Sample records for background gene duplication

  1. Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: a novel strategy to estimate gene duplication rates

    PubMed Central

    Pan, Deng; Zhang, Liqing

    2007-01-01

    Background The rate of gene duplication is an important parameter in the study of evolution, but the influence of gene conversion and technical problems have confounded previous attempts to provide a satisfying estimate. We propose a new strategy to estimate the rate that involves separate quantification of the rates of two different mechanisms of gene duplication and subsequent combination of the two rates, based on their respective contributions to the overall gene duplication rate. Results Previous estimates of gene duplication rates are based on small gene families. Therefore, to assess the applicability of this to families of all sizes, we looked at both two-copy gene families and the entire genome. We studied unequal crossover and retrotransposition, and found that these mechanisms of gene duplication are largely independent and account for a substantial amount of duplicated genes. Unequal crossover contributed more to duplications in the entire genome than retrotransposition did, but this contribution was significantly less in two-copy gene families, and duplicated genes arising from this mechanism are more likely to be retained. Combining rates of duplication using the two mechanisms, we estimated the overall rates to be from approximately 0.515 to 1.49 × 10-3 per gene per million years in human, and from approximately 1.23 to 4.23 × 10-3 in mouse. The rates estimated from two-copy gene families are always lower than those from the entire genome, and so it is not appropriate to use small families to estimate the rate for the entire genome. Conclusion We present a novel strategy for estimating gene duplication rates. Our results show that different mechanisms contribute differently to the evolution of small and large gene families. PMID:17683522

  2. Evolution of Gene Duplication in Plants.

    PubMed

    Panchy, Nicholas; Lehti-Shiu, Melissa; Shiu, Shin-Han

    2016-08-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. The early stages of duplicate gene evolution

    PubMed Central

    Moore, Richard C.; Purugganan, Michael D.

    2003-01-01

    Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323

  4. Evolution of Gene Duplication in Plants1[OPEN

    PubMed Central

    2016-01-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. PMID:27288366

  5. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.

    PubMed

    Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet

    2016-02-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. © 2016 American Society of Plant Biologists. All rights reserved.

  6. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN

    PubMed Central

    Li, Zhen; Van de Peer, Yves; De Smet, Riet

    2016-01-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215

  7. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    USDA-ARS?s Scientific Manuscript database

    Background: Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most wide...

  8. Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication.

    PubMed

    Chapman, Brad A; Bowers, John E; Feltus, Frank A; Paterson, Andrew H

    2006-02-21

    Genome duplication followed by massive gene loss has permanently shaped the genomes of many higher eukaryotes, particularly angiosperms. It has long been believed that a primary advantage of genome duplication is the opportunity for the evolution of genes with new functions by modification of duplicated genes. If so, then patterns of genetic diversity among strains within taxa might reveal footprints of selection that are consistent with this advantage. Contrary to classical predictions that duplicated genes may be relatively free to acquire unique functionality, we find among both Arabidopsis ecotypes and Oryza subspecies that SNPs encode less radical amino acid changes in genes for which there exists a duplicated copy at a "paleologous" locus than in "singleton" genes. Preferential retention of duplicated genes encoding long complex proteins and their unexpectedly slow divergence (perhaps because of homogenization) suggest that a primary advantage of retaining duplicated paleologs may be the buffering of crucial functions. Functional buffering and functional divergence may represent extremes in the spectrum of duplicated gene fates. Functional buffering may be especially important during "genomic turmoil" immediately after genome duplication but continues to act approximately 60 million years later, and its gradual deterioration may contribute cyclicality to genome duplication in some lineages.

  9. Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication

    PubMed Central

    Chapman, Brad A.; Bowers, John E.; Feltus, Frank A.; Paterson, Andrew H.

    2006-01-01

    Genome duplication followed by massive gene loss has permanently shaped the genomes of many higher eukaryotes, particularly angiosperms. It has long been believed that a primary advantage of genome duplication is the opportunity for the evolution of genes with new functions by modification of duplicated genes. If so, then patterns of genetic diversity among strains within taxa might reveal footprints of selection that are consistent with this advantage. Contrary to classical predictions that duplicated genes may be relatively free to acquire unique functionality, we find among both Arabidopsis ecotypes and Oryza subspecies that SNPs encode less radical amino acid changes in genes for which there exists a duplicated copy at a “paleologous” locus than in “singleton” genes. Preferential retention of duplicated genes encoding long complex proteins and their unexpectedly slow divergence (perhaps because of homogenization) suggest that a primary advantage of retaining duplicated paleologs may be the buffering of crucial functions. Functional buffering and functional divergence may represent extremes in the spectrum of duplicated gene fates. Functional buffering may be especially important during “genomic turmoil” immediately after genome duplication but continues to act ≈60 million years later, and its gradual deterioration may contribute cyclicality to genome duplication in some lineages. PMID:16467140

  10. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene

    PubMed Central

    Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil

    2007-01-01

    Background Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Results Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. Conclusion The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains. PMID:18047649

  11. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster

    PubMed Central

    Remnant, Emily J.; Good, Robert T.; Schmidt, Joshua M.; Lumb, Christopher; Robin, Charles; Daborn, Phillip J.; Batterham, Philip

    2013-01-01

    The Resistance to Dieldrin gene, Rdl, encodes a GABA-gated chloride channel subunit that is targeted by cyclodiene and phenylpyrazole insecticides. The gene was first characterized in Drosophila melanogaster by genetic mapping of resistance to the cyclodiene dieldrin. The 4,000-fold resistance observed was due to a single amino acid replacement, Ala301 to Ser. The equivalent change was subsequently identified in Rdl orthologs of a large range of resistant insect species. Here, we report identification of a duplication at the Rdl locus in D. melanogaster. The 113-kb duplication contains one WT copy of Rdl and a second copy with two point mutations: an Ala301 to Ser resistance mutation and Met360 to Ile replacement. Individuals with this duplication exhibit intermediate dieldrin resistance compared with single copy Ser301 homozygotes, reduced temperature sensitivity, and altered RNA editing associated with the resistant allele. Ectopic recombination between Roo transposable elements is involved in generating this genomic rearrangement. The duplication phenotypes were confirmed by construction of a transgenic, artificial duplication integrating the 55.7-kb Rdl locus with a Ser301 change into an Ala301 background. Gene duplications can contribute significantly to the evolution of insecticide resistance, most commonly by increasing the amount of gene product produced. Here however, duplication of the Rdl target site creates permanent heterozygosity, providing unique potential for adaptive mutations to accrue in one copy, without abolishing the endogenous role of an essential gene. PMID:23959864

  12. The Natural History of Class I Primate Alcohol Dehydrogenases Includes Gene Duplication, Gene Loss, and Gene Conversion

    PubMed Central

    Carrigan, Matthew A.; Uryasev, Oleg; Davis, Ross P.; Zhai, LanMin; Hurley, Thomas D.; Benner, Steven A.

    2012-01-01

    Background Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s), where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs) and hominoids. Methodology/Principal Findings To build a preferred model for the natural history of ADH1s, we determined the sequences of nine new ADH1 genes, finding for the first time multiple paralogs in various prosimians (lemurs, strepsirhines). Database mining then identified novel ADH1 paralogs in both macaque (an OWM) and marmoset (a NWM). These were used with the previously identified human paralogs to resolve controversies relating to dates of duplication and gene conversion in the ADH1 family. Central to these controversies are differences in the topologies of trees generated from exonic (coding) sequences and intronic sequences. Conclusions/Significance We provide evidence that gene conversions are the primary source of difference, using molecular clock dating of duplications and analyses of microinsertions and deletions (micro-indels). The tree topology inferred from intron sequences appear to more correctly represent the natural history of ADH1s, with the ADH1 paralogs in platyrrhines (NWMs) and catarrhines (OWMs and hominoids) having arisen by duplications shortly predating the divergence of OWMs and NWMs. We also conclude that paralogs in lemurs arose independently. Finally, we identify errors in database interpretation as the source of controversies concerning gene conversion. These analyses provide a model for the natural history of ADH1s that posits four ADH1 paralogs in

  13. Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms

    PubMed Central

    Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P.; Feltus, F. Alex; Paterson, Andrew H.

    2011-01-01

    Background Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. Results In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Conclusion Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution. PMID:22164235

  14. Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes

    PubMed Central

    2013-01-01

    Background Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. Results Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. Conclusions Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted

  15. Functional requirements driving the gene duplication in 12 Drosophila species.

    PubMed

    Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui

    2013-08-15

    Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.

  16. Gene duplication and the evolution of phenotypic diversity in insect societies.

    PubMed

    Chau, Linh M; Goodisman, Michael A D

    2017-12-01

    Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste-, sex-, behavior-, and tissue-biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  17. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.

    PubMed

    Lu, Jianguo; Peatman, Eric; Tang, Haibao; Lewis, Joshua; Liu, Zhanjiang

    2012-06-15

    Gene duplication has had a major impact on genome evolution. Localized (or tandem) duplication resulting from unequal crossing over and whole genome duplication are believed to be the two dominant mechanisms contributing to vertebrate genome evolution. While much scrutiny has been directed toward discerning patterns indicative of whole-genome duplication events in teleost species, less attention has been paid to the continuous nature of gene duplications and their impact on the size, gene content, functional diversity, and overall architecture of teleost genomes. Here, using a Markov clustering algorithm directed approach we catalogue and analyze patterns of gene duplication in the four model teleost species with chromosomal coordinates: zebrafish, medaka, stickleback, and Tetraodon. Our analyses based on set size, duplication type, synonymous substitution rate (Ks), and gene ontology emphasize shared and lineage-specific patterns of genome evolution via gene duplication. Most strikingly, our analyses highlight the extraordinary duplication and retention rate of recent duplicates in zebrafish and their likely role in the structural and functional expansion of the zebrafish genome. We find that the zebrafish genome is remarkable in its large number of duplicated genes, small duplicate set size, biased Ks distribution toward minimal mutational divergence, and proportion of tandem and intra-chromosomal duplicates when compared with the other teleost model genomes. The observed gene duplication patterns have played significant roles in shaping the architecture of teleost genomes and appear to have contributed to the recent functional diversification and divergence of important physiological processes in zebrafish. We have analyzed gene duplication patterns and duplication types among the available teleost genomes and found that a large number of genes were tandemly and intrachromosomally duplicated, suggesting their origin of independent and continuous duplication

  18. Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion

    PubMed Central

    Fawcett, Jeffrey A.; Innan, Hideki

    2011-01-01

    Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples. PMID:24710144

  19. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae).

    PubMed

    Baker, Richard H; Narechania, Apurva; Johns, Philip M; Wilkinson, Gerald S

    2012-08-19

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.

  20. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae)

    PubMed Central

    Baker, Richard H.; Narechania, Apurva; Johns, Philip M.; Wilkinson, Gerald S.

    2012-01-01

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict. PMID:22777023

  1. New genes from old: asymmetric divergence of gene duplicates and the evolution of development.

    PubMed

    Holland, Peter W H; Marlétaz, Ferdinand; Maeso, Ignacio; Dunwell, Thomas L; Paps, Jordi

    2017-02-05

    Gene duplications and gene losses have been frequent events in the evolution of animal genomes, with the balance between these two dynamic processes contributing to major differences in gene number between species. After gene duplication, it is common for both daughter genes to accumulate sequence change at approximately equal rates. In some cases, however, the accumulation of sequence change is highly uneven with one copy radically diverging from its paralogue. Such 'asymmetric evolution' seems commoner after tandem gene duplication than after whole-genome duplication, and can generate substantially novel genes. We describe examples of asymmetric evolution in duplicated homeobox genes of moths, molluscs and mammals, in each case generating new homeobox genes that were recruited to novel developmental roles. The prevalence of asymmetric divergence of gene duplicates has been underappreciated, in part, because the origin of highly divergent genes can be difficult to resolve using standard phylogenetic methods.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).

  2. An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens

    PubMed Central

    Rensing, Stefan A; Ick, Julia; Fawcett, Jeffrey A; Lang, Daniel; Zimmer, Andreas; Van de Peer, Yves; Reski, Ralf

    2007-01-01

    Background: Analyses of complete genomes and large collections of gene transcripts have shown that most, if not all seed plants have undergone one or more genome duplications in their evolutionary past. Results: In this study, based on a large collection of EST sequences, we provide evidence that the haploid moss Physcomitrella patens is a paleopolyploid as well. Based on the construction of linearized phylogenetic trees we infer the genome duplication to have occurred between 30 and 60 million years ago. Gene Ontology and pathway association of the duplicated genes in P. patens reveal different biases of gene retention compared with seed plants. Conclusion: Metabolic genes seem to have been retained in excess following the genome duplication in P. patens. This might, at least partly, explain the versatility of metabolism, as described for P. patens and other mosses, in comparison to other land plants. PMID:17683536

  3. Identification of three duplicated Spin genes in medaka (Oryzias latipes).

    PubMed

    Wang, Xiao-Lei; Mei, Jie; Sun, Min; Hong, Yun-Han; Gui, Jian-Fang

    2005-05-09

    Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them.

  4. Tempo and Mode of Gene Duplication in Mammalian Ribosomal Protein Evolution

    PubMed Central

    Gajdosik, Matthew D.; Simon, Amanda; Nelson, Craig E.

    2014-01-01

    Gene duplication has been widely recognized as a major driver of evolutionary change and organismal complexity through the generation of multi-gene families. Therefore, understanding the forces that govern the evolution of gene families through the retention or loss of duplicated genes is fundamentally important in our efforts to study genome evolution. Previous work from our lab has shown that ribosomal protein (RP) genes constitute one of the largest classes of conserved duplicated genes in mammals. This result was surprising due to the fact that ribosomal protein genes evolve slowly and transcript levels are very tightly regulated. In our present study, we identified and characterized all RP duplicates in eight mammalian genomes in order to investigate the tempo and mode of ribosomal protein family evolution. We show that a sizable number of duplicates are transcriptionally active and are very highly conserved. Furthermore, we conclude that existing gene duplication models do not readily account for the preservation of a very large number of intact retroduplicated ribosomal protein (RT-RP) genes observed in mammalian genomes. We suggest that selection against dominant-negative mutations may underlie the unexpected retention and conservation of duplicated RP genes, and may shape the fate of newly duplicated genes, regardless of duplication mechanism. PMID:25369106

  5. Genomic analysis reveals extensive gene duplication within the bovine TRB locus

    PubMed Central

    Connelley, Timothy; Aerts, Jan; Law, Andy; Morrison, W Ivan

    2009-01-01

    Background Diverse TR and IG repertoires are generated by V(D)J somatic recombination. Genomic studies have been pivotal in cataloguing the V, D, J and C genes present in the various TR/IG loci and describing how duplication events have expanded the number of these genes. Such studies have also provided insights into the evolution of these loci and the complex mechanisms that regulate TR/IG expression. In this study we analyze the sequence of the third bovine genome assembly to characterize the germline repertoire of bovine TRB genes and compare the organization, evolution and regulatory structure of the bovine TRB locus with that of humans and mice. Results The TRB locus in the third bovine genome assembly is distributed over 5 scaffolds, extending to ~730 Kb. The available sequence contains 134 TRBV genes, assigned to 24 subgroups, and 3 clusters of DJC genes, each comprising a single TRBD gene, 5–7 TRBJ genes and a single TRBC gene. Seventy-nine of the TRBV genes are predicted to be functional. Comparison with the human and murine TRB loci shows that the gene order, as well as the sequences of non-coding elements that regulate TRB expression, are highly conserved in the bovine. Dot-plot analyses demonstrate that expansion of the genomic TRBV repertoire has occurred via a complex and extensive series of duplications, predominantly involving DNA blocks containing multiple genes. These duplication events have resulted in massive expansion of several TRBV subgroups, most notably TRBV6, 9 and 21 which contain 40, 35 and 16 members respectively. Similarly, duplication has lead to the generation of a third DJC cluster. Analyses of cDNA data confirms the diversity of the TRBV genes and, in addition, identifies a substantial number of TRBV genes, predominantly from the larger subgroups, which are still absent from the genome assembly. The observed gene duplication within the bovine TRB locus has created a repertoire of phylogenetically diverse functional TRBV genes

  6. A limited role for gene duplications in the evolution of platypus venom.

    PubMed

    Wong, Emily S W; Papenfuss, Anthony T; Whittington, Camilla M; Warren, Wesley C; Belov, Katherine

    2012-01-01

    Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the "venome" of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation.

  7. A Limited Role for Gene Duplications in the Evolution of Platypus Venom

    PubMed Central

    Wong, Emily S. W.; Papenfuss, Anthony T.; Whittington, Camilla M.; Warren, Wesley C.; Belov, Katherine

    2012-01-01

    Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the “venome” of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation. PMID:21816864

  8. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.

    PubMed

    Venkatachalam, Ananda B; Parmar, Manoj B; Wright, Jonathan M

    2017-08-01

    Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.

  9. Genome Duplication and Gene Loss Affect the Evolution of Heat Shock Transcription Factor Genes in Legumes

    PubMed Central

    Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species. PMID:25047803

  10. PTGBase: an integrated database to study tandem duplicated genes in plants.

    PubMed

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54 130 tandem duplicated gene clusters (129 652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. © The Author(s) 2015. Published by Oxford University Press.

  11. Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization.

    PubMed

    Gout, Jean-Francois; Lynch, Michael

    2015-08-01

    Whole-genome duplications (WGDs) have contributed to gene-repertoire enrichment in many eukaryotic lineages. However, most duplicated genes are eventually lost and it is still unclear why some duplicated genes are evolutionary successful whereas others quickly turn to pseudogenes. Here, we show that dosage constraints are major factors opposing post-WGD gene loss in several Paramecium species that share a common ancestral WGD. We propose a model where a majority of WGD-derived duplicates preserve their ancestral function and are retained to produce enough of the proteins performing this same ancestral function. Under this model, the expression level of individual duplicated genes can evolve neutrally as long as they maintain a roughly constant summed expression, and this allows random genetic drift toward uneven contributions of the two copies to total expression. Our analysis suggests that once a high level of imbalance is reached, which can require substantial lengths of time, the copy with the lowest expression level contributes a small enough fraction of the total expression that selection no longer opposes its loss. Extension of our analysis to yeast species sharing a common ancestral WGD yields similar results, suggesting that duplicated-gene retention for dosage constraints followed by divergence in expression level and eventual deterministic gene loss might be a universal feature of post-WGD evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Complexity of Gene Expression Evolution after Duplication: Protein Dosage Rebalancing

    PubMed Central

    Rogozin, Igor B.

    2014-01-01

    Ongoing debates about functional importance of gene duplications have been recently intensified by a heated discussion of the “ortholog conjecture” (OC). Under the OC, which is central to functional annotation of genomes, orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of gene ontology (GO) annotations and expression profiles, among within-species paralogs compared to orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. Subsequent studies suggested that the OC appears to be generally valid when applied to mammalian evolution but the complete picture of evolution of gene expression also has to incorporate lineage-specific aspects of paralogy. The observed complexity of gene expression evolution after duplication can be explained through selection for gene dosage effect combined with the duplication-degeneration-complementation model. This paper discusses expression divergence of recent duplications occurring before functional divergence of proteins encoded by duplicate genes. PMID:25197576

  13. Prevalent Role of Gene Features in Determining Evolutionary Fates of Whole-Genome Duplication Duplicated Genes in Flowering Plants1[W][OA

    PubMed Central

    Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi

    2013-01-01

    The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs. PMID:23396833

  14. Rapid bursts of androgen-binding protein (Abp) gene duplication occurred independently in diverse mammals

    PubMed Central

    2008-01-01

    Background The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) α, β and γ subunits. Further investigation of 14 α-like (Abpa) and 13 β- or γ-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Results Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. Conclusion We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification. PMID:18269759

  15. The evolution of duplicate gene expression in mammalian organs

    PubMed Central

    Guschanski, Katerina; Warnefors, Maria; Kaessmann, Henrik

    2017-01-01

    Gene duplications generate genomic raw material that allows the emergence of novel functions, likely facilitating adaptive evolutionary innovations. However, global assessments of the functional and evolutionary relevance of duplicate genes in mammals were until recently limited by the lack of appropriate comparative data. Here, we report a large-scale study of the expression evolution of DNA-based functional gene duplicates in three major mammalian lineages (placental mammals, marsupials, egg-laying monotremes) and birds, on the basis of RNA sequencing (RNA-seq) data from nine species and eight organs. We observe dynamic changes in tissue expression preference of paralogs with different duplication ages, suggesting differential contribution of paralogs to specific organ functions during vertebrate evolution. Specifically, we show that paralogs that emerged in the common ancestor of bony vertebrates are enriched for genes with brain-specific expression and provide evidence for differential forces underlying the preferential emergence of young testis- and liver-specific expressed genes. Further analyses uncovered that the overall spatial expression profiles of gene families tend to be conserved, with several exceptions of pronounced tissue specificity shifts among lineage-specific gene family expansions. Finally, we trace new lineage-specific genes that may have contributed to the specific biology of mammalian organs, including the little-studied placenta. Overall, our study provides novel and taxonomically broad evidence for the differential contribution of duplicate genes to tissue-specific transcriptomes and for their importance for the phenotypic evolution of vertebrates. PMID:28743766

  16. Global analysis of human duplicated genes reveals the relative importance of whole-genome duplicates originated in the early vertebrate evolution.

    PubMed

    Acharya, Debarun; Ghosh, Tapash C

    2016-01-22

    Gene duplication is a genetic mutation that creates functionally redundant gene copies that are initially relieved from selective pressures and may adapt themselves to new functions with time. The levels of gene duplication may vary from small-scale duplication (SSD) to whole genome duplication (WGD). Studies with yeast revealed ample differences between these duplicates: Yeast WGD pairs were functionally more similar, less divergent in subcellular localization and contained a lesser proportion of essential genes. In this study, we explored the differences in evolutionary genomic properties of human SSD and WGD genes, with the identifiable human duplicates coming from the two rounds of whole genome duplication occurred early in vertebrate evolution. We observed that these two groups of duplicates were also dissimilar in terms of their evolutionary and genomic properties. But interestingly, this is not like the same observed in yeast. The human WGDs were found to be functionally less similar, diverge more in subcellular level and contain a higher proportion of essential genes than the SSDs, all of which are opposite from yeast. Additionally, we explored that human WGDs were more divergent in their gene expression profile, have higher multifunctionality and are more often associated with disease, and are evolutionarily more conserved than human SSDs. Our study suggests that human WGD duplicates are more divergent and entails the adaptation of WGDs to novel and important functions that consequently lead to their evolutionary conservation in the course of evolution.

  17. Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution.

    PubMed

    Marlétaz, Ferdinand; Maeso, Ignacio; Faas, Laura; Isaacs, Harry V; Holland, Peter W H

    2015-08-01

    The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates.

  18. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    PubMed

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  19. Comparative inference of duplicated genes produced by polyploidization in soybean genome.

    PubMed

    Yang, Yanmei; Wang, Jinpeng; Di, Jianyong

    2013-01-01

    Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.

  20. Consensus properties and their large-scale applications for the gene duplication problem.

    PubMed

    Moon, Jucheol; Lin, Harris T; Eulenstein, Oliver

    2016-06-01

    Solving the gene duplication problem is a classical approach for species tree inference from gene trees that are confounded by gene duplications. This problem takes a collection of gene trees and seeks a species tree that implies the minimum number of gene duplications. Wilkinson et al. posed the conjecture that the gene duplication problem satisfies the desirable Pareto property for clusters. That is, for every instance of the problem, all clusters that are commonly present in the input gene trees of this instance, called strict consensus, will also be found in every solution to this instance. We prove that this conjecture does not generally hold. Despite this negative result we show that the gene duplication problem satisfies a weaker version of the Pareto property where the strict consensus is found in at least one solution (rather than all solutions). This weaker property contributes to our design of an efficient scalable algorithm for the gene duplication problem. We demonstrate the performance of our algorithm in analyzing large-scale empirical datasets. Finally, we utilize the algorithm to evaluate the accuracy of standard heuristics for the gene duplication problem using simulated datasets.

  1. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  2. Both mechanism and age of duplications contribute to biased gene retention patterns in plants.

    PubMed

    Rody, Hugo V S; Baute, Gregory J; Rieseberg, Loren H; Oliveira, Luiz O

    2017-01-06

    All extant seed plants are successful paleopolyploids, whose genomes carry duplicate genes that have survived repeated episodes of diploidization. However, the survival of gene duplicates is biased with respect to gene function and mechanism of duplication. Transcription factors, in particular, are reported to be preferentially retained following whole-genome duplications (WGDs), but disproportionately lost when duplicated by tandem events. An explanation for this pattern is provided by the Gene Balance Hypothesis (GBH), which posits that duplicates of highly connected genes are retained following WGDs to maintain optimal stoichiometry among gene products; but such connected gene duplicates are disfavored following tandem duplications. We used genomic data from 25 taxonomically diverse plant species to investigate the roles of duplication mechanism, gene function, and age of duplication in the retention of duplicate genes. Enrichment analyses were conducted to identify Gene Ontology (GO) functional categories that were overrepresented in either WGD or tandem duplications, or across ranges of divergence times. Tandem paralogs were much younger, on average, than WGD paralogs and the most frequently overrepresented GO categories were not shared between tandem and WGD paralogs. Transcription factors were overrepresented among ancient paralogs regardless of mechanism of origin or presence of a WGD. Also, in many cases, there was no bias toward transcription factor retention following recent WGDs. Both the fixation and the retention of duplicated genes in plant genomes are context-dependent events. The strong bias toward ancient transcription factor duplicates can be reconciled with the GBH if selection for optimal stoichiometry among gene products is strongest following the earliest polyploidization events and becomes increasingly relaxed as gene families expand.

  3. Evolution of tuf genes: ancient duplication, differential loss and gene conversion.

    PubMed

    Lathe, W C; Bork, P

    2001-08-03

    The tuf gene of eubacteria, encoding the EF-tu elongation factor, was duplicated early in the evolution of the taxon. Phylogenetic and genomic location analysis of 20 complete eubacterial genomes suggests that this ancient duplication has been differentially lost and maintained in eubacteria.

  4. Levels of duplicate gene expression in armoured catfishes.

    PubMed

    Dunham, R A; Philipp, D P; Whitt, G S

    1980-01-01

    Species of armoured catfishes differ significantly in their cellular DNA content and chromosome number. Starch gel electrophoresis of isozymes was used to determine whether each of 16 enzyme loci was expressed in a single or duplicate state. The percent of enzyme loci exhibiting duplicate locus expression in Corydoras aeneus, Corydoras julii, Corydoras melanistius, and Corydoras myersi was 37.5 percent, 18.75 percent, 12.5 percent, and 6.25 percent, respectively. The percentage of loci expressed in duplicate is higher in the species with higher haploid DNA contents, which are 4.4 pg, 3.0 pg, and 2.3 pg, respectively. These differences in DNA contents are also associated with differences in chromosome number. These data are consistent with the hypothesis that increases in DNA contents and enzyme loci occur both by tetraploidization and by regional gene duplication and that these increases are then followed by a partial loss of DNA and a reduction in the number of the duplicate isozyme loci expressed. Such analyses provide insight into the mechanisms of genome amplification and reduction as well as insights into the fats of duplicate genes.

  5. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  6. Inferring evolution of gene duplicates using probabilistic models and nonparametric belief propagation.

    PubMed

    Zeng, Jia; Hannenhalli, Sridhar

    2013-01-01

    Gene duplication, followed by functional evolution of duplicate genes, is a primary engine of evolutionary innovation. In turn, gene expression evolution is a critical component of overall functional evolution of paralogs. Inferring evolutionary history of gene expression among paralogs is therefore a problem of considerable interest. It also represents significant challenges. The standard approaches of evolutionary reconstruction assume that at an internal node of the duplication tree, the two duplicates evolve independently. However, because of various selection pressures functional evolution of the two paralogs may be coupled. The coupling of paralog evolution corresponds to three major fates of gene duplicates: subfunctionalization (SF), conserved function (CF) or neofunctionalization (NF). Quantitative analysis of these fates is of great interest and clearly influences evolutionary inference of expression. These two interrelated problems of inferring gene expression and evolutionary fates of gene duplicates have not been studied together previously and motivate the present study. Here we propose a novel probabilistic framework and algorithm to simultaneously infer (i) ancestral gene expression and (ii) the likely fate (SF, NF, CF) at each duplication event during the evolution of gene family. Using tissue-specific gene expression data, we develop a nonparametric belief propagation (NBP) algorithm to predict the ancestral expression level as a proxy for function, and describe a novel probabilistic model that relates the predicted and known expression levels to the possible evolutionary fates. We validate our model using simulation and then apply it to a genome-wide set of gene duplicates in human. Our results suggest that SF tends to be more frequent at the earlier stage of gene family expansion, while NF occurs more frequently later on.

  7. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene.

    PubMed

    Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil

    2007-11-29

    Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.

  8. Duplicated genes evolve independently in allopolyploid cotton.

    Treesearch

    Richard C. Cronn; Randall L. Small; Jonathan F. Wendel

    1999-01-01

    Of the many processes that generate gene duplications, polyploidy is unique in that entire genomes are duplicated. This process has been important in the evolution of many eukaryotic groups, and it occurs with high frequency in plants. Recent evidence suggests that polyploidization may be accompanied by rapid genomic changes, but the evolutionary fate of discrete loci...

  9. Selective Constraints on Coding Sequences of Nervous System Genes Are a Major Determinant of Duplicate Gene Retention in Vertebrates

    PubMed Central

    Roux, Julien; Liu, Jialin; Robinson-Rechavi, Marc

    2017-01-01

    Abstract The evolutionary history of vertebrates is marked by three ancient whole-genome duplications: two successive rounds in the ancestor of vertebrates, and a third one specific to teleost fishes. Biased loss of most duplicates enriched the genome for specific genes, such as slow evolving genes, but this selective retention process is not well understood. To understand what drives the long-term preservation of duplicate genes, we characterized duplicated genes in terms of their expression patterns. We used a new method of expression enrichment analysis, TopAnat, applied to in situ hybridization data from thousands of genes from zebrafish and mouse. We showed that the presence of expression in the nervous system is a good predictor of a higher rate of retention of duplicate genes after whole-genome duplication. Further analyses suggest that purifying selection against the toxic effects of misfolded or misinteracting proteins, which is particularly strong in nonrenewing neural tissues, likely constrains the evolution of coding sequences of nervous system genes, leading indirectly to the preservation of duplicate genes after whole-genome duplication. Whole-genome duplications thus greatly contributed to the expansion of the toolkit of genes available for the evolution of profound novelties of the nervous system at the base of the vertebrate radiation. PMID:28981708

  10. Circular DNA Intermediate in the Duplication of Nile Tilapia vasa Genes

    PubMed Central

    Fujimura, Koji; Conte, Matthew A.; Kocher, Thomas D.

    2011-01-01

    vasa is a highly conserved RNA helicase involved in animal germ cell development. Among vertebrate species, it is typically present as a single copy per genome. Here we report the isolation and sequencing of BAC clones for Nile tilapia vasa genes. Contrary to a previous report that Nile tilapia have a single copy of the vasa gene, we find evidence for at least three vasa gene loci. The vasa gene locus was duplicated from the original site and integrated into two distant novel sites. For one of these insertions we find evidence that the duplication was mediated by a circular DNA intermediate. This mechanism of gene duplication may explain the origin of isolated gene duplicates during the evolution of fish genomes. These data provide a foundation for studying the role of multiple vasa genes in the development of tilapia gonads, and will contribute to investigations of the molecular mechanisms of sex determination and evolution in cichlid fishes. PMID:22216289

  11. Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.

    PubMed

    Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich

    2004-03-01

    By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.

  12. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations.

    PubMed

    Fares, Mario A; Sabater-Muñoz, Beatriz; Toft, Christina

    2017-05-01

    Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Gene and domain duplication in the chordate Otx gene family: insights from amphioxus Otx.

    PubMed

    Williams, N A; Holland, P W

    1998-05-01

    We report the genomic organization and deduced protein sequence of a cephalochordate member of the Otx homeobox gene family (AmphiOtx) and show its probable single-copy state in the genome. We also present molecular phylogenetic analysis indicating that there was single ancestral Otx gene in the first chordates which was duplicated in the vertebrate lineage after it had split from the lineage leading to the cephalochordates. Duplication of a C-terminal protein domain has occurred specifically in the vertebrate lineage, strengthening the case for a single Otx gene in an ancestral chordate whose gene structure has been retained in an extant cephalochordate. Comparative analysis of protein sequences and published gene expression patterns suggest that the ancestral chordate Otx gene had roles in patterning the anterior mesendoderm and central nervous system. These roles were elaborated following Otx gene duplication in vertebrates, accompanied by regulatory and structural divergence, particularly of Otx1 descendant genes.

  14. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.

    PubMed

    Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J

    2016-11-04

    Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types

  15. Selective Constraints on Coding Sequences of Nervous System Genes Are a Major Determinant of Duplicate Gene Retention in Vertebrates.

    PubMed

    Roux, Julien; Liu, Jialin; Robinson-Rechavi, Marc

    2017-11-01

    The evolutionary history of vertebrates is marked by three ancient whole-genome duplications: two successive rounds in the ancestor of vertebrates, and a third one specific to teleost fishes. Biased loss of most duplicates enriched the genome for specific genes, such as slow evolving genes, but this selective retention process is not well understood. To understand what drives the long-term preservation of duplicate genes, we characterized duplicated genes in terms of their expression patterns. We used a new method of expression enrichment analysis, TopAnat, applied to in situ hybridization data from thousands of genes from zebrafish and mouse. We showed that the presence of expression in the nervous system is a good predictor of a higher rate of retention of duplicate genes after whole-genome duplication. Further analyses suggest that purifying selection against the toxic effects of misfolded or misinteracting proteins, which is particularly strong in nonrenewing neural tissues, likely constrains the evolution of coding sequences of nervous system genes, leading indirectly to the preservation of duplicate genes after whole-genome duplication. Whole-genome duplications thus greatly contributed to the expansion of the toolkit of genes available for the evolution of profound novelties of the nervous system at the base of the vertebrate radiation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Models for loosely linked gene duplicates suggest lengthy persistence of both copies.

    PubMed

    O'Hely, Martin; Wockner, Leesa

    2007-06-21

    Consider the appearance of a duplicate copy of a gene at a locus linked loosely, if at all, to the locus at which the gene is usually found. If all copies of the gene are subject to non-functionalizing mutations, then two fates are possible: loss of functional copies at the duplicate locus (loss of duplicate expression), or loss of functional copies at the original locus (map change). This paper proposes a simple model to address the probability of map change, the time taken for a map change and/or loss of duplicate expression, and considers where in the spectrum between loss of duplicate expression and map change such a duplicate complex is likely to be found. The findings are: the probability of map change is always half the reciprocal of the population size N, the time for a map change to occur is order NlogN generations, and that there is a marked tendency for duplicates to remain near equi-frequency with the gene at the original locus for a large portion of that time. This is in excellent agreement with simulations.

  17. Autosomal Genes of Autosomal/X-Linked Duplicated Gene Pairs and Germ-Line Proliferation in Caenorhabditis elegans

    PubMed Central

    Maciejowski, John; Ahn, James Hyungsoo; Cipriani, Patricia Giselle; Killian, Darrell J.; Chaudhary, Aisha L.; Lee, Ji Inn; Voutev, Roumen; Johnsen, Robert C.; Baillie, David L.; Gunsalus, Kristin C.; Fitch, David H. A.; Hubbard, E. Jane Albert

    2005-01-01

    We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena. PMID:15687263

  18. Gene Duplication, Population Genomics, and Species-Level Differentiation within a Tropical Mountain Shrub

    PubMed Central

    Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H.; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C.

    2014-01-01

    Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. PMID:25223767

  19. Phylogenetics of Lophotrochozoan bHLH Genes and the Evolution of Lineage-Specific Gene Duplicates.

    PubMed

    Bao, Yongbo; Xu, Fei; Shimeld, Sebastian M

    2017-04-01

    The gain and loss of genes encoding transcription factors is of importance to understanding the evolution of gene regulatory complexity. The basic helix-loop-helix (bHLH) genes encode a large superfamily of transcription factors. We systematically classify the bHLH genes from five mollusc, two annelid and one brachiopod genomes, tracing the pattern of bHLH gene evolution across these poorly studied Phyla. In total, 56-88 bHLH genes were identified in each genome, with most identifiable as members of previously described bilaterian families, or of new families we define. Of such families only one, Mesp, appears lost by all these species. Additional duplications have also played a role in the evolution of the bHLH gene repertoire, with many new lophotrochozoan-, mollusc-, bivalve-, or gastropod-specific genes defined. Using a combination of transcriptome mining, RT-PCR, and in situ hybridization we compared the expression of several of these novel genes in tissues and embryos of the molluscs Crassostrea gigas and Patella vulgata, finding both conserved expression and evidence for neofunctionalization. We also map the positions of the genes across these genomes, identifying numerous gene linkages. Some reflect recent paralog divergence by tandem duplication, others are remnants of ancient tandem duplications dating to the lophotrochozoan or bilaterian common ancestors. These data are built into a model of the evolution of bHLH genes in molluscs, showing formidable evolutionary stasis at the family level but considerable within-family diversification by tandem gene duplication. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. The Evolution of Pepsinogen C Genes in Vertebrates: Duplication, Loss and Functional Diversification

    PubMed Central

    Gonçalves, Odete; Wilson, Jonathan Mark

    2012-01-01

    Background Aspartic proteases comprise a large group of enzymes involved in peptide proteolysis. This collection includes prominent enzymes globally categorized as pepsins, which are derived from pepsinogen precursors. Pepsins are involved in gastric digestion, a hallmark of vertebrate physiology. An important member among the pepsinogens is pepsinogen C (Pgc). A particular aspect of Pgc is its apparent single copy status, which contrasts with the numerous gene copies found for example in pepsinogen A (Pga). Although gene sequences with similarity to Pgc have been described in some vertebrate groups, no exhaustive evolutionary framework has been considered so far. Methodology/Principal Findings By combining phylogenetics and genomic analysis, we find an unexpected Pgc diversity in the vertebrate sub-phylum. We were able to reconstruct gene duplication timings relative to the divergence of major vertebrate clades. Before tetrapod divergence, a single Pgc gene tandemly expanded to produce two gene lineages (Pgbc and Pgc2). These have been differentially retained in various classes. Accordingly, we find Pgc2 in sauropsids, amphibians and marsupials, but not in eutherian mammals. Pgbc was retained in amphibians, but duplicated in the ancestor of amniotes giving rise to Pgb and Pgc1. The latter was retained in mammals and probably in reptiles and marsupials but not in birds. Pgb was kept in all of the amniote clade with independent episodes of loss in some mammalian species. Lineage specific expansions of Pgc2 and Pgbc have also occurred in marsupials and amphibians respectively. We find that teleost and tetrapod Pgc genes reside in distinct genomic regions hinting at a possible translocation. Conclusions We conclude that the repertoire of Pgc genes is larger than previously reported, and that tandem duplications have modelled the history of Pgc genes. We hypothesize that gene expansion lead to functional divergence in tetrapods, coincident with the invasion of

  1. Gene duplication, population genomics, and species-level differentiation within a tropical mountain shrub.

    PubMed

    Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C

    2014-09-14

    Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes.

    PubMed

    Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu

    2011-12-20

    The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.

  3. Extensive Local Gene Duplication and Functional Divergence among Paralogs in Atlantic Salmon

    PubMed Central

    Warren, Ian A.; Ciborowski, Kate L.; Casadei, Elisa; Hazlerigg, David G.; Martin, Sam; Jordan, William C.; Sumner, Seirian

    2014-01-01

    Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle. PMID:24951567

  4. Dating and functional characterization of duplicated genes in the apple (Malus domestica Borkh.) by analyzing EST data.

    PubMed

    Sanzol, Javier

    2010-05-14

    Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species. This study evaluates the gene duplication and polyploidy history of the apple by characterizing duplicated genes in this species using EST data. Overall, 68% of the apple genes were clustered into families with a mean copy-number of 4.6. Analysis of the age distribution of gene duplications supported a continuous mode of small-scale duplications, plus two episodes of large-scale duplicates of vastly different ages. The youngest was consistent with the polyploid origin of the Pyrinae 37-48 MYBP, whereas the older may be related to gamma-triplication; an ancient hexapolyploidization previously characterized in the four sequenced eurosid genomes and basal to the eurosid-asterid divergence. Duplicated genes were studied for functional diversification with an emphasis on young paralogs; those originated during or after the formation of the Pyrinae lineage. Unequal assignment of single-copy genes and gene families to Gene Ontology categories suggested functional bias in the pattern of gene retention of paralogs. Young paralogs related to signal transduction, metabolism, and energy pathways have been preferentially retained. Non-random retention of duplicated genes seems to have mediated the expansion of gene families, some of which may have substantially increased their members after the origin of the Pyrinae. The joint analysis of over-duplicated functional categories and phylogenies, allowed evaluation of the role of both polyploidy and small-scale duplications during this process. Finally, gene expression analysis indicated that 82% of duplicated genes, including 80% of young

  5. Evolution dynamics of a model for gene duplication under adaptive conflict

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2014-06-01

    We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.

  6. Duplicated growth hormone genes in a passerine bird, the jungle crow (Corvus macrorhynchos).

    PubMed

    Arai, Natsumi; Iigo, Masayuki

    2010-07-02

    Molecular cloning, molecular phylogeny, gene structure and expression analyses of growth hormone (GH) were performed in a passerine bird, the jungle crow (Corvus macrorhynchos). Unexpectedly, duplicated GH cDNA and genes were identified and designated as GH1A and GH1B. In silico analyses identified the zebra finch orthologs. Both GH genes encode 217 amino acid residues and consist of five exons and four introns, spanning 5.2 kbp in GH1A and 4.2 kbp in GH1B. Predicted GH proteins of the jungle crow and zebra finch contain four conserved cysteine residues, suggesting duplicated GH genes are functional. Molecular phylogenetic analysis revealed that duplication of GH genes occur after divergence of the passerine lineage from the other avian orders as has been suggested from partial genomic DNA sequences of passerine GH genes. RT-PCR analyses confirmed expression of GH1A and GH1B in the pituitary gland. In addition, GH1A gene is expressed in all the tissues examined. However, expression of GH1B is confined to several brain areas and blood cells. These results indicate that the regulatory mechanisms of duplicated GH genes are different and that duplicated GH genes exert both endocrine and autocrine/paracrine functions. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Metallothionein Gene Duplications and Metal Tolerance in Natural Populations of Drosophila melanogaster

    PubMed Central

    Maroni, G.; Wise, J.; Young, J. E.; Otto, E.

    1987-01-01

    A search for duplications of the Drosophila melanogaster metallothionein gene (Mtn) yielded numerous examples of this type of chromosomal rearrangement. These duplications are distributed widely—we found them in samples from four continents, and they are functional—larvae carrying Mtn duplications produce more Mtn RNA and tolerate increased cadmium and copper concentrations. Six different duplication types were characterized by restriction-enzyme analyses using probes from the Mtn region. The restriction maps show that in four cases the sequences, ranging in size between 2.2 and 6.0 kb, are arranged as direct, tandem repeats; in two other cases, this basic pattern is modified by the insertion of a putative transposable element into one of the repeated units. Duplications of the D. melanogaster metallothionein gene such as those that we found in natural populations may represent early stages in the evolution of a gene family. PMID:2828157

  8. A diffusion approach to approximating preservation probabilities for gene duplicates.

    PubMed

    O'Hely, Martin

    2006-08-01

    Consider a haploid population and, within its genome, a gene whose presence is vital for the survival of any individual. Each copy of this gene is subject to mutations which destroy its function. Suppose one member of the population somehow acquires a duplicate copy of the gene, where the duplicate is fully linked to the original gene's locus. Preservation is said to occur if eventually the entire population consists of individuals descended from this one which initially carried the duplicate. The system is modelled by a finite state-space Markov process which in turn is approximated by a diffusion process, whence an explicit expression for the probability of preservation is derived. The event of preservation can be compared to the fixation of a selectively neutral gene variant initially present in a single individual, the probability of which is the reciprocal of the population size. For very weak mutation, this and the probability of preservation are equal, while as mutation becomes stronger, the preservation probability tends to double this reciprocal. This is in excellent agreement with simulation studies.

  9. Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disorders

    PubMed Central

    2014-01-01

    Background Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study. Methods From the AGP CNV genomic screen in 2,147 ASD individuals, we selected for characterization an ANXA1 gene duplication that was absent in 4,964 population-based controls. We further screened the duplication in a follow-up sample including 1,496 patients and 410 controls, and evaluated clinical correlations and family segregation. Sequencing of exonic/downstream ANXA1 regions was performed in 490 ASD patients for identification of additional variants. Results The ANXA1 duplication, overlapping the last four exons and 3’UTR region, had an overall prevalence of 11/3,643 (0.30%) in unrelated ASD patients but was not identified in 5,374 controls. Duplication carriers presented no distinctive clinical phenotype. Family analysis showed neuropsychiatric deficits and ASD traits in multiple relatives carrying the duplication, suggestive of a complex genetic inheritance. Sequencing of exonic regions and the 3’UTR identified 11 novel changes, but no obvious variants with clinical significance. Conclusions We provide multilevel evidence for a role of ANXA1 in ASD etiology. Given its important role as mediator of glucocorticoid function in a wide variety of brain processes, including neuroprotection, apoptosis, and control of the neuroendocrine system, the results add ANXA1 to the growing list of rare candidate genetic etiological factors for ASD. PMID:24720851

  10. Gene duplications in prokaryotes can be associated with environmental adaptation

    PubMed Central

    2010-01-01

    Background Gene duplication is a normal evolutionary process. If there is no selective advantage in keeping the duplicated gene, it is usually reduced to a pseudogene and disappears from the genome. However, some paralogs are retained. These gene products are likely to be beneficial to the organism, e.g. in adaptation to new environmental conditions. The aim of our analysis is to investigate the properties of paralog-forming genes in prokaryotes, and to analyse the role of these retained paralogs by relating gene properties to life style of the corresponding prokaryotes. Results Paralogs were identified in a number of prokaryotes, and these paralogs were compared to singletons of persistent orthologs based on functional classification. This showed that the paralogs were associated with for example energy production, cell motility, ion transport, and defence mechanisms. A statistical overrepresentation analysis of gene and protein annotations was based on paralogs of the 200 prokaryotes with the highest fraction of paralog-forming genes. Biclustering of overrepresented gene ontology terms versus species was used to identify clusters of properties associated with clusters of species. The clusters were classified using similarity scores on properties and species to identify interesting clusters, and a subset of clusters were analysed by comparison to literature data. This analysis showed that paralogs often are associated with properties that are important for survival and proliferation of the specific organisms. This includes processes like ion transport, locomotion, chemotaxis and photosynthesis. However, the analysis also showed that the gene ontology terms sometimes were too general, imprecise or even misleading for automatic analysis. Conclusions Properties described by gene ontology terms identified in the overrepresentation analysis are often consistent with individual prokaryote lifestyles and are likely to give a competitive advantage to the organism

  11. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms.

    PubMed

    Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P; Feltus, F Alex; Paterson, Andrew H

    2011-01-01

    Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution.

  12. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates.

    PubMed

    Cañestro, Cristian; Albalat, Ricard; Irimia, Manuel; Garcia-Fernàndez, Jordi

    2013-02-01

    The study of the evolutionary origin of vertebrates has been linked to the study of genome duplications since Susumo Ohno suggested that the successful diversification of vertebrate innovations was facilitated by two rounds of whole-genome duplication (2R-WGD) in the stem vertebrate. Since then, studies on the functional evolution of many genes duplicated in the vertebrate lineage have provided the grounds to support experimentally this link. This article reviews cases of gene duplications derived either from the 2R-WGD or from local gene duplication events in vertebrates, analyzing their impact on the evolution of developmental innovations. We analyze how gene regulatory networks can be rewired by the activity of transposable elements after genome duplications, discuss how different mechanisms of duplication might affect the fate of duplicated genes, and how the loss of gene duplicates might influence the fate of surviving paralogs. We also discuss the evolutionary relationships between gene duplication and alternative splicing, in particular in the vertebrate lineage. Finally, we discuss the role that the 2R-WGD might have played in the evolution of vertebrate developmental gene networks, paying special attention to those related to vertebrate key features such as neural crest cells, placodes, and the complex tripartite brain. In this context, we argue that current evidences points that the 2R-WGD may not be linked to the origin of vertebrate innovations, but to their subsequent diversification in a broad variety of complex structures and functions that facilitated the successful transition from peaceful filter-feeding non-vertebrate ancestors to voracious vertebrate predators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A diffusion model for the fate of tandem gene duplicates in diploids.

    PubMed

    O'Hely, Martin

    2007-06-01

    Suppose one chromosome in one member of a population somehow acquires a duplicate copy of the gene, fully linked to the original gene's locus. Preservation is the event that eventually every chromosome in the population is a descendant of the one which initially carried the duplicate. For a haploid population in which the absence of all copies of the gene is lethal, the probability of preservation has recently been estimated via a diffusion approximation. That approximation is shown to carry over to the case of diploids and arbitrary strong selection against the absence of the gene. The techniques used lead to some new results. In the large population limit, it is shown that the relative probability that descendants of a small number of individuals carrying multiple copies of the gene fix in the population is proportional to the number of copies carried. The probability of preservation is approximated when chromosomes carrying two copies of the gene are subject to additional, fully non-functionalizing mutations, thereby modelling either an additional cost of replicating a longer genome, or a partial duplication of the gene. In the latter case the preservation probability depends only on the mutation rate to null for the duplicated portion of the gene.

  14. Whole-Gene Positive Selection, Elevated Synonymous Substitution Rates, Duplication, and Indel Evolution of the Chloroplast clpP1 Gene

    PubMed Central

    Erixon, Per; Oxelman, Bengt

    2008-01-01

    Background Synonymous DNA substitution rates in the plant chloroplast genome are generally relatively slow and lineage dependent. Non-synonymous rates are usually even slower due to purifying selection acting on the genes. Positive selection is expected to speed up non-synonymous substitution rates, whereas synonymous rates are expected to be unaffected. Until recently, positive selection has seldom been observed in chloroplast genes, and large-scale structural rearrangements leading to gene duplications are hitherto supposed to be rare. Methodology/Principle Findings We found high substitution rates in the exons of the plastid clpP1 gene in Oenothera (the Evening Primrose family) and three separate lineages in the tribe Sileneae (Caryophyllaceae, the Carnation family). Introns have been lost in some of the lineages, but where present, the intron sequences have substitution rates similar to those found in other introns of their genomes. The elevated substitution rates of clpP1 are associated with statistically significant whole-gene positive selection in three branches of the phylogeny. In two of the lineages we found multiple copies of the gene. Neighboring genes present in the duplicated fragments do not show signs of elevated substitution rates or positive selection. Although non-synonymous substitutions account for most of the increase in substitution rates, synonymous rates are also markedly elevated in some lineages. Whereas plant clpP1 genes experiencing negative (purifying) selection are characterized by having very conserved lengths, genes under positive selection often have large insertions of more or less repetitive amino acid sequence motifs. Conclusions/Significance We found positive selection of the clpP1 gene in various plant lineages to correlated with repeated duplication of the clpP1 gene and surrounding regions, repetitive amino acid sequences, and increase in synonymous substitution rates. The present study sheds light on the controversial issue

  15. Dose-sensitivity, conserved non-coding sequences, and duplicate gene retention through multiple tetraploidies in the grasses.

    PubMed

    Schnable, James C; Pedersen, Brent S; Subramaniam, Sabarinath; Freeling, Michael

    2011-01-01

    Whole genome duplications, or tetraploidies, are an important source of increased gene content. Following whole genome duplication, duplicate copies of many genes are lost from the genome. This loss of genes is biased both in the classes of genes deleted and the subgenome from which they are lost. Many or all classes are genes preferentially retained as duplicate copies are engaged in dose sensitive protein-protein interactions, such that deletion of any one duplicate upsets the status quo of subunit concentrations, and presumably lowers fitness as a result. Transcription factors are also preferentially retained following every whole genome duplications studied. This has been explained as a consequence of protein-protein interactions, just as for other highly retained classes of genes. We show that the quantity of conserved noncoding sequences (CNSs) associated with genes predicts the likelihood of their retention as duplicate pairs following whole genome duplication. As many CNSs likely represent binding sites for transcriptional regulators, we propose that the likelihood of gene retention following tetraploidy may also be influenced by dose-sensitive protein-DNA interactions between the regulatory regions of CNS-rich genes - nicknamed bigfoot genes - and the proteins that bind to them. Using grass genomes, we show that differential loss of CNSs from one member of a pair following the pre-grass tetraploidy reduces its chance of retention in the subsequent maize lineage tetraploidy.

  16. Dose–Sensitivity, Conserved Non-Coding Sequences, and Duplicate Gene Retention Through Multiple Tetraploidies in the Grasses

    PubMed Central

    Schnable, James C.; Pedersen, Brent S.; Subramaniam, Sabarinath; Freeling, Michael

    2011-01-01

    Whole genome duplications, or tetraploidies, are an important source of increased gene content. Following whole genome duplication, duplicate copies of many genes are lost from the genome. This loss of genes is biased both in the classes of genes deleted and the subgenome from which they are lost. Many or all classes are genes preferentially retained as duplicate copies are engaged in dose sensitive protein–protein interactions, such that deletion of any one duplicate upsets the status quo of subunit concentrations, and presumably lowers fitness as a result. Transcription factors are also preferentially retained following every whole genome duplications studied. This has been explained as a consequence of protein–protein interactions, just as for other highly retained classes of genes. We show that the quantity of conserved noncoding sequences (CNSs) associated with genes predicts the likelihood of their retention as duplicate pairs following whole genome duplication. As many CNSs likely represent binding sites for transcriptional regulators, we propose that the likelihood of gene retention following tetraploidy may also be influenced by dose–sensitive protein–DNA interactions between the regulatory regions of CNS-rich genes – nicknamed bigfoot genes – and the proteins that bind to them. Using grass genomes, we show that differential loss of CNSs from one member of a pair following the pre-grass tetraploidy reduces its chance of retention in the subsequent maize lineage tetraploidy. PMID:22645525

  17. Comparative and Evolutionary Analysis of the HES/HEY Gene Family Reveal Exon/Intron Loss and Teleost Specific Duplication Events

    PubMed Central

    Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    Background HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. Methods and Findings In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Conclusions Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and

  18. PGDD: a database of gene and genome duplication in plants

    PubMed Central

    Lee, Tae-Ho; Tang, Haibao; Wang, Xiyin; Paterson, Andrew H.

    2013-01-01

    Genome duplication (GD) has permanently shaped the architecture and function of many higher eukaryotic genomes. The angiosperms (flowering plants) are outstanding models in which to elucidate consequences of GD for higher eukaryotes, owing to their propensity for chromosomal duplication or even triplication in a few cases. Duplicated genome structures often require both intra- and inter-genome alignments to unravel their evolutionary history, also providing the means to deduce both obvious and otherwise-cryptic orthology, paralogy and other relationships among genes. The burgeoning sets of angiosperm genome sequences provide the foundation for a host of investigations into the functional and evolutionary consequences of gene and GD. To provide genome alignments from a single resource based on uniform standards that have been validated by empirical studies, we built the Plant Genome Duplication Database (PGDD; freely available at http://chibba.agtec.uga.edu/duplication/), a web service providing synteny information in terms of colinearity between chromosomes. At present, PGDD contains data for 26 plants including bryophytes and chlorophyta, as well as angiosperms with draft genome sequences. In addition to the inclusion of new genomes as they become available, we are preparing new functions to enhance PGDD. PMID:23180799

  19. Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes.

    PubMed

    Studer, Romain A; Penel, Simon; Duret, Laurent; Robinson-Rechavi, Marc

    2008-09-01

    A stringent branch-site codon model was used to detect positive selection in vertebrate evolution. We show that the test is robust to the large evolutionary distances involved. Positive selection was detected in 77% of 884 genes studied. Most positive selection concerns a few sites on a single branch of the phylogenetic tree: Between 0.9% and 4.7% of sites are affected by positive selection depending on the branches. No functional category was overrepresented among genes under positive selection. Surprisingly, whole genome duplication had no effect on the prevalence of positive selection, whether the fish-specific genome duplication or the two rounds at the origin of vertebrates. Thus positive selection has not been limited to a few gene classes, or to specific evolutionary events such as duplication, but has been pervasive during vertebrate evolution.

  20. Independent Origin and Global Distribution of Distinct Plasmodium vivax Duffy Binding Protein Gene Duplications

    PubMed Central

    Hostetler, Jessica B.; Lo, Eugenia; Kanjee, Usheer; Amaratunga, Chanaki; Suon, Seila; Sreng, Sokunthea; Mao, Sivanna; Yewhalaw, Delenasaw; Mascarenhas, Anjali; Kwiatkowski, Dominic P.; Ferreira, Marcelo U.; Rathod, Pradipsinh K.; Yan, Guiyun; Fairhurst, Rick M.; Duraisingh, Manoj T.; Rayner, Julian C.

    2016-01-01

    Background Plasmodium vivax causes the majority of malaria episodes outside Africa, but remains a relatively understudied pathogen. The pathology of P. vivax infection depends critically on the parasite’s ability to recognize and invade human erythrocytes. This invasion process involves an interaction between P. vivax Duffy Binding Protein (PvDBP) in merozoites and the Duffy antigen receptor for chemokines (DARC) on the erythrocyte surface. Whole-genome sequencing of clinical isolates recently established that some P. vivax genomes contain two copies of the PvDBP gene. The frequency of this duplication is particularly high in Madagascar, where there is also evidence for P. vivax infection in DARC-negative individuals. The functional significance and global prevalence of this duplication, and whether there are other copy number variations at the PvDBP locus, is unknown. Methodology/Principal Findings Using whole-genome sequencing and PCR to study the PvDBP locus in P. vivax clinical isolates, we found that PvDBP duplication is widespread in Cambodia. The boundaries of the Cambodian PvDBP duplication differ from those previously identified in Madagascar, meaning that current molecular assays were unable to detect it. The Cambodian PvDBP duplication did not associate with parasite density or DARC genotype, and ranged in prevalence from 20% to 38% over four annual transmission seasons in Cambodia. This duplication was also present in P. vivax isolates from Brazil and Ethiopia, but not India. Conclusions/Significance PvDBP duplications are much more widespread and complex than previously thought, and at least two distinct duplications are circulating globally. The same duplication boundaries were identified in parasites from three continents, and were found at high prevalence in human populations where DARC-negativity is essentially absent. It is therefore unlikely that PvDBP duplication is associated with infection of DARC-negative individuals, but functional tests

  1. Autopolyploidy genome duplication preserves other ancient genome duplications in Atlantic salmon (Salmo salar).

    PubMed

    Christensen, Kris A; Davidson, William S

    2017-01-01

    Salmonids (e.g. Atlantic salmon, Pacific salmon, and trouts) have a long legacy of genome duplication. In addition to three ancient genome duplications that all teleosts are thought to share, salmonids have had one additional genome duplication. We explored a methodology for untangling these duplications from each other to better understand them in Atlantic salmon. In this methodology, homeologous regions (paralogous/duplicated genomic regions originating from a whole genome duplication) from the most recent genome duplication were assumed to have duplicated genes at greater density and have greater sequence similarity. This assumption was used to differentiate duplicated gene pairs in Atlantic salmon that are either from the most recent genome duplication or from earlier duplications. From a comparison with multiple vertebrate species, it is clear that Atlantic salmon have retained more duplicated genes from ancient genome duplications than other vertebrates--often at higher density in the genome and containing fewer synonymous mutations. It may be that polysomic inheritance is the mechanism responsible for maintaining ancient gene duplicates in salmonids. Polysomic inheritance (when multiple chromosomes pair during meiosis) is thought to be relatively common in salmonids compared to other vertebrate species. These findings illuminate how genome duplications may not only increase the number of duplicated genes, but may also be involved in the maintenance of them from previous genome duplications as well.

  2. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes.

    PubMed

    Toloza-Villalobos, Jessica; Arroyo, José Ignacio; Opazo, Juan C

    2015-01-01

    The circadian clock is a central oscillator that coordinates endogenous rhythms. Members of six gene families underlie the metabolic machinery of this system. Although this machinery appears to correspond to a highly conserved genetic system in metazoans, it has been recognized that vertebrates possess a more diverse gene inventory than that of non-vertebrates. This difference could have originated in the two successive rounds of whole-genome duplications that took place in the common ancestor of the group. Teleost fish underwent an extra event of whole-genome duplication, which is thought to have provided an abundance of raw genetic material for the biological innovations that facilitated the radiation of the group. In this study, we assessed the relative contributions of whole-genome duplication and small-scale gene duplication to generate the repertoire of genes associated with the circadian clock of teleost fish. To achieve this goal, we annotated genes from six gene families associated with the circadian clock in eight teleost fish species, and we reconstructed their evolutionary history by inferring phylogenetic relationships. Our comparative analysis indicated that teleost species possess a variable repertoire of genes related to the circadian clock gene families and that the actual diversity of these genes has been shaped by a variety of phenomena, such as the complete deletion of ohnologs, the differential retention of genes, and lineage-specific gene duplications. From a functional perspective, the subfunctionalization of two ohnolog genes (PER1a and PER1b) in zebrafish highlights the power of whole-genome duplications to generate biological diversity.

  3. Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies

    PubMed Central

    Pohl, Nélida; Sison-Mangus, Marilou P; Yee, Emily N; Liswi, Saif W; Briscoe, Adriana D

    2009-01-01

    Background The increase in availability of genomic sequences for a wide range of organisms has revealed gene duplication to be a relatively common event. Encounters with duplicate gene copies have consequently become almost inevitable in the context of collecting gene sequences for inferring species trees. Here we examine the effect of incorporating duplicate gene copies evolving at different rates on tree reconstruction and time estimation of recent and deep divergences in butterflies. Results Sequences from ultraviolet-sensitive (UVRh), blue-sensitive (BRh), and long-wavelength sensitive (LWRh) opsins,EF-1α and COI were obtained from 27 taxa representing the five major butterfly families (5535 bp total). Both BRh and LWRh are present in multiple copies in some butterfly lineages and the different copies evolve at different rates. Regardless of the phylogenetic reconstruction method used, we found that analyses of combined data sets using either slower or faster evolving copies of duplicate genes resulted in a single topology in agreement with our current understanding of butterfly family relationships based on morphology and molecules. Interestingly, individual analyses of BRh and LWRh sequences also recovered these family-level relationships. Two different relaxed clock methods resulted in similar divergence time estimates at the shallower nodes in the tree, regardless of whether faster or slower evolving copies were used, with larger discrepancies observed at deeper nodes in the phylogeny. The time of divergence between the monarch butterfly Danaus plexippus and the queen D. gilippus (15.3–35.6 Mya) was found to be much older than the time of divergence between monarch co-mimic Limenitis archippus and red-spotted purple L. arthemis (4.7–13.6 Mya), and overlapping with the time of divergence of the co-mimetic passionflower butterflies Heliconius erato and H. melpomene (13.5–26.1 Mya). Our family-level results are congruent with recent estimates found in

  4. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, K.; Sugiyama, N.; Kawanishi, C.

    1996-07-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10% - 25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP genemore » duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be an important genetic abnormality in PMD and affect myelin formation. 38 ref., 5 figs., 2 tabs.« less

  5. High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots

    PubMed Central

    Mondragón-Palomino, Mariana; Trontin, Charlotte

    2011-01-01

    Background and Aims The TCP family is an ancient group of plant developmental transcription factors that regulate cell division in vegetative and reproductive structures and are essential in the establishment of flower zygomorphy. In-depth research on eudicot TCPs has documented their evolutionary and developmental role. This has not happened to the same extent in monocots, although zygomorphy has been critical for the diversification of Orchidaceae and Poaceae, the largest families of this group. Investigating the evolution and function of TCP-like genes in a wider group of monocots requires a detailed phylogenetic analysis of all available sequence information and a system that facilitates comparing genetic and functional information. Methods The phylogenetic relationships of TCP-like genes in monocots were investigated by analysing sequences from the genomes of Zea mays, Brachypodium distachyon, Oryza sativa and Sorghum bicolor, as well as EST data from several other monocot species. Key Results All available monocot TCP-like sequences are associated in 20 major groups with an average identity ≥64 % and most correspond to well-supported clades of the phylogeny. Their sequence motifs and relationships of orthology were documented and it was found that 67 % of the TCP-like genes of Sorghum, Oryza, Zea and Brachypodium are in microsyntenic regions. This analysis suggests that two rounds of whole genome duplication drove the expansion of TCP-like genes in these species. Conclusions A system of classification is proposed where putative or recognized monocot TCP-like genes are assigned to a specific clade of PCF-, CIN- or CYC/tb1-like genes. Specific biases in sequence data of this family that must be tackled when studying its molecular evolution and phylogeny are documented. Finally, the significant retention of duplicated TCP genes from Zea mays is considered in the context of balanced gene drive. PMID:21444336

  6. Rapid diversification of FoxP2 in teleosts through gene duplication in the teleost-specific whole genome duplication event.

    PubMed

    Song, Xiaowei; Wang, Yajun; Tang, Yezhong

    2013-01-01

    As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication.

  7. Rapid Diversification of FoxP2 in Teleosts through Gene Duplication in the Teleost-Specific Whole Genome Duplication Event

    PubMed Central

    Song, Xiaowei; Wang, Yajun; Tang, Yezhong

    2013-01-01

    As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication. PMID:24349554

  8. Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon.

    PubMed

    Paterson, Andrew H; Chapman, Brad A; Kissinger, Jessica C; Bowers, John E; Feltus, Frank A; Estill, James C

    2006-11-01

    Genome duplication is potentially a good source of new genes, but such genes take time to evolve. We have found a group of "duplication-resistant" genes, which have undergone convergent restoration to singleton status following several independent genome duplications. Restoration of duplication-resistant genes to singleton status could be important to long-term survival of a polyploid lineage. Angiosperms show more frequent polyploidization and a higher degree of duplicate gene preservation than other paleopolyploids, making them well-suited to further study of duplication-resistant genes.

  9. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution

    PubMed Central

    Clarke, Thomas H.; Garb, Jessica E.; Hayashi, Cheryl Y.; Arensburger, Peter; Ayoub, Nadia A.

    2015-01-01

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). PMID:26058392

  10. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications

    PubMed Central

    Siegel, Nicol; Hoegg, Simone; Salzburger, Walter; Braasch, Ingo; Meyer, Axel

    2007-01-01

    Background The evolutionary lineage leading to the teleost fish underwent a whole genome duplication termed FSGD or 3R in addition to two prior genome duplications that took place earlier during vertebrate evolution (termed 1R and 2R). Resulting from the FSGD, additional copies of genes are present in fish, compared to tetrapods whose lineage did not experience the 3R genome duplication. Interestingly, we find that ParaHox genes do not differ in number in extant teleost fishes despite their additional genome duplication from the genomic situation in mammals, but they are distributed over twice as many paralogous regions in fish genomes. Results We determined the DNA sequence of the entire ParaHox C1 paralogon in the East African cichlid fish Astatotilapia burtoni, and compared it to orthologous regions in other vertebrate genomes as well as to the paralogous vertebrate ParaHox D paralogons. Evolutionary relationships among genes from these four chromosomal regions were studied with several phylogenetic algorithms. We provide evidence that the genes of the ParaHox C paralogous cluster are duplicated in teleosts, just as it had been shown previously for the D paralogon genes. Overall, however, synteny and cluster integrity seems to be less conserved in ParaHox gene clusters than in Hox gene clusters. Comparative analyses of non-coding sequences uncovered conserved, possibly co-regulatory elements, which are likely to contain promoter motives of the genes belonging to the ParaHox paralogons. Conclusion There seems to be strong stabilizing selection for gene order as well as gene orientation in the ParaHox C paralogon, since with a few exceptions, only the lengths of the introns and intergenic regions differ between the distantly related species examined. The high degree of evolutionary conservation of this gene cluster's architecture in particular – but possibly clusters of genes more generally – might be linked to the presence of promoter, enhancer or inhibitor

  11. Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins

    PubMed Central

    Hargreaves, Adam D.; Swain, Martin T.; Hegarty, Matthew J.; Logan, Darren W.; Mulley, John F.

    2014-01-01

    Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive “just-so story” in evolutionary biology. PMID:25079342

  12. Hox gene duplications correlate with posterior heteronomy in scorpions

    PubMed Central

    Sharma, Prashant P.; Schwager, Evelyn E.; Extavour, Cassandra G.; Wheeler, Ward C.

    2014-01-01

    The evolutionary success of the largest animal phylum, Arthropoda, has been attributed to tagmatization, the coordinated evolution of adjacent metameres to form morphologically and functionally distinct segmental regions called tagmata. Specification of regional identity is regulated by the Hox genes, of which 10 are inferred to be present in the ancestor of arthropods. With six different posterior segmental identities divided into two tagmata, the bauplan of scorpions is the most heteronomous within Chelicerata. Expression domains of the anterior eight Hox genes are conserved in previously surveyed chelicerates, but it is unknown how Hox genes regionalize the three tagmata of scorpions. Here, we show that the scorpion Centruroides sculpturatus has two paralogues of all Hox genes except Hox3, suggesting cluster and/or whole genome duplication in this arachnid order. Embryonic anterior expression domain boundaries of each of the last four pairs of Hox genes (two paralogues each of Antp, Ubx, abd-A and Abd-B) are unique and distinguish segmental groups, such as pectines, book lungs and the characteristic tail, while maintaining spatial collinearity. These distinct expression domains suggest neofunctionalization of Hox gene paralogues subsequent to duplication. Our data reconcile previous understanding of Hox gene function across arthropods with the extreme heteronomy of scorpions. PMID:25122224

  13. The HOPA Gene Dodecamer Duplication Is Not a Significant Etiological Factor in Autism.

    ERIC Educational Resources Information Center

    Michaelis, Ron C.; Copeland-Yates, Susan A.; Sossey-Alaoui, Khalid; Skinner, Cindy; Friez, Michael J.; Longshore, John W.; Simensen, Richard J.; Schroer, Richard J.; Stevenson, Roger E.

    2000-01-01

    A study of 202 patients with autism found the incidence of a dodecamer duplication in the HOPA gene was not significantly different between patients and controls. Three female patients inherited the duplication from nonautistic fathers. Also, there was no systematic skewing of X inactivation in female patients with the duplication. (Contains…

  14. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    PubMed Central

    2010-01-01

    Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene

  15. Ascorbate peroxidase-related (APx-R) is not a duplicable gene.

    PubMed

    Dunand, Christophe; Mathé, Catherine; Lazzarotto, Fernanda; Margis, Rogério; Margis-Pinheiro, Marcia

    2011-12-01

    Phylogenetic, genomic and functional analyses have allowed the identification of a new class of putative heme peroxidases, so called APx-R (APx-Related). These new class, mainly present in the green lineage (including green algae and land plants), can also be detected in other unicellular chloroplastic organisms. Except for recent polyploid organisms, only single-copy of APx-R gene was detected in each genome, suggesting that the majority of the APx-R extra-copies were lost after chromosomal or segmental duplications. In a similar way, most APx-R co-expressed genes in Arabidopsis genome do not have conserved extra-copies after chromosomal duplications and are predicted to be localized in organelles, as are the APx-R. The member of this gene network can be considered as unique gene, well conserved through the evolution due to a strong negative selection pressure and a low evolution rate. © 2011 Landes Bioscience

  16. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    PubMed

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  17. On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    PubMed

    Kordi, Misagh; Bansal, Mukul S

    2017-01-01

    Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.

  18. The nuclear OXPHOS genes in insecta: a common evolutionary origin, a common cis-regulatory motif, a common destiny for gene duplicates

    PubMed Central

    Porcelli, Damiano; Barsanti, Paolo; Pesole, Graziano; Caggese, Corrado

    2007-01-01

    Background When orthologous sequences from species distributed throughout an optimal range of divergence times are available, comparative genomics is a powerful tool to address problems such as the identification of the forces that shape gene structure during evolution, although the functional constraints involved may vary in different genes and lineages. Results We identified and annotated in the MitoComp2 dataset the orthologs of 68 nuclear genes controlling oxidative phosphorylation in 11 Drosophilidae species and in five non-Drosophilidae insects, and compared them with each other and with their counterparts in three vertebrates (Fugu rubripes, Danio rerio and Homo sapiens) and in the cnidarian Nematostella vectensis, taking into account conservation of gene structure and regulatory motifs, and preservation of gene paralogs in the genome. Comparative analysis indicates that the ancestral insect OXPHOS genes were intron rich and that extensive intron loss and lineage-specific intron gain occurred during evolution. Comparison with vertebrates and cnidarians also shows that many OXPHOS gene introns predate the cnidarian/Bilateria evolutionary split. The nuclear respiratory gene element (NRG) has played a key role in the evolution of the insect OXPHOS genes; it is constantly conserved in the OXPHOS orthologs of all the insect species examined, while their duplicates either completely lack the element or possess only relics of the motif. Conclusion Our observations reinforce the notion that the common ancestor of most animal phyla had intron-rich gene, and suggest that changes in the pattern of expression of the gene facilitate the fixation of duplications in the genome and the development of novel genetic functions. PMID:18315839

  19. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster

    PubMed Central

    2012-01-01

    Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster. PMID:22577841

  20. Root hairs, trichomes and the evolution of duplicate genes.

    PubMed

    Kellogg, E A

    2001-12-01

    The MYB-class proteins WEREWOLF and GLABRA1 are functionally interchangeable, even though one is normally expressed solely in roots and the other only in shoots. This shows that their different functions are the result of the modification of cis-regulatory sequences over evolutionary time. The two genes thus provide an example of morphological diversification created by gene duplication and changes in regulation.

  1. On Computing Breakpoint Distances for Genomes with Duplicate Genes.

    PubMed

    Shao, Mingfu; Moret, Bernard M E

    2017-06-01

    A fundamental problem in comparative genomics is to compute the distance between two genomes in terms of its higher level organization (given by genes or syntenic blocks). For two genomes without duplicate genes, we can easily define (and almost always efficiently compute) a variety of distance measures, but the problem is NP-hard under most models when genomes contain duplicate genes. To tackle duplicate genes, three formulations (exemplar, maximum matching, and any matching) have been proposed, all of which aim to build a matching between homologous genes so as to minimize some distance measure. Of the many distance measures, the breakpoint distance (the number of nonconserved adjacencies) was the first one to be studied and remains of significant interest because of its simplicity and model-free property. The three breakpoint distance problems corresponding to the three formulations have been widely studied. Although we provided last year a solution for the exemplar problem that runs very fast on full genomes, computing optimal solutions for the other two problems has remained challenging. In this article, we describe very fast, exact algorithms for these two problems. Our algorithms rely on a compact integer-linear program that we further simplify by developing an algorithm to remove variables, based on new results on the structure of adjacencies and matchings. Through extensive experiments using both simulations and biological data sets, we show that our algorithms run very fast (in seconds) on mammalian genomes and scale well beyond. We also apply these algorithms (as well as the classic orthology tool MSOAR) to create orthology assignment, then compare their quality in terms of both accuracy and coverage. We find that our algorithm for the "any matching" formulation significantly outperforms other methods in terms of accuracy while achieving nearly maximum coverage.

  2. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution.

    PubMed

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A

    2015-06-08

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.

    PubMed

    Rohmann, Kevin N; Deitcher, David L; Bass, Andrew H

    2009-07-01

    Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via

  4. Calcium-Activated Potassium (BK) Channels Are Encoded by Duplicate slo1 Genes in Teleost Fishes

    PubMed Central

    Deitcher, David L.; Bass, Andrew H.

    2009-01-01

    Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via

  5. Rapid bursts of androgen-binding protein (Abp) gene duplication occurred independently in diverse mammals.

    PubMed

    Laukaitis, Christina M; Heger, Andreas; Blakley, Tyler D; Munclinger, Pavel; Ponting, Chris P; Karn, Robert C

    2008-02-12

    The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) alpha, beta and gamma subunits. Further investigation of 14 alpha-like (Abpa) and 13 beta- or gamma-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification.

  6. Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution.

    PubMed

    Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan

    2003-08-01

    It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.

  7. Duplication and expression of CYC2-like genes in the origin and maintenance of corolla zygomorphy in Lamiales.

    PubMed

    Zhong, Jinshun; Kellogg, Elizabeth A

    2015-01-01

    Duplication, retention, and expression of CYCLOIDEA2 (CYC2)-like genes are thought to affect evolution of corolla symmetry. However, exactly what and how changes in CYC2-like genes correlate with the origin of corolla zygomorphy are poorly understood. We inferred and calibrated a densely sampled phylogeny of CYC2-like genes across the Lamiales and examined their expression in early diverging (EDL) and higher core clades (HCL). CYC2-like genes duplicated extensively in Lamiales, at least six times in core Lamiales (CL) around the Cretaceous-Paleogene (K-Pg) boundary, and seven more in EDL relatively more recently. Nested duplications and losses of CYC2-like paralogs are pervasive but may not correlate with transitions in corolla symmetry. We found evidence for dN/dS (ω) variation following gene duplications. CYC2-like paralogs in HCL show differential expression with higher expression in adaxial petals. Asymmetric expression but not recurrent duplication of CYC2-like genes correlates with the origin of corolla zygomorphy. Changes in both cis-regulatory and coding domains of CYC2-like genes are probably crucial for the evolution of corolla zygomorphy. Multiple selection regimes appear likely to play important roles in gene retention. The parallel duplications of CYC2-like genes are after the initial diversification of bumble bees and Euglossine bees. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders

    PubMed Central

    Haney, Robert A.; Clarke, Thomas H.; Gadgil, Rujuta; Fitzpatrick, Ryan; Hayashi, Cheryl Y.; Ayoub, Nadia A.; Garb, Jessica E.

    2016-01-01

    Gene duplication and positive selection can be important determinants of the evolution of venom, a protein-rich secretion used in prey capture and defense. In a typical model of venom evolution, gene duplicates switch to venom gland expression and change function under the action of positive selection, which together with further duplication produces large gene families encoding diverse toxins. Although these processes have been demonstrated for individual toxin families, high-throughput multitissue sequencing of closely related venomous species can provide insights into evolutionary dynamics at the scale of the entire venom gland transcriptome. By assembling and analyzing multitissue transcriptomes from the Western black widow spider and two closely related species with distinct venom toxicity phenotypes, we do not find that gene duplication and duplicate retention is greater in gene families with venom gland biased expression in comparison with broadly expressed families. Positive selection has acted on some venom toxin families, but does not appear to be in excess for families with venom gland biased expression. Moreover, we find 309 distinct gene families that have single transcripts with venom gland biased expression, suggesting that the switching of genes to venom gland expression in numerous unrelated gene families has been a dominant mode of evolution. We also find ample variation in protein sequences of venom gland–specific transcripts, lineage-specific family sizes, and ortholog expression among species. This variation might contribute to the variable venom toxicity of these species. PMID:26733576

  9. An epigenetic state associated with areas of gene duplication

    PubMed Central

    Gimelbrant, Alexander A.; Chess, Andrew

    2006-01-01

    Asynchronous DNA replication is an epigenetically determined feature found in all cases of monoallelic expression, including genomic imprinting, X-inactivation, and random monoallelic expression of autosomal genes such as immunoglobulins and olfactory receptor genes. Most genes of the latter class were identified in experiments focused on genes functioning in the chemosensory and immune systems. We performed an unbiased survey of asynchronous replication in the mouse genome, excluding known asynchronously replicated genes. Fully 10% (eight of 80) of the genes tested exhibited asynchronous replication. A common feature of the newly identified asynchronously replicated areas is their proximity to areas of tandem gene duplication. Testing of other clustered areas supported the idea that such regions are enriched with asynchronously replicated genes. PMID:16687731

  10. Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen Transport

    PubMed Central

    2016-01-01

    During vertebrate evolution, duplicated hemoglobin (Hb) genes diverged with respect to functional properties as well as the developmental timing of expression. For example, the subfamilies of genes that encode the different subunit chains of Hb are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different developmental stages. In some vertebrate taxa, functional differentiation between co-expressed Hb isoforms may also contribute to physiologically important divisions of labor. PMID:27053736

  11. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies

    PubMed Central

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D.

    2016-01-01

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella. We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes—and that the butterfly proboscis is involved in digestive enzyme production. PMID:27553646

  12. Diverse Cis-Regulatory Mechanisms Contribute to Expression Evolution of Tandem Gene Duplicates

    PubMed Central

    Baudouin-Gonzalez, Luís; Santos, Marília A; Tempesta, Camille; Sucena, Élio; Roch, Fernando; Tanaka, Kohtaro

    2017-01-01

    Abstract Pairs of duplicated genes generally display a combination of conserved expression patterns inherited from their unduplicated ancestor and newly acquired domains. However, how the cis-regulatory architecture of duplicated loci evolves to produce these expression patterns is poorly understood. We have directly examined the gene-regulatory evolution of two tandem duplicates, the Drosophila Ly6 genes CG9336 and CG9338, which arose at the base of the drosophilids between 40 and 60 Ma. Comparing the expression patterns of the two paralogs in four Drosophila species with that of the unduplicated ortholog in the tephritid Ceratitis capitata, we show that they diverged from each other as well as from the unduplicated ortholog. Moreover, the expression divergence appears to have occurred close to the duplication event and also more recently in a lineage-specific manner. The comparison of the tissue-specific cis-regulatory modules (CRMs) controlling the paralog expression in the four Drosophila species indicates that diverse cis-regulatory mechanisms, including the novel tissue-specific enhancers, differential inactivation, and enhancer sharing, contributed to the expression evolution. Our analysis also reveals a surprisingly variable cis-regulatory architecture, in which the CRMs driving conserved expression domains change in number, location, and specificity. Altogether, this study provides a detailed historical account that uncovers a highly dynamic picture of how the paralog expression patterns and their underlying cis-regulatory landscape evolve. We argue that our findings will encourage studying cis-regulatory evolution at the whole-locus level to understand how interactions between enhancers and other regulatory levels shape the evolution of gene expression. PMID:28961967

  13. GENE-dosage effects on fitness in recent adaptive duplications: ace-1 in the mosquito Culex pipiens.

    PubMed

    Labbé, Pierrick; Milesi, Pascal; Yébakima, André; Pasteur, Nicole; Weill, Mylène; Lenormand, Thomas

    2014-07-01

    Gene duplications have long been advocated to contribute to the evolution of new functions. The role of selection in their early spread is more controversial. Unless duplications are favored for a direct benefit of increased expression, they are likely detrimental. In this article, we investigated the case of duplications favored because they combine already functionally divergent alleles. Their gene-dosage/fitness relations are poorly known because selection may operate on both overall expression and duplicates relative dosage. Using the well-documented case of Culex pipiens resistance to insecticides, we compared strains with various ace-1 allele combinations, including two duplicated alleles carrying both susceptible and resistant copies. The overall protein activity was nearly additive, but, surprisingly, fitness correlated better with the relative proportion of susceptible and resistant copies rather than any absolute measure of activity. Gene dosage is thus crucial, duplications stabilizing a "heterozygote" phenotype. It corroborates the view that these were favored because they fix a permanent heterosis, thereby solving the irreducible trade-off between resistance and synaptic transmission. Moreover, we showed that the contrasted successes of the two duplicated alleles in natural populations depend on genetic changes unrelated to ace-1, confirming the probable implication of recessive sublethal mutations linked to structural rearrangements in some duplications. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  14. STRIDE: Species Tree Root Inference from Gene Duplication Events.

    PubMed

    Emms, David M; Kelly, Steven

    2017-12-01

    The correct interpretation of any phylogenetic tree is dependent on that tree being correctly rooted. We present STRIDE, a fast, effective, and outgroup-free method for identification of gene duplication events and species tree root inference in large-scale molecular phylogenetic analyses. STRIDE identifies sets of well-supported in-group gene duplication events from a set of unrooted gene trees, and analyses these events to infer a probability distribution over an unrooted species tree for the location of its root. We show that STRIDE correctly identifies the root of the species tree in multiple large-scale molecular phylogenetic data sets spanning a wide range of timescales and taxonomic groups. We demonstrate that the novel probability model implemented in STRIDE can accurately represent the ambiguity in species tree root assignment for data sets where information is limited. Furthermore, application of STRIDE to outgroup-free inference of the origin of the eukaryotic tree resulted in a root probability distribution that provides additional support for leading hypotheses for the origin of the eukaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies

    PubMed Central

    2014-01-01

    Background Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. Results A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. Conclusion This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have

  16. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies.

    PubMed

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D

    2016-09-02

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes.

    PubMed

    Shao, Mingfu; Lin, Yu; Moret, Bernard M E

    2015-05-01

    Computing the edit distance between two genomes is a basic problem in the study of genome evolution. The double-cut-and-join (DCJ) model has formed the basis for most algorithmic research on rearrangements over the last few years. The edit distance under the DCJ model can be computed in linear time for genomes without duplicate genes, while the problem becomes NP-hard in the presence of duplicate genes. In this article, we propose an integer linear programming (ILP) formulation to compute the DCJ distance between two genomes with duplicate genes. We also provide an efficient preprocessing approach to simplify the ILP formulation while preserving optimality. Comparison on simulated genomes demonstrates that our method outperforms MSOAR in computing the edit distance, especially when the genomes contain long duplicated segments. We also apply our method to assign orthologous gene pairs among human, mouse, and rat genomes, where once again our method outperforms MSOAR.

  18. Detecting long tandem duplications in genomic sequences.

    PubMed

    Audemard, Eric; Schiex, Thomas; Faraut, Thomas

    2012-05-08

    Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,(a) we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  <  1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  19. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    PubMed

    Kordi, Misagh; Bansal, Mukul S

    2017-06-01

    Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.

  20. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.

    PubMed

    Parmar, Manoj B; Wright, Jonathan M

    2013-11-01

    A whole-genome duplication (WGD) early in the teleost fish lineage makes fish ideal organisms to study the fate of duplicated genes and underlying evolutionary trajectories that have led to the retention of ohnologous gene duplicates in fish genomes. Here, we compare the genomic organization and tissue-specific transcription of the ohnologous fabp7 and fabp10 genes in medaka, three-spined stickleback, and spotted green pufferfish to the well-studied duplicated fabp7 and fabp10 genes of zebrafish. Teleost fabp7 and fabp10 genes contain four exons interrupted by three introns. Polypeptide sequences of Fabp7 and Fabp10 show the highest sequence identity and similarity with their orthologs from vertebrates. Orthology was evident as the ohnologous Fabp7 and Fabp10 polypeptides of teleost fishes each formed distinct clades and clustered together with their orthologs from other vertebrates in a phylogenetic tree. Furthermore, ohnologous teleost fabp7 and fabp10 genes exhibit conserved gene synteny with human FABP7 and chicken FABP10, respectively, which provides compelling evidence that the duplicated fabp7 and fabp10 genes of teleost fishes most likely arose from the well-documented WGD. The tissue-specific distribution of fabp7a, fabp7b, fabp10a, and fabp10b transcripts provides evidence of diverged spatial transcriptional regulation between ohnologous gene duplicates of fabp7 and fabp10 in teleost fishes.

  1. Segmental Duplication, Microinversion, and Gene Loss Associated with a Complex Inversion Breakpoint Region in Drosophila

    PubMed Central

    Calvete, Oriol; González, Josefa; Betrán, Esther; Ruiz, Alfredo

    2012-01-01

    Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ∼13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ∼9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics. PMID:22328714

  2. Altitudinal Variation at Duplicated β-Globin Genes in Deer Mice: Effects of Selection, Recombination, and Gene Conversion

    PubMed Central

    Storz, Jay F.; Natarajan, Chandrasekhar; Cheviron, Zachary A.; Hoffmann, Federico G.; Kelly, John K.

    2012-01-01

    Spatially varying selection on a given polymorphism is expected to produce a localized peak in the between-population component of nucleotide diversity, and theory suggests that the chromosomal extent of elevated differentiation may be enhanced in cases where tandemly linked genes contribute to fitness variation. An intriguing example is provided by the tandemly duplicated β-globin genes of deer mice (Peromyscus maniculatus), which contribute to adaptive differentiation in blood–oxygen affinity between high- and low-altitude populations. Remarkably, the two β-globin genes segregate the same pair of functionally distinct alleles due to a history of interparalog gene conversion and alleles of the same functional type are in perfect coupling-phase linkage disequilibrium (LD). Here we report a multilocus analysis of nucleotide polymorphism and LD in highland and lowland mice with different genetic backgrounds at the β-globin genes. The analysis of haplotype structure revealed a paradoxical pattern whereby perfect LD between the two β-globin paralogs (which are separated by 16.2 kb) is maintained in spite of the fact that LD within both paralogs decays to background levels over physical distances of less than 1 kb. The survey of nucleotide polymorphism revealed that elevated levels of altitudinal differentiation at each of the β-globin genes drop away quite rapidly in the external flanking regions (upstream of the 5′ paralog and downstream of the 3′ paralog), but the level of differentiation remains unexpectedly high across the intergenic region. Observed patterns of diversity and haplotype structure are difficult to reconcile with expectations of a two-locus selection model with multiplicative fitness. PMID:22042573

  3. Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae

    PubMed Central

    2013-01-01

    Background The sequenced genomes of cucumber, melon and watermelon have relatively few R-genes, with 70, 75 and 55 copies only, respectively. The mechanism for low copy number of R-genes in Cucurbitaceae genomes remains unknown. Results Manual annotation of R-genes in the sequenced genomes of Cucurbitaceae species showed that approximately half of them are pseudogenes. Comparative analysis of R-genes showed frequent loss of R-gene loci in different Cucurbitaceae species. Phylogenetic analysis, data mining and PCR cloning using degenerate primers indicated that Cucurbitaceae has limited number of R-gene lineages (subfamilies). Comparison between R-genes from Cucurbitaceae and those from poplar and soybean suggested frequent loss of R-gene lineages in Cucurbitaceae. Furthermore, the average number of R-genes per lineage in Cucurbitaceae species is approximately 1/3 that in soybean or poplar. Therefore, both loss of lineages and deficient duplications in extant lineages accounted for the low copy number of R-genes in Cucurbitaceae. No extensive chimeras of R-genes were found in any of the sequenced Cucurbitaceae genomes. Nevertheless, one lineage of R-genes from Trichosanthes kirilowii, a wild Cucurbitaceae species, exhibits chimeric structures caused by gene conversions, and may contain a large number of distinct R-genes in natural populations. Conclusions Cucurbitaceae species have limited number of R-gene lineages and each genome harbors relatively few R-genes. The scarcity of R-genes in Cucurbitaceae species was due to frequent loss of R-gene lineages and infrequent duplications in extant lineages. The evolutionary mechanisms for large variation of copy number of R-genes in different plant species were discussed. PMID:23682795

  4. Assessment and Reconstruction of Novel HSP90 Genes: Duplications, Gains and Losses in Fungal and Animal Lineages

    PubMed Central

    Pantzartzi, Chrysoula N.; Drosopoulou, Elena; Scouras, Zacharias G.

    2013-01-01

    Hsp90s, members of the Heat Shock Protein class, protect the structure and function of proteins and play a significant task in cellular homeostasis and signal transduction. In order to determine the number of hsp90 gene copies and encoded proteins in fungal and animal lineages and through that key duplication events that this family has undergone, we collected and evaluated Hsp90 protein sequences and corresponding Expressed Sequence Tags and analyzed available genomes from various taxa. We provide evidence for duplication events affecting either single species or wider taxonomic groups. With regard to Fungi, duplicated genes have been detected in several lineages. In invertebrates, we demonstrate key duplication events in certain clades of Arthropoda and Mollusca, and a possible gene loss event in a hymenopteran family. Finally, we infer that the duplication event responsible for the two (a and b) isoforms in vertebrates occurred probably shortly after the split of Hyperoartia and Gnathostomata. PMID:24066039

  5. Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper.

    PubMed

    Zimmer, Christoph T; Garrood, William T; Singh, Kumar Saurabh; Randall, Emma; Lueke, Bettina; Gutbrod, Oliver; Matthiesen, Svend; Kohler, Maxie; Nauen, Ralf; Davies, T G Emyr; Bass, Chris

    2018-01-22

    Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.

    PubMed

    Preston, Jill C; Jorgensen, Stacy A; Jha, Suryatapa G

    2014-01-01

    Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS) and Floral Binding Protein 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.

  7. Functional Characterization of Duplicated SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1-Like Genes in Petunia

    PubMed Central

    Preston, Jill C.; Jorgensen, Stacy A.; Jha, Suryatapa G.

    2014-01-01

    Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes UNSHAVEN (UNS) and FLORAL BINDING PROTEIN 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods. PMID:24787903

  8. Simulating evolution of protein complexes through gene duplication and co-option.

    PubMed

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The butterfly plant arms-race escalated by gene and genome duplications.

    PubMed

    Edger, Patrick P; Heidel-Fischer, Hanna M; Bekaert, Michaël; Rota, Jadranka; Glöckner, Gernot; Platts, Adrian E; Heckel, David G; Der, Joshua P; Wafula, Eric K; Tang, Michelle; Hofberger, Johannes A; Smithson, Ann; Hall, Jocelyn C; Blanchette, Matthieu; Bureau, Thomas E; Wright, Stephen I; dePamphilis, Claude W; Eric Schranz, M; Barker, Michael S; Conant, Gavin C; Wahlberg, Niklas; Vogel, Heiko; Pires, J Chris; Wheat, Christopher W

    2015-07-07

    Coevolutionary interactions are thought to have spurred the evolution of key innovations and driven the diversification of much of life on Earth. However, the genetic and evolutionary basis of the innovations that facilitate such interactions remains poorly understood. We examined the coevolutionary interactions between plants (Brassicales) and butterflies (Pieridae), and uncovered evidence for an escalating evolutionary arms-race. Although gradual changes in trait complexity appear to have been facilitated by allelic turnover, key innovations are associated with gene and genome duplications. Furthermore, we show that the origins of both chemical defenses and of molecular counter adaptations were associated with shifts in diversification rates during the arms-race. These findings provide an important connection between the origins of biodiversity, coevolution, and the role of gene and genome duplications as a substrate for novel traits.

  10. The butterfly plant arms-race escalated by gene and genome duplications

    PubMed Central

    Edger, Patrick P.; Heidel-Fischer, Hanna M.; Bekaert, Michaël; Rota, Jadranka; Glöckner, Gernot; Platts, Adrian E.; Heckel, David G.; Der, Joshua P.; Wafula, Eric K.; Tang, Michelle; Hofberger, Johannes A.; Smithson, Ann; Hall, Jocelyn C.; Blanchette, Matthieu; Bureau, Thomas E.; Wright, Stephen I.; dePamphilis, Claude W.; Eric Schranz, M.; Barker, Michael S.; Conant, Gavin C.; Wahlberg, Niklas; Vogel, Heiko; Pires, J. Chris; Wheat, Christopher W.

    2015-01-01

    Coevolutionary interactions are thought to have spurred the evolution of key innovations and driven the diversification of much of life on Earth. However, the genetic and evolutionary basis of the innovations that facilitate such interactions remains poorly understood. We examined the coevolutionary interactions between plants (Brassicales) and butterflies (Pieridae), and uncovered evidence for an escalating evolutionary arms-race. Although gradual changes in trait complexity appear to have been facilitated by allelic turnover, key innovations are associated with gene and genome duplications. Furthermore, we show that the origins of both chemical defenses and of molecular counter adaptations were associated with shifts in diversification rates during the arms-race. These findings provide an important connection between the origins of biodiversity, coevolution, and the role of gene and genome duplications as a substrate for novel traits. PMID:26100883

  11. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    PubMed

    Popova, Olga V; Mikhailov, Kirill V; Nikitin, Mikhail A; Logacheva, Maria D; Penin, Aleksey A; Muntyan, Maria S; Kedrova, Olga S; Petrov, Nikolai B; Panchin, Yuri V; Aleoshin, Vladimir V

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.

  12. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals

    PubMed Central

    Popova, Olga V.; Mikhailov, Kirill V.; Nikitin, Mikhail A.; Logacheva, Maria D.; Penin, Aleksey A.; Muntyan, Maria S.; Kedrova, Olga S.; Petrov, Nikolai B.; Panchin, Yuri V.

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha—an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia

  13. A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (rubisco) small subunit gene family among accessions of Arabidopsis thaliana.

    PubMed

    Schwarte, Sandra; Tiedemann, Ralph

    2011-06-01

    Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39), the most abundant protein in nature, catalyzes the assimilation of CO(2) (worldwide about 10(11) t each year) by carboxylation of ribulose-1,5-bisphosphate. It is a hexadecamer consisting of eight large and eight small subunits. Although the Rubisco large subunit (rbcL) is encoded by a single gene on the multicopy chloroplast genome, the Rubisco small subunits (rbcS) are encoded by a family of nuclear genes. In Arabidopsis thaliana, the rbcS gene family comprises four members, that is, rbcS-1a, rbcS-1b, rbcS-2b, and rbcS-3b. We sequenced all Rubisco genes in 26 worldwide distributed A. thaliana accessions. In three of these accessions, we detected a gene duplication/loss event, where rbcS-1b was lost and substituted by a duplicate of rbcS-2b (called rbcS-2b*). By screening 74 additional accessions using a specific polymerase chain reaction assay, we detected five additional accessions with this duplication/loss event. In summary, we found the gene duplication/loss in 8 of 100 A. thaliana accessions, namely, Bch, Bu, Bur, Cvi, Fei, Lm, Sha, and Sorbo. We sequenced an about 1-kb promoter region for all Rubisco genes as well. This analysis revealed that the gene duplication/loss event was associated with promoter alterations (two insertions of 450 and 850 bp, one deletion of 730 bp) in rbcS-2b and a promoter deletion (2.3 kb) in rbcS-2b* in all eight affected accessions. The substitution of rbcS-1b by a duplicate of rbcS-2b (i.e., rbcS-2b*) might be caused by gene conversion. All four Rubisco genes evolve under purifying selection, as expected for central genes of the highly conserved photosystem of green plants. We inferred a single positive selected site, a tyrosine to aspartic acid substitution at position 72 in rbcS-1b. Exactly the same substitution compromises carboxylase activity in the cyanobacterium Anacystis nidulans. In A. thaliana, this substitution is associated with an inferred

  14. Duplication 16p13.3 and the CREBBP gene: confirmation of the phenotype.

    PubMed

    Demeer, Bénédicte; Andrieux, Joris; Receveur, Aline; Morin, Gilles; Petit, Florence; Julia, Sophie; Plessis, Ghislaine; Martin-Coignard, Dominique; Delobel, Bruno; Firth, Helen V; Thuresson, Ann C; Lanco Dosen, Sandrine; Sjörs, Kerstin; Le Caignec, Cedric; Devriendt, Koenraad; Mathieu-Dramard, Michèle

    2013-01-01

    The introduction of molecular karyotyping technologies into the diagnostic work-up of patients with congenital disorders permitted the identification and delineation of novel microdeletion and microduplication syndromes. Interstitial 16p13.3 duplication, encompassing the CREBBP gene, which is mutated or deleted in the Rubinstein-Taybi syndrome, have been proposed to cause a recognisable syndrome with variable intellectual disability, normal growth, mild facial dysmorphism, mild anomalies of the extremities, and occasional findings such as developmental defects of the heart, genitalia, palate or the eyes. We here report the phenotypic and genotypic delineation of 9 patients carrying a submicroscopic 16p13.3 duplication, including the smallest 16p13.3 duplication reported so far. Careful clinical assessment confirms the distinctive clinical phenotype and also defines frequent associated features : marked speech problems, frequent ocular region involvement with upslanting of the eyes, narrow palpebral fissures, ptosis and strabismus, frequent proximal implantation of thumbs, cleft palate/bifid uvula and inguinal hernia. It also confirms that CREBBP is the critical gene involved in the duplication 16p13.3 syndrome. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Gene duplications in prokaryotes can be associated with environmental adaptation.

    PubMed

    Bratlie, Marit S; Johansen, Jostein; Sherman, Brad T; Huang, Da Wei; Lempicki, Richard A; Drabløs, Finn

    2010-10-20

    Gene duplication is a normal evolutionary process. If there is no selective advantage in keeping the duplicated gene, it is usually reduced to a pseudogene and disappears from the genome. However, some paralogs are retained. These gene products are likely to be beneficial to the organism, e.g. in adaptation to new environmental conditions. The aim of our analysis is to investigate the properties of paralog-forming genes in prokaryotes, and to analyse the role of these retained paralogs by relating gene properties to life style of the corresponding prokaryotes. Paralogs were identified in a number of prokaryotes, and these paralogs were compared to singletons of persistent orthologs based on functional classification. This showed that the paralogs were associated with for example energy production, cell motility, ion transport, and defence mechanisms. A statistical overrepresentation analysis of gene and protein annotations was based on paralogs of the 200 prokaryotes with the highest fraction of paralog-forming genes. Biclustering of overrepresented gene ontology terms versus species was used to identify clusters of properties associated with clusters of species. The clusters were classified using similarity scores on properties and species to identify interesting clusters, and a subset of clusters were analysed by comparison to literature data. This analysis showed that paralogs often are associated with properties that are important for survival and proliferation of the specific organisms. This includes processes like ion transport, locomotion, chemotaxis and photosynthesis. However, the analysis also showed that the gene ontology terms sometimes were too general, imprecise or even misleading for automatic analysis. Properties described by gene ontology terms identified in the overrepresentation analysis are often consistent with individual prokaryote lifestyles and are likely to give a competitive advantage to the organism. Paralogs and singletons dominate

  16. Evolution of Homospermidine Synthase in the Convolvulaceae: A Story of Gene Duplication, Gene Loss, and Periods of Various Selection Pressures[C][W][OA

    PubMed Central

    Kaltenegger, Elisabeth; Eich, Eckart; Ober, Dietrich

    2013-01-01

    Homospermidine synthase (HSS), the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, is known to have its origin in the duplication of a gene encoding deoxyhypusine synthase. To study the processes that followed this gene duplication event and gave rise to HSS, we identified sequences encoding HSS and deoxyhypusine synthase from various species of the Convolvulaceae. We show that HSS evolved only once in this lineage. This duplication event was followed by several losses of a functional gene copy attributable to gene loss or pseudogenization. Statistical analyses of sequence data suggest that, in those lineages in which the gene copy was successfully recruited as HSS, the gene duplication event was followed by phases of various selection pressures, including purifying selection, relaxed functional constraints, and possibly positive Darwinian selection. Site-specific mutagenesis experiments have confirmed that the substitution of sites predicted to be under positive Darwinian selection is sufficient to convert a deoxyhypusine synthase into a HSS. In addition, analyses of transcript levels have shown that HSS and deoxyhypusine synthase have also diverged with respect to their regulation. The impact of protein–protein interaction on the evolution of HSS is discussed with respect to current models of enzyme evolution. PMID:23572540

  17. Cheetahs have 4 serum amyloid a genes evolved through repeated duplication events.

    PubMed

    Chen, Lei; Une, Yumi; Higuchi, Keiichi; Mori, Masayuki

    2012-01-01

    Amyloid A (AA) amyloidosis is a leading cause of mortality in captive cheetahs (Acinonyx jubatus). We performed genome walking and PCR cloning and revealed that cheetahs have 4 SAA genes (provisionally named SAA1A, SAA1B, SAA3A, and SAA3B). In addition, we identified multiple nucleotide polymorphisms in the 4 SAA genes by screening 51 cheetahs. The polymorphisms defined 4, 7, 6, and 4 alleles for SAA1A, SAA3A, SAA1B, and SAA3B, respectively. Pedigree analysis of the inheritance of genotypes for the SAA genes revealed that specific combinations of alleles for the 4 SAA genes cosegregated as a unit (haplotype) in pedigrees, indicating that the 4 genes were linked on the same chromosome. Notably, cheetah SAA1A and SAA1B were highly homologous in their nucleotide sequences. Likewise, SAA3A and SAA3B genes were homologous. These observations suggested a model for the evolution of the 4 SAA genes in cheetahs in which duplication of an ancestral SAA gene first gave rise to SAA1 and SAA3. Subsequently, each gene duplicated one more time, uniquely making 4 genes in the cheetah genome. The monomorphism of the cheetah SAA1A protein might be one of the factors responsible for the high incidence of AA amyloidosis in this species.

  18. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses

    PubMed Central

    Mondragón-Palomino, Mariana; Hiese, Luisa; Härter, Andrea; Koch, Marcus A; Theißen, Günter

    2009-01-01

    Background Positive selection is recognized as the prevalence of nonsynonymous over synonymous substitutions in a gene. Models of the functional evolution of duplicated genes consider neofunctionalization as key to the retention of paralogues. For instance, duplicate transcription factors are specifically retained in plant and animal genomes and both positive selection and transcriptional divergence appear to have played a role in their diversification. However, the relative impact of these two factors has not been systematically evaluated. Class B MADS-box genes, comprising DEF-like and GLO-like genes, encode developmental transcription factors essential for establishment of perianth and male organ identity in the flowers of angiosperms. Here, we contrast the role of positive selection and the known divergence in expression patterns of genes encoding class B-like MADS-box transcription factors from monocots, with emphasis on the family Orchidaceae and the order Poales. Although in the monocots these two groups are highly diverse and have a strongly canalized floral morphology, there is no information on the role of positive selection in the evolution of their distinctive flower morphologies. Published research shows that in Poales, class B-like genes are expressed in stamens and in lodicules, the perianth organs whose identity might also be specified by class B-like genes, like the identity of the inner tepals of their lily-like relatives. In orchids, however, the number and pattern of expression of class B-like genes have greatly diverged. Results The DEF-like genes from Orchidaceae form four well-supported, ancient clades of orthologues. In contrast, orchid GLO-like genes form a single clade of ancient orthologues and recent paralogues. DEF-like genes from orchid clade 2 (OMADS3-like genes) are under less stringent purifying selection than the other orchid DEF-like and GLO-like genes. In comparison with orchids, purifying selection was less stringent in DEF

  19. Comparative Transcriptome Analyses Reveal Core Parasitism Genes and Suggest Gene Duplication and Repurposing as Sources of Structural Novelty

    PubMed Central

    Yang, Zhenzhen; Wafula, Eric K.; Honaas, Loren A.; Zhang, Huiting; Das, Malay; Fernandez-Aparicio, Monica; Huang, Kan; Bandaranayake, Pradeepa C.G.; Wu, Biao; Der, Joshua P.; Clarke, Christopher R.; Ralph, Paula E.; Landherr, Lena; Altman, Naomi S.; Timko, Michael P.; Yoder, John I.; Westwood, James H.; dePamphilis, Claude W.

    2015-01-01

    The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria. PMID:25534030

  20. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    PubMed

    Guo, Yong; Qiu, Li-Juan

    2013-01-01

    The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max). In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs) were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  1. Asymmetric histone modifications between the original and derived loci of human segmental duplications

    PubMed Central

    Zheng, Deyou

    2008-01-01

    Background Sequencing and annotation of several mammalian genomes have revealed that segmental duplications are a common architectural feature of primate genomes; in fact, about 5% of the human genome is composed of large blocks of interspersed segmental duplications. These segmental duplications have been implicated in genomic copy-number variation, gene novelty, and various genomic disorders. However, the molecular processes involved in the evolution and regulation of duplicated sequences remain largely unexplored. Results In this study, the profile of about 20 histone modifications within human segmental duplications was characterized using high-resolution, genome-wide data derived from a ChIP-Seq study. The analysis demonstrates that derivative loci of segmental duplications often differ significantly from the original with respect to many histone methylations. Further investigation showed that genes are present three times more frequently in the original than in the derivative, whereas pseudogenes exhibit the opposite trend. These asymmetries tend to increase with the age of segmental duplications. The uneven distribution of genes and pseudogenes does not, however, fully account for the asymmetry in the profile of histone modifications. Conclusion The first systematic analysis of histone modifications between segmental duplications demonstrates that two seemingly 'identical' genomic copies are distinct in their epigenomic properties. Results here suggest that local chromatin environments may be implicated in the discrimination of derived copies of segmental duplications from their originals, leading to a biased pseudogenization of the new duplicates. The data also indicate that further exploration of the interactions between histone modification and sequence degeneration is necessary in order to understand the divergence of duplicated sequences. PMID:18598352

  2. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes.

    PubMed

    Ye, Fei; Lan, Xu-E; Zhu, Wen-Bo; You, Ping

    2016-05-09

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects.

  3. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes

    PubMed Central

    Ye, Fei; Lan, Xu-e; Zhu, Wen-bo; You, Ping

    2016-01-01

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects. PMID:27157299

  4. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    PubMed Central

    Harding, Tommy; Roger, Andrew J.; Simpson, Alastair G. B.

    2017-01-01

    The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane

  5. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events.

    PubMed

    Zhou, Mi; Yan, Jun; Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication.

  6. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish

    PubMed Central

    Naville, Magali; Volff, Jean-Nicolas

    2017-01-01

    It is now recognized that several rounds of whole genome duplication (WGD) have occurred during the evolution of vertebrates, but the link between WGDs and phenotypic diversification remains unsolved. We have investigated in this study the impact of the teleost-specific WGD on the evolution of the sox gene family in teleostean fishes. The sox gene family, which encodes for transcription factors, has essential role in morphology, physiology and behavior of vertebrates and teleosts, the current largest group of vertebrates. We have first redrawn the evolution of all sox genes identified in eleven teleost genomes using a comparative genomic approach including phylogenetic and synteny analyses. We noticed, compared to tetrapods, an important expansion of the sox family: 58% (11/19) of sox genes are duplicated in teleost genomes. Furthermore, all duplicated sox genes, except sox17 paralogs, are derived from the teleost-specific WGD. Then, focusing on five sox genes, analyzing the evolution of coding and non-coding sequences, as well as the expression patterns in fish embryos and adult tissues, we demonstrated that these paralogs followed lineage-specific evolutionary trajectories in teleost genomes. This work, based on whole genome data from multiple teleostean species, supports the contribution of WGDs to the expansion of gene families, as well as to the emergence of genomic differences between lineages that might promote genetic and phenotypic diversity in teleosts. PMID:28738066

  7. Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion.

    PubMed

    Liu, Juan; Sharma, Anupma; Niewiara, Marie Jamille; Singh, Ratnesh; Ming, Ray; Yu, Qingyi

    2018-01-06

    Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might

  8. Duplication and selection in the evolution of primate β-defensin genes

    PubMed Central

    Semple, Colin AM; Rolfe, Mark; Dorin, Julia R

    2003-01-01

    Background Innate immunity is the first line of defense against microorganisms in vertebrates and acts by providing an initial barrier to microorganisms and triggering adaptive immune responses. Peptides such as β-defensins are an important component of this defense, providing a broad spectrum of antimicrobial activity against bacteria, fungi, mycobacteria and several enveloped viruses. β-defensins are small cationic peptides that vary in their expression patterns and spectrum of pathogen specificity. Disruptions in β-defensin function have been implicated in human diseases, including cystic fibrosis, and a fuller understanding of the variety, function and evolution of human β-defensins might form the basis for novel therapies. Here we use a combination of laboratory and computational techniques to characterize the main human β-defensin locus on chromosome 8p22-p23. Results In addition to known genes in the region we report the genomic structures and expression patterns of four novel human β-defensin genes and a related pseudogene. These genes show an unusual pattern of evolution, with rapid divergence between second exon sequences that encode the mature β-defensin peptides matched by relative stasis in first exons that encode signal peptides. Conclusions We conclude that the 8p22-p23 locus has evolved by successive rounds of duplication followed by substantial divergence involving positive selection, to produce a diverse cluster of paralogous genes established before the human-baboon divergence more than 23 million years ago. Positive selection, disproportionately favoring alterations in the charge of amino-acid residues, is implicated as driving second exon divergence in these genes. PMID:12734011

  9. Evolutionary history of glucose-6-phosphatase encoding genes in vertebrate lineages: towards a better understanding of the functions of multiple duplicates.

    PubMed

    Marandel, Lucie; Panserat, Stéphane; Plagnes-Juan, Elisabeth; Arbenoits, Eva; Soengas, José Luis; Bobe, Julien

    2017-05-02

    Glucose-6-phosphate (G6pc) is a key enzyme involved in the regulation of the glucose homeostasis. The present study aims at revisiting and clarifying the evolutionary history of g6pc genes in vertebrates. g6pc duplications happened by successive rounds of whole genome duplication that occurred during vertebrate evolution. g6pc duplicated before or around Osteichthyes/Chondrichthyes radiation, giving rise to g6pca and g6pcb as a consequence of the second vertebrate whole genome duplication. g6pca was lost after this duplication in Sarcopterygii whereas both g6pca and g6pcb then duplicated as a consequence of the teleost-specific whole genome duplication. One g6pca duplicate was lost after this duplication in teleosts. Similarly one g6pcb2 duplicate was lost at least in the ancestor of percomorpha. The analysis of the evolution of spatial expression patterns of g6pc genes in vertebrates showed that all g6pc were mainly expressed in intestine and liver whereas teleost-specific g6pcb2 genes were mainly and surprisingly expressed in brain and heart. g6pcb2b, one gene previously hypothesised to be involved in the glucose intolerant phenotype in trout, was unexpectedly up-regulated (as it was in liver) by carbohydrates in trout telencephalon without showing significant changes in other brain regions. This up-regulation is in striking contrast with expected glucosensing mechanisms suggesting that its positive response to glucose relates to specific unknown processes in this brain area. Our results suggested that the fixation and the divergence of g6pc duplicated genes during vertebrates' evolution may lead to adaptive novelty and probably to the emergence of novel phenotypes related to glucose homeostasis.

  10. Sequence divergence in the 3'-untranslated region has an effect on the subfunctionalization of duplicate genes.

    PubMed

    Tong, Ying; Zheng, Kang; Zhao, Shufang; Xiao, Guanxiu; Luo, Chen

    2012-11-01

    Recent studies demonstrated that sequence divergence in both transcriptional regulatory region and coding region contributes to the subfunctionalization of duplicate gene. However, whether sequence divergence in the 3'-untranslated region (3'-UTR) has an impact on the subfunctionalization of duplicate genes remains unclear. Here, we identified two diverging duplicate vsx1 (visual system homeobox-1) loci in goldfish, named vsx1A1 and vsx1A2. Phylogenetic analysis suggests that vsx1A1 and vsx1A2 may arise from a duplication of vsx1 after the separation of goldfish and zebrafish. Sequence comparison revealed that divergence in both transcriptional and translational regulatory regions is higher than divergence in the introns. vsx1A2 expresses during blastula and gastrula stages and in adult retina but silences from segmentation stage to hatching stage, vsx1A1 starts expression from segmentation onward. Comparing to that zebrafish vsx1 expresses in all the developmental stages and in the adult retina, it appears that goldfish vsx1A1 and vsx1A2 are under going to share the functions of ancestral vsx1. The different but overlapping temporal expression patterns of vsx1A1 and vsx1A2 suggest that sequence divergence in the promoter region of duplicate vsx1 is not sufficient for partitioning the functions of ancestral vsx1. By comparing vsx1A1 and vsx1A2 3'-UTR-linked green fluorescent protein gene expression patterns, we demonstrated that the 3'-UTR of vsx1A1 remains but the 3'-UTR of vsx1A2 has lost the capability of mediating bipolar cell specific expression during retina development. These results indicate that sequence divergence in the 3'-UTRs has a clear effect on subfunctionalization of the duplicate genes. © 2012 WILEY PERIODICALS, INC.

  11. Duplication polymorphisms in exon 4 of κ-casein gene in yak breeds/populations.

    PubMed

    Pingcuo, S; Gao, J; Jiang, Z R; Jin, S Y; Fu, C Y; Liu, X; Huang, L; Zheng, Y C

    2015-08-28

    The objective of this study was to compare 12 bp-duplication polymorphisms in exon 4 of the κ-casein gene among 3 breeds/populations of yak (Bos grunniens). Genomic DNA was extracted from yak blood or muscle samples (N = 211) and a partial sequence of exon 4 of κ-casein gene was amplified by polymerase chain reaction. A polyacrylamide gel electrophoresis assay of the products (169 bp) revealed 2 variants. These variants differed in a 12-bp duplication of the nucleotide sequence corresponding to amino acids 147-150 (Glu-Ala-Ser-Pro) or 148-151 (Ala-Ser-Pro-Glu). The genotype frequency and gene frequency of the 2 κ-casein variants differed among the 3 yak breeds/populations. The long form of the κ-casein gene was the predominant allele, and the Jiulong yak showed the highest frequency of the short form variant of the κ-casein gene. In addition, 2 nucleotide differences resulting in amino acid substitutions were also identified in yaks. These results are significant for designing a breeding strategy to improve the genetic makeup of yak herds.

  12. Independent and Parallel Evolution of New Genes by Gene Duplication in Two Origins of C4 Photosynthesis Provides New Insight into the Mechanism of Phloem Loading in C4 Species

    PubMed Central

    Emms, David M.; Covshoff, Sarah; Hibberd, Julian M.; Kelly, Steven

    2016-01-01

    C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes is enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Furthermore, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species. Key words: C4 photosynthesis, gene duplication, gene families, parallel evolution. PMID:27016024

  13. Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disorders.

    PubMed

    Correia, Catarina T; Conceição, Inês C; Oliveira, Bárbara; Coelho, Joana; Sousa, Inês; Sequeira, Ana F; Almeida, Joana; Café, Cátia; Duque, Frederico; Mouga, Susana; Roberts, Wendy; Gao, Kun; Lowe, Jennifer K; Thiruvahindrapuram, Bhooma; Walker, Susan; Marshall, Christian R; Pinto, Dalila; Nurnberger, John I; Scherer, Stephen W; Geschwind, Daniel H; Oliveira, Guiomar; Vicente, Astrid M

    2014-04-10

    Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study. From the AGP CNV genomic screen in 2,147 ASD individuals, we selected for characterization an ANXA1 gene duplication that was absent in 4,964 population-based controls. We further screened the duplication in a follow-up sample including 1,496 patients and 410 controls, and evaluated clinical correlations and family segregation. Sequencing of exonic/downstream ANXA1 regions was performed in 490 ASD patients for identification of additional variants. The ANXA1 duplication, overlapping the last four exons and 3'UTR region, had an overall prevalence of 11/3,643 (0.30%) in unrelated ASD patients but was not identified in 5,374 controls. Duplication carriers presented no distinctive clinical phenotype. Family analysis showed neuropsychiatric deficits and ASD traits in multiple relatives carrying the duplication, suggestive of a complex genetic inheritance. Sequencing of exonic regions and the 3'UTR identified 11 novel changes, but no obvious variants with clinical significance. We provide multilevel evidence for a role of ANXA1 in ASD etiology. Given its important role as mediator of glucocorticoid function in a wide variety of brain processes, including neuroprotection, apoptosis, and control of the neuroendocrine system, the results add ANXA1 to the growing list of rare candidate genetic etiological factors for ASD.

  14. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate

    PubMed Central

    Adomako-Ankomah, Yaw; English, Elizabeth D.; Danielson, Jeffrey J.; Pernas, Lena F.; Parker, Michelle L.; Boulanger, Martin J.; Dubey, Jitender P.; Boyle, Jon P.

    2016-01-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum. Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA+ paralogs. Additionally, we found that exogenous expression of an HMA+ paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. PMID:26920761

  15. Clinical and molecular characterization of duplications encompassing the human SHOX gene reveal a variable effect on stature.

    PubMed

    Thomas, N Simon; Harvey, John F; Bunyan, David J; Rankin, Julia; Grigelioniene, Giedre; Bruno, Damien L; Tan, Tiong Y; Tomkins, Susan; Hastings, Robert

    2009-07-01

    Deletions of the SHOX gene are well documented and cause disproportionate short stature and variable skeletal abnormalities. In contrast interstitial SHOX duplications limited to PAR1 appear to be very rare and the clinical significance of the only case report in the literature is unclear. Mapping of this duplication has now shown that it includes the entire SHOX gene but little flanking sequence and so will not encompass any of the long-range enhancers required for SHOX transcription. We now describe the clinical and molecular characterization of three additional cases. The duplications all included the SHOX coding sequence but varied in the amount of flanking sequence involved. The probands were ascertained for a variety of reasons: hypotonia and features of Asperger syndrome, Leri-Weill dyschondrosteosis (LWD), and a family history of cleft palate. However, the presence of a duplication did not correlate with any of these features or with evidence of skeletal abnormality. Remarkably, the proband with LWD had inherited both a SHOX deletion and a duplication. The effect of the duplications on stature was variable: height appeared to be elevated in some carriers, particularly in those with the largest duplications, but was still within the normal range. SHOX duplications are likely to be under ascertained and more cases need to be identified and characterized in detail in order to accurately determine their phenotypic consequences.

  16. Regulatory divergence of homeologous Atlantic salmon elovl5 genes following the salmonid-specific whole-genome duplication.

    PubMed

    Carmona-Antoñanzas, Greta; Zheng, Xiaozhong; Tocher, Douglas R; Leaver, Michael J

    2016-10-10

    Fatty acyl elongase 5 (elovl5) is a critical enzyme in the vertebrate biosynthetic pathway which produces the physiologically essential long-chain polyunsaturated fatty acids (LC-PUFA), docosahexenoic acid (DHA), and eicosapentenoic acid (EPA) from 18 carbon fatty acids precursors. In contrast to most other vertebrates, Atlantic salmon possess two copies of elovl5 (elovl5a and elovl5b) as a result of a whole-genome duplication (WGD) which occurred at the base of the salmonid lineage. WGDs have had a major influence on vertebrate evolution, providing extra genetic material, enabling neofunctionalization to accelerate adaptation and speciation. However, little is known about the mechanisms by which such duplicated homeologous genes diverge. Here we show that homeologous Atlantic salmon elovl5a and elovl5b genes have been asymmetrically colonised by transposon-like elements. Identical locations and identities of insertions are also present in the rainbow trout duplicate elovl5 genes, but not in the nearest extant representative preduplicated teleost, the northern pike. Both elovl5 salmon duplicates possessed conserved regulatory elements that promoted Srebp1- and Srebp2-dependent transcription, and differences in the magnitude of Srebp response between promoters could be attributed to a tandem duplication of SRE and NF-Y cofactor binding sites in elovl5b. Furthermore, an insertion in the promoter region of elovl5a confers responsiveness to Lxr/Rxr transcriptional activation. Our results indicate that most, but not all, transposon mobilisation into elovl5 genes occurred after the split from the common ancestor of pike and salmon, but before more recent salmonid speciations, and that divergence of elovl5 regulatory regions have enabled neofuntionalization by promoting differential expression of these homeologous genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Atlantic salmon populations reveal adaptive divergence of immune related genes - a duplicated genome under selection.

    PubMed

    Kjærner-Semb, Erik; Ayllon, Fernando; Furmanek, Tomasz; Wennevik, Vidar; Dahle, Geir; Niemelä, Eero; Ozerov, Mikhail; Vähä, Juha-Pekka; Glover, Kevin A; Rubin, Carl J; Wargelius, Anna; Edvardsen, Rolf B

    2016-08-11

    Populations of Atlantic salmon display highly significant genetic differences with unresolved molecular basis. These differences may result from separate postglacial colonization patterns, diversifying natural selection and adaptation, or a combination. Adaptation could be influenced or even facilitated by the recent whole genome duplication in the salmonid lineage which resulted in a partly tetraploid species with duplicated genes and regions. In order to elucidate the genes and genomic regions underlying the genetic differences, we conducted a genome wide association study using whole genome resequencing data from eight populations from Northern and Southern Norway. From a total of ~4.5 million sequencing-derived SNPs, more than 10 % showed significant differentiation between populations from these two regions and ten selective sweeps on chromosomes 5, 10, 11, 13-15, 21, 24 and 25 were identified. These comprised 59 genes, of which 15 had one or more differentiated missense mutation. Our analysis showed that most sweeps have paralogous regions in the partially tetraploid genome, each lacking the high number of significant SNPs found in the sweeps. The most significant sweep was found on Chr 25 and carried several missense mutations in the antiviral mx genes, suggesting that these populations have experienced differing viral pressures. Interestingly the second most significant sweep, found on Chr 5, contains two genes involved in the NF-KB pathway (nkap and nkrf), which is also a known pathogen target that controls a large number of processes in animals. Our results show that natural selection acting on immune related genes has contributed to genetic divergence between salmon populations in Norway. The differences between populations may have been facilitated by the plasticity of the salmon genome. The observed signatures of selection in duplicated genomic regions suggest that the recently duplicated genome has provided raw material for evolutionary adaptation.

  18. Differential retention of metabolic genes following whole-genome duplication.

    PubMed

    Gout, Jean-François; Duret, Laurent; Kahn, Daniel

    2009-05-01

    Classical studies in Metabolic Control Theory have shown that metabolic fluxes usually exhibit little sensitivity to changes in individual enzyme activity, yet remain sensitive to global changes of all enzymes in a pathway. Therefore, little selective pressure is expected on the dosage or expression of individual metabolic genes, yet entire pathways should still be constrained. However, a direct estimate of this selective pressure had not been evaluated. Whole-genome duplications (WGDs) offer a good opportunity to address this question by analyzing the fates of metabolic genes during the massive gene losses that follow. Here, we take advantage of the successive rounds of WGD that occurred in the Paramecium lineage. We show that metabolic genes exhibit different gene retention patterns than nonmetabolic genes. Contrary to what was expected for individual genes, metabolic genes appeared more retained than other genes after the recent WGD, which was best explained by selection for gene expression operating on entire pathways. Metabolic genes also tend to be less retained when present at high copy number before WGD, contrary to other genes that show a positive correlation between gene retention and preduplication copy number. This is rationalized on the basis of the classical concave relationship relating metabolic fluxes with enzyme expression.

  19. Independent and Parallel Evolution of New Genes by Gene Duplication in Two Origins of C4 Photosynthesis Provides New Insight into the Mechanism of Phloem Loading in C4 Species.

    PubMed

    Emms, David M; Covshoff, Sarah; Hibberd, Julian M; Kelly, Steven

    2016-07-01

    C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes is enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Furthermore, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species. C4 photosynthesis, gene duplication, gene families, parallel evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species

    PubMed Central

    2013-01-01

    Background Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. Results We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. Conclusions In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems

  1. Gene duplication and fragment recombination drive functional diversification of a superfamily of cytoplasmic effectors in Phytophthora sojae.

    PubMed

    Shen, Danyu; Liu, Tingli; Ye, Wenwu; Liu, Li; Liu, Peihan; Wu, Yuren; Wang, Yuanchao; Dou, Daolong

    2013-01-01

    Phytophthora and other oomycetes secrete a large number of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling and necrosis inducing proteins (CRN), or Crinkler. Here, we first investigated the evolutionary patterns and mechanisms of CRN effectors in Phytophthora sojae and compared them to two other Phytophthora species. The genes encoding CRN effectors could be divided into 45 orthologous gene groups (OGG), and most OGGs unequally distributed in the three species, in which each underwent large number of gene gains or losses, indicating that the CRN genes expanded after species evolution in Phytophthora and evolved through pathoadaptation. The 134 expanded genes in P. sojae encoded family proteins including 82 functional genes and expressed at higher levels while the other 68 genes encoding orphan proteins were less expressed and contained 50 pseudogenes. Furthermore, we demonstrated that most expanded genes underwent gene duplication or/and fragment recombination. Three different mechanisms that drove gene duplication or recombination were identified. Finally, the expanded CRN effectors exhibited varying pathogenic functions, including induction of programmed cell death (PCD) and suppression of PCD through PAMP-triggered immunity or/and effector-triggered immunity. Overall, these results suggest that gene duplication and fragment recombination may be two mechanisms that drive the expansion and neofunctionalization of the CRN family in P. sojae, which aids in understanding the roles of CRN effectors within each oomycete pathogen.

  2. Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean.

    PubMed

    Innes, Roger W; Ameline-Torregrosa, Carine; Ashfield, Tom; Cannon, Ethalinda; Cannon, Steven B; Chacko, Ben; Chen, Nicolas W G; Couloux, Arnaud; Dalwani, Anita; Denny, Roxanne; Deshpande, Shweta; Egan, Ashley N; Glover, Natasha; Hans, Christian S; Howell, Stacy; Ilut, Dan; Jackson, Scott; Lai, Hongshing; Mammadov, Jafar; Del Campo, Sara Martin; Metcalf, Michelle; Nguyen, Ashley; O'Bleness, Majesta; Pfeil, Bernard E; Podicheti, Ram; Ratnaparkhe, Milind B; Samain, Sylvie; Sanders, Iryna; Ségurens, Béatrice; Sévignac, Mireille; Sherman-Broyles, Sue; Thareau, Vincent; Tucker, Dominic M; Walling, Jason; Wawrzynski, Adam; Yi, Jing; Doyle, Jeff J; Geffroy, Valérie; Roe, Bruce A; Maroof, M A Saghai; Young, Nevin D

    2008-12-01

    The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.

  3. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    PubMed

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. Copyright © 2016 by the Genetics Society of America.

  4. Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene.

    PubMed

    Barbaro, Michela; Oscarson, Mikael; Schoumans, Jacqueline; Staaf, Johan; Ivarsson, Sten A; Wedell, Anna

    2007-08-01

    Testis development is a tightly regulated process that requires an efficient and coordinated spatiotemporal action of many factors, and it has been shown that several genes involved in gonadal development exert a dosage effect. Chromosomal imbalances have been reported in several patients presenting with gonadal dysgenesis as part of severe dysmorphic phenotypes. We screened for submicroscopic DNA copy number variations in two sisters with an apparent normal 46,XY karyotype and female external genitalia due to gonadal dysgenesis, and in which mutations in known candidate genes had been excluded. By high-resolution tiling bacterial artificial chromosome array comparative genome hybridization, a submicroscopic duplication at Xp21.2 containing DAX1 (NR0B1) was identified. Using fluorescence in situ hybridization, multiple ligation probe amplification, and PCR, the rearrangement was further characterized. This revealed a 637-kb tandem duplication that in addition to DAX1 includes the four MAGEB genes, the hypothetical gene CXorf21, GK, and part of the MAP3K7IP3 gene. Sequencing and analysis of the breakpoint boundaries and duplication junction suggest that the duplication originated through a coupled homologous and nonhomologous recombination process. This represents the first duplication on Xp21.2 identified in patients with isolated gonadal dysgenesis because all previously described XY subjects with Xp21 duplications presented with gonadal dysgenesis as part of a more complex phenotype, including mental retardation and/or malformations. Thus, our data support DAX1 as a dosage sensitive gene responsible for gonadal dysgenesis and highlight the importance of considering DAX1 locus duplications in the evaluation of all cases of 46,XY gonadal dysgenesis.

  5. The Use of Duplication-Generating Rearrangements for Studying Heterokaryon Incompatibility Genes in Neurospora

    PubMed Central

    Perkins, David D.

    1975-01-01

    Heterokaryon (vegetative) incompatibility, governing the fusion of somatic hyphal filaments to form stable heterokaryons, is of interest because of its widespread occurrence in fungi and its bearing on cellular recognition. Conventional investigations of the genetic basis of heterokaryon incompatibility in N. crassa are difficult because in commonly used stocks differences are present at several het loci, all with similar incompatibility phenotypes. This difficulty is overcome by using duplications (partial diploids) that are unlikely to contain more than one het locus. A phenotypically expressed incompatibility reaction occurs when unlike het alleles are present within the same somatic nucleus, and this parallels the heterokaryon incompatibility reaction that occurs when unlike alleles in different haploid nuclei are introduced into the same somatic hypha by mycelial fusion.—Nontandem duplications were used to confirm that the incompatibility reactions in heterokaryons and in duplications are alternate expressions of the same genes. This was demonstrated for three loci which had previously been established by conventional heterokaryon tests—het-e, het-c and mt. These were each obtained in duplications as recombinant meiotic segregants from crosses heterozygous for duplication-generating chromosome rearrangements. The particular method of producing the duplications is irrelevant so long as the incompatibility alleles are heterozygous.—The duplication technique has made it possible to determine easily the het-e and het-c genotypes of numerous laboratory and wild strains of unknown constitution. In laboratory strains both loci are represented simply by two alleles. Analysis of het-c is more complicated in some wild strains, where differences have been demonstrated at one or more additional het loci within the duplication used and multiple allelism is also possible.—The results show that the duplication method can be used to identify and map additional

  6. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    PubMed

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  7. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsperger, Heather M.; Randhawa, Tejinder; Cattolico, Rose Ann

    Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages.

  8. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae

    DOE PAGES

    Hunsperger, Heather M.; Randhawa, Tejinder; Cattolico, Rose Ann

    2015-02-10

    Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages.

  9. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    PubMed Central

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  10. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    PubMed

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  11. Independent and parallel evolution of new genes by gene duplication in two origins of C4 photosynthesis provides new insight into the mechanism of phloem loading in C4 species

    DOE PAGES

    Emms, David M.; Covshoff, Sarah; Hibberd, Julian M.; ...

    2016-03-24

    C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes ismore » enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Moreover, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species.« less

  12. Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua) - Conserved synteny between fish monolobal and tetrapod bilobal transferrin loci

    PubMed Central

    2011-01-01

    Background The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. Results The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. Conclusions The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive

  13. Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies.

    PubMed

    Pohl, Nélida; Sison-Mangus, Marilou P; Yee, Emily N; Liswi, Saif W; Briscoe, Adriana D

    2009-05-13

    The increase in availability of genomic sequences for a wide range of organisms has revealed gene duplication to be a relatively common event. Encounters with duplicate gene copies have consequently become almost inevitable in the context of collecting gene sequences for inferring species trees. Here we examine the effect of incorporating duplicate gene copies evolving at different rates on tree reconstruction and time estimation of recent and deep divergences in butterflies. Sequences from ultraviolet-sensitive (UVRh), blue-sensitive (BRh), and long-wavelength sensitive (LWRh) opsins,EF-1 and COI were obtained from 27 taxa representing the five major butterfly families (5535 bp total). Both BRh and LWRh are present in multiple copies in some butterfly lineages and the different copies evolve at different rates. Regardless of the phylogenetic reconstruction method used, we found that analyses of combined data sets using either slower or faster evolving copies of duplicate genes resulted in a single topology in agreement with our current understanding of butterfly family relationships based on morphology and molecules. Interestingly, individual analyses of BRh and LWRh sequences also recovered these family-level relationships. Two different relaxed clock methods resulted in similar divergence time estimates at the shallower nodes in the tree, regardless of whether faster or slower evolving copies were used, with larger discrepancies observed at deeper nodes in the phylogeny. The time of divergence between the monarch butterfly Danaus plexippus and the queen D. gilippus (15.3-35.6 Mya) was found to be much older than the time of divergence between monarch co-mimic Limenitis archippus and red-spotted purple L. arthemis (4.7-13.6 Mya), and overlapping with the time of divergence of the co-mimetic passionflower butterflies Heliconius erato and H. melpomene (13.5-26.1 Mya). Our family-level results are congruent with recent estimates found in the literature and indicate

  14. Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia).

    PubMed

    Gacesa, Ranko; Chung, Ray; Dunn, Simon R; Weston, Andrew J; Jaimes-Becerra, Adrian; Marques, Antonio C; Morandini, André C; Hranueli, Daslav; Starcevic, Antonio; Ward, Malcolm; Long, Paul F

    2015-10-13

    Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( https://github.com/rgacesa/HHCompare ). A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by

  15. Chromosome I duplications in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKim, K.S.; Rose, A.M.

    1990-01-01

    We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left halfmore » of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.« less

  16. Sorting by Cuts, Joins, and Whole Chromosome Duplications.

    PubMed

    Zeira, Ron; Shamir, Ron

    2017-02-01

    Genome rearrangement problems have been extensively studied due to their importance in biology. Most studied models assumed a single copy per gene. However, in reality, duplicated genes are common, most notably in cancer. In this study, we make a step toward handling duplicated genes by considering a model that allows the atomic operations of cut, join, and whole chromosome duplication. Given two linear genomes, [Formula: see text] with one copy per gene and [Formula: see text] with two copies per gene, we give a linear time algorithm for computing a shortest sequence of operations transforming [Formula: see text] into [Formula: see text] such that all intermediate genomes are linear. We also show that computing an optimal sequence with fewest duplications is NP-hard.

  17. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function.

    PubMed

    Araud, Tanguy; Graw, Sharon; Berger, Ralph; Lee, Michael; Neveu, Estele; Bertrand, Daniel; Leonard, Sherry

    2011-10-15

    The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is a candidate gene for schizophrenia and an important drug target for cognitive deficits in the disorder. Activation of the α7*nAChR, results in opening of the channel and entry of mono- and divalent cations, including Ca(2+), that presynaptically participates to neurotransmitter release and postsynaptically to down-stream changes in gene expression. Schizophrenic patients have low levels of α7*nAChR, as measured by binding of the ligand [(125)I]-α-bungarotoxin (I-BTX). The structure of the gene, CHRNA7, is complex. During evolution, CHRNA7 was partially duplicated as a chimeric gene (CHRFAM7A), which is expressed in the human brain and elsewhere in the body. The association between a 2bp deletion in CHRFAM7A and schizophrenia suggested that this duplicate gene might contribute to cognitive impairment. To examine the putative contribution of CHRFAM7A on receptor function, co-expression of α7 and the duplicate genes was carried out in cell lines and Xenopus oocytes. Expression of the duplicate alone yielded protein expression but no functional receptor and co-expression with α7 caused a significant reduction of the amplitude of the ACh-evoked currents. Reduced current amplitude was not correlated with a reduction of I-BTX binding, suggesting the presence of non-functional (ACh-silent) receptors. This hypothesis is supported by a larger increase of the ACh-evoked current by the allosteric modulator 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596) in cells expressing the duplicate than in the control. These results suggest that CHRFAM7A acts as a dominant negative modulator of CHRNA7 function and is critical for receptor regulation in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function

    PubMed Central

    Araud, Tanguy; Graw, Sharon; Berger, Ralph; Lee, Michael; Neveu, Estelle; Bertrand, Daniel; Leonard, Sherry

    2011-01-01

    The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is a candidate gene for schizophrenia and an important drug target for cognitive deficits in the disorder. Activation of the α7*nAChR, results in opening of the channel and entry of mono- and divalent cations, including Ca++, that presynaptically participates to neurotransmitter release and postsynaptically to down-stream changes in gene expression. Schizophrenic patients have low levels of α7*nAChR, as measured by binding of the ligand [125I]-α-bungarotoxin (I-BTX). The structure of the gene, CHRNA7, is complex. During evolution, CHRNA7 was partially duplicated as a chimeric gene (CHRFAM7A), which is expressed in the human brain and elsewhere in the body. The association between a 2bp deletion in CHRFAM7A and schizophrenia suggested that this duplicate gene might contribute to cognitive impairment. To examine the putative contribution of CHRFAM7A on receptor function, co-expression of α7 and the duplicate genes was carried out in cell lines and Xenopus oocytes. Expression of the duplicate alone yielded protein expression but no functional receptor and co-expression with α7 caused a significant reduction of the amplitude of the ACh-evoked currents. Reduced current amplitude was not correlated with a reduction of I-BTX binding, suggesting the presence of non-functional (ACh-silent) receptors. This hypothesis is supported by a larger increase of the ACh-evoked current by the allosteric modulator 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596) in cells expressing the duplicate than in the control. These results suggest that CHRFAM7A acts as a dominant negative modulator of CHRNA7 function and is critical for receptor regulation in humans. PMID:21718690

  19. Neurodevelopmental disorders among individuals with duplication of 4p13 to 4p12 containing a GABAA receptor subunit gene cluster

    PubMed Central

    Polan, Michelle B; Pastore, Matthew T; Steingass, Katherine; Hashimoto, Sayaka; Thrush, Devon L; Pyatt, Robert; Reshmi, Shalini; Gastier-Foster, Julie M; Astbury, Caroline; McBride, Kim L

    2014-01-01

    Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders. PMID:23695283

  20. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?

    PubMed Central

    2008-01-01

    Background Based on the observation of an increased number of paralogous genes in teleost fishes compared with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole genome duplication (WGD) occurred during the evolution of Actinopterygian fish. Comparative phylogenetic dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish, notably by allowing the sub- or neo-functionalization of many duplicated genes. Results In this paper, we studied in a wide range of Actinopterygians the duplication and fate of the androgen receptor (AR, NR3C4), a nuclear receptor known to play a key role in sex-determination in vertebrates. The pattern of AR gene duplication is consistent with an early WGD event: it has been duplicated into two genes AR-A and AR-B after the split of the Acipenseriformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. Genomic and syntenic analyses in addition to lack of PCR amplification show that one of the duplicated copies, AR-B, was lost in several basal Clupeocephala such as Cypriniformes (including the model species zebrafish), Siluriformes, Characiformes and Salmoniformes. Interestingly, we also found that, in basal teleost fish (Osteoglossiformes and Anguilliformes), the two copies remain very similar, whereas, specifically in Percomorphs, one of the copies, AR-B, has accumulated substitutions in both the ligand binding domain (LBD) and the DNA binding domain (DBD). Conclusion The comparison of the mutations present in these divergent AR-B with those known in human to be implicated in complete, partial or mild androgen insensitivity syndrome suggests that the existence of two distinct AR duplicates may be correlated to specific functional differences that may be connected to the well

  1. Pericentromeric Effects Shape the Patterns of Divergence, Retention, and Expression of Duplicated Genes in the Paleopolyploid Soybean[C][W

    PubMed Central

    Du, Jianchang; Tian, Zhixi; Sui, Yi; Zhao, Meixia; Song, Qijian; Cannon, Steven B.; Cregan, Perry; Ma, Jianxin

    2012-01-01

    The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions—the cold spots for meiotic recombination in soybean—showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes. PMID:22227891

  2. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    PubMed Central

    2012-01-01

    Background Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on

  4. Mutation screening of patients with Alzheimer disease identifies APP locus duplication in a Swedish patient

    PubMed Central

    2011-01-01

    Background Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. Methods We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. Results In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. Conclusions This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus. PMID:22044463

  5. Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages

    PubMed Central

    Bassham, Susan; Cañestro, Cristian; Postlethwait, John H

    2008-01-01

    Background Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates. Results To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial

  6. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    PubMed

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the

  7. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene

    PubMed Central

    Sullivan, Lori S.; Wheaton, Dianna K.; Locke, Kirsten G.; Jones, Kaylie D.; Koboldt, Daniel C.; Fulton, Robert S.; Wilson, Richard K.; Blanton, Susan H.; Birch, David G.; Daiger, Stephen P.

    2016-01-01

    Purpose To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). Methods A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Results Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. Conclusions The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1

  8. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene.

    PubMed

    Bowne, Sara J; Sullivan, Lori S; Wheaton, Dianna K; Locke, Kirsten G; Jones, Kaylie D; Koboldt, Daniel C; Fulton, Robert S; Wilson, Richard K; Blanton, Susan H; Birch, David G; Daiger, Stephen P

    2016-01-01

    To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13 . The duplication creates a partial copy of CCNC and a complete copy of PRDM13 . The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC

  9. Duplication and amplification of antibiotic resistance genes enable increased resistance in isolates of multidrug-resistant Salmonella Typhimurium

    USDA-ARS?s Scientific Manuscript database

    During normal bacterial DNA replication, gene duplication and amplification (GDA) events occur randomly at a low frequency in the genome throughout a population. In the absence of selection, GDA events that increase the number of copies of a bacterial gene (or a set of genes) are lost. Antibiotic ...

  10. Antagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the Land Plant Body Plan Following an Ancient Gene Duplication

    PubMed Central

    Furumizu, Chihiro; Alvarez, John Paul; Sakakibara, Keiko; Bowman, John L.

    2015-01-01

    Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical

  11. Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates

    PubMed Central

    Lorin, Thibault; Brunet, Frédéric G.; Laudet, Vincent; Volff, Jean-Nicolas

    2018-01-01

    Vertebrate pigmentation is a highly diverse trait mainly determined by neural crest cell derivatives. It has been suggested that two rounds (1R/2R) of whole-genome duplications (WGDs) at the basis of vertebrates allowed changes in gene regulation associated with neural crest evolution. Subsequently, the teleost fish lineage experienced other WGDs, including the teleost-specific Ts3R before teleost radiation and the more recent Ss4R at the basis of salmonids. As the teleost lineage harbors the highest number of pigment cell types and pigmentation diversity in vertebrates, WGDs might have contributed to the evolution and diversification of the pigmentation gene repertoire in teleosts. We have compared the impact of the basal vertebrate 1R/2R duplications with that of the teleost-specific Ts3R and salmonid-specific Ss4R WGDs on 181 gene families containing genes involved in pigmentation. We show that pigmentation genes (PGs) have been globally more frequently retained as duplicates than other genes after Ts3R and Ss4R but not after the early 1R/2R. This is also true for non-pigmentary paralogs of PGs, suggesting that the function in pigmentation is not the sole key driver of gene retention after WGDs. On the long-term, specific categories of PGs have been repeatedly preferentially retained after ancient 1R/2R and Ts3R WGDs, possibly linked to the molecular nature of their proteins (e.g., DNA binding transcriptional regulators) and their central position in protein-protein interaction networks. Taken together, our results support a major role of WGDs in the diversification of the pigmentation gene repertoire in the teleost lineage, with a possible link with the diversity of pigment cell lineages observed in these animals compared to other vertebrates. PMID:29599177

  12. Neofunctionalization of a duplicate hatching enzyme gene during the evolution of teleost fishes.

    PubMed

    Sano, Kaori; Kawaguchi, Mari; Watanabe, Satoshi; Yasumasu, Shigeki

    2014-10-19

    Duplication and subsequent neofunctionalization of the teleostean hatching enzyme gene occurred in the common ancestor of Euteleostei and Otocephala, producing two genes belonging to different phylogenetic clades (clade I and II). In euteleosts, the clade I enzyme inherited the activity of the ancestral enzyme of swelling the egg envelope by cleavage of the N-terminal region of egg envelope proteins. The clade II enzyme gained two specific cleavage sites, N-ZPd and mid-ZPd but lost the ancestral activity. Thus, euteleostean clade II enzymes assumed a new function; solubilization of the egg envelope by the cooperative action with clade I enzyme. However, in Otocephala, the clade II gene was lost during evolution. Consequently, in a late group of Otocephala, only the clade I enzyme is present to swell the egg envelope. We evaluated the egg envelope digestion properties of clade I and II enzymes in Gonorynchiformes, an early diverging group of Otocephala, using milkfish, and compared their digestion with those of other fishes. Finally, we propose a hypothesis of the neofunctionalization process. The milkfish clade II enzyme cleaved N-ZPd but not mid-ZPd, and did not cause solubilization of the egg envelope. We conclude that neofunctionalization is incomplete in the otocephalan clade II enzymes. Comparison of clade I and clade II enzyme characteristics implies that the specificity of the clade II enzymes gradually changed during evolution after the duplication event, and that a change in substrate was required for the addition of the mid-ZPd site and loss of activity at the N-terminal region. We infer the process of neofunctionalization of the clade II enzyme after duplication of the gene. The ancestral clade II gene gained N-ZPd cleavage activity in the common ancestral lineage of the Euteleostei and Otocephala. Subsequently, acquisition of cleavage activity at the mid-ZPd site and loss of cleavage activity in the N-terminal region occurred during the evolution of

  13. SHOX gene and conserved noncoding element deletions/duplications in Colombian patients with idiopathic short stature.

    PubMed

    Sandoval, Gloria Tatiana Vinasco; Jaimes, Giovanna Carola; Barrios, Mauricio Coll; Cespedes, Camila; Velasco, Harvy Mauricio

    2014-03-01

    SHOX gene mutations or haploinsufficiency cause a wide range of phenotypes such as Leri Weill dyschondrosteosis (LWD), Turner syndrome, and disproportionate short stature (DSS). However, this gene has also been found to be mutated in cases of idiopathic short stature (ISS) with a 3-15% frequency. In this study, the multiplex ligation-dependent probe amplification (MLPA) technique was employed to determine the frequency of SHOX gene mutations and their conserved noncoding elements (CNE) in Colombian patients with ISS. Patients were referred from different centers around the county. From a sample of 62 patients, 8.1% deletions and insertions in the intragenic regions and in the CNE were found. This result is similar to others published in other countries. Moreover, an isolated case of CNE 9 duplication and a new intron 6b deletion in another patient, associated with ISS, are described. This is one of the first studies of a Latin American population in which deletions/duplications of the SHOX gene and its CNE are examined in patients with ISS.

  14. SHOX gene and conserved noncoding element deletions/duplications in Colombian patients with idiopathic short stature

    PubMed Central

    Sandoval, Gloria Tatiana Vinasco; Jaimes, Giovanna Carola; Barrios, Mauricio Coll; Cespedes, Camila; Velasco, Harvy Mauricio

    2014-01-01

    SHOX gene mutations or haploinsufficiency cause a wide range of phenotypes such as Leri Weill dyschondrosteosis (LWD), Turner syndrome, and disproportionate short stature (DSS). However, this gene has also been found to be mutated in cases of idiopathic short stature (ISS) with a 3–15% frequency. In this study, the multiplex ligation-dependent probe amplification (MLPA) technique was employed to determine the frequency of SHOX gene mutations and their conserved noncoding elements (CNE) in Colombian patients with ISS. Patients were referred from different centers around the county. From a sample of 62 patients, 8.1% deletions and insertions in the intragenic regions and in the CNE were found. This result is similar to others published in other countries. Moreover, an isolated case of CNE 9 duplication and a new intron 6b deletion in another patient, associated with ISS, are described. This is one of the first studies of a Latin American population in which deletions/duplications of the SHOX gene and its CNE are examined in patients with ISS. PMID:24689071

  15. Association of an α-globin gene cluster duplication and heterozygous β-thalassemia in a patient with a severe thalassemia syndrome.

    PubMed

    Jiang, Hua; Liu, Sha; Zhang, Yong-Ling; Wan, Jun-Hui; Li, Ru; Li, Dong-Zhi

    2015-01-01

    We describe a new case of a β-thalassemia (β-thal) heterozygote with the mutation IVS-II-654 (C>T) presenting with a transfusion-dependent phenotype. Multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (CGH) analyses of the α-globin gene cluster revealed a full duplication of the α-globin genes including the upstream regulatory element. The duplicated allele and the normal allele in trans resulted in a total of six active α-globin genes. The severe clinical phenotype seemed to be related to the considerable excess of the α- and β-globin deficit caused by the presence of the β-thal. α-Globin cluster duplication should be considered in patients heterozygous for β-thal who show a more severe phenotype than β-thal trait.

  16. Expression, subcellular localization, and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.).

    PubMed

    Qin, Xiaoqiong; Coku, Ardian; Inoue, Kentaro; Tian, Li

    2011-10-01

    Carotenoids perform many critical functions in plants, animals, and humans. It is therefore important to understand carotenoid biosynthesis and its regulation in plants. Phytoene synthase (PSY) catalyzes the first committed and rate-limiting step in carotenoid biosynthesis. While PSY is present as a single copy gene in Arabidopsis, duplicated PSY genes have been identified in many economically important monocot and dicot crops. CmPSY1 was previously identified from melon (Cucumis melo L.), but was not functionally characterized. We isolated a second PSY gene, CmPSY2, from melon in this work. CmPSY2 possesses a unique intron/exon structure that has not been observed in other plant PSYs. Both CmPSY1 and CmPSY2 are functional in vitro, but exhibit distinct expression patterns in different melon tissues and during fruit development, suggesting differential regulation of the duplicated melon PSY genes. In vitro chloroplast import assays verified the plastidic localization of CmPSY1 and CmPSY2 despite the lack of an obvious plastid target peptide in CmPSY2. Promoter motif analysis of the duplicated melon and tomato PSY genes and the Arabidopsis PSY revealed distinctive cis-regulatory structures of melon PSYs and identified gibberellin-responsive motifs in all PSYs except for SlPSY1, which has not been reported previously. Overall, these data provide new insights into the evolutionary history of plant PSY genes and the regulation of PSY expression by developmental and environmental signals that may involve different regulatory networks.

  17. Evolution history of duplicated smad3 genes in teleost: insights from Japanese flounder, Paralichthys olivaceus

    PubMed Central

    Du, Xinxin; Liu, Yuezhong; Liu, Jinxiang; Zhang, Quanqi

    2016-01-01

    Following the two rounds of whole-genome duplication (WGD) during deuterosome evolution, a third genome duplication occurred in the ray-fined fish lineage and is considered to be responsible for the teleost-specific lineage diversification and regulation mechanisms. As a receptor-regulated SMAD (R-SMAD), the function of SMAD3 was widely studied in mammals. However, limited information of its role or putative paralogs is available in ray-finned fishes. In this study, two SMAD3 paralogs were first identified in the transcriptome and genome of Japanese flounder (Paralichthys olivaceus). We also explored SMAD3 duplication in other selected species. Following identification, genomic structure, phylogenetic reconstruction, and synteny analyses performed by MrBayes and online bioinformatic tools confirmed that smad3a/3b most likely originated from the teleost-specific WGD. Additionally, selection pressure analysis and expression pattern of the two genes performed by PAML and quantitative real-time PCR (qRT-PCR) revealed evidence of subfunctionalization of the two SMAD3 paralogs in teleost. Our results indicate that two SMAD3 genes originate from teleost-specific WGD, remain transcriptionally active, and may have likely undergone subfunctionalization. This study provides novel insights to the evolution fates of smad3a/3b and draws attentions to future function analysis of SMAD3 gene family. PMID:27703851

  18. Digital gene expression analysis with sample multiplexing and PCR duplicate detection: A straightforward protocol.

    PubMed

    Rozenberg, Andrey; Leese, Florian; Weiss, Linda C; Tollrian, Ralph

    2016-01-01

    Tag-Seq is a high-throughput approach used for discovering SNPs and characterizing gene expression. In comparison to RNA-Seq, Tag-Seq eases data processing and allows detection of rare mRNA species using only one tag per transcript molecule. However, reduced library complexity raises the issue of PCR duplicates, which distort gene expression levels. Here we present a novel Tag-Seq protocol that uses the least biased methods for RNA library preparation combined with a novel approach for joint PCR template and sample labeling. In our protocol, input RNA is fragmented by hydrolysis, and poly(A)-bearing RNAs are selected and directly ligated to mixed DNA-RNA P5 adapters. The P5 adapters contain i5 barcodes composed of sample-specific (moderately) degenerate base regions (mDBRs), which later allow detection of PCR duplicates. The P7 adapter is attached via reverse transcription with individual i7 barcodes added during the amplification step. The resulting libraries can be sequenced on an Illumina sequencer. After sample demultiplexing and PCR duplicate removal with a free software tool we designed, the data are ready for downstream analysis. Our protocol was tested on RNA samples from predator-induced and control Daphnia microcrustaceans.

  19. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster.

    PubMed

    Dutartre, Leslie; Hilliou, Frédérique; Feyereisen, René

    2012-05-11

    The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.

  20. Segmental duplications and evolutionary acquisition of UV damage response in the SPATA31 gene family of primates and humans.

    PubMed

    Bekpen, Cemalettin; Künzel, Sven; Xie, Chen; Eaaswarkhanth, Muthukrishnan; Lin, Yen-Lung; Gokcumen, Omer; Akdis, Cezmi A; Tautz, Diethard

    2017-03-06

    Segmental duplications are an abundant source for novel gene functions and evolutionary adaptations. This mechanism of generating novelty was very active during the evolution of primates particularly in the human lineage. Here, we characterize the evolution and function of the SPATA31 gene family (former designation FAM75A), which was previously shown to be among the gene families with the strongest signal of positive selection in hominoids. The mouse homologue for this gene family is a single copy gene expressed during spermatogenesis. We show that in primates, the SPATA31 gene duplicated into SPATA31A and SPATA31C types and broadened the expression into many tissues. Each type became further segmentally duplicated in the line towards humans with the largest number of full-length copies found for SPATA31A in humans. Copy number estimates of SPATA31A based on digital PCR show an average of 7.5 with a range of 5-11 copies per diploid genome among human individuals. The primate SPATA31 genes also acquired new protein domains that suggest an involvement in UV response and DNA repair. We generated antibodies and show that the protein is re-localized from the nucleolus to the whole nucleus upon UV-irradiation suggesting a UV damage response. We used CRISPR/Cas mediated mutagenesis to knockout copies of the gene in human primary fibroblast cells. We find that cell lines with reduced functional copies as well as naturally occurring low copy number HFF cells show enhanced sensitivity towards UV-irradiation. The acquisition of new SPATA31 protein functions and its broadening of expression may be related to the evolution of the diurnal life style in primates that required a higher UV tolerance. The increased segmental duplications in hominoids as well as its fast evolution suggest the acquisition of further specific functions particularly in humans.

  1. An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito.

    PubMed

    Assogba, Benoît S; Djogbénou, Luc S; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène

    2015-10-05

    Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1(R) allele), is already present. Furthermore, a duplicated allele (ace-1(D)) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1(D) confers less resistance than ace-1(R), the high fitness cost associated with ace-1(R) is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management.

  2. An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito

    PubMed Central

    Assogba, Benoît S.; Djogbénou, Luc S.; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène

    2015-01-01

    Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1R allele), is already present. Furthermore, a duplicated allele (ace-1D) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1D confers less resistance than ace-1R, the high fitness cost associated with ace-1R is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management. PMID:26434951

  3. Speciation of polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp derived from duplicated Hox genes.

    PubMed

    Yuan, Jian; He, Zhuzi; Yuan, Xiangnan; Jiang, Xiayun; Sun, Xiaowen; Zou, Shuming

    2010-09-15

    Recent studies on comparative genomics have suggested that a round of fish-specific whole genome duplication (3R) in ray-finned fishes might have occurred around 226-316 Mya. Additional genome duplication, specifically in cyprinids, may have occurred more recently after the divergence of the teleosts. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing the polyploid Cyprinidae fish, common carp (Cyprinus carpio, 2n=100), crucian carp (Carassius auratus auratus, 2n=100), and silver crucian carp (C. auratus gibelio, 2n=156), and then compared them with known sequences from the diploid Cyprinidae fish, blunt snout bream (Megalobrama amblycephala, 2n=48). Our results showed the presence of two distinct Hox duplicates in the genomes of common and crucian carp. Three distinct Hox sequences, one of them orthologous to a Hox gene in common carp and the other two orthologous to a Hox gene in crucian carp, were isolated in silver crucian carp, indicating a possible hybrid origin of silver crucian carp from crucian and common carp. The gene duplication resulting in the origin of the common ancestor of common and crucian carp likely occurred around 10.9-13.2 Mya. The speciations of common vs. crucian carp and silver crucian vs. crucian carp likely occurred around 8.1-11.4 and 2.3-3.0 Mya, respectively. Finally, nonfunctionalization resulting from point mutations in the coding region is a probable fate for some Hox duplicates. Taken together, these results suggested an evolutionary model for polyploidization in speciation and diversification of polyploid fish. (c) 2010 Wiley-Liss, Inc.

  4. Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate

    PubMed Central

    Dehal, Paramvir; Boore, Jeffrey L

    2005-01-01

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish–tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage. PMID:16128622

  5. β2-microglobulin gene duplication in cetartiodactyla remains intact only in pigs and possibly confers selective advantage to the species.

    PubMed

    Le, Thong Minh; Le, Quy Van Chanh; Truong, Dung Minh; Lee, Hye-Jeong; Choi, Min-Kyeung; Cho, Hyesun; Chung, Hak-Jae; Kim, Jin-Hoi; Do, Jeong-Tae; Song, Hyuk; Park, Chankyu

    2017-01-01

    Several β2-microglobulin (B2M) -bound protein complexes undertake key roles in various immune system pathways, including the neonatal Fc receptor (FcRn), cluster of differentiation 1 (CD1) protein, non-classical major histocompatibility complex (MHC), and well-known MHC class I molecules. Therefore, the duplication of B2M may lead to an increase in the biological competence of organisms to the environment. Based on the pig genome assembly SSC10.2, a segmental duplication of ~45.5 kb, encoding the entire B2M protein, was identified in pig chromosome 1. Through experimental validation, we confirmed the functional duplication of the B2M gene with a completely identical coding sequence between two copies in pigs. Considering the importance of B2M in the immune system, we performed the phylogenetic analysis of B2M duplication in ten mammalian species, confirming the presence of B2M duplication in cetartioldactyls, like cattle, sheep, goats, pigs and whales, but non-cetartiodactyl species, like mice, cats, dogs, horses, and humans. The density of long interspersed nuclear element (LINE) at the edges of duplicated blocks (39 to 66%) was found to be 2 to 3-fold higher than the average (20.12%) of the pig genome, suggesting its role in the duplication event. The B2M mRNA expression level in pigs was 12.71 and 7.57 times (2-ΔΔCt values) higher than humans and mice, respectively. However, we were unable to experimentally demonstrate the difference in the level of B2M protein because species specific anti-B2M antibodies are not available. We reported, for the first time, the functional duplication of the B2M gene in animals. The identification of partially remaining duplicated B2M sequences in the genomes of only cetartiodactyls indicates that the event was lineage specific. B2M duplication could be beneficial to the immune system of pigs by increasing the availability of MHC class I light chain protein, B2M, to complex with the proteins encoded by the relatively large

  6. Brain evolution by brain pathway duplication

    PubMed Central

    Chakraborty, Mukta; Jarvis, Erich D.

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  7. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.

    PubMed

    Hernández-Hernández, Tania; Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R

    2007-02-01

    B-class MADS-box genes have been shown to be the key regulators of petal and stamen specification in several eudicot model species such as Arabidopsis thaliana, Antirrhinum majus, and Petunia hybrida. Orthologs of these genes have been found across angiosperms and gymnosperms, and it is thought that the basic regulatory function of B proteins is conserved in seed plant lineages. The evolution of B genes is characterized by numerous duplications that might represent key elements fostering the functional diversification of duplicates with a deep impact on their role in the evolution of the floral developmental program. To evaluate this, we performed a rigorous statistical analysis with B gene sequences. Using maximum likelihood and Bayesian methods, we estimated molecular substitution rates and determined the selective regimes operating at each residue of B proteins. We implemented tests that rely on phylogenetic hypotheses and codon substitution models to detect significant differences in substitution rates (DSRs) and sites under positive adaptive selection (PS) in specific lineages before and after duplication events. With these methods, we identified several protein residues fixed by PS shortly after the origin of PISTILLATA-like and APETALA3-like lineages in angiosperms and shortly after the origin of the euAP3-like lineage in core eudicots, the 2 main B gene duplications. The residues inferred to have been fixed by positive selection lie mostly within the K domain of the protein, which is key to promote heterodimerization. Additionally, we used a likelihood method that accommodates DSRs among lineages to estimate duplication dates for AP3-PI and euAP3-TM6, calibrating with data from the fossil record. The dates obtained are consistent with angiosperm origins and diversification of core eudicots. Our results strongly suggest that novel multimer formation with other MADS proteins could have been crucial for the functional divergence of B MADS-box genes. We thus

  8. A case report of two male siblings with autism and duplication of Xq13-q21, a region including three genes predisposing for autism.

    PubMed

    Wentz, Elisabet; Vujic, Mihailo; Kärrstedt, Ewa-Lotta; Erlandsson, Anna; Gillberg, Christopher

    2014-05-01

    Autism spectrum disorder, severe behaviour problems and duplication of the Xq12 to Xq13 region have recently been described in three male relatives. To describe the psychiatric comorbidity and dysmorphic features, including craniosynostosis, of two male siblings with autism and duplication of the Xq13 to Xq21 region, and attempt to narrow down the number of duplicated genes proposed to be leading to global developmental delay and autism. We performed DNA sequencing of certain exons of the TWIST1 gene, the FGFR2 gene and the FGFR3 gene. We also performed microarray analysis of the DNA. In addition to autism, the two male siblings exhibited severe learning disability, self-injurious behaviour, temper tantrums and hyperactivity, and had no communicative language. Chromosomal analyses were normal. Neither of the two siblings showed mutations of the sequenced exons known to produce craniosynostosis. The microarray analysis detected an extra copy of a region on the long arm of chromosome X, chromosome band Xq13.1-q21.1. Comparison of our two cases with previously described patients allowed us to identify three genes predisposing for autism in the duplicated chromosomal region. Sagittal craniosynostosis is also a new finding linked to the duplication.

  9. New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (Oncorhynchus mykiss): a gene duplication trail.

    PubMed

    Marandel, Lucie; Seiliez, Iban; Véron, Vincent; Skiba-Cassy, Sandrine; Panserat, Stéphane

    2015-07-01

    The rainbow trout (Oncorhynchus mykiss) is considered to be a strictly carnivorous fish species that is metabolically adapted for high catabolism of proteins and low utilization of dietary carbohydrates. This species consequently has a "glucose-intolerant" phenotype manifested by persistent hyperglycemia when fed a high-carbohydrate diet. Gluconeogenesis in adult fish is also poorly, if ever, regulated by carbohydrates, suggesting that this metabolic pathway is involved in this specific phenotype. In this study, we hypothesized that the fate of duplicated genes after the salmonid-specific 4th whole genome duplication (Ss4R) may have led to adaptive innovation and that their study might provide new elements to enhance our understanding of gluconeogenesis and poor dietary carbohydrate use in this species. Our evolutionary analysis of gluconeogenic genes revealed that pck1, pck2, fbp1a, and g6pca were retained as singletons after Ss4r, while g6pcb1, g6pcb2, and fbp1b ohnolog pairs were maintained. For all genes, duplication may have led to sub- or neofunctionalization. Expression profiles suggest that the gluconeogenesis pathway remained active in trout fed a no-carbohydrate diet. When trout were fed a high-carbohydrate diet (30%), most of the gluconeogenic genes were non- or downregulated, except for g6pbc2 ohnologs, whose RNA levels were surprisingly increased. This study demonstrates that Ss4R in trout involved adaptive innovation via gene duplication and via the outcome of the resulting ohnologs. Indeed, maintenance of ohnologous g6pcb2 pair may contribute in a significant way to the glucose-intolerant phenotype of trout and may partially explain its poor use of dietary carbohydrates. Copyright © 2015 the American Physiological Society.

  10. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene.

    PubMed

    Paterson, Andrew D; Rommens, Johanna M; Bharaj, Bhupinder; Blavignac, Jessica; Wong, Isidro; Diamandis, Maria; Waye, John S; Rivard, Georges E; Hayward, Catherine P M

    2010-02-11

    Quebec platelet disorder (QPD) is an autosomal dominant bleeding disorder linked to a region on chromosome 10 that includes PLAU, the urokinase plasminogen activator gene. QPD increases urokinase plasminogen activator mRNA levels, particularly during megakaryocyte differentiation, without altering expression of flanking genes. Because PLAU sequence changes were excluded as the cause of this bleeding disorder, we investigated whether the QPD mutation involved PLAU copy number variation. All 38 subjects with QPD had a direct tandem duplication of a 78-kb genomic segment that includes PLAU. This mutation was specific to QPD as it was not present in any unaffected family members (n = 114), unrelated French Canadians (n = 221), or other persons tested (n = 90). This new information on the genetic mutation will facilitate diagnostic testing for QPD and studies of its pathogenesis and prevalence. QPD is the first bleeding disorder to be associated with a gene duplication event and a PLAU mutation.

  11. Generation of megabase-scale deletions, inversions and duplications involving the Contactin-6 gene in mice by CRISPR/Cas9 technology.

    PubMed

    Korablev, Alexei N; Serova, Irina A; Serov, Oleg L

    2017-12-28

    Copy Number Variation (CNV) of the human CNTN6 gene (encoding the contactin-6 protein), caused by deletions or duplications, is responsible for severe neurodevelopmental impairments, often in combination with facial dysmorphias. Conversely, deleterious point mutations of this gene do not show any clinical phenotypes. The aim of this study is to generate mice carrying large deletions, duplications and inversions involving the Cntn6 gene as a new experimental model to study CNV of the human CNTN6 locus. To generate large chromosomal rearrangements on mouse chromosome 6, we applied CRISPR/Cas9 technology in zygotes. Two guide RNAs (gRNAs) (flanking a DNA fragment of 1137 Mb) together with Cas9 mRNA and single-stranded DNA oligonucleotides (ssODN) were microinjected into the cytoplasm of 599 zygotes of F1 (C57BL x CBA) mice, and 256 of them were transplanted into oviducts of CD-1 females. As a result, we observed the birth of 41 viable F0 offspring. Genotyping of these mice was performed by PCR analysis and sequencing of PCR products. Among the 41 F0 offspring, we identified seven mice with deletions, two animals carrying duplications of the gene and four carrying inversions. Interestingly, two F0 offspring had both deletions and duplications. It is important to note that while three of seven deletion carriers showed expected sequences at the new joint sites, in another three, we identified an absence of 1-10 nucleotides at the CRISPR/Cas9 cut sites, and in one animal, 103 bp were missing, presumably due to error-prone non-homologous end joining. In addition, we detected the absence of 5 and 13 nucleotides at these sites in two F0 duplication carriers. Similar sequence changes at CRISPR/Cas9 cut sites were observed at the right and left boundaries of inversions. Thus, megabase-scale deletions, duplications and inversions were identified in 11 F0 offspring among 41 analyzed, i.e., approximately 25% efficiency. All genetically modified F0 offspring were viable and

  12. Mirror-image duplication of the primary axis and heart in Xenopus embryos by the overexpression of Msx-1 gene.

    PubMed

    Chen, Y; Solursh, M

    1995-10-01

    The Msx-1 gene (formerly known as Hox-7) is a member of a discrete subclass of homeobox-containing genes. Examination of the expression pattern of Msx-1 in murine and avian embryos suggests that this gene may be involved in the regionalization of the medio-lateral axis during earlier development. We have examined the possible functions of Xenopus Msx-1 during early Xenopus embryonic development by overexpression of the Msx-1 gene. Overexpression of Msx-1 causes a left-right mirror-image duplication of primary axial structures, including notochord, neural tube, somites, suckers, and foregut. The embryonic developing heart is also mirror-image duplicated, including looping directions and polarity. These results indicate that Msx-1 may be involved in the mesoderm formation as well as left-right patterning in the early Xenopus embryonic development.

  13. Orsomucoid: A new variant and additional duplicated ORM1 gene in Qatari population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebetan, I.M.; Alali, K.A.; Alzaman, A.

    1994-09-01

    A new genetically determined ORM2 variant and additional duplicated ORM1 gene were observed in Qatari population using isoelectric focusing in ultra thin layer polyacrylamide gels. The studied population samples indicate occurence of six ORM1 alleles and three ORM2 ones. A simple reliable method for separation of orsomucoid variations with comparison of different reported methods will be presented.

  14. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants.

    PubMed

    Smith, Stephen A; Moore, Michael J; Brown, Joseph W; Yang, Ya

    2015-08-05

    The use of transcriptomic and genomic datasets for phylogenetic reconstruction has become increasingly common as researchers attempt to resolve recalcitrant nodes with increasing amounts of data. The large size and complexity of these datasets introduce significant phylogenetic noise and conflict into subsequent analyses. The sources of conflict may include hybridization, incomplete lineage sorting, or horizontal gene transfer, and may vary across the phylogeny. For phylogenetic analysis, this noise and conflict has been accommodated in one of several ways: by binning gene regions into subsets to isolate consistent phylogenetic signal; by using gene-tree methods for reconstruction, where conflict is presumed to be explained by incomplete lineage sorting (ILS); or through concatenation, where noise is presumed to be the dominant source of conflict. The results provided herein emphasize that analysis of individual homologous gene regions can greatly improve our understanding of the underlying conflict within these datasets. Here we examined two published transcriptomic datasets, the angiosperm group Caryophyllales and the aculeate Hymenoptera, for the presence of conflict, concordance, and gene duplications in individual homologs across the phylogeny. We found significant conflict throughout the phylogeny in both datasets and in particular along the backbone. While some nodes in each phylogeny showed patterns of conflict similar to what might be expected with ILS alone, the backbone nodes also exhibited low levels of phylogenetic signal. In addition, certain nodes, especially in the Caryophyllales, had highly elevated levels of strongly supported conflict that cannot be explained by ILS alone. This study demonstrates that phylogenetic signal is highly variable in phylogenomic data sampled across related species and poses challenges when conducting species tree analyses on large genomic and transcriptomic datasets. Further insight into the conflict and processes

  15. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template.

    PubMed

    Gouran, Hossein; Chakraborty, Sandeep; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction.

  16. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template

    PubMed Central

    Rao, Basuthkar J.; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction. PMID:25717364

  17. Detection of a large duplication mutation in the myosin-binding protein C3 gene in a case of hypertrophic cardiomyopathy.

    PubMed

    Meyer, Thomas; Pankuweit, Sabine; Richter, Anette; Maisch, Bernhard; Ruppert, Volker

    2013-09-15

    Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n=8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (>10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM. © 2013 Elsevier B.V. All rights reserved.

  18. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family[W][OPEN

    PubMed Central

    Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin

    2014-01-01

    Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172

  19. Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication

    PubMed Central

    Korithoski, Bryan; Kolaczkowski, Oralia; Mukherjee, Krishanu; Kola, Reema; Earl, Chandra; Kolaczkowski, Bryan

    2015-01-01

    The RIG-like receptors (RLRs) are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs) on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s) are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that—in the absence of ubiquitin—it is the first CARD domain of human RIG-I and MDA5 (CARD1) that binds directly to IPS1 CARD, and not the second (CARD2). Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways. PMID:26356745

  20. Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications.

    PubMed Central

    Den Dunnen, J T; Grootscholten, P M; Bakker, E; Blonden, L A; Ginjaar, H B; Wapenaar, M C; van Paassen, H M; van Broeckhoven, C; Pearson, P L; van Ommen, G J

    1989-01-01

    We have studied 34 Becker and 160 Duchenne muscular dystrophy (DMD) patients with the dystrophin cDNA, using conventional blots and FIGE analysis. One hundred twenty-eight mutations (65%) were found, 115 deletions and 13 duplications, of which 106 deletions and 11 duplications could be precisely mapped in relation to both the mRNA and the major and minor mutation hot spots. Junction fragments, ideal markers for carrier detection, were found in 23 (17%) of the 128 cases. We identified eight new cDNA RFLPs within the DMD gene. With the use of cDNA probes we have completed the long-range map of the DMD gene, by the identification of a 680-kb SfiI fragment containing the gene's 3' end. The size of the DMD gene is now determined to be about 2.3 million basepairs. The combination of cDNA hybridizations with long-range analysis of deletion and duplication patients yields a global picture of the exon spacing within the dystrophin gene. The gene shows a large variability of intron size, ranging from only a few kilobases to 160-180 kb for the P20 intron. Images Figure 1 Figure 4 PMID:2573997

  1. A yeast gene essential for regulation of spindle pole duplication.

    PubMed Central

    Baum, P; Yip, C; Goetsch, L; Byers, B

    1988-01-01

    In eucaryotic cells, duplication of spindle poles must be coordinated with other cell cycle functions. We report here the identification in Saccharomyces cerevisiae of a temperature-sensitive lethal mutation, esp1, that deregulates spindle pole duplication. Mutant cells transferred to the nonpermissive temperature became unable to continue DNA synthesis and cell division but displayed repeated duplication of their spindle pole bodies. Although entry into this state after transient challenge by the nonpermissive temperature was largely lethal, rare survivors were recovered and found to have become increased in ploidy. If the mutant cells were held in G0 or G1 during exposure to the elevated temperature, they remained viable and maintained normal numbers of spindle poles. These results suggest dual regulation of spindle pole duplication, including a mechanism that promotes duplication as cells enter the division cycle and a negative regulatory mechanism, controlled by ESP1, that limits duplication to a single occurrence in each cell division cycle. Tetrad analysis has revealed that ESP1 resides at a previously undescribed locus on the right arm of chromosome VII. Images PMID:3072479

  2. Origin of a function by tandem gene duplication limits the evolutionary capability of its sister copy.

    PubMed

    Hasselmann, Martin; Lechner, Sarah; Schulte, Christina; Beye, Martin

    2010-07-27

    The most remarkable outcome of a gene duplication event is the evolution of a novel function. Little information exists on how the rise of a novel function affects the evolution of its paralogous sister gene copy, however. We studied the evolution of the feminizer (fem) gene from which the gene complementary sex determiner (csd) recently derived by tandem duplication within the honey bee (Apis) lineage. Previous studies showed that fem retained its sex determination function, whereas the rise of csd established a new primary signal of sex determination. We observed a specific reduction of nonsynonymous to synonymous substitution ratios in Apis to non-Apis fem. We found a contrasting pattern at two other genetically linked genes, suggesting that hitchhiking effects to csd, the locus under balancing selection, is not the cause of this evolutionary pattern. We also excluded higher synonymous substitution rates by relative rate testing. These results imply that stronger purifying selection is operating at the fem gene in the presence of csd. We propose that csd's new function interferes with the function of Fem protein, resulting in molecular constraints and limited evolvability of fem in the Apis lineage. Elevated silent nucleotide polymorphism in fem relative to the genome-wide average suggests that genetic linkage to the csd gene maintained more nucleotide variation in today's population. Our findings provide evidence that csd functionally and genetically interferes with fem, suggesting that a newly evolved gene and its functions can limit the evolutionary capability of other genes in the genome.

  3. Gene Duplication and Transference of Function in the paleoAP3 Lineage of Floral Organ Identity Genes

    PubMed Central

    Galimba, Kelsey D.; Martínez-Gómez, Jesús; Di Stilio, Verónica S.

    2018-01-01

    The floral organ identity gene APETALA3 (AP3) is a MADS-box transcription factor involved in stamen and petal identity that belongs to the B-class of the ABC model of flower development. Thalictrum (Ranunculaceae), an emerging model in the non-core eudicots, has AP3 homologs derived from both ancient and recent gene duplications. Prior work has shown that petals have been lost repeatedly and independently in Ranunculaceae in correlation with the loss of a specific AP3 paralog, and Thalictrum represents one of these instances. The main goal of this study was to conduct a functional analysis of the three AP3 orthologs present in Thalictrum thalictroides, representing the paleoAP3 gene lineage, to determine the degree of redundancy versus divergence after gene duplication. Because Thalictrum lacks petals, and has lost the petal-specific AP3, we also asked whether heterotopic expression of the remaining AP3 genes contributes to the partial transference of petal function to the first whorl found in insect-pollinated species. To address these questions, we undertook functional characterization by virus-induced gene silencing (VIGS), protein–protein interaction and binding site analyses. Our results illustrate partial redundancy among Thalictrum AP3s, with deep conservation of B-class function in stamen identity and a novel role in ectopic petaloidy of sepals. Certain aspects of petal function of the lost AP3 locus have apparently been transferred to the other paralogs. A novel result is that the protein products interact not only with each other, but also as homodimers. Evidence presented here also suggests that expression of the different ThtAP3 paralogs is tightly integrated, with an apparent disruption of B function homeostasis upon silencing of one of the paralogs that codes for a truncated protein. To explain this result, we propose two testable alternative scenarios: that the truncated protein is a dominant negative mutant or that there is a compensational

  4. Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio)

    PubMed Central

    2012-01-01

    Background Common carp (Cyprinus carpio) is thought to have undergone one extra round of genome duplication compared to zebrafish. Transcriptome analysis has been used to study the existence and timing of genome duplication in species for which genome sequences are incomplete. Large-scale transcriptome data for the common carp genome should help reveal the timing of the additional duplication event. Results We have sequenced the transcriptome of common carp using 454 pyrosequencing. After assembling the 454 contigs and the published common carp sequences together, we obtained 49,669 contigs and identified genes using homology searches and an ab initio method. We identified 4,651 orthologous pairs between common carp and zebrafish and found 129,984 paralogous pairs within the common carp. An estimation of the synonymous substitution rate in the orthologous pairs indicated that common carp and zebrafish diverged 120 million years ago (MYA). We identified one round of genome duplication in common carp and estimated that it had occurred 5.6 to 11.3 MYA. In zebrafish, no genome duplication event after speciation was observed, suggesting that, compared to zebrafish, common carp had undergone an additional genome duplication event. We annotated the common carp contigs with Gene Ontology terms and KEGG pathways. Compared with zebrafish gene annotations, we found that a set of biological processes and pathways were enriched in common carp. Conclusions The assembled contigs helped us to estimate the time of the fourth-round of genome duplication in common carp. The resource that we have built as part of this study will help advance functional genomics and genome annotation studies in the future. PMID:22424280

  5. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication*

    PubMed Central

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under

  6. A conserved segmental duplication within ELA.

    PubMed

    Brinkmeyer-Langford, C L; Murphy, W J; Childers, C P; Skow, L C

    2010-12-01

    The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  7. Heterogeneous expression pattern of tandem duplicated sHsps genes during fruit ripening in two tomato species

    NASA Astrophysics Data System (ADS)

    Arce, DP; Krsticevic, FJ; Ezpeleta, J.; Ponce, SD; Pratta, GR; Tapia, E.

    2016-04-01

    The small heat shock proteins (sHSPs) have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the gene expression profile of four sHsps with a tandem gene structure arrangement in the domesticated Solanum lycopersicum (Heinz 1706) genome and its wild close relative Solanum pimpinellifolium (LA1589), differential gene expression analysis using RNA-Seq was conducted in three ripening stages in both cultivars fruits. Gene promoter analysis was performed to explain the heterogeneous pattern of gene expression found for these tandem duplicated sHsps. In silico analysis results contribute to refocus wet experiment analysis in tomato sHsp family proteins.

  8. Divergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm

    PubMed Central

    Jin, Xiaoli; Ren, Jing; Nevo, Eviatar; Yin, Xuegui; Sun, Dongfa; Peng, Junhua

    2017-01-01

    NAC (NAM/ATAF/CUC) proteins constitute one of the biggest plant-specific transcription factor (TF) families and have crucial roles in diverse developmental programs during plant growth. Phylogenetic analyses have revealed both conserved and lineage-specific NAC subfamilies, among which various origins and distinct features were observed. It is reasonable to hypothesize that there should be divergent evolutionary patterns of NAC TFs both between dicots and monocots, and among NAC subfamilies. In this study, we compared the gene duplication and loss, evolutionary rate, and selective pattern among non-lineage specific NAC subfamilies, as well as those between dicots and monocots, through genome-wide analyses of sequence and functional data in six dicot and five grass lineages. The number of genes gained in the dicot lineages was much larger than that in the grass lineages, while fewer gene losses were observed in the grass than that in the dicots. We revealed (1) uneven constitution of Clusters of Orthologous Groups (COGs) and contrasting birth/death rates among subfamilies, and (2) two distinct evolutionary scenarios of NAC TFs between dicots and grasses. Our results demonstrated that relaxed selection, resulting from concerted gene duplications, may have permitted substitutions responsible for functional divergence of NAC genes into new lineages. The underlying mechanism of distinct evolutionary fates of NAC TFs shed lights on how evolutionary divergence contributes to differences in establishing NAC gene subfamilies and thus impacts the distinct features between dicots and grasses. PMID:28713414

  9. Creation of Mice Bearing a Partial Duplication of HPRT Gene Marked with a GFP Gene and Detection of Revertant Cells In Situ as GFP-Positive Somatic Cells.

    PubMed

    Noda, Asao; Suemori, Hirofumi; Hirai, Yuko; Hamasaki, Kanya; Kodama, Yoshiaki; Mitani, Hiroshi; Landes, Reid D; Nakamura, Nori

    2015-01-01

    It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3' portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas), fixed whole mount (small intestine), or by means of flow cytometry (unfixed splenocytes). The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy) increased the frequency moderately (~2 times) in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation). Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the background mutation

  10. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales

    PubMed Central

    Pabón-Mora, Natalia; Hidalgo, Oriane; Gleissberg, Stefan; Litt, Amy

    2013-01-01

    Gene duplication and loss provide raw material for evolutionary change within organismal lineages as functional diversification of gene copies provide a mechanism for phenotypic variation. Here we focus on the APETALA1/FRUITFULL MADS-box gene lineage evolution. AP1/FUL genes are angiosperm-specific and have undergone several duplications. By far the most significant one is the core-eudicot duplication resulting in the euAP1 and euFUL clades. Functional characterization of several euAP1 and euFUL genes has shown that both function in proper floral meristem identity, and axillary meristem repression. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth, compound leaf morphogenesis and fruit development. Significant functional variation has been detected in the function of pre-duplication basal-eudicot FUL-like genes, but the underlying mechanisms for change have not been identified. FUL-like genes in the Papaveraceae encode all functions reported for euAP1 and euFUL genes, whereas FUL-like genes in Aquilegia (Ranunculaceae) function in inflorescence development and leaf complexity, but not in flower or fruit development. Here we isolated FUL-like genes across the Ranunculales and used phylogenetic approaches to analyze their evolutionary history. We identified an early duplication resulting in the RanFL1 and RanFL2 clades. RanFL1 genes were present in all the families sampled and are mostly under strong negative selection in the MADS, I and K domains. RanFL2 genes were only identified from Eupteleaceae, Papaveraceae s.l., Menispermaceae and Ranunculaceae and show relaxed purifying selection at the I and K domains. We discuss how asymmetric sequence diversification, new motifs, differences in codon substitutions and likely protein-protein interactions resulting from this Ranunculiid-specific duplication can help explain the functional differences among basal-eudicot FUL-like genes

  11. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    DOE R&D Accomplishments Database

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  12. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  13. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication.

    PubMed

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under

  14. Whole-Genome Duplication and the Functional Diversification of Teleost Fish Hemoglobins

    PubMed Central

    Opazo, Juan C.; Butts, G. Tyler; Nery, Mariana F.; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    Subsequent to the two rounds of whole-genome duplication that occurred in the common ancestor of vertebrates, a third genome duplication occurred in the stem lineage of teleost fishes. This teleost-specific genome duplication (TGD) is thought to have provided genetic raw materials for the physiological, morphological, and behavioral diversification of this highly speciose group. The extreme physiological versatility of teleost fish is manifest in their diversity of blood–gas transport traits, which reflects the myriad solutions that have evolved to maintain tissue O2 delivery in the face of changing metabolic demands and environmental O2 availability during different ontogenetic stages. During the course of development, regulatory changes in blood–O2 transport are mediated by the expression of multiple, functionally distinct hemoglobin (Hb) isoforms that meet the particular O2-transport challenges encountered by the developing embryo or fetus (in viviparous or oviparous species) and in free-swimming larvae and adults. The main objective of the present study was to assess the relative contributions of whole-genome duplication, large-scale segmental duplication, and small-scale gene duplication in producing the extraordinary functional diversity of teleost Hbs. To accomplish this, we integrated phylogenetic reconstructions with analyses of conserved synteny to characterize the genomic organization and evolutionary history of the globin gene clusters of teleosts. These results were then integrated with available experimental data on functional properties and developmental patterns of stage-specific gene expression. Our results indicate that multiple α- and β-globin genes were present in the common ancestor of gars (order Lepisoteiformes) and teleosts. The comparative genomic analysis revealed that teleosts possess a dual set of TGD-derived globin gene clusters, each of which has undergone lineage-specific changes in gene content via repeated duplication and

  15. Screening of duplicated loci reveals hidden divergence patterns in a complex salmonid genome

    USGS Publications Warehouse

    Limborg, Morten T.; Larson, Wesley; Seeb, Lisa W.; Seeb, James E.

    2017-01-01

    A whole-genome duplication (WGD) doubles the entire genomic content of a species and is thought to have catalysed adaptive radiation in some polyploid-origin lineages. However, little is known about general consequences of a WGD because gene duplicates (i.e., paralogs) are commonly filtered in genomic studies; such filtering may remove substantial portions of the genome in data sets from polyploid-origin species. We demonstrate a new method that enables genome-wide scans for signatures of selection at both nonduplicated and duplicated loci by taking locus-specific copy number into account. We apply this method to RAD sequence data from different ecotypes of a polyploid-origin salmonid (Oncorhynchus nerka) and reveal signatures of divergent selection that would have been missed if duplicated loci were filtered. We also find conserved signatures of elevated divergence at pairs of homeologous chromosomes with residual tetrasomic inheritance, suggesting that joint evolution of some nondiverged gene duplicates may affect the adaptive potential of these genes. These findings illustrate that including duplicated loci in genomic analyses enables novel insights into the evolutionary consequences of WGDs and local segmental gene duplications.

  16. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. © 2014 CIRAD New Phytologist © 2014 New Phytologist Trust.

  17. Tandem Duplication Events in the Expansion of the Small Heat Shock Protein Gene Family in Solanum lycopersicum (cv. Heinz 1706)

    PubMed Central

    Krsticevic, Flavia J.; Arce, Débora P.; Ezpeleta, Joaquín; Tapia, Elizabeth

    2016-01-01

    In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP) synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq) and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706) genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues. PMID:27565886

  18. Comparative genomics of duplicate γ-glutamyl transferase genes in teleosts: medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), green spotted pufferfish (Tetraodon nigroviridis), fugu (Takifugu rubripes), and zebrafish (Danio rerio).

    PubMed

    Law, Sheran Hiu Wan; Redelings, Benjamin David; Kullman, Seth William

    2012-01-15

    The availability of multiple teleost (bony fish) genomes is providing unprecedented opportunities to understand the diversity and function of gene duplication events using comparative genomics. Here we examine multiple paralogous genes of γ-glutamyl transferase (GGT) in several distantly related teleost species including medaka, stickleback, green spotted pufferfish, fugu, and zebrafish. Through mining genome databases, we have identified multiple GGT orthologs. Duplicate (paralogous) GGT sequences for GGT1 (GGT1 a and b), GGTL1 (GGTL1 a and b), and GGTL3 (GGTL3 a and b) were identified for each species. Phylogenetic analysis suggests that GGTs are ancient proteins conserved across most metazoan phyla and those paralogous GGTs in teleosts likely arose from the serial 3R genome duplication events. A third GGTL1 gene (GGTL1c) was found in green spotted pufferfish; however, this gene is not present in medaka, stickleback, or fugu. Similarly, one or both paralogs of GGTL3 appear to have been lost in green spotted pufferfish, fugu, and zebrafish. Syntenic relationships were highly maintained between duplicated teleost chromosomes, among teleosts and across ray-finned (Actinopterygii) and lobe-finned (Sarcopterygii) species. To assess subfunction partitioning, six medaka GGT genes were cloned and assessed for developmental and tissue-specific expression. On the basis of these data, we propose a modification of the "duplication-degeneration-complementation" model of subfunction partitioning where quantitative differences rather than absolute differences in gene expression are observed between gene paralogs. Our results demonstrate that multiple GGT genes have been retained within teleost genomes. Questions remain, however, regarding the functional roles of multiple GGTs in these species. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  19. Evolution of Antifreeze Protein Genes in the Diatom Genus Fragilariopsis: Evidence for Horizontal Gene Transfer, Gene Duplication and Episodic Diversifying Selection

    PubMed Central

    Sorhannus, Ulf

    2011-01-01

    Hypotheses about horizontal transfer of antifreeze protein genes to ice-living diatoms were addressed using two different statistical methods available in the program Prunier. The role of diversifying selection in driving the differentiation of a set of antifreeze protein genes in the diatom genus Fragilariopsis was also investigated. Four horizontal gene transfer events were identified. Two of these took place between two major eukaryote lineages, that is from the diatom Chaetoceros neogracile to the copepod Stephos longipes and from a basidiomycete clade to a monophyletic group, consisting of the diatom species Fragilariopsis curta and Fragilariopsis cylindrus. The remaining two events included transfers from an ascomycete lineage to the proteobacterium Stigmatella aurantiaca and from the proteobacterium Polaribacter irgensii to a group composed of 4 proteobacterium species. After the Fragilariopsis lineage acquired the antifreeze protein gene from the basidiomycetes, it duplicated and went through episodic evolution, characterized by strong positive selection acting on short segments of the branches in the tree. This selection pattern suggests that the paralogs differentiated functionally over relatively short time periods. Taken together, the results obtained here indicate that the group of antifreeze protein genes considered here have a complex evolutionary history. PMID:22253534

  20. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.

    PubMed

    Brown, J R; Doolittle, W F

    1995-03-28

    Universal trees based on sequences of single gene homologs cannot be rooted. Iwabe et al. [Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. & Miyata, T. (1989) Proc. Natl. Acad. Sci. USA 86, 9355-9359] circumvented this problem by using ancient gene duplications that predated the last common ancestor of all living things. Their separate, reciprocally rooted gene trees for elongation factors and ATPase subunits showed Bacteria (eubacteria) as branching first from the universal tree with Archaea (archaebacteria) and Eucarya (eukaryotes) as sister groups. Given its topical importance to evolutionary biology and concerns about the appropriateness of the ATPase data set, an evaluation of the universal tree root using other ancient gene duplications is essential. In this study, we derive a rooting for the universal tree using aminoacyl-tRNA synthetase genes, an extensive multigene family whose divergence likely preceded that of prokaryotes and eukaryotes. An approximately 1600-bp conserved region was sequenced from the isoleucyl-tRNA synthetases of several species representing deep evolutionary branches of eukaryotes (Nosema locustae), Bacteria (Aquifex pyrophilus and Thermotoga maritima) and Archaea (Pyrococcus furiosus and Sulfolobus acidocaldarius). In addition, a new valyl-tRNA synthetase was characterized from the protist Trichomonas vaginalis. Different phylogenetic methods were used to generate trees of isoleucyl-tRNA synthetases rooted by valyl- and leucyl-tRNA synthetases. All isoleucyl-tRNA synthetase trees showed Archaea and Eucarya as sister groups, providing strong confirmation for the universal tree rooting reported by Iwabe et al. As well, there was strong support for the monophyly (sensu Hennig) of Archaea. The valyl-tRNA synthetase gene from Tr. vaginalis clustered with other eukaryotic ValRS genes, which may have been transferred from the mitochondrial genome to the nuclear genome, suggesting that this amitochondrial trichomonad once harbored an

  1. Three copies of a single protein II-encoding sequence in the genome of Neisseria gonorrhoeae JS3: evidence for gene conversion and gene duplication.

    PubMed

    van der Ley, P

    1988-11-01

    Gonococci express a family of related outer membrane proteins designated protein II (P.II). These surface proteins are subject to both phase variation and antigenic variation. The P.II gene repertoire of Neisseria gonorrhoeae strain JS3 was found to consist of at least ten genes, eight of which were cloned. Sequence analysis and DNA hybridization studies revealed that one particular P.II-encoding sequence is present in three distinct, but almost identical, copies in the JS3 genome. These genes encode the P.II protein that was previously identified as P.IIc. Comparison of their sequences shows that the multiple copies of this P.IIc-encoding gene might have been generated by both gene conversion and gene duplication.

  2. Characterization of various promoter regions of the human DNA helicase-encoding genes and identification of duplicated ets (GGAA) motifs as an essential transcription regulatory element.

    PubMed

    Uchiumi, Fumiaki; Watanabe, Takeshi; Tanuma, Sei-ichi

    2010-05-15

    DNA helicases are important in the regulation of DNA transaction and thereby various cellular functions. In this study, we developed a cost-effective multiple DNA transfection assay with DEAE-dextran reagent and analyzed the promoter activities of the human DNA helicases. The 5'-flanking regions of the human DNA helicase-encoding genes were isolated and subcloned into luciferase (Luc) expression plasmids. They were coated onto 96-well plate and used for co-transfection with a renilla-Luc expression vector into various cells, and dual-Luc assays were performed. The profiles of promoter activities were dependent on cell lines used. Among these human DNA helicase genes, XPB, RecQL5, and RTEL promoters were activated during TPA-induced HL-60 cell differentiation. Interestingly, duplicated ets (GGAA) elements are commonly located around the transcription start sites of these genes. The duplicated GGAA motifs are also found in the promoters of DNA replication/repair synthesis factor genes including PARG, ATR, TERC, and Rb1. Mutation analyses suggested that the duplicated GGAA-motifs are necessary for the basal promoter activity in various cells and some of them positively respond to TPA in HL-60 cells. TPA-induced response of 44-bp in the RTEL promoter was attenuated by co-transfection of the PU.1 expression vector. These findings suggest that the duplicated ets motifs regulate DNA-repair associated gene expressions during macrophage-like differentiation of HL-60 cells. Copyright 2010 Elsevier Inc. All rights reserved.

  3. RANGER-DTL 2.0: Rigorous Reconstruction of Gene-Family Evolution by Duplication, Transfer, and Loss.

    PubMed

    Bansal, Mukul S; Kellis, Manolis; Kordi, Misagh; Kundu, Soumya

    2018-04-24

    RANGER-DTL 2.0 is a software program for inferring gene family evolution using Duplication-Transfer-Loss reconciliation. This new software is highly scalable and easy to use, and offers many new features not currently available in any other reconciliation program. RANGER-DTL 2.0 has a particular focus on reconciliation accuracy and can account for many sources of reconciliation uncertainty including uncertain gene tree rooting, gene tree topological uncertainty, multiple optimal reconciliations, and alternative event cost assignments. RANGER-DTL 2.0 is open-source and written in C ++ and Python. Pre-compiled executables, source code (open-source under GNU GPL), and a detailed manual are freely available from http://compbio.engr.uconn.edu/software/RANGER-DTL/. mukul.bansal@uconn.edu.

  4. The Evolutionary Fates of a Large Segmental Duplication in Mouse

    PubMed Central

    Morgan, Andrew P.; Holt, J. Matthew; McMullan, Rachel C.; Bell, Timothy A.; Clayshulte, Amelia M.-F.; Didion, John P.; Yadgary, Liran; Thybert, David; Odom, Duncan T.; Flicek, Paul; McMillan, Leonard; de Villena, Fernando Pardo-Manuel

    2016-01-01

    Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22. De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes. PMID:27371833

  5. Identification and genetic effect of a variable duplication in the promoter region of the cattle ADIPOQ gene

    USDA-ARS?s Scientific Manuscript database

    The ADIPOQ gene of cattle, is located in the vicinity of the quantitative trait locus (QTL) wich effects marbling, the rib eye muscle area and fat thickness on BTA1. In our study, a novel variable duplication (NW_003103812.1:g.9232067_9232133 dup) in the bovine ADIPOQ promoter region was identified ...

  6. A 21 Nucleotide Duplication on the α1- and α2-Globin Genes Involves a Variety of Hypochromic Microcytic Anemias, From Mild to Hb H Disease.

    PubMed

    Farashi, Samaneh; Faramarzi Garous, Negin; Zeinali, Fatemeh; Vakili, Shadi; Ashki, Mehri; Imanian, Hashem; Najmabadi, Hossein; Azarkeivan, Azita; Tamaddoni, Ahmad

    2015-01-01

    α-Thalassemia (α-thal) is a common genetic disorder in Iran and many parts of the world. Genetic defects in the α-globin gene cluster can result in α-thal that may develop into a clinical phenotype varying from almost asymptomatic to a lethal hemolytic anemia. Loss of one functional α gene, indicated as heterozygous α(+)-thal, shows minor hematological abnormalities. Homozygosity for α(+)- or heterozygosity for α(0)-thal have more severe hematological abnormalities due to a markedly reduced α chain output. At the molecular level, the absence of three α-globin genes resulting from the compound heterozygous state for α(0)- and α(+)-thal, lead to Hb H disease. Here we present a 21 nucleotide (nt) duplication consisting of six amino acids and 3 bp of intronic sequence at the exon-intron boundary, in both the α-globin genes, detected by direct DNA sequencing. This duplication was identified in three patients originating from two different Iranian ethnic groups and one Arab during more than 12 years. The clinical presentation of these individuals varies widely from a mild asymptomatic anemia (heterozygote in α1-globin gene) to a severely anemic state, diagnosed as an Hb H individual requiring blood transfusion (duplication on the α2-globin gene in combination with the - -(MED) double α-globin gene deletion). The third individual, who was homozygous for this nt duplication on the α1-globin gene, showed severe hypochromic microcytic anemia and splenomegaly. In the last decade, numerous α-globin mutations have demonstrated the necessity of prenatal diagnosis (PND) for α-thal, and this study has contributed another mutation as important enough that needs to be considered.

  7. Are duplicated genes responsible for anthracnose resistance in common bean?

    PubMed

    Costa, Larissa Carvalho; Nalin, Rafael Storto; Ramalho, Magno Antonio Patto; de Souza, Elaine Aparecida

    2017-01-01

    The race 65 of Colletotrichum lindemuthianum, etiologic agent of anthracnose in common bean, is distributed worldwide, having great importance in breeding programs for anthracnose resistance. Several resistance alleles have been identified promoting resistance to this race. However, the variability that has been detected within race has made it difficult to obtain cultivars with durable resistance, because cultivars may have different reactions to each strain of race 65. Thus, this work aimed at studying the resistance inheritance of common bean lines to different strains of C. lindemuthianum, race 65. We used six C. lindemuthianum strains previously characterized as belonging to the race 65 through the international set of differential cultivars of anthracnose and nine commercial cultivars, adapted to the Brazilian growing conditions and with potential ability to discriminate the variability within this race. To obtain information on the resistance inheritance related to nine commercial cultivars to six strains of race 65, these cultivars were crossed two by two in all possible combinations, resulting in 36 hybrids. Segregation in the F2 generations revealed that the resistance to each strain is conditioned by two independent genes with the same function, suggesting that they are duplicated genes, where the dominant allele promotes resistance. These results indicate that the specificity between host resistance genes and pathogen avirulence genes is not limited to races, it also occurs within strains of the same race. Further research may be carried out in order to establish if the alleles identified in these cultivars are different from those described in the literature.

  8. Are duplicated genes responsible for anthracnose resistance in common bean?

    PubMed Central

    2017-01-01

    The race 65 of Colletotrichum lindemuthianum, etiologic agent of anthracnose in common bean, is distributed worldwide, having great importance in breeding programs for anthracnose resistance. Several resistance alleles have been identified promoting resistance to this race. However, the variability that has been detected within race has made it difficult to obtain cultivars with durable resistance, because cultivars may have different reactions to each strain of race 65. Thus, this work aimed at studying the resistance inheritance of common bean lines to different strains of C. lindemuthianum, race 65. We used six C. lindemuthianum strains previously characterized as belonging to the race 65 through the international set of differential cultivars of anthracnose and nine commercial cultivars, adapted to the Brazilian growing conditions and with potential ability to discriminate the variability within this race. To obtain information on the resistance inheritance related to nine commercial cultivars to six strains of race 65, these cultivars were crossed two by two in all possible combinations, resulting in 36 hybrids. Segregation in the F2 generations revealed that the resistance to each strain is conditioned by two independent genes with the same function, suggesting that they are duplicated genes, where the dominant allele promotes resistance. These results indicate that the specificity between host resistance genes and pathogen avirulence genes is not limited to races, it also occurs within strains of the same race. Further research may be carried out in order to establish if the alleles identified in these cultivars are different from those described in the literature. PMID:28296933

  9. Duplication within the SEPT9 gene associated with a founder effect in North American families with hereditary neuralgic amyotrophy

    PubMed Central

    Landsverk, Megan L.; Ruzzo, Elizabeth K.; Mefford, Heather C.; Buysse, Karen; Buchan, Jillian G.; Eichler, Evan E.; Petty, Elizabeth M.; Peterson, Esther A.; Knutzen, Dana M.; Barnett, Karen; Farlow, Martin R.; Caress, Judy; Parry, Gareth J.; Quan, Dianna; Gardner, Kathy L.; Hong, Ming; Simmons, Zachary; Bird, Thomas D.; Chance, Phillip F.; Hannibal, Mark C.

    2009-01-01

    Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA. PMID:19139049

  10. Duplication within the SEPT9 gene associated with a founder effect in North American families with hereditary neuralgic amyotrophy.

    PubMed

    Landsverk, Megan L; Ruzzo, Elizabeth K; Mefford, Heather C; Buysse, Karen; Buchan, Jillian G; Eichler, Evan E; Petty, Elizabeth M; Peterson, Esther A; Knutzen, Dana M; Barnett, Karen; Farlow, Martin R; Caress, Judy; Parry, Gareth J; Quan, Dianna; Gardner, Kathy L; Hong, Ming; Simmons, Zachary; Bird, Thomas D; Chance, Phillip F; Hannibal, Mark C

    2009-04-01

    Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA.

  11. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.

    PubMed

    Pasquier, Jeremy; Cabau, Cédric; Nguyen, Thaovi; Jouanno, Elodie; Severac, Dany; Braasch, Ingo; Journot, Laurent; Pontarotti, Pierre; Klopp, Christophe; Postlethwait, John H; Guiguen, Yann; Bobe, Julien

    2016-05-18

    With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.

  12. Evidence for the involvement of Globosa-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales.

    PubMed

    Bartlett, Madelaine E; Specht, Chelsea D

    2010-07-01

    *The MADS box transcription factor family has long been identified as an important contributor to the control of floral development. It is often hypothesized that the evolution of floral development across angiosperms and within specific lineages may occur as a result of duplication, functional diversification, and changes in regulation of MADS box genes. Here we examine the role of Globosa (GLO)-like genes, members of the B-class MADS box gene lineage, in the evolution of floral development within the monocot order Zingiberales. *We assessed changes in perianth and stamen whorl morphology in a phylogenetic framework. We identified GLO homologs (ZinGLO1-4) from 50 Zingiberales species and investigated the evolution of this gene lineage. Expression of two GLO homologs was assessed in Costus spicatus and Musa basjoo. *Based on the phylogenetic data and expression results, we propose several family-specific losses and gains of GLO homologs that appear to be associated with key morphological changes. The GLO-like gene lineage has diversified concomitant with the evolution of the dimorphic perianth and the staminodial labellum. *Duplications and expression divergence within the GLO-like gene lineage may have played a role in floral diversification in the Zingiberales.

  13. Evolution and functional divergence of NLRP genes in mammalian reproductive systems

    PubMed Central

    2009-01-01

    Background NLRPs (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing Proteins) are members of NLR (Nod-like receptors) protein family. Recent researches have shown that NLRP genes play important roles in both mammalian innate immune system and reproductive system. Several of NLRP genes were shown to be specifically expressed in the oocyte in mammals. The aim of the present work was to study how these genes evolved and diverged after their duplication, as well as whether natural selection played a role during their evolution. Results By using in silico methods, we have evaluated the evolution and functional divergence of NLRP genes, in particular of mouse reproduction-related Nlrp genes. We found that (1) major NLRP genes have been duplicated before the divergence of mammals, with certain lineage-specific duplications in primates (NLRP7 and 11) and in rodents (Nlrp1, 4 and 9 duplicates); (2) tandem duplication events gave rise to a mammalian reproduction-related NLRP cluster including NLRP2, 4, 5, 7, 8, 9, 11, 13 and 14 genes; (3) the function of mammalian oocyte-specific NLRP genes (NLRP4, 5, 9 and 14) might have diverged during gene evolution; (4) recent segmental duplications concerning Nlrp4 copies and vomeronasal 1 receptor encoding genes (V1r) have been undertaken in the mouse; and (5) duplicates of Nlrp4 and 9 in the mouse might have been subjected to adaptive evolution. Conclusion In conclusion, this study brings us novel information on the evolution of mammalian reproduction-related NLRPs. On the one hand, NLRP genes duplicated and functionally diversified in mammalian reproductive systems (such as NLRP4, 5, 9 and 14). On the other hand, during evolution, different lineages adapted to develop their own NLRP genes, particularly in reproductive function (such as the specific expansion of Nlrp4 and Nlrp9 in the mouse). PMID:19682372

  14. Human-Specific Duplication and Mosaic Transcripts: The Recent Paralogous Structure of Chromosome 22

    PubMed Central

    Bailey, Jeffrey A. ; Yavor, Amy M. ; Viggiano, Luigi ; Misceo, Doriana ; Horvath, Juliann E. ; Archidiacono, Nicoletta ; Schwartz, Stuart ; Rocchi, Mariano ; Eichler, Evan E. 

    2002-01-01

    In recent decades, comparative chromosomal banding, chromosome painting, and gene-order studies have shown strong conservation of gross chromosome structure and gene order in mammals. However, findings from the human genome sequence suggest an unprecedented degree of recent (<35 million years ago) segmental duplication. This dynamism of segmental duplications has important implications in disease and evolution. Here we present a chromosome-wide view of the structure and evolution of the most highly homologous duplications (⩾1 kb and ⩾90%) on chromosome 22. Overall, 10.8% (3.7/33.8 Mb) of chromosome 22 is duplicated, with an average sequence identity of 95.4%. To organize the duplications into tractable units, intron-exon structure and well-defined duplication boundaries were used to define 78 duplicated modules (minimally shared evolutionary segments) with 157 copies on chromosome 22. Analysis of these modules provides evidence for the creation or modification of 11 novel transcripts. Comparative FISH analyses of human, chimpanzee, gorilla, orangutan, and macaque reveal qualitative and quantitative differences in the distribution of these duplications—consistent with their recent origin. Several duplications appear to be human specific, including a ∼400-kb duplication (99.4%–99.8% sequence identity) that transposed from chromosome 14 to the most proximal pericentromeric region of chromosome 22. Experimental and in silico data further support a pericentromeric gradient of duplications where the most recent duplications transpose adjacent to the centromere. Taken together, these data suggest that segmental duplications have been an ongoing process of primate genome evolution, contributing to recent gene innovation and the dynamic transformation of genome architecture within and among closely related species. PMID:11731936

  15. Variation in GABA-A subunit gene copy number in an autistic patient with mosaic 4 p duplication (p12p16).

    PubMed

    Kakinuma, Hiroaki; Ozaki, Mamoru; Sato, Hitoshi; Takahashi, Hiroaki

    2008-09-05

    Autism has been associated with chromosomal aberrations, including duplications at chromosome 4, and the identification of genetic factors contributing to the etiology of this disease is the focus of much research. Here we report a Japanese girl with mosaic of chromosome 4p duplication, mos 46,XX,dup(4)(p12p16)[54]/46,XX[6], who was diagnosed with autism at 3 years of age. Fluorescence in situ hybridization (FISH) with probes covering the region spanning a cluster of the gamma aminobutyric acid A (GABA-A) receptor subunit genes in the proximal short arm of chromosome 4 demonstrated total three signals for the GABRG1, GABRA4, and GABRA2 genes, but only two signals for GABRB1. This suggests that aberrant copy number of the GABA-A receptor subunit genes may contribute to the etiology of autism in this patient. 2007 Wiley-Liss, Inc.

  16. Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant

    PubMed Central

    Hannes, F D; Sharp, A J; Mefford, H C; de Ravel, T; Ruivenkamp, C A; Breuning, M H; Fryns, J-P; Devriendt, K; Van Buggenhout, G; Vogels, A; Stewart, H; Hennekam, R C; Cooper, G M; Regan, R; Knight, S J L; Eichler, E E; Vermeesch, J R

    2009-01-01

    Background: Genomic disorders are often caused by non-allelic homologous recombination between segmental duplications. Chromosome 16 is especially rich in a chromosome-specific low copy repeat, termed LCR16. Methods and Results: A bacterial artificial chromosome (BAC) array comparative genome hybridisation (CGH) screen of 1027 patients with mental retardation and/or multiple congenital anomalies (MR/MCA) was performed. The BAC array CGH screen identified five patients with deletions and five with apparently reciprocal duplications of 16p13 covering 1.65 Mb, including 15 RefSeq genes. In addition, three atypical rearrangements overlapping or flanking this region were found. Fine mapping by high-resolution oligonucleotide arrays suggests that these deletions and duplications result from non-allelic homologous recombination (NAHR) between distinct LCR16 subunits with >99% sequence identity. Deletions and duplications were either de novo or inherited from unaffected parents. To determine whether these imbalances are associated with the MR/MCA phenotype or whether they might be benign variants, a population of 2014 normal controls was screened. The absence of deletions in the control population showed that 16p13.11 deletions are significantly associated with MR/MCA (p = 0.0048). Despite phenotypic variability, common features were identified: three patients with deletions presented with MR, microcephaly and epilepsy (two of these had also short stature), and two other deletion carriers ascertained prenatally presented with cleft lip and midline defects. In contrast to its previous association with autism, the duplication seems to be a common variant in the population (5/1682, 0.29%). Conclusion: These findings indicate that deletions inherited from clinically normal parents are likely to be causal for the patients’ phenotype whereas the role of duplications (de novo or inherited) in the phenotype remains uncertain. This difference in knowledge regarding the

  17. Tandem Duplication Events in the Expansion of the Small Heat Shock Protein Gene Family in Solanum lycopersicum (cv. Heinz 1706).

    PubMed

    Krsticevic, Flavia J; Arce, Débora P; Ezpeleta, Joaquín; Tapia, Elizabeth

    2016-10-13

    In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP) synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq) and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706) genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues. Copyright © 2016 Krsticevic et al.

  18. Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases1[W][OA

    PubMed Central

    Curtin, Shaun J.; Zhang, Feng; Sander, Jeffry D.; Haun, William J.; Starker, Colby; Baltes, Nicholas J.; Reyon, Deepak; Dahlborg, Elizabeth J.; Goodwin, Mathew J.; Coffman, Andrew P.; Dobbs, Drena; Joung, J. Keith; Voytas, Daniel F.; Stupar, Robert M.

    2011-01-01

    We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform—a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting DICER-LIKE (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome. PMID:21464476

  19. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family

    PubMed Central

    2013-01-01

    Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of

  20. Chlorophyll Biosynthesis Gene Evolution Indicates Photosystem Gene Duplication, Not Photosystem Merger, at the Origin of Oxygenic Photosynthesis

    PubMed Central

    Sousa, Filipa L.; Shavit-Grievink, Liat; Allen, John F.; Martin, William F.

    2013-01-01

    An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe. PMID:23258841

  1. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis.

    PubMed

    Sousa, Filipa L; Shavit-Grievink, Liat; Allen, John F; Martin, William F

    2013-01-01

    An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.

  2. EqualTDRL: illustrating equivalent tandem duplication random loss rearrangements.

    PubMed

    Hartmann, Tom; Bernt, Matthias; Middendorf, Martin

    2018-05-30

    To study the differences between two unichromosomal circular genomes, e.g., mitochondrial genomes, under the tandem duplication random loss (TDRL) rearrangement it is important to consider the whole set of potential TDRL rearrangement events that could have taken place. The reason is that for two given circular gene orders there can exist different TDRL rearrangements that transform one of the gene orders into the other. Hence, a TDRL event cannot always be reconstructed only from the knowledge of the circular gene order before a TDRL event and the circular gene order after it. We present the program EqualTDRL that computes and illustrates the complete set of TDRLs for pairs of circular gene orders that differ by only one TDRL. EqualTDRL considers the circularity of the given genomes and certain restrictions on the TDRL rearrangements. Examples for the latter are sequences of genes that have to be conserved during a TDRL or pairs of genes that frame intergenic regions which might represent remnants of duplicated genes. Additionally, EqualTDRL allows to determine the set of TDRLs that are minimum with respect to the number of duplicated genes. EqualTDRL supports scientists to study the complete set of TDRLs that possibly could have taken place in the evolution of mitochondrial genomes. EqualTDRL is implemented in C++ using the ggplot2 package of the open source programming language R and is freely available from http://pacosy.informatik.uni-leipzig.de/equaltdrl .

  3. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Saccharomyces cerevisiae ribosomal protein L37 is encoded by duplicate genes that are differentially expressed.

    PubMed

    Tornow, J; Santangelo, G M

    1994-06-01

    A duplicate copy of the RPL37A gene (encoding ribosomal protein L37) was cloned and sequenced. The coding region of RPL37B is very similar to that of RPL37A, with only one conservative amino-acid difference. However, the intron and flanking sequences of the two genes are extremely dissimilar. Disruption experiments indicate that the two loci are not functionally equivalent: disruption of RPL37B was insignificant, but disruption of RPL37A severely impaired the growth rate of the cell. When both RPL37 loci are disrupted, the cell is unable to grow at all, indicating that rpL37 is an essential protein. The functional disparity between the two RPL37 loci could be explained by differential gene expression. The results of two experiments support this idea: gene fusion of RPL37A to a reporter gene resulted in six-fold higher mRNA levels than was generated by the same reporter gene fused to RPL37B, and a modest increase in gene dosage of RPL37B overcame the lack of a functional RPL37A gene.

  5. MLL duplication in a pediatric patient with B-cell lymphoblastic lymphoma.

    PubMed

    Mater, David Van; Goodman, Barbara K; Wang, Endi; Gaca, Ana M; Wechsler, Daniel S

    2012-04-01

    Lymphoblastic lymphoma is the second most common type of non-Hodgkin lymphoma seen in children. Approximately, 90% of lymphoblastic lymphomas arise from T cells, with the remaining 10% being B-cell-lineage derived. Although T-cell lymphoblastic lymphoma most frequently occurs in the anterior mediastinum (thymus), B-cell lymphoblastic lymphoma (B-LBL) predominates in extranodal sites such as skin and bone. Here, we describe a pediatric B-LBL patient who presented with extensive abdominal involvement and whose lymphoma cells displayed segmental duplication of the mixed lineage leukemia (MLL) gene. MLL duplication/amplification has been described primarily in acute myeloid leukemia and myelodysplastic syndrome with no published reports of discrete MLL duplication/amplification events in B-LBL. The MLL gene duplication noted in this case may represent a novel mechanism for tumorigenesis in B-LBL.

  6. Genotype-phenotype characterization in 13 individuals with chromosome Xp11.22 duplications.

    PubMed

    Grams, Sarah E; Argiropoulos, Bob; Lines, Matthew; Chakraborty, Pranesh; Mcgowan-Jordan, Jean; Geraghty, Michael T; Tsang, Marilyn; Eswara, Marthand; Tezcan, Kamer; Adams, Kelly L; Linck, Leesa; Himes, Patricia; Kostiner, Dana; Zand, Dina J; Stalker, Heather; Driscoll, Daniel J; Huang, Taosheng; Rosenfeld, Jill A; Li, Xu; Chen, Emily

    2016-04-01

    We report 13 new individuals with duplications in Xp11.22-p11.23. The index family has one male and two female members in three generations with mild-severe intellectual disability (ID), speech delay, dysmorphic features, early puberty, constipation, and/or hand and foot abnormalities. Affected individuals were found to have two small duplications in Xp11.22 at nucleotide position (hg19) 50,112,063-50,456,458 bp (distal) and 53,160,114-53,713,154 bp (proximal). Collectively, these two regions include 14 RefSeq genes, prompting collection of a larger cohort of patients, in an attempt to delineate critical genes associated with the observed phenotype. In total, we have collected data on nine individuals with duplications overlapping the distal duplication region containing SHROOM4 and DGKK and eight individuals overlapping the proximal region including HUWE1. Duplications of HUWE1 have been previously associated with non-syndromic ID. Our data, with previously published reports, suggest that duplications involving SHROOM4 and DGKK may represent a new syndromic X-linked ID critical region associated with mild to severe ID, speech delay +/- dysarthria, attention deficit disorder, precocious puberty, constipation, and motor delay. We frequently observed foot abnormalities, 5th finger clinodactyly, tapering fingers, constipation, and exercise intolerance in patients with duplications of these two genes. Regarding duplications including the proximal region, our observations agree with previous studies, which have found associations with intellectual disability. In addition, expressive language delay, failure to thrive, motor delay, and 5th finger clinodactyly were also frequently observed in patients with the proximal duplication. © 2015 Wiley Periodicals, Inc.

  7. Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodes, M.J.; Merlin, G.; DeVos, T.

    1995-12-01

    This report investigates the duplication of two LD1 genes into the rRNA locus and the resultant transcription by RNA polymerase I, which has a faster transcription rate than that of RNA polymerase II. This was conducted using a 2.2-Mb chromosome in Leishmania donovani. 55 refs., 6 figs.

  8. Ancient and Recent Duplications Support Functional Diversity of Daphnia Opsins.

    PubMed

    Brandon, Christopher S; Greenwold, Matthew J; Dudycha, Jeffry L

    2017-01-01

    Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron-exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.

  9. Partial AZFc duplications not deletions are associated with male infertility in the Yi population of Yunnan Province, China.

    PubMed

    Ye, Jun-jie; Ma, Li; Yang, Li-juan; Wang, Jin-huan; Wang, Yue-li; Guo, Hai; Gong, Ning; Nie, Wen-hui; Zhao, Shu-hua

    2013-09-01

    There are many reports on associations between spermatogenesis and partial azoospermia factor c (AZFc) deletions as well as duplications; however, results are conflicting, possibly due to differences in methodology and ethnic background. The purpose of this study is to investigate the association of AZFc polymorphisms and male infertility in the Yi ethnic population, residents within Yunnan Province, China. A total of 224 infertile patients and 153 fertile subjects were selected in the Yi ethnic population. The study was performed by sequence-tagged site plus/minus (STS+/-) analysis followed by gene dosage and gene copy definition analysis. Y haplotypes of 215 cases and 115 controls were defined by 12 binary markers using single nucleotide polymorphism on Y chromosome (Y-SNP) multiplex assays based on single base primer extension technology. The distribution of Y haplotypes was not significantly different between the case and control groups. The frequencies of both gr/gr (7.6% vs. 8.5%) and b2/b3 (6.3% vs. 8.5%) deletions do not show significant differences. Similarly, single nucleotide variant (SNV) analysis shows no significant difference of gene copy definition between the cases and controls. However, the frequency of partial duplications in the infertile group (4.0%) is significantly higher than that in the control group (0.7%). Further, we found a case with sY1206 deletion which had two CDY1 copies but removed half of DAZ genes. Our results show that male infertility is associated with partial AZFc duplications, but neither gr/gr nor b2/b3 deletions, suggesting that partial AZFc duplications rather than deletions are risk factors for male infertility in Chinese-Yi population.

  10. Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis

    PubMed Central

    Guselnikov, S.V.; Grayfer, L.; De Jesús Andino, F.; Rogozin, I.B.; Robert, J.; Taranin, A.V.

    2015-01-01

    The ITAM-bearing transmembrane signaling subunits (TSS) are indispensable components of activating leukocyte receptor complexes. The TSS-encoding genes map to paralogous chromosomal regions, which are thought to arise from ancient genome tetraploidization(s). To assess a possible role of tetraploidization in the TSS evolution, we studied TSS and other functionally linked genes in the amphibian species Xenopus laevis whose genome was duplicated about 40 MYR ago. We found that X. laevis has retained a duplicated set of sixteen TSS genes, all except one being transcribed. Furthermore, duplicated TCRα loci and genes encoding TSS-coupling protein kinases have also been retained. No clear evidence for functional divergence of the TSS paralogs was obtained from gene expression and sequence analyses. We suggest that the main factor of maintenance of duplicated TSS genes in X. laevis was a protein dosage effect and that this effect might have facilitated the TSS set expansion in early vertebrates. PMID:26170006

  11. A 20-basepair duplication in the human thyroid peroxidase gene results in a total iodide organification defect and congenital hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bikker, H.; Hartog, M.T. den; Gons, M.H.

    1994-07-01

    In this study, the authors present the molecular basis of a total iodide organification defect causing severe congenital hypothyroidism. In the thyroid gland of the patient, thyroid peroxidase (TPO) activity and the iodination degree of thyroglobulin were below detection limits, and no TPO messenger ribonucleic acid was detectable by Northern blot analysis. Denaturing gradient gel electrophoretic analysis of the TPO gene of the patient revealed a homozygous mutation in exon 2. Sequence analysis showed the presence of a 20-basepair duplication, 47 basepairs down-stream of the ATG start codon. This duplication generates a frame shift, resulting in a termination signal inmore » exon 3, compatible with the complete absence of TPO. Both parents of the patient are heterozygous for the same duplication, confirming the recessive mode of inheritance of the mutation. 32 refs., 4 figs.« less

  12. Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages.

    PubMed

    Bassham, Susan; Cañestro, Cristian; Postlethwait, John H

    2008-08-22

    Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates. To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in

  13. Sox9 duplications are a relevant cause of Sry-negative XX sex reversal dogs.

    PubMed

    Rossi, Elena; Radi, Orietta; De Lorenzi, Lisa; Vetro, Annalisa; Groppetti, Debora; Bigliardi, Enrico; Luvoni, Gaia Cecilia; Rota, Ada; Camerino, Giovanna; Zuffardi, Orsetta; Parma, Pietro

    2014-01-01

    Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.

  14. Sequencing of Pax6 Loci from the Elephant Shark Reveals a Family of Pax6 Genes in Vertebrate Genomes, Forged by Ancient Duplications and Divergences

    PubMed Central

    Gautier, Philippe; Loosli, Felix; Tay, Boon-Hui; Tay, Alice; Murdoch, Emma; Coutinho, Pedro; van Heyningen, Veronica; Brenner, Sydney; Venkatesh, Byrappa; Kleinjan, Dirk A.

    2013-01-01

    Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a “small eye” phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent

  15. Insertional translocation leading to a 4q13 duplication including the EPHA5 gene in two siblings with attention-deficit hyperactivity disorder.

    PubMed

    Matoso, Eunice; Melo, Joana B; Ferreira, Susana I; Jardim, Ana; Castelo, Teresa M; Weise, Anja; Carreira, Isabel M

    2013-08-01

    An insertional translocation (IT) can result in pure segmental aneusomy for the inserted genomic segment allowing to define a more accurate clinical phenotype. Here, we report on two siblings sharing an unbalanced IT inherited from the mother with a history of learning difficulty. An 8-year-old girl with developmental delay, speech disability, and attention-deficit hyperactivity disorder (ADHD), showed by GTG banding analysis a subtle interstitial alteration in 21q21. Oligonucleotide array comparative genomic hybridization (array-CGH) analysis showed a 4q13.1-q13.3 duplication spanning 8.6 Mb. Fluorescence in situ hybridization (FISH) with bacterial artificial chromosome (BAC) clones confirmed the rearrangement, a der(21)ins(21;4)(q21;q13.1q13.3). The duplication described involves 50 RefSeq genes including the EPHA5 gene that encodes for the EphA5 receptor involved in embryonic development of the brain and also in synaptic remodeling and plasticity thought to underlie learning and memory. The same rearrangement was observed in a younger brother with behavioral problems and also exhibiting ADHD. ADHD is among the most heritable of neuropsychiatric disorders. There are few reports of patients with duplications involving the proximal region of 4q and a mild phenotype. To the best of our knowledge this is the first report of a duplication restricted to band 4q13. This abnormality could be easily missed in children who have nonspecific cognitive impairment. The presence of this behavioral disorder in the two siblings reinforces the hypothesis that the region involved could include genes involved in ADHD. Copyright © 2013 Wiley Periodicals, Inc.

  16. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups

    PubMed Central

    2013-01-01

    Background WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. Results We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. Conclusions In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have

  17. Diversification of Genes Encoding Granule-Bound Starch Synthase in Monocots and Dicots Is Marked by Multiple Genome-Wide Duplication Events

    PubMed Central

    Qiu, Wen-Ming; Li, Jing; Zhou, Hui; Zhang, Qiong; Guo, Wenwu; Zhu, Tingting; Peng, Junhua; Sun, Fengjie; Li, Shaohua; Korban, Schuyler S.; Han, Yuepeng

    2012-01-01

    Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS), which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA) to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots. PMID:22291904

  18. First evidence of a large CHEK2 duplication involved in cancer predisposition in an Italian family with hereditary breast cancer

    PubMed Central

    2014-01-01

    Background CHEK2 is a multi-cancer susceptibility gene whose common germline mutations are known to contribute to the risk of developing breast and prostate cancer. Case presentation Here, we describe an Italian family with a high number of cases of breast cancer and other types of tumour subjected to the MLPA test to verify the presence of BRCA1, BRCA2 and CHEK2 deletions and duplications. We identified a new 23-kb duplication in the CHEK2 gene extending from intron 5 to 13 that was associated with breast cancer in the family. The presence and localisation of the alteration was confirmed by a second analysis by Next-Generation Sequencing. Conclusions This finding suggests that CHEK2 mutations are heterogeneous and that techniques other than sequencing, such as MLPA, are needed to identify CHEK2 mutations. It also indicates that CHEK2 rare variants, such as duplications, can confer a high susceptibility to cancer development and should thus be studied in depth as most of our knowledge of CHEK2 concerns common mutations. PMID:24986639

  19. Using Paleogenomics to Study the Evolution of Gene Families: Origin and Duplication History of the Relaxin Family Hormones and Their Receptors

    PubMed Central

    Yegorov, Sergey; Good, Sara

    2012-01-01

    Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating

  20. A novel sodium bicarbonate cotransporter-like gene in an ancient duplicated region: SLC4A9 at 5q31

    PubMed Central

    Lipovich, Leonard; Lynch, Eric D; Lee, Ming K; King, Mary-Claire

    2001-01-01

    Background: Sodium bicarbonate cotransporter (NBC) genes encode proteins that execute coupled Na+ and HCO3- transport across epithelial cell membranes. We report the discovery, characterization, and genomic context of a novel human NBC-like gene, SLC4A9, on chromosome 5q31. Results: SLC4A9 was initially discovered by genomic sequence annotation and further characterized by sequencing of long-insert cDNA library clones. The predicted protein of 990 amino acids has 12 transmembrane domains and high sequence similarity to other NBCs. The 23-exon gene has 14 known mRNA isoforms. In three regions, mRNA sequence variation is generated by the inclusion or exclusion of portions of an exon. Noncoding SLC4A9 cDNAs were recovered multiple times from different libraries. The 3' untranslated region is fragmented into six alternatively spliced exons and contains expressed Alu, LINE and MER repeats. SLC4A9 has two alternative stop codons and six polyadenylation sites. Its expression is largely restricted to the kidney. In silico approaches were used to characterize two additional novel SLC4A genes and to place SLC4A9 within the context of multiple paralogous gene clusters containing members of the epidermal growth factor (EGF), ankyrin (ANK) and fibroblast growth factor (FGF) families. Seven human EGF-SLC4A-ANK-FGF clusters were found. Conclusion: The novel sodium bicarbonate cotransporter-like gene SLC4A9 demonstrates abundant alternative mRNA processing. It belongs to a growing class of functionally diverse genes characterized by inefficient highly variable splicing. The evolutionary history of the EGF-SLC4A-ANK-FGF gene clusters involves multiple rounds of duplication, apparently followed by large insertions and deletions at paralogous loci and genome-wide gene shuffling. PMID:11305939

  1. Xq28 duplication presenting with intestinal and bladder dysfunction and a distinctive facial appearance

    PubMed Central

    Clayton-Smith, Jill; Walters, Sarah; Hobson, Emma; Burkitt-Wright, Emma; Smith, Rupert; Toutain, Annick; Amiel, Jeanne; Lyonnet, Stanislas; Mansour, Sahar; Fitzpatrick, David; Ciccone, Roberto; Ricca, Ivana; Zuffardi, Orsetta; Donnai, Dian

    2009-01-01

    Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability and recurrent pneumonia. We identified an Xq28 duplication in three families where several male patients had presented with intestinal pseudo-obstruction or bladder distension. The affected boys had similar dysmorphic facial appearances. Subsequently, we ascertained seven further families where the proband presented with similar features. We demonstrated duplications of the Xq28 region in five of these additional families. In addition to MECP2, these duplications encompassed several other genes already known to be associated with diseases including SLC6A8, L1CAM and Filamin A (FLNA). The two remaining families were shown to have intragenic duplications of FLNA only. We discuss which elements of the Xq28 duplication phenotype may be associated with the various genes in the duplication. We propose that duplication of FLNA may contribute to the bowel and bladder phenotype seen in these seven families. PMID:18854860

  2. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene

    PubMed Central

    Brinch-Pedersen, Henrik

    2013-01-01

    The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley and 6000 FTU/kg for rye. This is notably more than other cereals. For instance, rice, maize, and oat have MGPAs below 100 FTU/kg. The cloning and characterization of the PAPhy gene complement from wheat, barley, rye, einkorn, and Aegilops tauschii is reported here. The Triticeae PAPhy genes generally consist of a set of paralogues, PAPhy_a and PAPhy_b, and have been mapped to Triticeae chromosomes 5 and 3, respectively. The promoters share a conserved core but the PAPhy_a promoter have acquired a novel cis-acting regulatory element for expression during grain filling while the PAPhy_b promoter has maintained the archaic function and drives expression during germination. Brachypodium is the only sequenced Poaceae sharing the PAPhy duplication. As for the Triticeae, the duplication is reflected in a high MGPA of ~4200 FTU/kg in Brachypodium. The sequence conservation of the paralogous loci on Brachypodium chromosomes 1 and 2 does not extend beyond the PAPhy gene. The results indicate that a single-gene segmental duplication may have enabled the evolution of high MGPA by creating functional redundancy of the parent PAPhy gene. This implies that similar MGPA levels may be out of reach in breeding programs for some Poaceae, e.g. maize and rice, whereas Triticeae breeders should focus on PAPhy_a. PMID:23918958

  3. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: Tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes

    PubMed Central

    2008-01-01

    Background The animal sialyltransferases, which catalyze the transfer of sialic acid to the glycan moiety of glycoconjugates, are subdivided into four families: ST3Gal, ST6Gal, ST6GalNAc and ST8Sia, based on acceptor sugar specificity and glycosidic linkage formed. Despite low overall sequence identity between each sialyltransferase family, all sialyltransferases share four conserved peptide motifs (L, S, III and VS) that serve as hallmarks for the identification of the sialyltransferases. Currently, twenty subfamilies have been described in mammals and birds. Examples of the four sialyltransferase families have also been found in invertebrates. Focusing on the ST8Sia family, we investigated the origin of the three groups of α2,8-sialyltransferases demonstrated in vertebrates to carry out poly-, oligo- and mono-α2,8-sialylation. Results We identified in the genome of invertebrate deuterostomes, orthologs to the common ancestor for each of the three vertebrate ST8Sia groups and a set of novel genes named ST8Sia EX, not found in vertebrates. All these ST8Sia sequences share a new conserved family-motif, named "C-term" that is involved in protein folding, via an intramolecular disulfide bridge. Interestingly, sequences from Branchiostoma floridae orthologous to the common ancestor of polysialyltransferases possess a polysialyltransferase domain (PSTD) and those orthologous to the common ancestor of oligosialyltransferases possess a new ST8Sia III-specific motif similar to the PSTD. In osteichthyans, we have identified two new subfamilies. In addition, we describe the expression profile of ST8Sia genes in Danio rerio. Conclusion Polysialylation appeared early in the deuterostome lineage. The recent release of several deuterostome genome databases and paralogons combined with synteny analysis allowed us to obtain insight into events at the gene level that led to the diversification of the ST8Sia genes, with their corresponding enzymatic activities, in both

  4. Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua)--conserved synteny between fish monolobal and tetrapod bilobal transferrin loci.

    PubMed

    Andersen, Øivind; De Rosa, Maria Cristina; Pirolli, Davide; Tooming-Klunderud, Ave; Petersen, Petra E; André, Carl

    2011-05-25

    The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive selection and local adaptation in

  5. Divergent evolution of part of the involucrin gene in the hominoids: Unique intragenic duplications in the gorilla and human

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teumer, J.; Green, H.

    1989-02-01

    The gene for involucrin, an epidermal protein, has been remodeled in the higher primates. Most of the coding region of the human gene consists of a modern segment of repeats derived from a 10-codon sequence present in the ancestral segment of the gene. The modern segment can be divided into early, middle, and late regions. The authors report here the nucleotide sequence of three alleles of the gorilla involucrin gene. Each possesses a modern segment homologous to that of the human and consisting of 10-codon repeats. The early and middle regions are similar to the corresponding regions of the humanmore » allele and are nearly identical among the different gorilla alleles. The late region consists of recent duplications whose pattern is unique in each of the gorilla alleles and in the human allele. The early region is located in what is now the 3{prime} third of the modern segment, and the late, polymorphic region is located in what is now the 5{prime} third. Therefore, as the modern segment expanded during evolution, its 3{prime} end became stabilized, and continuing duplications became confined to its 5{prime} end. The expansion of the involucrin coding region, which began long before the separation of the gorilla and human, has continued in both species after their separation.« less

  6. Duplication and diversification of the LEAFY HULL STERILE1 and Oryza sativa MADS5 SEPALLATA lineages in graminoid Poales

    PubMed Central

    2012-01-01

    Background Gene duplication and the subsequent divergence in function of the resulting paralogs via subfunctionalization and/or neofunctionalization is hypothesized to have played a major role in the evolution of plant form. The LEAFY HULL STERILE1 (LHS1) SEPALLATA (SEP) genes have been linked with the origin and diversification of the grass spikelet, but it is uncertain 1) when the duplication event that produced the LHS1 clade and its paralogous lineage Oryza sativa MADS5 (OSM5) occurred, and 2) how changes in gene structure and/or expression might have contributed to subfunctionalization and/or neofunctionalization in the two lineages. Methods Phylogenetic relationships among 84 SEP genes were estimated using Bayesian methods. RNA expression patterns were inferred using in situ hybridization. The patterns of protein sequence and RNA expression evolution were reconstructed using maximum parsimony (MP) and maximum likelihood (ML) methods, respectively. Results Phylogenetic analyses mapped the LHS1/OSM5 duplication event to the base of the grass family. MP character reconstructions estimated a change from cytosine to thymine in the first codon position of the first amino acid after the Zea mays MADS3 (ZMM3) domain converted a glutamine to a stop codon in the OSM5 ancestor following the LHS1/OSM5 duplication event. RNA expression analyses of OSM5 co-orthologs in Avena sativa, Chasmanthium latifolium, Hordeum vulgare, Pennisetum glaucum, and Sorghum bicolor followed by ML reconstructions of these data and previously published analyses estimated a complex pattern of gain and loss of LHS1 and OSM5 expression in different floral organs and different flowers within the spikelet or inflorescence. Conclusions Previous authors have reported that rice OSM5 and LHS1 proteins have different interaction partners indicating that the truncation of OSM5 following the LHS1/OSM5 duplication event has resulted in both partitioned and potentially novel gene functions. The complex

  7. Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis.

    PubMed

    Hu, Catherine; Lin, Siou-ying; Chi, Wen-tzu; Charng, Yee-yung

    2012-02-01

    The duplication and divergence of heat stress (HS) response genes might help plants adapt to varied HS conditions, but little is known on the topic. Here, we examined the evolution and function of Arabidopsis (Arabidopsis thaliana) mitochondrial GrpE (Mge) proteins. GrpE acts as a nucleotide-exchange factor in the Hsp70/DnaK chaperone machinery. Genomic data show that AtMge1 and AtMge2 arose from a recent whole-genome duplication event. Phylogenetic analysis indicated that duplication and preservation of Mges occurred independently in many plant species, which suggests a common tendency in the evolution of the genes. Intron retention contributed to the divergence of the protein structure of Mge paralogs in higher plants. In both Arabidopsis and tomato (Solanum lycopersicum), Mge1 is induced by ultraviolet B light and Mge2 is induced by heat, which suggests regulatory divergence of the genes. Consistently, AtMge2 but not AtMge1 is under the control of HsfA1, the master regulator of the HS response. Heterologous expression of AtMge2 but not AtMge1 in the temperature-sensitive Escherichia coli grpE mutant restored its growth at 43°C. Arabidopsis T-DNA knockout lines under different HS regimes revealed that Mge2 is specifically required for tolerating prolonged exposure to moderately high temperature, as compared with the need of the heat shock protein 101 and the HS-associated 32-kD protein for short-term extreme heat. Therefore, with duplication and subfunctionalization, one copy of the Arabidopsis Mge genes became specialized in a distinct type of HS. We provide direct evidence supporting the connection between gene duplication and adaptation to environmental stress.

  8. Breakup of a homeobox cluster after genome duplication in teleosts

    PubMed Central

    Mulley, John F.; Chiu, Chi-hua; Holland, Peter W. H.

    2006-01-01

    Several families of homeobox genes are arranged in genomic clusters in metazoan genomes, including the Hox, ParaHox, NK, Rhox, and Iroquois gene clusters. The selective pressures responsible for maintenance of these gene clusters are poorly understood. The ParaHox gene cluster is evolutionarily conserved between amphioxus and human but is fragmented in teleost fishes. We show that two basal ray-finned fish, Polypterus and Amia, each possess an intact ParaHox cluster; this implies that the selective pressure maintaining clustering was lost after whole-genome duplication in teleosts. Cluster breakup is because of gene loss, not transposition or inversion, and the total number of ParaHox genes is the same in teleosts, human, mouse, and frog. We propose that this homeobox gene cluster is held together in chordates by the existence of interdigitated control regions that could be separated after locus duplication in the teleost fish. PMID:16801555

  9. A dynamic history of gene duplications and losses characterizes the evolution of the SPARC family in eumetazoans.

    PubMed

    Bertrand, Stephanie; Fuentealba, Jaime; Aze, Antoine; Hudson, Clare; Yasuo, Hitoyoshi; Torrejon, Marcela; Escriva, Hector; Marcellini, Sylvain

    2013-04-22

    The vertebrates share the ability to produce a skeleton made of mineralized extracellular matrix. However, our understanding of the molecular changes that accompanied their emergence remains scarce. Here, we describe the evolutionary history of the SPARC (secreted protein acidic and rich in cysteine) family, because its vertebrate orthologues are expressed in cartilage, bones and teeth where they have been proposed to bind calcium and act as extracellular collagen chaperones, and because further duplications of specific SPARC members produced the small calcium-binding phosphoproteins (SCPP) family that is crucial for skeletal mineralization to occur. Both phylogeny and synteny conservation analyses reveal that, in the eumetazoan ancestor, a unique ancestral gene duplicated to give rise to SPARC and SPARCB described here for the first time. Independent losses have eliminated one of the two paralogues in cnidarians, protostomes and tetrapods. Hence, only non-tetrapod deuterostomes have conserved both genes. Remarkably, SPARC and SPARCB paralogues are still linked in the amphioxus genome. To shed light on the evolution of the SPARC family members in chordates, we performed a comprehensive analysis of their embryonic expression patterns in amphioxus, tunicates, teleosts, amphibians and mammals. Our results show that in the chordate lineage SPARC and SPARCB family members were recurrently recruited in a variety of unrelated tissues expressing collagen genes. We propose that one of the earliest steps of skeletal evolution involved the co-expression of SPARC paralogues with collagenous proteins.

  10. Spotting and validation of a genome wide oligonucleotide chip with duplicate measurement of each gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomassen, Mads; Skov, Vibe; Eiriksdottir, Freyja

    2006-06-16

    The quality of DNA microarray based gene expression data relies on the reproducibility of several steps in a microarray experiment. We have developed a spotted genome wide microarray chip with oligonucleotides printed in duplicate in order to minimise undesirable biases, thereby optimising detection of true differential expression. The validation study design consisted of an assessment of the microarray chip performance using the MessageAmp and FairPlay labelling kits. Intraclass correlation coefficient (ICC) was used to demonstrate that MessageAmp was significantly more reproducible than FairPlay. Further examinations with MessageAmp revealed the applicability of the system. The linear range of the chips wasmore » three orders of magnitude, the precision was high, as 95% of measurements deviated less than 1.24-fold from the expected value, and the coefficient of variation for relative expression was 13.6%. Relative quantitation was more reproducible than absolute quantitation and substantial reduction of variance was attained with duplicate spotting. An analysis of variance (ANOVA) demonstrated no significant day-to-day variation.« less

  11. Middle ear microbiome differences in indigenous Filipinos with chronic otitis media due to a duplication in the A2ML1 gene.

    PubMed

    Santos-Cortez, Regie Lyn P; Hutchinson, Diane S; Ajami, Nadim J; Reyes-Quintos, Ma Rina T; Tantoco, Ma Leah C; Labra, Patrick John; Lagrana, Sheryl Mae; Pedro, Melquiadesa; Llanes, Erasmo Gonzalo D V; Gloria-Cruz, Teresa Luisa; Chan, Abner L; Cutiongco-de la Paz, Eva Maria; Belmont, John W; Chonmaitree, Tasnee; Abes, Generoso T; Petrosino, Joseph F; Leal, Suzanne M; Chiong, Charlotte M

    2016-11-01

    Previously rare A2ML1 variants were identified to confer otitis media susceptibility in an indigenous Filipino community and in otitis-prone US children. The goal of this study is to describe differences in the middle ear microbiome between carriers and non-carriers of an A2ML1 duplication variant that increases risk for chronic otitis media among indigenous Filipinos with poor health care access. Ear swabs were obtained from 16 indigenous Filipino individuals with chronic otitis media, of whom 11 carry the A2ML1 duplication variant. Ear swabs were submitted for 16S rRNA gene sequencing. Genotype-based differences in microbial richness, structure, and composition were identified, but were not statistically significant. Taxonomic analysis revealed that the relative abundance of the phyla Fusobacteria and Bacteroidetes, and genus Fusobacterium were nominally increased in carriers compared to non-carriers, but were non-significant after correction for multiple testing. We also detected rare bacteria including Oligella that was reported only once in the middle ear. These findings suggest that A2ML1-related otitis media susceptibility may be mediated by changes in the middle ear microbiome. Knowledge of middle ear microbial profiles according to genetic background can be potentially useful for therapeutic and prophylactic interventions for otitis media and can guide public health interventions towards decreasing otitis media prevalence within the indigenous Filipino community.

  12. Whole Genome and Tandem Duplicate Retention Facilitated Glucosinolate Pathway Diversification in the Mustard Family

    PubMed Central

    Hofberger, Johannes A.; Lyons, Eric; Edger, Patrick P.; Chris Pires, J.; Eric Schranz, M.

    2013-01-01

    Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success. PMID:24171911

  13. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes

    PubMed Central

    Schirtzinger, Erin E.; Tavares, Erika S.; Gonzales, Lauren A.; Eberhard, Jessica R.; Miyaki, Cristina Y.; Sanchez, Juan J.; Hernandez, Alexis; Müeller, Heinrich; Graves, Gary R.; Fleischer, Robert C.; Wright, Timothy F.

    2012-01-01

    Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0–10.9% with the differences occurring mainly between 51 and 225 nucleotides 3′ of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. PMID:22543055

  14. Expressing foreign genes in the pistil: a comparison of S-RNase constructs in different Nicotiana backgrounds.

    PubMed

    Murfett, J; McClure, B A

    1998-06-01

    Transgenic plant experiments have great potential for extending our understanding of the role of specific genes in controlling pollination. Often, the intent of such experiments is to over-express a gene and test for effects on pollination. We have examined the efficiency of six different S-RNase constructs in Nicotiana species and hybrids. Each construct contained the coding region, intron, and downstream sequences from the Nicotiana alata S(A2)-RNase gene. Among the six expression constructs, two utilized the cauliflower mosaic virus (CaMV) 35S promoter with duplicated enhancer, and four utilized promoters from genes expressed primarily in pistils. The latter included promoters from the tomato Chi2;1 and 9612 genes, a promoter from the N. alata S(A2)-RNase gene, and a promoter from the Brassica SLG-13 gene. Some or all of the constructs were tested in N. tabacum, N. plumbaginifolia, N. plumbaginifolia x SI N. alata S(C10)S(c10) hybrids, N. langsdorffii, and N. langsdorffii x SC N. alata hybrids. Stylar specific RNase activities and S(A2)-RNase transcript levels were determined in transformed plants. Constructs including the tomato Chi2;1 gene promoter or the Brassica SLG-13 promoter provided the highest levels of S(A2)-RNase expression. Transgene expression patterns were tightly regulated, the highest level of expression was observed in post-anthesis styles. Expression levels of the S(A2)-RNase transgenes was dependent on the genetic background of the host. Higher levels of S(A2)-RNase expression were observed in N. plumbaginifolia x SC N. alata hybrids than in N. plumbaginifolia.

  15. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins

    PubMed Central

    2013-01-01

    Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117

  16. The origins and impact of primate segmental duplications.

    PubMed

    Marques-Bonet, Tomas; Girirajan, Santhosh; Eichler, Evan E

    2009-10-01

    Duplicated sequences are substrates for the emergence of new genes and are an important source of genetic instability associated with rare and common diseases. Analyses of primate genomes have shown an increase in the proportion of interspersed segmental duplications (SDs) within the genomes of humans and great apes. This contrasts with other mammalian genomes that seem to have their recently duplicated sequences organized in a tandem configuration. In this review, we focus on the mechanistic origin and impact of this difference with respect to evolution, genetic diversity and primate phenotype. Although many genomes will be sequenced in the future, resolution of this aspect of genomic architecture still requires high quality sequences and detailed analyses.

  17. Identification of a duplication within the GDF9 gene and novel candidate genes for primary ovarian insufficiency (POI) by a customized high-resolution array comparative genomic hybridization platform.

    PubMed

    Norling, A; Hirschberg, A L; Rodriguez-Wallberg, K A; Iwarsson, E; Wedell, A; Barbaro, M

    2014-08-01

    Can high-resolution array comparative genomic hybridization (CGH) analysis of DNA samples from women with primary ovarian insufficiency (POI) improve the diagnosis of the condition and identify novel candidate genes for POI? A mutation affecting the regulatory region of growth differentiation factor 9 (GDF9) was identified for the first time together with several novel candidate genes for POI. Most patients with POI do not receive a molecular diagnosis despite a significant genetic component in the pathogenesis. We performed a case-control study. Twenty-six patients were analyzed by array CGH for identification of copy number variants. Novel changes were investigated in 95 controls and in a separate population of 28 additional patients with POI. The experimental procedures were performed during a 1-year period. DNA samples from 26 patients with POI were analyzed by a customized 1M array-CGH platform with whole genome coverage and probe enrichment targeting 78 genes in sex development. By PCR amplification and sequencing, the breakpoint of an identified partial GDF9 gene duplication was characterized. A multiplex ligation-dependent probe amplification (MLPA) probe set for specific identification of deletions/duplications affecting GDF9 was developed. An MLPA probe set for the identification of additional cases or controls carrying novel candidate regions identified by array-CGH was developed. Sequencing of three candidate genes was performed. Eleven unique copy number changes were identified in a total of 11 patients, including a tandem duplication of 475 bp, containing part of the GDF9 gene promoter region. The duplicated region contains three NOBOX-binding elements and an E-box, important for GDF9 gene regulation. This aberration is likely causative of POI. Fifty-four patients were investigated for copy number changes within GDF9, but no additional cases were found. Ten aberrations constituting novel candidate regions were detected, including a second DNAH6

  18. Phylogenetic investigation of human FGFR-bearing paralogons favors piecemeal duplication theory of vertebrate genome evolution.

    PubMed

    Ajmal, Wajya; Khan, Hiba; Abbasi, Amir Ali

    2014-12-01

    Understanding the genetic mechanisms underlying the organismal complexity and origin of novelties during vertebrate history is one of the central goals of evolutionary biology. Ohno (1970) was the first to postulate that whole genome duplications (WGD) have played a vital role in the evolution of new gene functions: permitting an increase in morphological, physiological and anatomical complexity during early vertebrate history. Here, we analyze the evolutionary history of human FGFR-bearing paralogon (human autosome 4/5/8/10) by the phylogenetic analysis of multigene families with triplicate and quadruplicate distribution on these chromosomes. Our results categorized the histories of 21 families into discrete co-duplicated groups. Genes of a particular co-duplicated group exhibit identical evolutionary history and have duplicated in concert with each other, whereas genes belonging to different groups have dissimilar histories and have not duplicated concurrently. Taken together with our previously published data, we submit that there is sufficient empirical evidence to disprove the 1R/2R hypothesis and to support the general prediction that vertebrate genome evolved by relatively small-scale, regional duplication events that spread across the history of life. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The detection of large deletions or duplications in genomic DNA.

    PubMed

    Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R

    2002-11-01

    While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.

  20. Genetics Home Reference: MECP2 duplication syndrome

    MedlinePlus

    ... of autism spectrum disorders that affect communication and social interaction. Females with a MECP2 gene duplication tend to ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of ...

  1. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    PubMed

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  2. Duplication and Whorl-Specific Down-Regulation of the Obligate AP3-PI Heterodimer Genes Explain the Origin of Paeonia lactiflora Plants with Spontaneous Corolla Mutation.

    PubMed

    Gong, Pichang; Ao, Xiang; Liu, Gaixiu; Cheng, Fangyun; He, Chaoying

    2017-03-01

    Herbaceous peony (Paeonia lactiflora) is a globally important ornamental plant. Spontaneous floral mutations occur frequently during cultivation, and are selected as a way to release new cultivars, but the underlying evolutionary developmental genetics remain largely elusive. Here, we investigated a collection of spontaneous corolla mutational plants (SCMPs) whose other floral organs were virtually unaffected. Unlike the corolla in normal plants (NPs) that withered soon after fertilization, the transformed corolla (petals) in SCMPs was greenish and persistent similar to the calyx (sepals). Epidermal cellular morphology of the SCMP corolla was also similar to that of calyx cells, further suggesting a sepaloid corolla in SCMPs. Ten floral MADS-box genes from these Paeonia plants were comparatively characterized with respect to sequence and expression. Codogenic sequence variation of these MADS-box genes was not linked to corolla changes in SCMPs. However, we found that both APETALA3 (AP3) and PISTILLATA (PI) lineages of B-class MADS-box genes were duplicated, and subsequent selective expression alterations of these genes were closely associated with the origin of SCMPs. AP3-PI obligate heterodimerization, essential for organ identity of corolla and stamens, was robustly detected. However, selective down-regulation of these duplicated genes might result in a reduction of this obligate heterodimer concentration in a corolla-specific manner, leading to the sepaloid corolla in SCMPs, thus representing a new sepaloid corolla model taking advantage of gene duplication. Our work suggests that modifying floral MADS-box genes could facilitate the breeding of novel cultivars with distinct floral morphology in ornamental plants, and also provides new insights into the functional evolution of the MADS-box genes in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please

  3. Case report of individual with cutaneous immunodeficiency and novel 1p36 duplication.

    PubMed

    Hatter, Alyn D; Soler, David C; Curtis, Christine; Cooper, Kevin D; McCormick, Thomas S

    2016-01-01

    Crusted or Norwegian scabies is an infectious skin dermatopathology usually associated with an underlying immunodeficiency condition. It is caused when the mite Sarcoptes scabiei infects the skin, and the immune system is unable to control its spread, leading to a massive hyperinfestation with a simultaneous inflammatory and hyperkeratotic reaction. This is the first report of a novel 1p36 duplication associated with a recurrent infection of crusted scabies. We describe a 34-year-old patient with a cutaneous immunodeficiency characterized by recurrent crusted scabies infestation, diffuse tinea, and recurrent staphylococcal cellulitis, who we suspected had an undiagnosed syndrome. The patient also suffered from mental retardation, renal failure, and premature senescence. A cytogenetic fluorescence in situ hybridization analysis revealed a 9.34 Mb duplication within the short (p) arm of chromosome 1, precisely from 1p36.11 to 1p36.21, with an adjacent 193 kb copy gain entirely within 1p36.11. In addition, chromosome 4 had a 906 kb gain in 4p16.1 and chromosome 9 had a 81 kb copy gain in 9p24.3. Over 100 genes localized within these duplicated regions. Gene expression array revealed 82 genes whose expression changed >1.5-fold compared to a healthy age-matched skin control, but among them only the lipolytic enzyme arylacetamide deacetylase-like 3 was found within the duplicated 1p36 region of chromosome 1. Although genetic duplications in the 1p36 region have been previously described, our report describes a novel duplicative variant within the 1p36 region. The patient did not have a past history of immunosuppression but was afflicted by a recurrent case of crusted scabies, raising the possibility that the recurrent infection was associated with the 1p36 genetic duplication. To our knowledge, the specific duplicated sequence between 1p36.11 and p36.21 found in our patient has never been previously reported. We reviewed and compared the clinical, genotyping, and gene

  4. Case report of individual with cutaneous immunodeficiency and novel 1p36 duplication

    PubMed Central

    Hatter, Alyn D; Soler, David C; Curtis, Christine; Cooper, Kevin D; McCormick, Thomas S

    2016-01-01

    Introduction Crusted or Norwegian scabies is an infectious skin dermatopathology usually associated with an underlying immunodeficiency condition. It is caused when the mite Sarcoptes scabiei infects the skin, and the immune system is unable to control its spread, leading to a massive hyperinfestation with a simultaneous inflammatory and hyperkeratotic reaction. This is the first report of a novel 1p36 duplication associated with a recurrent infection of crusted scabies. Case report We describe a 34-year-old patient with a cutaneous immunodeficiency characterized by recurrent crusted scabies infestation, diffuse tinea, and recurrent staphylococcal cellulitis, who we suspected had an undiagnosed syndrome. The patient also suffered from mental retardation, renal failure, and premature senescence. A cytogenetic fluorescence in situ hybridization analysis revealed a 9.34 Mb duplication within the short (p) arm of chromosome 1, precisely from 1p36.11 to 1p36.21, with an adjacent 193 kb copy gain entirely within 1p36.11. In addition, chromosome 4 had a 906 kb gain in 4p16.1 and chromosome 9 had a 81 kb copy gain in 9p24.3. Over 100 genes localized within these duplicated regions. Gene expression array revealed 82 genes whose expression changed >1.5-fold compared to a healthy age-matched skin control, but among them only the lipolytic enzyme arylacetamide deacetylase-like 3 was found within the duplicated 1p36 region of chromosome 1. Discussion Although genetic duplications in the 1p36 region have been previously described, our report describes a novel duplicative variant within the 1p36 region. The patient did not have a past history of immunosuppression but was afflicted by a recurrent case of crusted scabies, raising the possibility that the recurrent infection was associated with the 1p36 genetic duplication. Conclusion To our knowledge, the specific duplicated sequence between 1p36.11 and p36.21 found in our patient has never been previously reported. We reviewed and

  5. MECP2 duplications in six patients with complex sex chromosome rearrangements

    PubMed Central

    Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai

    2011-01-01

    Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712

  6. Myelodysplastic syndrome in an infant with constitutional pure duplication 1q41-qter.

    PubMed

    Morokawa, Hirokazu; Kamiya, Motoko; Wakui, Keiko; Kobayashi, Mikiko; Kurata, Takashi; Matsuda, Kazuyuki; Kawamura, Rie; Kanno, Hiroyuki; Fukushima, Yoshimitsu; Nakazawa, Yozo; Kosho, Tomoki

    2018-01-01

    We report on a Japanese female infant as the fourth patient with the constitutional pure duplication 1q41-qter confirmed by chromosomal microarray and as the first who developed myelodysplastic syndrome (MDS) among those with the constitutional 1q duplication. Common clinical features of the constitutional pure duplication 1q41-qter include developmental delay, craniofacial characteristics, foot malformation, hypertrichosis, and respiratory insufficiency. The association between MDS and the duplication of the genes in the 1q41-qter region remains unknown.

  7. Xp22.33p22.12 Duplication in a Patient with Intellectual Disability and Dysmorphic Facial Features

    PubMed Central

    Lintas, Carla; Picinelli, Chiara; Piras, Ignazio S.; Sacco, Roberto; Gabriele, Stefano; Verdecchia, Magda; Persico, Antonio M.

    2016-01-01

    A novel 19.98-Mb duplication in chromosome Xp22.33p22.12 was detected by array CGH in a 30-year-old man affected by intellectual disability, congenital hypotonia and dysmorphic features. The duplication encompasses more than 100 known genes. Many of these genes (such as neuroligin 4, cyclin-dependent kinase like 5, and others) have already correlated with X-linked intellectual disability and/or neurodevelopmental disorders. Due to the high number of potentially pathogenic genes involved in the reported duplication, we cannot correlate the clinical phenotype to a single gene. Indeed, we suggest that the resulting clinical phenotype may have arisen from the overexpression and consequent perturbation of fine gene dosage. PMID:26997944

  8. Xp22.33p22.12 Duplication in a Patient with Intellectual Disability and Dysmorphic Facial Features.

    PubMed

    Lintas, Carla; Picinelli, Chiara; Piras, Ignazio S; Sacco, Roberto; Gabriele, Stefano; Verdecchia, Magda; Persico, Antonio M

    2016-02-01

    A novel 19.98-Mb duplication in chromosome Xp22.33p22.12 was detected by array CGH in a 30-year-old man affected by intellectual disability, congenital hypotonia and dysmorphic features. The duplication encompasses more than 100 known genes. Many of these genes (such as neuroligin 4, cyclin-dependent kinase like 5, and others) have already correlated with X-linked intellectual disability and/or neurodevelopmental disorders. Due to the high number of potentially pathogenic genes involved in the reported duplication, we cannot correlate the clinical phenotype to a single gene. Indeed, we suggest that the resulting clinical phenotype may have arisen from the overexpression and consequent perturbation of fine gene dosage.

  9. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

    PubMed

    Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P

    2017-07-31

    The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.

  10. Molecular Characterization of Soybean Pterocarpan 2-Dimethylallyltransferase in Glyceollin Biosynthesis: Local Gene and Whole-Genome Duplications of Prenyltransferase Genes Led to the Structural Diversity of Soybean Prenylated Isoflavonoids

    PubMed Central

    Yoneyama, Keisuke; Akashi, Tomoyoshi; Aoki, Toshio

    2016-01-01

    Soybean (Glycine max) accumulates several prenylated isoflavonoid phytoalexins, collectively referred to as glyceollins. Glyceollins (I, II, III, IV and V) possess modified pterocarpan skeletons with C5 moieties from dimethylallyl diphosphate, and they are commonly produced from (6aS, 11aS)-3,9,6a-trihydroxypterocarpan [(−)-glycinol]. The metabolic fate of (−)-glycinol is determined by the enzymatic introduction of a dimethylallyl group into C-4 or C-2, which is reportedly catalyzed by regiospecific prenyltransferases (PTs). 4-Dimethylallyl (−)-glycinol and 2-dimethylallyl (−)-glycinol are precursors of glyceollin I and other glyceollins, respectively. Although multiple genes encoding (−)-glycinol biosynthetic enzymes have been identified, those involved in the later steps of glyceollin formation mostly remain unidentified, except for (−)-glycinol 4-dimethylallyltransferase (G4DT), which is involved in glyceollin I biosynthesis. In this study, we identified four genes that encode isoflavonoid PTs, including (−)-glycinol 2-dimethylallyltransferase (G2DT), using homology-based in silico screening and biochemical characterization in yeast expression systems. Transcript analyses illustrated that changes in G2DT gene expression were correlated with the induction of glyceollins II, III, IV and V in elicitor-treated soybean cells and leaves, suggesting its involvement in glyceollin biosynthesis. Moreover, the genomic signatures of these PT genes revealed that G4DT and G2DT are paralogs derived from whole-genome duplications of the soybean genome, whereas other PT genes [isoflavone dimethylallyltransferase 1 (IDT1) and IDT2] were derived via local gene duplication on soybean chromosome 11. PMID:27986914

  11. The ace-1 Locus Is Amplified in All Resistant Anopheles gambiae Mosquitoes: Fitness Consequences of Homogeneous and Heterogeneous Duplications

    PubMed Central

    Djogbénou, Luc S.; Berthomieu, Arnaud; Makoundou, Patrick; Baba-Moussa, Lamine S.; Fiston-Lavier, Anna-Sophie; Belkhir, Khalid; Labbé, Pierrick; Weill, Mylène

    2016-01-01

    Gene copy-number variations are widespread in natural populations, but investigating their phenotypic consequences requires contemporary duplications under selection. Such duplications have been found at the ace-1 locus (encoding the organophosphate and carbamate insecticides’ target) in the mosquito Anopheles gambiae (the major malaria vector); recent studies have revealed their intriguing complexity, consistent with the involvement of various numbers and types (susceptible or resistant to insecticide) of copies. We used an integrative approach, from genome to phenotype level, to investigate the influence of duplication architecture and gene-dosage on mosquito fitness. We found that both heterogeneous (i.e., one susceptible and one resistant ace-1 copy) and homogeneous (i.e., identical resistant copies) duplications segregated in field populations. The number of copies in homogeneous duplications was variable and positively correlated with acetylcholinesterase activity and resistance level. Determining the genomic structure of the duplicated region revealed that, in both types of duplication, ace-1 and 11 other genes formed tandem 203kb amplicons. We developed a diagnostic test for duplications, which showed that ace-1 was amplified in all 173 resistant mosquitoes analyzed (field-collected in several African countries), in heterogeneous or homogeneous duplications. Each type was associated with different fitness trade-offs: heterogeneous duplications conferred an intermediate phenotype (lower resistance and fitness costs), whereas homogeneous duplications tended to increase both resistance and fitness cost, in a complex manner. The type of duplication selected seemed thus to depend on the intensity and distribution of selection pressures. This versatility of trade-offs available through gene duplication highlights the importance of large mutation events in adaptation to environmental variation. This impressive adaptability could have a major impact on vector

  12. Expansion of signal transduction pathways in fungi by extensive genome duplication

    PubMed Central

    Corrochano, Luis M.; Kuo, Alan; Marcet-Houben, Marina; Polaino, Silvia; Salamov, Asaf; Villalobos-Escobedo, José M.; Grimwood, Jane; Álvarez, M. Isabel; Avalos, Javier; Bauer, Diane; Benito, Ernesto P.; Benoit, Isabelle; Burger, Gertraud; Camino, Lola P.; Cánovas, David; Cerdá-Olmedo, Enrique; Cheng, Jan-Fang; Domínguez, Angel; Eliáš, Marek; Eslava, Arturo P.; Glaser, Fabian; Gutiérrez, Gabriel; Heitman, Joseph; Henrissat, Bernard; Iturriaga, Enrique A.; Lang, B. Franz; Lavín, José L.; Lee, Soo Chan; Li, Wenjun; Lindquist, Erika; López-García, Sergio; Luque, Eva M.; Marcos, Ana T.; Martin, Joel; McCluskey, Kevin; Medina, Humberto R.; Miralles-Durán, Alejandro; Miyazaki, Atsushi; Muñoz-Torres, Elisa; Oguiza, José A.; Ohm, Robin A.; Orejas, Margarita; Ortiz-Castellanos, Lucila; Pisabarro, Antonio G.; Rodríguez-Romero, Julio; Ruiz-Herrera, José; Ruiz-Vázquez, Rosa; Sanz, Catalina; Schackwitz, Wendy; Shahriari, Mahdi; Shelest, Ekaterina; Silva-Franco, Fátima; Soanes, Darren; Syed, Khajamohiddin; Tagua, Víctor G.; Talbot, Nicholas J.; Thon, Michael R.; Tice, Hope; de Vries, Ronald P.; Wiebenga, Ad; Yadav, Jagjit S.; Braun, Edward L.; Baker, Scott E.; Garre, Victoriano; Schmutz, Jeremy; Horwitz, Benjamin A.; Torres-Martínez, Santiago; Idnurm, Alexander; Herrera-Estrella, Alfredo; Gabaldón, Toni; Grigoriev, Igor V.

    2016-01-01

    Summary Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides, and show that they have been shaped by an extensive genome duplication or, most likely, a whole genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes. PMID:27238284

  13. Duplication in the Microtubule-Actin Cross-linking Factor 1 gene causes a novel neuromuscular condition

    PubMed Central

    Jørgensen, Louise H.; Mosbech, Mai-Britt; Færgeman, Nils J.; Graakjaer, Jesper; Jacobsen, Søren V.; Schrøder, Henrik D.

    2014-01-01

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene. PMID:24899269

  14. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition.

    PubMed

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J; Graakjaer, Jesper; Jacobsen, Søren V; Schrøder, Henrik D

    2014-06-05

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene.

  15. Evolutionary Patterns of RNA-Based Duplication in Non-Mammalian Chordates

    PubMed Central

    Li, Xin; Vibranovski, Maria D.; Gan, Xiaoni; Wang, Dengqiang; Wang, Wen; Long, Manyuan; He, Shunping

    2011-01-01

    The role of RNA-based duplication, or retroposition, in the evolution of new gene functions in mammals, plants, and Drosophila has been widely reported. However, little is known about RNA-based duplication in non-mammalian chordates. In this study, we screened ten non-mammalian chordate genomes for retrocopies and investigated their evolutionary patterns. We identified numerous retrocopies in these species. Examination of the age distribution of these retrocopies revealed no burst of young retrocopies in ancient chordate species. Upon comparing these non-mammalian chordate species to the mammalian species, we observed that a larger fraction of the non-mammalian retrocopies was under strong evolutionary constraints than mammalian retrocopies are, as evidenced by signals of purifying selection and expression profiles. For the Western clawed frog, Medaka, and Sea squirt, many retrogenes have evolved gonad and brain expression patterns, similar to what was observed in human. Testing of retrogene movement in the Medaka genome, where the nascent sex chrosomes have been well assembled, did not reveal any significant gene movement. Taken together, our analyses demonstrate that RNA-based duplication generates many functional genes and can make a significant contribution to the evolution of non-mammalian genomes. PMID:21779328

  16. Co-Circulation of 72bp Duplication Group A and 60bp Duplication Group B Respiratory Syncytial Virus (RSV) Strains in Riyadh, Saudi Arabia during 2014.

    PubMed

    Ahmed, Anwar; Haider, Shakir H; Parveen, Shama; Arshad, Mohammed; Alsenaidy, Hytham A; Baaboud, Alawi Omar; Mobaireek, Khalid Fahad; AlSaadi, Muslim Mohammed; Alsenaidy, Abdulrahman M; Sullender, Wayne

    2016-01-01

    Respiratory syncytial virus (RSV) is an important viral pathogen of acute respiratory tract infection (ARI). Limited data are available on molecular epidemiology of RSV from Saudi Arabia. A total of 130 nasopharyngeal aspirates were collected from children less than 5 years of age with ARI symptoms attending the Emergency Department at King Khalid University Hospital and King Fahad Medical City, Riyadh, Saudi Arabia between October and December, 2014. RSV was identified in the 26% of the hospitalized children by reverse transcriptase PCR. Group A RSV (77%) predominated during the study as compared to group B RSV (23%). The phylogenetic analysis of 28 study strains clustered group A RSV in NA1 and ON1 genotypes and group B viruses in BA (BA9) genotype. Interestingly, 26% of the positive samples clustered in genotypes with duplication in the G protein gene (ON1 for group A and BA for group B). Both the genotypes showed enhanced O-linked glycosylation in the duplicated region, with 10 and 2 additional sites in ON1 and BA respectively. Selection pressure analysis revealed purifying selection in both the ON1 and BA genotypes. One codon each in the ON1 (position 274) and BA genotypes (position 219) were positively selected and had high entropy values indicating variations at these amino acid positions. This is the first report describing the presence of ON1 genotype and the first report on co-circulation of two different genotypes of RSV with duplication in the G protein gene from Saudi Arabia. The clinical implications of the simultaneous occurrence of genotypes with duplication in G protein gene in a given population especially in the concurrent infections should be investigated in future. Further, the ongoing surveillance of RSV in this region will reveal the evolutionary trajectory of these two genotypes with duplication in G protein gene from largest country in the Middle East.

  17. Co-Circulation of 72bp Duplication Group A and 60bp Duplication Group B Respiratory Syncytial Virus (RSV) Strains in Riyadh, Saudi Arabia during 2014

    PubMed Central

    Ahmed, Anwar; Haider, Shakir H.; Parveen, Shama; Arshad, Mohammed; Alsenaidy, Hytham A.; Baaboud, Alawi Omar; Mobaireek, Khalid Fahad; AlSaadi, Muslim Mohammed; Alsenaidy, Abdulrahman M.; Sullender, Wayne

    2016-01-01

    Respiratory syncytial virus (RSV) is an important viral pathogen of acute respiratory tract infection (ARI). Limited data are available on molecular epidemiology of RSV from Saudi Arabia. A total of 130 nasopharyngeal aspirates were collected from children less than 5 years of age with ARI symptoms attending the Emergency Department at King Khalid University Hospital and King Fahad Medical City, Riyadh, Saudi Arabia between October and December, 2014. RSV was identified in the 26% of the hospitalized children by reverse transcriptase PCR. Group A RSV (77%) predominated during the study as compared to group B RSV (23%). The phylogenetic analysis of 28 study strains clustered group A RSV in NA1 and ON1 genotypes and group B viruses in BA (BA9) genotype. Interestingly, 26% of the positive samples clustered in genotypes with duplication in the G protein gene (ON1 for group A and BA for group B). Both the genotypes showed enhanced O-linked glycosylation in the duplicated region, with 10 and 2 additional sites in ON1 and BA respectively. Selection pressure analysis revealed purifying selection in both the ON1 and BA genotypes. One codon each in the ON1 (position 274) and BA genotypes (position 219) were positively selected and had high entropy values indicating variations at these amino acid positions. This is the first report describing the presence of ON1 genotype and the first report on co-circulation of two different genotypes of RSV with duplication in the G protein gene from Saudi Arabia. The clinical implications of the simultaneous occurrence of genotypes with duplication in G protein gene in a given population especially in the concurrent infections should be investigated in future. Further, the ongoing surveillance of RSV in this region will reveal the evolutionary trajectory of these two genotypes with duplication in G protein gene from largest country in the Middle East. PMID:27835664

  18. Duplication in CHIT1 gene and the risk for Aspergillus lung disease in CF patients.

    PubMed

    Livnat, Galit; Bar-Yoseph, Ronen; Mory, Adi; Dagan, Efrat; Elias, Nael; Gershoni, Ruth; Bentur, Lea

    2014-01-01

    Aspergillus often persists in the respiratory tract of patients with Cystic Fibrosis (CF) and may cause allergic broncho-pulmonary aspergillosis (ABPA). Chitinases are enzymes that digest the chitin polymer. Plants use chitinase as a defense mechanism against fungi. Chitotriosidase (CHIT1) is the major chitinase in human airways. Variation in the coding region with 24-bp duplication allele results in reduced CHIT1 activity. Recently, CHIT1 duplication heterozygocity was found in 6/6 patients with severe asthma and fungal sensitization (SAFS). Our aim was to evaluate the link between CHIT1 duplication in CF patients and the predisposition to Allergic broncho-pulmonary mycosis (ABPM) or persistent Aspergillus positive sputum (APS). CHIT1 duplication was assessed in three CF groups. Group 1: patients who had neither ABPM nor APS in the past (control group). Group 2: patients with persistent APS (≥2/year), without ABPA. Group 3: patients with current or past ABPM. Forty patients with CF were included in the analysis, CHIT1 duplication heterozygocity was found in 3/6 (50%) of the patients in the ABPM group, 3/12 (25%) in the APS group, and 7/22 (31.8%) in the control group (P > 0.05). Eleven patients carried W1282X mutation, 90.9% were negative for CHIT1 duplication, five of them were homozygous for W1282X; none of them had CHIT1 duplication or ABPM. CHIT1 duplication is not found in all CF patients with ABPM in contrast to patients with SAFS. These results suggest that CHIT1 duplication cannot be the sole explanation for Aspergillus positive sputum in CF patients. © 2013 Wiley Periodicals, Inc.

  19. A Synergism between Adaptive Effects and Evolvability Drives Whole Genome Duplication to Fixation

    PubMed Central

    Cuypers, Thomas D.; Hogeweg, Paulien

    2014-01-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30%) of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change. PMID:24743268

  20. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    PubMed

    Cuypers, Thomas D; Hogeweg, Paulien

    2014-04-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30%) of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change.

  1. Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta).

    PubMed

    Devos, Nicolas; Szövényi, Péter; Weston, David J; Rothfels, Carl J; Johnson, Matthew G; Shaw, A Jonathan

    2016-07-01

    The goal of this research was to investigate whether there has been a whole-genome duplication (WGD) in the ancestry of Sphagnum (peatmoss) or the class Sphagnopsida, and to determine if the timing of any such duplication(s) and patterns of paralog retention could help explain the rapid radiation and current ecological dominance of peatmosses. RNA sequencing (RNA-seq) data were generated for nine taxa in Sphagnopsida (Bryophyta). Analyses of frequency plots for synonymous substitutions per synonymous site (Ks ) between paralogous gene pairs and reconciliation of 578 gene trees were conducted to assess evidence of large-scale or genome-wide duplication events in each transcriptome. Both Ks frequency plots and gene tree-based analyses indicate multiple duplication events in the history of the Sphagnopsida. The most recent WGD event predates divergence of Sphagnum from the two other genera of Sphagnopsida. Duplicate retention is highly variable across species, which might be best explained by local adaptation. Our analyses indicate that the last WGD could have been an important factor underlying the diversification of peatmosses and facilitated their rise to ecological dominance in peatlands. The timing of the duplication events and their significance in the evolutionary history of peat mosses are discussed. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Duplication of 20p12.3 associated with familial Wolff-Parkinson-White syndrome.

    PubMed

    Mills, Kimberly I; Anderson, Jacqueline; Levy, Philip T; Cole, F Sessions; Silva, Jennifer N A; Kulkarni, Shashikant; Shinawi, Marwan

    2013-01-01

    Wolff-Parkinson-White (WPW) syndrome is caused by preexcitation of the ventricular myocardium via an accessory pathway which increases the risk for paroxysmal supraventricular tachycardia. The condition is often sporadic and of unknown etiology in the majority of cases. Autosomal dominant inheritance and association with congenital heart defects or ventricular hypertrophy were described. Microdeletions of 20p12.3 have been associated with WPW syndrome with either cognitive dysfunction or Alagille syndrome. Here, we describe the association of 20p12.3 duplication with WPW syndrome in a patient who presented with non-immune hydrops. Her paternal uncle carries the duplication and has attention-deficit hyperactivity disorder and electrocardiographic findings consistent with WPW. The 769 kb duplication was detected by the Affymetrix Whole Genome-Human SNP Array 6.0 and encompasses two genes and the first two exons of a third gene. We discuss the potential role of the genes in the duplicated region in the pathogenesis of WPW and possible neurobehavioral abnormalities. Our data provide additional support for a significant role of 20p12.3 chromosomal rearrangements in the etiology of WPW syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  3. Age distribution patterns of human gene families: divergent for Gene Ontology categories and concordant between different subcellular localizations.

    PubMed

    Liu, Gangbiao; Zou, Yangyun; Cheng, Qiqun; Zeng, Yanwu; Gu, Xun; Su, Zhixi

    2014-04-01

    The age distribution of gene duplication events within the human genome exhibits two waves of duplications along with an ancient component. However, because of functional constraint differences, genes in different functional categories might show dissimilar retention patterns after duplication. It is known that genes in some functional categories are highly duplicated in the early stage of vertebrate evolution. However, the correlations of the age distribution pattern of gene duplication between the different functional categories are still unknown. To investigate this issue, we developed a robust pipeline to date the gene duplication events in the human genome. We successfully estimated about three-quarters of the duplication events within the human genome, along with the age distribution pattern in each Gene Ontology (GO) slim category. We found that some GO slim categories show different distribution patterns when compared to the whole genome. Further hierarchical clustering of the GO slim functional categories enabled grouping into two main clusters. We found that human genes located in the duplicated copy number variant regions, whose duplicate genes have not been fixed in the human population, were mainly enriched in the groups with a high proportion of recently duplicated genes. Moreover, we used a phylogenetic tree-based method to date the age of duplications in three signaling-related gene superfamilies: transcription factors, protein kinases and G-protein coupled receptors. These superfamilies were expressed in different subcellular localizations. They showed a similar age distribution as the signaling-related GO slim categories. We also compared the differences between the age distributions of gene duplications in multiple subcellular localizations. We found that the distribution patterns of the major subcellular localizations were similar to that of the whole genome. This study revealed the whole picture of the evolution patterns of gene functional

  4. The Histone Modification H3K27me3 Is Retained after Gene Duplication and Correlates with Conserved Noncoding Sequences in Arabidopsis

    PubMed Central

    Berke, Lidija; Snel, Berend

    2014-01-01

    The histone modification H3K27me3 is involved in repression of transcription and plays a crucial role in developmental transitions in both animals and plants. It is deposited by PRC2 (Polycomb repressive complex 2), a conserved protein complex. In Arabidopsis thaliana, H3K27me3 is found at 15% of all genes. These tend to encode transcription factors and other regulators important for development. However, it is not known how PRC2 is recruited to target loci nor how this set of target genes arose during Arabidopsis evolution. To resolve the latter, we integrated A. thaliana gene families with five independent genome-wide H3K27me3 data sets. Gene families were either significantly enriched or depleted of H3K27me3, showing a strong impact of shared ancestry to H3K27me3 distribution. To quantify this, we performed ancestral state reconstruction of H3K27me3 on phylogenetic trees of gene families. The set of H3K27me3-marked genes changed less than expected by chance, suggesting that H3K27me3 was retained after gene duplication. This retention suggests that the PRC2-recruiting signal could be encoded in the DNA and also conserved among certain duplicated genes. Indeed, H3K27me3-marked genes were overrepresented among paralogs sharing conserved noncoding sequences (CNSs) that are enriched with transcription factor binding sites. The association of upstream CNSs with H3K27me3-marked genes represents the first genome-wide connection between H3K27me3 and potential regulatory elements in plants. Thus, we propose that CNSs likely function as part of the PRC2 recruitment in plants. PMID:24567304

  5. Genome-wide linkage and copy number variation analysis reveals 710 kb duplication on chromosome 1p31.3 responsible for autosomal dominant omphalocele

    PubMed Central

    Radhakrishna, Uppala; Nath, Swapan K; McElreavey, Ken; Ratnamala, Uppala; Sun, Celi; Maiti, Amit K; Gagnebin, Maryline; Béna, Frédérique; Newkirk, Heather L; Sharp, Andrew J; Everman, David B; Murray, Jeffrey C; Schwartz, Charles E; Antonarakis, Stylianos E; Butler, Merlin G

    2017-01-01

    Background Omphalocele is a congenital birth defect characterised by the presence of internal organs located outside of the ventral abdominal wall. The purpose of this study was to identify the underlying genetic mechanisms of a large autosomal dominant Caucasian family with omphalocele. Methods and findings A genetic linkage study was conducted in a large family with an autosomal dominant transmission of an omphalocele using a genome-wide single nucleotide polymorphism (SNP) array. The analysis revealed significant evidence of linkage (non-parametric NPL = 6.93, p=0.0001; parametric logarithm of odds (LOD) = 2.70 under a fully penetrant dominant model) at chromosome band 1p31.3. Haplotype analysis narrowed the locus to a 2.74 Mb region between markers rs2886770 (63014807 bp) and rs1343981 (65757349 bp). Molecular characterisation of this interval using array comparative genomic hybridisation followed by quantitative microsphere hybridisation analysis revealed a 710 kb duplication located at 63.5–64.2 Mb. All affected individuals who had an omphalocele and shared the haplotype were positive for this duplicated region, while the duplication was absent from all normal individuals of this family. Multipoint linkage analysis using the duplication as a marker yielded a maximum LOD score of 3.2 at 1p31.3 under a dominant model. The 710 kb duplication at 1p31.3 band contains seven known genes including FOXD3, ALG6, ITGB3BP, KIAA1799, DLEU2L, PGM1, and the proximal portion of ROR1. Importantly, this duplication is absent from the database of genomic variants. Conclusions The present study suggests that development of an omphalocele in this family is controlled by overexpression of one or more genes in the duplicated region. To the authors’ knowledge, this is the first reported association of an inherited omphalocele condition with a chromosomal rearrangement. PMID:22499347

  6. Adaptations to Endosymbiosis in a Cnidarian-Dinoflagellate Association: Differential Gene Expression and Specific Gene Duplications

    PubMed Central

    Magnone, Virginie; Allemand, Denis; Furla, Paola; Sabourault, Cécile

    2011-01-01

    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K–dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the

  7. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region

    PubMed Central

    Jiang, Zhi J; Castoe, Todd A; Austin, Christopher C; Burbrink, Frank T; Herron, Matthew D; McGuire, Jimmy A; Parkinson, Christopher L; Pollock, David D

    2007-01-01

    Background The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence. Results We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs. Conclusion Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and

  8. Duplicate retention in signalling proteins and constraints from network dynamics.

    PubMed

    Soyer, O S; Creevey, C J

    2010-11-01

    Duplications are a major driving force behind evolution. Most duplicates are believed to fix through genetic drift, but it is not clear whether this process affects all duplications equally or whether there are certain gene families that are expected to show neutral expansions under certain circumstances. Here, we analyse the neutrality of duplications in different functional classes of signalling proteins based on their effects on response dynamics. We find that duplications involving intermediary proteins in a signalling network are neutral more often than those involving receptors. Although the fraction of neutral duplications in all functional classes increase with decreasing population size and selective pressure on dynamics, this effect is most pronounced for receptors, indicating a possible expansion of receptors in species with small population size. In line with such an expectation, we found a statistically significant increase in the number of receptors as a fraction of genome size in eukaryotes compared with prokaryotes. Although not confirmative, these results indicate that neutral processes can be a significant factor in shaping signalling networks and affect proteins from different functional classes differently. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  9. Partial duplication of the CRYBB1-CRYBA4 locus is associated with autosomal dominant congenital cataract

    PubMed Central

    Siggs, Owen M; Javadiyan, Shari; Sharma, Shiwani; Souzeau, Emmanuelle; Lower, Karen M; Taranath, Deepa A; Black, Jo; Pater, John; Willoughby, John G; Burdon, Kathryn P; Craig, Jamie E

    2017-01-01

    Congenital cataract is a rare but severe paediatric visual impediment, often caused by variants in one of several crystallin genes that produce the bulk of structural proteins in the lens. Here we describe a pedigree with autosomal dominant isolated congenital cataract and linkage to the crystallin gene cluster on chromosome 22. No rare single nucleotide variants or short indels were identified by exome sequencing, yet copy number variant analysis revealed a duplication spanning both CRYBB1 and CRYBA4. While the CRYBA4 duplication was complete, the CRYBB1 duplication was not, with the duplicated CRYBB1 product predicted to create a gain of function allele. This association suggests a new genetic mechanism for the development of isolated congenital cataract. PMID:28272538

  10. SHOX duplications found in some cases with type I Mayer-Rokitansky-Kuster-Hauser syndrome.

    PubMed

    Gervasini, Cristina; Grati, Francesca Romana; Lalatta, Faustina; Tabano, Silvia; Gentilin, Barbara; Colapietro, Patrizia; De Toffol, Simona; Frontino, Giada; Motta, Francesca; Maitz, Silvia; Bernardini, Laura; Dallapiccola, Bruno; Fedele, Luigi; Larizza, Lidia; Miozzo, Monica

    2010-10-01

    The Mayer-Rokitansky-Küster-Hauser syndrome is defined as congenital aplasia of müllerian ducts derived structures in females with a normal female chromosomal and gonadal sex. Most cases with Mayer-Rokitansky-Küster-Hauser syndrome are sporadic, although familial cases have been reported. The genetic basis of Mayer-Rokitansky-Küster-Hauser syndrome is largely unknown and seems heterogeneous, and a small number of cases were found to have mutations in the WNT4 gene. The aim of this study was to identify possible recurrent submicroscopic imbalances in a cohort of familial and sporadic cases with Mayer-Rokitansky-Küster-Hauser syndrome. Multiplex ligation-dependent probe amplification was used to screen the subtelomeric sequences of all chromosomes in 30 patients with Mayer-Rokitansky-Küster-Hauser syndrome (sporadic, n = 27 and familial, n = 3). Segregation analysis and pyrosequencing were applied to validate the MLPA results in the informative family. Partial duplication of the Xpter pseudoautosomal region 1 containing the short stature homeobox (SHOX) gene was detected in five patients with Mayer-Rokitansky-Küster-Hauser syndrome (familial, n = 3 and sporadic, n = 2) and not in 53 healthy controls. The duplications were not overlapping, and SHOX was never entirely duplicated. Haplotyping in the informative family revealed that SHOX gene duplication was inherited from the unaffected father and was absent in two healthy sisters. Partial duplication of SHOX gene is found in some cases with both familial and sporadic Mayer-Rokitansky-Küster-Hauser type I syndrome.

  11. A novel duplication polymorphism in the FANCA promoter and its association with breast and ovarian cancer.

    PubMed

    Thompson, Ella; Dragovic, Rebecca L; Stephenson, Sally-Anne; Eccles, Diana M; Campbell, Ian G; Dobrovic, Alexander

    2005-04-29

    The FANCA gene is one of the genes in which mutations lead to Fanconi anaemia, a rare autosomal recessive disorder characterised by congenital abnormalities, bone marrow failure, and predisposition to malignancy. FANCA is also a potential breast and ovarian cancer susceptibility gene. A novel allele was identified which has a tandem duplication of a 13 base pair sequence in the promoter region. We screened germline DNA from 352 breast cancer patients, 390 ovarian cancer patients and 256 normal controls to determine if the presence of either of these two alleles was associated with an increased risk of breast or ovarian cancer. The duplication allele had a frequency of 0.34 in the normal controls. There was a non-significant decrease in the frequency of the duplication allele in breast cancer patients. The frequency of the duplication allele was significantly decreased in ovarian cancer patients. However, when malignant and benign tumours were considered separately, the decrease was only significant in benign tumours. The allele with the tandem duplication does not appear to modify breast cancer risk but may act as a low penetrance protective allele for ovarian cancer.

  12. A novel duplication polymorphism in the FANCA promoter and its association with breast and ovarian cancer

    PubMed Central

    Thompson, Ella; Dragovic, Rebecca L; Stephenson, Sally-Anne; Eccles, Diana M; Campbell, Ian G; Dobrovic, Alexander

    2005-01-01

    The FANCA gene is one of the genes in which mutations lead to Fanconi anaemia, a rare autosomal recessive disorder characterised by congenital abnormalities, bone marrow failure, and predisposition to malignancy. FANCA is also a potential breast and ovarian cancer susceptibility gene. A novel allele was identified which has a tandem duplication of a 13 base pair sequence in the promoter region. Methods We screened germline DNA from 352 breast cancer patients, 390 ovarian cancer patients and 256 normal controls to determine if the presence of either of these two alleles was associated with an increased risk of breast or ovarian cancer. Results The duplication allele had a frequency of 0.34 in the normal controls. There was a non-significant decrease in the frequency of the duplication allele in breast cancer patients. The frequency of the duplication allele was significantly decreased in ovarian cancer patients. However, when malignant and benign tumours were considered separately, the decrease was only significant in benign tumours. Conclusion The allele with the tandem duplication does not appear to modify breast cancer risk but may act as a low penetrance protective allele for ovarian cancer. PMID:15860134

  13. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases.

    PubMed Central

    Meyers, B C; Chin, D B; Shen, K A; Sivaramakrishnan, S; Lavelle, D O; Zhang, Z; Michelmore, R W

    1998-01-01

    At least 10 Dm genes conferring resistance to the oomycete downy mildew fungus Bremia lactucae map to the major resistance cluster in lettuce. We investigated the structure of this cluster in the lettuce cultivar Diana, which contains Dm3. A deletion breakpoint map of the chromosomal region flanking Dm3 was saturated with a variety of molecular markers. Several of these markers are components of a family of resistance gene candidates (RGC2) that encode a nucleotide binding site and a leucine-rich repeat region. These motifs are characteristic of plant disease resistance genes. Bacterial artificial chromosome clones were identified by using duplicated restriction fragment length polymorphism markers from the region, including the nucleotide binding site-encoding region of RGC2. Twenty-two distinct members of the RGC2 family were characterized from the bacterial artificial chromosomes; at least two additional family members exist. The RGC2 family is highly divergent; the nucleotide identity was as low as 53% between the most distantly related copies. These RGC2 genes span at least 3.5 Mb. Eighteen members were mapped on the deletion breakpoint map. A comparison between the phylogenetic and physical relationships of these sequences demonstrated that closely related copies are physically separated from one another and indicated that complex rearrangements have shaped this region. Analysis of low-copy genomic sequences detected no genes, including RGC2, in the Dm3 region, other than sequences related to retrotransposons and transposable elements. The related but divergent family of RGC2 genes may act as a resource for the generation of new resistance phenotypes through infrequent recombination or unequal crossing over. PMID:9811791

  14. Formation of new chromatin domains determines pathogenicity of genomic duplications.

    PubMed

    Franke, Martin; Ibrahim, Daniel M; Andrey, Guillaume; Schwarzer, Wibke; Heinrich, Verena; Schöpflin, Robert; Kraft, Katerina; Kempfer, Rieke; Jerković, Ivana; Chan, Wing-Lee; Spielmann, Malte; Timmermann, Bernd; Wittler, Lars; Kurth, Ingo; Cambiaso, Paola; Zuffardi, Orsetta; Houge, Gunnar; Lambie, Lindsay; Brancati, Francesco; Pombo, Ana; Vingron, Martin; Spitz, Francois; Mundlos, Stefan

    2016-10-13

    Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of

  15. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants

    PubMed Central

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R.; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-01-01

    Abstract Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. PMID:28505373

  16. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset.

    PubMed

    Yuan, Haiming; Huang, Linhuan; Hu, Xizi; Li, Qian; Sun, Xiaofang; Xie, Yingjun; Kong, Shu; Wang, Xiaoman

    2016-07-02

    Achondroplasia is a well-defined and common bone dysplasia. Genotype- and phenotype-level correlations have been found between the clinical symptoms of achondroplasia and achondroplasia-specific FGFR3 mutations. A 2-year-old boy with clinical features consistent with achondroplasia and Silver-Russell syndrome-like symptoms was found to carry a mutation in the fibroblast growth factor receptor-3 (FGFR3) gene at c.1138G > A (p.Gly380Arg) and a de novo 574 kb duplication at chromosome 7p12.1 that involved the entire growth-factor receptor bound protein 10 (GRB10) gene. Using quantitative real-time PCR analysis, GRB10 was over-expressed, and, using enzyme-linked immunosorbent assays for IGF1 and IGF-binding protein-3 (IGFBP3), we found that IGF1 and IGFBP3 were low-expressed in this patient. We demonstrate that a combination of uncommon, rare and exceptional molecular defects related to the molecular bases of particular birth defects can be analyzed and diagnosed to potentially explain the observed variability in the combination of molecular defects.

  17. Gene duplication and divergence affecting drug content in Cannabis sativa.

    PubMed

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Duplication and concerted evolution in a master sex determiner under balancing selection.

    PubMed

    Privman, Eyal; Wurm, Yannick; Keller, Laurent

    2013-05-07

    The transformer (tra) gene is a key regulator in the signalling hierarchy controlling all aspects of somatic sexual differentiation in Drosophila and other insects. Here, we show that six of the seven sequenced ants have two copies of tra. Surprisingly, the two paralogues are always more similar within species than among species. Comparative sequence analyses indicate that this pattern is owing to the ongoing concerted evolution after an ancestral duplication rather than independent duplications in each of the six species. In particular, there was strong support for inter-locus recombination between the paralogues of the ant Atta cephalotes. In the five species where the location of paralogues is known, they are adjacent to each other in four cases and separated by only few genes in the fifth case. Because there have been extensive genomic rearrangements in these lineages, this suggests selection acting to conserve their synteny. In three species, we also find a signature of positive selection in one of the paralogues. In three bee species where information is available, the tra gene is also duplicated, the copies are adjacent and in at least one species there was recombination between paralogues. These results suggest that concerted evolution plays an adaptive role in the evolution of this gene family.

  19. Mutation screening of patients with Alzheimer disease identifies APP locus duplication in a Swedish patient.

    PubMed

    Thonberg, Håkan; Fallström, Marie; Björkström, Jenny; Schoumans, Jacqueline; Nennesmo, Inger; Graff, Caroline

    2011-11-01

    Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus.

  20. Use of Diagnostic Imaging in the Evaluation of Gastrointestinal Tract Duplications

    PubMed Central

    Laskowska, Katarzyna; Gałązka, Przemysław; Daniluk-Matraś, Irena; Leszczyński, Waldemar; Serafin, Zbigniew

    2014-01-01

    Summary Background Gastrointestinal tract duplication is a rare malformation associated with the presence of additional segment of the fetal gut. The aim of this study was to retrospectively review clinical features and imaging findings in intraoperatively confirmed cases of gastrointestinal tract duplication in children. Material/Methods The analysis included own material from the years 2002–2012. The analyzed group included 14 children, among them 8 boys and 6 girls. The youngest patient was diagnosed at the age of three weeks, and the oldest at 12 years of age. Results The duplication cysts were identified in the esophagus (n=2), stomach (n=5), duodenum (n=1), terminal ileum (n=5), and rectum (n=1). In four cases, the duplication coexisted with other anomalies, such as patent urachus, Meckel’s diverticulum, mesenteric cyst, and accessory pancreas. Clinical manifestation of gastrointestinal duplication cysts was variable, and some of them were detected accidently. Thin- or thick-walled cystic structures adjacent to the wall of neighboring gastrointestinal segment were documented on diagnostic imaging. Conclusions Ultrasound and computed tomography are the methods of choice in the evaluation of gastrointestinal duplication cysts. Apart from the diagnosis of the duplication cyst, an important issue is the detection of concomitant developmental pathologies, including pancreatic heterotopy. PMID:25114725

  1. Xq28 duplications including MECP2 in five females: Expanding the phenotype to severe mental retardation.

    PubMed

    Bijlsma, E K; Collins, A; Papa, F T; Tejada, M I; Wheeler, P; Peeters, E A J; Gijsbers, A C J; van de Kamp, J M; Kriek, M; Losekoot, M; Broekma, A J; Crolla, J A; Pollazzon, M; Mucciolo, M; Katzaki, E; Disciglio, V; Ferreri, M I; Marozza, A; Mencarelli, M A; Castagnini, C; Dosa, L; Ariani, F; Mari, F; Canitano, R; Hayek, G; Botella, M P; Gener, B; Mínguez, M; Renieri, A; Ruivenkamp, C A L

    2012-06-01

    Duplications leading to functional disomy of chromosome Xq28, including MECP2 as the critical dosage-sensitive gene, are associated with a distinct clinical phenotype in males, characterized by severe mental retardation, infantile hypotonia, progressive neurologic impairment, recurrent infections, bladder dysfunction, and absent speech. Female patients with Xq duplications including MECP2 are rare. Only recently submicroscopic duplications of this region on Xq28 have been recognized in four females, and a triplication in a fifth, all in combination with random X-chromosome inactivation (XCI). Based on this small series, it was concluded that in females with MECP2 duplication and random XCI, the typical symptoms of affected boys are not present. We present clinical and molecular data on a series of five females with an Xq28 duplication including the MECP2 gene, both isolated and as the result of a translocation, and compare them with the previously reported cases of small duplications in females. The collected data indicate that the associated phenotype in females is distinct from males with similar duplications, but the clinical effects may be as severe as seen in males. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Xq28 duplications including MECP2 in five females: Expanding the phenotype to severe mental retardation

    PubMed Central

    Bijlsma, E.K.; Collins, A.; Papa, F.T.; Tejada, M.I.; Wheeler, P.; Peeters, E.A.J.; Gijsbers, A.C.J.; van de Kamp, J.M.; Kriek, M.; Losekoot, M.; Broekma, A.J.; Crolla, J.A.; Pollazzon, M.; Mucciolo, M.; Katzaki, E.; Disciglio, V.; Ferreri, M.I.; Marozza, A.; Mencarelli, M.A.; Castagnini, C.; Dosa, L.; Ariani, F.; Mari, F.; Canitano, R.; Hayek, G.; Botella, M.P.; Gener, B.; Mínguez, M.; Renieri, A.; Ruivenkamp, C.A.L.

    2012-01-01

    Duplications leading to functional disomy of chromosome Xq28, including MECP2 as the critical dosage-sensitive gene, are associated with a distinct clinical phenotype in males, characterized by severe mental retardation, infantile hypotonia, progressive neurologic impairment, recurrent infections, bladder dysfunction, and absent speech. Female patients with Xq duplications including MECP2 are rare. Only recently submicroscopic duplications of this region on Xq28 have been recognized in four females, and a triplication in a fifth, all in combination with random X-chromosome inactivation (XCI). Based on this small series, it was concluded that in females with MECP2 duplication and random XCI, the typical symptoms of affected boys are not present. We present clinical and molecular data on a series of five females with an Xq28 duplication including the MECP2 gene, both isolated and as the result of a translocation, and compare them with the previously reported cases of small duplications in females. The collected data indicate that the associated phenotype in females is distinct from males with similar duplications, but the clinical effects may be as severe as seen in males. PMID:22522176

  3. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication.

    PubMed

    Moalem, Sharon; Babul-Hirji, Riyana; Stavropolous, Dmitri J; Wherrett, Diane; Bägli, Darius J; Thomas, Paul; Chitayat, David

    2012-07-01

    Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY. Copyright © 2012 Wiley Periodicals, Inc.

  4. p53 protects against genome instability following centriole duplication failure

    PubMed Central

    Lambrus, Bramwell G.; Uetake, Yumi; Clutario, Kevin M.; Daggubati, Vikas; Snyder, Michael; Sluder, Greenfield

    2015-01-01

    Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure. PMID:26150389

  5. Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    PubMed Central

    2010-01-01

    Background Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(Oncorhynchus mykiss), Arctic charr (AC)(Salvelinus alpinus), and Atlantic salmon (AS)(Salmo salar) mapping panels. Results Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks. Conclusions Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that

  6. Distal 7q11.23 Duplication, an Emerging Microduplication Syndrome: A Case Report and Further Characterisation.

    PubMed

    Faundes, Víctor; Santa María, Lorena; Morales, Paulina; Curotto, Bianca; Parraguez, María M

    2016-10-01

    Chromosome 7q11.23 duplication syndrome is a well-recognised syndrome which involves the duplication of the same genes located in the Williams-Beuren critical region. However, in 2010, 4 patients were reported with a microduplication only in the HIP1 and YWHAG genes. We refer to this as a distal 7q11.23 duplication (dup7q11.23D). Here, we report the fifth de novo patient with dup7q11.23D, whose symptoms may be explained by YWHAG overexpression as was demonstrated recently in mice and obese patients. Finally, further studies will be necessary to delineate this emerging microduplication syndrome.

  7. Phylogeny of C4-photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C4-related genes.

    PubMed

    Chi, Shan; Wu, Shuangxiu; Yu, Jun; Wang, Xumin; Tang, Xuexi; Liu, Tao

    2014-01-01

    Both Calvin-Benson-Bassham (C3) and Hatch-Slack (C4) cycles are most important autotrophic CO2 fixation pathways on today's Earth. C3 cycle is believed to be originated from cyanobacterial endosymbiosis. However, studies on evolution of different biochemical variants of C4 photosynthesis are limited to tracheophytes and origins of C4-cycle genes are not clear till now. Our comprehensive analyses on bioinformatics and phylogenetics of novel transcriptomic sequencing data of 21 rhodophytes and 19 Phaeophyceae marine species and public genomic data of more algae, tracheophytes, cyanobacteria, proteobacteria and archaea revealed the origin and evolution of C4 cycle-related genes. Almost all of C4-related genes were annotated in extensive algal lineages with proteobacterial or archaeal origins, except for phosphoenolpyruvate carboxykinase (PCK) and aspartate aminotransferase (AST) with both cyanobacterial and archaeal/proteobacterial origin. Notably, cyanobacteria may not possess complete C4 pathway because of the flawed annotation of pyruvate orthophosphate dikinase (PPDK) genes in public data. Most C4 cycle-related genes endured duplication and gave rise to functional differentiation and adaptation in different algal lineages. C4-related genes of NAD-ME (NAD-malic enzyme) and PCK subtypes exist in most algae and may be primitive ones, while NADP-ME (NADP-malic enzyme) subtype genes might evolve from NAD-ME subtype by gene duplication in chlorophytes and tracheophytes.

  8. The evolutionary implications of knox-I gene duplications in conifers: correlated evidence from phylogeny, gene mapping, and analysis of functional divergence.

    PubMed

    Guillet-Claude, Carine; Isabel, Nathalie; Pelgas, Betty; Bousquet, Jean

    2004-12-01

    Class I knox genes code for transcription factors that play an essential role in plant growth and development as central regulators of meristem cell identity. Based on the analysis of new cDNA sequences from various tissues and genomic DNA sequences, we identified a highly diversified group of class I knox genes in conifers. Phylogenetic analyses of complete amino acid sequences from various seed plants indicated that all conifer sequences formed a monophyletic group. Within conifers, four subgroups here named genes KN1 to KN4 were well delineated, each regrouping pine and spruce sequences. KN4 was sister group to KN3, which was sister group to KN1 and KN2. Genetic mapping on the genomes of two divergent Picea species indicated that KN1 and KN2 are located close to each other on the same linkage group, whereas KN3 and KN4 mapped on different linkage groups, correlating the more ancient divergence of these two genes. The proportion of synonymous and nonsynonymous substitutions suggested intense purifying selection for the four genes. However, rates of substitution per year indicated an evolution in two steps: faster rates were noted after gene duplications, followed subsequently by lower rates. Positive directional selection was detected for most of the internal branches harboring an accelerated rate of evolution. In addition, many sites with highly significant amino acid rate shift were identified between these branches. However, the tightly linked KN1 and KN2 did not diverge as much from each other. The implications of the correlation between phylogenetic, structural, and functional information are discussed in relation to the diversification of the knox-I gene family in conifers.

  9. Gene duplication and phylogeography of North American members of the Hart Park serogroup of avian rhabdoviruses.

    PubMed

    Allison, Andrew B; Mead, Daniel G; Palacios, Gustavo F; Tesh, Robert B; Holmes, Edward C

    2014-01-05

    Flanders virus (FLAV) and Hart Park virus (HPV) are rhabdoviruses that circulate in mosquito-bird cycles in the eastern and western United States, respectively, and constitute the only two North American representatives of the Hart Park serogroup. Previously, it was suggested that FLAV is unique among the rhabdoviruses in that it contains two pseudogenes located between the P and M genes, while the cognate sequence for HPV has been lacking. Herein, we demonstrate that FLAV and HPV do not contain pseudogenes in this region, but encode three small functional proteins designated as U1-U3 that apparently arose by gene duplication. To further investigate the U1-U3 region, we conducted the first large-scale evolutionary analysis of a member of the Hart Park serogroup by analyzing over 100 spatially and temporally distinct FLAV isolates. Our phylogeographic analysis demonstrates that although FLAV appears to be slowly evolving, phylogenetically divergent lineages co-circulate sympatrically. © 2013 Published by Elsevier Inc.

  10. Exonic duplication CNV of NDRG1 associated with autosomal-recessive HMSN-Lom/CMT4D.

    PubMed

    Okamoto, Yuji; Goksungur, Meryem Tuba; Pehlivan, Davut; Beck, Christine R; Gonzaga-Jauregui, Claudia; Muzny, Donna M; Atik, Mehmed M; Carvalho, Claudia M B; Matur, Zeliha; Bayraktar, Serife; Boone, Philip M; Akyuz, Kaya; Gibbs, Richard A; Battaloglu, Esra; Parman, Yesim; Lupski, James R

    2014-05-01

    Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot-Marie-Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive disease has not been associated with copy-number variation as a mutational mechanism. We performed Agilent 8 × 60 K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation. We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6-8 that caused decreased mRNA expression of NDRG1. Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered.

  11. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers

    PubMed Central

    Finnerty, John R; Mazza, Maureen E; Jezewski, Peter A

    2009-01-01

    Background Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Results Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Conclusion Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies. PMID:19154605

  12. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes

    PubMed Central

    Fukuda, Tatsuya; Yokoyama, Jun; Nakamura, Toru; Song, In-Ja; Ito, Takuro; Ochiai, Toshinori; Kanno, Akira; Kameya, Toshiaki; Maki, Masayuki

    2005-01-01

    Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh) genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events. PMID:15836788

  13. Prevalence and Spectrum of Large Deletions or Duplications in the Major Long QT Syndrome-Susceptibility Genes and Implications for Long QT Syndrome Genetic Testing

    PubMed Central

    Tester, David J.; Benton, Amber J.; Train, Laura; Deal, Barbara; Baudhuin, Linnea M.; Ackerman, Michael J.

    2010-01-01

    Long QT Syndrome (LQTS) is a cardiac channelopathy associated with syncope, seizures, and sudden death. Approximately 75% of LQTS is due to mutations in genes encoding for three cardiac ion channel alpha-subunits (LQT1-3). However, traditional mutational analyses have limited detection capabilities for atypical mutations such as large gene rearrangements. Here, we set out to determine the prevalence and spectrum of large deletions/duplications in the major LQTS-susceptibility genes among unrelated patients who were mutation-negative following point mutation analysis of LQT1-12-susceptibility genes. Forty-two unrelated clinically strong LQTS patients were analyzed using multiplex ligation-dependent probe amplification (MLPA), a quantitative fluorescent technique for detecting multiple exon deletions and duplications. The SALSA-MLPA LQTS Kit from MRC-Holland was used to analyze the three major LQTS-associated genes: KCNQ1, KCNH2, and SCN5A and the two minor genes: KCNE1 and KCNE2. Overall, 2 gene rearrangements were found in 2/42 (4.8%, CI, 1.7–11%) unrelated patients. A deletion of KCNQ1 exon 3 was identified in a 10 year-old Caucasian boy with a QTc of 660 milliseconds (ms), a personal history of exercise-induced syncope, and a family history of syncope. A deletion of KCNQ1 exon 7 was identified in a 17 year-old Caucasian girl with a QTc of 480 ms, a personal history of exercise-induced syncope, and a family history of sudden cardiac death. In conclusion, since nearly 5% of patients with genetically elusive LQTS had large genomic rearrangements involving the canonical LQTS-susceptibility genes, reflex genetic testing to investigate genomic rearrangements may be of clinical value. PMID:20920651

  14. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants.

    PubMed

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-08-01

    Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    PubMed Central

    Kuang, Meihua Christina; Hutchins, Paul D; Russell, Jason D; Coon, Joshua J; Hittinger, Chris Todd

    2016-01-01

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation. DOI: http://dx.doi.org/10.7554/eLife.19027.001 PMID:27690225

  16. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    DOE PAGES

    Kuang, Meihua Christina; Hutchins, Paul D.; Russell, Jason D.; ...

    2016-09-30

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of theGALactose sugar utilization network in two yeast species. Here, we show that theSaccharomyces uvarumnetwork is more active, even as over-induction is prevented by a second co-repressor that the model yeastSaccharomyces cerevisiaelacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systemsmore » and exacerbate this phenotype. Furthermore, we show thatS. cerevisiaeexperiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. Our results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.« less

  17. Evolution of Genes Involved in Gamete Interaction: Evidence for Positive Selection, Duplications and Losses in Vertebrates

    PubMed Central

    Callebaut, Isabelle; Laurin, Michel; Pascal, Géraldine; Poupon, Anne; Goudet, Ghylène; Monget, Philippe

    2012-01-01

    Genes encoding proteins involved in sperm-egg interaction and fertilization exhibit a particularly fast evolution and may participate in prezygotic species isolation [1], [2]. Some of them (ZP3, ADAM1, ADAM2, ACR and CD9) have individually been shown to evolve under positive selection [3], [4], suggesting a role of positive Darwinian selection on sperm-egg interaction. However, the genes involved in this biological function have not been systematically and exhaustively studied with an evolutionary perspective, in particular across vertebrates with internal and external fertilization. Here we show that 33 genes among the 69 that have been experimentally shown to be involved in fertilization in at least one taxon in vertebrates are under positive selection. Moreover, we identified 17 pseudogenes and 39 genes that have at least one duplicate in one species. For 15 genes, we found neither positive selection, nor gene copies or pseudogenes. Genes of teleosts, especially genes involved in sperm-oolemma fusion, appear to be more frequently under positive selection than genes of birds and eutherians. In contrast, pseudogenization, gene loss and gene gain are more frequent in eutherians. Thus, each of the 19 studied vertebrate species exhibits a unique signature characterized by gene gain and loss, as well as position of amino acids under positive selection. Reflecting these clade-specific signatures, teleosts and eutherian mammals are recovered as clades in a parsimony analysis. Interestingly the same analysis places Xenopus apart from teleosts, with which it shares the primitive external fertilization, and locates it along with amniotes (which share internal fertilization), suggesting that external or internal environmental conditions of germ cell interaction may not be the unique factors that drive the evolution of fertilization genes. Our work should improve our understanding of the fertilization process and on the establishment of reproductive barriers, for example by

  18. Duplicate editorial on duplicate publication.

    PubMed

    Corson, Stephen L; Decherney, Alan H

    2005-04-01

    The authors define and discuss the various forms taken by duplicate publications, and provide suggested remedies to help authors, editors, reviewers, and readers avoid this form of internal plagiarism.

  19. Prevalence and spectrum of large deletions or duplications in the major long QT syndrome-susceptibility genes and implications for long QT syndrome genetic testing.

    PubMed

    Tester, David J; Benton, Amber J; Train, Laura; Deal, Barbara; Baudhuin, Linnea M; Ackerman, Michael J

    2010-10-15

    Long QT syndrome (LQTS) is a cardiac channelopathy associated with syncope, seizures, and sudden death. Approximately 75% of LQTS is due to mutations in genes encoding for 3 cardiac ion channel α-subunits (LQT1 to LQT3). However, traditional mutational analyses have limited detection capabilities for atypical mutations such as large gene rearrangements. We set out to determine the prevalence and spectrum of large deletions/duplications in the major LQTS-susceptibility genes in unrelated patients who were mutation negative after point mutation analysis of LQT1- to LQT12-susceptibility genes. Forty-two unrelated, clinically strong LQTS patients were analyzed using multiplex ligation-dependent probe amplification, a quantitative fluorescent technique for detecting multiple exon deletions and duplications. The SALSA multiplex ligation-dependent probe amplification LQTS kit from MRC-Holland was used to analyze the 3 major LQTS-associated genes, KCNQ1, KCNH2, and SCN5A, and the 2 minor genes, KCNE1 and KCNE2. Overall, 2 gene rearrangements were found in 2 of 42 unrelated patients (4.8%, confidence interval 1.7 to 11). A deletion of KCNQ1 exon 3 was identified in a 10-year-old Caucasian boy with a corrected QT duration of 660 ms, a personal history of exercise-induced syncope, and a family history of syncope. A deletion of KCNQ1 exon 7 was identified in a 17-year-old Caucasian girl with a corrected QT duration of 480 ms, a personal history of exercise-induced syncope, and a family history of sudden cardiac death. In conclusion, because nearly 5% of patients with genetically elusive LQTS had large genomic rearrangements involving the canonical LQTS-susceptibility genes, reflex genetic testing to investigate genomic rearrangements may be of clinical value. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. A case report: Becker muscular dystrophy presenting with epilepsy and dysgnosia induced by duplication mutation of Dystrophin gene.

    PubMed

    Miao, Jing; Feng, Jia-Chun; Zhu, Dan; Yu, Xue-Fan

    2016-12-12

    Becker muscular dystrophy (BMD), a genetic disorder of X-linked recessive inheritance, typically presents with gradually progressive muscle weakness. The condition is caused by mutations of Dystrophin gene located at Xp21.2. Epilepsy is an infrequent manifestation of BMD, while cases of BMD with dysgnosia are extremely rare. We describe a 9-year-old boy with BMD, who presented with epilepsy and dysgnosia. Serum creatine kinase level was markedly elevated (3665 U/L). Wechsler intelligence tests showed a low intelligence quotient (IQ = 65). Electromyogram showed slight myogenic changes and skeletal muscle biopsy revealed muscular dystrophy. Immunohistochemical staining showed partial positivity of sarcolemma for dystrophin-N. Multiplex ligation-dependent probe amplification revealed a duplication mutation in exons 37-44 in the Dystrophin gene. The present case report helps to better understand the clinical and genetic features of BMD.

  1. Examining the process of de novo gene birth: an educational primer on "integration of new genes into cellular networks, and their structural maturation".

    PubMed

    Frietze, Seth; Leatherman, Judith

    2014-03-01

    New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on navigating a genome database.

  2. The Association of Congenital Urethral Duplication and Double Megalourethra

    PubMed Central

    Uçar, Murat; Karagözlü Akgül, Ahsen; Kılıç, Nizamettin; Balkan, Emin

    2017-01-01

    Background: Urethral duplication and megalourethra are rare urethral anomalies. However, the concomitance of urethral duplication and double megalourethra has not been reported previously. Case Report: A newborn was presented with penile swelling during voiding. Physical examination revealed a retractable foreskin and two external meatus of a double urethra. Retrograde urethrography demonstrated two complete megalourethras. Urethro-urethrostomy and urethroplasty were performed when the patient was 10 months old. The patient was followed up for one year without any urinary problems and has good cosmetics and urinary continence. Conclusion: The concomitance of these two rare anomalies and more importantly its surgical treatment makes this case report unique and valuable. PMID:29215339

  3. Comprehensive review of the duplication 3q syndrome and report of a patient with Currarino syndrome and de novo duplication 3q26.32-q27.2.

    PubMed

    Dworschak, G C; Crétolle, C; Hilger, A; Engels, H; Korsch, E; Reutter, H; Ludwig, M

    2017-05-01

    Partial duplications of the long arm of chromosome 3, dup(3q), are a rare but well-described condition, sharing features of Cornelia de Lange syndrome. Around two thirds of cases are derived from unbalanced translocations, whereas pure dup(3q) have rarely been reported. Here, we provide an extensive review of the literature on dup(3q). This search revealed several patients with caudal malformations and anomalies, suggesting that caudal malformations or anomalies represent an inherent phenotypic feature of dup(3q). In this context, we report a patient with a pure de novo duplication 3q26.32-q27.2. The patient had the clinical diagnosis of Currarino syndrome (CS) (characterized by the triad of sacral anomalies, anorectal malformations and a presacral mass) and additional features, frequently detected in patients with a dup(3q). Mutations within the MNX1 gene were found to be causative in CS but no MNX1 mutation could be detected in our patient. Our comprehensive search for candidate genes located in the critical region of the duplication 3q syndrome, 3q26.3-q27, revealed a so far neglected phenotypic overlap of dup(3q) and the Pierpont syndrome, associated with a mutation of the TBL1XR1 gene on 3q26.32. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication

    PubMed Central

    2008-01-01

    Background Teleost radiation in the oceans required specific physiological adaptations in eggs and early embryos to survive in the hyper-osmotic seawater. Investigating the evolution of aquaporins (AQPs) in these vertebrates should help to elucidate how mechanisms for water homeostasis evolved. The marine teleost gilthead sea bream (Sparus aurata) has a mammalian aquaporin-1 (AQP1)-related channel, termed AQP1o, with a specialized physiological role in mediating egg hydration. However, teleosts have an additional AQP isoform structurally more similar to AQP1, though its relationship with AQP1o is unclear. Results By using phylogenetic and genomic analyses we show here that teleosts, unlike tetrapods, have two closely linked AQP1 paralogous genes, termed aqp1a and aqp1b (formerly AQP1o). In marine teleosts that produce hydrated eggs, aqp1b is highly expressed in the ovary, whereas in freshwater species that produce non-hydrated eggs, aqp1b has a completely different expression pattern or is not found in the genome. Both Aqp1a and Aqp1b are functional water-selective channels when expressed in Xenopus laevis oocytes. However, expression of chimeric and mutated proteins in oocytes revealed that the sea bream Aqp1b C-terminus, unlike that of Aqp1a, contains specific residues involved in the control of Aqp1b intracellular trafficking through phosphorylation-independent and -dependent mechanisms. Conclusion We propose that 1) Aqp1a and Aqp1b are encoded by distinct genes that probably originated specifically in the teleost lineage by duplication of a common ancestor soon after divergence from tetrapods, 2) Aqp1b possibly represents a neofunctionalized AQP adapted to oocytes of marine and catadromous teleosts, thereby contributing to a water reservoir in eggs and early embryos that increases their survival in the ocean, and 3) Aqp1b independently acquired regulatory domains in the cytoplasmatic C-terminal tail for the specific control of Aqp1b expression in the plasma

  5. Selection shaped the evolution of mouse androgen-binding protein (ABP) function and promoted the duplication of Abp genes.

    PubMed

    Karn, Robert C; Laukaitis, Christina M

    2014-08-01

    In the present article, we summarize two aspects of our work on mouse ABP (androgen-binding protein): (i) the sexual selection function producing incipient reinforcement on the European house mouse hybrid zone, and (ii) the mechanism behind the dramatic expansion of the Abp gene region in the mouse genome. Selection unifies these two components, although the ways in which selection has acted differ. At the functional level, strong positive selection has acted on key sites on the surface of one face of the ABP dimer, possibly to influence binding to a receptor. A different kind of selection has apparently driven the recent and rapid expansion of the gene region, probably by increasing the amount of Abp transcript, in one or both of two ways. We have shown previously that groups of Abp genes behave as LCRs (low-copy repeats), duplicating as relatively large blocks of genes by NAHR (non-allelic homologous recombination). The second type of selection involves the close link between the accumulation of L1 elements and the expansion of the Abp gene family by NAHR. It is probably predicated on an initial selection for increased transcription of existing Abp genes and/or an increase in Abp gene number providing more transcriptional sites. Either or both could increase initial transcript production, a quantitative change similar to increasing the volume of a radio transmission. In closing, we also provide a note on Abp gene nomenclature.

  6. Genetic background effects in quantitative genetics: gene-by-system interactions.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2018-04-11

    Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.

  7. Duplication in DNA Sequences

    NASA Astrophysics Data System (ADS)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  8. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.

    PubMed

    Smith, Jeramiah J; Keinath, Melissa C

    2015-08-01

    It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution. © 2015 Smith and Keinath; Published by Cold Spring Harbor Laboratory Press.

  9. Two Functional Copies of the DGCR6 Gene Are Present on Human Chromosome 22q11 Due to a Duplication of an Ancestral Locus

    PubMed Central

    Edelmann, Lisa; Stankiewicz, Pavel; Spiteri, Elizabeth; Pandita, Raj K.; Shaffer, Lisa; Lupski, James; Morrow, Bernice E.

    2001-01-01

    The DGCR6 (DiGeorge critical region) gene encodes a putative protein with sequence similarity to gonadal (gdl), a Drosophila melanogaster gene of unknown function. We mapped the DGCR6 gene to chromosome 22q11 within a low copy repeat, termed sc11.1a, and identified a second copy of the gene, DGCR6L, within the duplicate locus, termed sc11.1b. Both sc11.1 repeats are deleted in most persons with velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), and they map immediately adjacent and internal to the low copy repeats, termed LCR22, that mediate the deletions associated with VCFS/DGS. We sequenced genomic clones from both loci and determined that the putative initiator methionine is located further upstream than originally described, but in a position similar to the mouse and chicken orthologs. DGCR6L encodes a highly homologous, functional copy of DGCR6, with some base changes rendering amino acid differences. Expression studies of the two genes indicate that both genes are widely expressed in fetal and adult tissues. Evolutionary studies using FISH mapping in several different species of ape combined with sequence analysis of DGCR6 in a number of different primate species indicate that the duplication is at least 12 million years old and may date back to before the divergence of Catarrhines from Platyrrhines, 35 mya. These data suggest that there has been selective evolutionary pressure toward the functional maintenance of both paralogs. Interestingly, a full-length HERV-K provirus integrated into the sc11.1a locus after the divergence of chimpanzees and humans. PMID:11157784

  10. 8p23.1 duplication syndrome differentiated from copy number variation of the defensin cluster at prenatal diagnosis in four new families

    PubMed Central

    2010-01-01

    Background The 8p23.1 duplication syndrome and copy number variation of the 8p23.1 defensin gene cluster are cytogenetically indistinguishable but distinct at the molecular level. To our knowledge, the 8p23.1 duplication syndrome has been described at prenatal diagnosis only once and we report our experience with four further apparent duplications ascertained at prenatal diagnosis. Methods Additional material at band 8p23.1 was detected using conventional G-banded cytogenetics in each case. Multiplex Ligation-dependent Probe Amplification (MLPA) or Fluorescence In Situ Hybridisation (FISH) were used depending on whether only DNA (Cases 1 and 4) or cytogenetic preparations (Cases 2 and 3) were available from the laboratory of origin. The extent of the duplication in Case 1 was retrospectively determined using array Comparative Genomic Hybridisation (array CGH). Results Three cases of 8p23.1 duplication syndrome were found (Cases 1 to 3). Two were de novo and continued to term and the third, a paternally transmitted duplication, was terminated because of a previous child with psychomotor delay and 8p23.1 duplication syndrome. Case 1 was ascertained with a hypoplastic left heart but the ventricular septal and interventricular defects, in Cases 2 and 3 respectively, were found after ascertainment for advanced maternal age. By contrast, case 4 was a maternally transmitted copy number variation of the defensin cluster with normal outcome. Conclusions Our data underline the need to differentiate 8p23.1 duplications from copy number variation of the defensin cluster using FISH, MLPA or array CGH. Cardiac defects were ascertained by ultrasound in only one of the three duplication 8p23.1 pregnancies but were visible in two of the three at 21 to 22 weeks gestation. Our results provide further evidence that both deletion and duplication of the GATA4 transcription factor can give rise to a variety of conotruncal heart defects with variable penetrance and expressivity. PMID

  11. Duplication of the pituitary gland associated with multiple blastogenesis defects: Duplication of the pituitary gland (DPG)-plus syndrome. Case report and review of literature

    PubMed Central

    Manjila, Sunil; Miller, Erin A.; Vadera, Sumeet; Goel, Rishi K.; Khan, Fahd R.; Crowe, Carol; Geertman, Robert T.

    2012-01-01

    Background: Duplication of the pituitary gland (DPG) is a rare craniofacial developmental anomaly occurring during blastogenesis with postulated etiology such as incomplete twinning, teratogens, median cleft face syndrome or splitting of the notochord. The complex craniocaudal spectrum of blastogenesis defects associated with DPG is examined with an illustrative case. Case Description: We report for the first time in the medical literature some unique associations with DPG, such as a clival encephalocele, third cerebral peduncle, duplicate odontoid process and a double tongue with independent volitional control. This patient also has the previously reported common associations such as duplicated sella, cleft palate, hypertelorism, callosal agenesis, hypothalamic enlargement, nasopharyngeal teratoma, fenestrated basilar artery and supernumerary teeth. This study also reviews 37 cases of DPG identified through MEDLINE literature search from 1880 to 2011. It provides a detailed analysis of the current case through physical examination and imaging. Conclusion: The authors propose that the developmental deformities associated with duplication of pituitary gland (DPG) occur as part of a developmental continuum, not as chance associations. Considering the fact that DPG is uniquely and certainly present throughout the spectrum of these blastogenesis defects, we suggest the term DPG-plus syndrome. PMID:22439114

  12. Characterization and Evolution of Conserved MicroRNA through Duplication Events in Date Palm (Phoenix dactylifera)

    PubMed Central

    Yang, Yaodong; Mason, Annaliese S.; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events. PMID:23951162

  13. Characterization and evolution of conserved MicroRNA through duplication events in date palm (Phoenix dactylifera).

    PubMed

    Xiao, Yong; Xia, Wei; Yang, Yaodong; Mason, Annaliese S; Lei, Xintao; Ma, Zilong

    2013-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events.

  14. A computational method for estimating the PCR duplication rate in DNA and RNA-seq experiments.

    PubMed

    Bansal, Vikas

    2017-03-14

    PCR amplification is an important step in the preparation of DNA sequencing libraries prior to high-throughput sequencing. PCR amplification introduces redundant reads in the sequence data and estimating the PCR duplication rate is important to assess the frequency of such reads. Existing computational methods do not distinguish PCR duplicates from "natural" read duplicates that represent independent DNA fragments and therefore, over-estimate the PCR duplication rate for DNA-seq and RNA-seq experiments. In this paper, we present a computational method to estimate the average PCR duplication rate of high-throughput sequence datasets that accounts for natural read duplicates by leveraging heterozygous variants in an individual genome. Analysis of simulated data and exome sequence data from the 1000 Genomes project demonstrated that our method can accurately estimate the PCR duplication rate on paired-end as well as single-end read datasets which contain a high proportion of natural read duplicates. Further, analysis of exome datasets prepared using the Nextera library preparation method indicated that 45-50% of read duplicates correspond to natural read duplicates likely due to fragmentation bias. Finally, analysis of RNA-seq datasets from individuals in the 1000 Genomes project demonstrated that 70-95% of read duplicates observed in such datasets correspond to natural duplicates sampled from genes with high expression and identified outlier samples with a 2-fold greater PCR duplication rate than other samples. The method described here is a useful tool for estimating the PCR duplication rate of high-throughput sequence datasets and for assessing the fraction of read duplicates that correspond to natural read duplicates. An implementation of the method is available at https://github.com/vibansal/PCRduplicates .

  15. Large-Scale Gene Relocations following an Ancient Genome Triplication Associated with the Diversification of Core Eudicots.

    PubMed

    Wang, Yupeng; Ficklin, Stephen P; Wang, Xiyin; Feltus, F Alex; Paterson, Andrew H

    2016-01-01

    Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots.

  16. Large-Scale Gene Relocations following an Ancient Genome Triplication Associated with the Diversification of Core Eudicots

    PubMed Central

    Wang, Yupeng; Ficklin, Stephen P.; Wang, Xiyin; Feltus, F. Alex; Paterson, Andrew H.

    2016-01-01

    Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots. PMID:27195960

  17. 76 FR 79565 - Management Contracts-Background Investigations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... Management Contracts--Background Investigations AGENCY: National Indian Gaming Commission. ACTION: Notice of... investigation process required for management contracts. The proposed revision may reduce duplication of efforts... to clarify that a management contractor should be required to submit background information when the...

  18. Genome specific PPARαB duplicates in salmonids and insights into estrogenic regulation in brown trout.

    PubMed

    Madureira, Tânia Vieira; Pinheiro, Ivone; de Paula Freire, Rafaelle; Rocha, Eduardo; Castro, Luis Filipe; Urbatzka, Ralph

    2017-06-01

    Peroxisome proliferator-activated receptors (PPARs) are key regulators of many processes in vertebrates, such as carbohydrate and lipid metabolism. PPARα, a member of the PPAR nuclear receptor gene subfamily (NR1C1), is involved in fatty acid metabolism, namely in peroxisomal β-oxidation. Two gene paralogues, pparαA and pparαB, were described in several teleost species with their origin dating back to the teleost-specific genome duplication (3R). Given the additional salmonid-specific genome duplication (4R), four genes could be theoretically anticipated for this gene subfamily. In this work, we examined the pparα gene repertoire in brown trout, Salmo trutta f. fario. Data disclosed two pparα-like sequences in brown trout. Phylogenetic analyses further revealed that the isolated genes are most likely genome pparαB duplicates, pparαBa and pparαBb, while pparαA is apparently absent in salmonids. Both genes showed a ubiquitous mRNA expression across a panel of 11 different organs. In vitro exposed primary brown trout hepatocytes strongly suggest that pparα gene paralogues are differently regulated by ethinylestradiol (EE2). PparαBb mRNA expression significantly decreased with dosage, reaching significance after exposure to 50μM EE2, while pparαBa mRNA increased, significant at 1μM EE2. The present data enhances the understanding of pparα function and evolution in teleost, and reinforces the evidence of a potential crosstalk between estrogenic and pparα signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ancestral genomic duplication of the insulin gene in tilapia: An analysis of possible implications for clinical islet xenotransplantation using donor islets from transgenic tilapia expressing a humanized insulin gene.

    PubMed

    Hrytsenko, Olga; Pohajdak, Bill; Wright, James R

    2016-07-03

    Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish.

  20. Ancestral genomic duplication of the insulin gene in tilapia: An analysis of possible implications for clinical islet xenotransplantation using donor islets from transgenic tilapia expressing a humanized insulin gene

    PubMed Central

    Hrytsenko, Olga; Pohajdak, Bill; Wright, James R.

    2016-01-01

    ABSTRACT Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish. PMID:27222321

  1. A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred

    PubMed Central

    Vidal, Ruben; Révész, Tamas; Rostagno, Agueda; Kim, Eugene; Holton, Janice L.; Bek, Toke; Bojsen-Møller, Marie; Braendgaard, Hans; Plant, Gordon; Ghiso, Jorge; Frangione, Blas

    2000-01-01

    Familial Danish dementia (FDD), also known as heredopathia ophthalmo-oto-encephalica, is an autosomal dominant disorder characterized by cataracts, deafness, progressive ataxia, and dementia. Neuropathological findings include severe widespread cerebral amyloid angiopathy, hippocampal plaques, and neurofibrillary tangles, similar to Alzheimer's disease. N-terminal sequence analysis of isolated leptomeningeal amyloid fibrils revealed homology to ABri, the peptide originated by a point mutation at the stop codon of gene BRI in familial British dementia. Molecular genetic analysis of the BRI gene in the Danish kindred showed a different defect, namely the presence of a 10-nt duplication (795–796insTTTAATTTGT) between codons 265 and 266, one codon before the normal stop codon 267. The decamer duplication mutation produces a frame-shift in the BRI sequence generating a larger-than-normal precursor protein, of which the amyloid subunit (designated ADan) comprises the last 34 C-terminal amino acids. This de novo-created amyloidogenic peptide, associated with a genetic defect in the Danish kindred, stresses the importance of amyloid formation as a causative factor in neurodegeneration and dementia. PMID:10781099

  2. Facial duplication: case, review, and embryogenesis.

    PubMed

    Barr, M

    1982-04-01

    The craniofacial anatomy of an infant with facial duplication is described. There were four eyes, two noses, two maxillae, and one mandible. Anterior to the single pituitary the brain was duplicated and there was bilateral arhinencephaly. Portions of the brain were extruded into a large frontal encephalocele. Cases of symmetrical facial duplication reported in the literature range from two complete faces on a single head (diprosopus) to simple nasal duplication. The variety of patterns of duplication suggests that the doubling of facial components arises in several different ways: Forking of the notochord, duplication of the prosencephalon, duplication of the olfactory placodes, and duplication of maxillary and/or mandibular growth centers around the margins of the stomatodeal plate. Among reported cases, the female:male ratio is 2:1.

  3. Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions.

    PubMed

    Zeira, Ron; Shamir, Ron

    2018-05-03

    Problems of genome rearrangement are central in both evolution and cancer research. Most genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, tumor genomes also undergo numerical changes such as deletions and duplications, and thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging task, addressed by few algorithms to date. More realistic models are needed to help trace genome evolution during tumorigenesis. Here we present a model for the evolution of genomes with multiple gene copies using the operation types double-cut-and-joins, duplications and deletions. The events supported by the model are reversals, translocations, tandem duplications, segmental deletions, and chromosomal amplifications and deletions, covering most types of structural and numerical changes observed in tumor samples. Our goal is to find a series of operations of minimum length that transform one karyotype into the other. We show that the problem is NP-hard and give an integer linear programming formulation that solves the problem exactly under some mild assumptions. We test our method on simulated genomes and on ovarian cancer genomes. Our study advances the state of the art in two ways: It allows a broader set of operations than extant models, thus being more realistic, and it is the first study attempting to reconstruct the full sequence of structural and numerical events during cancer evolution. Code and data are available in https://github.com/Shamir-Lab/Sorting-Cancer-Karyotypes. ronzeira@post.tau.ac.il, rshamir@tau.ac.il. Supplementary data are available at Bioinformatics online.

  4. Pyloric duplications: review and case study.

    PubMed

    Cooper, S; Abrams, R S; Carbaugh, R A

    1995-12-01

    Gastric duplications are unusual congenital anomalies that often require surgical treatment. Pyloric duplications are particularly rare; few are reported in the English literature. This article reviews the literature on pyloric duplications and describes a pyloric duplication associated with hypertrophic pyloric stenosis in a 5-week-old child and a duplication that recurred 7 years later.

  5. Segmental duplications: evolution and impact among the current Lepidoptera genomes.

    PubMed

    Zhao, Qian; Ma, Dongna; Vasseur, Liette; You, Minsheng

    2017-07-06

    Structural variation among genomes is now viewed to be as important as single nucleoid polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as segments of DNA with homologous sequence. Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to understand their potential impact on the evolution of these species. We find that the SDs content differed substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H. melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the genes embedded in SDs regions belonged to species-specific SDs ("Unique" SDs). Functional analysis of these genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on comparison of gene expression level between SDs and non-SDs showed that the expression level of genes embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene expression differences in species. The results showed that most of the SDs were "unique SDs", which originated after species formation. Functional analysis suggested that SDs might play different roles in different species. Our

  6. De novo direct duplication of chromosome segment 22q11.2-q13.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, Atsuko; Lin, Ming S.

    Lindsay et al. [1995] reported a case of de novo duplication of the segment 22q11-q12. Molecular cytogenetics studies showed that the segment includes the regions responsible for the {open_quotes}cat eye,{close_quotes} DiGeorge, and velo-cardio-facial syndrome, and extends distal to the breakpoint cluster region. The phenotype was milder than that of complete trisomy 22 and der(22)t(11;22) (q23;q11) syndrome and was similar in type and severity to that of {open_quotes}cat eye{close_quotes} syndrome (CES). They suggested that trisomy of gene(s) responsible for the CES might have a predominant phenotypic effect over other genes present in the region duplicated in their patient. 3 refs., 2more » figs.« less

  7. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.

    PubMed

    Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M

    2013-05-29

    Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in

  8. Duplication of 17(p11.2p11.2) in a male child with autism and severe language delay.

    PubMed

    Nakamine, Alisa; Ouchanov, Leonid; Jiménez, Patricia; Manghi, Elina R; Esquivel, Marcela; Monge, Silvia; Fallas, Marietha; Burton, Barbara K; Szomju, Barbara; Elsea, Sarah H; Marshall, Christian R; Scherer, Stephen W; McInnes, L Alison

    2008-03-01

    Duplications of 17(p11.2p11.2) have been associated with various behavioral manifestations including attention deficits, obsessive-compulsive symptoms, autistic traits, and language delay. We are conducting a genetic study of autism and are screening all cases for submicroscopic chromosomal abnormalities, in addition to standard karyotyping, and fragile X testing. Using array-based comparative genomic hybridization analysis of data from the Affymetrix GeneChip(R) Human Mapping Array set, we detected a duplication of approximately 3.3 Mb on chromosome 17p11.2 in a male child with autism and severe expressive language delay. The duplication was confirmed by measuring the copy number of genomic DNA using quantitative polymerase chain reaction. Gene expression analyses revealed increased expression of three candidate genes for the Smith-Magenis neurobehavioral phenotype, RAI1, DRG2, and RASD1, in transformed lymphocytes from Case 81A, suggesting gene dosage effects. Our results add to a growing body of evidence suggesting that duplications of 17(p11.2p11.2) result in language delay as well as autism and related phenotypes. As Smith-Magenis syndrome is also associated with language delay, a gene involved in acquisition of language may lie within this interval. Whether a parent of origin effect, gender of the case, the presence of allelic variation, or changes in expression of genes outside the breakpoints influence the resultant phenotype remains to be determined. (c) 2007 Wiley-Liss, Inc.

  9. Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders

    PubMed Central

    Isles, Anthony R.; Ingason, Andrés; Lowther, Chelsea; Gawlick, Micha; Stöber, Gerald; Potter, Harry; Georgieva, Lyudmila; Pizzo, Lucilla; Ozaki, Norio; Kushima, Itaru; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F.; Gejman, Pablo V.; Shi, Jianxin; Sanders, Alan R.; Duan, Jubao; Sisodiya, Sanjay; Costain, Gregory; Degenhardt, Franziska; Giegling, Ina; Rujescu, Dan; Hreidarsson, Stefan J.; Saemundsen, Evald; Ahn, Joo Wook; Ogilvie, Caroline; Stefansson, Hreinn; Stefansson, Kari; O’Donovan, Michael C.; Owen, Michael J.; Bassett, Anne; Kirov, George

    2016-01-01

    Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally

  10. Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders.

    PubMed

    Isles, Anthony R; Ingason, Andrés; Lowther, Chelsea; Walters, James; Gawlick, Micha; Stöber, Gerald; Rees, Elliott; Martin, Joanna; Little, Rosie B; Potter, Harry; Georgieva, Lyudmila; Pizzo, Lucilla; Ozaki, Norio; Aleksic, Branko; Kushima, Itaru; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Shi, Jianxin; Sanders, Alan R; Duan, Jubao; Willis, Joseph; Sisodiya, Sanjay; Costain, Gregory; Werge, Thomas M; Degenhardt, Franziska; Giegling, Ina; Rujescu, Dan; Hreidarsson, Stefan J; Saemundsen, Evald; Ahn, Joo Wook; Ogilvie, Caroline; Girirajan, Santhosh D; Stefansson, Hreinn; Stefansson, Kari; O'Donovan, Michael C; Owen, Michael J; Bassett, Anne; Kirov, George

    2016-05-01

    Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally

  11. Plasticity and innovation of regulatory mechanisms underlying seed oil content mediated by duplicated genes in the palaeopolyploid soybean.

    PubMed

    Zhang, Dajian; Zhao, Meixia; Li, Shuai; Sun, Lianjun; Wang, Weidong; Cai, Chunmei; Dierking, Emily C; Ma, Jianxin

    2017-06-01

    Many plants have undergone whole genome duplication (WGD). However, how regulatory networks underlying a particular trait are reshaped in polyploids has not been experimentally investigated. Here we show that the regulatory pathways modulating seed oil content, which involve WRINKLED1 (WRI1), LEAFY COTYLEDON1 (LEC1), and LEC2 in Arabidopsis, have been modified in the palaeopolyploid soybean. Such modifications include functional reduction of GmWRI1b of the GmWRI1a/GmWRI1b homoeologous pair relevant to WRI1, complementary non-allelic dosage effects of the GmLEC1a/GmLEC1b homoeologous pair relevant to LEC1, pseudogenization of the singleton GmLEC2 relevant to LEC2, and the rise of the LEC2-like function of GmABI3b, contrasting to its homoeolog GmABI3a, which maintains the ABSCISIC ACID INSENSITIVE 3 (ABI3)-like function in modulating seed maturation and dormancy. The function of GmABI3b in modulating seed oil biosynthesis was fulfilled by direct binding to a RY (CATGCA) cis-regulatory element in the GmWRI1a promoter, which was absent in the GmWRI1b promoter, resulting in reduction of the GmWRI1b expression. Nevertheless, the three regulators each exhibited similar intensities of purifying selection to their respective duplicates since these pairs were formed by a WGD event that is proposed to have occurred approximately 13 million years ago (mya), suggesting that the differentiation in spatiotemporal expression between the duplicated genes is more likely to be the outcome of neutral variation in regulatory sequences. This study thus exemplifies the plasticity, dynamics, and novelty of regulatory networks mediated by WGD. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. The Caenorhabditis chemoreceptor gene families

    PubMed Central

    Thomas, James H; Robertson, Hugh M

    2008-01-01

    Background Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Results Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Conclusion Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space. PMID:18837995

  13. Craniofacial duplication: a case report.

    PubMed

    Suryawanshi, Pradeep; Deshpande, Mandar; Verma, Nitin; Mahendrakar, Vivek; Mahendrakar, Sandhya

    2013-09-01

    A craniofacial duplication or diprosopus is an unusual variant of conjoined twinning. The reported incidence is one in 180,000-15 million births and 35 cases have been reported till date. The phenotype is wide, with the partial duplication of a few facial structures to complete dicephalus. A complete duplication is associated with a high incidence of anomalies in the central nervous system, cardiovascular system, gastrointestinal system and the respiratory system, whereas no major anomalies are found in the infants with a partial duplication. A term baby with the features of a craniofacial duplication has been described, with the proposed theories on embryogenesis and a brief review of the literature.

  14. Specific duplication and dorsoventrally asymmetric expression patterns of Cycloidea-like genes in zygomorphic species of Ranunculaceae.

    PubMed

    Jabbour, Florian; Cossard, Guillaume; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2014-01-01

    Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.

  15. Specific Duplication and Dorsoventrally Asymmetric Expression Patterns of Cycloidea-Like Genes in Zygomorphic Species of Ranunculaceae

    PubMed Central

    Jabbour, Florian; Cossard, Guillaume; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2014-01-01

    Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture. PMID:24752428

  16. Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles.

    PubMed

    Shang, Shuai; Zhong, Huaming; Wu, Xiaoyang; Wei, Qinguo; Zhang, Huanxin; Chen, Jun; Chen, Yao; Tang, Xuexi; Zhang, Honghai

    2018-04-01

    Toll-like receptors (TLRs) encoded by the TLR multigene family play an important role in initial pathogen recognition in vertebrates. Among the TLRs, TLR2 and TLR4 may be of particular importance to reptiles. In order to study the evolutionary patterns and structural characteristics of TLRs, we explored the available genomes of several representative members of reptiles. 25 TLR2 genes and 19 TLR4 genes from reptiles were obtained in this study. Phylogenetic results showed that the TLR2 gene duplication occurred in several species. Evolutionary analysis by at least two methods identified 30 and 13 common positively selected codons in TLR2 and TLR4, respectively. Most positively selected sites of TLR2 and TLR4 were located in the Leucine-rich repeat (LRRs). Branch model analysis showed that TLR2 genes were under different evolutionary forces in reptiles, while the TLR4 genes showed no significant selection pressure. The different evolutionary adaptation of TLR2 and TLR4 among the reptiles might be due to their different function in recognizing bacteria. Overall, we explored the structure and evolution of TLR2 and TLR4 genes in reptiles for the first time. Our study revealed valuable information regarding TLR2 and TLR4 in reptiles, and provided novel insights into the conservation concern of natural populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.

    PubMed

    Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan

    2013-11-02

    Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the

  18. Craniofacial Duplication: A Case Report

    PubMed Central

    Suryawanshi, Pradeep; Deshpande, Mandar; Verma, Nitin; Mahendrakar, Vivek; Mahendrakar, Sandhya

    2013-01-01

    A craniofacial duplication or diprosopus is an unusual variant of conjoined twinning. The reported incidence is one in 180,000-15 million births and 35 cases have been reported till date. The phenotype is wide, with the partial duplication of a few facial structures to complete dicephalus. A complete duplication is associated with a high incidence of anomalies in the central nervous system, cardiovascular system, gastrointestinal system and the respiratory system, whereas no major anomalies are found in the infants with a partial duplication. A term baby with the features of a craniofacial duplication has been described, with the proposed theories on embryogenesis and a brief review of the literature. PMID:24179933

  19. Evolutionary analysis of the kinesin light chain genes in the yellow fever mosquito Aedes aegypti: gene duplication as a source for novel early zygotic genes.

    PubMed

    Biedler, James K; Tu, Zhijian

    2010-07-08

    codon shows promoter activity at least as early as 3 hours in the developing Ae. aegypti embryo. The AaKLC2.1 promoter activity reached ~1600 fold over the negative control at 5 hr after egg deposition. Transcriptome profiling by use of high throughput sequencing technologies has proven to be a valuable method for the identification and discovery of early and transient zygotic genes. The evolutionary investigation of the KLC gene family reveals that duplication is a source for the evolution of new genes that play a role in the dynamic process of early embryonic development. AaKLC2.1 may provide a promoter for early zygotic-specific transgene expression, which is a key component of the Medea gene drive system.

  20. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    PubMed

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  1. A case of duplication of 13q32-->qter and deletion of 18p11.32-->pter with mild phenotype: Patau syndrome and duplications of 13q revisited.

    PubMed Central

    Helali, N; Iafolla, A K; Kahler, S G; Qumsiyeh, M B

    1996-01-01

    A mild clinical phenotype is described in a patient with duplication of 13q32-->qter and a small deletion of 18p11.32-->pter. The 8 year old white male presented with psychomotor retardation, tethered cord, soft, fleshy ears, and normal facial features except for thin lips. The karyotype was found to be 46, XY, der(18)t(13;18) (q32;p11.32) pat confirmed by fluorescence in situ hybridisation (FISH). A review of earlier studies showed that features of trisomy 13 are found in cases of duplication of bands 13q14 to qter. None of the cardinal features of trisomy 13 was seen in this patient. The absence of polydactyly, hernias, urogenital abnormalities, and haemangiomas contrast this condition with both trisomy 13 and duplication of 13q14-22-->qter. Possible explanations for lack of Patau syndrome in this patient could include restriction of the critical region for Patau syndrome to duplication 13q14-->13q32 with variable expression, gene interactions, or interchromosomal effects. Images PMID:8818949

  2. A case of duplication of 13q32-->qter and deletion of 18p11.32-->pter with mild phenotype: Patau syndrome and duplications of 13q revisited.

    PubMed

    Helali, N; Iafolla, A K; Kahler, S G; Qumsiyeh, M B

    1996-07-01

    A mild clinical phenotype is described in a patient with duplication of 13q32-->qter and a small deletion of 18p11.32-->pter. The 8 year old white male presented with psychomotor retardation, tethered cord, soft, fleshy ears, and normal facial features except for thin lips. The karyotype was found to be 46, XY, der(18)t(13;18) (q32;p11.32) pat confirmed by fluorescence in situ hybridisation (FISH). A review of earlier studies showed that features of trisomy 13 are found in cases of duplication of bands 13q14 to qter. None of the cardinal features of trisomy 13 was seen in this patient. The absence of polydactyly, hernias, urogenital abnormalities, and haemangiomas contrast this condition with both trisomy 13 and duplication of 13q14-22-->qter. Possible explanations for lack of Patau syndrome in this patient could include restriction of the critical region for Patau syndrome to duplication 13q14-->13q32 with variable expression, gene interactions, or interchromosomal effects.

  3. Gene family size conservation is a good indicator of evolutionary rates.

    PubMed

    Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen

    2010-08-01

    The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.

  4. Do Children Think that Duplicating the Body also Duplicates the Mind?

    ERIC Educational Resources Information Center

    Hood, Bruce; Gjersoe, Nathalia L.; Bloom, Paul

    2012-01-01

    Philosophers use hypothetical duplication scenarios to explore intuitions about personal identity. Here we examined 5- to 6-year-olds' intuitions about the physical properties and memories of a live hamster that is apparently duplicated by a machine. In Study 1, children thought that more of the original's physical properties than episodic…

  5. Duplication of the EFNB1 Gene in Familial Hypertelorism: Imbalance in Ephrin-B1 Expression and Abnormal Phenotypes in Humans and Mice

    PubMed Central

    Babbs, Christian; Stewart, Helen S; Williams, Louise J; Connell, Lyndsey; Goriely, Anne; Twigg, Stephen RF; Smith, Kim; Lester, Tracy; Wilkie, Andrew OM

    2011-01-01

    Familial hypertelorism, characterized by widely spaced eyes, classically shows autosomal dominant inheritance (Teebi type), but some pedigrees are compatible with X-linkage. No mechanism has been described previously, but clinical similarity has been noted to craniofrontonasal syndrome (CFNS), which is caused by mutations in the X-linked EFNB1 gene. Here we report a family in which females in three generations presented with hypertelorism, but lacked either craniosynostosis or a grooved nasal tip, excluding CFNS. DNA sequencing of EFNB1 was normal, but further analysis revealed a duplication of 937 kb including EFNB1 and two flanking genes: PJA1 and STARD8. We found that the X chromosome bearing the duplication produces ∼1.6-fold more EFNB1 transcript than the normal X chromosome and propose that, in the context of X-inactivation, this difference in expression level of EFNB1 results in abnormal cell sorting leading to hypertelorism. To support this hypothesis, we provide evidence from a mouse model carrying a targeted human EFNB1 cDNA, that abnormal cell sorting occurs in the cranial region. Hence, we propose that X-linked cases resembling Teebi hypertelorism may have a similar mechanism to CFNS, and that cellular mosaicism for different levels of ephrin-B1 (as well as simple presence/absence) leads to craniofacial abnormalities. Hum Mutat 32:1–9, 2011. © 2011 Wiley-Liss, Inc. PMID:21542058

  6. Small homologous blocks in phytophthora genomes do not point to an ancient whole-genome duplication.

    PubMed

    van Hooff, Jolien J E; Snel, Berend; Seidl, Michael F

    2014-05-01

    Genomes of the plant-pathogenic genus Phytophthora are characterized by small duplicated blocks consisting of two consecutive genes (2HOM blocks) and by an elevated abundance of similarly aged gene duplicates. Both properties, in particular the presence of 2HOM blocks, have been attributed to a whole-genome duplication (WGD) at the last common ancestor of Phytophthora. However, large intraspecies synteny-compelling evidence for a WGD-has not been detected. Here, we revisited the WGD hypothesis by deducing the age of 2HOM blocks. Two independent timing methods reveal that the majority of 2HOM blocks arose after divergence of the Phytophthora lineages. In addition, a large proportion of the 2HOM block copies colocalize on the same scaffold. Therefore, the presence of 2HOM blocks does not support a WGD at the last common ancestor of Phytophthora. Thus, genome evolution of Phytophthora is likely driven by alternative mechanisms, such as bursts of transposon activity.

  7. Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.

    PubMed

    McGrath, Casey L; Gout, Jean-Francois; Doak, Thomas G; Yanagi, Akira; Lynch, Michael

    2014-08-01

    Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event. Copyright © 2014 by the Genetics Society of America.

  8. Adjusting for background mutation frequency biases improves the identification of cancer driver genes.

    PubMed

    Evans, Perry; Avey, Stefan; Kong, Yong; Krauthammer, Michael

    2013-09-01

    A common goal of tumor sequencing projects is finding genes whose mutations are selected for during tumor development. This is accomplished by choosing genes that have more non-synonymous mutations than expected from an estimated background mutation frequency. While this background frequency is unknown, it can be estimated using both the observed synonymous mutation frequency and the non-synonymous to synonymous mutation ratio. The synonymous mutation frequency can be determined across all genes or in a gene-specific manner. This choice introduces an interesting trade-off. A gene-specific frequency adjusts for an underlying mutation bias, but is difficult to estimate given missing synonymous mutation counts. Using a genome-wide synonymous frequency is more robust, but is less suited for adjusting biases. Studying four evaluation criteria for identifying genes with high non-synonymous mutation burden (reflecting preferential selection of expressed genes, genes with mutations in conserved bases, genes with many protein interactions, and genes that show loss of heterozygosity), we find that the gene-specific synonymous frequency is superior in the gene expression and protein interaction tests. In conclusion, the use of the gene-specific synonymous mutation frequency is well suited for assessing a gene's non-synonymous mutation burden.

  9. Explosive Tandem and Segmental Duplications of Multigenic Families in Eucalyptus grandis

    PubMed Central

    Li, Qiang; Yu, Hong; Cao, Phi Bang; Fawal, Nizar; Mathé, Catherine; Azar, Sahar; Cassan-Wang, Hua; Myburg, Alexander A.; Grima-Pettenati, Jacqueline; Marque, Christiane; Teulières, Chantal; Dunand, Christophe

    2015-01-01

    Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis, while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations. PMID:25769696

  10. Genome-Wide Analysis of Soybean HD-Zip Gene Family and Expression Profiling under Salinity and Drought Treatments

    PubMed Central

    Chen, Xue; Chen, Zhu; Zhao, Hualin; Zhao, Yang; Cheng, Beijiu; Xiang, Yan

    2014-01-01

    Background Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. Methods and Findings An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. Conclusions This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development. PMID:24498296

  11. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2.

    PubMed

    Li, Hongxia; Yu, Juhua; Li, Jianlin; Tang, Yongkai; Yu, Fan; Zhou, Jie; Yu, Wenjuan

    2016-04-01

    Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates

    PubMed Central

    Brunet, Frédéric G.; Volff, Jean-Nicolas; Schartl, Manfred

    2016-01-01

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. PMID:27260203

  13. Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia.

    PubMed

    Crespi, Bernard J; Procyshyn, Tanya L

    2017-08-01

    We describe and evaluate an integrative hypothesis for helping to explain the major neurocognitive features of individuals with Williams syndrome region deletions and duplications. First, we demonstrate how the cognitive differences between Williams syndrome individuals, individuals with duplications of this region, and healthy individuals parallel the differences between individuals subject to effects of increased or decreased oxytocin. Second, we synthesize evidence showing that variation in expression of the gene GTF2I (General Transcription Factor II-I) underlies the primary social phenotypes of Williams syndrome and that common genetic variation in GTF2I mediates oxytocin reactivity, and its correlates, in healthy populations. Third, we describe findings relevant to the hypothesis that the GTF2I gene is subject to parent of origin effects whose behavioral expression fits with predictions from the kinship theory of genomic imprinting. Fourth, we describe how Williams syndrome can be considered, in part, as an autistic syndrome of Lorna Wing's 'active-but-odd' autism subtype, in contrast to associations of duplications with both schizophrenia and autism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Tandem duplication within a Neurofibromatosis type I (NFI) gene exon in a family with features of Watson syndrome and Noonan syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassabehji, M.; Strachan, T.; Colley, A.

    Type 1 neurofibromatosis (NF1), Watson syndrome (WS), and Noonan syndrome (NS) show some overlap in clinical manifestations. In addition, WS has been shown to be linked to markers flanking the NF1 locus and a deletion at the NF1 locus demonstrated in a WS patient. This suggests either that WS and NF1 are allelic or the phenotypes arise from mutations in very closely linked genes. Here the authors provide evidence for the former by demonstrating a mutation in the NF1 gene in a family with features of both WS and NS. The mutation is an almost perfect in-frame tandem duplication ofmore » 42 bases in exon 28 of the NF1 gene. Unlike the mutations previously described in classical NF1, which show a preponderance of null alleles, the mutation in this family would be expected to result in a mutant neurofibromin product. 31 refs., 2 figs.« less

  15. The Interstitial Duplication 15q11.2-q13 Syndrome Includes Autism, Mild Facial Anomalies and a Characteristic EEG Signature

    PubMed Central

    Urraca, Nora; Cleary, Julie; Brewer, Victoria; Pivnick, Eniko K; McVicar, Kathryn; Thibert, Ronald L; Schanen, N Carolyn; Esmer, Carmen; Lamport, Dustin; Reiter, Lawrence T

    2013-01-01

    Chromosomal copy number variants (CNV) are the most common genetic lesion found in autism. Many autism-associated CNVs are duplications of chromosome 15q. Although most cases of interstitial (int) dup(15) that present clinically are de novo and maternally derived or inherited, both pathogenic and unaffected paternal duplications of 15q have been identified. We performed a phenotype/genotype analysis of individuals with interstitial 15q duplications to broaden our understanding of the 15q syndrome and investigate the contribution of 15q duplication to increased autism risk. All subjects were recruited solely on the basis of interstitial duplication 15q11.2-q13 status. Comparative array genome hybridization was used to determine the duplication size and boundaries while the methylation status of the maternally methylated small nuclear ribonucleoprotein polypeptide N gene was used to determine the parent of origin of the duplication. We determined the duplication size and parental origin for 14 int dup(15) subjects: 10 maternal and 4 paternal cases. The majority of int dup(15) cases recruited were maternal in origin, most likely due to our finding that maternal duplication was coincident with autism spectrum disorder. The size of the duplication did not correlate with the severity of the phenotype as established by Autism Diagnostic Observation Scale calibrated severity score. We identified phenotypes not comprehensively described before in this cohort including mild facial dysmorphism, sleep problems and an unusual electroencephalogram variant. Our results are consistent with the hypothesis that the maternally expressed ubiquitin protein ligase E3A gene is primarily responsible for the autism phenotype in int dup(15) since all maternal cases tested presented on the autism spectrum. PMID:23495136

  16. A Homozygous TPO Gene Duplication (c.1184_1187dup4) Causes Congenital Hypothyroidism in Three Siblings Born to a Consanguineous Family

    PubMed Central

    Cangul, Hakan; Aydin, Banu K.; Bas, Firdevs

    2015-01-01

    Congenital hypothyroidism (CH) is the most common neonatal endocrine disease, and germ-line mutations in the TPO gene cause the inherited form of the disease. Our aim in this study was to determine the genetic basis of congenital hypothyroidism in three affected children coming from a consanguineous Turkish family. Because CH is usually inherited in autosomal recessive manner in consanguineous/multicase families, we adopted a two-stage strategy of genetic linkage studies and targeted sequencing of the candidate genes. First, we investigated the potential genetic linkage of the family to any known CH locus, using microsatellite markers, and then screened for mutations in linked-gene by conventional sequencing. The family showed potential linkage to the TPO gene and we detected a homozygous duplication (c.1184_1187dup4) in all cases. The mutation segregated with disease status in the family. This study confirms the pathogenicity of the c.1184_1187dup4 mutation in the TPO gene and helps establish a genotype/phenotype correlation associated with this mutation. It also highlights the importance of molecular genetic studies in the definitive diagnosis and accurate classification of CH. PMID:27617131

  17. Evolution of homeobox genes.

    PubMed

    Holland, Peter W H

    2013-01-01

    Many homeobox genes encode transcription factors with regulatory roles in animal and plant development. Homeobox genes are found in almost all eukaryotes, and have diversified into 11 gene classes and over 100 gene families in animal evolution, and 10 to 14 gene classes in plants. The largest group in animals is the ANTP class which includes the well-known Hox genes, plus other genes implicated in development including ParaHox (Cdx, Xlox, Gsx), Evx, Dlx, En, NK4, NK3, Msx, and Nanog. Genomic data suggest that the ANTP class diversified by extensive tandem duplication to generate a large array of genes, including an NK gene cluster and a hypothetical ProtoHox gene cluster that duplicated to generate Hox and ParaHox genes. Expression and functional data suggest that NK, Hox, and ParaHox gene clusters acquired distinct roles in patterning the mesoderm, nervous system, and gut. The PRD class is also diverse and includes Pax2/5/8, Pax3/7, Pax4/6, Gsc, Hesx, Otx, Otp, and Pitx genes. PRD genes are not generally arranged in ancient genomic clusters, although the Dux, Obox, and Rhox gene clusters arose in mammalian evolution as did several non-clustered PRD genes. Tandem duplication and genome duplication expanded the number of homeobox genes, possibly contributing to the evolution of developmental complexity, but homeobox gene loss must not be ignored. Evolutionary changes to homeobox gene expression have also been documented, including Hox gene expression patterns shifting in concert with segmental diversification in vertebrates and crustaceans, and deletion of a Pitx1 gene enhancer in pelvic-reduced sticklebacks. WIREs Dev Biol 2013, 2:31-45. doi: 10.1002/wdev.78 For further resources related to this article, please visit the WIREs website. The author declares that he has no conflicts of interest. Copyright © 2012 Wiley Periodicals, Inc.

  18. Silver-Russell syndrome and Beckwith-Wiedemann syndrome phenotypes associated with 11p duplication in a single family.

    PubMed

    Cardarelli, Laura; Sparago, Angela; De Crescenzo, Agostina; Nalesso, Elisa; Zavan, Barbara; Cubellis, Maria Vittoria; Selicorni, Angelo; Cavicchioli, Paola; Pozzan, Giovanni Battista; Petrella, Marilena; Riccio, Andrea

    2010-01-01

    Genomic imprinting is an epigenetic phenomenon resulting in differential expression of maternal and paternal alleles of a subset of genes. In the mouse, mutation of imprinted genes often results in contrasting phenotypes, depending on parental origin. The overgrowth-associated Beckwith-Wiedemann syndrome (BWS) and the growth restriction-associated Silver-Russell syndrome (SRS) have been linked with a variety of epigenetic and genetic defects affecting a cluster of imprinted genes at chromosome 11p15.5. Paternally derived and maternally derived 11p15.5 duplications represent infrequent findings in BWS and SRS, respectively. Here, we report a case in which a 6.5 Mb duplication of 11p15.4-pter resulted in SRS and BWS phenotypes in a child and her mother, respectively. Molecular analyses demonstrated that the duplication involved the maternal chromosome 11p15 in the child and the paternal chromosome 11p15 in the mother. This observation provides a direct demonstration that SRS and BWS represent specular images, both at the clinical and molecular levels.

  19. Williams Syndrome and 15q Duplication: Coincidence versus Association.

    PubMed

    Khokhar, Aditi; Agarwal, Swashti; Perez-Colon, Sheila

    2017-01-01

    Williams syndrome is a multisystem disorder caused by contiguous gene deletion in 7q11.23, commonly associated with distinctive facial features, supravalvular aortic stenosis, short stature, idiopathic hypercalcemia, developmental delay, joint laxity, and a friendly personality. The clinical features of 15q11q13 duplication syndrome include autism, mental retardation, ataxia, seizures, developmental delay, and behavioral problems. We report a rare case of a girl with genetically confirmed Williams syndrome and coexisting 15q duplication syndrome. The patient underwent treatment for central precocious puberty and later presented with primary amenorrhea. The karyotype revealed 47,XX,+mar. FISH analysis for the marker chromosome showed partial trisomy/tetrasomy for proximal chromosome 15q (15p13q13). FISH using an ELN -specific probe demonstrated a deletion in the Williams syndrome critical region in 7q11.23. To our knowledge, a coexistence of Williams syndrome and 15q duplication syndrome has not been reported in the literature. Our patient had early pubertal development, which has been described in some patients with Williams syndrome. However, years later after discontinuing gonadotropin-releasing hormone analogue treatment, she developed primary amenorrhea.

  20. Inherited Xq13.2-q21.31 duplication in a boy with recurrent seizures and pubertal gynecomastia: Clinical, chromosomal and aCGH characterization.

    PubMed

    Linhares, Natália D; Valadares, Eugênia R; da Costa, Silvia S; Arantes, Rodrigo R; de Oliveira, Luiz Roberto; Rosenberg, Carla; Vianna-Morgante, Angela M; Svartman, Marta

    2016-09-01

    We report on a 16-year-old boy with a maternally inherited ~ 18.3 Mb Xq13.2-q21.31 duplication delimited by aCGH. As previously described in patients with similar duplications, his clinical features included intellectual disability, developmental delay, speech delay, generalized hypotonia, infantile feeding difficulties, self-injurious behavior, short stature and endocrine problems. As additional findings, he presented recurrent seizures and pubertal gynecomastia. His mother was phenotypically normal and had completely skewed inactivation of the duplicated X chromosome, as most female carriers of such duplications. Five previously reported patients with partial Xq duplications presented duplication breakpoints similar to those of our patient. One of them, a fetus with multiple congenital abnormalities, had the same cytogenetic duplication breakpoint. Three of the reported patients shared many features with our proband but the other had some clinical features of the Prader-Willi syndrome. It was suggested that ATRX overexpression could be involved in the major clinical features of patients with partial Xq duplications. We propose that this gene could also be involved with the obesity of the patient with the Prader-Willi-like phenotype. Additionally, we suggest that the PCDH11X gene could be a candidate for our patient's recurrent seizures. In males, the Xq13-q21 duplication should be considered in the differential diagnosis of Prader-Willi syndrome, as previously suggested, and neuromuscular diseases, particularly mitochondriopathies.

  1. Prenatal diagnosis for a Chinese family with a de novo DMD gene mutation

    PubMed Central

    Li, Tao; Zhang, Zhao-jing; Ma, Xin; Lv, Xue; Xiao, Hai; Guo, Qian-nan; Liu, Hong-yan; Wang, Hong-dan; Wu, Dong; Lou, Gui-yu; Wang, Xin; Zhang, Chao-yang; Liao, Shi-xiu

    2017-01-01

    Abstract Background: Patients with Duchenne muscular dystrophy (DMD) usually have severe and fatal symptoms. At present, there is no effective treatment for DMD, thus it is very important to avoid the birth of children with DMD by effective prenatal diagnosis. We identified a de novo DMD gene mutation in a Chinese family, and make a prenatal diagnosis. Methods: First, multiplex ligation-dependent probe amplification (MLPA) was applied to analyze DMD gene exon deletion/duplication in all family members. The coding sequences of 79 exons in DMD gene were analyzed by Sanger sequencing in the patient; and then according to DMD gene exon mutation in the patient, DMD gene sequencing was performed in the family members. On the basis of results above, the pathogenic mutation in DMD gene was identified. Results: MLPA showed no DMD gene exon deletion/duplication in all family members. Sanger sequencing revealed c.2767_2767delT [p.Ser923LeufsX26] mutation in DMD gene of the patient. Heterozygous deletion mutation (T/-) at this locus was observed in the pregnant woman and her mother and younger sister. The analyses of amniotic fluid samples indicated negative Y chromosome sex-determining gene, no DMD gene exon deletion/duplication, no mutations at c.2767 locus, and the inherited maternal X chromosome different from that of the patient. Conclusion: The pathogenic mutation in DMD gene, c.2767_2767delT [p.Ser923LeufsX26], identified in this family is a de novo mutation. On the basis of specific conditions, it is necessary to select suitable methods to make prenatal diagnosis more effective, accurate, and economic. PMID:29390271

  2. Duplication of Dio3 genes in teleost fish and their divergent expression in skin during flatfish metamorphosis.

    PubMed

    Alves, R N; Cardoso, J C R; Harboe, T; Martins, R S T; Manchado, M; Norberg, B; Power, D M

    2017-05-15

    Deiodinase 3 (Dio3) plays an essential role during early development in vertebrates by controlling tissue thyroid hormone (TH) availability. The Atlantic halibut (Hippoglossus hippoglossus) possesses duplicate dio3 genes (dio3a and dio3b). Expression analysis indicates that dio3b levels change in abocular skin during metamorphosis and this suggests that this enzyme is associated with the divergent development of larval skin to the juvenile phenotype. In larvae exposed to MMI, a chemical that inhibits TH production, expression of dio3b in ocular skin is significantly up-regulated suggesting that THs normally modulate this genes expression during this developmental event. The molecular basis for divergent dio3a and dio3b expression and responsiveness to MMI treatment is explained by the multiple conserved TREs in the proximal promoter region of teleost dio3b and their absence from the promoter of dio3a. We propose that the divergent expression of dio3 in ocular and abocular skin during halibut metamorphosis contributes to the asymmetric pigment development in response to THs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. History of a prolific family: the Hes/Hey-related genes of the annelid Platynereis

    PubMed Central

    2014-01-01

    Background The Hes superfamily or Hes/Hey-related genes encompass a variety of metazoan-specific bHLH genes, with somewhat fuzzy phylogenetic relationships. Hes superfamily members are involved in a variety of major developmental mechanisms in metazoans, notably in neurogenesis and segmentation processes, in which they often act as direct effector genes of the Notch signaling pathway. Results We have investigated the molecular and functional evolution of the Hes superfamily in metazoans using the lophotrochozoan Platynereis dumerilii as model. Our phylogenetic analyses of more than 200 Metazoan Hes/Hey-related genes revealed the presence of five families, three of them (Hes, Hey and Helt) being pan-metazoan. Those families were likely composed of a unique representative in the last common metazoan ancestor. The evolution of the Hes family was shaped by many independent lineage specific tandem duplication events. The expression patterns of 13 of the 15 Hes/Hey-related genes in Platynereis indicate a broad functional diversification. Nevertheless, a majority of these genes are involved in two crucial developmental processes in annelids: neurogenesis and segmentation, resembling functions highlighted in other animal models. Conclusions Combining phylogenetic and expression data, our study suggests an unusual evolutionary history for the Hes superfamily. An ancestral multifunctional annelid Hes gene may have undergone multiples rounds of duplication-degeneration-complementation processes in the lineage leading to Platynereis, each gene copies ensuring their maintenance in the genome by subfunctionalisation. Similar but independent waves of duplications are at the origin of the multiplicity of Hes genes in other metazoan lineages. PMID:25250171

  4. Genome-wide identification, phylogeny, and gonadal expression of fox genes in Nile tilapia, Oreochromis niloticus.

    PubMed

    Yuan, Jing; Tao, Wenjing; Cheng, Yunying; Huang, Baofeng; Wang, Deshou

    2014-08-01

    The fox genes play important roles in various biological processes, including sexual development. In the present study, we isolated 65 fox genes, belonging to 18 subfamilies named A-R, from Nile tilapia through genome-wide screening. Twenty-four of them have two or three (foxm1) copies. Furthermore, 16, 25, 68, and 45 fox members were isolated from nematodes, protochordates, teleosts, and tetrapods, respectively. Phylogenetic analyses indicated fox gene family had undergone three expansions parallel to the three rounds of genome duplication during evolution. We also analyzed the clustered fox genes and found that apparent linkage duplication existed in teleosts, which further supported fish-specific genome duplication hypothesis. In addition, species- and lineage-specific duplication is another reason for fox gene family expansion. Based on the four pairs of XX and XY gonadal transcriptome data from four critical developmental stages, we analyzed the expression profile of all fox genes and identified sexually dimorphic fox genes at each stage. All fox genes were detected in gonads, with 15 of them at the background expression level (total read per kb per million reads, RPKM < 10), 29 at moderate expression level (10 < total RPKM < 100), and 21 at high expression level (total RPKM > 100). There are 27, 24, 28, and 9 sexually dimorphic fox genes at 5, 30, 90, and 180 days after hatching (dah), respectively. foxq1a, foxf1, foxr1, and foxr1 were identified as the most differentially expressed genes at each stage. foxl2 was characterized as XX-dominant gene, while foxd5, foxi3, foxn3, foxj1a, foxj3b, and foxo6b were characterized as XY-dominant genes. qPCR and in situ hybridization of foxh1 and foxj1a were performed to confirm the expression profiles and to validate the transcriptome data. Our results suggest that fox genes might play important roles in sex determination and gonadal development in teleosts.

  5. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.

    PubMed

    Brunet, Frédéric G; Volff, Jean-Nicolas; Schartl, Manfred

    2016-06-03

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Inherited partial direct duplication of 11q: First report and possible association with a midline developmental field defect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witt, D.R.; Jenkins, L.; Pinheiro, S.

    1994-09-01

    A 36-year-old woman underwent amniocentesis for advanced maternal age. The fetal karyotype had an extra dark staining G band on the long arm of chromosome 11 with no other identifiable abnormalities. FISH studies using a chromosome 11 paint probe confirmed the origin of the extra band. The abnormality was identified as a partial duplication of 11q: 46,XX dir dup (11)(q13.5q21) or (q21q23.1). The specific duplicated band could not be identified with certainty. Detailed fetal sonograms were normal. Family studies revealed the identical duplication in the mother but normal karyotypes in both maternal grandparents. The mother had strabismus and a shortmore » tongue frenulum which required surgical correction. Menses occurred late in adolescence and complete development of secondary sexual characteristics was delayed until adulthood. An infertility evaluation revealed duplication of the uterus, cervix, and vagina. An evaluation for metorrhagia identified a pituitary adenoma which was resected. Her intelligence was normal. To our knowledge this is the first report of a heritable direct duplication of 11q. It is possible that one or more gene in the duplicated segment played a causal role in the pathophysiology of the patient`s anomalies through a disturbance of the so-called {open_quotes}midline developmental field{close_quotes}. Alternatively, the cytogenetic findings could be unrelated to the malformations. Rare instances of partial gain or loss of specific late-replicating heterochromatic regions without phenotypic effect have been reported. This region of 11q is also relatively late-replicating. This is consistent with previous reports suggesting a paucity of expressed genes in this 11q region. Molecular studies of the duplication are underway to determine the specific location and extent of duplication. Phenotypic evaluation of the patient`s baby will also be reported.« less

  7. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.

    PubMed

    Harduin-Lepers, Anne; Petit, Daniel; Mollicone, Rosella; Delannoy, Philippe; Petit, Jean-Michel; Oriol, Rafael

    2008-09-23

    initial expansion and subsequent divergence of the ST8Sia genes resulted as a consequence of a series of ancient duplications and translocations in the invertebrate genome long before the emergence of vertebrates. A second subset of ST8sia genes in the vertebrate genome arose from whole genome duplication (WGD) R1 and R2. Subsequent selective ST8Sia gene loss is responsible for the characteristic ST8Sia gene expression pattern observed today in individual species.

  8. Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar) and other salmonid fishes

    PubMed Central

    Ryynänen, Heikki J; Primmer, Craig R

    2006-01-01

    Background Single nucleotide polymorphisms (SNPs) represent the most abundant type of DNA variation in the vertebrate genome, and their applications as genetic markers in numerous studies of molecular ecology and conservation of natural populations are emerging. Recent large-scale sequencing projects in several fish species have provided a vast amount of data in public databases, which can be utilized in novel SNP discovery in salmonids. However, the suggested duplicated nature of the salmonid genome may hamper SNP characterization if the primers designed in conserved gene regions amplify multiple loci. Results Here we introduce a new intron-primed exon-crossing (IPEC) method in an attempt to overcome this duplication problem, and also evaluate different priming methods for SNP discovery in Atlantic salmon (Salmo salar) and other salmonids. A total of 69 loci with differing priming strategies were screened in S. salar, and 27 of these produced ~13 kb of high-quality sequence data consisting of 19 SNPs or indels (one per 680 bp). The SNP frequency and the overall nucleotide diversity (3.99 × 10-4) in S. salar was lower than reported in a majority of other organisms, which may suggest a relative young population history for Atlantic salmon. A subset of primers used in cross-species analyses revealed considerable variation in the SNP frequencies and nucleotide diversities in other salmonids. Conclusion Sequencing success was significantly higher with the new IPEC primers; thus the total number of loci to screen in order to identify one potential polymorphic site was six times less with this new strategy. Given that duplication may hamper SNP discovery in some species, the IPEC method reported here is an alternative way of identifying novel polymorphisms in such cases. PMID:16872523

  9. Natural History of Human Respiratory Syncytial Virus Inferred from Phylogenetic Analysis of the Attachment (G) Glycoprotein with a 60-Nucleotide Duplication

    PubMed Central

    Trento, Alfonsina; Viegas, Mariana; Galiano, Mónica; Videla, Cristina; Carballal, Guadalupe; Mistchenko, Alicia S.; Melero, José A.

    2006-01-01

    A total of 47 clinical samples were identified during an active surveillance program of respiratory infections in Buenos Aires (BA) (1999 to 2004) that contained sequences of human respiratory syncytial virus (HRSV) with a 60-nucleotide duplication in the attachment (G) protein gene. This duplication was analogous to that previously described for other three viruses also isolated in Buenos Aires in 1999 (A. Trento et al., J. Gen. Virol. 84:3115-3120, 2003). Phylogenetic analysis indicated that BA sequences with that duplication shared a common ancestor (dated about 1998) with other HRSV G sequences reported worldwide after 1999. The duplicated nucleotide sequence was an exact copy of the preceding 60 nucleotides in early viruses, but both copies of the duplicated segment accumulated nucleotide substitutions in more recent viruses at a rate apparently higher than in other regions of the G protein gene. The evolution of the viruses with the duplicated G segment apparently followed the overall evolutionary pattern previously described for HRSV, and this genotype has replaced other prevailing antigenic group B genotypes in Buenos Aires and other places. Thus, the duplicated segment represents a natural tag that can be used to track the dissemination and evolution of HRSV in an unprecedented setting. We have taken advantage of this situation to reexamine the molecular epidemiology of HRSV and to explore the natural history of this important human pathogen. PMID:16378999

  10. A local duplication of the Melanocortin receptor 1 locus in Astyanax

    PubMed Central

    Gross, Joshua B.; Weagley, James; Stahl, Bethany A.; Ma, Li; Espinasa, Luis; McGaugh, Suzanne E.

    2017-01-01

    In this study, we report evidence of a novel duplication of Melanocortin receptor 1 (Mc1r) in the cavefish genome. This locus was discovered following the observation of excessive allelic diversity in a ~820 bp fragment of Mc1r amplified via degenerate PCR from a natural population of Astyanax aeneus fish from Guerrero, Mexico. The cavefish genome reveals the presence of two closely related Mc1r open reading frames separated by a 1.46 kb intergenic region. One open reading frame corresponds to the previously reported Mc1r receptor, and the other open reading frame (duplicate copy) is 975 bp in length, encoding a receptor of 325 amino acids. Sequence similarity analyses position both copies in the syntenic region of the single Mc1r locus in 16 representative craniate genomes spanning bony fish (including Astyanax) to mammals, suggesting we discovered tandem duplicates of this important gene. The two Mc1r copies share ~89% sequence similarity, and, within Astyanax, are more similar to one another compared to other melanocortin family members. Future studies will inform the precise functional significance of the duplicated Mc1r locus, and if this novel copy number variant may have adaptive significance for the Astyanax lineage. PMID:28738163

  11. Reviewing Large LAMA2 Deletions and Duplications in Congenital Muscular Dystrophy Patients.

    PubMed

    Oliveira, Jorge; Gonçalves, Ana; Oliveira, Márcia E; Fineza, Isabel; Pavanello, Rita C M; Vainzof, Mariz; Bronze-da-Rocha, Elsa; Santos, Rosário; Sousa, Mário

    2014-01-01

    Congenital muscular dystrophy (CMD) type 1A (MDC1A) is caused by recessive mutations in laminin-α2 (LAMA2) gene. Laminin-211, a heterotrimeric glycoprotein that contains the α2 chain, is crucial for muscle stability establishing a bond between the sarcolemma and the extracellular matrix. More than 215 mutations are listed in the locus specific database (LSDB) for LAMA2 gene (May 2014). A limited number of large deletions/duplications have been reported in LAMA2. Our main objective was the identification of additional large rearrangements in LAMA2 found in CMD patients and a systematic review of cases in the literature and LSDB. In four of the fifty-two patients studied over the last 10 years, only one heterozygous mutation was identified, after sequencing and screening for a frequent LAMA2 deletion. Initial screening of large mutations was performed by multiplex ligation-dependent probe application (MLPA). Further characterization implied several techniques: long-range PCR, cDNA and Southern-blot analysis. Three novel large deletions in LAMA2 and the first pathogenic large duplication were successfully identified, allowing a definitive molecular diagnosis, carrier screening and prenatal diagnosis. A total of fifteen deletions and two duplications previously reported were also reviewed. Two possible mutational "hotspots" for deletions may exist, the first encompassing exons 3 and 4 and second in the 3' region (exons 56 to 65) of LAMA2. Our findings show that this type of mutation is fairly frequent (18.4% of mutated alleles) and is underestimated in the literature. It is important to include the screening of large deletions/duplications as part of the genetic diagnosis strategy.

  12. FT Duplication Coordinates Reproductive and Vegetative Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Chuan-Yu; Adams, Joshua P.; Kim, Hyejin

    2011-01-01

    Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles ofmore » vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.« less

  13. NASA wide electronic publishing system: Electronic printing and duplicating. Stage 3 evaluation report

    NASA Technical Reports Server (NTRS)

    Tuey, Richard C.; Moore, Fred W.; Ryan, Christine A.

    1995-01-01

    The report is presented in four sections: The Introduction describes the duplicating configuration under evaluation and the Background contains a chronological description of the evaluation segmented by phases 1 and 2. This section includes the evaluation schedule, printing and duplicating requirements, storage and communication requirements, electronic publishing system configuration, existing processes and proposed processes, billing rates, costs and productivity analysis, and the return on investment based upon the data gathered to date. The third section contains the phase 1 comparative cost and productivity analysis. This analysis demonstrated that LaRC should proceed with a 90-day evaluation of the DocuTech and follow with a phase 2 cycle to actually demonstrate that the proposed system would meet the needs of LaRC's printing and duplicating requirements, benchmark results, cost comparisons, benchmark observations, and recommendations. These are documented after the recommendations.

  14. A Y-Encoded Suppressor of Feminization Arose via Lineage-Specific Duplication of a Cytokinin Response Regulator in Kiwifruit[OPEN

    PubMed Central

    Ohtani, Haruka; Morimoto, Takuya; Beppu, Kenji; Kataoka, Ikuo

    2018-01-01

    Dioecy, the presence of male and female flowers on distinct individuals, has evolved independently in multiple plant lineages, and the genes involved in this differential development are just starting to be uncovered in a few species. Here, we used genomic approaches to investigate this pathway in kiwifruits (genus Actinidia). Genome-wide cataloging of male-specific subsequences, combined with transcriptome analysis, led to the identification of a type-C cytokinin response regulator as a potential sex determinant gene in this genus. Functional transgenic analyses in two model systems, Arabidopsis thaliana and Nicotiana tabacum, indicated that this gene acts as a dominant suppressor of carpel development, prompting us to name it Shy Girl (SyGI). Evolutionary analyses in a panel of Actinidia species revealed that SyGI is located in the Y-specific region of the genome and probably arose from a lineage-specific gene duplication. Comparisons with the duplicated autosomal counterpart, and with orthologs from other angiosperms, suggest that the SyGI-specific duplication and subsequent evolution of cis-elements may have played a key role in the acquisition of separate sexes in this species. PMID:29626069

  15. Duplication of SOX9 associated with 46,XX ovotesticular disorder of sex development.

    PubMed

    López-Hernández, Berenice; Méndez, Juan Pablo; Coral-Vázquez, Ramón Mauricio; Benítez-Granados, Jesús; Zenteno, Juan Carlos; Villegas-Ruiz, Vanessa; Calzada-León, Raúl; Soderlund, Daniela; Canto, Patricia

    2018-04-04

    The purpose of the present study was to investigate whether ten unrelated SRY-negative individuals with this sex differentiation disorder presented a double dose of SOX9 as the cause of their disease. Ten unrelated SRY-negative 46,XX ovotesticular disorder of sexual development (DSD) subjects were molecularly studied. Multiplex-ligation dependent probe amplification (MLPA) and quantitative real-time PCR analysis (qRT-PCR) for SOX9 were performed. The MLPA analysis demonstrated that one patient presented a heterozygous duplication of the entire SOX9 coding region (above 1.3 value of peak ratio), as well as at least a ~ 483 kb upstream duplication. Moreover, no duplication of other SOX9 probes was observed corresponding to the region between -1007 and -1500 kb upstream. A qRT-PCR analysis showed a duplication of at least -581 kb upstream and ~1.63 kb of the coding region that encompasses exon 3. The limits of the duplication were mapped approximately from ~71539762 to 72122741 of Chr17. No molecular abnormalities were found in the remaining nine patients. This study is thought to be the first report regarding a duplication of SOX9 that is associated with the presence of 46,XX ovotesticular DSD, encompassing at least -581 kb upstream, and the almost entire coding region of the gene. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants

    PubMed Central

    Mathews, Sarah; Clements, Mark D.; Beilstein, Mark A.

    2010-01-01

    Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence. PMID:20047866

  17. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups.

    PubMed

    Yin, Guangjun; Xu, Hongliang; Xiao, Shuyang; Qin, Yajuan; Li, Yaxuan; Yan, Yueming; Hu, Yingkao

    2013-10-03

    WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates

  18. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

    PubMed

    Arbogast, Thomas; Ouagazzal, Abdel-Mouttalib; Chevalier, Claire; Kopanitsa, Maksym; Afinowi, Nurudeen; Migliavacca, Eugenia; Cowling, Belinda S; Birling, Marie-Christine; Champy, Marie-France; Reymond, Alexandre; Herault, Yann

    2016-02-01

    The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.

  19. Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies

    PubMed Central

    2015-01-01

    Background Most models of genome evolution concern either genetic sequences, gene content or gene order. They sometimes integrate two of the three levels, but rarely the three of them. Probabilistic models of gene order evolution usually have to assume constant gene content or adopt a presence/absence coding of gene neighborhoods which is blind to complex events modifying gene content. Results We propose a probabilistic evolutionary model for gene neighborhoods, allowing genes to be inserted, duplicated or lost. It uses reconciled phylogenies, which integrate sequence and gene content evolution. We are then able to optimize parameters such as phylogeny branch lengths, or probabilistic laws depicting the diversity of susceptibility of syntenic regions to rearrangements. We reconstruct a structure for ancestral genomes by optimizing a likelihood, keeping track of all evolutionary events at the level of gene content and gene synteny. Ancestral syntenies are associated with a probability of presence. We implemented the model with the restriction that at most one gene duplication separates two gene speciations in reconciled gene trees. We reconstruct ancestral syntenies on a set of 12 drosophila genomes, and compare the evolutionary rates along the branches and along the sites. We compare with a parsimony method and find a significant number of results not supported by the posterior probability. The model is implemented in the Bio++ library. It thus benefits from and enriches the classical models and methods for molecular evolution. PMID:26452018

  20. Origin, evolution, and population genetics of the selfish Segregation Distorter gene duplication in European and African populations of Drosophila melanogaster.

    PubMed

    Brand, Cara L; Larracuente, Amanda M; Presgraves, Daven C

    2015-05-01

    Meiotic drive elements are a special class of evolutionarily "selfish genes" that subvert Mendelian segregation to gain preferential transmission at the expense of homologous loci. Many drive elements appear to be maintained in populations as stable polymorphisms, their equilibrium frequencies determined by the balance between drive (increasing frequency) and selection (decreasing frequency). Here we show that a classic, seemingly balanced, drive system is instead characterized by frequent evolutionary turnover giving rise to dynamic, rather than stable, equilibrium frequencies. The autosomal Segregation Distorter (SD) system of the fruit fly Drosophila melanogaster is a selfish coadapted meiotic drive gene complex in which the major driver corresponds to a partial duplication of the gene Ran-GTPase activating protein (RanGAP). SD chromosomes segregate at similar, low frequencies of 1-5% in natural populations worldwide, consistent with a balanced polymorphism. Surprisingly, our population genetic analyses reveal evidence for parallel, independent selective sweeps of different SD chromosomes in populations on different continents. These findings suggest that, rather than persisting at a single stable equilibrium, SD chromosomes turn over frequently within populations. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  1. Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae).

    PubMed

    Juntheikki-Palovaara, Inka; Tähtiharju, Sari; Lan, Tianying; Broholm, Suvi K; Rijpkema, Anneke S; Ruonala, Raili; Kale, Liga; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula

    2014-09-01

    The complex inflorescences (capitula) of Asteraceae consist of different types of flowers. In Gerbera hybrida (gerbera), the peripheral ray flowers are bilaterally symmetrical and lack functional stamens while the central disc flowers are more radially symmetrical and hermaphroditic. Proteins of the CYC2 subclade of the CYC/TB1-like TCP domain transcription factors have been recruited several times independently for parallel evolution of bilaterally symmetrical flowers in various angiosperm plant lineages, and have also been shown to regulate flower-type identity in Asteraceae. The CYC2 subclade genes in gerbera show largely overlapping gene expression patterns. At the level of single flowers, their expression domain in petals shows a spatial shift from the dorsal pattern known so far in species with bilaterally symmetrical flowers, suggesting that this change in expression may have evolved after the origin of Asteraceae. Functional analysis indicates that GhCYC2, GhCYC3 and GhCYC4 mediate positional information at the proximal-distal axis of the inflorescence, leading to differentiation of ray flowers, but that they also regulate ray flower petal growth by affecting cell proliferation until the final size and shape of the petals is reached. Moreover, our data show functional diversification for the GhCYC5 gene. Ectopic activation of GhCYC5 increases flower density in the inflorescence, suggesting that GhCYC5 may promote the flower initiation rate during expansion of the capitulum. Our data thus indicate that modification of the ancestral network of TCP factors has, through gene duplications, led to the establishment of new expression domains and to functional diversification. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. The Cognitive and Behavioral Phenotypes of Individuals with "CHRNA7" Duplications

    ERIC Educational Resources Information Center

    Gillentine, M. A.; Berry, L. N.; Goin-Kochel, R. P.; Ali, M. A.; Ge, J.; Guffey, D.; Rosenfeld, J. A.; Hannig, V.; Bader, P.; Proud, M.; Shinawi, M.; Graham, B. H.; Lin, A.; Lalani, S. R.; Reynolds, J.; Chen, M.; Grebe, T.; Minard, C. G.; Stankiewicz, P.; Beaudet, A. L.; Schaaf, C. P.

    2017-01-01

    Chromosome 15q11q13 is among the least stable regions in the genome due to its highly complex genomic architecture. Low copy repeat elements at 15q13.3 facilitate recurrent copy number variants (CNVs), with deletions established as pathogenic and "CHRNA7" implicated as a candidate gene. However, the pathogenicity of duplications of…

  3. Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome.

    PubMed

    Tanaka, Shigekazu; Mizushina, Youichi; Kato, Yoriko; Tamura, Masaru; Shiroishi, Toshihiko

    2013-10-03

    Mouse Gasdermin A3 (Gsdma3) is the causative gene for dominant skin mutations exhibiting alopecia. Mouse has two other Gsdma3-related genes, Gsdma and Gsdma2, whereas human and rat have only one related gene. To date, no skin mutation has been reported for human GSDMA and rat Gsdma as well as mouse Gsdma and Gsdma2. Therefore, it is possible that only Gsdma3 has gain-of-function type mutations to cause dominant skin phenotype. To elucidate functional divergence among the Gsdma-related genes in mice, and to infer the function of the human and rat orthologs, we examined in vivo function of mouse Gsdma by generating Gsdma knockout mice and transgenic mice that overexpress wild-type Gsdma or Gsdma harboring a point mutation (Alanine339Threonine). The Gsdma knockout mice shows no visible phenotype, indicating that Gsdma is not essential for differentiation of epidermal cells and maintenance of the hair cycle, and that Gsdma is expressed specifically both in the inner root sheath of hair follicles and in suprabasal cell layers, whereas Gsdma3 is expressed only in suprabasal layers. By contrast, both types of the transgenic mice exhibited epidermal hyperplasia resembling the Gsdma3 mutations, although the phenotype depended on the genetic background. These results indicate that the mouse Gsdma and Gsdma3 genes share common function to regulate epithelial maintenance and/or homeostasis, and suggest that the function of human GSDMA and rat Gsdma, which are orthologs of mouse Gsdma, is conserved as well.

  4. Functional Conservation of Gsdma Cluster Genes Specifically Duplicated in the Mouse Genome

    PubMed Central

    Tanaka, Shigekazu; Mizushina, Youichi; Kato, Yoriko; Tamura, Masaru; Shiroishi, Toshihiko

    2013-01-01

    Mouse Gasdermin A3 (Gsdma3) is the causative gene for dominant skin mutations exhibiting alopecia. Mouse has two other Gsdma3-related genes, Gsdma and Gsdma2, whereas human and rat have only one related gene. To date, no skin mutation has been reported for human GSDMA and rat Gsdma as well as mouse Gsdma and Gsdma2. Therefore, it is possible that only Gsdma3 has gain-of-function type mutations to cause dominant skin phenotype. To elucidate functional divergence among the Gsdma-related genes in mice, and to infer the function of the human and rat orthologs, we examined in vivo function of mouse Gsdma by generating Gsdma knockout mice and transgenic mice that overexpress wild-type Gsdma or Gsdma harboring a point mutation (Alanine339Threonine). The Gsdma knockout mice shows no visible phenotype, indicating that Gsdma is not essential for differentiation of epidermal cells and maintenance of the hair cycle, and that Gsdma is expressed specifically both in the inner root sheath of hair follicles and in suprabasal cell layers, whereas Gsdma3 is expressed only in suprabasal layers. By contrast, both types of the transgenic mice exhibited epidermal hyperplasia resembling the Gsdma3 mutations, although the phenotype depended on the genetic background. These results indicate that the mouse Gsdma and Gsdma3 genes share common function to regulate epithelial maintenance and/or homeostasis, and suggest that the function of human GSDMA and rat Gsdma, which are orthologs of mouse Gsdma, is conserved as well. PMID:23979942

  5. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers

    PubMed Central

    2012-01-01

    Background Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling. Results To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago. Conclusions Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed plants. PMID:23102090

  6. Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots

    PubMed Central

    Howarth, Dianella G.; Donoghue, Michael J.

    2006-01-01

    Flower symmetry is of special interest in understanding angiosperm evolution and ecology. Evidence from the Antirrhineae (snapdragon and relatives) indicates that several TCP gene-family transcription factors, especially CYCLOIDEA (CYC) and DICHOTOMA (DICH), play a role in specifying dorsal identity in the corolla and androecium of monosymmetric (bilateral) flowers. Studies of rosid and asterid angiosperms suggest that orthologous TCP genes may be important in dorsal identity, but there has been no broad phylogenetic context to determine copy number or orthology. Here, we compare published data from rosids and asterids with newly collected data from ranunculids, caryophyllids, Saxifragales, and Asterales to ascertain the phylogenetic placement of major duplications in the “ECE” (CYC/TB1) clade of TCP transcription factors. Bayesian analyses indicate that there are three major copies of “CYC” in the ECE clade, and that duplications leading to these copies predate the core eudicots. CYC1 contains no subsequent duplications and may not be expressed in floral tissue. CYC3 exhibits similar patterns of duplication to CYC2 in several groups. Using RT-PCR, we show that, in flowers of Lonicera morrowii (Caprifoliaceae), DipsCYC2B is expressed in the four dorsal petals and not in the ventral petal. DipsCYC3B is expressed in flower and petal primordia, possibly most strongly in the ventral petal. PMID:16754863

  7. Transducin Duplicates in the Zebrafish Retina and Pineal Complex: Differential Specialisation after the Teleost Tetraploidisation

    PubMed Central

    Lagman, David; Callado-Pérez, Amalia; Franzén, Ilkin E.

    2015-01-01

    Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation. PMID:25806532

  8. Duplicate document detection in DocBrowse

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Bruce, Andrew G.; Nguyen, Thien

    1998-04-01

    Duplicate documents are frequently found in large databases of digital documents, such as those found in digital libraries or in the government declassification effort. Efficient duplicate document detection is important not only to allow querying for similar documents, but also to filter out redundant information in large document databases. We have designed three different algorithm to identify duplicate documents. The first algorithm is based on features extracted from the textual content of a document, the second algorithm is based on wavelet features extracted from the document image itself, and the third algorithm is a combination of the first two. These algorithms are integrated within the DocBrowse system for information retrieval from document images which is currently under development at MathSoft. DocBrowse supports duplicate document detection by allowing (1) automatic filtering to hide duplicate documents, and (2) ad hoc querying for similar or duplicate documents. We have tested the duplicate document detection algorithms on 171 documents and found that text-based method has an average 11-point precision of 97.7 percent while the image-based method has an average 11- point precision of 98.9 percent. However, in general, the text-based method performs better when the document contains enough high-quality machine printed text while the image- based method performs better when the document contains little or no quality machine readable text.

  9. Expression of HOXB genes is significantly different in acute myeloid leukemia with a partial tandem duplication of MLL vs. a MLL translocation: a cross-laboratory study.

    PubMed

    Liu, Hsi-Che; Shih, Lee-Yung; May Chen, Mei-Ju; Wang, Chien-Chih; Yeh, Ting-Chi; Lin, Tung-Huei; Chen, Chien-Yu; Lin, Chih-Jen; Liang, Der-Cherng

    2011-05-01

    In acute myeloid leukemia (AML), the mixed lineage leukemia (MLL) gene may be rearranged to generate a partial tandem duplication (PTD), or fused to partner genes through a chromosomal translocation (tMLL). In this study, we first explored the differentially expressed genes between MLL-PTD and tMLL using gene expression profiling of our cohort (15 MLL-PTD and 10 tMLL) and one published data set. The top 250 probes were chosen from each set, resulting in 29 common probes (21 unique genes) to both sets. The selected genes include four HOXB genes, HOXB2, B3, B5, and B6. The expression values of these HOXB genes significantly differ between MLL-PTD and tMLL cases. Clustering and classification analyses were thoroughly conducted to support our gene selection results. Second, as MLL-PTD, FLT3-ITD, and NPM1 mutations are identified in AML with normal karyotypes, we briefly studied their impact on the HOXB genes. Another contribution of this study is to demonstrate that using public data from other studies enriches samples for analysis and yields more conclusive results. 2011 Elsevier Inc. All rights reserved.

  10. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome

    PubMed Central

    Opazo, Juan C.; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F.

    2015-01-01

    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  11. Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis-a case of "Tandem duplication-random loss" for genome rearrangement in Crassostrea?

    PubMed Central

    Yu, Ziniu; Wei, Zhengpeng; Kong, Xiaoyu; Shi, Wei

    2008-01-01

    Background Mitochondrial DNA sequences are extensively used as genetic markers not only for studies of population or ecological genetics, but also for phylogenetic and evolutionary analyses. Complete mt-sequences can reveal information about gene order and its variation, as well as gene and genome evolution when sequences from multiple phyla are compared. Mitochondrial gene order is highly variable among mollusks, with bivalves exhibiting the most variability. Of the 41 complete mt genomes sequenced so far, 12 are from bivalves. We determined, in the current study, the complete mitochondrial DNA sequence of Crassostrea hongkongensis. We present here an analysis of features of its gene content and genome organization in comparison with two other Crassostrea species to assess the variation within bivalves and among main groups of mollusks. Results The complete mitochondrial genome of C. hongkongensis was determined using long PCR and a primer walking sequencing strategy with genus-specific primers. The genome is 16,475 bp in length and contains 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 22 transfer tRNA genes (including a suppressor tRNA gene), and 2 ribosomal RNA genes, all of which appear to be transcribed from the same strand. A striking finding of this study is that a DNA segment containing four tRNA genes (trnk1, trnC, trnQ1 and trnN) and two duplicated or split rRNA gene (rrnL5' and rrnS) are absent from the genome, when compared with that of two other extant Crassostrea species, which is very likely a consequence of loss of a single genomic region present in ancestor of C. hongkongensis. It indicates this region seem to be a "hot spot" of genomic rearrangements over the Crassostrea mt-genomes. The arrangement of protein-coding genes in C. hongkongensis is identical to that of Crassostrea gigas and Crassostrea virginica, but higher amino acid sequence identities are shared between C. hongkongensis and C. gigas than between other

  12. BcMF26a and BcMF26b Are Duplicated Polygalacturonase Genes with Divergent Expression Patterns and Functions in Pollen Development and Pollen Tube Formation in Brassica campestris

    PubMed Central

    Lyu, Meiling; Yu, Youjian; Jiang, Jingjing; Song, Limin; Liang, Ying; Ma, Zhiming; Xiong, Xingpeng; Cao, Jiashu

    2015-01-01

    Polygalacturonase (PG) is one of the cell wall hydrolytic enzymes involving in pectin degradation. A comparison of two highly conserved duplicated PG genes, namely, Brassica campestris Male Fertility 26a (BcMF26a) and BcMF26b, revealed the different features of their expression patterns and functions. We found that these two genes were orthologous genes of At4g33440, and they originated from a chromosomal segmental duplication. Although structurally similar, their regulatory and intron sequences largely diverged. QRT-PCR analysis showed that the expression level of BcMF26b was higher than that of BcMF26a in almost all the tested organs and tissues in Brassica campestris. Promoter activity analysis showed that, at reproductive development stages, BcMF26b promoter was active in tapetum, pollen grains, and pistils, whereas BcMF26a promoter was only active in pistils. In the subcellular localization experiment, BcMF26a and BcMF26b proteins could be localized to the cell wall. When the two genes were co-inhibited, pollen intine was formed abnormally and pollen tubes could not grow or stretch. Moreover, the knockout mutants of At4g33440 delayed the growth of pollen tubes. Therefore, BcMF26a/b can participate in the construction of pollen wall by modulating intine information and BcMF26b may play a major role in co-inhibiting transformed plants. PMID:26153985

  13. The centriole duplication cycle

    PubMed Central

    Fırat-Karalar, Elif Nur; Stearns, Tim

    2014-01-01

    Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole ‘origin of duplication’ that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells. PMID:25047614

  14. The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression

    PubMed Central

    Baker, Katie; Bayer, Micha; Cook, Nicola; Dreißig, Steven; Dhillon, Taniya; Russell, Joanne; Hedley, Pete E; Morris, Jenny; Ramsay, Luke; Colas, Isabelle; Waugh, Robbie; Steffenson, Brian; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J

    2014-01-01

    The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transcript level or developmental RNA specificity between the barley pericentromeric region and the rest of the genome. In contrast, all of the evolutionary parameters studied here show evidence of compromised gene evolution in this region. First, genes within the pericentromeric region of wild barley show reduced diversity and significantly weakened purifying selection compared with the rest of the genome. Second, gene duplicates (ohnolog pairs) derived from the cereal whole-genome duplication event ca. 60MYa have been completely eliminated from the barley pericentromeric region. Third, local gene duplication in the pericentromeric region is reduced by 29% relative to the rest of the genome. Thus, the pericentromeric region of barley is a permissive environment for gene expression but has restricted gene evolution in a sizeable fraction of barley's genes. PMID:24947331

  15. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study.

    PubMed

    Iacovazzo, Donato; Caswell, Richard; Bunce, Benjamin; Jose, Sian; Yuan, Bo; Hernández-Ramírez, Laura C; Kapur, Sonal; Caimari, Francisca; Evanson, Jane; Ferraù, Francesco; Dang, Mary N; Gabrovska, Plamena; Larkin, Sarah J; Ansorge, Olaf; Rodd, Celia; Vance, Mary L; Ramírez-Renteria, Claudia; Mercado, Moisés; Goldstone, Anthony P; Buchfelder, Michael; Burren, Christine P; Gurlek, Alper; Dutta, Pinaki; Choong, Catherine S; Cheetham, Timothy; Trivellin, Giampaolo; Stratakis, Constantine A; Lopes, Maria-Beatriz; Grossman, Ashley B; Trouillas, Jacqueline; Lupski, James R; Ellard, Sian; Sampson, Julian R; Roncaroli, Federico; Korbonits, Márta

    2016-06-01

    Non-syndromic pituitary gigantism can result from AIP mutations or the recently identified Xq26.3 microduplication causing X-linked acrogigantism (XLAG). Within Xq26.3, GPR101 is believed to be the causative gene, and the c.924G > C (p.E308D) variant in this orphan G protein-coupled receptor has been suggested to play a role in the pathogenesis of acromegaly.We studied 153 patients (58 females and 95 males) with pituitary gigantism. AIP mutation-negative cases were screened for GPR101 duplication through copy number variation droplet digital PCR and high-density aCGH. The genetic, clinical and histopathological features of XLAG patients were studied in detail. 395 peripheral blood and 193 pituitary tumor DNA samples from acromegaly patients were tested for GPR101 variants.We identified 12 patients (10 females and 2 males; 7.8 %) with XLAG. In one subject, the duplicated region only contained GPR101, but not the other three genes in found to be duplicated in the previously reported patients, defining a new smallest region of overlap of duplications. While females presented with germline mutations, the two male patients harbored the mutation in a mosaic state. Nine patients had pituitary adenomas, while three had hyperplasia. The comparison of the features of XLAG, AIP-positive and GPR101&AIP-negative patients revealed significant differences in sex distribution, age at onset, height, prolactin co-secretion and histological features. The pathological features of XLAG-related adenomas were remarkably similar. These tumors had a sinusoidal and lobular architecture. Sparsely and densely granulated somatotrophs were admixed with lactotrophs; follicle-like structures and calcifications were commonly observed. Patients with sporadic of familial acromegaly did not have an increased prevalence of the c.924G > C (p.E308D) GPR101 variant compared to public databases.In conclusion, XLAG can result from germline or somatic duplication of GPR101. Duplication of GPR101

  16. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins.

    PubMed

    Mühlhausen, Stefanie; Kollmar, Martin

    2013-09-22

    The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications.

  17. Phylogenomics reveals an extensive history of genome duplication in diatoms (Bacillariophyta).

    PubMed

    Parks, Matthew B; Nakov, Teofil; Ruck, Elizabeth C; Wickett, Norman J; Alverson, Andrew J

    2018-03-01

    Diatoms are one of the most species-rich lineages of microbial eukaryotes. Similarities in clade age, species richness, and primary productivity motivate comparisons to angiosperms, whose genomes have been inordinately shaped by whole-genome duplication (WGD). WGDs have been linked to speciation, increased rates of lineage diversification, and identified as a principal driver of angiosperm evolution. We synthesized a large but scattered body of evidence that suggests polyploidy may be common in diatoms as well. We used gene counts, gene trees, and distributions of synonymous divergence to carry out a phylogenomic analysis of WGD across a diverse set of 37 diatom species. Several methods identified WGDs of varying age across diatoms. Determining the occurrence, exact number, and placement of events was greatly impacted by uncertainty in gene trees. WGDs inferred from synonymous divergence of paralogs varied depending on how redundancy in transcriptomes was assessed, gene families were assembled, and synonymous distances (Ks) were calculated. Our results highlighted a need for systematic evaluation of key methodological aspects of Ks-based approaches to WGD inference. Gene tree reconciliations supported allopolyploidy as the predominant mode of polyploid formation, with strong evidence for ancient allopolyploid events in the thalassiosiroid and pennate diatom clades. Our results suggest that WGD has played a major role in the evolution of diatom genomes. We outline challenges in reconstructing paleopolyploid events in diatoms that, together with these results, offer a framework for understanding the impact of genome duplication in a group that likely harbors substantial genomic diversity. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  18. An Insertional Translocation in Neurospora That Generates Duplications Heterozygous for Mating Type

    PubMed Central

    Perkins, David D.

    1972-01-01

    In strain T(I→II)39311 a long interstitial segment is transposed from IL to IIR, where it is inserted in reversed order with respect to the centromere. In crosses of T x T essentially all asci have eight viable, black spores, and all progeny are phenotypically normal. When T(I→II)39311 is crossed by Normal sequence (N), the expected duplication class is viable while the corresponding deficiency is lethal; 44% of the asci have 8 Black (viable) spores and 0 White (inviable) spores, 41% have 4 Black: 4 White, and 10% have 6 Black: 2 White. These are the ascus types expected from normal centromere disjunction without crossing over (8B:0W and 4B:4W equally probable), and with crossing over between centromere and break point (6B:2W). On germination, 8B:0W asci give rise to only parental types—4 T and 4 N; 4B:4W asci usually give four duplication (Dup) progeny; and 6B:2W asci usually give 2 T, 2 N, 2 Dup. Thus one third of all viable, black ascospores contain duplications.—Recessive markers in the donor chromosome which contributes the translocated segment can be mapped by duplication coverage. Ratios of 2 Dominant: 1 Recessive vs. 1 Dominant: 2 Recessive distinguish location in or outside the transposed segment. Eleven loci including mating type have been shown to lie within the segment, and markers at four loci have been transferred into the segment by meiotic recombination. The frequency of marker transfer indicates that the inserted segment usually pairs with its homologue. Ascus types that would result from single exchanges within the insertion are infrequent, as expected if asci containing dicentric bridges usually do not survive.—Duplication ascospores germinate to produce distinctive inhibited colonies. Later these "escape" to grow like wild type, and genes that were initially heterozygous in the duplication segregate when escape occurs. As with duplications from pericentric inversion In(IL→IR)H4250 (Newmeyer and Taylor 1967), the initial inhibition is

  19. 16p11.2–p12.2 duplication syndrome; a genomic condition differentiated from euchromatic variation of 16p11.2

    PubMed Central

    Barber, John C K; Hall, Victoria; Maloney, Viv K; Huang, Shuwen; Roberts, Angharad M; Brady, Angela F; Foulds, Nicki; Bewes, Beverley; Volleth, Marianne; Liehr, Thomas; Mehnert, Karl; Bateman, Mark; White, Helen

    2013-01-01

    Chromosome 16 contains multiple copy number variations (CNVs) that predispose to genomic disorders. Here, we differentiate pathogenic duplications of 16p11.2–p12.2 from microscopically similar euchromatic variants of 16p11.2. Patient 1 was a girl of 18 with autism, moderate intellectual disability, behavioural difficulties, dysmorphic features and a 7.71-Mb (megabase pair) duplication (16:21 521 005–29 233 146). Patient 2 had a 7.81-Mb duplication (16:21 382 561–29 191 527), speech delay and obsessional behaviour as a boy and, as an adult, short stature, macrocephaly and mild dysmorphism. The duplications contain 65 coding genes of which Polo-like kinase 1 (PLK1) has the highest likelihood of being haploinsufficient and, by implication, a triplosensitive gene. An additional 1.11-Mb CNV of 10q11.21 in Patient 1 was a possible modifier containing the G-protein-regulated inducer of neurite growth 2 (GPRIN2) gene. In contrast, the euchromatic variants in Patients 3 and 4 were amplifications from a 945-kb region containing non-functional immunoglobulin heavy chain (IGHV), hect domain pseudogene (HERC2P4) and TP53-inducible target gene 3 (TP53TG3) loci in proximal 16p11.2 (16:31 953 353–32 898 635). Paralogous pyrosequencing gave a total copy number of 3–8 in controls and 8 to >10 in Patients 3 and 4. The 16p11.2–p12.2 duplication syndrome is a recurrent genomic disorder with a variable phenotype including developmental delay, dysmorphic features, mild to severe intellectual disability, autism, obsessive or stereotyped behaviour, short stature and anomalies of the hands and fingers. It is important to differentiate pathogenic 16p11.2–p12.2 duplications from harmless, microscopically similar euchromatic variants of proximal 16p11.2, especially at prenatal diagnosis. PMID:22828807

  20. The "Sardinian" HLA-A30,B18,DR3,DQw2 haplotype constantly lacks the 21-OHA and C4B genes. Is it an ancestral haplotype without duplication?

    PubMed

    Contu, L; Carcassi, C; Dausset, J

    1989-01-01

    The C4 and 21-OH loci of the class III HLA have been studied by specific DNA probes and the restriction enzyme Taq 1 in 24 unrelated Sardinian individuals selected from completely HLA-typed families. All 24 individuals had the HLA extended haplotype A30,Cw5,B18, BfF1,DR3,DRw52,DQw2, named "Sardinian" in the present paper because of its frequency of 15% in the Sardinian population. Eighteen of these were homozygous for the entire haplotype, and six were heterozygous at the A locus and blank (or homozygous) at all the other loci. In all completely homozygous cells and in four heterozygous cells at the A locus, the restriction fragments of the 21-OHA (3.2 kb) and C4B (5.8 kb or 5.4 kb) genes were absent, and the fragments of the C4A (7.0 kb) and 21-OHB (3.7 kb) genes were present. It is suggested that the "Sardinian" haplotype is an ancestral haplotype without duplication of the C4 and 21-OH genes, practically always identical in its structure, also in unrelated individuals. The diversity of this haplotype in the class III region (about 30 kb less) may be at least partially responsible for its misalignment with most haplotypes, which have duplicated C4 and 21-OH genes, and therefore also for its decreased probability to recombine. This can help explain its high stability and frequency in the Sardinian population. The same conclusion can be suggested for the Caucasian extended haplotype A1,B8,DR3 that always seems to lack the C4A and 21-OHA genes.

  1. Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

    PubMed

    El Chehadeh, Salima; Faivre, Laurence; Mosca-Boidron, Anne-Laure; Malan, Valérie; Amiel, Jeanne; Nizon, Mathilde; Touraine, Renaud; Prieur, Fabienne; Pasquier, Laurent; Callier, Patrick; Lefebvre, Mathilde; Marle, Nathalie; Dubourg, Christèle; Julia, Sophie; Sarret, Catherine; Francannet, Christine; Laffargue, Fanny; Boespflug-Tanguy, Odile; David, Albert; Isidor, Bertrand; Le Caignec, Cédric; Vigneron, Jacqueline; Leheup, Bruno; Lambert, Laetitia; Philippe, Christophe; Cuisset, Jean-Marie; Andrieux, Joris; Plessis, Ghislaine; Toutain, Annick; Goldenberg, Alice; Cormier-Daire, Valérie; Rio, Marlène; Bonnefont, Jean-Paul; Thevenon, Julien; Echenne, Bernard; Journel, Hubert; Afenjar, Alexandra; Burglen, Lydie; Bienvenu, Thierry; Addor, Marie-Claude; Lebon, Sébastien; Martinet, Danièle; Baumann, Clarisse; Perrin, Laurence; Drunat, Séverine; Jouk, Pierre-Simon; Devillard, Françoise; Coutton, Charles; Lacombe, Didier; Delrue, Marie-Ange; Philip, Nicole; Moncla, Anne; Badens, Catherine; Perreton, Nathalie; Masurel, Alice; Thauvin-Robinet, Christel; Des Portes, Vincent; Guibaud, Laurent

    2016-01-01

    Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment. © 2015 Wiley Periodicals, Inc.

  2. Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: Role of RNA sequences and the encoded proteins.

    PubMed

    Kang, Sung-Hwan; Atallah, Osama O; Sun, Yong-Duo; Folimonova, Svetlana Y

    2018-01-15

    Viruses from the family Closteroviridae show an example of intra-genome duplications of more than one gene. In addition to the hallmark coat protein gene duplication, several members possess a tandem duplication of papain-like leader proteases. In this study, we demonstrate that domains encoding the L1 and L2 proteases in the Citrus tristeza virus genome underwent a significant functional divergence at the RNA and protein levels. We show that the L1 protease is crucial for viral accumulation and establishment of initial infection, whereas its coding region is vital for virus transport. On the other hand, the second protease is indispensable for virus infection of its natural citrus host, suggesting that L2 has evolved an important adaptive function that mediates virus interaction with the woody host. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Evolutionary history of the enolase gene family.

    PubMed

    Tracy, M R; Hedges, S B

    2000-12-23

    The enzyme enolase [EC 4.2.1.11] is found in all organisms, with vertebrates exhibiting tissue-specific isozymes encoded by three genes: alpha (alpha), beta (beta), and gamma (gamma) enolase. Limited taxonomic sampling of enolase has obscured the timing of gene duplication events. To help clarify the evolutionary history of the gene family, cDNAs were sequenced from six taxa representing major lineages of vertebrates: Chiloscyllium punctatum (shark), Amia calva (bowfin), Salmo trutta (trout), Latimeria chalumnae (coelacanth), Lepidosiren paradoxa (South American lungfish), and Neoceratodus forsteri (Australian lungfish). Phylogenetic analysis of all enolase and related gene sequences revealed an early gene duplication event prior to the last common ancestor of living organisms. Several distantly related archaebacterial sequences were designated as 'enolase-2', whereas all other enolase sequences were designated 'enolase-1'. Two of the three isozymes of enolase-1, alpha- and beta-enolase, were discovered in actinopterygian, sarcopterygian, and chondrichthian fishes. Phylogenetic analysis of vertebrate enolases revealed that the two gene duplications leading to the three isozymes of enolase-1 occurred subsequent to the divergence of living agnathans, near the Proterozoic/Phanerozoic boundary (approximately 550Mya). Two copies of enolase, designated alpha(1) and alpha(2), were found in the trout and are presumed to be the result of a genome duplication event.

  4. The Joint Effects of Background Selection and Genetic Recombination on Local Gene Genealogies

    PubMed Central

    Zeng, Kai; Charlesworth, Brian

    2011-01-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data. PMID:21705759

  5. The joint effects of background selection and genetic recombination on local gene genealogies.

    PubMed

    Zeng, Kai; Charlesworth, Brian

    2011-09-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data.

  6. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication

    PubMed Central

    Kodani, Andrew; Yu, Timothy W; Johnson, Jeffrey R; Jayaraman, Divya; Johnson, Tasha L; Al-Gazali, Lihadh; Sztriha, Lāszló; Partlow, Jennifer N; Kim, Hanjun; Krup, Alexis L; Dammermann, Alexander; Krogan, Nevan J; Walsh, Christopher A; Reiter, Jeremy F

    2015-01-01

    Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication. DOI: http://dx.doi.org/10.7554/eLife.07519.001 PMID:26297806

  7. Novel partial duplication of EYA1 causes branchiootic syndrome in a large Brazilian family.

    PubMed

    Dantas, Vitor G L; Freitas, Erika L; Della-Rosa, Valter A; Lezirovitz, Karina; de Moraes, Ana Maria S M; Ramos, Silvia B; Oiticica, Jeanne; Alves, Leandro U; Pearson, Peter L; Rosenberg, Carla; Mingroni-Netto, Regina C

    2015-01-01

    To identify novel genetic causes of syndromic hearing loss in Brazil. To map a candidate chromosomal region through linkage studies in an extensive Brazilian family and identify novel pathogenic variants using sequencing and array-CGH. Brazilian pedigree with individuals affected by BO syndrome characterized by deafness and malformations of outer, middle and inner ear, auricular and cervical fistulae, but no renal abnormalities. Whole genome microarray-SNP scanning on samples of 11 affected individuals detected a multipoint Lod score of 2.6 in the EYA1 gene region (chromosome 8). Sequencing of EYA1 in affected patients did not reveal pathogenic mutations. However, oligonucleotide-array-CGH detected a duplication of 71.8Kb involving exons 4 to 10 of EYA1 (heterozygous state). Real-time-PCR confirmed the duplication in fourteen of fifteen affected individuals and absence in 13 unaffected individuals. The exception involved a consanguineous parentage and was assumed to involve a different genetic mechanism. Our findings implicate this EYA1 partial duplication segregating with BO phenotype in a Brazilian pedigree and is the first description of a large duplication leading to the BOR/BO syndrome.

  8. Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana

    PubMed Central

    Zhou, Wenwu; Brockmöller, Thomas; Ling, Zhihao; Omdahl, Ashton; Baldwin, Ian T; Xu, Shuqing

    2016-01-01

    Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana. These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants. DOI: http://dx.doi.org/10.7554/eLife.19531.001 PMID:27813478

  9. A rare de novo interstitial duplication of 15q15.3q21.2 in a boy with severe short stature, hypogonadism, global developmental delay and intellectual disability.

    PubMed

    Yuan, Haiming; Meng, Zhe; Zhang, Lina; Luo, Xiangyang; Liu, Liping; Chen, Mengfan; Li, Xinwei; Zhao, Weiwei; Liang, Liyang

    2016-01-01

    Interstitial duplications distal to 15q13 are very rare. Here, we reported a 14-year-old boy with severe short stature, delayed bone age, hypogonadism, global developmental delay and intellectual disability. His had distinctive facial features including macrocephaly, broad forehead, deep-set and widely spaced eyes, broad nose bridge, shallow philtrum and thick lips. A de novo 6.4 Mb interstitial duplication of 15q15.3q21.2 was detected by chromosomal microarray analysis. We compared our patient's clinical phenotypes with those of several individuals with overlapping duplications and several candidate genes responsible for the phenotypes were identified as well. The results suggest a novel contiguous gene duplication syndrome characterized with shared features including short stature, hypogonadism, global developmental delay and other congenital anomalies.

  10. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals

    PubMed Central

    Patel, Vidushi S; Cooper, Steven JB; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer AM

    2008-01-01

    Background Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages. PMID:18657265

  11. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer

    PubMed Central

    2014-01-01

    Background Besides gene duplication and de novo gene generation, horizontal gene transfer (HGT) is another important way of acquiring new genes. HGT may endow the recipients with novel phenotypic traits that are important for species evolution and adaption to new ecological niches. Parasitic systems expectedly allow the occurrence of HGT at relatively high frequencies due to their long-term physical contact. In plants, a number of HGT events have been reported between the organelles of parasites and the hosts, but HGT between host and parasite nuclear genomes has rarely been found. Results A thorough transcriptome screening revealed that a strictosidine synthase-like (SSL) gene in the root parasitic plant Orobanche aegyptiaca and the shoot parasitic plant Cuscuta australis showed much higher sequence similarities with those in Brassicaceae than with those in their close relatives, suggesting independent gene horizontal transfer events from Brassicaceae to these parasites. These findings were strongly supported by phylogenetic analysis and their identical unique amino acid residues and deletions. Intriguingly, the nucleus-located SSL genes in Brassicaceae belonged to a new member of SSL gene family, which were originated from gene duplication. The presence of introns indicated that the transfer occurred directly by DNA integration in both parasites. Furthermore, positive selection was detected in the foreign SSL gene in O. aegyptiaca but not in C. australis. The expression of the foreign SSL genes in these two parasitic plants was detected in multiple development stages and tissues, and the foreign SSL gene was induced after wounding treatment in C. australis stems. These data imply that the foreign genes may still retain certain functions in the recipient species. Conclusions Our study strongly supports that parasitic plants can gain novel nuclear genes from distantly related host species by HGT and the foreign genes may execute certain functions in the new hosts

  12. Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis1[C][W

    PubMed Central

    Pouvreau, Benjamin; Baud, Sébastien; Vernoud, Vanessa; Morin, Valérie; Py, Cyrille; Gendrot, Ghislaine; Pichon, Jean-Philippe; Rouster, Jacques; Paul, Wyatt; Rogowsky, Peter M.

    2011-01-01

    WRINKLED1 (WRI1), a key regulator of seed oil biosynthesis in Arabidopsis (Arabidopsis thaliana), was duplicated during the genome amplification of the cereal ancestor genome 90 million years ago. Both maize (Zea mays) coorthologs ZmWri1a and ZmWri1b show a strong transcriptional induction during the early filling stage of the embryo and complement the reduced fatty acid content of Arabidopsis wri1-4 seeds, suggesting conservation of molecular function. Overexpression of ZmWri1a not only increases the fatty acid content of the mature maize grain but also the content of certain amino acids, of several compounds involved in amino acid biosynthesis, and of two intermediates of the tricarboxylic acid cycle. Transcriptomic experiments identified 18 putative target genes of this transcription factor, 12 of which contain in their upstream regions an AW box, the cis-element bound by AtWRI1. In addition to functions related to late glycolysis and fatty acid biosynthesis in plastids, the target genes also have functions related to coenzyme A biosynthesis in mitochondria and the production of glycerol backbones for triacylglycerol biosynthesis in the cytoplasm. Interestingly, the higher seed oil content in ZmWri1a overexpression lines is not accompanied by a reduction in starch, thus opening possibilities for the use of the transgenic maize lines in breeding programs. PMID:21474435

  13. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    PubMed

    Liu, Yuan; Wei, Haichao

    2017-07-01

    Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s < 1) to prevent accumulation of non-synonymous mutations and thus remained more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPIN genes were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.

  14. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia.

    PubMed

    Virts, Elizabeth L; Jankowska, Anna; Mackay, Craig; Glaas, Marcel F; Wiek, Constanze; Kelich, Stephanie L; Lottmann, Nadine; Kennedy, Felicia M; Marchal, Christophe; Lehnert, Erik; Scharf, Rüdiger E; Dufour, Carlo; Lanciotti, Marina; Farruggia, Piero; Santoro, Alessandra; Savasan, Süreyya; Scheckenbach, Kathrin; Schipper, Jörg; Wagenmann, Martin; Lewis, Todd; Leffak, Michael; Farlow, Janice L; Foroud, Tatiana M; Honisch, Ellen; Niederacher, Dieter; Chakraborty, Sujata C; Vance, Gail H; Pruss, Dmitry; Timms, Kirsten M; Lanchbury, Jerry S; Alpi, Arno F; Hanenberg, Helmut

    2015-09-15

    Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene. © The Author 2015. Published by Oxford University Press.

  15. Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae

    PubMed Central

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1∶1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838

  16. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  17. Gene copy number evolution during tetraploid cotton radiation.

    PubMed

    Rong, J; Feltus, F A; Liu, L; Lin, L; Paterson, A H

    2010-11-01

    After polyploid formation, retention or loss of duplicated genes is not random. Genes with some functional domains are convergently restored to 'singleton' state after many independent genome duplications, and have been referred to as 'duplication-resistant' (DR) genes. To further explore the timeframe for their restoration to the singleton state, 27 cotton homologs of genes found to be 'DR' in Arabidopsis were selected based on diagnostic Pfam domains. Their copy numbers were studied using southern hybridization and sequence analysis in five tetraploid species and their ancestral A and D genome diploids. DR genes had significantly lower copy number than gene families hybridizing to randomly selected cotton ESTs. Three DR genes showed complete loss of D genome-derived homoeologs in some or all tetraploid species. Prior analysis has shown gene loss in polyploid cotton to be rare, and herein only one randomly selected gene showed loss of a homoeolog in only one of the five tetraploid species (Gossypium mustelinum). BAC sequencing confirmed two cases of gene loss in tetraploid cotton. Divergence among 5' sequences of DR genes amplified from G. arboreum, G. raimondii, and Gossypioides kirkii was correlated with gene copy number. These results show that genes containing Pfam domains associated with duplication resistance in Arabidopsis have also been preferentially restored to low copy number after a more recent polyploidization event in cotton. In tetraploid cotton, genes from the progenitor D genome seem to experience more gene copy number divergence than genes from the A genome. Together with D subgenome-biased alterations in gene expression, perhaps gene loss may contribute to the relatively larger portion of quantitative trait variation attributable to D than A subgenome chromosomes of tetraploid cotton.

  18. The Cognitive and Behavioral Phenotypes of Individuals with CHRNA7 Duplications.

    PubMed

    Gillentine, M A; Berry, L N; Goin-Kochel, R P; Ali, M A; Ge, J; Guffey, D; Rosenfeld, J A; Hannig, V; Bader, P; Proud, M; Shinawi, M; Graham, B H; Lin, A; Lalani, S R; Reynolds, J; Chen, M; Grebe, T; Minard, C G; Stankiewicz, P; Beaudet, A L; Schaaf, C P

    2017-03-01

    Chromosome 15q11q13 is among the least stable regions in the genome due to its highly complex genomic architecture. Low copy repeat elements at 15q13.3 facilitate recurrent copy number variants (CNVs), with deletions established as pathogenic and CHRNA7 implicated as a candidate gene. However, the pathogenicity of duplications of CHRNA7 is unclear, as they are found in affected probands as well as in reportedly healthy parents and unaffected control individuals. We evaluated 18 children with microduplications involving CHRNA7, identified by clinical chromosome microarray analysis (CMA). Comprehensive phenotyping revealed high prevalence of developmental delay/intellectual disability, autism spectrum disorder, and attention deficit/hyperactivity disorder. As CHRNA7 duplications are the most common CNVs identified by clinical CMA, this study provides anticipatory guidance for those involved with care of affected individuals.

  19. X Linkage of AP3A, a Homolog of the Y-Linked MADS-Box Gene AP3Y in Silene latifolia and S. dioica

    PubMed Central

    Penny, Rebecca H.; Montgomery, Benjamin R.; Delph, Lynda F.

    2011-01-01

    Background The duplication of autosomal genes onto the Y chromosome may be an important element in the evolution of sexual dimorphism.A previous cytological study reported on a putative example of such a duplication event in a dioecious tribe of Silene (Caryophyllaceae): it was inferred that the Y-linked MADS-box gene AP3Y originated from a duplication of the reportedly autosomal orthologAP3A. However, a recent study, also using cytological methods, indicated that AP3A is X-linked in Silenelatifolia. Methodology/Principal Findings In this study, we hybridized S. latifolia and S. dioicato investigate whether the pattern of X linkage is consistent among distinct populations, occurs in both species, and is robust to genetic methods. We found inheritance patterns indicative of X linkage of AP3A in widely distributed populations of both species. Conclusions/Significance X linkage ofAP3A and Y linkage of AP3Yin both species indicates that the genes' ancestral progenitor resided on the autosomes that gave rise to the sex chromosomesand that neither gene has moved between chromosomes since species divergence.Consequently, our results do not support the contention that inter-chromosomal gene transfer occurred in the evolution of SlAP3Y from SlAP3A. PMID:21533056

  20. Evolution and Expression Patterns of TCP Genes in Asparagales

    PubMed Central

    Madrigal, Yesenia; Alzate, Juan F.; Pabón-Mora, Natalia

    2017-01-01

    CYCLOIDEA-like genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. CYC-like and closely related TCP genes (acronym for TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATION CELL FACTOR) have been poorly studied in Asparagales, the largest order of monocots that includes both bilateral flowers in Orchidaceae (ca. 25.000 spp) and radially symmetrical flowers in Hypoxidaceae (ca. 200 spp). With the aim of assessing TCP gene evolution in the Asparagales, we isolated TCP-like genes from publicly available databases and our own transcriptomes of Cattleya trianae (Orchidaceae) and Hypoxis decumbens (Hypoxidaceae). Our matrix contains 452 sequences representing the three major clades of TCP genes. Besides the previously identified CYC specific core eudicot duplications, our ML phylogenetic analyses recovered an early CIN-like duplication predating all angiosperms, two CIN-like Asparagales-specific duplications and a duplication prior to the diversification of Orchidoideae and Epidendroideae. In addition, we provide evidence of at least three duplications of PCF-like genes in Asparagales. While CIN-like and PCF-like genes have multiplied in Asparagales, likely enhancing the genetic network for cell proliferation, CYC-like genes remain as single, shorter copies with low expression. Homogeneous expression of CYC-like genes in the labellum as well as the lateral petals suggests little contribution to the bilateral perianth in C. trianae. CIN-like and PCF-like gene expression suggests conserved roles in cell proliferation in leaves, sepals and petals, carpels, ovules and fruits in Asparagales by comparison with previously reported functions in core eudicots and monocots. This is the first large scale analysis of TCP-like genes in Asparagales that will serve as a platform for in-depth functional studies in emerging model monocots. PMID:28144250

  1. A Korean boy with 46,XX testicular disorder of sex development caused by SOX9 duplication.

    PubMed

    Lee, Gyung Min; Ko, Jung Min; Shin, Choong Ho; Yang, Sei Won

    2014-06-01

    The 46,XX testicular disorder of sex development (DSD), also known as 46,XX male syndrome, is a rare form of DSD and clinical phenotype shows complete sex reversal from female to male. The sex-determining region Y (SRY) gene can be identified in most 46,XX testicular DSD patients; however, approximately 20% of patients with 46,XX testicular DSD are SRY-negative. The SRY-box 9 (SOX9) gene has several important functions during testis development and differentiation in males, and overexpression of SOX9 leads to the male development of 46,XX gonads in the absence of SRY. In addition, SOX9 duplication has been found to be a rare cause of 46,XX testicular DSD in humans. Here, we report a 4.2-year-old SRY-negative 46,XX boy with complete sex reversal caused by SOX9 duplication for the first time in Korea. He showed normal external and internal male genitalia except for small testes. Fluorescence in situ hybridization and polymerase chain reaction (PCR) analyses failed to detect the presence of SRY, and SOX9 intragenic mutation was not identified by direct sequencing analysis. Therefore, we performed real-time PCR analyses with specific primer pairs, and duplication of the SOX9 gene was revealed. Although SRY-negative 46,XX testicular DSD is a rare condition, an effort to make an accurate diagnosis is important for the provision of proper genetic counseling and for guiding patients in their long-term management.

  2. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.

    PubMed

    Opazo, Juan C; Lee, Alison P; Hoffmann, Federico G; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F

    2015-07-01

    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  3. Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents

    PubMed Central

    Winternitz, Jamie C; Wares, John P

    2013-01-01

    Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high-amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model-averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC. PMID:23789067

  4. Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region

    NASA Astrophysics Data System (ADS)

    Flot, J.-F.; Licuanan, W. Y.; Nakano, Y.; Payri, C.; Cruaud, C.; Tillier, S.

    2008-12-01

    The taxonomy of corals of the genus Seriatopora has not previously been studied using molecular sequence markers. As a first step toward a re-evaluation of species boundaries in this genus, mitochondrial sequence variability was analyzed in 51 samples collected from Okinawa, New Caledonia, and the Philippines. Four clusters of sequences were detected that showed little concordance with species currently recognized on a morphological basis. The most likely explanation is that the skeletal characters used for species identification are highly variable (polymorphic or phenotypically plastic); alternative explanations include introgression/hybridization, or deep coalescence and the retention of ancestral mitochondrial polymorphisms. In all individuals sequenced, two copies of trnW were found on either side of the atp8 gene near the putative D-loop, a novel mitochondrial gene arrangement that may have arisen from a duplication of the trnW-atp8 region followed by a deletion of one atp8.

  5. Hypertelorism in Charcot-Marie-Tooth disease 1A from the common PMP22 duplication: A Case Report

    PubMed Central

    Finsterer, Josef

    2012-01-01

    The 1.4Mb tandem-duplication in the PMP22 gene at 17p11.2 usually manifests as hereditary sensorimotor polyneuropathy with foot deformity, sensorineural hearing-loss, moderate developmental delay, and gait disturbance. Hypertelorism and marked phenotypic variability within a single family has not been reported. In a single family, the PMP22 tandem-duplication manifested as short stature, sensorimotor polyneuropathy, tremor, ataxia, sensorineural hearing-loss, and hypothyroidism in the 27 years-old index case, as mild facial dysmorphism, muscle cramps, tinnitus, intention tremor, bradydiadochokinesia, and sensorimotor polyneuropathy in the 31 year-old half-brother of the index-patient, and as sensorimotor polyneuropathy and foot-deformity in the father of the two. The half-brother additionally presented with hypertelorism, not previously reported in PMP22 tandem-duplication carriers. The presented cases show that the tandem-duplication 17p11.2 may present with marked intra-familial phenotype variability and that mild facial dysmorphism with stuck-out ears and hypertelorism may be a rare phenotypic feature of this mutation. The causal relation between facial dysmorphism and the PMP22 tandem-duplication, however, remains speculative. PMID:22496945

  6. Genome duplication improves rice root resistance to salt stress

    PubMed Central

    2014-01-01

    Background Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. Results Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na+ content, H+ (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na+ in tetraploid rice roots significantly decreased while root tip H+ efflux in tetraploid rice significantly increased. Conclusions Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na+ entrance into the roots. PMID:25184027

  7. Molecular evolution of psbA gene in ferns: unraveling selective pressure and co-evolutionary pattern

    PubMed Central

    2012-01-01

    Background The photosynthetic oxygen-evolving photo system II (PS II) produces almost the entire oxygen in the atmosphere. This unique biochemical system comprises a functional core complex that is encoded by psbA and other genes. Unraveling the evolutionary dynamics of this gene is of particular interest owing to its direct role in oxygen production. psbA underwent gene duplication in leptosporangiates, in which both copies have been preserved since. Because gene duplication is often followed by the non-fictionalization of one of the copies and its subsequent erosion, preservation of both psbA copies pinpoint functional or regulatory specialization events. The aim of this study was to investigate the molecular evolution of psbA among fern lineages. Results We sequenced psbA , which encodes D1 protein in the core complex of PSII, in 20 species representing 8 orders of extant ferns; then we searched for selection and convolution signatures in psbA across the 11 fern orders. Collectively, our results indicate that: (1) selective constraints among D1 protein relaxed after the duplication in 4 leptosporangiate orders; (2) a handful positively selected codons were detected within species of single copy psbA, but none in duplicated ones; (3) a few sites among D1 protein were involved in co-evolution process which may intimate significant functional/structural communications between them. Conclusions The strong competition between ferns and angiosperms for light may have been the main cause for a continuous fixation of adaptive amino acid changes in psbA , in particular after its duplication. Alternatively, a single psbA copy may have undergone bursts of adaptive changes at the molecular level to overcome angiosperms competition. The strong signature of positive Darwinian selection in a major part of D1 protein is testament to this. At the same time, species own two psbA copies hardly have positive selection signals among the D1 protein coding sequences. In this study

  8. Evolutionary origins of a novel host plant detoxification gene in butterflies.

    PubMed

    Fischer, Hanna M; Wheat, Christopher W; Heckel, David G; Vogel, Heiko

    2008-05-01

    Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.

  9. Tubular duplication of the oesophagus presenting with dysphagia.

    PubMed

    Saha, A K; Kundu, A K

    2014-06-01

    Duplications of the alimentary tract are rare congenital malformations, with the ileum being the most commonly affected site, followed by the oesophagus. Among oesophageal duplications, cystic duplication is the most common and the tubular variety, the rarest. Herein, we report a rare case of tubular oesophageal duplication, complicated by adenosquamous carcinoma at the lower end of the oesophagus, in a 32-year-old man who presented with progressive dysphagia. Although proton pump inhibitors may relieve dysphagia, oesophagectomy and gastric interpositioning should be the first-line treatment for patients with tubular oesophageal duplication, in order to reduce the risk of malignant transformation at the lower end of the oesophagus.

  10. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress.

    PubMed

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A G; Santamaría-Gómez, Javier; Patterson, Carl J; Foster, Andrew W; Bru-Martínez, Roque; Robinson, Nigel J; Luque, Ignacio

    2015-11-16

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Xq28 duplication overlapping the int22h-1/int22h-2 region and including RAB39B and CLIC2 in a family with intellectual and developmental disability.

    PubMed

    Andersen, Erica F; Baldwin, Erin E; Ellingwood, Sara; Smith, Rosemarie; Lamb, Allen N

    2014-07-01

    Duplications involving terminal Xq28 are a known cause of intellectual disability (ID) in males and in females with unfavorable X-inactivation patterns. Within Xq28, functional disomy of MECP2 causes a severe ID syndrome, however the dosage sensitivity of other Xq28 duplicated genes is less certain. Duplications involving the int22h-1/int22h-2 LCR-flanked region in distal Xq28 have recently been linked to a novel ID-associated phenotype. While evidence for the dosage sensitivity of this region is emerging, the phenotypic contribution of individual genes within the int22h-1/int22h-2-flanked region has yet to be determined. We report a familial case of a novel 774 kb Xq28-qter duplication, detected by cytogenomic microarray analysis, that partially overlaps the int22h-1/int22h-2-flanked region. This duplication and a 570 kb Xpter-p22.33 loss within the pseudoautosomal region were identified in three siblings, one female and two males, who presented with developmental delays/intellectual disability, mild dysmorphic features and short stature. Although unconfirmed, these results are suggestive of maternal inheritance of a recombinant X. We compare our clinical findings to patients with int22h-1/int22h-2-mediated duplications and discuss the potential pathogenicity of genes within the duplicated region, including those within the shared region of overlap, RAB39B and CLIC2. © 2014 Wiley Periodicals, Inc.

  12. Nasal Duplication Combined with Cleft Lip and Palate: Surgical Correction and Long-Term Follow-Up

    PubMed Central

    Long, Kanharith; Yamaguchi, Kazuaki; Lonic, Daniel; Long, Vanna; Chhoeurn, Vuthy

    2017-01-01

    Background: Diprosopus dirrhinus, or nasal duplication, is a rare entity of partial craniofacial duplication. Methods: The case we present is the first report of diprosopus dirrhinus associated with complete cleft lip and palate. The baby was born in Cambodia at full term by normal vaginal delivery with no significant perinatal and family history. Physical examination revealed significant facial deformity due to the duplicated nose and the left complete cleft lip/palate on the right subset. Results: There were 4 nostrils; both medial apertures including the cleft site were found to be 10–15 mm deep cul-de-sac structures without communication to the nasopharynx. The upper third of the face was notable for hypertelorism with a duplication of the soft-tissue nasion and glabella. Between the 2 nasal dorsums, there was a small cutaneous depression with a lacrimal fistula in the midline. Surgical treatment included the first stage of primary lip and nose repair and the second stage of palatoplasty. Conclusions: The patient was followed up at the age of 10 years showing satisfactory results for both aesthetic and functional aspects. Further management in the future will be required for the hypertelorism and nasal deformity. PMID:29184738

  13. Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize

    PubMed Central

    Zhao, Yang; Zhou, Yuqiong; Jiang, Haiyang; Li, Xiaoyu; Gan, Defang; Peng, Xiaojian; Zhu, Suwen; Cheng, Beijiu

    2011-01-01

    Background Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. Conclusions Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development. PMID:22164299

  14. 40 CFR 710.35 - Duplicative reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Duplicative reporting. 710.35 Section 710.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS 2002 Inventory Update Reporting § 710.35 Duplicative reporting...

  15. 47 CFR 76.122 - Satellite network non-duplication.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Satellite network non-duplication. 76.122... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.122 Satellite network non-duplication. (a) Upon receiving notification pursuant to...

  16. 47 CFR 76.122 - Satellite network non-duplication.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Satellite network non-duplication. 76.122... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.122 Satellite network non-duplication. (a) Upon receiving notification pursuant to...

  17. Diversity and duplication of DQB and DRB-like genes of the MHC in baleen whales (suborder: Mysticeti).

    PubMed

    Baker, C S; Vant, M D; Dalebout, M L; Lento, G M; O'Brien, S J; Yuhki, N

    2006-05-01

    The molecular diversity and phylogenetic relationships of two class II genes of the baleen whale major histocompatibility complex were investigated and compared to toothed whales and out-groups. Amplification of the DQB exon 2 provided sequences showing high within-species and between-species nucleotide diversity and uninterrupted reading frames consistent with functional class II loci found in related mammals (e.g., ruminants). Cloning of amplified products indicated gene duplication in the humpback whale and triplication in the southern right whale, with average nucleotide diversity of 5.9 and 6.3%, respectively, for alleles of each species. Significantly higher nonsynonymous divergence at sites coding for peptide binding (32% for humpback and 40% for southern right) suggested that these loci were subject to positive (overdominant) selection. A population survey of humpback whales detected 23 alleles, differing by up to 21% of their inferred amino acid sequences. Amplification of the DRB exon 2 resulted in two groups of sequences. One was most similar to the DRB3 of the cow and present in all whales screened to date, including toothed whales. The second was most similar to the DRB2 of the cow and was found only in the bowhead and right whales. Both loci showed low diversity among species and apparent loss of function or altered function including interruption of reading frames. Finally, comparison of inferred protein sequence of the DRB3-like locus suggested convergence with the DQB, perhaps resulting from intergenic conversion or recombination.

  18. Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis)

    PubMed Central

    2013-01-01

    Background Cytokinins (CKs) have significant roles in various aspects of plant growth and development, and they are also involved in plant stress adaptations. The fine-tuning of the controlled CK levels in individual tissues, cells, and organelles is properly maintained by isopentenyl transferases (IPTs) and cytokinin oxidase/dehydrogenases (CKXs). Chinese cabbage is one of the most economically important vegetable crops worldwide. The whole genome sequencing of Brassica rapa enables us to perform the genome-wide identification and functional analysis of the IPT and CKX gene families. Results In this study, a total of 13 BrIPT genes and 12 BrCKX genes were identified. The gene structures, conserved domains and phylogenetic relationships were analyzed. The isoelectric point, subcellular localization and glycosylation sites of the proteins were predicted. Segmental duplicates were found in both BrIPT and BrCKX gene families. We also analyzed evolutionary patterns and divergence of the IPT and CKX genes in the Cruciferae family. The transcription levels of BrIPT and BrCKX genes were analyzed to obtain an initial picture of the functions of these genes. Abiotic stress elements related to adverse environmental stimuli were found in the promoter regions of BrIPT and BrCKX genes and they were confirmed to respond to drought and high salinity conditions. The effects of 6-BA and ABA on the expressions of BrIPT and BrCKX genes were also investigated. Conclusions The expansion of BrIPT and BrCKX genes after speciation from Arabidopsis thaliana is mainly attributed to segmental duplication events during the whole genome triplication (WGT) and substantial duplicated genes are lost during the long evolutionary history. Genes produced by segmental duplication events have changed their expression patterns or may adopted new functions and thus are obtained. BrIPT and BrCKX genes respond well to drought and high salinity stresses, and their transcripts are affected by exogenous

  19. A study of the quality of duplicated radiographs.

    PubMed

    Erales, F A; Manson-Hing, L R

    1979-01-01

    The resolution, contrast, and clinical appearance of radiographs and duplicate radiographs made with two types of duplicating film were compared. Duplicating conditions evaluated were type and shape of light, light-film distance, type of exposure surface, and developer temperature. Major observations were as follows: both Kodak and DuPont films produced clinically acceptable duplicates; Kodak film was faster; DuPont film responded better in incandescent photoflood light than Kodak film; clear glass with appropriate light-film distance was the best exposure surface.

  20. Surgical Management of Duplication of the Pituitary Gland-Plus Syndrome With Epignathus, Cleft Palate, Duplication of Mandible, and Lobulated Tongue.

    PubMed

    Noguchi, Tadahide; Sugiyama, Tomoko; Sasaguri, Ken-Ichi; Ono, Shigeru; Maeda, Kosaku; Nishino, Hiroshi; Jinbu, Yoshinori; Mori, Yoshiyuki

    2017-03-01

    A 1-day-old male infant was referred to our department for evaluation of multiple malformations in his oral cavity. He was diagnosed duplication of the pituitary gland-plus syndrome with epignathus, cleft palate, duplication of the mandible, and a lobulated tongue. A thumb-sized mass lesion was visible on the hard palate. The duplicated mandible and lower lip was fused at the midline. The alveolar ridge was protruding through a wide-cleft soft palate involving the uvula. Further examination showed a lobulated tongue, which was seen behind the duplicated part of the mandible. Five days after birth, tracheotomy and epignathus resection were performed. At 7 months of age, the excess tissue of the duplicated mandible was resected at the area of adhesion on the lingual side, and the duplicated tongue and lip were reconstructed. A palatoplasty was performed at 20 months of age. Thereafter, the patient's progress was uneventful, with no abnormality in swallowing. No recurrence of epignathus has been observed during 2 years of follow-up.