco, Sergio; Shehzad Emritte, Mohammad; Marchegiani, Paolo

    2015-05-01

    Non-Planckian (NP) spectral modifications of the CMB radiation spectrum can be produced due to the existence of a non-zero value of the plasma frequency at the recombination epoch. We present here an analysis of NP effects on the cosmological radio background and we derive, for the first time, predictions of their amplitude on three different observables: the CMB spectrum, the Sunyaev-Zel'dovich (SZ) effect in cosmic structures, and the 21-cm background temperature brightness change. We find that NP effect can manifest in the CMB spectrum at ν lesssim 400 MHz as a drastic cut-off in the CMB intensity. Using the available CMB data in the relevant ν range (i.e., mainly at lesssim 1 GHz and in the COBE-FIRAS data frequency range), we derive upper limits on the plasma frequency νp = 206, 346 and 418 MHz at 1, 2 and 3 σ confidence level, respectively. We find that the difference between the pure Planck spectrum and the one modified by NP effects is of the order of mJy/arcmin2 at ν lesssim 0.5 GHz and it becomes smaller at higher frequencies where it is ~ 0.1 mJy/arcmin2 at ν gtrsim 150 GHz, thus indicating that the experimental route to probe NP effects in the early universe is to observe the cosmological radio background at very low frequencies. We have calculated for the first time the NP SZ effect (SZNP) using the upper limits on νp allowed by the CMB data. We found that the SZNP effect shows a unique spectral feature, i.e. a peak located exactly at the plasma frequency νp and this is independent of the cluster parameters (such as its temperature or optical depth). This offers a way, therefore, to measure directly and unambiguously the plasma frequency in the early universe at the epoch of recombination by using galaxy clusters in the local universe, thus opening a unique window for the experimental exploration of plasma effects in the early universe. We have shown that the SKA-LOW has the potential to observe such a signal integrating over the central

  16. The impact of non-Planckian effects on cosmological radio background

    SciTech Connect

    Colafrancesco, Sergio; Emritte, Mohammad Shehzad; Marchegiani, Paolo E-mail: emrittes@yahoo.com

    2015-05-01

    Non-Planckian (NP) spectral modifications of the CMB radiation spectrum can be produced due to the existence of a non-zero value of the plasma frequency at the recombination epoch. We present here an analysis of NP effects on the cosmological radio background and we derive, for the first time, predictions of their amplitude on three different observables: the CMB spectrum, the Sunyaev-Zel'dovich (SZ) effect in cosmic structures, and the 21-cm background temperature brightness change. We find that NP effect can manifest in the CMB spectrum at ν ∼< 400 MHz as a drastic cut-off in the CMB intensity. Using the available CMB data in the relevant ν range (i.e., mainly at ∼< 1 GHz and in the COBE-FIRAS data frequency range), we derive upper limits on the plasma frequency ν{sub p} = 206, 346 and 418 MHz at 1, 2 and 3 σ confidence level, respectively. We find that the difference between the pure Planck spectrum and the one modified by NP effects is of the order of mJy/arcmin{sup 2} at ν ∼< 0.5 GHz and it becomes smaller at higher frequencies where it is ∼ 0.1 mJy/arcmin{sup 2} at ν ∼> 150 GHz, thus indicating that the experimental route to probe NP effects in the early universe is to observe the cosmological radio background at very low frequencies. We have calculated for the first time the NP SZ effect (SZ{sub NP}) using the upper limits on ν{sub p} allowed by the CMB data. We found that the SZ{sub NP} effect shows a unique spectral feature, i.e. a peak located exactly at the plasma frequency ν{sub p} and this is independent of the cluster parameters (such as its temperature or optical depth). This offers a way, therefore, to measure directly and unambiguously the plasma frequency in the early universe at the epoch of recombination by using galaxy clusters in the local universe, thus opening a unique window for the experimental exploration of plasma effects in the early universe. We have shown that the SKA-LOW has the potential to observe such a

  17. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: III. Galactic far-infrared radiation

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2015-07-01

    Using the three-component spectral model describing the FIRAS average continuum spectra, the exact analytical expressions for thermodynamic and radiative functions of Galactic far-infrared radiation are obtained. The COBE FIRAS instrument data in the 0.15-2.88 THz frequency interval at the mean temperatures of T1 = 17.72 K, T2 = 14 K and T3 = 6.73 K are used for calculating the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, total emissivity, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume and pressure for the warm, intermediate-temperature and very cold components of the Galactic continuum spectra. The generalized Stefan-Boltzmann law for warm, intermediate-temperature and very cold components is constructed. The temperature dependence of each component is determined by the formula IS-B(T) = σ‧T6. This result is important when we construct the cosmological models of radiative transfer that can be applied inside the Galaxy. Within the framework of the three-component spectral model, the total number of photons in our Galaxy and the total radiation power (total luminosity) emitted from a surface of the Galaxy are calculated. Their values are NGtotal = 1.3780 × 1068 and IGtotal(T) = 1.0482 × 1036 W. Other radiative and thermodynamic properties of the Galactic far-infrared radiation (photon gas) of the Galaxy are calculated. The expressions for astrophysical parameters, such as the entropy density/Boltzmann constant and number density of the Galactic far-infrared photons are obtained. We assume that the obtained analytical expressions for thermodynamic and radiative functions may be useful for describing the continuum spectra of the far-infrared radiation for other galaxies.

  18. OLBERS: An Interplanetary Probe to Study Visible and Infrared Diffuse Backgrounds

    NASA Astrophysics Data System (ADS)

    Désert, F.-X.

    1995-10-01

    The visible extragalactic background (though as yet undetected) is insufficient to explain the abundance of heavy elements in galaxies: either there should be some diffuse extragalactic light in the near infrared (from 1 to 10 μm) and/or in the far infrared (≥100 μm) if dust has reprocessed the star light. We propose a new space mission to be dedicated to the search and mapping of primordial stellar light from the visible to the mid-infrared (20 μm). In this spectrum range, detectors have reached such a sensitivity that the mission should aim at being (source) photon noise limited, and not any longer background photon noise limited. For that purpose, a small passively cooled telescope with large format CCDs and CIDs could be sent beyond the zodiacal dust cloud (which is absent beyond a solar distance of about 3 AU). In that case, the only remaining foregrounds before reaching the extragalactic background, is due to the Milky Way integrated emission from stars and the diffuse galactic light due to scattering and emission by interstellar dust, which are all unavoidable. Maps of the extragalactic light could be obtained at the arcminute resolution with high signal to noise ratio. This mission is the next logical step after IRAS, COBE and ISO for the study of extragalactic IR backgrounds. It has been proposed as a possible medium-sized mission for the post-horizon 2000 ESA program that could be a piggy back of a planetary mission.

  19. On the determination of the cosmic infrared background radiation from the high-energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Slavin, Jonathan

    1994-01-01

    some exotic sources. With careful modeling of infrared foreground emissions, these constraints on the CIBR are above the values measurable by the DIRBE experiment on board the Cosmic Background Explorer (COBE) satellite.

  20. Reading Engagement in Social Studies: Exploring the Role of a Social Studies Literacy Intervention on Reading Comprehension, Reading Self-Efficacy, and Engagement in Middle School Students with Different Language Backgrounds

    ERIC Educational Resources Information Center

    Barber, Ana Taboada; Buehl, Michelle M.; Kidd, Julie K.; Sturtevant, Elizabeth G.; Nuland, Leila Richey; Beck, Jori

    2015-01-01

    The authors examined the role of an intervention designed to increase reading comprehension, reading self-efficacy beliefs, and engagement in social studies for middle school students of varying language backgrounds. Thirteen sixth- and seventh-grade teachers implemented the United States History for Engaged Reading (USHER) program with their…

  1. Are South African Speech-Language Therapists adequately equipped to assess English Additional Language (EAL) speakers who are from an indigenous linguistic and cultural background? A profile and exploration of the current situation.

    PubMed

    Mdladlo, Thandeka; Flack, Penelope; Joubert, Robin

    2016-01-01

    This article presents the results of a survey conducted on Speech-Language Therapists (SLTs) regarding current practices in the assessment of English Additional Language (EAL) speakers in South Africa. It forms part of the rationale for a broader (PhD) study that critiques the use of assessment instruments on EAL speakers from an indigenous linguistic and cultural background. This article discusses an aspect of the broader research and presents the background, method, findings, discussion and implications of the survey. The results of this survey highlight the challenges of human and material resources to, and the dominance of English in, the profession in South Africa. The findings contribute to understanding critical factors for acquiring reliable and valid assessment results with diverse populations, particularly the implications from a cultural and linguistic perspective. PMID:27247254

  2. Correlations Between the Cosmic X-Ray and Microwave Backgrounds: Constraints on a Cosmological Constant

    NASA Technical Reports Server (NTRS)

    Boughn, S. P.; Crittenden, R. G.; Turok, N. G.

    1998-01-01

    In universes with significant curvature or cosmological constant, cosmic microwave background (CMB) anisotropies are created very recently via the Rees-Sciama or integrated Sachs-Wolfe effects. This causes the CMB anisotropies to become partially correlated with the local matter density (z less than 4). We examine the prospects of using the hard (2- 10 keV) X-ray background as a probe of the local density and the measured correlation between the HEAO1 A2 X-ray survey and the 4-year COBE-DMR map to obtain a constraint on the cosmological constant. The 95% confidence level upper limit on the cosmological constant is OMega(sub Lambda) less than or equal to 0.5, assuming that the observed fluctuations in the X-ray map result entirely from large scale structure. (This would also imply that the X-rays trace matter with a bias factor of b(sub x) approx. = 5.6 Omega(sub m, sup 0.53)). This bound is weakened considerably if a large portion of the X-ray fluctuations arise from Poisson noise from unresolved sources. For example, if one assumes that the X-ray bias is b(sub x) = 2, then the 95% confidence level upper limit is weaker, Omega(sub Lambda) less than or equal to 0.7. More stringent limits should be attainable with data from the next generation of CMB and X-ray background maps.

  3. Building Background Knowledge

    ERIC Educational Resources Information Center

    Neuman, Susan B.; Kaefer, Tanya; Pinkham, Ashley

    2014-01-01

    This article make a case for the importance of background knowledge in children's comprehension. It suggests that differences in background knowledge may account for differences in understanding text for low- and middle-income children. It then describes strategies for building background knowledge in the age of common core standards.

  4. PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM

    SciTech Connect

    Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido

    2012-10-20

    In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates {mu}- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k {approx}< 10{sup 4} Mpc{sup -1}. Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of {mu} and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

  5. Correlators in nontrivial backgrounds

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Stephanou, Michael

    2009-01-15

    Operators in N=4 super Yang-Mills theory with an R-charge of O(N{sup 2}) are dual to backgrounds which are asymtotically AdS{sub 5}xS{sup 5}. In this article we develop efficient techniques that allow the computation of correlation functions in these backgrounds. We find that (i) contractions between fields in the string words and fields in the operator creating the background are the field theory accounting of the new geometry, (ii) correlation functions of probes in these backgrounds are given by the free field theory contractions but with rescaled propagators and (iii) in these backgrounds there are no open string excitations with their special end point interactions; we have only closed string excitations.

  6. The GLAST Background Model

    SciTech Connect

    Ormes, J.F.; Atwood, W.; Burnett, T.; Grove, E.; Longo, F.; McEnery, J.; Mizuno, T.; Ritz, S.; /NASA, Goddard

    2007-10-17

    In order to estimate the ability of the GLAST/LAT to reject unwanted background of charged particles, optimize the on-board processing, size the required telemetry and optimize the GLAST orbit, we developed a detailed model of the background particles that would affect the LAT. In addition to the well-known components of the cosmic radiation, we included splash and reentrant components of protons, electrons (e+ and e-) from 10 MeV and beyond as well as the albedo gamma rays produced by cosmic ray interactions with the atmosphere. We made estimates of the irreducible background components produced by positrons and hadrons interacting in the multilayered micrometeorite shield and spacecraft surrounding the LAT and note that because the orbital debris has increased, the shielding required and hence the background are larger than were present in EGRET. Improvements to the model are currently being made to include the east-west effect.

  7. The cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theorists expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theories.

  8. The optimisation, design and verification of feed horn structures for future Cosmic Microwave Background missions

    NASA Astrophysics Data System (ADS)

    McCarthy, Darragh; Trappe, Neil; Murphy, J. Anthony; O'Sullivan, Créidhe; Gradziel, Marcin; Doherty, Stephen; Huggard, Peter G.; Polegro, Arturo; van der Vorst, Maarten

    2016-05-01

    In order to investigate the origins of the Universe, it is necessary to carry out full sky surveys of the temperature and polarisation of the Cosmic Microwave Background (CMB) radiation, the remnant of the Big Bang. Missions such as COBE and Planck have previously mapped the CMB temperature, however in order to further constrain evolutionary and inflationary models, it is necessary to measure the polarisation of the CMB with greater accuracy and sensitivity than before. Missions undertaking such observations require large arrays of feed horn antennas to feed the detector arrays. Corrugated horns provide the best performance, however owing to the large number required (circa 5000 in the case of the proposed COrE+ mission), such horns are prohibitive in terms of thermal, mechanical and cost limitations. In this paper we consider the optimisation of an alternative smooth-walled piecewise conical profiled horn, using the mode-matching technique alongside a genetic algorithm. The technique is optimised to return a suitable design using efficient modelling software and standard desktop computing power. A design is presented showing a directional beam pattern and low levels of return loss, cross-polar power and sidelobes, as required by future CMB missions. This design is manufactured and the measured results compared with simulation, showing excellent agreement and meeting the required performance criteria. The optimisation process described here is robust and can be applied to many other applications where specific performance characteristics are required, with the user simply defining the beam requirements.

  9. An Upper Limit on the Finescale Anisotropy of the Cosmic Background Radiation at 800-MICRONS

    NASA Astrophysics Data System (ADS)

    Church, S. E.; Lasenby, A. N.; Hills, R. E.

    1993-04-01

    In some models of the early Universe, radiation is reprocessed into the submillimetre and far-infrared by high-redshift dust, without violating COBE limits on the CBR spectrum, but producing secondary anisotropies which should be detectable with ground-based submillimetre telescopes. We describe an attempt to measure these anisotropies at 800 microns using the JCMT. A careful analysis to reduce position-dependent systematics was carried out and we show that, for this experiment, chopping the telescope beam in azimuth rather than RA produces lower systematics. Bayesian likelihood analysis is then used to set an upper limit on CBR fluctuations of {DELTA} T/T <~ 1.46 X 10^-3^ on a coherence scale of 17 arcsec. Data from a similar set of observations made by Kreysa & Chini in 1988 with the IBM 30-m telescope at 1300 microns are reanalysed in the same way to enable a comparison to be made. The results are used to set limits on the generation of cosmic backgrounds from primeval dust.

  10. A test of an alternative origin of the cosmic microwave background anisotropy

    NASA Astrophysics Data System (ADS)

    Hsu, Jong-Ping; Hsu, Leonardo

    The dipole anisotropy of the cosmic microwave background (CMB) is usually attributed to the motion of the solar system relative to the CMB. However, such an interpretation requires that the Planck distribution P(ω, T) be non-Lorentz invariant. We discuss an alternative interpretation called the `Big Jets' model, based on a Lorentz-invariant blackbody distribution B(kλUλ/Tinv), which reduces to the Planck distribution in the non-relativistic limit. This model, which implies that the CMB anisotropy must originate from a real, physical anisotropy of the universe, can be tested by examining the shape of the invariant blackbody distribution B(kλUλ/Tinv) and the dipole spectrum as measured by the COBE, WMAP, and Planck satellite experiments. The Big Jets model (a) provides a way to restore matter-antimatter symmetry in the universe by proposing that instead of a big bang, the universe began with two big jets, one with more matter and one with more anti-matter, and (b) suggests that it is the remnant of the anti-matter jet, detectable only as an extremely distant blackbody, that produces the observed CMB dipole anisotropy.

  11. Berkeley Low Background Facility

    SciTech Connect

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  12. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  13. School Law: Background Checks.

    ERIC Educational Resources Information Center

    Splitt, David A.

    1988-01-01

    In an Oklahoma case, the district court ruled that the school district had failed to investigate the background of a teacher convicted of a second sexual abuse charge. School districts should examine personnel polices and practices, and the school lawyer should review state laws, regulations, and court cases. (MLF)

  14. Foregrounding the Background.

    ERIC Educational Resources Information Center

    Robbins, Bruce

    1998-01-01

    Argues that when introductory activities to the classics begin with background information, it can upstage or confine the life of the story, and shows little faith in the students as readers or in the literature itself. Suggests sometimes letting the literature begin, and then helping students make sense of it. Discusses examples from "To Kill a…

  15. China: Background Notes Series.

    ERIC Educational Resources Information Center

    Reams, Joanne Reppert

    Concise background information on the People's Republic of China is provided. The publication begins with a profile of the country, outlining the people, geography, economy, and membership in international organizations. The bulk of the document then discusses in more detail China's people, geography, history, government, education, economy, and…

  16. Thermal background noise limitations

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1982-01-01

    Modern detection systems are increasingly limited in sensitivity by the background thermal photons which enter the receiving system. Expressions for the fluctuations of detected thermal radiation are derived. Incoherent and heterodyne detection processes are considered. References to the subject of photon detection statistics are given.

  17. Diffuse UV Background Radiation

    NASA Astrophysics Data System (ADS)

    Conn Henry, Richard; Murthy, J.

    2012-01-01

    The diffuse UV sky is expected to glow with significant amounts of starlight that is scattered from the interstellar dust. The albedo and scattering pattern of the dust in the ultraviolet are both well established, and are both fairly independent of wavelength from 912 Å to 3000 Å. We present 1943 Voyager spectra of the diffuse cosmic background radiation from 500 Å to 1200 Å, and we compare their brightnesses, and their distribution on the sky, to those observed (Murthy et al., ApJ 724, 1389, 2010) from the GALEX mission at longer wavelengths (1530 Å). Significant differences appear, suggesting that background radiation components in addition to dust-scattered starlight may be present in both spectral regions.

  18. Executive Summary: Background

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Background information on, and the objectives of, the NASA Global Biology Research Program are given. The following issues were addressed: (1) geographic distribution of wetland parameters, (2) the processes of wetland material fluxes, and (3) the relation of local fluxes with global processes. Wetland inventorying and categorizing, gas-phase exchanges with the atmosphere, material exchange with the aquatic environment, and material storage in wetland sediments were identified as topics requiring further research.

  19. Characterization and Prediction of the SPI Background

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Jean, P.; Knodlseder, J.; Skinner, G. K.; Weidenspointer, G.

    2003-01-01

    The INTEGRAL Spectrometer, like most gamma-ray instruments, is background dominated. Signal-to-background ratios of a few percent are typical. The background is primarily due to interactions of cosmic rays in the instrument and spacecraft. It characteristically varies by +/- 5% on time scales of days. This variation is caused mainly by fluctuations in the interplanetary magnetic field that modulates the cosmic ray intensity. To achieve the maximum performance from SPI it is essential to have a high quality model of this background that can predict its value to a fraction of a percent. In this poster we characterize the background and its variability, explore various models, and evaluate the accuracy of their predictions.

  20. Color gradient background oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Mier, Frank Austin; Hargather, Michael

    2015-11-01

    Background oriented schlieren (BOS) imaging is a method of visualizing refractive disturbances through the comparison of digital images. By comparing images with and without a refractive disturbance visualizations can be achieved via a range of image processing methods. Traditionally, backgrounds consist of random distributions of high contrast speckle patterns. To image a refractive disturbance, a digital image correlation algorithm is used to identify the location and magnitude of apparent pixel shifts in the background pattern. Here a novel method of using color gradient backgrounds is explored as an alternative. The gradient background eliminates the need to perform an image correlation between the two digital images, as simple image subtraction can be used to identify the location, magnitude, and direction of the image distortions. This allows for quicker processing. Two-dimensional gradient backgrounds using multiple colors are shown. The gradient backgrounds are demonstrated to provide quantitative data limited only by the camera's pixel resolution, whereas speckle backgrounds limit resolution to the size of the random pattern features and image correlation window size. Additional results include the use of a computer screen as a background.

  1. Color gradient background-oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Mier, Frank Austin; Hargather, Michael J.

    2016-06-01

    Background-oriented schlieren is a method of visualizing refractive disturbances by comparing digital images with and without a refractive disturbance distorting a background pattern. Traditionally, backgrounds consist of random distributions of high-contrast color transitions or speckle patterns. To image a refractive disturbance, a digital image correlation algorithm is used to identify the location and magnitude of apparent pixel shifts in the background pattern between the two images. Here, a novel method of using color gradient backgrounds is explored as an alternative that eliminates the need to perform a complex image correlation between the digital images. A simple image subtraction can be used instead to identify the location, magnitude, and direction of the image distortions. Gradient backgrounds are demonstrated to provide quantitative data only limited by the camera's pixel resolution, whereas speckle backgrounds limit resolution to the size of the random pattern features and image correlation window size. Quantitative measurement of density in a thermal boundary layer is presented. Two-dimensional gradient backgrounds using multiple colors are demonstrated to allow measurement of two-dimensional refractions. A computer screen is used as the background, which allows for rapid modification of the gradient to tune sensitivity for a particular application.

  2. 14 CFR 1217.102 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... exploration and use of space, section 116 of Public Law 97-446 provided for the duty-free entry into the... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Background. 1217.102 Section 1217.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DUTY-FREE ENTRY OF SPACE ARTICLES §...

  3. 14 CFR 1217.102 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... exploration and use of space, section 116 of Public Law 97-446 provided for the duty-free entry into the... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Background. 1217.102 Section 1217.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DUTY-FREE ENTRY OF SPACE ARTICLES §...

  4. 14 CFR 1217.102 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... exploration and use of space, section 116 of Public Law 97-446 provided for the duty-free entry into the... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Background. 1217.102 Section 1217.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DUTY-FREE ENTRY OF SPACE ARTICLES §...

  5. 14 CFR 1217.102 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... exploration and use of space, section 116 of Public Law 97-446 provided for the duty-free entry into the... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Background. 1217.102 Section 1217.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DUTY-FREE ENTRY OF SPACE ARTICLES §...

  6. Galileons on cosmological backgrounds

    SciTech Connect

    Goon, Garrett; Hinterbichler, Kurt; Trodden, Mark E-mail: kurthi@physics.upenn.edu

    2011-12-01

    We construct four-dimensional effective field theories of a generalized DBI galileon field, the dynamics of which naturally take place on a Friedmann-Robertson-Walker spacetime. The theories are invariant under non-linear symmetry transformations, which can be thought of as being inherited from five-dimensional bulk Killing symmetries via the probe brane technique through which they are constructed. The resulting model provides a framework in which to explore the cosmological role that galileons may play as the universe evolves.

  7. Background level care.

    PubMed

    Pitts, N B

    2009-01-01

    The framework enabled by the International Caries Detection and Assessment System to allow appropriate, patient-centred caries management includes a frequently encountered scenario in which a comprehensive assessment of the teeth and the patient reveals no lesions in need of active preventive or operative care. The issue addressed here is: what background care is appropriate for patients attending a dental practice for routine caries care who, at present, appear to have no active or progressing caries lesions? It is proposed that, in addition to the use of criteria for lesion extent, treatment planning systems should also express the results of lesion assessments in terms of background level care (BLC), preventive treatment options and operative treatment options. The specific treatment options recommended for specific lesions and patients will depend upon a variety of other factors, including lesion activity, monitoring lesion behaviour over time and a range of other prognostic factors. Over recent decades, there has been comparatively little focus on appropriate BLC in a general practice setting. There are a range of issues around the need to support caries prevention and health maintenance from a behavioural and patient-focussed perspective. Even if a patient is deemed to be at low risk of future caries at a particular examination, there is a need for maintenance care. Intrinsic issues which need to be managed for both patients and their caries lesions in this patient group are: (1) the possibility of a change in caries risk status and (2) the impact of incorrect lesion assessments/diagnoses.

  8. The Backgrounds Data Center

    NASA Technical Reports Server (NTRS)

    Snyder, W. A.; Gursky, H.; Heckathorn, H. M.; Lucke, R. L.; Berg, S. L.; Dombrowski, E. G.; Kessel, R. A.

    1993-01-01

    The Strategic Defense Initiative Organization has created data centers for midcourse, plumes, and backgrounds phenomenologies. The Backgrounds Data Center (BDC) has been designated as the prime archive for data collected by SDIO programs. The BDC maintains a Summary Catalog that contains 'metadata,' that is, information about data, such as when the data were obtained, what the spectral range of the data is, and what region of the Earth or sky was observed. Queries to this catalog result in a listing of all data sets (from all experiments in the Summary Catalog) that satisfy the specified criteria. Thus, the user can identify different experiments that made similar observations and order them from the BDC for analysis. On-site users can use the Science Analysis Facility (SAFE for this purpose. For some programs, the BDC maintains a Program Catalog, which can classify data in as many ways as desired (rather than just by position, time, and spectral range as in the Summary Catalog). For example, data sets could be tagged with such diverse parameters as solar illumination angle, signal level, or the value of a particular spectral ratio, as long as these quantities can be read from the digital record or calculated from it by the ingest program. All unclassified catalogs and unclassified data will be remotely accessible.

  9. Backgrounds Data Center

    NASA Astrophysics Data System (ADS)

    Snyder, William A.; Gursky, Herbert; Heckathorn, Harry M.; Lucke, Bob L.; Dorland, Bryan N.; Kessel, R. A.; Berg, S. L.; Dombrowski, E. G.

    1994-09-01

    The Backgrounds Data Center (BDC) is the designated archive for backgrounds data collected by Ballistic Missile Defense Organization (BMDO) programs, some of which include ultraviolet sensors. Currently, the BDC holds ultraviolet data from the IBSS, UVPI, UVLIM, and FUVCAM sensors. The BDC will also be the prime archive for Midcourse Space Experiment (MSX) data and is prepared to negotiate with program managers to handle other datasets. The purpose of the BDC is to make data accessible to users and to assist them in analyzing it. The BDC maintains the Science Catalog Information Exchange System (SCIES) allowing remote users to log in, read or post notices about current programs, search the catalogs for datasets of interest, and submit orders for data. On-site facilities are also available for the analysis of data, and consist of VMS and UNIX workstations with access to software analysis packages such as IDL, IRAF, and Khoros. Either on-site or remotely, users can employ the BDC-developed graphical user interface called the Visual Interface for Space and Terrestrial Analysis (VISTA) to generate catalog queries and to display and analyze data. SCIES and VISTA permit nearly complete access to BDC services and capabilities without the need to be physically present at the data center.

  10. Ultraviolet Background Radiation

    NASA Astrophysics Data System (ADS)

    Henry, R. C.; Murthy, J.

    1993-12-01

    The UVX experiment was carried on the Space Shuttle Columbia between 1986 January 12 and 19 (STS-61C). Several ultraviolet spectrometers were used to obtain measurements of the diffuse ultraviolet background at 8 locations in the sky. We have reanalysed the UVX measurements of the surface brightness of the diffuse ultraviolet background above b = 40 using the dust-scattering model of Onaka & Kodaira (1991), which explicitly takes into account the variation of the source function with galactic longitude. The range of allowed values of interstellar grain albedoJa, and scattering asymmetry parameter g, is considerably expanded over those of a previous analysis. The new chi square probability contours come close to, but do not include, the values of a and g found for the interstellar grains by Witt et al. (1992) using the Ultraviolet Imaging Telescope (UIT) on the Astro mission. If we hypothesize in additon to the dust-scattered light an extragalactic component, of 300 1 100 photons cm-2 s-1 sr-1 A-1, attenuated by a cosecant b law, the new reduction of the UVX data gives complete consistency with the Witt et al. determination of the optical parameters of the grains in the ultraviolet. This work was supported by United States Air Force Contract F19628-93-K-0004, and by National Aeronautics and Space Administration grant NASA NAG5-619. We are grateful for the encouragement of Dr. Stephan Price, and we thank Dr. L. Danly for information. Onaka, T., & Kodaira, K. 1991, ApJ, 379, 532 Witt, A. N., Petersohn, J. K., Bohlin, R. C., O'Connell, R. W., Roberts, M. S., Smith, A. M., & Stecher, T. P. 1992, ApJ, 395, L5

  11. High-energy radiation background in space

    NASA Technical Reports Server (NTRS)

    Rester, A. C., Jr. (Editor); Trombka, J. I. (Editor)

    1989-01-01

    The radiation environment of near-earth space and its effects on biological and hardware systems are examined in reviews and reports. Sections are devoted to particle interactions and propagation, data bases, instrument background and dosimetry, detectors and experimental progress, biological effects, and future needs and strategies. Particular attention is given to angular distributions and spectra of geomagnetically trapped protons in LEO, bremsstrahlung production by electrons, nucleon-interaction data bases for background estimates, instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer, the GRAD high-altitude balloon flight over Antarctica, space protons and brain tumors, a new radioprotective antioxidative agent, LEO radiation measurements on the Space Station, and particle-background effects on the Hubble Space Telescope and the Lyman FUV Spectroscopic Explorer.

  12. Genetical background of intelligence.

    PubMed

    Junkiert-Czarnecka, Anna; Haus, Olga

    2016-01-01

    Intelligence as an ability to reason, think abstractly and adapt effectively to the environment is a subject of research in the field of psychology, neurobiology, and in the last twenty years genetics as well. Genetical testing of twins carried out from XX century indicated heritebility of intelligence, therefore confirmed an influence of genetic factor on cognitive processes. Studies on genetic background of intelligence focus on dopaminergic (DRD2, DRD4, COMT, SLC6A3, DAT1, CCKAR) and adrenergic system (ADRB2, CHRM2) genes as well as, neutrofins (BDNF) and oxidative stress genes (LTF, PRNP). Positive effect of investigated gene polymorphism was indicated by variation c.957C>T DRD2 gene (if in polymorphic site is thymine), polymorphism c.472G>A COMT gene (presence of adenine) and also gene ADRB2 c.46A->G (guanine), CHRM2 (thymine in place c.1890A>T) and BDNF (guanine in place c.472G>A) Obtained results indicate that intelligence is a feature dependent not only on genetic but also an environmental factor. PMID:27333929

  13. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  14. Background sources in optical communications

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.

    1983-01-01

    The characterization and measurement of background radiation relevant to optical communications system performance is addressed. The necessary optical receiver parameters are described, and radiometric concepts required for the calculation of collected background power are developed. The most important components of optical background power are discussed, and their contribution to the total collected background power in various communications scenarios is examined.

  15. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.; Vasil, R.L.; Nolting, A.

    2011-01-01

    This summary of international mineral exploration activities for the year 2010 draws upon available information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analyses of exploration activities performed by the mineral industry.

  16. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.; Bourget, M.R.

    2010-01-01

    This summary of international mineral exploration activities for the year 2009 draws upon information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on industry exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analyses of exploration activities by the mineral industry based upon these data.

  17. Biomorphic Explorers

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1999-01-01

    This paper presents, in viewgraph form, the first NASA/JPL workshop on Biomorphic Explorers for future missions. The topics include: 1) Biomorphic Explorers: Classification (Based on Mobility and Ambient Environment); 2) Biomorphic Flight Systems: Vision; 3) Biomorphic Explorer: Conceptual Design; 4) Biomorphic Gliders; 5) Summary and Roadmap; 6) Coordinated/Cooperative Exploration Scenario; and 7) Applications. This paper also presents illustrations of the various biomorphic explorers.

  18. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.

    2009-01-01

    This summary of international mineral exploration activities for 2008 draws upon available information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry, and presents analyses of exploration activities by the mineral industry based upon these data.

  19. Cosmic microwave background images

    NASA Astrophysics Data System (ADS)

    Herranz, D.; Vielva, P.

    2010-01-01

    Cosmology concerns itself with the fundamental questions about the formation, structure, and evolution of the Universe as a whole. Cosmic microwave background (CMB) radiation is one of the foremost pillars of physical cosmology. Joint analyses of CMB and other astronomical observations are able to determine with ever increasing precision the value of the fundamental cosmological parameters and to provide us with valuable insight about the dynamics of the Universe in evolution. The CMB radiation is a relic of the hot and dense first moments of the Universe: a extraordinarily homogeneous and isotropic blackbody radiation, which shows small temperature anisotropies that are the key for understanding the conditions of the primitive Universe, testing cosmological models and probing fundamental physics at the very dawn of time. CMB observations are obtained by imaging of the sky at microwave wavelengths. However, the CMB signal is mixed with other astrophysical signals of both Galactic and extragalactic origin. To properly exploit the cosmological information contained in CMB images, they must be cleansed of these other astrophysical emissions first. Blind source separation (BSS) has been a very active field in the last few years. Conversely, the term "compact sources" is often used in the CMB literature referring to spatially bounded, small features in the images, such as galaxies and galaxy clusters. Compact sources and diffuse sources are usually treated separately in CMB image processing. We devote this tutorial to the case of compact sources. Many of the compact source-detection techniques that are widespread inmost fields of astronomy are not easily applicable to CMB images. In this tutorial, we present an overview of the fundamentals of compact object detection theory keeping in mind at every moment these particularities. Throughout the article, we briefly consider Bayesian object detection, model selection, optimal linear filtering, nonlinear filtering, and

  20. The Diffuse Extreme Ultraviolet Background

    NASA Technical Reports Server (NTRS)

    Vallerga, John; Slavin, Jonathan

    1996-01-01

    Observations of the diffuse EUV background towards 138 different directions using the spectrometers aboard the Extreme Ultraviolet Explorer satellite (EUVE) have been combined into a spectrum from 150A to 730A and represent an effective exposure of 18 million seconds. There is no significant evidence of any non-local line flux in the resultant spectrum such as that from a hot coronal plasma. These results are inconsistent with the Wisconsin C and B broad-band surveys assuming the source is a logT = 5.8 - 6.1 hot plasma in ionization equilibrium with solar abundances, confirming the previous result of Jelinksy, Vallerga and Edelstein) (hereafter Paper 1) using an observation along the ecliptic with the same instrument. To make these results consistent with the previous broad-band surveys, the plasma responsible for the emission must either be depleted in Fe by a factor of approximately 6, be behind an absorbing slab of neutral H with a column of 2 x 10(exp 19)/sq cm, or not be in collisional ionization equilibrium (CIE). One such non-CIE model (Breitswerdt and Schmutzier) that explains the soft x-ray results is also inconsistent with this EUV data.

  1. 14 CFR § 1217.102 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... exploration and use of space, section 116 of Public Law 97-446 provided for the duty-free entry into the... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Background. § 1217.102 Section § 1217.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DUTY-FREE ENTRY OF SPACE ARTICLES...

  2. Strings in plane wave backgrounds reexamined

    SciTech Connect

    Jofre, O.; Nunez, C. Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires )

    1994-10-15

    String theory in an exact plane wave background is explored. The four-tachyon scattering amplitude is constructed. The spectrum of states found from the poles in the factorization turns out to be equivalent to that of the theory in flat space-time. The massless vertex operator is obtained from the residue of the first order pole. It exhibits nontrivial modifications with respect to the flat space case.

  3. Participatory Exploration

    NASA Video Gallery

    Kathy Nado delivers a presentation on Participatory Exploration on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to present NASA'...

  4. Exploration Review

    USGS Publications Warehouse

    Wilburn, D.R.; Stanley, K.A.

    2013-01-01

    This summary of international mineral exploration activities for 2012 draws upon information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analyses of exploration activities performed by the mineral industry. Three sources of information are reported and analyzed in this annual review of international exploration for 2012: 1) budgetary statistics expressed in U.S. nominal dollars provided by SNL Metals Economics Group (MEG) of Halifax, Nova Scotia; 2) regional and site-specific exploration activities that took place in 2012 as compiled by the USGS and 3) regional events including economic, social and political conditions that affected exploration activities, which were derived from published sources and unpublished discussions with USGS and industry specialists.

  5. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  6. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.; Rapstine, T.D.; Lee, E.C.

    2012-01-01

    This summary of international mineral exploration activities for the year 2011 draws upon available information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. This summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents surveys returned by companies primarily focused on precious (gold, platinum-group metals and silver) and base (copper, lead, nickel and zinc) metals.

  7. Exploring Japan through Rice.

    ERIC Educational Resources Information Center

    Wojtan, Linda S.

    1998-01-01

    Explores the role of rice in Japanese culture by presenting historical background and teaching activities in a variety of categories, such as language, sociology, history, and contemporary politics. Suggests teachers create cross-cultural comparisons; for example, the role of corn in the United States. Provides a list of teacher resources. (CMK)

  8. Beam induced backgrounds: CDF experience

    SciTech Connect

    Tesarek, R.J.; /Fermilab

    2008-05-01

    We summarize the experiences of the Collider Detector at Fermilab (CDF) experiment in the presence of backgrounds originating from the counter circulating beams in the Fermilab Tevatron. These backgrounds are measured and their sources identified. Finally, we outline the strategies employed to reduce the effects of these backgrounds on the experiment.

  9. Cosmology from Cosmic Microwave Background and large- scale structure

    NASA Astrophysics Data System (ADS)

    Xu, Yongzhong

    2003-10-01

    This dissertation consists of a series of studies, constituting four published papers, involving the Cosmic Microwave Background and the large scale structure, which help constrain Cosmological parameters and potential systematic errors. First, we present a method for comparing and combining maps with different resolutions and beam shapes, and apply it to the Saskatoon, QMAP and COBE/DMR data sets. Although the Saskatoon and QMAP maps detect signal at the 21σ and 40σ, levels, respectively, their difference is consistent with pure noise, placing strong limits on possible systematic errors. In particular, we obtain quantitative upper limits on relative calibration and pointing errors. Splitting the combined data by frequency shows similar consistency between the Ka- and Q-bands, placing limits on foreground contamination. The visual agreement between the maps is equally striking. Our combined QMAP+Saskatoon map, nicknamed QMASK, is publicly available at www.hep.upenn.edu/˜xuyz/qmask.html together with its 6495 x 6495 noise covariance matrix. This thoroughly tested data set covers a large enough area (648 square degrees—at the time, the largest degree-scale map available) to allow a statistical comparison with LOBE/DMR, showing good agreement. By band-pass-filtering the QMAP and Saskatoon maps, we are also able to spatially compare them scale-by-scale to check for beam- and pointing-related systematic errors. Using the QMASK map, we then measure the cosmic microwave background (CMB) power spectrum on angular scales ℓ ˜ 30 200 (1° 6°), and we test it for non-Gaussianity using morphological statistics known as Minkowski functionals. We conclude that the QMASK map is neither a very typical nor a very exceptional realization of a Gaussian random field. At least about 20% of the 1000 Gaussian Monte Carlo maps differ more than the QMASK map from the mean morphological parameters of the Gaussian fields. Finally, we compute the real-space power spectrum and the

  10. Background issues for defensive interceptors

    SciTech Connect

    Canavan, G.H.

    1991-03-01

    Mean nuclear backgrounds are large, but are arguably amenable to frame-to-frame subtraction. Striated backgrounds on the sensors for defensive interceptors could, however, cause clutter leak-through, which could make detection and track difficult. Nominal motions and backgrounds give signal to clutter ratios too low to be useful. Clutter leakage due to line-of-sight drift can be reduced by stabilizing the line of sight around the background clutter itself. Current interceptors have detector arrays large enough for operation independent of nuclear backgrounds in their fields of view. 6 refs., 2 figs.

  11. Dual-frequency mapping with the Tenerife cosmic microwave background experiments

    NASA Astrophysics Data System (ADS)

    Gutierrez de La Cruz, C. M.; Davies, R. D.; Rebolo, R.; Watson, R. A.; Hancock, S.; Lasenby, A. N.

    1995-03-01

    We present maps of the sky at intermediate angular resolution (5 deg) of the declination range 35.0-45.0 deg obtained with the Tenerife cosmic microwave background (CMB) experiments using data up until 1992. The data were taken with bean-switching radiometers operating at 10.4 and 14.9 GHz. Right ascension scans were made at 2.5 deg declination intervals centered on decl. +40 deg covering 3500 sq deg of sky. The observations have been compared with known point sources and estimates of Galactic emission as a consistency check on the integrity of the data set. After subtraction of radio sources, the section of our data from R.A. 161 deg to 230 deg has been analyzed using a likelihood method with a Gaussian autocorrelation function. At 10.4 and 14.9 GHz we find evidence for fluctuations with intrinsic amplitudes of square root C0 = 41(+26, -30) and 66(+29, -22) micro-K (68% confidence limits), respectively, on a coherence scale of 4 deg. These levels are consistent with the expected rms sky signal from the COBE differential microwave radiometer first-year resuts and with the CMB signal detected at 14.9 and 33 GHz in the decl. = +40 deg strip by Hancock et al. (1994). Our results at 10.4 GHz set strong upper limits on the Galactic contamination at 14.9 GHz, suggesting that the signal found at the latter frequency is probably dominated by cosmological fluctuations.

  12. Diffuse Cosmic Infrared Background Radiation

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  13. Exploration review

    USGS Publications Warehouse

    Wilburn, D.R.

    2004-01-01

    The worldwide budget for nonfuel mineral exploration was expected to increase by 27 percent in 2003 from the 2002 budget, according to the Metals Economics Group (MEG) of Halifax, Nova Scotia. The increase comes after five years of declining spending for mineral exploration.

  14. Exploration Geochemistry.

    ERIC Educational Resources Information Center

    Closs, L. Graham

    1983-01-01

    Contributions in mineral-deposit model formulation, geochemical exploration in glaciated and arid environments, analytical and sampling problems, and bibliographic research were made in symposia held and proceedings volumes published during 1982. Highlights of these symposia and proceedings and comments on trends in exploration geochemistry are…

  15. Lunar exploration

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.; Joy, K. H.; Anand, M.

    The Moon has historically been at the forefront of the solar system exploration. Building on early telescopic discoveries, over the past half century lunar exploration by spacecraft has taught us much about the Moon as a planetary body, the early history of the solar system (including the origin and evolution of the Earth-Moon system), the geological evolution of rocky planets more generally, and the near-Earth cosmic environment throughout the solar system history. In this chapter, we review the rich history of lunar exploration and draw attention to the advances in scientific knowledge that have resulted from it. We also review the scientific arguments for continued lunar exploration and argue that these will be maximized in the context of a renewed program of human exploration of the Moon.

  16. Background Reduction in Cryogenic Detectors

    SciTech Connect

    Bauer, Daniel A.

    2005-09-08

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  17. Lattice QCD in Background Fields

    SciTech Connect

    William Detmold, Brian Tiburzi, Andre Walker-Loud

    2009-06-01

    Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present at finite volume.

  18. Background reduction in cryogenic detectors

    SciTech Connect

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  19. Background Television and Reading Performance.

    ERIC Educational Resources Information Center

    Armstrong, G. Blake; And Others

    1991-01-01

    Tests G. Armstrong's and B. Greenberg's model of the effect of background television on cognitive performance, applied to reading comprehension and memory. Finds significant deleterious effects of background television, stronger and more consistent effects when testing immediately after reading, and more consistently negative effects resulting…

  20. Low background counting at the LBNL low background facility

    SciTech Connect

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Chan, Y. D.; Hurley, D. L.; Wang, B. S.

    2013-08-08

    The Low Background Facility (LBF) at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to end-users in two unique facilities: locally within a carefully-constructed, low background laboratory space; and a satellite underground station (600 m.w.e) in Oroville, CA. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic and anthropogenic products, as well as active screening via neutron activation analysis for specific applications. A general overview of the facilities, services, and capabilities will be discussed. Recent activities will also be presented, including the recent installation of a 3π muon veto at the surface facility, cosmogenic activation studies of TeO{sub 2} for CUORE, and environmental monitoring of Fukushima fallout.

  1. Background investigation in EDELWEISS-III

    SciTech Connect

    Scorza, Silvia

    2015-08-17

    Protection from and rejection of backgrounds is a key issue for the EDELWEISS-III direct dark matter detection experiment which aims at exploring the 10{sup −9} pb cross-section region for spin-independent WIMP-nucleon interaction. The detector is located in the low radioactivity environment of the Modane Underground Laboratory and consists of 36 advanced FID germanium detectors operating at 18 mK in a dilution refrigerator in order to identify eventual rare nuclear recoils induced by elastic scattering of WIMPs from our Galactic halo. I will discuss the background and the methods of rejecting it with the FID detectors. Detector performances and the first analysis of data acquired in a long-term campaign will be presented as well. The FID detector technology is not limited to EDELWEISS-III but can further be employed in the next generation of cryogenic detector experiments.

  2. Explorer 24

    NASA Technical Reports Server (NTRS)

    1964-01-01

    'This satellite, Explorer 24, was a 12-foot-diameter inflatable sphere developed by an engineering team at Langley. It provided information on complex solar radiation/air-density relationships in the upper atmosphere.' Explorer satellites were inflatable satellites--or satelloons, like Echo, and were developed as a follow-on program. They were intended as a vehicle to study the density of air in the upper atmosphere. Explorer 24 was launched in November 1964. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, pp. 191-192.

  3. Cosmic Microwave Background Polarization and Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2011-01-01

    Measurements of the cosmic microwave background (CMB) offer a means to explore the universe at a very early epoch. Specifically, if the universe went through a brief period of exponential expansion called inflation as current data suggest, gravitational waves from this period would polarize the CMB in a specific pattern. At GSFC, we are currently working towards two experiments that work in concert to measure this polarization pattern in search of evidence for inflation. The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization at frequencies between 40 and 150 GHz from the Atacama Desert in Chile. The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment that will make similar measurements at frequencies between 200 and 600 GHz.

  4. The Primordial Inflation Explorer

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  5. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  6. Space Exploration

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2007-01-01

    Space exploration is an endeavor that has universal appeal, is far reaching in its consequences, crossing borders and spanning intellectual disciplines from art to literature to mathematics, with a purpose and reach that can potentially unite. To enhance awareness and strengthen cooperation within the space community, and provide inspiration for new activities, Dr. McGrath will provide a brief glimpse into a few of the exciting space exploration activities currently being undertaken by NASA.

  7. Exploring Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    With a temperature higher than the inside of your oven and atmospheric pressure equal to that a kilometer under the ocean, the surface of Venus is one of the most hostile environments in the solar system, and Venus exploration presents a challenge to technology. This lecture presents mission trade-offs and discusses a proposed mission concept for rover and aircraft based exploration of the surface and atmosphere of Venus. Several approaches to the technology, electronics, mechanical parts, and power systems, are discussed.

  8. Low background techniques in XMASS

    SciTech Connect

    Takeda, Atsushi

    2011-04-27

    The XMASS project aims to detect pp and {sup 7}Be solar neutrinos, neutrino-less double beta decay, and dark matter searches using ultra-pure liquid xenon. The first stage of XMASS project is concentrated on dark matter searches using 800 kg liquid xenon detector which requires low background and low threshold. Several techniques applied to XMASS detector for low background will be presented.

  9. Low Background Counting at LBNL

    DOE PAGES

    Smith, A. R.; Thomas, K. J.; Norman, E. B.; Chan, Y. D.; Lesko, K. T.; Hurley, D. L.

    2015-03-24

    The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background cave and remotely at an underground location that historically has operated underground in Oroville, CA, but has recently been relocated to the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K)more » or common cosmogenic/anthropogenic products, as well as active screening via Neutron Activation Analysis for specific applications. The LBF also provides hosting services for general R&D testing in low background environments on the surface or underground for background testing of detector systems or similar prototyping. A general overview of the facilities, services, and sensitivities is presented. Recent activities and upgrades will also be presented, such as the completion of a 3π anticoincidence shield at the surface station and environmental monitoring of Fukushima fallout. The LBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.« less

  10. Low Background Counting at LBNL

    SciTech Connect

    Smith, A. R.; Thomas, K. J.; Norman, E. B.; Chan, Y. D.; Lesko, K. T.; Hurley, D. L.

    2015-03-24

    The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background cave and remotely at an underground location that historically has operated underground in Oroville, CA, but has recently been relocated to the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products, as well as active screening via Neutron Activation Analysis for specific applications. The LBF also provides hosting services for general R&D testing in low background environments on the surface or underground for background testing of detector systems or similar prototyping. A general overview of the facilities, services, and sensitivities is presented. Recent activities and upgrades will also be presented, such as the completion of a 3π anticoincidence shield at the surface station and environmental monitoring of Fukushima fallout. The LBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  11. Nobel Lecture: From the Big Bang to the Nobel Prize and beyond

    NASA Astrophysics Data System (ADS)

    Mather, John C.

    NASA’s Cosmic Background Explorer satellite mission, the COBE, laid the foundations for modern cosmology by measuring the spectrum and anisotropy of the cosmic microwave background radiation and discovering the cosmic infrared background radiation. I describe the history of the COBE project, its scientific context, the people who built it, and the scientific results. The COBE observed the universe on the largest scales possible by mapping the cosmic microwave and infrared background radiation fields and determining their spectra. It produced conclusive evidence that the hot Big Bang theory of the early universe is correct, showed that the early universe was very uniform but not perfectly so, and that the total luminosity of post Big Bang objects is twice as great as previously believed. The COBE concept was developed by a Mission Definition Study Team appointed by NASA in 1976, based on three competing proposals submitted in 1974. The COBE was built in-house by Goddard Space Flight Center, with a helium cryostat provided by Ball Aerospace, and was launched on a Delta rocket built by McDonnell Douglas. It is in a circular orbit 900km above the Earth, in a plane inclined 99° to the equator and roughly perpendicular to the line to the Sun. It carried three instruments, a far infrared absolute spectrophotometer (FIRAS), a differential microwave radiometer with three channels (DMR), and a diffuse infrared background experiment (DIRBE). The helium cryostat cooled the FIRAS and DIRBE for 10months until the helium was exhausted, but operations continued for a total of 4years . Subsequent observations have confirmed the COBE results and led to measurements of the main cosmological parameters with a precision of a few percent.

  12. Low Background Micromegas in CAST

    NASA Astrophysics Data System (ADS)

    Garza, J. G.; Aune, S.; Aznar, F.; Calvet, D.; Castel, J. F.; Christensen, F. E.; Dafni, T.; Davenport, M.; Decker, T.; Ferrer-Ribas, E.; Galán, J.; García, J. A.; Giomataris, I.; Hill, R. M.; Iguaz, F. J.; Irastorza, I. G.; Jakobsen, A. C.; Jourde, D.; Mirallas, H.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Ruz, J.; Tomás, A.; Vafeiadis, T.; Vogel, J. K.

    2015-11-01

    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micromegas detectors for the CERN Axion Solar Telescope (CAST), including technological pathfinder activities for the future International Axion Observatory (IAXO). The use of low background techniques and the application of discrimination algorithms based on the high granularity of the readout have led to background levels below 10-6 counts/keV/cm2/s, more than a factor 100 lower than the first generation of Micromegas detectors. The best levels achieved at the Canfranc Underground Laboratory (LSC) are as low as 10-7 counts/keV/cm2/s, showing good prospects for the application of this technology in IAXO. The current background model, based on underground and surface measurements, is presented, as well as the strategies to further reduce the background level. Finally, we will describe the R&D paths to achieve sub-keV energy thresholds, which could broaden the physics case of axion helioscopes.

  13. Background simulations and shielding calculations

    SciTech Connect

    Kudryavtsev, Vitaly A.

    2011-04-27

    Key improvements in the sensitivity of the underground particle astrophysics experiments can only be achieved if the radiation causing background events in detectors is well understood and proper measures are taken to suppress it. The background radiation arising from radioactivity and cosmic-ray muons is discussed here together with the methods of its suppression. Different shielding designs are considered to attenuate gamma-rays and neutrons coming from radioactivity in rock and lab walls. Purity of materials used in detector construction is analysed and the background event rates due to the presence of radioactive isotopes in detector components are discussed. Event rates in detectors caused by muon-induced neutrons with and without active veto systems are presented leading to the requirements for the depth of an underground laboratory and the efficiency of the veto system.

  14. Exploring Television.

    ERIC Educational Resources Information Center

    Kuhns, William

    "Exploring Television" is an inquiry/discovery textbook designed to help students to understand, analyze, criticize, evaluate, and judge the experiences they have had in front of the television set. The text consists of three main parts. "The Medium" inquires into the radio-movie origins of television and prompts research into the networks and…

  15. Exploring maps

    USGS Publications Warehouse

    ,

    1993-01-01

    Exploring Maps is an interdisciplinary set of materials on mapping for grades 7-12. Students will learn basic mapmaking and map reading skills and will see how maps can answer fundamental geographic questions: "Where am I?" "What else is here?" "Where am I going?"

  16. Exploring Fractals.

    ERIC Educational Resources Information Center

    Dewdney, A. K.

    1991-01-01

    Explores the subject of fractal geometry focusing on the occurrence of fractal-like shapes in the natural world. Topics include iterated functions, chaos theory, the Lorenz attractor, logistic maps, the Mandelbrot set, and mini-Mandelbrot sets. Provides appropriate computer algorithms, as well as further sources of information. (JJK)

  17. Exploring Size.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among apparently…

  18. Early Explorers.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This issue of a magazine of Iowa history for young people focuses on early explorers and combined learning activities with informative articles. Sections in this issue include: "Where? What? Who?"; "Maps--long ago and recent"; "Every map answers at least two questions: Where? What?"; "Jolliet and Marquette"; "Match the maps"; "Louisiana Purchase";…

  19. Toward an automated background oriented schlieren (BOS) system

    NASA Astrophysics Data System (ADS)

    Hargather, Michael; Settles, Gary

    2011-11-01

    The background oriented schlieren (BOS) technique is a useful method for visualizing refractive disturbances in a wide range of experimental settings. The technique visualizes refractive disturbances via their distortion of a distant background pattern (typically a speckle pattern). A cross-correlation computer algorithm is typically used to identify and measure distortions of the background pattern, thus revealing the refractive disturbance changes between images and producing a schlieren image. The cross-correlation algorithm, however, can be time-consuming and prevents an instantaneous schlieren image from being observed, thus hampering some potential BOS applications. Here a novel background patterning approach is presented which eliminates the need for the cross-correlation algorithm. Results are presented showing the sensitivity of the new background pattern and its potential application for providing instantaneous BOS images. Background pattern characteristics are explored for high- and low-speed fluid-dynamic applications. Gas Dynamics Laboratory, Penn State University.

  20. Generative electronic background music system

    SciTech Connect

    Mazurowski, Lukasz

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  1. The cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1992-01-01

    A review the implications of the spectrum and anisotropy of the cosmic microwave background for cosmology. Thermalization and processes generating spectral distortions are discussed. Anisotropy predictions are described and compared with observational constraints. If the evidence for large-scale power in the galaxy distribution in excess of that predicted by the cold dark matter model is vindicated, and the observed structure originated via gravitational instabilities of primordial density fluctuations, the predicted amplitude of microwave background anisotropies on angular scales of a degree and larger must be at least several parts in 10 exp 6.

  2. Exotic branes and nongeometric backgrounds.

    PubMed

    de Boer, Jan; Shigemori, Masaki

    2010-06-25

    When string or M theory is compactified to lower dimensions, the U-duality symmetry predicts so-called exotic branes whose higher-dimensional origin cannot be explained by the standard string or M-theory branes. We argue that exotic branes can be understood in higher dimensions as nongeometric backgrounds or U folds, and that they are important for the physics of systems which originally contain no exotic charges, since the supertube effect generically produces such exotic charges. We discuss the implications of exotic backgrounds for black hole microstate (non-)geometries. PMID:20867363

  3. Atmospheric Neutrinos: Background and Signal

    SciTech Connect

    Mocioiu, Irina

    2010-11-24

    We discuss a brief history of atmospheric neutrinos, from background to proton decay searches to proving neutrino oscillations. We then discuss how high statistics atmospheric neutrino measurements in the IceCube Deep Core Array can provide useful information about neutrino oscillation parameters and other neutrino properties.

  4. Low background techniques in CANDLES

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Iida, T.; Kishimoto, T.; Matsuoka, K.; Nomachi, M.; Umehara, S.; Chan, W. M.; Kakubata, H.; Li, X.; Maeda, T.; Ohata, T.; Temuge, B.; Tetsuno, K.; Trang, V. T. T.; Uehara, T.; Yoshida, S.; Morishita, K.; Ogawa, I.; Sakamoto, K.; Tamagawa, Y.; Yoshizawa, M.; Fushimi, K.; Hazama, R.; Naktani, N.; Suzuki, K.

    2015-08-01

    CANDLES is a double beta decay experiment using 48Ca in CaF2 crystals. The measurement is being performed with prototype detector (CANDLES III) for high sensitive measurement in the future. Recent status of detector improvements and background reduction techniques are described in this paper.

  5. Integrated Global Background Monitoring Network

    SciTech Connect

    Wiersma, G.B.; Franklin, J.F.; Kohler, A.; Croze, H.; Boelcke, C.

    1986-12-01

    One of the more significant problems when trying to determine what impact is having on global cycles is not knowing what ''natural'' levels should be for both abiotic (gases, trace elements) and biotic (ecosystem functions) processes. The authors believe that a well designed, coordinated network of baseline stations in remote areas around the world can provide a data base will allow best current estimates to be made of biotic and abiotic baseline conditions. These baseline conditions will then help us make better comparisons with more impacted areas, and thus help us more fully understand the impact man is having on his world. This paper examines the history of background pollution monitoring at the international level, describes current activities in the field of ''integrated'' background monitoring, and proposes criteria for the development of a global network of baseline stations to coordinate background monitoring for the presence, accumulation and behavior of pollutants in remote ecosystems. In this paper, this network is called the Integrated Global Background Monitoring Network.

  6. Educational Choice. A Background Paper.

    ERIC Educational Resources Information Center

    Quality Education for Minorities Network, Washington, DC.

    This paper addresses school choice, one proposal to address parental involvement concerns, focusing on historical background, definitions, rationale for advocating choice, implementation strategies, and implications for minorities and low-income families. In the past, transfer payment programs such as tuition tax credits and vouchers were…

  7. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  8. Low background techniques in CANDLES

    SciTech Connect

    Nakajima, K. E-mail: nkyohei@u-fukui.ac.jp; Iida, T.; Matsuoka, K.; Nomachi, M.; Umehara, S.; Kishimoto, T.; Chan, W. M.; Kakubata, H.; Li, X.; Maeda, T.; Ohata, T.; Temuge, B.; Tetsuno, K.; Trang, V. T. T.; Uehara, T.; Yoshida, S.; Morishita, K.; Ogawa, I.; Sakamoto, K.; Tamagawa, Y.; and others

    2015-08-17

    CANDLES is a double beta decay experiment using {sup 48}Ca in CaF{sub 2} crystals. The measurement is being performed with prototype detector (CANDLES III) for high sensitive measurement in the future. Recent status of detector improvements and background reduction techniques are described in this paper.

  9. Teaching about Natural Background Radiation

    ERIC Educational Resources Information Center

    Al-Azmi, Darwish; Karunakara, N.; Mustapha, Amidu O.

    2013-01-01

    Ambient gamma dose rates in air were measured at different locations (indoors and outdoors) to demonstrate the ubiquitous nature of natural background radiation in the environment and to show that levels vary from one location to another, depending on the underlying geology. The effect of a lead shield on a gamma radiation field was also…

  10. Teacher Pensions: A Background Paper

    ERIC Educational Resources Information Center

    Hansen, Janet S.

    2008-01-01

    Pensions are an important but comparatively unexamined component of human resource policies in education. In an increasingly competitive world where employees are more mobile than ever, pension policies that were designed in the last century may be out of step with the needs of both individuals and schools. This background paper aims to foster…

  11. Ambient background particulate composition, outdoor natural background: interferents/clutter

    NASA Astrophysics Data System (ADS)

    Paterno, Dorothea

    2012-06-01

    It has proven a very difficult task to discriminate an actual BW threat from the natural occurring ambient particulate aerosol, which includes a significant fraction of particles consisting of mixed mineral and biological material. The interferent particles [clutter] (bio and non bio) concentration varies widely both by location, weather and season and diurnally. Naturally occurring background particulates are composed of fungal and bacterial spores both fragments and components, plant fragments and debris, animal fragments and debris, all of which may be associated with inert dust or combustion material. Some or all of which could also be considered to be an interferent to a biological warfare detector and cause these biodector systems to cause False Alarms by non specific BW bio detectors. I will share analysis of current long term background data sets.

  12. COS SMOV Calibration: Detector Background Performance

    NASA Astrophysics Data System (ADS)

    Ake, Thomas B., III; McPhate, J.; Osterman, S.; Sahnow, D.; Penton, S.; Keyes, C.; STScI COS Team; COS IDT Team

    2010-01-01

    The Cosmic Origins Spectrograph (COS), installed in May 2009 into the Hubble Space Telescope (HST), was designed with two low noise, photon counting detectors. The FUV channel utilizes a windowless, cross delay line (XDL) microchannel plate detector, with heritage from the Far Ultraviolet Spectroscopic Explorer (FUSE) mission. The NUV side employs a closed tube MAMA detector, which had been the Space Telescope Imaging Spectrograph (STIS) flight spare. The background performance of both channels was measured during the COS Servicing Mission Observatory Verification (SMOV) program. For the FUV detector, the background rate is as expected from prelaunch estimates, 2.4×10-6 counts/sec/pixel, except at times when HST is close to the South Atlantic Anomaly (SAA). Close to the SAA boundary, the rate can be as high as 8×10-5. Several weak structures are found in the dark exposures. Some of these are likely due to energetic particles trapped in the geomagnetic field and can be recognized by their large pulse heights. Others are low gain events. For TIME-TAG exposures, most features are removed in ground processing by pulse height filtering of the individual events. For ACCUM mode, which is only used for bright objects, suspect regions of the spectra will be marked by data quality flags, but the features are expected to be too weak to be of consequence. For the NUV detector, the background rate is 6.7×10-5 counts/sec/pixel, about three times lower than predicted from prelaunch estimates and about 15 times lower than the pre-Servicing Mission 4 performance of the STIS NUV detector. A difference in windows between the MAMAs accounts for much of the improvement. In particular, although the COS background is elevated near the SAA, up to 1×10-3 counts/sec/pixel, no long-term phosphorescence occurs in the window after HST passes through the SAA. Little structure is seen in the NUV darks.

  13. The Cosmic Infrared Background Experiment

    NASA Astrophysics Data System (ADS)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  14. Space Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract covers a one hour presentation on Space Exploration. The audience is elementary students; therefore there are few words on the slides, mostly pictures of living and working in space. The presentation opens with a few slides describing a day in the life of a space explorer. It begins with a launch, discussions of day-night cycles, eating, exercising, housekeeping, EVA, relaxation, and sleeping. The next section of the presentation shows photos of astronauts performing experiments on the ISS. Yokomi Elementary School launched this fall with the most advanced educational technology tools available in schools today. The science and technology magnet school is equipped with interactive white boards, digital projectors, integrated sound systems and several computers for use by teachers and students. The only elementary school in Fresno Unified with a science focus also houses dedicated science classrooms equipped specifically for elementary students to experience hands-on science instruction in addition to the regular elementary curriculum.

  15. Background stratospheric aerosol reference model

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.

    1989-01-01

    In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing.

  16. WFC3/UVIS Sky Backgrounds

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia; Anderson, Jay

    2012-06-01

    This report summarizes the on-orbit background levels present in WFC3/UVIS full-frame images. The results are based on nearly all standard readout images taken since the installation of WFC3 on HST in May 2009, with a relatively small number of exclusions e.g. images with obvious anomalous backgrounds (such as extended targets filling the field of view) or those taken with the quad filters (different bandpass in each amp). Comparisons are provided to estimates from the Exposure Time Calculator (ETC). We anticipate these results to be helpful in fine-tuning the level of post-flash required to achieve the optimum balance of charge transfter efficiency (CTE) loss mitigation versus noise penalty. Observers considering the use of post-flash should refer to the White Paper (MacKenty & Smith 2012) on the CTE WWW page (http://www.stsci.edu/hst/wfc3/ins_performance/CTE/).

  17. Quantum chromodynamics in background fields

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Huang, Zheng

    1989-02-01

    We try to build a framework for quantum chromodynamics in background fields. The nonvanishing vacuum condensates are described by the classical fields, while the corresponding quantum fields are quantized in the Furry representation and the physical states are defined in the physical QCD vacuum. The complete quark and gluon propagators are discussed in this framework and running condensate parameters are introduced by the renormalization requirement. A modified Callan-Symanzik equation is derived by taking account of the nonperturbative corrections.

  18. The isotropic radio background revisited

    SciTech Connect

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  19. Plutonium measurements near background levels

    SciTech Connect

    Not Available

    1992-01-01

    The Rocky Flats Plant (RFP) is part of a nationwide nuclear weapons research, development, and production complex administered by the United States Department of Energy (DOE). Low-levels of environmental Plutonium occurs in and about RFP as a result of plant operations. Plutonium is a key element in remediation investigations and surface water discharge limits. Most of the plutonium analyses at RFP measure concentrations at or near background levels. Measurements often show little, if any, plutonium in the media being sampled, except at known contamination sites. Many plutonium results are less than the calculated minimum detectable-level (MDL). (MDL is an a priori estimate of the activity concentration that can be practically achieved under a specified set of typical measurement conditions.) This paper investigates the relationship between plutonium concentrations and the counting uncertainty when measurements are near background, and suggests why the MDL should not be used as a criteria for limiting data. Issues with defining site background and determining attainment of standards are presented.

  20. Plutonium measurements near background levels

    SciTech Connect

    Not Available

    1992-08-01

    The Rocky Flats Plant (RFP) is part of a nationwide nuclear weapons research, development, and production complex administered by the United States Department of Energy (DOE). Low-levels of environmental Plutonium occurs in and about RFP as a result of plant operations. Plutonium is a key element in remediation investigations and surface water discharge limits. Most of the plutonium analyses at RFP measure concentrations at or near background levels. Measurements often show little, if any, plutonium in the media being sampled, except at known contamination sites. Many plutonium results are less than the calculated minimum detectable-level (MDL). (MDL is an a priori estimate of the activity concentration that can be practically achieved under a specified set of typical measurement conditions.) This paper investigates the relationship between plutonium concentrations and the counting uncertainty when measurements are near background, and suggests why the MDL should not be used as a criteria for limiting data. Issues with defining site background and determining attainment of standards are presented.

  1. Background independence in a background dependent renormalization group

    NASA Astrophysics Data System (ADS)

    Labus, Peter; Morris, Tim R.; Slade, Zöe H.

    2016-07-01

    Within the derivative expansion of conformally reduced gravity, the modified split Ward identities are shown to be compatible with the flow equations if and only if either the anomalous dimension vanishes or the cutoff profile is chosen to have a power-law form. No solutions exist if the Ward identities are incompatible. In the compatible case, a clear reason is found for why Ward identities can still forbid the existence of fixed points; however, for any cutoff profile, a background independent (and parametrization independent) flow equation is uncovered. Finally, expanding in vertices, the combined equations are shown generically to become either overconstrained or highly redundant beyond the six-point level.

  2. Constraints on Hybrid Metric-Palatini Gravity from Background Evolution

    NASA Astrophysics Data System (ADS)

    Lima, N. A.; -Barreto, V. S.

    2016-02-01

    In this work, we introduce two models of the hybrid metric-Palatini theory of gravitation. We explore their background evolution, showing explicitly that one recovers standard General Relativity with an effective cosmological constant at late times. This happens because the Palatini Ricci scalar evolves toward and asymptotically settles at the minimum of its effective potential during cosmological evolution. We then use a combination of cosmic microwave background, supernovae, and baryonic accoustic oscillations background data to constrain the models’ free parameters. For both models, we are able to constrain the maximum deviation from the gravitational constant G one can have at early times to be around 1%.

  3. Estimating background precipitation quality from network data.

    PubMed

    Hicks, B B; Artz, R S

    1992-01-01

    Assessments of the relative merits of alternative acid-rain control strategies revolve around considerations of potential benefit per unit effort and/or cost. A question that often arises concerns the changes in deposition that would follow if all industrial (or societal) emissions were eliminated, in which case precipitation chemistry would be dominated by emissions from natural sources. Estimates of the 'natural background' of precipitation chemistry can be based on (a) measurements made at distant locations, (b) reducing emissions to zero in numerical simulations, or (c) examinations of existing data. Each alternative is flawed because (a) of the assumption that natural emissions in one location are like those in another, (b) no existing model contains descriptions of chemical processes involving all of the chemical species of importance, and (c) all contemporary data records or relevance are affected by precisely the emissions we wish to reduce. Here, the third alternative is explored in detail, using event precipitation chemistry data from North America. The analysis reveals a background pH level that varies from site to site, but always lies in the range 5.0-5.3.

  4. Teaching about natural background radiation

    NASA Astrophysics Data System (ADS)

    Al-Azmi, Darwish; Karunakara, N.; Mustapha, Amidu O.

    2013-07-01

    Ambient gamma dose rates in air were measured at different locations (indoors and outdoors) to demonstrate the ubiquitous nature of natural background radiation in the environment and to show that levels vary from one location to another, depending on the underlying geology. The effect of a lead shield on a gamma radiation field was also demonstrated to emphasize the important role of shielding in radiation protection. The measurements were carried out with a Geiger-Muller (GM)-based dosimeter and a NaI scintillation gamma-ray spectrometer, which are normally available in physics laboratories. Radioactivity in household materials was demonstrated using a gas mantle as an example.

  5. [Toothache with a neuropathic background].

    PubMed

    Khatchaturian, V; de Wijer, A; Kalaykova, S I; Steenks, M H

    2015-03-01

    A 48-year old woman in good general health was referred to the orofacial pain clinic in a centre for special dentistry with a toothache in the premolar region of the left maxillary quadrant. The complaints had existed for 15 years and various dental treatments, including endodontic treatments, apical surgery, extraction and splint therapy, had not helped to alleviate the complaints. As a result of the fact that anti-epileptic drugs were able to reduce the pain it was concluded that this 'toothache' satisfied the criteria of an atypical odontalgia: 'toothache' with a neuropathic background. PMID:26181392

  6. Exploring racism.

    PubMed

    Morgan, Helen

    2002-10-01

    Whilst the concept of 'race' has no basis in genetics or biology, the dynamics of racism pervade all aspects of modern life--including the consulting room. In this paper the relationship between a white therapist and a black patient is explored through an unbidden thought and a verbal slip that occurred in the course of the therapy. The amplification and examination of these unwanted 'slips' are used to shed light on the subtleties of the effects of difference in colour on the relationship. It is argued here that the interaction reflects and illuminates the asymmetrical relationship between 'black' and 'white' in modern-western society. This is then considered using the concepts of the cultural unconscious and social unconscious as ways of understanding the tenacity of racism in ourselves.

  7. Geoelectrical exploration

    NASA Astrophysics Data System (ADS)

    Barseem, Mostafa Said; El Lateef, Talaat Ali Abd; Ezz El Deen, Hosny Mahomud; Abdel Rahman, Abd Allah Al Abaseiry

    2015-12-01

    Sinai development is a goal of successive governments in Egypt. The present study is a geoelectrical exploration to find appropriate solutions of the problems affecting the land of a Research Station in Southeast Al Qantara. This research station is one of the Desert Research Center stations to facilitate the development of desert land for agriculture by introducing applied research. It suffers from some problems which can be summarized in the shortage of irrigation water and water logging. The appropriate solutions of these problems have been delineated by the results of 1D and 2D geoelectrical measurements. Electrical resistivity (ER) revealed the subsurface sedimentary sequences and extension of subsurface layers in the horizontal and vertical directions, especially, the water bearing layer. Additionally it helped to choose the most suitable places to drill productive wells with a good condition.

  8. Experiences of School Belonging for Young Children with Refugee Backgrounds

    ERIC Educational Resources Information Center

    Due, Clemence; Riggs, Damien W.; Augoustinos, Martha

    2016-01-01

    Previous research with adolescents with refugee backgrounds living in countries of resettlement has found that school belonging has an impact on a range of well-being and developmental outcomes, including mental health, peer relationships, self-esteem and self-efficacy, and academic achievement. However, very little research has explored school…

  9. Political Correctness: Background, Perspective, and Implications for Student Affairs Professionals.

    ERIC Educational Resources Information Center

    Forney, Deanna S.

    1996-01-01

    Provides background information about the Political Correctness debate, encourages student affairs administrators to reflect on their own perceptions and actions, offers ideas and suggestions about the debate, and explores the debate's implications for student affairs staff. Is intended to promote both individual reflection and group discussions…

  10. Computerized background-oriented schlieren

    NASA Astrophysics Data System (ADS)

    Meier, G. E. A.

    2002-06-01

    A schlieren measurement technique based on computer evaluation of image variations due to refractive index variations in the propagation medium is presented; in what follows, this concept is referred to as the "background-oriented schlieren" (BOS) method. The differences between BOS and other optical techniques for refractive index measurement are the governing role of numerical methods, the extremely small amount of optical equipment, the high accuracy, the bidirectional sensitivity, the fast evaluation, and the missing field limitations. The principle of the method is the numerical comparison of a schlieren distorted and an undistorted image of a deliberate background. The method has become usable in practice owing to the immense progress in computing power and to newly developed fast-correlation algorithms. The extension of this method to space resolving techniques is possible. Some experimental studies show the applicability. Examples are a mixing turbulent jet, a supersonic jet, a shed vortex, and the sound wave of a gun shot. These few results underline the encouraging prospect for the future applicability of this technique. The BOS method offers not only the possibility of qualitative and quantitative schlieren investigations but also has the potential to determine density fields by integration of the measured gradient fields.

  11. Video coding with dynamic background

    NASA Astrophysics Data System (ADS)

    Paul, Manoranjan; Lin, Weisi; Lau, Chiew Tong; Lee, Bu-Sung

    2013-12-01

    Motion estimation (ME) and motion compensation (MC) using variable block size, sub-pixel search, and multiple reference frames (MRFs) are the major reasons for improved coding performance of the H.264 video coding standard over other contemporary coding standards. The concept of MRFs is suitable for repetitive motion, uncovered background, non-integer pixel displacement, lighting change, etc. The requirement of index codes of the reference frames, computational time in ME & MC, and memory buffer for coded frames limits the number of reference frames used in practical applications. In typical video sequences, the previous frame is used as a reference frame with 68-92% of cases. In this article, we propose a new video coding method using a reference frame [i.e., the most common frame in scene (McFIS)] generated by dynamic background modeling. McFIS is more effective in terms of rate-distortion and computational time performance compared to the MRFs techniques. It has also inherent capability of scene change detection (SCD) for adaptive group of picture (GOP) size determination. As a result, we integrate SCD (for GOP determination) with reference frame generation. The experimental results show that the proposed coding scheme outperforms the H.264 video coding with five reference frames and the two relevant state-of-the-art algorithms by 0.5-2.0 dB with less computational time.

  12. Exploring Water Pollution. Part II

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1975-01-01

    This is part two of a three part article related to the science activity of exploring environmental problems. Part one dealt with background information for the classroom teacher. Presented here is a suggested lesson plan on water pollution. Objectives, important concepts and instructional procedures are suggested. (EB)

  13. [Exploring Aeronautics

    NASA Technical Reports Server (NTRS)

    Robinson, Brandi

    2004-01-01

    This summer I have been working with the N.A.S.A. Project at Cuyahoga Community College (Tri-C) under the title of Exploring Aeronautics Project Leader. The class that I have worked with is comprised of students that will enter the eighth grade in the fall of 2004. The program primarily focuses upon math proficiency and individualized class projects. My duties have encompassed both realms. During the first 2-3 weeks of my internship, I worked at NASA Glenn Research Center (GRC) researching, organizing, and compiling information for weekly Scholastic Challenges and the Super Scholastic Challenge. I was able to complete an overview of Scholastic Challenge and staff responsibilities regarding the competition; a proposal for an interactive learning system, Quizdom; a schedule for challenge equipment, as well as a schedule listing submission deadlines for the staff. Also included in my tasks, during these first 2-3 weeks, were assisting Tammy Allen and Candice Thomas with the student application review and interview processes for student applicants. For the student and parent orientation, I was assigned publications and other varying tasks to complete before the start of the program. Upon the commencement of the program, I changed location from NASA GRC to Tri-C Metro Campus, where student classes for the Cleveland site are held. During the duration of the program, I work with the instructor for the Exploring Aeronautics class, kkkk, assisting in classroom management, daily attendance, curriculum, project building, and other tasks as needed. These tasks include the conducting of the weekly competition, known as Scholastic Challenge. As a Project Leader, I am also responsible for one subject area of the Scholastic Challenge aspect of the N.A.S.A. Project curriculum. Each week I have to prepare a mission that the participants will take home the following Monday and at least 10 questions that will be included in the pool of questions used for the Scholastic Challenge

  14. The cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1981-01-01

    Because angular anisotropies and spectral distortions of the cosmic microwave background radiation are judged to be inevitable at some level, in a realistic cosmological model, the evidence for spectral distortions and its theoretical implications are described. The evidence for anisotropy is then discussed, and theoretical predictions of radiation anisotropy are summarized and compared with the data available. It is found that spectral distortions at the 3-sigma level near the peak of the blackbody spectrum, although inconsistent with the predicted distortions due to Compton scattering in the early universe, are elegantly interpreted in terms of radiation from an early, pregalactic generation of massive stars which had been thermalized by a modest amount of dust at high redshift. The quadrupole anisotropy at the 4-sigma level is most simply interpreted in terms of the large-scale structure of the universe.

  15. Deleterious background selection with recombination

    SciTech Connect

    Hudson, R.R.; Kaplan, N.L.

    1995-12-01

    An analytic expression for the expected nucleotide diversity is obtained for a neutral locus in a region with deleterious mutation and recombination. Our analytic results are used to predict levels of variation for the entire third chromosome of Drosophila melanogaster. The predictions are consistent with the low levels of variation that have been observed at loci near the centromeres of the third chromosome of D. melanogaster. However, the low levels of variation observed near the tips of this chromosome are not predicted using currently available estimates of the deleterious mutation rate and of selection coefficients. If considerably smaller selection coefficients are assumed, the low observed levels of variation at the tips of the third chromosome are consistent with the background selection model. 33 refs., 4 figs., 1 tab.

  16. Low background aspects of GERDA

    SciTech Connect

    Simgen, Hardy

    2011-04-27

    The GERDA experiment operates bare Germanium diodes enriched in {sup 76}Ge in an environment of pure liquid argon to search for neutrinoless double beta decay. A very low radioactive background is essential for the success of the experiment. We present here the research done in order to remove radio-impurities coming from the liquid argon, the stainless steel cryostat and the front-end electronics. We found that liquid argon can be purified efficiently from {sup 222}Rn. The main source of {sup 222}Rn in GERDA is the cryostat which emanates about 55 mBq. A thin copper shroud in the center of the cryostat was implemented to prevent radon from approaching the diodes. Gamma ray screening of radio-pure components for front-end electronics resulted in the development of a pre-amplifier with a total activity of less than 1 mBq {sup 228}Th.

  17. Low Background Counting At SNOLAB

    SciTech Connect

    Lawson, Ian; Cleveland, Bruce

    2011-04-27

    It is a continuous and ongoing effort to maintain radioactivity in materials and in the environment surrounding most underground experiments at very low levels. These low levels are required so that experiments can achieve the required detection sensitivities for the detection of low-energy neutrinos, searches for dark matter and neutrinoless double-beta decay. SNOLAB has several facilities which are used to determine these low background levels in the materials and the underground environment. This proceedings will describe the SNOLAB High Purity Germanium Detector which has been in continuous use for the past five years and give results of many of the items that have been counted over that period. Brief descriptions of SNOLAB's alpha-beta and electrostatic counters will be given, and the radon levels at SNOLAB will be discussed.

  18. Texture induced microwave background anisotropies

    SciTech Connect

    Borrill, Julian; Copeland, Edmund J.; Liddle, Andrew R.; Stebbins, Albert; Veeraraghavan, Shoba

    1994-03-01

    We use numerical simulations to calculate the cosmic microwave background anisotropy induced by the evolution of a global texture field, with special emphasis on individual textures. Both spherically symmetric and general configurations are analyzed, and in the latter case we consider field configurations which exhibit unwinding events and also ones which do not. We compare the results given by evolving the field numerically under both the expanded core (XCORE) and non-linear sigma model (NLSM) approximations with the analytic predictions of the NLSM exact solution for a spherically symmetric self-similar (SSSS) unwinding. We find that the random unwinding configuration spots' typical peak height is 60-75\\% and angular size typically only 10% of those of the SSSS unwinding, and that random configurations without an unwinding event nonetheless may generate indistinguishable hot and cold spots. A brief comparison is made with other work.

  19. Background canceling surface alpha detector

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1996-01-01

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.

  20. Background canceling surface alpha detector

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1996-06-11

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.

  1. Project Explorer

    NASA Technical Reports Server (NTRS)

    Dannenberg, K. K.; Henderson, A.; Lee, J.; Smith, G.; Stluka, E.

    1984-01-01

    PROJECT EXPLORER is a program that will fly student-developed experiments onboard the Space Shuttle in NASA's Get-Away Special (GAS) containers. The program is co-sponsored by the Alabama Space and Rocket Center, the Alabama-Mississippi Section of the American Institute of Aeronautics and Astronautics, Alabama A&M University and requires extensive support by the University of Alabama in Huntsville. A unique feature of this project will demonstrate transmissions to ground stations on amateur radio frequencies in English language. Experiments Nos. 1, 2, and 3 use the microgravity of space flight to study the solidification of lead-antimony and aluminum-copper alloys, the growth of potassium-tetracyanoplatinate hydrate crystals in an aqueous solution, and the germination of radish seeds. Flight results will be compared with Earth-based data. Experiment No. 4 features radio transmission and will also provide timing for the start of all other experiments. A microprocessor will obtain real-time data from all experiments as well as temperature and pressure measurements taken inside the canister. These data will be transmitted on previously announced amateur radio frequencies after they have been converted into the English language by a digitalker for general reception.

  2. Exploring Mars

    NASA Astrophysics Data System (ADS)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  3. Exploring the Explorers Using Internet Resources

    ERIC Educational Resources Information Center

    Torrez, Cheryl Franklin; Bush, Gina

    2009-01-01

    The topic of explorers and exploration is commonly taught in the upper elementary grades. Depending on state and local social studies content standards, teachers will develop a curriculum unit on Explorers of Our State for fourth grade students, a unit on Explorers of the United States for fifth graders, and one on World Explorers for sixth…

  4. The Nuclear Astrophysics Explorer

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.

    1989-01-01

    The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.

  5. Acid rain: a background report

    SciTech Connect

    Glustrom, L.; Stolzenberg, J.

    1982-07-08

    This Staff Brief was prepared for the Wisconsin Legislative Council's Special Committee on Acid Rain to provide an introduction to the issue of acid rain. It is divided into four parts. Part I provides an overview on the controversies surrounding the measurement, formation and effects of acid rain. As described in Part I, the term acid rain is used to describe the deposition of acidic components through both wet deposition (e.g., rain or snow) and dry deposition (e.g., direct contact between atmospheric constituents and the land, water or vegetation of the earth). Part II presents background information on state agency activities relating to acid rain in Wisconsin, describes what is known about the occurrence of, susceptibility to and effects of acid rain in Wisconsin, and provides information related to man-made sources of sulfur and nitrogen oxides in Wisconsin. Part III describes major policies and regulations relating to acid rain which have been or are being developed jointly by the United States and Canadian governments, by the United States government and by the State of Wisconsin. Part IV briefly discusses possible areas for Committee action.

  6. DarkLight radiation backgrounds

    SciTech Connect

    Kalantarians, Narbe

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-on, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW CW beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, field emission inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation.

  7. Pointillist Watercolor Paintings: Exploring Optical Mixing.

    ERIC Educational Resources Information Center

    Hamwi, Richard

    2001-01-01

    Focuses on the pointillist painting process offering background information about technique and how it can be used in the art classroom. Explores the appropriateness of the process for elementary through secondary school students. Includes educational objectives. (CMK)

  8. The 60-μm extragalactic background radiation intensity, dust-enshrouded active galactic nuclei and the assembly of groups and clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Blain, A. W.; Phillips, T. G.

    2002-06-01

    Submillimetre- (submm-) wave observations have revealed a cosmologically significant population of high-redshift dust-enshrouded galaxies. The form of evolution inferred for this population can be reconciled easily with COBE FIRAS and DIRBE measurements of the cosmic background radiation (CBR) intensity at wavelengths longer than ~100μm. At shorter wavelengths, however, the 60-μm CBR intensity reported by Finkbeiner, Davis & Schlegel is less easily accounted for. Lagache et al. have proposed that this excess CBR emission is a warm Galactic component, and the detection of the highest-energy γ-rays from blazars limits the CBR intensity at these wavelengths, but here we investigate possible sources of this excess CBR emission, assuming that it has a genuine extragalactic origin. We propose and test three explanations, each involving additional populations of luminous, evolving galaxies not readily detected in existing submm-wave surveys. First, an additional population of dust-enshrouded galaxies with hot dust temperatures, perhaps dust-enshrouded, Compton-thick active galactic nuclei (AGN) as suggested by recent deep Chandra surveys. Secondly, a population of dusty galaxies with temperatures more typical of the existing submm-selected galaxies, but at relatively low redshifts. These could plausibly be associated with the assembly of groups and clusters of galaxies. Thirdly, a population of low-luminosity, cool, quiescent spiral galaxies. Hot AGN sources and the assembly of galaxy groups can account for the excess 60-μm background. There are significant problems with the cluster assembly scenario, in which too many bright 60-μm IRAS sources are predicted. Spiral galaxies have the wrong spectral energy distributions to account for the excess. Future wide-field far-infrared (IR) surveys at wavelengths of 70 and 250μm using the SIRTF and Herschel space missions will sample representative volumes of the distant Universe, allowing any hot population of dusty AGNs and

  9. The Cosmic Microwave Background & Inflation, Then & Now

    NASA Astrophysics Data System (ADS)

    Bond, J. Richard; Contaldi, Carlo; Pogosyan, Dmitry; Mason, Brian; Myers, Steve; Pearson, Tim; Pen, Ue-Li; Prunet, Simon; Readhead, Tony; Sievers, Jonathan

    2002-12-01

    The most recent results from the Boomerang, Maxima, DASI, CBI and VSA CMB experiments significantly increase the case for accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark energy dominance). This is especially so when combined with data on high redshift supernovae (SN1) and large scale structure (LSS), encoding information from local cluster abundances, galaxy clustering, and gravitational lensing. There are ``7 pillars of Inflation'' that can be shown with the CMB probe, and at least 5, and possibly 6, of these have already been demonstrated in the CMB data: (1) the effects of a large scale gravitational potential, demonstrated with COBE/DMR in 1992-96 (2) acoustic peaks/dips in the angular power spectrum of the radiation, which tell about the geometry of the Universe, with the large first peak convincingly shown with Boomerang and Maxima data in 2000, a multiple peak/dip pattern shown in data from Boomerang and DASI (2nd, 3rd peaks, first and 2nd dips in 2001) and from CBI (2nd, 3rd, 4th, 5th peaks, 3rd, 4th dips at 1-sigma in 2002) (3) damping due to shear viscosity and the width of the region over which hydrogen recombination occurred when the universe was 400000 years old (CBI 2002) (4) the primary anisotropies should have a Gaussian distribution (be maximally random) in almost all inflationary models, the best data on this coming from Boomerang; (5) secondary anisotropies associated with nonlinear phenomena subsequent to 400000 years, which must be there and may have been detected by CBI and another experiment, BIMA. Showing the 5 ``pillars'' involves detailed confrontation of the experimental data with theory; e.g., (5) compares the CBI data with predictions from two of the largest cosmological hydrodynamics simulations ever done. DASI, Boomerang and CBI in 2002, AMiBA in 2003, and many other experiments have the sensitivity to demonstrate the next pillar, (6) polarization, which must be there at the ~ 7

  10. AMiBA: Array for Microwave Background Anisotropy

    NASA Astrophysics Data System (ADS)

    Umetsu, Keiichi

    2003-07-01

    AMiBA (Array for Microwave Background Anisotropy) is a dual-channel 85-105 GHz interferometric array with full polarization capabilities sited on Mauna-Loa in Hawaii, being built by collaboration between ASIAA/NTU in Taiwan and the Australia Telescope Facility. AMiBA is specifically designed to probe the polarization properties of the Cosmic Microwave Background (CMB) as well as to search for high redshift galaxy clusters via Sunyaev-Zel'dovich effect. Here we review the basic concepts and design details of AMiBA, and explore its potential especially for measuring the CMB temperature and polarization power spectra.

  11. Gravitational-wave stochastic background from cosmic strings.

    PubMed

    Siemens, Xavier; Mandic, Vuk; Creighton, Jolien

    2007-03-16

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space. PMID:17501038

  12. Cosmic microwave background acoustic peak locations

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Knox, L.; Mulroe, B.; Narimani, A.

    2016-07-01

    The Planck collaboration has measured the temperature and polarization of the cosmic microwave background well enough to determine the locations of eight peaks in the temperature (TT) power spectrum, five peaks in the polarization (EE) power spectrum and 12 extrema in the cross (TE) power spectrum. The relative locations of these extrema give a striking, and beautiful, demonstration of what we expect from acoustic oscillations in the plasma; e.g. that EE peaks fall half way between TT peaks. We expect this because the temperature map is predominantly sourced by temperature variations in the last scattering surface, while the polarization map is predominantly sourced by gradients in the velocity field, and the harmonic oscillations have temperature and velocity 90 deg out of phase. However, there are large differences in expectations for extrema locations from simple analytic models versus numerical calculations. Here, we quantitatively explore the origin of these differences in gravitational potential transients, neutrino free-streaming, the breakdown of tight coupling, the shape of the primordial power spectrum, details of the geometric projection from three to two dimensions, and the thickness of the last scattering surface. We also compare the peak locations determined from Planck measurements to expectations under the Λ cold dark matter model. Taking into account how the peak locations were determined, we find them to be in agreement.

  13. Orbiting Debris: a Space Environmental Problem. Background Paper

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Artificial debris, deposited in a multitude of orbits about the Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. Unless nations sharply reduce the amount of orbital debris they produce, future space activites could suffer loss of capability, loss of income, and even loss of life as a result of collisions between spacecraft and debris. This background paper discusses the sources of debris and how they can be greatly reduced.

  14. Effects of background gravity stimuli on gravity-controlled behavior

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.

    1976-01-01

    Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.

  15. The attenuation of rod signals by backgrounds

    PubMed Central

    Alpern, M.; Rushton, W. A. H.; Torii, S.

    1970-01-01

    1. The paper which precedes this investigated the nerve interaction between two flashes, λ at centre (Fig. 1a) and ϕ on the surround region (but not on the centre). The size of the inhibitory nerve signal V generated by ϕ is given by V = ϕ(ϕ + σ), where σ is the semi-saturation constant. 2. A former paper (Alpern & Rushton, 1967) had shown that when the flash ϕ falls upon a steady background θ, V suffers attenuation in the G-box (Fig. 1b) down to the fraction θD/(θD + θ) where θD is the eigengrau or receptor noise. Thus, in general, the nerve signal N is given by [Formula: see text]. 3. This formula had only been established for a moderate range of values. In this paper we use extreme values to explore the limits of its validity. We find the equation to be true over the entire intensity range where N is measurable. 4. Six different types of experiment have been performed to test various features of the equation. For instance, if log N is plotted against log ϕ for various fixed values of θ, the curve is always the same with simply a vertical shift. And the shift is equal to log(1 + θ/θD) for all values both of θ and of ϕ. 5. The most interesting curve is the plot of log ϕ against log θ for fixed N. This is similar to the Weber—Fechner increment threshold but the criterion is not that ϕ be strong enough to be detected, but strong enough to generate an N signal just sufficient to inhibit some fixed λ flash. These curves (below the onset of saturation) are all the same except for vertical separation, and prove that the condition for flash detection is that a fixed signal, N0, is generated of size 10-5 of the maximum signal obtainable (i.e. with ϕ large and θ zero). 6. With strong backgrounds the curves of (5) above exhibit a marked saturation of the Aguilar & Stiles' type (1954). The family of curves each with a fixed N value shows a remarkable symmetry (Fig. 8) which in fact follows from the equation in (2) above. It has nothing to do with

  16. Multipurpose background for standardization in medical photography.

    PubMed

    Hallock, G G

    1985-08-01

    A dual photography background system consisting of a quadrilled format on one side and a plain background on the other is described. It is mobile and efficient as a space- and time-saving device for medical photography.

  17. Comment on: "Cobeñas, G., Thouret, J.-C., Bonadonna, C., Boivin, P., 2012. The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: Eruption dynamics and hazard implications. Journal of Volcanology and Geothermal Research 241-242, 105-120."

    NASA Astrophysics Data System (ADS)

    Harpel, Christopher J.; de Silva, S.; Salas, G.

    2013-09-01

    Cobeñas et al. (2012) describe deposits from the 2-ka eruption of Misti volcano, southern Peru. They propose a tephra-fall deposit overlain by voluminous pyroclastic-flow and surge deposits, which are overlain by proportionally minor lahar deposits and a debris-avalanche deposit of limited distribution. Some of their data corroborate our earlier work (Harpel et al., 2011), but three of their primary interpretations differ dramatically from ours and have important hazard implications. Voluminous flowage deposits crop out, and we present evidence that the majority contain diagnostic features suggesting that they are lahar deposits rather than pyroclastic-flow deposits. Their pyroclastic-flow deposit volume is also unrealistically large and not consistent with the extant deposits. The purported debris-avalanche deposit is texturally identical to the lahar deposits and has none of the features typically associated with debris-avalanche deposits. Associating such a unit with collapse and formation of a notch in the south crater rim lacks supporting data and disregards the myriad other reasons such notches can form. They divide the tephra-fall deposit into three beds, suggest that it underlies the pyroclastic-flow deposits, and infer that the eruption ceased after pyroclastic flow formation. We delineate six beds and present evidence that the upper beds persistently crop out between the pyroclastic-flow and lahar deposits. We infer from our eruption sequence that the eruption continued vigorously after pyroclastic-flow formation.

  18. Exploration Medical System Demonstration

    NASA Technical Reports Server (NTRS)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  19. Resolving the Cosmic Far-infrared Background at 450 and 850 μm with SCUBA-2

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Cowie, Lennox L.; Barger, Amy J.; Casey, Caitlin. M.; Lee, Nicholas; Sanders, David B.; Wang, Wei-Hao; Williams, Jonathan P.

    2013-10-01

    We use the SCUBA-2 submillimeter camera mounted on the James Clerk Maxwell Telescope to obtain extremely deep number counts at 450 and 850 μm. We combine data on two cluster lensing fields, A1689 and A370, and three blank fields, CDF-N, CDF-S, and COSMOS, to measure the counts over a wide flux range at each wavelength. We use statistical fits to broken power law representations to determine the number counts. This allows us to probe to the deepest possible level in the data. At both wavelengths our results agree well with the literature in the flux range over which they have been measured, with the exception of the 850 μm counts in CDF-S, where we do not observe the counts deficit found by previous single-dish observations. At 450 μm, we detect significant counts down to ~1 mJy, an unprecedented depth at this wavelength. By integrating the number counts above this flux limit, we measure 113.9^{+49.7}_{-28.4} Jy deg-2 of the 450 μm extragalactic background light (EBL). The majority of this contribution is from sources with S 450 μm between 1-10 mJy, and these sources are likely to be the ones that are analogous to the local luminous infrared galaxies. At 850 μm, we measure 37.3^{+21.1}_{-12.9} Jy deg-2 of the EBL. Because of the large systematic uncertainties on the COBE measurements, the percentage of the EBL we resolve could range from 48%-153% (44%-178%) at 450 (850) μm. Based on high-resolution Submillimeter Array observations of around half of the 4 σ 850 μm sample in CDF-N, we find that 12.5^{ +12.1}_{ -6.8}% of the sources are blends of multiple fainter sources. This is a low multiple fraction, and we find no significant difference between our original SCUBA-2 850 μm counts and the multiplicity-corrected counts.

  20. RESOLVING THE COSMIC FAR-INFRARED BACKGROUND AT 450 AND 850 μm WITH SCUBA-2

    SciTech Connect

    Chen, Chian-Chou; Cowie, Lennox L.; Barger, Amy J.; Casey, Caitlin M.; Lee, Nicholas; Sanders, David B.; Williams, Jonathan P.; Wang, Wei-Hao

    2013-10-20

    We use the SCUBA-2 submillimeter camera mounted on the James Clerk Maxwell Telescope to obtain extremely deep number counts at 450 and 850 μm. We combine data on two cluster lensing fields, A1689 and A370, and three blank fields, CDF-N, CDF-S, and COSMOS, to measure the counts over a wide flux range at each wavelength. We use statistical fits to broken power law representations to determine the number counts. This allows us to probe to the deepest possible level in the data. At both wavelengths our results agree well with the literature in the flux range over which they have been measured, with the exception of the 850 μm counts in CDF-S, where we do not observe the counts deficit found by previous single-dish observations. At 450 μm, we detect significant counts down to ∼1 mJy, an unprecedented depth at this wavelength. By integrating the number counts above this flux limit, we measure 113.9{sup +49.7}{sub -28.4} Jy deg{sup –2} of the 450 μm extragalactic background light (EBL). The majority of this contribution is from sources with S{sub 450{sub μm}} between 1-10 mJy, and these sources are likely to be the ones that are analogous to the local luminous infrared galaxies. At 850 μm, we measure 37.3{sup +21.1}{sub -12.9} Jy deg{sup –2} of the EBL. Because of the large systematic uncertainties on the COBE measurements, the percentage of the EBL we resolve could range from 48%-153% (44%-178%) at 450 (850) μm. Based on high-resolution Submillimeter Array observations of around half of the 4 σ 850 μm sample in CDF-N, we find that 12.5{sup +12.1}{sub -6.8}% of the sources are blends of multiple fainter sources. This is a low multiple fraction, and we find no significant difference between our original SCUBA-2 850 μm counts and the multiplicity-corrected counts.

  1. Career Choices: Linguistic and Educational Socialization of Sudanese-Background High-School Students in Australia

    ERIC Educational Resources Information Center

    Hatoss, Aniko; O'Neill, Shirley; Eacersall, Douglas

    2012-01-01

    This research investigated the linguistic and educational socialization of Sudanese refugee-background youth in Australia. The study focussed on exploring Sudanese-background secondary school students' career aspirations, motivations and obstacles. The research used a mixed-method approach including a survey conducted with students studying in six…

  2. Acculturation and Religion in Schools: The Views of Young People from Minority Belief Backgrounds

    ERIC Educational Resources Information Center

    Niens, Ulrike; Mawhinney, Alison; Richardson, Norman; Chiba, Yuko

    2013-01-01

    This paper aims to explore the relationship between religious identity, acculturation strategies and perceptions of acculturation orientation in the school context amongst young people from minority belief backgrounds. Based on a qualitative study including interviews with 26 young people from religious minority belief backgrounds in Northern…

  3. Exploring the Universe.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    Highlights National Aeronautics and Space Administration's (NASA) space exploration studies, focusing on Voyager at Saturn, advanced Jupiter exploration, infrared observatory, space telescope, Dynamics Explorers (satellites designed to provide understanding of earth/sun energy relationship), and ozone studies. (JN)

  4. Constraining primordial magnetic fields with distortions of the black-body spectrum of the cosmic microwave background: pre- and post-decoupling contributions

    SciTech Connect

    Kunze, Kerstin E.

    2014-01-01

    Primordial magnetic fields that exist before the photon-baryon decoupling epoch are damped on length scales below the photon diffusion and free-streaming scales. The energy injected into the plasma by dissipation of magnetosonic and Alfv and apos;en waves heats photons, creating a y-type distortion of the black-body spectrum of the cosmic microwave background. This y-type distortion is converted into a μ-type distortion when elastic Compton scattering is efficient. Therefore, we can use observational limits on y- and μ-type distortions to constrain properties of magnetic fields in the early universe. Assuming a Gaussian, random, and non-helical field, we calculate μ and y as a function of the present-day strength of the field, B{sub 0}, smoothed over a certain Gaussian width, k{sub c}{sup −1}, as well as of the spectral index of the power spectrum of fields, n{sub B}, defined by P{sub B}(k)∝k{sup n{sub B}}. For a nearly scale-invariant spectrum with n{sub B} = −2.9 and a Gaussian smoothing width of k{sub c}{sup −1} = 1Mpc, the existing COBE/FIRAS limit on μ yields B{sub 0} < 40 nG, whereas the projected PIXIE limit on μ would yield B{sub 0} < 0.8 nG. For non-scale-invariant spectra, constraints can be stronger. For example, for B{sub 0} = 1 nG with k{sub c}{sup −1} = 1Mpc, the COBE/FIRAS limit on μ excludes a wide range of spectral indices given by n{sub B} > −2.6. After decoupling, energy dissipation is due to ambipolar diffusion and decaying MHD turbulence, creating a y-type distortion. The distortion is completely dominated by decaying MHD turbulence, and is of order y ≈ 10{sup −7} for a few nG field smoothed over the damping scale at the decoupling epoch, k{sub d,} {sub dec} ≈ 290(B{sub 0}/1nG){sup −1}Mpc{sup −1}. The projected PIXIE limit on y would exclude B{sub 0} > 1.0 and 0.6 nG for n{sub B} = −2.9 and -2.3, respectively, and B{sub 0} > 0.6 nG for n{sub B} ≥ 2. Finally, we find that the current limits on the optical depth to

  5. Exploration Technology Development & Demonstration

    NASA Video Gallery

    Chris Moore delivers a presentation from the Exploration Technology Development & Demonstration (ETDD) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX....

  6. Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI

    PubMed Central

    Zhou, Sijie; Allison, Brendan Z.; Kübler, Andrea; Cichocki, Andrzej; Wang, Xingyu; Jin, Jing

    2016-01-01

    Several studies have explored brain computer interface (BCI) systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory, and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill) using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other) BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged. PMID:27790111

  7. Hanford Site background: Part 1, Soil background for nonradioactive analytes. Revision 1, Volume 2

    SciTech Connect

    Not Available

    1993-04-01

    Volume two contains the following appendices: Description of soil sampling sites; sampling narrative; raw data soil background; background data analysis; sitewide background soil sampling plan; and use of soil background data for the detection of contamination at waste management unit on the Hanford Site.

  8. 47 CFR 201.0 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Background. 201.0 Section 201.0 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL EXECUTIVE POLICY § 201.0 Background. National policy with respect to the conservation, allocation and use of the...

  9. Child Care: State Requirements for Background Checks.

    ERIC Educational Resources Information Center

    Fagnoni, Cynthia

    Background checks involve gathering information from state and federal databases to determine if child care providers have a history of child abuse or other criminal convictions that would make them unacceptable for working with children. Background checks include state criminal history checks, state child abuse registry checks, and Federal Bureau…

  10. 28 CFR 23.2 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Background. 23.2 Section 23.2 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... of intelligence data necessary to support control of serious criminal activity may...

  11. 28 CFR 23.2 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Background. 23.2 Section 23.2 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... of intelligence data necessary to support control of serious criminal activity may...

  12. 28 CFR 23.2 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Background. 23.2 Section 23.2 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... of intelligence data necessary to support control of serious criminal activity may...

  13. 16 CFR 1031.2 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Background. 1031.2 Section 1031.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL COMMISSION PARTICIPATION AND COMMISSION EMPLOYEE INVOLVEMENT IN VOLUNTARY STANDARDS ACTIVITIES General Policies § 1031.2 Background. (a) Congress enacted the Consumer Product Safety Act in 1972...

  14. 32 CFR 1292.3 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Background. 1292.3 Section 1292.3 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS SECURITY OF DLA ACTIVITIES AND RESOURCES § 1292.3 Background. Section 21 of the Internal Security Act of...

  15. 32 CFR 1292.3 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Background. 1292.3 Section 1292.3 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS SECURITY OF DLA ACTIVITIES AND RESOURCES § 1292.3 Background. Section 21 of the Internal Security Act of...

  16. 32 CFR 1292.3 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Background. 1292.3 Section 1292.3 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS SECURITY OF DLA ACTIVITIES AND RESOURCES § 1292.3 Background. Section 21 of the Internal Security Act of...

  17. 32 CFR 732.1 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Background. 732.1 Section 732.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NONNAVAL MEDICAL AND DENTAL CARE General § 732.1 Background. When a U.S. Navy or Marine Corps member or a Canadian Navy or Marine Corps...

  18. 32 CFR 732.1 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Background. 732.1 Section 732.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NONNAVAL MEDICAL AND DENTAL CARE General § 732.1 Background. When a U.S. Navy or Marine Corps member or a Canadian Navy or Marine Corps...

  19. 32 CFR 732.1 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Background. 732.1 Section 732.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NONNAVAL MEDICAL AND DENTAL CARE General § 732.1 Background. When a U.S. Navy or Marine Corps member or a Canadian Navy or Marine Corps...

  20. 32 CFR 732.1 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Background. 732.1 Section 732.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NONNAVAL MEDICAL AND DENTAL CARE General § 732.1 Background. When a U.S. Navy or Marine Corps member or a Canadian Navy or Marine Corps...

  1. 16 CFR 1101.1 - General background.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INFORMATION DISCLOSURE UNDER SECTION 6(b) OF THE CONSUMER PRODUCT SAFETY ACT Background § 1101.1 General background. (a) Basic purpose. This rule sets forth the Consumer Product Safety Commission's policy and procedure...

  2. 28 CFR 23.2 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Background. 23.2 Section 23.2 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... of intelligence data necessary to support control of serious criminal activity may...

  3. Exploring rationality in schizophrenia

    PubMed Central

    Mortensen, Erik Lykke; Owen, Gareth; Nordgaard, Julie; Jansson, Lennart; Sæbye, Ditte; Flensborg-Madsen, Trine; Parnas, Josef

    2015-01-01

    Background Empirical studies of rationality (syllogisms) in patients with schizophrenia have obtained different results. One study found that patients reason more logically if the syllogism is presented through an unusual content. Aims To explore syllogism-based rationality in schizophrenia. Method Thirty-eight first-admitted patients with schizophrenia and 38 healthy controls solved 29 syllogisms that varied in presentation content (ordinary v. unusual) and validity (valid v. invalid). Statistical tests were made of unadjusted and adjusted group differences in models adjusting for intelligence and neuropsychological test performance. Results Controls outperformed patients on all syllogism types, but the difference between the two groups was only significant for valid syllogisms presented with unusual content. However, when adjusting for intelligence and neuropsychological test performance, all group differences became non-significant. Conclusions When taking intelligence and neuropsychological performance into account, patients with schizophrenia and controls perform similarly on syllogism tests of rationality. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2015. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence. PMID:27703730

  4. Natural-background-oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Hargather, Michael John; Settles, Gary S.

    2010-01-01

    The background-oriented schlieren (BOS) flow visualization method has the potential for large-scale flow imaging outside the laboratory by using natural backgrounds instead of the artificial patterns normally used indoors. The natural surroundings of an outdoor test site can sometimes be used as such a background, subject to criteria of fine scale, randomness and contrast that are developed here. Some natural backgrounds are more appropriate than others for a given application. Backgrounds used here to visualize both high- and low-speed schlieren disturbances include a sunlit cornfield and a backlit grove of trees. A range of image post-processing methods is considered for qualitative BOS. It is found that high sensitivity and a broad measuring range are in conflict here, much as they are in traditional schlieren instruments. Applications of natural-BOS include explosive characterization, firearms and artillery testing, chemical and natural-gas leak detection, and related phenomena.

  5. Integrated far-infrared background from galaxies

    NASA Technical Reports Server (NTRS)

    Wang, Boqi

    1991-01-01

    The integrated radiation from galaxies is calculated at far-IR and submillimeter wavelengths. The peak of the far-IR background radiation is 100-130 microns, and its total energy content is 0.5-6 percent of the cosmic microwave background (CMB). At wavelengths longward of 400 microns, the CMB dominates over the far-IR radiation from galaxies in intensity. The autocorrelation of fluctuations from the average angle of the far-IR background of galaxies is calculated. The contribution of galaxies to the anisotropy of the background radiation at wavelengths longer than about 400 microns where the CMB is predominant is obtained. It is found that, in general, earlier galaxy formation predicts stronger far-IR background radiation. The prompt initial enrichment model for the chemical evolution of disk galaxies, in particular those with an exponential star formation rate, produces much larger intensity of the integrated radiation than the accretion model.

  6. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks.

  7. Microwave background constraints on mixing of photons with hidden photons

    SciTech Connect

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Guenter E-mail: javier.redondo@desy.de

    2009-03-15

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle {chi}{sub 0} {approx}< 10{sup -7}-10{sup -5} for hidden photon masses between 10{sup -14} eV and 10{sup -7} eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained.

  8. The efficiency of reading around learned backgrounds

    NASA Astrophysics Data System (ADS)

    Eckstein, Miguel P.; Pham, Binh T.; Abbey, Craig K.; Zhang, Yani

    2006-03-01

    Most metrics of medical image quality typically treat all variability components of the background as a Gaussian noise process. This includes task based model observers (non-prewhitening matched filter without and with an eye filter, NPW and NPWE; Hotelling and Channelized Hotelling) as well as Fourier metrics of medical image quality based on the noise power spectra. However, many investigators have observed that unlike many of the models/metrics, physicians often can discount signal-looking structures that are part of the normal anatomic background. This process has been referred to as reading around the background or noise. The purpose of this paper is to develop an experimental framework to systematically study the ability of human observers to read around learned backgrounds and compare their ability to that of an optimal ideal observer which has knowledge of the background. We measured human localization performance of one of twelve targets in the presence of a fixed background consisting of randomly placed Gaussians with random contrasts and sizes, and white noise. Performance was compared to a condition in which the test images contained only white noise but with higher contrast. Human performance was compared to standard model observers that treat the background as a Gaussian noise process (NPW, NPWE and Hotelling), a Fourier-based prewhitening matched filter, and an ideal observer. The Hotelling, NPW, NPWE models as well as the Fourier-based prewhitening matched filter predicted higher performance for the white noise test images than the background plus white noise. In contrast, ideal and human performance was higher for the background plus white noise condition. Furthermore, human performance exceeded that of the NPW, NPWE and Hotelling models and reached an efficiency of 19% relative to the ideal observer. Our results demonstrate that for some types of images human signal localization performance is consistent with use of knowledge about the high order

  9. New Light on IRAS After DIRBE

    NASA Astrophysics Data System (ADS)

    Leisawitz, D.; Hauser, M. G.; Kelsall, T.; Silverberg, R. F.; Odegard, N.; Stemwedel, S.; Weiland, J.; Burdick, S.; Gautier, T. N.; Gillett, F. C.; Murdock, T. L.; Neugebauer, G.; Reach, W. T.; Wheelock, S.

    1994-12-01

    The COBE Diffuse Infrared Background Experiment (DIRBE) and the Infrared Astronomical Satellite (IRAS) both surveyed the sky in broad photometric bands nominally at wavelengths of 12, 25, 60, and 100 microns. The products of these surveys are publicly available and are the foundations for a number of astronomical studies. It is thus important to understand these two similar photometric systems, particularly as the IRAS Sky Survey Atlas (ISSA) and other IRAS extended--emission data products are essential when spatial resolution better than the DIRBE's 42(') times 42(') field of view is needed. This poster reports the results from a comparison of DIRBE and IRAS photometry. A major result, found by comparing the IRAS Zodiacal Observation History File scans to DIRBE observations made at matching solar elongation angles, is that the quoted intensities are well--described by an equation of the form I_ν(DIRBE) = G_ν I_ν(IRAS) + O_ν at all four wavelengths. Gain (G_ν) and offset (O_ν) parameters are presented, and practical advice is offered to researchers who may wish to apply a correction to the IRAS extended emission intensities. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group. The COBE program is supported by the Astrophysics Division of NASA's Office of Space Science. The COBE and IRAS data products may be obtained from the NSSDC.

  10. ESA Human Exploration Activities

    NASA Astrophysics Data System (ADS)

    Hovland, Scott

    The long term goal of the Aurora Exploration Programme is Human exploration of Mars. In preparation for this, exploration of the Moon is a necessary step to provide demonstration of capabilities, mandatory for long duration human spaceflight. With the European Columbus module attached to the ISS, Europe has access to a world class laboratory in space for microgravity research, technology demonstration and preparation for future human exploration missions. The ongoing phase of the exploration programme has been focused on defining the overall European strategy and exploration architecture within the global exploration environment. System studies as well as focused technology developments are in progress (e.g. development of regenerative life support).

  11. THE MYSTERY OF THE COSMIC DIFFUSE ULTRAVIOLET BACKGROUND RADIATION

    SciTech Connect

    Henry, Richard Conn; Murthy, Jayant; Overduin, James; Tyler, Joshua E-mail: jmurthy@yahoo.com E-mail: 97tyler@cardinalmail.cua.edu

    2015-01-01

    The diffuse cosmic background radiation in the Galaxy Evolution Explorer far-ultraviolet (FUV, 1300-1700 Å) is deduced to originate only partially in the dust-scattered radiation of FUV-emitting stars: the source of a substantial fraction of the FUV background radiation remains a mystery. The radiation is remarkably uniform at both far northern and far southern Galactic latitudes and increases toward lower Galactic latitudes at all Galactic longitudes. We examine speculation that this might be due to interaction of the dark matter with the nuclei of the interstellar medium, but we are unable to point to a plausible mechanism for an effective interaction. We also explore the possibility that we are seeing radiation from bright FUV-emitting stars scattering from a ''second population'' of interstellar grains—grains that are small compared with FUV wavelengths. Such grains are known to exist, and they scatter with very high albedo, with an isotropic scattering pattern. However, comparison with the observed distribution (deduced from their 100 μm emission) of grains at high Galactic latitudes shows no correlation between the grains' location and the observed FUV emission. Our modeling of the FUV scattering by small grains also shows that there must be remarkably few such ''smaller'' grains at high Galactic latitudes, both north and south; this likely means simply that there is very little interstellar dust of any kind at the Galactic poles, in agreement with Perry and Johnston. We also review our limited knowledge of the cosmic diffuse background at ultraviolet wavelengths shortward of Lyα—it could be that our ''second component'' of the diffuse FUV background persists shortward of the Lyman limit and is the cause of the reionization of the universe.

  12. Translational invariance and the anisotropy of the cosmic microwave background

    SciTech Connect

    Carroll, Sean M.; Tseng, C.-Y.; Wise, Mark B.

    2010-04-15

    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients.

  13. Cosmic muon background and reactor neutrino detectors: the Angra experiment

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2008-06-01

    We discuss on the importance of appropriately taking into account the cosmic background in the design of reactor neutrino detectors. In particular, as a practical study case, we describe the Angra Project, a new reactor neutrino oscillation experiment proposed to be built in the coming years at the Brazilian nuclear power complex, located near the Angra dos Reis city. The main goal of the experiment is to measure with high precision θ13, the last unknown of the three neutrino mixing angles. The experiment will in addition explore the possibility of using neutrino detectors for purposes of safeguards and non-proliferation of nuclear weapons.

  14. Holographic thermalization in a quark confining background

    SciTech Connect

    Ageev, D. S. Aref’eva, I. Ya.

    2015-03-15

    We study holographic thermalization of a strongly coupled theory inspired by two colliding shock waves in a vacuum confining background. Holographic thermalization means a black hole formation, in fact, a trapped surface formation. As the vacuum confining background, we considered the well-know bottom-up AdS/QCD model that provides the Cornell potential and reproduces the QCD β-function. We perturb the vacuum background by colliding domain shock waves that are assumed to be holographically dual to heavy ions collisions. Our main physical assumption is that we can make a restriction on the time of trapped surface formation, which results in a natural limitation on the size of the domain where the trapped surface is produced. This limits the intermediate domain where the main part of the entropy is produced. In this domain, we can use an intermediate vacuum background as an approximation to the full confining background. We find that the dependence of the multiplicity on energy for the intermediate background has an asymptotic expansion whose first term depends on energy as E{sup 1/3}, which is very similar to the experimental dependence of particle multiplicities on the colliding ion energy obtained from the RHIC and LHC. However, this first term, at the energies where the approximation of the confining metric by the intermediate background works, does not saturate the exact answer, and we have to take the nonleading terms into account.

  15. The Role of Plants in Space Exploration: Some History and Background

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2016-01-01

    For over 3 decades, NASA has sponsored research on crops for human life support in space. Specialized watering techniques have even been tested for weightless settings, but most studies used conventional watering, such as hydroponics, which should work well on surface settings of the Moon or Mars. NASAs testing has spanned a wide range of crops and studied innovative techniques to increase yields, reduce power, minimize growing volume, and recycle water and nutrients. These issues closely parallel challenges faced in terrestrial controlled environment agriculture, which is expanding around the world.

  16. LETs and NETs: Exploring How Teachers from Diverse Cultural Backgrounds Impact Student Motivation and Preferences

    ERIC Educational Resources Information Center

    Wong, Ruth

    2014-01-01

    This paper, an exploratory case study, examines how students' preferences and motivation to learn English are influenced by their perceptions of teaching practices--both of native English teachers and local English teachers. To better understand the context of this research question, this study adopts a method of triangulation in collecting data:…

  17. Extragalactic background light measurements and applications.

    PubMed

    Cooray, Asantha

    2016-03-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB. PMID:27069645

  18. Sources of the Radio Background Considered

    SciTech Connect

    Singal, J.; Stawarz, L.; Lawrence, A.; Petrosian, V.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2011-08-22

    We investigate possible origins of the extragalactic radio background reported by the ARCADE 2 collaboration. The surface brightness of the background is several times higher than that which would result from currently observed radio sources. We consider contributions to the background from diffuse synchrotron emission from clusters and the intergalactic medium, previously unrecognized flux from low surface brightness regions of radio sources, and faint point sources below the flux limit of existing surveys. By examining radio source counts available in the literature, we conclude that most of the radio background is produced by radio point sources that dominate at sub {mu}Jy fluxes. We show that a truly diffuse background produced by elections far from galaxies is ruled out because such energetic electrons would overproduce the observed X-ray/{gamma}-ray background through inverse Compton scattering of the other photon fields. Unrecognized flux from low surface brightness regions of extended radio sources, or moderate flux sources missed entirely by radio source count surveys, cannot explain the bulk of the observed background, but may contribute as much as 10%. We consider both radio supernovae and radio quiet quasars as candidate sources for the background, and show that both fail to produce it at the observed level because of insufficient number of objects and total flux, although radio quiet quasars contribute at the level of at least a few percent. We conclude that the most important population for production of the background is likely ordinary starforming galaxies above redshift 1 characterized by an evolving radio far-infrared correlation, which increases toward the radio loud with redshift.

  19. Extragalactic background light measurements and applications

    PubMed Central

    Cooray, Asantha

    2016-01-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB. PMID:27069645

  20. Extragalactic background light measurements and applications.

    PubMed

    Cooray, Asantha

    2016-03-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB.

  1. Background Suppression Effects on Signal Estimation

    SciTech Connect

    Burr, Tom

    2008-01-01

    Gamma detectors at border crossings are intended to detect illicit nuclear material. One performance challenge involves the fact that vehicles suppress the natural background, thus potentially reducing detection probability for threat items. Methods to adjust for background suppression have been considered in related but different settings. Here, methods to adjust for background suppression are tested in the context of signal estimation. Adjustment methods include several clustering options. We find that for the small-to-moderate suppression magnitudes exhibited in the analyzed data, suppression adjustment is only moderatel helpful in locating the signal peak, and in estimating its width or magnitude.

  2. Background considerations for SuperCDMS

    SciTech Connect

    Cooley, J.; Collaboration: SuperCDMS Collaboration

    2013-08-08

    Rejection and protection from background is a key issue for the next generation SuperCDMS SNOLAB experiment that will have a cross-section sensitivity of better than 8 × 10{sup −46} cm{sup 2} for spin-independent WIMP-nucleon interactions. This paper presents the details of the methods used to reject electromagnetic backgrounds using the new iZIP detectors that are currently operated in the Soudan Underground Laboratory, MN and the methods the collaboration is investigating to protect against neutron background in the next generation SuperCDMS experiment.

  3. Low background physics at the Kimballton Mine

    SciTech Connect

    MacMullin, S.

    2011-04-27

    The Kimballton Underground Research Facility (KURF) is home to several experiments. One consists to two HPGe detectors designed to screen candidate materials to be used in low-background experiments for radioactivity. Analysis techniques, including our efficiency calculations will be presented. We have also deployed a customized BEGe (Broad Energy Germanium) detector in a low-background cryostat. This paper will focus on the shield design, detector characteristics and measurements that can be performed with such a detector in a low-background environment.

  4. Exploiting background knowledge in automated discovery

    SciTech Connect

    Aronis, J.M.; Buchanan, B.G.; Provost, F.J.

    1996-12-31

    Prior work in automated scientific discovery has been successful in finding patterns in data, given that a reasonably small set of mostly relevant features is specified. The work described in this paper places data in the context of large bodies of background knowledge. Specifically, data items are connected to multiple databases of background knowledge represented as inheritance networks. The system has made a practical impact on botanical toxicology research, which required linking examples of cases of plant exposures to databases of botanical, geographical, and climate background knowledge.

  5. Optimization of background subtraction for image enhancement

    NASA Astrophysics Data System (ADS)

    Venetsky, Larry; Boczar, Ross; Lee-Own, Robert

    2013-05-01

    Analysis of foreground objects in scenery via image processing often involves a background subtraction process. This process aims to improve blob (connected component) content in the image. Quality blob content is often needed for defining regions of interest for object recognition and tracking. Three techniques are examined which optimize the background to be subtracted - genetic algorithm, an analytic solution based on convex optimization, and a related application of the CVX solver toolbox. These techniques are applied to a set of images and the results are compared. Additionally, a possible implementation architecture that uses multiple optimization techniques with subsequent arbitration to produce the best background subtraction is considered.

  6. Low background counting techniques at SNOLAB

    SciTech Connect

    Lawson, Ian; Cleveland, Bruce

    2013-08-08

    Many of the experiments currently searching for dark matter, studying properties of neutrinos or searching for neutrinoless double beta decay require very low levels of radioactive backgrounds both in their own construction materials and in the surrounding environment. These low background levels are required so that the experiments can achieve the required sensitivities for their searches. SNOLAB has several facilities which are used to directly measure these radioactive backgrounds. This proceedings will describe SNOLAB's High Purity Germanium Detectors, one of which has been in continuous use for the past seven years measuring materials for many experiments in operation or under construction at SNOLAB. A description of the characterisation of SNOLAB's new germanium well detector will be presented. In addition, brief descriptions of SNOLAB's alpha-beta and electrostatic counters will be presented and a description of SNOLAB's future low background counting laboratory will be given.

  7. Interpretation of observed cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Pollaine, S.

    1978-01-01

    The Alfven and Mendis (1977) conclusion that dust grains in galaxies render the universe opaque to cosmic microwave background at a red shift ratio equal to 40 is challenged by a calculation of the opacity of galactic dust grains to the microwave background radiation from the time of decoupling at emission red shift ratio equal to 1500 to the present in the standard big bang model. In the present calculation, evolutionary effects on grain opacity and abundance are estimated. At wavelengths used in studying the microwave background, the optical depth of the grains is found to be 0.18 when the deceleration parameter equals 0.03, and 0.05 when the deceleration parameter equals 0.5. The results indicate that microwave background can provide information on an early dense phase of the universe.

  8. 44 CFR 334.3 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... warning indicators may emanate from the political, socio-economic and/or industrial sectors. (c) The...

  9. Expected background in the LZ experiment

    SciTech Connect

    Kudryavtsev, Vitaly A.

    2015-08-17

    The LZ experiment, featuring a 7-tonne active liquid xenon target, is aimed at achieving unprecedented sensitivity to WIMPs with the background expected to be dominated by astrophysical neutrinos. To reach this goal, extensive simulations are carried out to accurately calculate the electron recoil and nuclear recoil rates in the detector. Both internal (from target material) and external (from detector components and surrounding environment) backgrounds are considered. A very efficient suppression of background rate is achieved with an outer liquid scintillator veto, liquid xenon skin and fiducialisation. Based on the current measurements of radioactivity of different materials, it is shown that LZ can achieve the reduction of a total background for a WIMP search down to about 2 events in 1000 live days for 5.6 tonne fiducial mass.

  10. 36 CFR 401.3 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 401.3 Background. Following World War I many American individuals, organizations and governmental... participated in that war. Frequently such well-intended efforts were undertaken without adequate regard...

  11. 36 CFR 401.3 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 401.3 Background. Following World War I many American individuals, organizations and governmental... participated in that war. Frequently such well-intended efforts were undertaken without adequate regard...

  12. 36 CFR 401.3 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 401.3 Background. Following World War I many American individuals, organizations and governmental... participated in that war. Frequently such well-intended efforts were undertaken without adequate regard...

  13. 36 CFR 401.3 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 401.3 Background. Following World War I many American individuals, organizations and governmental... participated in that war. Frequently such well-intended efforts were undertaken without adequate regard...

  14. 36 CFR 401.3 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 401.3 Background. Following World War I many American individuals, organizations and governmental... participated in that war. Frequently such well-intended efforts were undertaken without adequate regard...

  15. Charged Hadron Properties in Background Electric Fields

    SciTech Connect

    William Detmold, Brian C. Tiburzi, Andre Walker-Loud

    2010-02-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields.

  16. Estimating radiological background using imaging spectroscopy

    SciTech Connect

    Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

    2014-06-13

    Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

  17. The pregalactic cosmic gravitational wave background

    NASA Technical Reports Server (NTRS)

    Matzner, Richard A.

    1989-01-01

    An outline is given that estimates the expected gravitational wave background, based on plausible pregalactic sources. Some cosmologically significant limits can be put on incoherent gravitational wave background arising from pregalactic cosmic evolution. The spectral region of cosmically generated and cosmically limited radiation is, at long periods, P greater than 1 year, in contrast to more recent cosmological sources, which have P approx. 10 to 10(exp -3).

  18. Experiences with active cosmic background suppression

    SciTech Connect

    Lindstrom, R.M.; Lamaze, G.P.

    1994-12-31

    The dominant source of background in a bare germanium gamma-ray detector is natural radiation originating from potassium, uranium, and thorium decay in the laboratory environment and from cosmic rays. Most of the background is removed by surrounding the detector with lead shielding, which is commonly 20 cm thick. In a well-shielded detector, the largest contributor to the integral counting rate is cosmic rays, and to a lesser extent beta particles from {sup 210}Pb. Most of the counting rate in the continuum is due to highly penetrating muons. Many of the characteristic peaks in the background also originate from fast tertiary neutrons of cosmic-ray origin, which generate neutron activation products or create gamma rays from inelastic scattering in materials of the detector and shield. Very massive shielding is required to remove this penetrating component of background; we have found a fivefold reduction in the cosmic components by moving the detector into a laboratory 20 m underground. However, lacking an underground lab, we have attempted to use active shielding to reduce the background of a Ge detector located above ground. The guard detector is a proportional counter forming a roof 23 cm above the detector. The counter is placed inside the lead shielding to reduce it`s background counting rate.

  19. Low background screening capability in the UK

    SciTech Connect

    Ghag, Chamkaur

    2015-08-17

    Low background rare event searches in underground laboratories seeking observation of direct dark matter interactions or neutrino-less double beta decay have the potential to profoundly advance our understanding of the physical universe. Successful results from these experiments depend critically on construction from extremely radiologically clean materials and accurate knowledge of subsequent low levels of expected background. The experiments must conduct comprehensive screening campaigns to reduce radioactivity from detector components, and these measurements also inform detailed characterisation and quantification of background sources and their impact, necessary to assign statistical significance to any potential discovery. To provide requisite sensitivity for material screening and characterisation in the UK to support our rare event search activities, we have re-developed our infrastructure to add ultra-low background capability across a range of complementary techniques that collectively allow complete radioactivity measurements. Ultra-low background HPGe and BEGe detectors have been installed at the Boulby Underground Laboratory, itself undergoing substantial facility re-furbishment, to provide high sensitivity gamma spectroscopy in particular for measuring the uranium and thorium decay series products. Dedicated low-activity mass spectrometry instrumentation has been developed at UCL for part per trillion level contaminant identification to complement underground screening with direct U and Th measurements, and meet throughput demands. Finally, radon emanation screening at UCL measures radon background inaccessible to gamma or mass spectrometry techniques. With this new capability the UK is delivering half of the radioactivity screening for the LZ dark matter search experiment.

  20. Low background screening capability in the UK

    NASA Astrophysics Data System (ADS)

    Ghag, Chamkaur

    2015-08-01

    Low background rare event searches in underground laboratories seeking observation of direct dark matter interactions or neutrino-less double beta decay have the potential to profoundly advance our understanding of the physical universe. Successful results from these experiments depend critically on construction from extremely radiologically clean materials and accurate knowledge of subsequent low levels of expected background. The experiments must conduct comprehensive screening campaigns to reduce radioactivity from detector components, and these measurements also inform detailed characterisation and quantification of background sources and their impact, necessary to assign statistical significance to any potential discovery. To provide requisite sensitivity for material screening and characterisation in the UK to support our rare event search activities, we have re-developed our infrastructure to add ultra-low background capability across a range of complementary techniques that collectively allow complete radioactivity measurements. Ultra-low background HPGe and BEGe detectors have been installed at the Boulby Underground Laboratory, itself undergoing substantial facility re-furbishment, to provide high sensitivity gamma spectroscopy in particular for measuring the uranium and thorium decay series products. Dedicated low-activity mass spectrometry instrumentation has been developed at UCL for part per trillion level contaminant identification to complement underground screening with direct U and Th measurements, and meet throughput demands. Finally, radon emanation screening at UCL measures radon background inaccessible to gamma or mass spectrometry techniques. With this new capability the UK is delivering half of the radioactivity screening for the LZ dark matter search experiment.

  1. Explore with Us

    NASA Technical Reports Server (NTRS)

    Morales, Lester

    2012-01-01

    The fundamental goal of this vision is to advance U.S. scientific, security and economic interest through a robust space exploration program. Implement a sustained and affordable human and robotic program to explore the solar system and beyond. Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations. Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration. Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.

  2. Background matrix subtraction (BMS): A novel background removal algorithm for GPR data

    NASA Astrophysics Data System (ADS)

    Rashed, Mohamed; Harbi, Hussein

    2014-07-01

    Background noise is a common type of coherent noise that severely compromises the integrity of the high-resolution images provided by ground penetrating radar survey. Several existing techniques employ different approaches to attenuate background noise. In this study, we present the background matrix subtraction (BMS) as an alternative technique to remove horizontal background noise and we compare its efficiency to that of the conventional background removal technique. Instead of calculating an average trace that is subtracted from the GPR data in the conventional background removal methods, the BMS technique is based on calculating a complete background matrix of the same size of the GPR section. The background matrix is created through a series of windowing, sample exclusion, weighting, and iteration. This series of processes guarantees that the background matrix is least affected by target response and is composed purely of horizontal background noise. The computed background matrix is then subtracted from the GPR data to remove horizontal events. Results of experiments conducted on both synthetic and real GPR data show that the BMS technique yields better results than the commonly used background removal technique.

  3. Symmetry and the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Wollock, Edward J.

    2012-01-01

    A brief historical introduction to the development of observational astronomy and cosmology will be presented. The close relationship between the properties of light, symmetry, and our understanding the contents of our universe will be explored.

  4. Background environmental pollution of the Eurasian continent.

    PubMed

    Rovinsky, F Y; Afanasjev, M I; Burtseva, L V; Yegorov, V I

    1982-12-01

    (1) The interest to studying pollution of environmental media on the background level has grown in the recent years. There arose a necessity to establish a specialized observational system for conducting observations of changes in the state of the environment, and of ecological consequences of pollution as well as to produce assessments of the current and predicted states. The realized program of background monitoring and first results of integrated background measurements have already been published. The paper presented illustrates time-and-space features of the background pollution of natural environmental media according to data from various background stations. (2) Long-term systematic measurements at the 'Borovoe' station (Kazakh SSR) commenced in 1976 have been supplemented with the results of the background pollution studies carried out in Berezinskyi, Caucasian, Central-Chernozem, Sary-Chelek, and Repetek Biosphere Reserves and in locations of the background stations in Hungary and Czechoslovakia. The data from the Hungarian and Czechoslovak stations were obtained during joint expeditions. Details are given in the relevant publications. (3) Ozone. Ozone measurements show the diurnal variation with the day-time maxima from 35 up to 160 μg m(-3). The correlation between day-time and nocturnal concentrations is a good indicator of the anthropogenic effect. (4) Sulphur dioxide and sulphates. The annual variation of sulphur dioxide characterised by winter maximum and summer minimum indicates the direct dependence on the amount of fuel burnt in the given region. Mean values of the sulphur dioxide content in the surface layer of the atmosphere correlates with the extent of the region urbanization and varies within 0.2-12.5 μg m(-3). The value of sulphur dioxide and sulphates correlation in the atmosphere is rather stable and varies within 0.18-0.37 μg m(-3). (5) Heavy metals. The annual cycle of the atmospheric content of lead, cadmium and arsenic is well

  5. Exploration and Mining Roadmap

    SciTech Connect

    none,

    2002-09-01

    This Exploration and Mining Technology Roadmap represents the third roadmap for the Mining Industry of the Future. It is based upon the results of the Exploration and Mining Roadmap Workshop held May 10 ñ 11, 2001.

  6. A review on natural background radiation

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Setayandeh, Samaneh

    2013-01-01

    The world is naturally radioactive and approximately 82% of human-absorbed radiation doses, which are out of control, arise from natural sources such as cosmic, terrestrial, and exposure from inhalation or intake radiation sources. In recent years, several international studies have been carried out, which have reported different values regarding the effect of background radiation on human health. Gamma radiation emitted from natural sources (background radiation) is largely due to primordial radionuclides, mainly 232Th and 238U series, and their decay products, as well as 40K, which exist at trace levels in the earth's crust. Their concentrations in soil, sands, and rocks depend on the local geology of each region in the world. Naturally occurring radioactive materials generally contain terrestrial-origin radionuclides, left over since the creation of the earth. In addition, the existence of some springs and quarries increases the dose rate of background radiation in some regions that are known as high level background radiation regions. The type of building materials used in houses can also affect the dose rate of background radiations. The present review article was carried out to consider all of the natural radiations, including cosmic, terrestrial, and food radiation. PMID:24223380

  7. Background reduction in the SNO+ experiment

    NASA Astrophysics Data System (ADS)

    Segui, L.

    2015-08-01

    SNO+ is a large multi-purpose liquid scintillator experiment, which first aim is to detect the neutrinoless double beta decay of 130Te. It is placed at SNOLAB, at 6000 m.w.e. and it is based on the SNO infrastructure. SNO+ will contain approximately 780 tonnes of liquid scintillator, loaded with 130Te inside an acrylic vessel (AV) with an external volume of ultra pure water to reduce the external backgrounds. Light produced in the scintillator by the interaction of particles will be detected with about 9,000 photomultiplier's. For the neutrinoless double beta decay phase, due to its the extremely low rate expected, the control, knowledge and reduction of the background is essential. Moreover, it will also benefit other phases of the experiment focused on the study of solar neutrinos, nucleon decay, geoneutrinos and supernovae. In order to reduce the internal background level, a novel purification technique for tellurium loaded scintillators has been developed by the collaboration that reduces the U/Th concentration and several cosmic-activated isotopes by at least a factor 102 -103 in a single pass. In addition, different rejection techniques have been developed for the remaining internal backgrounds based on Monte-Carlo simulations. In this work, the scintillator purification technique and the levels obtained with it will be discussed. Furthermore, an overview of the different backgrounds for the double-beta phase will be presented, highlighting some of the techniques developed to reject the remained decays based on their expected timing differences.

  8. Exploration cost-cutting

    SciTech Connect

    Huttrer, J.

    1996-12-31

    This presentation by Jerry Huttrer, President, Geothermal Management Company, discusses the general state of exploration in the geothermal industry today, and mentions some ways to economize and perhaps save costs of geothermal exploration in the future. He suggests an increased use of satellite imagery in the mapping of geothermal resources and the identification of hot spots. Also, coordinating with oil and gas exploration efforts, the efficiency of the exploration task could be optimized.

  9. International exploration of Mars. A special bibliography

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 173 reports, articles, and other documents introduced into the NASA Scientific and Technical Information Database on the exploration of Mars. Historical references are cited for background. The bibliography was created for the 1991 session of the International Space University.

  10. Exploring Connections between Emergent Biliteracy and Bilingualism

    ERIC Educational Resources Information Center

    Reyes, Iliana

    2006-01-01

    This article explores the ways in which young emergent bilingual children begin to develop literacy in two languages, Spanish and English. Three case studies of four-year-old Mexican-background children and their families living in southern Arizona are presented from a qualitative socio-psycholinguistic perspective. The children's home and…

  11. International exploration of Mars. A special bibliography

    SciTech Connect

    Not Available

    1991-06-01

    This bibliography lists 173 reports, articles, and other documents introduced into the NASA Scientific and Technical Information Database on the exploration of Mars. Historical references are cited for background. The bibliography was created for the 1991 session of the International Space University.

  12. Explorations in Statistics: Regression

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2011-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This seventh installment of "Explorations in Statistics" explores regression, a technique that estimates the nature of the relationship between two things for which we may only surmise a mechanistic or predictive connection.…

  13. Birth Control Explorer

    MedlinePlus

    ... Relationships STIs Media Facebook Twitter Tumblr Shares · 5 Birth Control Explorer Sort by all methods most effective methods ... MORE You are here Home » Birth Control Explorer Birth Control Explorer If you’re having sex —or if ...

  14. Lunar Exploration Architectures

    NASA Astrophysics Data System (ADS)

    Perino, Maria Antonietta

    The international space exploration plans foresee in the next decades multiple robotic and human missions to Moon and robotic missions to Mars, Phobos and other destinations. Notably the US has since the announcement of the US space exploration vision by President G. W. Bush in 2004 made significant progress in the further definition of its exploration programme focusing in the next decades in particular on human missions to Moon. Given the highly demanding nature of these missions, different initiatives have been recently taken at international level to discuss how the lunar exploration missions currently planned at national level could fit in a coordinate roadmap and contribute to lunar exploration. Thales Alenia Space - Italia is leading 3 studies for the European Space Agency focus on the analysis of the transportation, in-space and surface architectures required to meet ESA provided stakeholders exploration objectives and requirements. Main result of this activity is the identification of European near-term priorities for exploration missions and European long-term priorities for capability and technology developments related to planetary exploration missions. This paper will present the main studies' results drawing a European roadmap for exploration missions and capability and technology developments related to lunar exploration infrastructure development, taking into account the strategic and programmatic indications for exploration coming from ESA as well as the international exploration context.

  15. Explorations in Statistics: Correlation

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2010-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This sixth installment of "Explorations in Statistics" explores correlation, a familiar technique that estimates the magnitude of a straight-line relationship between two variables. Correlation is meaningful only when the…

  16. The Primordial Inflation Explorer (PIXIE)

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; Chuss, David T.; Dotson, Jessie; Dwek, Eli; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.; Wollack, Edward J.

    2014-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 µK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r less than 10(exp -3) at 5 standard deviations. In addition, PIXIE will measure the absolute frequency spectrum to constrain physical processes ranging from inflation to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture with an emphasis on the expected level of systematic error suppression.

  17. The Primordial Inflation Explorer (PIXIE)

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2011-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. The differential design and multiple signal modulations spanning 11 orders of magnitude in time combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 uK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r <10(exp -3) at 5 standard deviations. In addition, the rich PIXIE data will constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  18. Estimating the normal background rate of species extinction.

    PubMed

    De Vos, Jurriaan M; Joppa, Lucas N; Gittleman, John L; Stephens, Patrick R; Pimm, Stuart L

    2015-04-01

    A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural

  19. Estimating the normal background rate of species extinction.

    PubMed

    De Vos, Jurriaan M; Joppa, Lucas N; Gittleman, John L; Stephens, Patrick R; Pimm, Stuart L

    2015-04-01

    A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural

  20. A novel approach to model EPIC variable background

    NASA Astrophysics Data System (ADS)

    Marelli, M.; De Luca, A.; Salvetti, D.; Belfiore, A.; Pizzocaro, D.

    2016-06-01

    In the past years XMM-Newton revolutionized our way to look at the X-ray sky. With more than 200 Ms of exposure, it allowed for numerous discoveries in every field of astronomy. Unfortunately, about 35% of the observing time is badly affected by soft proton flares, with background increasing by orders of magnitudes hampering any classical analysis of field sources. One of the main aim of the EXTraS ("Exploring the X-ray Transient and variable Sky") project is to characterise the variability of XMM-Newton sources within each single observation, including periods of high background. This posed severe challenges. I will describe a novel approach that we implemented within the EXTraS project to produce background-subtracted light curves, that allows to treat the case of very faint sources and very large proton flares. EXTraS light curves will be soon released to the community, together with new tools that will allow the user to reproduce EXTraS results, as well as to extend a similar analysis to future data. Results of this work (including an unprecedented characterisation of the soft proton phenomenon and instrument response) will also serve as a reference for future missions and will be particularly relevant for the Athena observatory.

  1. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.

    PubMed

    Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P

    2005-05-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.

  2. Background compensation for a radiation level monitor

    DOEpatents

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  3. Background modeling for the GERDA experiment

    SciTech Connect

    Becerici-Schmidt, N.; Collaboration: GERDA Collaboration

    2013-08-08

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Q{sub ββ} come from {sup 214}Bi, {sup 228}Th, {sup 42}K, {sup 60}Co and α emitting isotopes in the {sup 226}Ra decay chain, with a fraction depending on the assumed source positions.

  4. Enhancements to the MCNP6 background source

    SciTech Connect

    McMath, Garrett E.; McKinney, Gregg W.

    2015-10-19

    The particle transport code MCNP has been used to produce a background radiation data file on a worldwide grid that can easily be sampled as a source in the code. Location-dependent cosmic showers were modeled by Monte Carlo methods to produce the resulting neutron and photon background flux at 2054 locations around Earth. An improved galactic-cosmic-ray feature was used to model the source term as well as data from multiple sources to model the transport environment through atmosphere, soil, and seawater. A new elevation scaling feature was also added to the code to increase the accuracy of the cosmic neutron background for user locations with off-grid elevations. Furthermore, benchmarking has shown the neutron integral flux values to be within experimental error.

  5. Enhancements to the MCNP6 background source

    DOE PAGES

    McMath, Garrett E.; McKinney, Gregg W.

    2015-10-19

    The particle transport code MCNP has been used to produce a background radiation data file on a worldwide grid that can easily be sampled as a source in the code. Location-dependent cosmic showers were modeled by Monte Carlo methods to produce the resulting neutron and photon background flux at 2054 locations around Earth. An improved galactic-cosmic-ray feature was used to model the source term as well as data from multiple sources to model the transport environment through atmosphere, soil, and seawater. A new elevation scaling feature was also added to the code to increase the accuracy of the cosmic neutronmore » background for user locations with off-grid elevations. Furthermore, benchmarking has shown the neutron integral flux values to be within experimental error.« less

  6. Non-perturbative background field calculations

    NASA Astrophysics Data System (ADS)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  7. Background model for the Majorana Demonstrator

    SciTech Connect

    Cuesta, C.; Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y -D.; Christofferson, C. D.; Combs, D. C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V.; Gusev, K.; Hallin, A.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, W. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. K.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.

    2015-01-01

    The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.

  8. Background modeling for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    Becerici-Schmidt, N.; Gerda Collaboration

    2013-08-01

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Qββ come from 214Bi, 228Th, 42K, 60Co and α emitting isotopes in the 226Ra decay chain, with a fraction depending on the assumed source positions.

  9. Olfactory signal coding in an odor background.

    PubMed

    Renou, Michel; Party, Virginie; Rouyar, Angéla; Anton, Sylvia

    2015-10-01

    Insects communicating with pheromones are confronted with an olfactory environment featuring a diversity of volatile organic compounds from plant origin. These volatiles constitute a rich and fluctuant background from which the information carried by the pheromone signal must be extracted. Thus, the pheromone receptor neurons must encode into spike trains the quality, intensity and temporal characteristics of the signal that are determinant to the recognition and localization of a conspecific female. We recorded and analyzed the responses of the pheromone olfactory receptor neurons of male moths to sex pheromone in different odor background conditions. We show that in spite of the narrow chemical tuning of the pheromone receptor neurons, the sensory input can be altered by odorant background. PMID:26116090

  10. Background model for the Majorana Demonstrator

    DOE PAGES

    Cuesta, C.; Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; et al

    2015-01-01

    The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example usingmore » powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.« less

  11. Neutrino refraction by the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  12. X-Ray Background Survey Spectrometer (XBSS)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T. (Principal Investigator); Paulos, R. J.

    1996-01-01

    The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.

  13. Search for the Cosmic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Faessler, A.; Hodak, R.; Kovalenko, S.; Simkovic, F.

    2015-02-01

    One expects three Cosmic Backgrounds: (1) The Cosmic Microwave Background (CMB) originated 380000 years after the Big Bang (BB). (2) The Neutrino Background decoupled about one second after the BB, while (3) the Cosmic Gravitational Wave Background created by the inflationary expansion decoupled directly after the BB. Only the Cosmic Microwave Background (CMB) has been detected and is well studied. Its spectrum follows Planck's black body radiation formula and shows a remarkable constant temperature of T0γ ≈ 2.7 K independent of the direction. The present photon density is about 370 photons per cm3. The size of the hot spots, which deviates only in the fifth decimal of the temperature from the average value, tells us, that the universe is flat. About 380 000 years after the Big Bang at a temperature of T0γ = 3000 K already in the matter dominated era the electrons combine with the protons and 4He and the photons move freely in the neutral universe and form the CMB. So the temperature and distribution of the photons give us information of the universe 380 000 years after the Big Bang. The Cosmic Neutrino Background (CνB) decoupled from matter already one second after the BB at a temperature of about 1010 K. Today their temperature is ~ 1.95 K and the average density is 56 electron-neutrinos and the total density of all neutrinos about 336 per cm3. Measurement of these neutrinos is an extremely challenging experimental problem which can hardly be solved with the present technologies. On the other hand it represents a tempting opportunity to check one of the key elements of the Big Bang Cosmology and to probe the early stages of the universe. The search for the CνB with the induced beta decay νe+3H → 3He + e- using KATRIN (KArlsruhe TRItium Neutrino experiment) is the topic of this contribution.

  14. Improved Background Corrections for Uranium Holdup Measurements

    SciTech Connect

    Oberer, R.B.; Gunn, C.A.; Chiang, L.G.

    2004-06-21

    In the original Generalized Geometry Holdup (GGH) model, all holdup deposits were modeled as points, lines, and areas[1, 5]. Two improvements[4] were recently made to the GGH model and are currently in use at the Y-12 National Security Complex. These two improvements are the finite-source correction CF{sub g} and the self-attenuation correction. The finite-source correction corrects the average detector response for the width of point and line geometries which in effect, converts points and lines into areas. The result of a holdup measurement of an area deposit is a density-thickness which is converted to mass by multiplying it by the area of the deposit. From the measured density-thickness, the true density-thickness can be calculated by correcting for the material self-attenuation. Therefore the self-attenuation correction is applied to finite point and line deposits as well as areas. This report demonstrates that the finite-source and self-attenuation corrections also provide a means to better separate the gamma rays emitted by the material from the gamma rays emitted by background sources for an improved background correction. Currently, the measured background radiation is attenuated for equipment walls in the case of area deposits but not for line and point sources. The measured background radiation is not corrected for attenuation by the uranium material. For all of these cases, the background is overestimated which causes a negative bias in the measurement. The finite-source correction and the self-attenuation correction will allow the correction of the measured background radiation for both the equipment attenuation and material attenuation for area sources as well as point and line sources.

  15. Asteroid exploration and utilization: The Hawking explorer

    NASA Technical Reports Server (NTRS)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  16. Directed aerial robot explorers for planetary exploration

    NASA Astrophysics Data System (ADS)

    Pankine, A. A.; Aaron, K. M.; Heun, M. K.; Nock, K. T.; Schlaifer, R. S.; Wyszkowski, C. J.; Ingersoll, A. P.; Lorenz, R. D.

    2004-01-01

    Global Aerospace Corporation (GAC) is developing a revolutionary system architecture for exploration of planetary atmospheres and surfaces from atmospheric altitudes. The work is supported by the NASA Institute for Advanced Concepts (NIAC). The innovative system architecture relies upon the use of Directed Aerial Robot Explorers (DAREs), which essentially are long-duration-flight autonomous balloons with trajectory control capabilities that can deploy swarms of miniature probes over multiple target areas. The balloons will serve a dual purpose as independent explorers and as microprobe delivery systems for targeted observations. Trajectory control capabilities will offer unprecedented opportunities in high-resolution, targeted observations of both atmospheric and surface phenomena. Multifunctional microprobes will be deployed from the balloons once over the target areas, and perform a multitude of functions, such as atmospheric profiling or surface exploration, relaying data back to the balloons or an orbiter. This architecture will enable low-cost, low-energy, long-term global exploration of planetary atmospheres and surfaces. We report here results of the preliminary analysis of the trajectory control capabilities and potential applications for DARE platforms at Venus, Mars, Titan and Jupiter.

  17. Interpretation of observed cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Mendis, A.

    1977-01-01

    It is argued that the 'surface of last scattering' of the observed microwave background radiation corresponds to the distribution of dust in galaxies or protogalaxies with a temperature of about 110 K at the epoch corresponding to Z roughly equal to 40. This is in contrast with the plasma temperature of over 3,000 K at an earlier epoch (Z greater than about 1,000), as given by the canonical model of big bang cosmologies. In view of this, the claim that the microwave background radiation lends strong support to hot big bang cosmologies is without foundation.

  18. Background-oriented schlieren (BOS) techniques

    NASA Astrophysics Data System (ADS)

    Raffel, Markus

    2015-03-01

    This article gives an overview of the background-oriented schlieren (BOS) technique, typical applications and literature in the field. BOS is an optical density visualization technique, belonging to the same family as schlieren photography, shadowgraphy or interferometry. In contrast to these older techniques, BOS uses correlation techniques on a background dot pattern to quantitatively characterize compressible and thermal flows with good spatial and temporal resolution. The main advantages of this technique, the experimental simplicity and the robustness of correlation-based digital analysis, mean that it is widely used, and variant versions are reviewed in the article. The advantages of each variant are reviewed, and further literature is provided for the reader.

  19. Low-background direct readout array performance

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Mckelvey, M. E.; Mccreight, C. R.; Anderson, G. M.

    1986-01-01

    The development and evaluation of an integrated array of antimony-doped silicon detectors is described. The spectral range of extrinsic silicon-integrated arrays useful for low-background IR astronomical applications is extended to about 31 microns with this development. The 58 x 62-element array is accessed by a direct readout multiplexer. The device is evaluated with a flexible microcomputer-based drive and readout electronics system in a low-background test dewar. Acceptance testing indicates single-pixel NEPs in the mid-10 to the -18th W/sq rt Hz range, and good global uniformity statistics.

  20. Background studies for particle astrophysics experiments

    SciTech Connect

    Kudryavtsev, Vitaly A.

    2005-09-08

    Background radiations typical for the high-sensitivity underground experiments in particle astrophysics are discussed. An emphasis is given to the neutron background coming from spontaneous fission and ({alpha},n) reactions from U and Th traces in rock and detector components, and from cosmic-ray muons. Gammas from radioactivity in various materials are also considered. Special case of a xenon-based large-scale dark matter detector is studied. Several Monte Carlo codes capable of producing, transporting and detecting neutrons are compared with each other and with available experimental data.

  1. Experimental limits of the extreme ultraviolet background

    NASA Technical Reports Server (NTRS)

    Wulf-Mathies, C.; Grewing, M.; Kraemer, G.; Schulz-Luepertz, E.; Kimble, R.; Bixler, J.; Bowyer, S.

    1983-01-01

    Photometric observations of the diffuse extreme ultraviolet background with two photometers having bandpasses of 750-940 A and 1040-1080 A are reported. The payload, which was flown aboard an ARIES sounding rocket in June 1982, is described, including the electron detectors, filters, and calibration. The operation of the probe during the experiment, including its motions, are described. The primary experiment involved spectroscopic observation of the hot white dwarf HZ43. The photometer count rate is shown and the measurements of the diffuse background are compared with theoretical predictions. Despite the lower limits obtained using a narrowband detector, the measurements are not sensitive enough to draw any relevant astrophysical conclusions.

  2. Electromagnetic wave collapse in a radiation background.

    PubMed

    Marklund, Mattias; Brodin, Gert; Stenflo, Lennart

    2003-10-17

    The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed.

  3. Microwave background anisotropy induced by gravitational waves

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.

    1988-01-01

    A cosmological background of gravitational waves induces redshift perturbations in light transversing it. Calculations of this Sachs-Wolfe effect on the microwave background are presented in an Omega = 1 Friedmann universe as a function of angular scale and gravitational wave spectrum. Blurriness of the last-scattering surface can cause nonnegligible dilution of the anisotropy for wavelengths less than about 100 Mpc. The limit implied for the energy density of the gravitational waves is given. A difficulty in associating a linear scale with an angular anisotropy, due to the clumpiness of the universe, is also pointed out.

  4. Gamma radiation background measurements from Spacelab 2

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Gregory, John C.; Fishman, Gerald J.

    1988-01-01

    A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, Earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered.

  5. Gamma radiation background measurements from Spacelab 2

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Gregory, John C.; Fishman, Gerald J.

    1989-01-01

    A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered.

  6. Compensatable muon collider calorimeter with manageable backgrounds

    DOEpatents

    Raja, Rajendran

    2015-02-17

    A method and system for reducing background noise in a particle collider, comprises identifying an interaction point among a plurality of particles within a particle collider associated with a detector element, defining a trigger start time for each of the pixels as the time taken for light to travel from the interaction point to the pixel and a trigger stop time as a selected time after the trigger start time, and collecting only detections that occur between the start trigger time and the stop trigger time in order to thereafter compensate the result from the particle collider to reduce unwanted background detection.

  7. Polarimetric Imaging of the Cosmic Ultraviolet Background

    NASA Astrophysics Data System (ADS)

    Nordsieck, K. H.; Bershady, M. A.; Harris, W.

    1999-05-01

    The nature of (and even the existence of) the ultraviolet cosmic background is controversial, because of the uncertain contribution of light from bright UV stars scattered by dust within our Galaxy (the UV Diffuse Galactic Light, or "DGL"). Because the DGL consists of light scattered at large angles from a small number of stars, it should be highly polarized, while most proposed sources of extragalactic UV background would be unpolarized, providing a potential way of disentangling the two components. We will discuss such an experiment: an existing sounding rocket payload, the Wide-Field Imaging Survey Polarimeter ("WISP"), and a proposed payload, the Cosmic Ultraviolet Polarimetric Imaging Device ("CUPID"), which would have 20 times the sensitivity of WISP. WISP, a 20 cm off-axis Schmidt telescope with a stressed CaF2 waveplate and a Brewster-angle polarizer, has a 2x4 degree field of view with 1 arcmin resolution at 1700 Ang. The first DGL target for WISP is the "Sandage Region" near M81/M82, an area observed (with different results) by both the UC Berkeley and the JHU UVX UV background experiments. It has known visible-wavelength and IRAS-wavelength "cirrus" which has been identified with DGL. WISP should be able to measure the polarization of any UV cirrus and establish the presence of an unpolarized background. Preliminary data from this target may be available, depending on the actual launch time. CUPID, a 50 cm Paul Baker telescope using reflective filter coatings, should have adequate precision to perform a pixel-by-pixel separation of polarized UV cirrus from any unpolarized background, and its very much improved stray light rejection should allow an accurate zero-point for this putative extragalactic background. Thus the detailed structure of the cosmic background from 15 arcsec to degrees will be determined. We will discuss how such a measurement may be used to confirm or eliminate several possible sources of UV cosmic background. WISP is supported by

  8. THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect

    Fixsen, D. J.

    2009-12-20

    The Far InfraRed Absolute Spectrophotometer data are independently recalibrated using the Wilkinson Microwave Anisotropy Probe data to obtain a cosmic microwave background (CMB) temperature of 2.7260 +- 0.0013. Measurements of the temperature of the CMB are reviewed. The determination from the measurements from the literature is CMB temperature of 2.72548 +- 0.00057 K.

  9. ESTIMATION OF BACKGROUND LEVELS OF CONTAMINANTS

    EPA Science Inventory

    Samples from hazardous waste site investigations frequently come from two or more statistical populations. Assessment of "background" levels of contaminants can be a significant problem. This problem is being investigated at the US EPA's EMSL in Las Vegas. This paper describes a ...

  10. 10 CFR 1022.1 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS General § 1022.1 Background. (a) Executive Order (E.O.) 11988—Floodplain Management (May 24, 1977) directs... effects of any action it may take in a floodplain are evaluated and that its planning programs and...

  11. 10 CFR 1022.1 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS General § 1022.1 Background. (a) Executive Order (E.O.) 11988—Floodplain Management (May 24, 1977) directs... effects of any action it may take in a floodplain are evaluated and that its planning programs and...

  12. 10 CFR 1022.1 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS General § 1022.1 Background. (a) Executive Order (E.O.) 11988—Floodplain Management (May 24, 1977) directs... effects of any action it may take in a floodplain are evaluated and that its planning programs and...

  13. 10 CFR 1022.1 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS General § 1022.1 Background. (a) Executive Order (E.O.) 11988—Floodplain Management (May 24, 1977) directs... effects of any action it may take in a floodplain are evaluated and that its planning programs and...

  14. 10 CFR 1022.1 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS General § 1022.1 Background. (a) Executive Order (E.O.) 11988—Floodplain Management (May 24, 1977) directs... effects of any action it may take in a floodplain are evaluated and that its planning programs and...

  15. 45 CFR 650.16 - Background rights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of the Bayh-Dole Act (35 U.S.C. 202(f)) as implemented by 37 CFR 401.12). ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Background rights. 650.16 Section 650.16 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS §...

  16. 45 CFR 650.16 - Background rights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the Bayh-Dole Act (35 U.S.C. 202(f)) as implemented by 37 CFR 401.12). ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Background rights. 650.16 Section 650.16 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION PATENTS §...

  17. 16 CFR 1406.2 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Background. 1406.2 Section 1406.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING... Consumer Product Safety Commission disclose a number of incidents involving coal and wood...

  18. 16 CFR 1406.2 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Background. 1406.2 Section 1406.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING... Consumer Product Safety Commission disclose a number of incidents involving coal and wood...

  19. 16 CFR 1406.2 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Background. 1406.2 Section 1406.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING... Consumer Product Safety Commission disclose a number of incidents involving coal and wood...

  20. Contemporary Rhetoric: A Conceptual Background with Readings.

    ERIC Educational Resources Information Center

    Winterowd, W. Ross, Ed.

    Designed for use by composition students as well as teachers, the essays and background discussions in this book address themselves to questions of theory and practice in rhetoric. The book is divided into sections on invention, form, and style, and contains articles by such authors as Janet Emig, Wayne C. Booth, Richard L. Larson, Kenneth Burke,…

  1. Does Social Background Influence Political Science Grades?

    ERIC Educational Resources Information Center

    Tiruneh, Gizachew

    2013-01-01

    This paper tests a hypothesized linear relationship between social background and final grades in several political science courses that I taught at the University of Central Arkansas. I employ a cross-sectional research design and ordinary least square (OLS) estimators to test the foregoing hypothesis. Relying on a sample of up to 204…

  2. 40 CFR 761.380 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Background. 761.380 Section 761.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Comparison Study for Validating a New Performance-Based Decontamination Solvent Under § 761.79(d)(4) §...

  3. 40 CFR 761.380 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Background. 761.380 Section 761.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Comparison Study for Validating a New Performance-Based Decontamination Solvent Under § 761.79(d)(4) §...

  4. 40 CFR 761.380 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Background. 761.380 Section 761.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Comparison Study for Validating a New Performance-Based Decontamination Solvent Under § 761.79(d)(4) §...

  5. 40 CFR 761.380 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Background. 761.380 Section 761.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT... Comparison Study for Validating a New Performance-Based Decontamination Solvent Under § 761.79(d)(4) §...

  6. 32 CFR 770.42 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ACCESS TO PARTICULAR INSTALLATIONS Base Entry Regulations for Naval Submarine Base New London, Groton, Connecticut § 770.42 Background. Naval Submarine Base New London maintains and operates facilities to support training and experimental operations of the submarine force including providing support to...

  7. 32 CFR 770.42 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ACCESS TO PARTICULAR INSTALLATIONS Base Entry Regulations for Naval Submarine Base New London, Groton, Connecticut § 770.42 Background. Naval Submarine Base New London maintains and operates facilities to support training and experimental operations of the submarine force including providing support to...

  8. 32 CFR 770.42 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACCESS TO PARTICULAR INSTALLATIONS Base Entry Regulations for Naval Submarine Base New London, Groton, Connecticut § 770.42 Background. Naval Submarine Base New London maintains and operates facilities to support training and experimental operations of the submarine force including providing support to...

  9. 32 CFR 770.42 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ACCESS TO PARTICULAR INSTALLATIONS Base Entry Regulations for Naval Submarine Base New London, Groton, Connecticut § 770.42 Background. Naval Submarine Base New London maintains and operates facilities to support training and experimental operations of the submarine force including providing support to...

  10. 32 CFR 770.42 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ACCESS TO PARTICULAR INSTALLATIONS Base Entry Regulations for Naval Submarine Base New London, Groton, Connecticut § 770.42 Background. Naval Submarine Base New London maintains and operates facilities to support training and experimental operations of the submarine force including providing support to...

  11. 22 CFR 305.3 - Background investigations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Foreign Relations PEACE CORPS ELIGIBILITY AND STANDARDS FOR PEACE CORPS VOLUNTEER SERVICE § 305.3 Background investigations. Section 22 of the Peace Corps Act states that to ensure enrollment of a Volunteer is consistent with the national interest, no applicant is eligible for Peace Corps Volunteer...

  12. 22 CFR 305.3 - Background investigations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Foreign Relations PEACE CORPS ELIGIBILITY AND STANDARDS FOR PEACE CORPS VOLUNTEER SERVICE § 305.3 Background investigations. Section 22 of the Peace Corps Act states that to ensure enrollment of a Volunteer is consistent with the national interest, no applicant is eligible for Peace Corps Volunteer...

  13. 22 CFR 305.3 - Background investigations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Foreign Relations PEACE CORPS ELIGIBILITY AND STANDARDS FOR PEACE CORPS VOLUNTEER SERVICE § 305.3 Background investigations. Section 22 of the Peace Corps Act states that to ensure enrollment of a Volunteer is consistent with the national interest, no applicant is eligible for Peace Corps Volunteer...

  14. 22 CFR 305.3 - Background investigations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Foreign Relations PEACE CORPS ELIGIBILITY AND STANDARDS FOR PEACE CORPS VOLUNTEER SERVICE § 305.3 Background investigations. Section 22 of the Peace Corps Act states that to ensure enrollment of a Volunteer is consistent with the national interest, no applicant is eligible for Peace Corps Volunteer...

  15. 22 CFR 305.3 - Background investigations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Foreign Relations PEACE CORPS ELIGIBILITY AND STANDARDS FOR PEACE CORPS VOLUNTEER SERVICE § 305.3 Background investigations. Section 22 of the Peace Corps Act states that to ensure enrollment of a Volunteer is consistent with the national interest, no applicant is eligible for Peace Corps Volunteer...

  16. 14 CFR 1214.302 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... dedicated space flight training, allowing them to concentrate their efforts on the accomplishment of...

  17. 14 CFR 1214.302 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... dedicated space flight training, allowing them to concentrate their efforts on the accomplishment of...

  18. 14 CFR 1214.302 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... dedicated space flight training, allowing them to concentrate their efforts on the accomplishment of...

  19. 14 CFR 1214.302 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Background. 1214.302 Section 1214.302 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... dedicated space flight training, allowing them to concentrate their efforts on the accomplishment of...

  20. 44 CFR 334.3 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... strength of the national economy into U.S. national security strategy. ... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... take small or large, often reversible, steps to increase its national security emergency...

  1. 43 CFR 2610.0-7 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) CAREY ACT GRANTS Carey Act Grants, General § 2610.0-7 Background. The Carey Act authorizes the Secretary of the Interior, with the approval of the... allowed up to 2 million acres. Idaho was allowed up to 3 million acres....

  2. Background noise levels in PC home environments

    NASA Astrophysics Data System (ADS)

    Doherty, Rina; Salskov, Eric; Corriveau, Philip J.; Sorenson, Paul; Gabel, Doug; Beltman, Willem M.

    2005-09-01

    A study was designed and conducted to determine the background noise levels in the home environment. This is an important factor in determining the acoustic performance of the computing devices that go into these environments. A specialized methodology was developed and measurements were carried out in homes in the United States, Sweden, Germany, and China. The sound levels in three rooms in 15-18 homes in each country were collected over 24-h periods. The results indicated that the background noise levels ranged between 30 and 40 dBA across the four countries. Variations in the background noise levels between the different rooms in the homes were minimal. No significant variations were found between home types (detached, semi-detached, and apartment) and community types (urban, suburban). However, European homes were quieter than United States and Chinese homes. The variations between countries were statistically significant. In addition to the background noise levels, the acoustical characteristics of the rooms were measured. The results indicated that the reverberation radius was typically below 1 m and was fairly consistent between geographies.

  3. 28 CFR 23.2 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... participants over a broad geographical area. The exposure of such ongoing networks of criminal activity can be aided by the pooling of information about such activities. However, because the collection and...

  4. 16 CFR 1406.2 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Background. 1406.2 Section 1406.2 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS COAL AND WOOD BURNING... Consumer Product Safety Commission disclose a number of incidents involving coal and wood...

  5. Physiologic correlates to background noise acceptance

    NASA Astrophysics Data System (ADS)

    Tampas, Joanna; Harkrider, Ashley; Nabelek, Anna

    2001-05-01

    Acceptance of background noise can be evaluated by having listeners indicate the highest background noise level (BNL) they are willing to accept while following the words of a story presented at their most comfortable listening level (MCL). The difference between the selected MCL and BNL is termed the acceptable noise level (ANL). One of the consistent findings in previous studies of ANL is large intersubject variability in acceptance of background noise. This variability is not related to age, gender, hearing sensitivity, personality, type of background noise, or speech perception in noise performance. The purpose of the current experiment was to determine if individual differences in physiological activity measured from the peripheral and central auditory systems of young female adults with normal hearing can account for the variability observed in ANL. Correlations between ANL and various physiological responses, including spontaneous, click-evoked, and distortion-product otoacoustic emissions, auditory brainstem and middle latency evoked potentials, and electroencephalography will be presented. Results may increase understanding of the regions of the auditory system that contribute to individual noise acceptance.

  6. 33 CFR 236.4 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... QUALITY § 236.4 Background. (a) The role of the Corps of Engineers in the development of water and related... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE WATER... navigation on the Mississippi River in 1824, the Corps role has grown to encompass, among others,...

  7. 33 CFR 236.4 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... QUALITY § 236.4 Background. (a) The role of the Corps of Engineers in the development of water and related... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE WATER... navigation on the Mississippi River in 1824, the Corps role has grown to encompass, among others,...

  8. 33 CFR 236.4 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... QUALITY § 236.4 Background. (a) The role of the Corps of Engineers in the development of water and related... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE WATER... navigation on the Mississippi River in 1824, the Corps role has grown to encompass, among others,...

  9. 33 CFR 236.4 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... QUALITY § 236.4 Background. (a) The role of the Corps of Engineers in the development of water and related... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE WATER... navigation on the Mississippi River in 1824, the Corps role has grown to encompass, among others,...

  10. 33 CFR 236.4 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... QUALITY § 236.4 Background. (a) The role of the Corps of Engineers in the development of water and related... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE WATER... navigation on the Mississippi River in 1824, the Corps role has grown to encompass, among others,...

  11. 23 CFR 777.3 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... NATURAL HABITAT § 777.3 Background. (a) Executive Order 11990 (42 FR 26961, 3 CFR, 1977 Comp., p. 121... inspection and copying from FHWA headquarters and field offices as prescribed at 49 CFR part 7. (1) There is... participation with title 23, U.S. Code, funds. (c) 33 CFR parts 320 through 330, Regulatory Program, U.S....

  12. 23 CFR 777.3 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... NATURAL HABITAT § 777.3 Background. (a) Executive Order 11990 (42 FR 26961, 3 CFR, 1977 Comp., p. 121... inspection and copying from FHWA headquarters and field offices as prescribed at 49 CFR part 7. (1) There is... participation with title 23, U.S. Code, funds. (c) 33 CFR parts 320 through 330, Regulatory Program, U.S....

  13. 23 CFR 777.3 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... NATURAL HABITAT § 777.3 Background. (a) Executive Order 11990 (42 FR 26961, 3 CFR, 1977 Comp., p. 121... inspection and copying from FHWA headquarters and field offices as prescribed at 49 CFR part 7. (1) There is... participation with title 23, U.S. Code, funds. (c) 33 CFR parts 320 through 330, Regulatory Program, U.S....

  14. 23 CFR 777.3 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... NATURAL HABITAT § 777.3 Background. (a) Executive Order 11990 (42 FR 26961, 3 CFR, 1977 Comp., p. 121... inspection and copying from FHWA headquarters and field offices as prescribed at 49 CFR part 7. (1) There is... participation with title 23, U.S. Code, funds. (c) 33 CFR parts 320 through 330, Regulatory Program, U.S....

  15. 23 CFR 777.3 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... NATURAL HABITAT § 777.3 Background. (a) Executive Order 11990 (42 FR 26961, 3 CFR, 1977 Comp., p. 121... inspection and copying from FHWA headquarters and field offices as prescribed at 49 CFR part 7. (1) There is... participation with title 23, U.S. Code, funds. (c) 33 CFR parts 320 through 330, Regulatory Program, U.S....

  16. 32 CFR 735.2 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Background. 735.2 Section 735.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL REPORTING BIRTHS AND DEATHS IN COOPERATION...) policy is that military services will require their members to make official record of births,...

  17. 32 CFR 735.2 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Background. 735.2 Section 735.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL REPORTING BIRTHS AND DEATHS IN COOPERATION...) policy is that military services will require their members to make official record of births,...

  18. 32 CFR 735.2 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Background. 735.2 Section 735.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL REPORTING BIRTHS AND DEATHS IN COOPERATION...) policy is that military services will require their members to make official record of births,...

  19. 32 CFR 735.2 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Background. 735.2 Section 735.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL REPORTING BIRTHS AND DEATHS IN COOPERATION...) policy is that military services will require their members to make official record of births,...

  20. 32 CFR 735.2 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Background. 735.2 Section 735.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL REPORTING BIRTHS AND DEATHS IN COOPERATION...) policy is that military services will require their members to make official record of births,...

  1. Psychological Adaptation of Adolescents with Immigrant Backgrounds.

    ERIC Educational Resources Information Center

    Sam, David Lackland

    2000-01-01

    Examines three theoretical perspectives (family values, acculturation strategies, and social group identity) as predictors of the psychological well-being of adolescents from immigrant backgrounds. Reveals that the perspectives accounted for between 12% and 22% of variance of mental health, life satisfaction, and self-esteem, while social group…

  2. Social Background Differences in Early Family Behavior

    ERIC Educational Resources Information Center

    Schoen, Robert; Landale, Nancy S.; Daniels, Kimberly; Cheng, Yen-Hsin Alice

    2009-01-01

    Social background has historically been recognized as a major factor influencing family behavior, though recent work has largely emphasized racial/ethnic influences. Here we use 1994 - 1995 and 2001 - 2002 Add Health data to examine the cohabitation, first marriage, and first birth experience of young women. In a multi state life table context,…

  3. 32 CFR 701.40 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Background. 701.40 Section 701.40 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE...

  4. 32 CFR 701.56 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Background. 701.56 Section 701.56 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE...

  5. 32 CFR 701.40 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Background. 701.40 Section 701.40 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE...

  6. 32 CFR 701.56 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Background. 701.56 Section 701.56 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE...

  7. 32 CFR 701.40 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Background. 701.40 Section 701.40 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE...

  8. 32 CFR 701.56 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Background. 701.56 Section 701.56 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE...

  9. 32 CFR 701.40 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Background. 701.40 Section 701.40 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE...

  10. 32 CFR 701.56 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Background. 701.56 Section 701.56 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE...

  11. 32 CFR 701.56 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Background. 701.56 Section 701.56 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS AVAILABILITY OF DEPARTMENT OF THE NAVY RECORDS AND PUBLICATION OF DEPARTMENT OF THE...

  12. The Temperature of the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Fixsen, D. J.

    2009-12-01

    The Far InfraRed Absolute Spectrophotometer data are independently recalibrated using the Wilkinson Microwave Anisotropy Probe data to obtain a cosmic microwave background (CMB) temperature of 2.7260 ± 0.0013. Measurements of the temperature of the CMB are reviewed. The determination from the measurements from the literature is CMB temperature of 2.72548 ± 0.00057 K.

  13. 44 CFR 334.3 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Background. 334.3 Section 334.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND... emergency situations. GMR is a flexible decision making process of preparedness and response actions...

  14. 44 CFR 334.3 - Background.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Background. 334.3 Section 334.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND... emergency situations. GMR is a flexible decision making process of preparedness and response actions...

  15. 20 CFR 410.700 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... explaining the review procedures for these claims are published at 20 CFR part 727. ... LUNG BENEFITS (1969- ) Rules for the Review of Denied and Pending Claims Under the Black Lung Benefits Reform Act (BLBRA) of 1977 § 410.700 Background. (a) The Black Lung Benefits Reform Act of 1977...

  16. 20 CFR 410.700 - Background.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... explaining the review procedures for these claims are published at 20 CFR part 727. ... LUNG BENEFITS (1969- ) Rules for the Review of Denied and Pending Claims Under the Black Lung Benefits Reform Act (BLBRA) of 1977 § 410.700 Background. (a) The Black Lung Benefits Reform Act of 1977...

  17. 32 CFR 1292.3 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS SECURITY OF DLA ACTIVITIES AND RESOURCES § 1292.3 Background. Section 21 of the Internal Security Act of 1950... designates military commanders of Army, Navy, Air Force, and Defense Agency activities as having authority...

  18. 44 CFR 334.3 - Background.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Background. 334.3 Section 334.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND... capability and to use it to reduce the probability of conflict. Alternatively, if deterrence should fail,...

  19. 32 CFR 1290.5 - Background.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Background. 1290.5 Section 1290.5 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS PREPARING AND PROCESSING MINOR OFFENSES AND VIOLATION NOTICES REFERRED TO U.S. DISTRICT COURTS §...

  20. 32 CFR 1290.5 - Background.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Background. 1290.5 Section 1290.5 National Defense Other Regulations Relating to National Defense DEFENSE LOGISTICS AGENCY MISCELLANEOUS PREPARING AND PROCESSING MINOR OFFENSES AND VIOLATION NOTICES REFERRED TO U.S. DISTRICT COURTS §...