Science.gov

Sample records for background genetic susceptibility

  1. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  2. The host genetic background defines diverse immune-reactivity and susceptibility to chronic Pseudomonas aeruginosa respiratory infection

    PubMed Central

    Spagnuolo, Lorenza; Simone, Maura De; Lorè, Nicola Ivan; Fino, Ida De; Basso, Veronica; Mondino, Anna; Cigana, Cristina; Bragonzi, Alessandra

    2016-01-01

    Patients with P. aeruginosa airways infection show markedly variable clinical phenotypes likely influenced by genetic backgrounds. Here, we investigated the cellular events involved in resistance and susceptibility to P. aeruginosa chronic infection using genetically distinct inbred mouse strains. As for patients, different murine genotypes revealed variable susceptibility to infection. When directly compared, resistant C3H/HeOuJ and susceptible A/J strains revealed distinct immune responsiveness to the pathogen. In C3H/HeOuJ resistant mice, IL17-producing cells rapidly and transiently infiltrated the infected lung, and this was paralleled by the acute accumulation of alveolar macrophages, bacterial clearance and resolution of infection. In contrast, A/J susceptible mice revealed a more delayed and prolonged lung infiltration by IL17+ and IFNγ+ cells, persistence of innate inflammatory cells and establishment of chronic infection. We conclude that the host genetic background confers diverse immunoreactivity to P. aeruginosa and IL17-producing cells might contribute to the progress of chronic lung infection. PMID:27848994

  3. Genetic Susceptibility to Lymphoma

    PubMed Central

    Skibola, Christine F.; Curry, John D.; Nieters, Alexandra

    2010-01-01

    BACKGROUND Genetic susceptibility studies of lymphoma may serve to identify at risk populations and to elucidate important disease mechanisms. METHODS This review considered all studies published through October 2006 on the contribution of genetic polymorphisms in the risk of lymphoma. RESULTS Numerous studies implicate the role of genetic variants that promote B-cell survival and growth with increased risk of lymphoma. Several reports including a large pooled study by InterLymph, an international consortium of non-Hodgkin lymphoma (NHL) case-control studies, found positive associations between variant alleles in TNF -308G>A and IL10 -3575T>A genes and risk of diffuse large B-cell lymphoma. Four studies reported positive associations between a GSTT1 deletion and risk of Hodgkin and non-Hodgkin lymphoma. Genetic studies of folate-metabolizing genes implicate folate in NHL risk, but further studies that include folate and alcohol assessments are needed. Links between NHL and genes involved in energy regulation and hormone production and metabolism may provide insights into novel mechanisms implicating neuro- and endocrine-immune cross-talk with lymphomagenesis, but will need replication in larger populations. CONCLUSIONS Numerous studies suggest that common genetic variants with low penetrance influence lymphoma risk, though replication studies will be needed to eliminate false positive associations. PMID:17606447

  4. Genetic susceptibility to occupational exposures

    PubMed Central

    Christiani, D C; Mehta, A J; Yu, C-L

    2013-01-01

    Because of their high prevalence in the general population, genetic variants that determine susceptibility to environmental exposures may contribute greatly to the development of occupational diseases in the setting of specific exposures occurring in the workplace. Studies investigating genetic susceptibilities in the workplace may: (1) provide mechanistic insight into the aetiology of disease, in particular the determination of environmentally responsive genes; (2) identify susceptible subpopulations with respect to exposure; and (3) provide valuable input in setting occupational exposure limits by taking genetic susceptibility into account. Polymorphisms in the NAT2 and the HLA-DPB1Glu69 genes provide classic examples of how genetic susceptibility markers have a clear role in identifying disease risk in bladder cancer and chronic beryllium disease, respectively. For diseases with more complex and multifactorial aetiology such as occupational asthma and chronic airways disease, susceptibility studies for selected genetic polymorphisms provide additional insight into the biological mechanisms of disease. Even when polymorphisms for genetic susceptibility have a clear role in identifying disease risk, the value of wide scale genetic screening in occupational settings remains limited due to primarily ethical and social concerns. Thus, large scale genetic screening in the workplace is not currently recommended. PMID:18487431

  5. [Arrhythmia and genetic background].

    PubMed

    Chinushi, Masaomi; Sato, Akinori

    2013-02-01

    Recent studies have demonstrated that genetic abnormalities associated with the regulation of myocardial ionic channels, receptors, transporters, cell membranous proteins etc, can create an arrhythmogenic substrate in some patients with structurally normal hearts, and these are called hereditary arrhythmic diseases. Various arrhythmic diseases (such as congenital long or short QT syndrome, Brugada syndrome, catecholamine-sensitive polymorphic ventricular tachycardia, arrhythmogenic right ventricular cardiomyopathy, early repolarization syndrome etc.) are categorized as hereditary arrhythmic diseases. Among them, we focused on long QT syndrome and Brugada syndrome in this review. In congenital long QT syndrome, either attenuation of the net outward current or augmentation of the net inward current is responsible for prolonging the myocardial action potential duration and QT interval on ECG. Premature ventricular beats triggered due to early after-depolarization infringe on the large spatial dispersion of ventricular repolarization and initiate polymorphic ventricular tachycardia with a specific form (torsade de pointes). Currently, thirteen genotypes in Romano-Ward syndrome and two genotypes in Jervell-Lange Nielsen syndrome have been reported. In Brugada syndrome, large transient outward current (Ito) creates a deep phase 1 notch in the action potential, especially at the epicardial myocardium of the right ventricular outflow tract. In combination with the delayed completion of repolarization and loss of the phase 2 dome in some epicardial myocardium in this area, coved-type ECG abnormality and ventricular fibrillation due to phase 2 reentry are believed to be induced in Brugada syndrome. Eleven genetic abnormalities are presently listed as a possible cause of Brugada syndrome.

  6. The genetic background of inflammatory bowel disease.

    PubMed

    Yang, H; Rotter, J I

    2000-01-01

    Available evidence indicates that genetic factors are essential in providing the susceptibility to the majority of the various forms of inflammatory bowel disease occurring in man. It is also clear that the genetic susceptibility to these diseases is complex, and that more than one gene may predispose (the concept of multilocus/oligogenic inheritance), and likely in different etiologic combinations (the concept of genetic heterogeneity). Paradigms are now available that should lead to the identification of a number of these predisposing genes. These paradigms include the candidate gene approach, systematic genome wide scans, and mouse human synteny. While genome wide scans are currently limited to multiplex family linkage studies, both candidate genes and mouse human synteny can be approached in either linkage or association paradigms. Eventually whole genome association studies will be available as well. Identification of inflammatory bowel disease predisposing genes should lead to their incorporation in studies of natural history, investigation of environmental risk factors, and especially utilization of genetic markers in clinical trials. This will allow us to identify the best therapy available for the individual patient based on their unique genetic constitution. With advances in molecular technology, the search for genes influencing traits and diseases with a complex genetic background, such as the inflammatory bowel diseases, has become a realistic task. Although exogenous or infectious agents may contribute to the pathogenesis or may trigger the onset of disease, and the immune system almost certainly mediates the tissue damage, it is clear from available data that genetic factors determine the susceptibility of a given individual to inflammatory bowel disease (reviewed below). Thus, genetic studies are essential for the delineation of the basic etiologies of the various forms of inflammatory bowel disease and thus can aid in the development of radically

  7. Genetic susceptibility to radiation

    NASA Astrophysics Data System (ADS)

    Hall, E. J.; Brenner, D. J.; Worgul, B.; Smilenov, L.

    In the context of space radiation, it is important to know whether the human population includes genetically predisposed radiosensitive subsets. One possibility is that haploinsufficiency for ATM confers radiosensitivity, and this defect involves 1-3% of the population. Using knock-out mice we chose to study cataractogenesis in the lens and oncogenic transformation in mouse embryo fibroblasts to assay for effects of ATM deficiency. Radiation induced cataracts appeared earlier in the heterozygous versus wild-type animals following exposure to either gamma rays or 1 GeV/nucleon iron ions. In addition, it was found that embryo fibroblasts of Atm heterozygotes showed an increased incidence of oncogenic transformation compared with their normal litter-matched counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive subpopulation.

  8. Genetic susceptibility to radiation

    NASA Astrophysics Data System (ADS)

    Hall, E. J.; Brenner, D. J.; Worgul, B.; Smilenov, L.

    In the context of space radiation, it is important to know whether the human population includes genetically predisposed radiosensitive subsets. One possibility is that haploinsufficiency for ATM confers radiosensitivity, and this defect involves 1 3% of the population. Using knock-out mice we chose to study cataractogenesis in the lens and oncogenic transformation in mouse embryo fibroblasts to assay for effects of ATM deficiency. Radiation induced cataracts appeared earlier in the heterozygous versus wild-type animals following exposure to either gamma rays or 1 GeV/nucleon iron ions. In addition, it was found that embryo fibroblasts of Atm heterozygotes showed an increased incidence of oncogenic transformation compared with their normal litter-matched counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally significant radiosensitive subpopulation. Knock-out mice are now available for other genes including BRCA1 and 2, and Mrad9. An exciting possibility is the creation of double heterozygotes for pairs of mutated genes that function in the same signal transduction pathway, and consequently confer even greater radiosensitivity.

  9. Exploring Genetic Susceptibility to Fibromyalgia

    PubMed Central

    Park, Dong-Jin; Kang, Ji-Hyoun; Yim, Yi-Rang; Kim, Ji-Eun; Lee, Jeong-Won; Lee, Kyung-Eun; Wen, Lihui; Kim, Tae-Jong; Park, Yong-Wook

    2015-01-01

    Fibromyalgia (FM) affects 1% to 5% of the population, and approximately 90% of the affected individuals are women. FM patients experience impaired quality of life and the disorder places a considerable economic burden on the medical care system. With the recognition of FM as a major health problem, many recent studies have evaluated the pathophysiology of FM. Although the etiology of FM remains unknown, it is thought to involve some combination of genetic susceptibility and environmental exposure that triggers further alterations in gene expression. Because FM shows marked familial aggregation, most previous research has focused on genetic predisposition to FM and has revealed associations between genetic factors and the development of FM, including specific gene polymorphisms involved in the serotonergic, dopaminergic, and catecholaminergic pathways. The aim of this review was to discuss the current evidence regarding genetic factors that may play a role in the development and symptom severity of FM. PMID:26306300

  10. The ontology of genetic susceptibility factors (OGSF) and its application in modeling genetic susceptibility to vaccine adverse events

    PubMed Central

    2014-01-01

    Background Due to human variations in genetic susceptibility, vaccination often triggers adverse events in a small population of vaccinees. Based on our previous work on ontological modeling of genetic susceptibility to disease, we developed an Ontology of Genetic Susceptibility Factors (OGSF), a biomedical ontology in the domain of genetic susceptibility and genetic susceptibility factors. The OGSF framework was then applied in the area of vaccine adverse events (VAEs). Results OGSF aligns with the Basic Formal Ontology (BFO). OGSF defines ‘genetic susceptibility’ as a subclass of BFO:disposition and has a material basis ‘genetic susceptibility factor’. The ‘genetic susceptibility to pathological bodily process’ is a subclasses of ‘genetic susceptibility’. A VAE is a type of pathological bodily process. OGSF represents different types of genetic susceptibility factors including various susceptibility alleles (e.g., SNP and gene). A general OGSF design pattern was developed to represent genetic susceptibility to VAE and associated genetic susceptibility factors using experimental results in genetic association studies. To test and validate the design pattern, two case studies were populated in OGSF. In the first case study, human gene allele DBR*15:01 is susceptible to influenza vaccine Pandemrix-induced Multiple Sclerosis. The second case study reports genetic susceptibility polymorphisms associated with systemic smallpox VAEs. After the data of the Case Study 2 were represented using OGSF-based axioms, SPARQL was successfully developed to retrieve the susceptibility factors stored in the populated OGSF. A network of data from the Case Study 2 was constructed by using ontology terms and individuals as nodes and ontology relations as edges. Different social network analys is (SNA) methods were then applied to verify core OGSF terms. Interestingly, a SNA hub analysis verified all susceptibility alleles of SNPs and a SNA closeness analysis verified

  11. Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background.

    PubMed

    Sun, Lingmei; Wu, Quli; Liao, Kai; Yu, Peihang; Cui, Qiuhong; Rui, Qi; Wang, Dayong

    2016-02-01

    Contribution of chemical components in coal combustion related fine particulate matter (PM2.5) to its toxicity is largely unclear. We focused on heavy metals in PM2.5 to investigate their contribution to toxicity formation in Caenorhabditis elegans. Among 8 heavy metals examined (Fe, Zn, Pb, As, Cd, Cr, Cu, and Ni), Pb, Cr, and Cu potentially contributed to PM2.5 toxicity in wild-type nematodes. Combinational exposure to any two of these three heavy metals caused higher toxicity than exposure to Pb, Cr, or Cu alone. Toxicity from the combinational exposure to Pb, Cr, and Cu at the examined concentrations was higher than exposure to PM2.5 (100 mg/L). Moreover, mutation of sod-2 or sod-3 gene encoding Mn-SOD increased susceptibility in nematodes exposed to Fe, Zn, or Ni, although Fe, Zn, or Ni at the examined concentration did not lead to toxicity in wild-type nematodes. Our results highlight the potential contribution of heavy metals to PM2.5 toxicity in environmental organisms.

  12. Genetic background of supernumerary teeth

    PubMed Central

    Subasioglu, Asli; Savas, Selcuk; Kucukyilmaz, Ebru; Kesim, Servet; Yagci, Ahmet; Dundar, Munis

    2015-01-01

    Supernumerary teeth (ST) are odontostomatologic anomaly characterized by as the existence excessive number of teeth in relation to the normal dental formula. This condition is commonly seen with several congenital genetic disorders such as Gardner's syndrome, cleidocranial dysostosis and cleft lip and palate. Less common syndromes that are associated with ST are; Fabry Disease, Ellis-van Creveld syndrome, Nance-Horan syndrome, Rubinstein-Taybi Syndrome and Trico–Rhino–Phalangeal syndrome. ST can be an important component of a distinctive disorder and an important clue for early diagnosis. Certainly early detecting the abnormalities gives us to make correct management of the patient and also it is important for making well-informed decisions about long-term medical care and treatment. In this review, the genetic syndromes that are related with ST were discussed. PMID:25713500

  13. Awareness of Cancer Susceptibility Genetic Testing

    PubMed Central

    Mai, Phuong L.; Vadaparampil, Susan Thomas; Breen, Nancy; McNeel, Timothy S.; Wideroff, Louise; Graubard, Barry I.

    2014-01-01

    Background Genetic testing for several cancer susceptibility syndromes is clinically available; however, existing data suggest limited population awareness of such tests. Purpose To examine awareness regarding cancer genetic testing in the U.S. population aged ≥25 years in the 2000, 2005, and 2010 National Health Interview Surveys. Methods The weighted percentages of respondents aware of cancer genetic tests, and percent changes from 2000–2005 and 2005–2010, overall and by demographic, family history, and healthcare factors were calculated. Interactions were used to evaluate the patterns of change in awareness between 2005 and 2010 among subgroups within each factor. To evaluate associations with awareness in 2005 and 2010, percentages were adjusted for covariates using multiple logistic regression. The analysis was performed in 2012. Results Awareness decreased from 44.4% to 41.5% (p<0.001) between 2000 and 2005, and increased to 47.0% (p<0.001) in 2010. Awareness increased between 2005 and 2010 in most subgroups, particularly among individuals in the South (p-interaction=0.03) or with a usual place of care (p-interaction=0.01). In 2005 and 2010, awareness was positively associated with personal or family cancer history and high perceived cancer risk, and inversely associated with racial/ethnic minorities, age 25–39 or ≥60 years, male gender, lower education and income levels, public or no health insurance, and no provider contact in 12 months. Conclusions Despite improvement from 2005 to 2010, ≤50% of the U.S. adult population was aware of cancer genetic testing in 2010. Notably, disparities persist for racial/ethnic minorities and individuals with limited health care access or income. PMID:24745633

  14. Introduction to cancer genetic susceptibility syndromes.

    PubMed

    McGee, Rose B; Nichols, Kim E

    2016-12-02

    The last 30 years have witnessed tremendous advances in our understanding of the cancer genetic susceptibility syndromes, including those that predispose to hematopoietic malignancies. The identification and characterization of families affected by these syndromes is enhancing our knowledge of the oncologic and nononcologic manifestations associated with predisposing germ line mutations and providing insights into the underlying disease mechanisms. Here, we provide an overview of the cancer genetic susceptibility syndromes, focusing on aspects relevant to the evaluation of patients with leukemia and lymphoma. Guidance is provided to facilitate recognition of these syndromes by hematologists/oncologists, including descriptions of the family history features, tumor genotype, and physical or developmental findings that should raise concern for an underlying cancer genetic syndrome. The clinical implications and management challenges associated with cancer susceptibility syndromes are also discussed.

  15. Assessing genetic susceptibility to diabetic nephropathy.

    PubMed

    Tanaka, Nobue; Babazono, Tetsuya

    2005-10-01

    Diabetic nephropathy is a serious complication of diabetes and the leading cause of end-stage renal disease. Studies indicate both environmental and genetic factors contribute to the development and progression of diabetic nephropathy. In particular, epidemiological evidence shows a familial clustering of nephropathy in siblings with diabetes, supporting an important role of genetic susceptibility in the pathogenesis of diabetic nephropathy. A common approach in genetic research is assessment of candidate gene polymorphisms using case-control analysis; a number of studies have evaluated predictable candidate genes for diabetic nephropathy. In contrast, only a few studies have used a whole genome approach, such as scanning of micro-satellite markers, in the assessment of genetic susceptibility to diabetic nephropathy. A whole genome linkage analysis using families of Pima Indians showed susceptibility loci for diabetic nephropathy on chromosome 3, 7, and 20. Another linkage analysis using discordant sib-pairs of Caucasian families with type 1 diabetes identified a critical area on chromosome 3q. However, these results have been inconclusive and further investigation is required. Recently, a genome-wide, case-control analysis identifying susceptibility genes for diabetic nephropathy was performed. As a result, a single nucleotide polymorphism in exon 23 of the solute carrier family 12 (sodium-chloride cotransporter) member 3 gene was found to be strongly associated with diabetic nephropathy. Although further assessment of this polymorphism is needed, this strategy offers great promise in the identification of genetic factors predisposing patients to diabetic nephropathy. Identification of genetic susceptibility markers may offer new hope in the diagnosis and treatment of diabetic nephropathy.

  16. Population screening for genetic susceptibility to disease.

    PubMed Central

    Clarke, A.

    1995-01-01

    Genetic screening for susceptibility to common diseases, such as the common cancers, cardiovascular disease, and diabetes, may soon be technically feasible. Commercial interests should not be allowed to introduce such screening before proper evaluation or without adequate counselling and support. The evaluation of such testing should include psychosocial and medical outcomes and outcomes for those given low risks as well as high risks. These tests may distract attention away from environmental factors contributing to disease, for which social and political measures may be more appropriate than individualised susceptibility screening and lifestyle modification. PMID:7613325

  17. A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis

    PubMed Central

    Yu, Haiyang; Artomov, Mykyta; Brähler, Sebastian; Stander, M. Christine; Shamsan, Ghaidan; Sampson, Matthew G.; White, J. Michael; Kretzler, Matthias; Jain, Sanjay; Winkler, Cheryl A.; Mitra, Robi D.; Daly, Mark J.; Shaw, Andrey S.

    2016-01-01

    Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney podocyte dysfunction and causes chronic kidney disease. Multiple factors including chemical toxicity, inflammation, and infection underlie FSGS; however, highly penetrant disease genes have been identified in a small fraction of patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) have been linked to FSGS in African Americans with HIV or hypertension, supporting the proposal that genetic factors enhance FSGS susceptibility. Here, we used sequencing to investigate whether genetics plays a role in the majority of FSGS cases that are identified as primary or sporadic FSGS and have no known cause. Given the limited number of biopsy-proven cases with ethnically matched controls, we devised an analytic strategy to identify and rank potential candidate genes and used an animal model for validation. Nine candidate FSGS susceptibility genes were identified in our patient cohort, and three were validated using a high-throughput mouse method that we developed. Specifically, we introduced a podocyte-specific, doxycycline-inducible transactivator into a murine embryonic stem cell line with an FSGS-susceptible genetic background that allows shRNA-mediated targeting of candidate genes in the adult kidney. Our analysis supports a broader role for genetic susceptibility of both sporadic and familial cases of FSGS and provides a tool to rapidly evaluate candidate FSGS-associated genes. PMID:26901816

  18. Bladder cancer epidemiology and genetic susceptibility

    PubMed Central

    Chu, Haiyan; Wang, Meilin; Zhang, Zhengdong

    2013-01-01

    Bladder cancer is the most common malignancy of the urinary system. The incidence of bladder cancer of men is higher than that of women (approximately 4:1). Here, we summarize the bladder cancer-related risk factors, including environmental and genetic factors. In recent years, although the mortality rate induced by bladder cancer has been stable or decreased gradually, the public health effect may be pronounced. The well-established risk factors for bladder cancer are cigarette smoking and occupational exposure. Genetic factors also play important roles in the susceptibility to bladder cancer. A recent study demonstrated that hereditary non-polyposis colorectal cancer is associated with increased risk of bladder cancer. Since 2008, genome-wide association study (GWAS) has been used to identify the susceptibility loci for bladder cancer. Further gene-gene or gene-environment interaction studies need to be conducted to provide more information for the etiology of bladder cancer. PMID:23720672

  19. Genetic susceptibility to radiogenic cancer in humans.

    PubMed

    Allan, James M

    2008-11-01

    The clinical benefits associated with the use of ionizing radiation for diagnostic and therapeutic purposes are well established, particularly in cancer medicine. Unfortunately, it is now clear that prior exposure to radiation is associated with an excess risk of developing malignancy in the exposure field. Indeed, the development of a second primary malignancy is a devastating side effect that can often be attributed to radiotherapy for a first cancer. Research has focused on elucidating the relationship between therapeutic radiation dose and site-specific cancer risk, and how this relationship is affected by host factors such as age, sex, and exposure to other potential carcinogens. By contrast, there is a relative paucity of data on host genetic susceptibility to cancer following cytotoxic and mutagenic radiation exposure. Animal model systems suggest a strong genetic basis underlying susceptibility to radiogenic cancer. In humans, research has focused on investigating loci with relatively rare putative high penetrance risk alleles. However, genetic susceptibility to radiogenic cancer and other late effects of radiation exposure may be determined predominantly by co-inheritance of low penetrance risk alleles, and how these interact with each other (gene-gene interactions), with radiation dose (gene-exposure interactions) and other risk factors.

  20. Genetic polymorphisms linked to susceptibility to malaria.

    PubMed

    Driss, Adel; Hibbert, Jacqueline M; Wilson, Nana O; Iqbal, Shareen A; Adamkiewicz, Thomas V; Stiles, Jonathan K

    2011-09-19

    The influence of host genetics on susceptibility to Plasmodium falciparum malaria has been extensively studied over the past twenty years. It is now clear that malaria parasites have imposed strong selective forces on the human genome in endemic regions. Different genes have been identified that are associated with different malaria related phenotypes. Factors that promote severity of malaria include parasitaemia, parasite induced inflammation, anaemia and sequestration of parasitized erythrocytes in brain microvasculature.Recent advances in human genome research technologies such as genome-wide association studies (GWAS) and fine genotyping tools have enabled the discovery of several genetic polymorphisms and biomarkers that warrant further study in host-parasite interactions. This review describes and discusses human gene polymorphisms identified thus far that have been shown to be associated with susceptibility or resistance to P. falciparum malaria. Although some polymorphisms play significant roles in susceptibility to malaria, several findings are inconclusive and contradictory and must be considered with caution. The discovery of genetic markers associated with different malaria phenotypes will help elucidate the pathophysiology of malaria and enable development of interventions or cures. Diversity in human populations as well as environmental effects can influence the clinical heterogeneity of malaria, thus warranting further investigations with a goal of developing new interventions, therapies and better management against malaria.

  1. Role of genetic background in induced instability

    NASA Technical Reports Server (NTRS)

    Kadhim, Munira A.; Nelson, G. A. (Principal Investigator)

    2003-01-01

    Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.

  2. Genetic background of Fuchs' heterochromic cyclitis.

    PubMed

    Saari, M; Vuorre, I; Tiilikainen, A; Algvere, P

    1978-10-01

    We studied the genetic background of 24 patients with Fuchs' heterochromic cyclitis (FHC). Each was given a careful eye examination which included family history and serological determination of HLA antigens. Two families each had 2 cases of FHC in the same family; in addition an ancestor in the second family possibly had FHC; in both families one healthy member had simple heterochromia. One patient with FHC had congenital uveal coloboma, one pigmentary retinal dystrophy, and four had cysts of the ciliary body. The frequencies of all HLA antigens in patients with FHC compared well with the frequencies in the controls. In a family in which HLA haplotypes could be derived, the patients with FHC showed different HLA haplotypes. We conclude that FHC has a hereditary basis but its immunological component is not genetically associated with the HLA system.

  3. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview

    PubMed Central

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-01

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive “feedback” to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the “window of susceptibility” in the human health risks due to mercury exposure. PMID:28106810

  4. Genetic background in nonalcoholic fatty liver disease: A comprehensive review.

    PubMed

    Macaluso, Fabio Salvatore; Maida, Marcello; Petta, Salvatore

    2015-10-21

    In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease.

  5. Genetic background in nonalcoholic fatty liver disease: A comprehensive review

    PubMed Central

    Macaluso, Fabio Salvatore; Maida, Marcello; Petta, Salvatore

    2015-01-01

    In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease. PMID:26494964

  6. Genetic Association Between PER3 Genetic Polymorphisms and Cancer Susceptibility

    PubMed Central

    Geng, Peiliang; Ou, Juanjuan; Li, Jianjun; Wang, Ning; Xie, Ganfeng; Sa, Rina; Liu, Chen; Xiang, Lisha; Liang, Houjie

    2015-01-01

    Abstract The genes along the circadian pathways control and modulate circadian rhythms essential for the maintenance of physiological homeostasis through self-sustained transcription-translation feedback loops. PER3 (period 3) is a circadian pathway gene and its variants (rs1012477, 4/5-repeat) have frequently been associated with human cancer. The mixed findings, however, make the role of the 2 variants in cancer susceptibility elusive. We aimed in this article to clarify the association of PER3 variants with cancer. We collected genetic data from 8 studies, providing 6149 individuals for rs1012477 and 5241 individuals for 4/5-repeat. Based on the genotype and allele frequency, we chose the fixed-effects model to estimate risk of cancer. Overall analysis did not suggest a global role of rs1012477 in cancer susceptibility. For PER3 4/5-repeat variant, we found a moderate increase in risk of cancer among individuals with the 5-allele compared to individuals with the 4-allele, although this association was not statistically significant (homozygous model: odds ratio [OR] 1.17, 95% confidence interval [CI] 0.81–1.67; recessive model: OR 1.17, 95% CI 0.82–1.67). No substantial heterogeneity was revealed in this analysis. Our meta-analysis provides no evidence supporting a global association of PER3 genetic variants with the incidence of cancer. PMID:25837749

  7. The genetic basis of multiple sclerosis: a model for MS susceptibility

    PubMed Central

    2010-01-01

    Abstact Background MS-pathogenesis is known to involve both multiple environmental events, and several independent genetic risk-factors. Methods A model of susceptibility is developed and a mathematical analysis undertaken to elucidate the nature of genetic susceptibility to MS and to understand the constraints that are placed on the genetic basis of MS, both by the known epidemiological facts of this disease and by the known frequency of the HLA DRB1*1501 allele in the general populations of northern Europe and North America. Results For the large majority of cases (possibly all), MS develops, in part, because an individual is genetically susceptible. Nevertheless, 2.2% or less of the general population is genetically susceptible. Moreover, from the model, the number of susceptibility-loci that need to be in a "susceptible allelic state" to produce MS-susceptibility is small (11-18), whereas the total number of such susceptibility-loci is large (50-200), and their "frequency of susceptibility" is low (i.e., ≤ 0.12). The optimal solution to the model equations (which occurs when 80% of the loci are recessive) predicts the epidemiological data quite closely. Conclusions The model suggests that combinations of only a small number of genetic loci in a "susceptible allelic state" produce MS-susceptibility. Nevertheless, genome-wide associations studies with hundreds of thousands of SNPs, are plagued by both false-positive and false-negative identifications and, consequently, emphasis has been rightly placed on the replicability of findings. Nevertheless, because genome-wide screens don't distinguish between true susceptibility-loci and disease-modifying-loci, and because only true susceptibility-loci are constrained by the model, unraveling the two will not be possible using this approach. The model also suggests that HLA DRB1 may not be as uniquely important for MS-susceptibility as currently believed. Thus, this allele is only one among a hundred or more loci

  8. Genetic susceptibility in ecosystems: the challenge for ecotoxicology.

    PubMed Central

    Evenden, A J; Depledge, M H

    1997-01-01

    Environmental management is inevitably complicated by the large variation in susceptibility to chemical toxicity exhibited by the living components of ecosystems, a significant proportion of which is determined by genetic factors. This paper examines the concept of genetic susceptibility in ecosystems and suggests the existence of two distinct forms reflecting genetic changes at the level of the individual and at the level of population and community. The influence of genetic susceptibility on exposure-response curves is discussed and the consequent accuracy of data used for toxicity test-based risk assessments examined. The paper concludes by describing a possible biomarker-based approach to future studies of susceptibility in ecosystems, suggesting the use of modern molecular genetic methods. PMID:9255571

  9. Influence of genetic background on fluoride metabolism in mice.

    PubMed

    Carvalho, J G; Leite, A L; Yan, D; Everett, E T; Whitford, G M; Buzalaf, M A R

    2009-11-01

    A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure.

  10. Influence of Genetic Background on Fluoride Metabolism in Mice

    PubMed Central

    Carvalho, J.G.; Leite, A.L.; Yan, D.; Everett, E.T.; Whitford, G.M.; Buzalaf, M.A.R.

    2009-01-01

    A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure. PMID:19828896

  11. Genetic Induction of Cytolytic Susceptibility in Breast Cancer Cells

    DTIC Science & Technology

    1999-07-01

    Street, Fort Detrick, MD 21702-5012 AUTHORITY USAMRMC ltr, dtd 28 July 2003 THIS PAGE IS UNCLASSIFIED AD GRANT NUMBER DAMD17-98-1-8324 TITLE: Genetic ...FUNDING NUMBERS Genetic Induction of Cytolytic Susceptibility in Breast Cancer Cells DAMD17-98-1-8324 6. AUTHOR(S) James L. Cook, M.D. 7. PERFORMING...gene expression in breast cancer cells. The objective of these studies is to obtain genetic information to complement the biological data presented

  12. A Genetic Basis of Susceptibility to Acute Pyelonephritis

    PubMed Central

    Lundstedt, Ann-Charlotte; McCarthy, Shane; Gustafsson, Mattias C.U.; Godaly, Gabriela; Jodal, Ulf; Karpman, Diana; Leijonhufvud, Irene; Lindén, Carin; Martinell, Jeanette; Ragnarsdottir, Bryndis; Samuelsson, Martin; Truedsson, Lennart; Andersson, Björn; Svanborg, Catharina

    2007-01-01

    Background For unknown reasons, urinary tract infections (UTIs) are clustered in certain individuals. Here we propose a novel, genetically determined cause of susceptibility to acute pyelonephritis, which is the most severe form of UTI. The IL-8 receptor, CXCR1, was identified as a candidate gene when mIL-8Rh mutant mice developed acute pyelonephritis (APN) with severe tissue damage. Methods and Findings We have obtained CXCR1 sequences from two, highly selected APN prone patient groups, and detected three unique mutations and two known polymorphisms with a genotype frequency of 23% and 25% compared to 7% in controls (p<0.001 and p<0.0001, respectively). When reflux was excluded, 54% of the patients had CXCR1 sequence variants. The UTI prone children expressed less CXCR1 protein than the pediatric controls (p<0.0001) and two sequence variants were shown to impair transcription. Conclusions The results identify a genetic innate immune deficiency, with a strong link to APN and renal scarring. PMID:17786197

  13. [The pathology and genetic background of myeloma].

    PubMed

    Timár, Botond

    2016-06-06

    Plasma cell myeloma is a heterogeneous hematologic malignancy of plasma cells, occurring dominantly in the elderly population. It is now accepted that all myeloma cases are preceded by a clinically silent expansion of clonal plasma cells, known as monoclonal gammopathy of undetermined significance. Our knowledge on the genetics of myeloma is still limited and lags behind other well-characterized hematological malignancies. One of the reasons of this fact is the difficulty to induce metaphases within the malignant plasma cell population. With the development of new molecular techniques (microarrays and next generation sequencing), our understanding of the pathogenesis and progression of myeloma has been highly improved in the past years. This review offers an insight into this newly gained knowledge.

  14. Genetic testing in asymptomatic minors Background considerations towards ESHG Recommendations

    PubMed Central

    Borry, Pascal; Evers-Kiebooms, Gerry; Cornel, Martina C; Clarke, Angus; Dierickx, Kris

    2009-01-01

    Although various guidelines and position papers have discussed, in the past, the ethical aspects of genetic testing in asymptomatic minors, the European Society of Human Genetics had not earlier endorsed any set of guidelines exclusively focused on this issue. This paper has served as a background document in preparation of the development of the policy recommendations of the Public and Professional Committee of the European Society of Human Genetics. This background paper first discusses some general considerations with regard to the provision of genetic tests to minors. It discusses the concept of best interests, participation of minors in health-care decisions, parents' responsibilities to share genetic information, the role of clinical genetics and the health-care system in communication within the family. Second, it discusses, respectively, the presymptomatic and predictive genetic testing for adult-onset disorders, childhood-onset disorders and carrier testing. PMID:19277061

  15. Genetic Susceptibility to Fungal Infections in Humans.

    PubMed

    Lionakis, Michail S

    2012-03-01

    Most fungal infections in humans occur in the setting of iatrogenic immunosuppression or HIV infection. In the absence of these factors, fungi cause mild, self-limited infections that typically involve mucocutaneous surfaces. Hence, when persistent or recurrent mucocutaneous infections (chronic mucocutaneous candidiasis [CMC]) or invasive fungal infections (IFIs) develop in a "normal" host, they are indicative of genetic defects causing innate or adaptive immune dysfunction. In this review, recent developments concerning genetic and immunologic factors that affect the risk for IFIs and CMC are critically discussed.

  16. Genetic Susceptibility to Fungal Infections in Humans

    PubMed Central

    Lionakis, Michail S.

    2012-01-01

    Most fungal infections in humans occur in the setting of iatrogenic immunosuppression or HIV infection. In the absence of these factors, fungi cause mild, self-limited infections that typically involve mucocutaneous surfaces. Hence, when persistent or recurrent mucocutaneous infections (chronic mucocutaneous candidiasis [CMC]) or invasive fungal infections (IFIs) develop in a “normal” host, they are indicative of genetic defects causing innate or adaptive immune dysfunction. In this review, recent developments concerning genetic and immunologic factors that affect the risk for IFIs and CMC are critically discussed. PMID:23087779

  17. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response

    PubMed Central

    1995-01-01

    Mice with homologous disruption of the gene coding for the ligand- binding chain of the interferon (IFN) gamma receptor and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in the differentiation of functional CD4+ T cell subsets in vivo and resistance to infection. Wild-type 129/Sv/Ev mice are resistant to infection with this parasite, developing only small lesions, which resolve spontaneously within 6 wk. In contrast, mice lacking the IFN- gamma receptor develop large, progressing lesions. After infection, lymph nodes (LN) and spleens from both wild-type and knockout mice showed an expansion of CD4+ cells producing IFN-gamma as revealed by measuring IFN-gamma in supernatants of specifically stimulated CD4+ T cells, by enumerating IFN-gamma-producing T cells, and by Northern blot analysis of IFN-gamma transcripts. No biologically active interleukin (IL) 4 was detected in supernatants of in vitro-stimulated LN or spleen cells from infected wild-type or deficient mice. Reverse transcription polymerase chain reaction analysis with primers specific for IL-4 showed similar IL-4 message levels in LN from both types of mice. The IL-4 message levels observed were comparable to those found in similarly infected C57BL/6 mice and significantly lower than the levels found in BALB/c mice. Anti-IFN-gamma treatment of both types of mice failed to alter the pattern of cytokines produced after infection. These data show that even in the absence of IFN-gamma receptors, T helper cell (Th) 1-type responses still develop in genetically resistant mice with no evidence for the expansion of Th2 cells. PMID:7869054

  18. US physicians' attitudes toward genetic testing for cancer susceptibility.

    PubMed

    Freedman, A N; Wideroff, L; Olson, L; Davis, W; Klabunde, C; Srinath, K P; Reeve, B B; Croyle, R T; Ballard-Barbash, R

    2003-07-01

    Genetic testing for an inherited susceptibility to cancer is an emerging technology in medical practice. Little information is currently available about physicians' attitudes toward these tests. To assess US physicians' opinions on unresolved issues surrounding genetic testing, a 15-min survey was administered to a stratified random sample of 1,251 physicians from 8 specialties, selected from a file of all licensed physicians in the US (response rate = 71.0%). Dependent measures included physicians' attitudes toward genetic counseling and testing qualifications, availability of guidelines, patient confidentiality and insurance discrimination issues, and clinical utility of genetic tests. More than 89% of physicians reported a need for physician guidelines, 81% thought that patients with positive genetic test results are at risk for insurance discrimination, and more than 53% thought that it was difficult to ensure the confidentiality of test results. Almost 25% indicated that genetic tests for cancer susceptibility have too many inaccurate or ambiguous results; nearly 75% thought that clear guidelines are not available for managing patients with positive test results. Only 29% of physicians reported feeling qualified to provide genetic counseling to their patients. More than 84% of oncologists considered themselves qualified to recommend genetic testing to their patients compared with 40% of primary care physicians (PCPs), and 57% of tertiary care physicians (TCPs). US physicians expressed great uncertainty about issues surrounding genetic testing for cancer susceptibility. Results of this national survey underscore the need to provide physicians with clear guidelines on the use of genetic cancer susceptibility tests and effective medical training on their appropriate implementation.

  19. Genetic Susceptibility to Estrogen-Induced Mammary Cancers

    DTIC Science & Technology

    2001-11-01

    Susceptibility to Estrogen -Induced Mammary Cancers PRINCIPAL INVESTIGATOR: Dr. James D. Shull CONTRACTING ORGANIZATION: University of Nebraska Medical Center Omaha...DATES COVERED blank) November 2001 Final (01 Oct 98 - 01 Oct 01) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Genetic Susceptibility to Estrogen -Induced...Street, Fort Detrick, Maryland 21702-5012. 13. ABSTRACT (Maximum 200 Words) Estrogens are important in the etiology of breast cancer. We have developed

  20. Genetic Susceptibility to Fungal Infections: What is in the Genes?

    PubMed

    Maskarinec, Stacey A; Johnson, Melissa D; Perfect, John R

    2016-06-01

    The development of severe fungal infections has long been associated with traditional risk factors such as profound immunosuppression, yet it remains challenging to understand why under similar conditions only some patients will develop these infections while others will not. Recent studies have demonstrated the importance of host genetic variation in influencing the severity and susceptibility to invasive fungal infections (IFIs). In this review, we examine selected primary immunodeficiencies characterized by their vulnerability to a narrow range of fungal pathogens, and then focus on recently identified genetic polymorphisms associated with an increased susceptibility to IFIs.

  1. Genetic Susceptibility to Head and Neck Squamous Cell Carcinoma

    SciTech Connect

    Lacko, Martin; Braakhuis, Boudewijn J.M.; Sturgis, Erich M.; Boedeker, Carsten C.; Suárez, Carlos; Rinaldo, Alessandra; Ferlito, Alfio; Takes, Robert P.

    2014-05-01

    Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and its incidence is growing. Although environmental carcinogens and carcinogenic viruses are the main etiologic factors, genetic predisposition obviously plays a risk-modulating role, given that not all individuals exposed to these carcinogens experience the disease. This review highlights some aspects of genetic susceptibility to HNSCC: among others, genetic polymorphisms in biotransformation enzymes, DNA repair pathway, apoptotic pathway, human papillomavirus-related pathways, mitochondrial polymorphisms, and polymorphism related to the bilirubin-metabolized pathway. Furthermore, epigenetic variations, familial forms of HNSCC, functional assays for HNSCC risk assessment, and the implications and perspectives of research on genetic susceptibility in HNSCC are discussed.

  2. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    PubMed Central

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  3. GENETIC SUSCEPTIBILITY AND EXPERIMENTAL INDUCTION OF PULMONARY DISEASE

    EPA Science Inventory

    Genetic Susceptibility and Experimental Induction of Pulmonary Disease. UP Kodavanti, MC Schladweiler, AD Ledbetter, PS Gilmour, P Evansky, KR Smith*, WP Watkinson, DL Costa, KE Pinkerton*. ETD, NHEERL, ORD, US EPA, RTP, NC; *Univ California, Davis, CA, USA.
    Conventional la...

  4. [Investigation of the genetic background of bipolar disorder and schizophrenia (introduction)].

    PubMed

    Gábor, Gaszner

    2007-06-01

    The hereditability of bipolar disorder (Bpd) and schizophrenia (Sch) is a well known fact, twin studies are applied to estimate the contribution of the genetic background. Gene linkage studies provided from suicidal brain samples are used to identify mutation of susceptibility genes involved in the etiology. Numerous genes are playing role in the altered signal transduction pathways. Based on the combined effects and functional interactions between the enzymes expressed by these key genes, it could be possible to estimate the genetic risk. Through targeting the intracellular enzymes we can affect the pathogenesis and modify neuronal plasticity of Bpd and Sch, thus developing new psychoactive drugs.

  5. Genetic susceptibility testing for neurodegenerative diseases: Ethical and practice issues

    PubMed Central

    Roberts, J. Scott; Uhlmann, Wendy R.

    2013-01-01

    As the genetics of neurodegenerative disease become better understood, opportunities for genetic susceptibility testing for at-risk individuals will increase. Such testing raises important ethical and practice issues related to test access, informed consent, risk estimation and communication, return of results, and policies to prevent genetic discrimination. The advent of direct-to-consumer genetic susceptibility testing for various neurodegenerative disorders (including Alzheimer’s disease, Parkinson’s disease, and certain prion diseases) means that ethical and practical challenges must be faced not only in traditional research and clinical settings, but also in broader society. This review addresses several topics relevant to the development and implementation of genetic susceptibility tests across research, clinical, and consumer settings; these include appropriate indications for testing, the implications of different methods for disclosing test results, clinical versus personal utility of risk information, psychological and behavioral responses to test results, testing of minors, genetic discrimination, and ethical dilemmas posed by whole-genome sequencing. We also identify future areas of likely growth in the field, including pharmacogenomics and genetic screening for individuals considering or engaged in activities that pose elevated risk of brain injury (e.g., football players, military personnel). APOE gene testing for risk of Alzheimer’s disease is used throughout as an instructive case example, drawing upon the authors’ experience as investigators in a series of multisite randomized clinical trials that have examined the impact of disclosing APOE genotype status to interested individuals (e.g., first-degree relatives, persons with mild cognitive impairment). PMID:23583530

  6. Human genetic susceptibility and infection with Leishmania peruviana

    SciTech Connect

    Shaw, M.A.; Davis, C.R.; Collins, A.

    1995-11-01

    Racial differences, familial clustering, and murine studies are suggestive of host genetic control of Leishmania infections. Complex segregation analysis has been carried out by use of the programs POINTER and COMDS and data from a total population survey, comprising 636 nuclear families, from an L. perurviana endemic area. The data support genetic components controlling susceptibility to clinical leishmaniasis, influencing severity of disease and resistance to disease among healthy individuals. A multifactorial model is favored over a sporadic model. Two-locus models provided the best fit to the data, the optimal model being a recessive gene (frequency .57) plus a modifier locus. Individuals infected at an early age and with recurrent lesions are genetically more susceptible than those infected with a single episode of disease at a later age. Among people with no lesions, those with a positive skin-test response are genetically less susceptible than those with a negative response. The possibility of the involvement of more than one gene together with environmental effects has implications for the design of future linkage studies. 31 refs., 7 tabs.

  7. Neuronal copper homeostasis susceptibility by genetic defects in dysbindin, a schizophrenia susceptibility factor

    PubMed Central

    Gokhale, Avanti; Vrailas-Mortimer, Alysia; Larimore, Jennifer; Comstra, Heather S.; Zlatic, Stephanie A.; Werner, Erica; Manvich, Daniel F.; Iuvone, P. Michael; Weinshenker, David; Faundez, Victor

    2015-01-01

    Environmental factors and susceptible genomes interact to determine the risk of neurodevelopmental disorders. Although few genes and environmental factors have been linked, the intervening cellular and molecular mechanisms connecting a disorder susceptibility gene with environmental factors remain mostly unexplored. Here we focus on the schizophrenia susceptibility gene DTNBP1 and its product dysbindin, a subunit of the BLOC-1 complex, and describe a neuronal pathway modulating copper metabolism via ATP7A. Mutations in ATP7A result in Menkes disease, a disorder of copper metabolism. Dysbindin/BLOC-1 and ATP7A genetically and biochemically interact. Furthermore, disruption of this pathway causes alteration in the transcriptional profile of copper-regulatory and dependent factors in the hippocampus of dysbindin/BLOC-1-null mice. Dysbindin/BLOC-1 loss-of-function alleles do not affect cell and tissue copper content, yet they alter the susceptibility to toxic copper challenges in both mammalian cells and Drosophila. Our results demonstrate that perturbations downstream of the schizophrenia susceptibility gene DTNBP1 confer susceptibility to copper, a metal that in excess is a neurotoxin and whose depletion constitutes a micronutrient deficiency. PMID:26199316

  8. Meta-analysis and genome-wide interpretation of genetic susceptibility to drug addiction

    PubMed Central

    2011-01-01

    Background Classical genetic studies provide strong evidence for heritable contributions to susceptibility to developing dependence on addictive substances. Candidate gene and genome-wide association studies (GWAS) have sought genes, chromosomal regions and allelic variants likely to contribute to susceptibility to drug addiction. Results Here, we performed a meta-analysis of addiction candidate gene association studies and GWAS to investigate possible functional mechanisms associated with addiction susceptibility. From meta-data retrieved from 212 publications on candidate gene association studies and 5 GWAS reports, we linked a total of 843 haplotypes to addiction susceptibility. We mapped the SNPs in these haplotypes to functional and regulatory elements in the genome and estimated the magnitude of the contributions of different molecular mechanisms to their effects on addiction susceptibility. In addition to SNPs in coding regions, these data suggest that haplotypes in gene regulatory regions may also contribute to addiction susceptibility. When we compared the lists of genes identified by association studies and those identified by molecular biological studies of drug-regulated genes, we observed significantly higher participation in the same gene interaction networks than expected by chance, despite little overlap between the two gene lists. Conclusions These results appear to offer new insights into the genetic factors underlying drug addiction. PMID:21999673

  9. Mitochondrial Genetics & Obesity: Evolutionary Adaptation & Contemporary Disease Susceptibility

    PubMed Central

    Dunham-Snary, Kimberly J.; Ballinger, Scott W.

    2013-01-01

    Obesity is a leading risk factor for a variety of metabolic diseases including cardiovascular disease, diabetes and cancer. Although in its simplest terms, obesity may be thought of as a consequence of excessive caloric intake and sedentary lifestyle, it is also evident that individual propensity for weight gain can vary. The etiology of individual susceptibility to obesity appears to be complex – involving a combination of environmental – genetic interactions. Herein, we suggest that the mitochondrion plays a major role in influencing individual susceptibility to this disease via mitochondrial – nuclear interaction processes, and that environmentally influenced selection events for mitochondrial function that conveyed increased reproductive and survival success during the global establishment of human populations during prehistoric times can influence individual susceptibility to weight gain and obesity. PMID:24075923

  10. Genetic Susceptibility to Interstitial Lung Disease Associated with Systemic Sclerosis

    PubMed Central

    Tochimoto, Akiko; Kawaguchi, Yasushi; Yamanaka, Hisashi

    2015-01-01

    Systemic sclerosis (SSc) is a connective tissue disease that is characterized by tissue fibrosis, microvasculopathy, and autoimmunity. Interstitial lung disease (ILD) is a common complication of SSc and is one of the frequent causes of mortality in SSc. Although the exact etiology of SSc remains unknown, clinical and experimental investigations have suggested that genetic and environmental factors are relevant to the pathogenesis of SSc and SSc-ILD. More than 30 genes have been identified as susceptibility loci for SSc, most of which are involved in immune regulation and inflammation. It is thought that the key pathogenesis of SSc-ILD is caused by the release of profibrotic mediators such as transforming growth factor β1 and connective tissue growth factor from lung cells induced by a persistent damage. This review presents the genetic susceptibility to SSc-ILD, including human leukocyte antigen and non-human leukocyte antigen genes, especially focusing on connective tissue growth factor. PMID:26997879

  11. Epigenomic functional characterization of genetic susceptibility variants in systemic vasculitis.

    PubMed

    Sawalha, Amr H; Dozmorov, Mikhail G

    2016-02-01

    Systemic vasculitides are poorly understood inflammatory diseases of the blood vessels that are frequently associated with significant organ damage. Genetic risk variants contribute to the susceptibility of vasculitis, but functional consequences of these genetic variants are largely unknown. Most genetic risk variants in immune-mediated diseases, including systemic vasculitis, are localized to non-coding genetic regions suggesting they might increase disease risk by influencing regulatory elements within the genome. Long range regulatory interactions pose an additional obstacle in localizing functional consequences associated with risk variants to specific genes or cell types. We used cell-type specific enrichment patterns of histone changes that mark poised, primed, and active enhancers, and DNase hypersensitivity to identify specific immune cells mediating genetic risk in vasculitis. Our data suggest that genetic risk variants in ANCA-associated vasculitis are significantly enriched in enhancer elements in Th17 cells, supporting a role for Th17 cells in this disease. Primed and active enhancer elements in B cells can be potentially affected by genetic risk variants associated with Kawasaki disease. Genetic risk in Behçet's disease and Takayasu arteritis might affect enhancer elements in multiple cell types, possibly explained by influencing enhancers in hematopoietic stem cells. Interestingly, our analyses indicate a role for B cells in Kawasaki disease, Behçet's disease, and Takayasu arteritis, and suggest that further work to characterize the involvement of B cells in these diseases is warranted.

  12. QTL x Genetic Background Interaction: Application to Predicting Progeny Value

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Failures of the additive infinitesimal model continue to provide incentive to study other modes of gene action, in particular, epistasis. Epistasis can be modeled as a QTL by genetic background interaction. Association mapping models lend themselves to fitting such an interaction because they often ...

  13. Genetic susceptibility to feline infectious peritonitis in Birman cats.

    PubMed

    Golovko, Lyudmila; Lyons, Leslie A; Liu, Hongwei; Sørensen, Anne; Wehnert, Suzanne; Pedersen, Niels C

    2013-07-01

    Genetic factors are presumed to influence the incidence of feline infectious peritonitis (FIP), especially among pedigreed cats. However, proof for the existence of such factors has been limited and mainly anecdotal. Therefore, we sought evidence for genetic susceptibility to FIP using feline high density single nucleotide polymorphism (SNP) arrays in a genome-wide association study (GWAS). Birman cats were chosen for GWAS because they are highly inbred and suffer a high incidence of FIP. DNA from 38 Birman cats that died of FIP and 161 healthy cats from breeders in Denmark and USA were selected for genotyping using 63K SNPs distributed across the feline genome. Danish and American Birman cats were closely related and the populations were therefore combined and analyzed in two manners: (1) all cases (FIP) vs. all controls (healthy) regardless of age, and (2) cases 1½ years of age and younger (most susceptible) vs. controls 2 years of age and older (most resistant). GWAS of the second cohort was most productive in identifying significant genome-wide associations between case and control cats. Four peaks of association with FIP susceptibility were identified, with two being identified on both analyses. Five candidate genes ELMO1, RRAGA, TNFSF10, ERAP1 and ERAP2, all relevant to what is known about FIP virus pathogenesis, were identified but no single association was fully concordant with the disease phenotype. Difficulties in doing GWAS in cats and interrogating complex genetic traits were discussed.

  14. Recent advances in exploring the genetic susceptibility to diabetic neuropathy.

    PubMed

    Politi, Cristina; Ciccacci, Cinzia; D'Amato, Cinzia; Novelli, Giuseppe; Borgiani, Paola; Spallone, Vincenza

    2016-10-01

    Diabetic polyneuropathy and cardiovascular autonomic neuropathy are common and disabling complications of diabetes. Although glycaemic control and cardiovascular risk factors are major contributory elements in its development, diabetic neuropathy recognizes a multifactorial influence and a multiplicity of pathogenetic mechanisms. Thus genetic and environmental factors may contribute to its susceptibility, each with a modest contribution, by targeting various metabolic and microvascular pathways whose alterations intervene in diabetic neuropathy pathogenesis. This review is aimed at describing major data from the available literature regarding genetic susceptibility to diabetic neuropathies. It provides an overview of the genes reported as associated with the development or progression of these complications, i.e. ACE, MTHFR, GST, GLO1, APOE, TCF7L2, VEGF, IL-4, GPX1, eNOS, ADRA2B, GFRA2, MIR146A, MIR128A. The identification of genetic susceptibility can help in both expanding the comprehension of the pathogenetic mechanisms of diabetic nerve damage and identifying biomarkers of risk prediction and response to therapeutic intervention.

  15. [Genetic and molecular background in autoimmune diabetes mellitus].

    PubMed

    Kantárová, D; Prídavková, D; Ságová, I; Vrlík, M; Mikler, J; Buc, M

    2015-09-01

    Type 1 diabetes mellitus (T1 DM) is caused by autoimmune-mediated and idiopathic beta-cell destruction of the pancreatic islets of Langerhans resulting in absolute insulin deficiency. Susceptibility to T1 DM is influenced by both genetic and environmental factors. It is generally believed that in genetically susceptible individuals, the disease is triggered by environmental agents, such as viral infections, dietary factors in early infancy, or climatic influences. Many candidate genes for diabetes have been reported; those within the Major Histocompatibility Complex being among the most important. The most common autoantigens are insulin, glutamic acid decarboxylase 65, insuloma-associated antigen 2, and zinc transporter ZnT8. The destruction of beta-cells is mediated mainly by cellular mechanisms; antibodies only seem to reflect the ongoing autoimmune processes and are not directly involved in the tissue damage. They, however, appear prior to the onset of insulin deficiency which makes them suitable for use in the prevention of the disease.

  16. Genetic susceptibility to obesity and metabolic syndrome in childhood.

    PubMed

    Aguilera, Concepción M; Olza, Josune; Gil, Angel

    2013-09-01

    Obesity is one of the major public health problems worldwide. It is a chronic, complex, and multifactorial origin disease characterised by body fat excess mainly due to an imbalance between dietary intake and energy expenditure. One of the major complications of obesity is metabolic syndrome, which comprises anthropometrical, clinical, and metabolic dysfunctions that predispose the affected individual to the development of type 2 diabetes mellitus and cardiovascular diseases. It is hypothesised that the variability in the susceptibility to obesity-mediated metabolic complications involves both environmental and genetic factors. Whereas advances in the knowledge of the variations in the human genome have led to the identification of susceptibility genes that contribute to obesity and related disorders, relatively few studies have specifically focused on the interactions between obesity and genetic polymorphisms and the development of metabolic complications. Despite these limited efforts, an increasing amount of evidence suggests that the effects of some gene variants on metabolic traits are modified by or present only in the setting of obesity. Furthermore, some of these loci may have larger effects on metabolic phenotypes in the presence of certain dietary or lifestyle factors. In the present manuscript, we reviewed the genes and their variants that have been evidenced to play a role in obesity-associated metabolic complications through genetic association studies, including candidate gene and genome-wide association approaches in adults and children.

  17. Association of susceptible genetic markers and autoantibodies in rheumatoid arthritis.

    PubMed

    Mohan, Vasanth Konda; Ganesan, Nalini; Gopalakrishnan, Rajasekhar

    2014-08-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disorder of unknown aetiology resulting in inflammation of the synovium, cartilage and bone. The disease has a heterogeneous character, consisting of clinical subsets of anti-citrullinated protein antibody (ACPA)-positive and APCA-negative disease. Although, the pathogenesis of RA is incompletely understood, genetic factors play a vital role in susceptibility to RA as the heritability of RA is between 50 and 60%, with the human leukocyte antigen (HLA) locus accounting for at least 30% of overall genetic risk. Non-HLA genes, i.e. tumour necrosis factor-α (TNF-α) within the MHC (major histocompatibility complex) have also been investigated for association with RA. Although, some contradictory results have originated from several studies on TNF-α gene, the data published so far indicate the possible existence of TNF-α gene promoter variants that act as markers for disease severity and response to treatment in RA. The correlation of HLA and non-HLA genes within MHC region is apparently interpreted. A considerable number of confirmed associations with RA and other autoimmune disease susceptibility loci including peptidylarginine deiminase type 4 (PADI4), protein tyrosine phosphatase non-receptor type 22 (PTPN22), signal transducer and activator of transcription (STAT4), cluster of differentiation 244 (CD244) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4), located outside the MHC have been reported recently. In this review, we aim to give an update on recent progress in RA genetics, the importance of the combination of HLA-DRB1 alleles, non-HLA gene polymorphism, its detection and autoantibodies as susceptibility markers for early RA disease.

  18. Additional mechanisms conferring genetic susceptibility to Alzheimer’s disease

    PubMed Central

    Calero, Miguel; Gómez-Ramos, Alberto; Calero, Olga; Soriano, Eduardo; Avila, Jesús; Medina, Miguel

    2015-01-01

    Familial Alzheimer’s disease (AD), mostly associated with early onset, is caused by mutations in three genes (APP, PSEN1, and PSEN2) involved in the production of the amyloid β peptide. In contrast, the molecular mechanisms that trigger the most common late onset sporadic AD remain largely unknown. With the implementation of an increasing number of case-control studies and the upcoming of large-scale genome-wide association studies there is a mounting list of genetic risk factors associated with common genetic variants that have been associated with sporadic AD. Besides apolipoprotein E, that presents a strong association with the disease (OR∼4), the rest of these genes have moderate or low degrees of association, with OR ranging from 0.88 to 1.23. Taking together, these genes may account only for a fraction of the attributable AD risk and therefore, rare variants and epistastic gene interactions should be taken into account in order to get the full picture of the genetic risks associated with AD. Here, we review recent whole-exome studies looking for rare variants, somatic brain mutations with a strong association to the disease, and several studies dealing with epistasis as additional mechanisms conferring genetic susceptibility to AD. Altogether, recent evidence underlines the importance of defining molecular and genetic pathways, and networks rather than the contribution of specific genes. PMID:25914626

  19. Patients' understanding of genetic susceptibility testing in mainstream medicine: qualitative study on thrombophilia

    PubMed Central

    Saukko, Paula M; Ellard, Sian; Richards, Suzanne H; Shepherd, Maggie H; Campbell, John L

    2007-01-01

    Background UK and US policy initiatives have suggested that, in the future, patients and clinicians in mainstream medicine could use genetic information to prevent common illnesses. There are no studies on patients' experience and understanding of the process of testing for common genetic susceptibilities in mainstream medicine. Methods Qualitative interviews with 42 individuals who had undergone testing for a genetic susceptibility for deep vein thrombosis in primary and secondary care in the UK. Results Some participants, often from higher social classes, had a good understanding of the test and its implications. They had often sought additional information on thrombophilia from relatives and from the Internet. Others, often from less privileged backgrounds, had a poorer understanding of the test – seven individuals were unaware of having had the genetic test. Features of genetic information led to misunderstandings: (i) at referral, (ii) when communicating results, and (iii) when making sense of the implications of testing. Participants' accounts indicated that non-specialist doctors may feel obliged to refer a patient for a genetic test they know little about, because a patient requests it after a relative had tested positive. Sometimes a referral for a genetic test was lost under information overload when multiple tests and issues were considered. The inconsistent and informal ways of communicating test results – for example by phone – in mainstream medicine also led to confusion. Participants did not generally overestimate their risk, but some were uncertain about whether they were taking the right preventive actions and/or whether their children were at risk. Information about genetic susceptibilities was difficult to make sense of, as it related to ambiguous risks for participants and family members, complicated and unfamiliar terminology and multiple genes and preventive strategies. Conclusion Policy visions of clinicians and patients in mainstream

  20. Genetic Testing for the Susceptibility to Alcohol Dependence: Interest and Concerns in an African American Population

    PubMed Central

    Nwulia, Evaristus; Kwagyan, John; Cain, Gloria; Marshall, Vanessa J.; Kalu, Nnenna; Ewing, Altovise; Taylor, Robert E.

    2014-01-01

    Background: The search to identify genes for the susceptibility to alcohol dependence (AD) is generating interest for genetic risk assessment. The purpose of this study is to examine the level of interest and concerns for genetic testing for susceptibility to AD. Methods: Three hundred four African American adults were recruited through public advertisement. All participants were administered the Genetic Psycho-Social Implication (GPSI) questionnaire, which surveyed their interests in hypothetical genetic testing for AD, as well as their perception of ethical and legal concerns. Results: Over 85% of participants were interested in susceptibility genetic testing; however, persons with higher education (p=0.002) and income (p=0.008) were less willing to receive testing. Perception of AD as a deadly disease (48.60%) and wanting to know for their children (47.90%) were the strongest reasons for interest in testing. Among those not interested in testing, the belief that they were currently acting to lower their risk was the most prevalent. The most widely expressed concern in the entire sample was the accuracy of testing (35.50%). Other notable concerns, such as issues with the method of testing, side effects of venipuncture, falsely reassuring results, and lack of guidelines on “what to do next” following test results, were significantly associated with willingness to receive testing. Conclusion: Although an overwhelming majority of participants expressed an interest in genetic testing for AD, there is an understandable high level of methodological and ethical concerns. Such information should form the basis of policies to guide future genetic testing of AD. PMID:24926856

  1. Vitamin D status in primary hyperparathyroidism: effect of genetic background.

    PubMed

    Battista, Claudia; Guarnieri, Vito; Carnevale, Vincenzo; Baorda, Filomena; Pileri, Mauro; Garrubba, Maria; Salcuni, Antonio S; Chiodini, Iacopo; Minisola, Salvatore; Romagnoli, Elisabetta; Eller-Vainicher, Cristina; Santini, Stefano A; Parisi, Salvatore; Frusciante, Vincenzo; Fontana, Andrea; Copetti, Massimiliano; Hendy, Geoffrey N; Scillitani, Alfredo; Cole, David E C

    2017-01-01

    Primary hyperparathyroidism (PHPT) is associated with hypovitaminosis D as assessed by serum total 25-hydroxyvitamin D (TotalD) levels. The aim of this study is to evaluate whether this is also the case for the calculated bioavailable 25-hydroxyvitamin D (BioD) or free 25-hydroxyvitamin D (FreeD), and whether the vitamin D status is influenced by genetic background. We compared vitamin D status of 88 PHPT patients each with a matched healthy family member sharing genetic background, i.e., first-degree relative (FDR), or not, namely an in-law relative (ILR). We compared TotalD and vitamin D-binding protein (DBP), using the latter to calculate BioD and FreeD. We also genotyped two common DBP polymorphisms (rs7041 and rs4588) likely to affect the affinity for and levels of vitamin D metabolites. TotalD was lower (p < 0.001) in PHPT (12.3 ± 6.6 ng/mL) than either family member group (FDR: 19.4 ± 12.1 and ILR: 23.2 ± 14.1), whether adjusted for DBP or not. DBP levels were also significantly lower (p < 0.001) in PHPT (323 ± 73 mg/L) versus FDR (377 ± 98) or ILR (382 ± 101). The differences between PHPT and control groups for TotalD, BioD, and FreeD were maintained after adjustment for season, gender, and serum creatinine. 25-hydroxyvitamin D, evaluated as total, free, or bioavailable fractions, is decreased in PHPT. No difference was seen between first-degree relative and in-law controls, suggesting that neither genetic nor non-genetic background greatly influences the genesis of the hypovitaminosis D seen in PHPT.

  2. Chemoconvulsant-induced seizure susceptibility: toward a common genetic basis?

    PubMed

    Chaix, Yohan; Ferraro, Thomas N; Lapouble, Eve; Martin, Benoît

    2007-01-01

    Despite the efforts employed, understanding the genetic architecture underlying epilepsy remains difficult. To reach this aim, convulsive epilepsies are classically modeled in mice, where genetic studies are less constricting than in humans. Pharmacogenetic approaches are one major source of investigation where kainic acid, pentylenetetrazol, and the ss-carboline family represent compounds that are used extensively. Several quantitative trait loci (QTLs) influencing the convulsant effects of these drugs have been mapped using either recombinant inbred strains (RIS) or segregating F2 populations (or both). In our laboratory, we have recently mapped two QTLs for methyl 6, 7-dimethoxy-4-ethyl-ss-carboline-3-carboxylate (DMCM), and seizure response using an F2 method. One is located on the distal part of Chromosome 1, a region implicated in a number of other studies. Here, we address the general importance of this chromosomal fragment for influencing seizure susceptibility.

  3. Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background.

    PubMed

    Gundel, Pedro E; Martínez-Ghersa, María A; Omacini, Marina; Cuyeu, Romina; Pagano, Elba; Ríos, Raúl; Ghersa, Claudio M

    2012-12-01

    Certain species of the Pooideae subfamily develop stress tolerance and herbivory resistance through symbiosis with vertically transmitted, asexual fungi. This symbiosis is specific, and genetic factors modulate the compatibility between partners. Although gene flow is clearly a fitness trait in allogamous grasses, because it injects hybrid vigor and raw material for evolution, it could reduce compatibility and thus mutualism effectiveness. To explore the importance of host genetic background in modulating the performance of symbiosis, Lolium multiflorum plants, infected and noninfected with Neotyphodium occultans, were crossed with genetically distant plants of isolines (susceptible and resistant to diclofop-methyl herbicide) bred from two cultivars and exposed to stress. The endophyte improved seedling survival in genotypes susceptible to herbicide, while it had a negative effect on one of the genetically resistant crosses. Mutualism provided resistance to herbivory independently of the host genotype, but this effect vanished under stress. While no endophyte effect was observed on host reproductive success, it was increased by interpopulation plant crosses. Neither gene flow nor herbicide had an important impact on endophyte transmission. Host fitness improvements attributable to gene flow do not appear to result in direct conflict with mutualism while this seems to be an important mechanism for the ecological and contemporary evolution of the symbiotum.

  4. Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background

    PubMed Central

    Gundel, Pedro E; Martínez-Ghersa, María A; Omacini, Marina; Cuyeu, Romina; Pagano, Elba; Ríos, Raúl; Ghersa, Claudio M

    2012-01-01

    Certain species of the Pooideae subfamily develop stress tolerance and herbivory resistance through symbiosis with vertically transmitted, asexual fungi. This symbiosis is specific, and genetic factors modulate the compatibility between partners. Although gene flow is clearly a fitness trait in allogamous grasses, because it injects hybrid vigor and raw material for evolution, it could reduce compatibility and thus mutualism effectiveness. To explore the importance of host genetic background in modulating the performance of symbiosis, Lolium multiflorum plants, infected and noninfected with Neotyphodium occultans, were crossed with genetically distant plants of isolines (susceptible and resistant to diclofop-methyl herbicide) bred from two cultivars and exposed to stress. The endophyte improved seedling survival in genotypes susceptible to herbicide, while it had a negative effect on one of the genetically resistant crosses. Mutualism provided resistance to herbivory independently of the host genotype, but this effect vanished under stress. While no endophyte effect was observed on host reproductive success, it was increased by interpopulation plant crosses. Neither gene flow nor herbicide had an important impact on endophyte transmission. Host fitness improvements attributable to gene flow do not appear to result in direct conflict with mutualism while this seems to be an important mechanism for the ecological and contemporary evolution of the symbiotum. PMID:23346228

  5. Genetic Background Modulates Gene Expression Profile Induced by Skin Irradiation in Ptch1 Mice

    SciTech Connect

    Galvan, Antonella; Noci, Sara; Mancuso, Mariateresa; Pazzaglia, Simonetta; Saran, Anna; Dragani, Tommaso A.

    2008-12-01

    Purpose: Ptch1 germ-line mutations in mice predispose to radiation-induced basal cell carcinoma of the skin, with tumor incidence modulated by the genetic background. Here, we examined the possible mechanisms underlying skin response to radiation in F1 progeny of Ptch1{sup neo67/+} mice crossed with either skin tumor-susceptible (Car-S) or -resistant (Car-R) mice and X-irradiated (3 Gy) at 2 days of age or left untreated. Methods and Materials: We conducted a gene expression profile analysis in mRNA samples extracted from the skin of irradiated or control mice, using Affymetrix whole mouse genome expression array. Confirmation of the results was done using real-time reverse-transcriptase polymerase chain reaction. Results: Analysis of the gene expression profile of normal skin of F1 mice at 4 weeks of age revealed a similar basal profile in the nonirradiated mice, but alterations in levels of 71 transcripts in irradiated Ptch1{sup neo67/+} mice of the Car-R cross and modulation of only eight genes in irradiated Ptch1{sup neo67/+} mice of the Car-S cross. Conclusions: These results indicate that neonatal irradiation causes a persistent change in the gene expression profile of the skin. The tendency of mice genetically resistant to skin tumorigenesis to show a more complex pattern of transcriptional response to radiation than do genetically susceptible mice suggests a role for this response in genetic resistance to basal cell tumorigenesis.

  6. Beryllium-Induced Hypersensitivity: Genetic Susceptibility and Neoantigen Generation.

    PubMed

    Fontenot, Andrew P; Falta, Michael T; Kappler, John W; Dai, Shaodong; McKee, Amy S

    2016-01-01

    Chronic beryllium (Be) disease is a granulomatous lung disorder that results from Be exposure in a genetically susceptible host. The disease is characterized by the accumulation of Be-responsive CD4(+) T cells in the lung, and genetic susceptibility is primarily linked to HLA-DPB1 alleles possessing a glutamic acid at position 69 of the β-chain. Recent structural analysis of a Be-specific TCR interacting with a Be-loaded HLA-DP2-peptide complex revealed that Be is coordinated by amino acid residues derived from the HLA-DP2 β-chain and peptide and showed that the TCR does not directly interact with the Be(2+) cation. Rather, the TCR recognizes a modified HLA-DP2-peptide complex with charge and conformational changes. Collectively, these findings provide a structural basis for the development of this occupational lung disease through the ability of Be to induce posttranslational modifications in preexisting HLA-DP2-peptide complexes, resulting in the creation of neoantigens.

  7. Beryllium-Induced Hypersensitivity: Genetic Susceptibility and Neoantigen Generation1

    PubMed Central

    Fontenot, Andrew P.; Falta, Michael T.; Kappler, John W.; Dai, Shaodong; McKee, Amy S.

    2015-01-01

    Chronic beryllium disease (CBD) is a granulomatous lung disorder that results from beryllium (Be) exposure in a genetically-susceptible host. The disease is characterized by the accumulation of Be-responsive CD4+ T cells in the lung, and genetic susceptibility is primarily linked to HLA-DPB1 alleles possessing a glutamic acid at position 69 of the β-chain. Recent structural analysis of a Be-specific T cell receptor (TCR) interacting with a Be-loaded HLA-DP2-peptide complex revealed that Be is coordinated by amino acid residues derived from the HLA-DP2 β-chain and peptide and showed that the TCR does not directly interact with the Be2+ cation. Rather, the TCR recognizes a modified HLA-DP2-peptide complex with charge and conformational changes. Collectively, these findings provide a structural basis for the development of this occupational lung disease through the ability of Be to induce post-translational modifications in preexisting HLA-DP2-peptide complexes, resulting in the creation of neoantigens. PMID:26685315

  8. Genetic background of carcinogenesis in the thyroid gland.

    PubMed

    Lewiński, Andrzej; Wojciechowska, Katarzyna

    2007-04-01

    The process of carcinogenesis is permanently one of the most interesting and significant issues for researchers in different fields of medicine. Therefore, we attempted to bring closer the problem of neoplastic transformation in the thyroid gland. This article covers the latest data about genetic factors, involved in thyroid carcinogenesis. We have presented results of the most recent studies referred to molecular biology of thyroid neoplasms. We have demonstrated not only the genetic background of cancers, derived from the thyroid follicular cell, but also genetic aspects related to medullary thyroid carcinoma and some benign thyroid lesions. The review describes DNA methylation disturbances and the mutations in thyrotropin receptor and G protein genes. Furthermore, we introduce the results of studies performed at our laboratory, concerning mutations in the following protooncogenes: RAS, RET, Trk, MET, and BRAF. Also, we present our data, regarding the loss of heterozygosity (LOH) in the short arm of chromosome 3. Additionally, we discuss overexpression of cyclin D1 gene in benign and malignant thyroid lesions. Previous studies performed at our laboratory indicate the role of IGF-I in the pathogenesis and invasiveness of thyroid cancers. The review indicates that progress in genetics of the thyroid cancer is extremely rapid.

  9. Genetic susceptibility and dietary patterns in lung cancer.

    PubMed

    Tsai, Ya-Yu; McGlynn, Katherine A; Hu, Ying; Cassidy, Anna B; Arnold, John; Engstrom, Paul F; Buetow, Kenneth H

    2003-09-01

    Cigarette smoking is the dominant risk factor for lung cancer, but only a minority of smokers ever develops tumors. Though genetic susceptibility is likely to explain some of the variability in risk, results from previous studies of genetic polymorphisms have been inconclusive. As diet may also affect the risk of lung cancer, it is possible that the degree of risk produced by smoking and genetic susceptibility varies, depending on diet. To assess this hypothesis, we conducted a case-control study to examine the effect of cigarette smoking, dietary patterns and variation in genes involved in phase II metabolism. A total of 254 individuals with lung cancer and 184 healthy controls were recruited for the study. To identify persons with similar dietary patterns, cluster analysis was performed using nutrient densities of four major dietary constituents: protein, carbohydrate, animal fat, and dietary fiber. Two groups of individuals were identified with distinct dietary patterns: (1) a group (n=241) with a high intake of animal fat and protein and a low intake of carbohydrates and dietary fiber (the 'unhealthy' pattern) and (2) a group (n=197) with a high intake of fiber and carbohydrate and a low intake of protein and animal fat (the 'healthy' pattern) [corrected]. On stratified analysis, several genotype/dietary pattern combinations were found to affect risk of lung cancer. Smokers who were not homozygous for the most common GSTP1 allele and had a healthy dietary pattern were at significantly lower risk than smokers who were homozygous for the GSTP1 common allele and who had an unhealthy dietary pattern (OR=0.16, 95%CI: 0.04-0.57). Among smokers who were GSTM1 null, persons with a healthy dietary pattern were at lower risk than persons with an unhealthy dietary pattern (OR: 0.46, 95%CI: 0.21-1.01). Among smokers with an unhealthy dietary patterns, persons with a His/His genotype in the exon 3 polymorphism of EPHX1 were at significantly lower risk that persons who were

  10. Evaluation of Psoriasis Genetic Risk Based on Five Susceptibility Markers in a Population from Northern Poland

    PubMed Central

    Stawczyk-Macieja, Marta; Rębała, Krzysztof; Szczerkowska-Dobosz, Aneta; Wysocka, Joanna; Cybulska, Lidia; Kapińska, Ewa; Haraś, Agnieszka; Miniszewska, Paulina; Nowicki, Roman

    2016-01-01

    Psoriasis genetic background depends on polygenic and multifactorial mode of inheritance. As in other complex disorders, the estimation of the disease risk based on individual genetic variants is impossible. For this reason, recent investigations have been focused on combinations of known psoriasis susceptibility markers in order to improve the disease risk evaluation. Our aim was to compare psoriasis genetic risk score (GRS) for five susceptibility loci involved in the immunological response (HLA-C, ERAP1, ZAP70) and in the skin barrier function (LCE3, CSTA) between patients with chronic plaque psoriasis (n = 148) and the control group (n = 146). A significantly higher number of predisposing alleles was observed in patients with psoriasis in comparison to healthy individuals (6.1 vs. 5.2, respectively; P = 8.8×10−7). The statistical significance was even more profound when GRS weighted by logarithm odds ratios was evaluated (P = 9.9×10−14). Our results demonstrate the developed panel of five susceptibility loci to be more efficient in predicting psoriasis risk in the Polish population and to possess higher sensitivity and specificity for the disease than any of the markers analyzed separately, including the most informative HLA-C*06 allele. PMID:27658291

  11. Genetic susceptibility variants associated with colorectal cancer prognosis.

    PubMed

    Abulí, Anna; Lozano, Juan José; Rodríguez-Soler, María; Jover, Rodrigo; Bessa, Xavier; Muñoz, Jenifer; Esteban-Jurado, Clara; Fernández-Rozadilla, Ceres; Carracedo, Angel; Ruiz-Ponte, Clara; Cubiella, Joaquín; Balaguer, Francesc; Bujanda, Luis; Reñé, Josep M; Clofent, Juan; Morillas, Juan Diego; Nicolás-Pérez, David; Xicola, Rosa M; Llor, Xavier; Piqué, Josep M; Andreu, Montserrat; Castells, Antoni; Castellví-Bel, Sergi

    2013-10-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death among men and women in Western countries. Once a tumour develops, a differentiated prognosis could be determined by lifestyle habits or inherited and somatic genetic factors. Finding such prognostic factors will be helpful in order to identify cases with a shorter survival or at a higher risk of recurrence that may benefit from more intensive treatment and follow-up surveillance. Sixteen CRC genetic susceptibility variants were directly genotyped in a cohort of 1235 CRC patients recruited by the EPICOLON Spanish consortium. Univariate Cox and multivariate regression analyses were performed taking as primary outcomes overall survival (OS), disease-free survival and recurrence-free interval. Genetic variants rs9929218 at 16q22.1 and rs10795668 at 10p14 may have an effect on OS. The G allele of rs9929218 was linked with a better OS [GG genotype, genotypic model: hazard ratio (HR) = 0.65, 95% confidence interval (CI) 0.45-0.93, P = 0.0179; GG/GA genotypes, dominant model: HR = 0.66, 95% CI 0.47-0.94, P = 0.0202]. Likewise, the G allele of rs10795668 was associated with better clinical outcome (GG genotype, genotypic model: HR = 0.73, 95% CI 0.53-1.01, P = 0.0570; GA genotype, genotypic model: HR = 0.66, 95% CI 0.47-0.92, P = 0.0137; GG/GA genotypes, dominant model: HR = 0.68, 95% CI 0.50-0.94, P = 0.0194). In conclusion, CRC susceptibility variants rs9929218 and rs10795668 may exert some influence in modulating patient's survival and they deserve to be further tested in additional CRC cohorts in order to confirm their potential as prognosis or predictive biomarkers.

  12. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus

    PubMed Central

    Sanchez, Elena; Nadig, Ajay; Richardson, Bruce C; Freedman, Barry I; Kaufman, Kenneth M; Kelly, Jennifer A; Niewold, Timothy B; Kamen, Diane L; Gilkeson, Gary S; Ziegler, Julie T; Langefeld, Carl D; Alarcón, Graciela S; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Brown, Elizabeth E; Kimberly, Robert P; Reveille, John D; Vilá, Luis M; Merrill, Joan T; Anaya, Juan-Manuel; James, Judith A; Pons-Estel, Bernardo A; Martin, Javier; Park, So-Yeon; Bang, So-Young; Bae, Sang-Cheol; Moser, Kathy L; Vyse, Timothy J; Criswell, Lindsey A; Gaffney, Patrick M; Tsao, Betty P; Jacob, Chaim O; Harley, John B; Alarcón-Riquelme, Marta E; Sawalha, Amr H

    2011-01-01

    Objective Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. Materials and methods 4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Results Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Conclusion Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future. PMID:21719445

  13. Genetic Variability in Susceptibility to Occupational Respiratory Sensitization

    PubMed Central

    Yucesoy, Berran; Johnson, Victor J.

    2011-01-01

    Respiratory sensitization can be caused by a variety of substances at workplaces, and the health and economic burden linked to allergic respiratory diseases continues to increase. Although the main factors that affect the onset of the symptoms are the types and intensity of allergen exposure, there is a wide range of interindividual variation in susceptibility to occupational/environmental sensitizers. A number of gene variants have been reported to be associated with various occupational allergic respiratory diseases. Examples of genes include, but are not limited to, genes involved in immune/inflammatory regulation, antioxidant defenses, and fibrotic processes. Most of these variants act in combination with other genes and environmental factors to modify disease progression, severity, or resolution after exposure to allergens. Therefore, understanding the role of genetic variability and the interaction between genetic and environmental/occupational factors provides new insights into disease etiology and may lead to the development of novel preventive and therapeutic strategies. This paper will focus on the current state of knowledge regarding genetic influences on allergic respiratory diseases, with specific emphasis on diisocyanate-induced asthma and chronic beryllium disease. PMID:21747866

  14. Genetic background influences metabolic response to dietary phosphorus restriction.

    PubMed

    Hittmeier, Laura J; Grapes, Laura; Lensing, Renae L; Rothschild, Max F; Stahl, Chad H

    2006-06-01

    Dietary phosphorus (P) is essential to bone growth and turnover; however, little research has focused on the genetic mechanisms controlling P utilization. Understanding the interactions between genetics and dietary P that optimize bone integrity could provide novel interventions for osteoporosis. Thirty-six pigs from two sire lines known to differ in bone structure [heavier boned (HB) and lighter boned (LB)] were assigned to one of the three diets (P adequate, P repletion or P deficient). After 14 days, bone marrow and intact radial bones were collected. Differences between these lines in growth rate, bone integrity and gene expression within bone marrow were observed. In HB, but not LB, pigs, the P-deficient diet decreased weight gain (P<.01). For both lines, P deficiency caused a reduction in radial bone strength (P<.01), but HB P-deficient animals had greater (P<.10) bone integrity than P-deficient LB pigs. In HB, but not LB, pigs, dietary treatment affected the expression of CALCR (calcitonin receptor) (P<.05), VDR (vitamin D receptor) (P<.04) and IGFBP3 (insulin-like growth factor binding protein 3) (P<.06). There was also a trend of increased IL6 (interleukin-6), TFIIB (transcription initiation factor IIB) and SOX9 (sex determining region Y-box 9) expression with P deficiency in HB, but not LB, pigs. Both genetic backgrounds responded similarly to P deficiency with an increase in the expression of OXTR (oxytocin receptor) and IGF1 (insulin-like growth factor 1). Differences in growth rate, bone integrity and gene expression within the bone marrow suggest a difference in the homeorhetic control of P utilization between these genetic lines. Understanding these differences could lead to novel treatments for osteoporosis and aid in the development of tests for identifying those at risk for this disease.

  15. Inherited genetic susceptibility to monoclonal gammopathy of unknown significance.

    PubMed

    Weinhold, Niels; Johnson, David C; Rawstron, Andrew C; Försti, Asta; Doughty, Chi; Vijayakrishnan, Jayaram; Broderick, Peter; Dahir, Nasrin B; Begum, Dil B; Hosking, Fay J; Yong, Kwee; Walker, Brian A; Hoffmann, Per; Mühleisen, Thomas W; Langer, Christian; Dörner, Elisabeth; Jöckel, Karl-Heinz; Eisele, Lewin; Nöthen, Markus M; Hose, Dirk; Davies, Faith E; Goldschmidt, Hartmut; Morgan, Gareth J; Hemminki, Kari; Houlston, Richard S

    2014-04-17

    Monoclonal gammopathy of undetermined significance (MGUS) is present in ∼2% of individuals age >50 years. The increased risk of multiple myeloma (MM) in relatives of individuals with MGUS is consistent with MGUS being a marker of inherited genetic susceptibility to MM. Common single-nucleotide polymorphisms (SNPs) at 2p23.3 (rs6746082), 3p22.1 (rs1052501), 3q26.2 (rs10936599), 6p21.33 (rs2285803), 7p15.3 (rs4487645), 17p11.2 (rs4273077), and 22q13.1 (rs877529) have recently been shown to influence MM risk. To examine the impact of these 7 SNPs on MGUS, we analyzed two case-control series totaling 492 cases and 7306 controls. Each SNP independently influenced MGUS risk with statistically significant associations (P < .02) for rs1052501, rs2285803, rs4487645, and rs4273077. SNP associations were independent, with risk increasing with a larger number of risk alleles carried (per allele odds ratio, 1.18; P < 10(-7)). Collectively these data are consistent with a polygenic model of disease susceptibility to MGUS.

  16. Genetic Background and Climatic Droplet Keratopathy Incidence in a Mapuche Population from Argentina

    PubMed Central

    Schurr, Theodore G.; Dulik, Matthew C.; Cafaro, Thamara A.; Suarez, María F.

    2013-01-01

    Purpose To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. Methods To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. Results This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. Conclusions These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK. PMID:24040292

  17. Genetic susceptibility to lung cancer and co-morbidities.

    PubMed

    Yang, Ian A; Holloway, John W; Fong, Kwun M

    2013-10-01

    Lung cancer is a leading cause of cancer death and disease burden in many countries. Understanding of the biological pathways involved in lung cancer aetiology is required to identify key biomolecules that could be of significant clinical value, either as predictive, prognostic or diagnostic markers, or as targets for the development of novel therapies to treat this disease, in addition to smoking avoidance strategies. Genome-wide association studies (GWAS) have enabled significant progress in the past 5 years in investigating genetic susceptibility to lung cancer. Large scale, multi-cohort GWAS of mainly Caucasian, smoking, populations have identified strong associations for lung cancer mapped to chromosomal regions 15q [nicotinic acetylcholine receptor (nAChR) subunits: CHRNA3, CHRNA5], 5p (TERT-CLPTM1L locus) and 6p (BAT3-MSH5). Some studies in Asian populations of smokers have found similar risk loci, whereas GWAS in never smoking Asian females have identified associations in other chromosomal regions, e.g., 3q (TP63), that are distinct from smoking-related lung cancer risk loci. GWAS of smoking behaviour have identified risk loci for smoking quantity at 15q (similar genes to lung cancer susceptibility: CHRNA3, CHRNA5) and 19q (CYP2A6). Other genes have been mapped for smoking initiation and smoking cessation. In chronic obstructive pulmonary disease (COPD), which is a known risk factor for lung cancer, GWAS in large cohorts have also found CHRNA3 and CHRNA5 single nucleotide polymorphisms (SNPs) mapping at 15q as risk loci, as well as other regions at 4q31 (HHIP), 4q24 (FAM13A) and 5q (HTR4). The overlap in risk loci between lung cancer, smoking behaviour and COPD may be due to the effects of nicotine addiction; however, more work needs to be undertaken to explore the potential direct effects of nicotine and its metabolites in gene-environment interaction in these phenotypes. Goals of future genetic susceptibility studies of lung cancer should focus on

  18. New Genetic Susceptibility Factors for Sjögren's Syndrome Revealed

    MedlinePlus

    ... Spotlight on Research 2014 March 2014 (historical) New Genetic Susceptibility Factors for Sjögren’s Syndrome Revealed By analyzing ... syndrome. The findings, published in the journal Nature Genetics, could help researchers develop new strategies to diagnose ...

  19. Evaluation of genetic susceptibility loci for obesity in Chinese women.

    PubMed

    Shi, Jiajun; Long, Jirong; Gao, Yu-Tang; Lu, Wei; Cai, Qiuyin; Wen, Wanqing; Zheng, Ying; Yu, Kai; Xiang, Yong-Bing; Hu, Frank B; Zheng, Wei; Shu, Xiao-Ou

    2010-08-01

    Recent genome-wide association (GWA) studies have identified 18 genetic loci for obesity. Using directly observed and imputed GWA genotyping data on approximately 5,000 Chinese women (1996-2007), the authors evaluated 17 single nucleotide polymorphisms (SNPs) that represent 17 distinct obesity loci. Two SNPs near the BAT2 and MC4R genes and 3 SNPs within the FTO, SEC16B, and SH2B1 genes were significantly associated with body mass index (weight (kg)/height (m)(2)), body weight, and the prevalence of obesity. The per-allele increase in body mass index ranged from 0.16 units (BAT2) to 0.38 units (SH2B1). Odds ratios for obesity ranged from 1.46 (95% confidence interval (CI): 1.12, 1.92) for BAT2 to 2.16 (95% CI: 1.39, 3.37) for MC4R. A genetic risk score calculated by summing the number of risk-increasing alleles that each woman carried at these 5 loci was significantly associated with the prevalence of obesity. Women carrying 5 or more risk alleles had a 3.13-fold (95% CI: 2.06, 4.77) higher prevalence of obesity than women carrying 1 or no risk alleles. Results from this study extend some previous GWA findings to Chinese women and show the need for additional studies to identify susceptibility loci in Chinese and other Asian populations.

  20. Genetic polymorphism as a background of animal behavior.

    PubMed

    Inoue-Murayama, Miho

    2009-04-01

    Various studies have shown the associations between differences in human behavioral traits and genetic polymorphism of neurotransmitter-related proteins such as receptors, transporters and monoamine oxidase. To clarify the genetic background of animal behavior, corresponding regions in animals have been analyzed. The study has been especially focused on primates, as the evolutionally closest animal to humans, and on dogs, as the socially closest animal to humans. In primates, polymorphisms were discovered between or within species, and the functional effects on neural transmission were found to be different by alleles. Even in apes, the closest species to humans, function was different from that in humans. In dogs, allele distributions of several genes were different among breeds showing different behavioral traits, and genes associated with individual differences in aggressiveness and aptitude of working dogs were surveyed. The survey of behavior-related genes has also been carried out in other mammals such as horses and cetaceans. Genes controlling various behaviors in birds have also been reported. The marker genes for behavior will provide useful information for human evolution, welfare of zoo animals and effective selection of working dogs and industry animals.

  1. Genetic and environmental determinants of the susceptibility of Amerindian derived populations for having hypertriglyceridemia

    PubMed Central

    Aguilar-Salinas, Carlos A.; Tusie-Luna, Teresa; Pajukanta, Päivi

    2014-01-01

    Here, we discuss potential explanations for the higher prevalence of hypertriglyceridemia in populations with an Amerindian background. Although environmental factors are the triggers, the search for the ethnic related factors that explains the increased susceptibility of the Amerindians is a promising area for research. The study of the genetics of hypertriglyceridemia in Hispanic populations faces several challenges. Ethnicity could be a major confounding variable to prove genetic associations. Despite that, the study of hypertriglyceridemia in Hispanics has resulted in significant contributions. Two GWAS reports have exclusively included Mexican mestizos. Fifty percent of the associations reported in Caucasians could be generalized to the Mexicans, but in many cases the Mexican lead SNP was different than that reported in Europeans. Both reports included new associations with apo B or triglycerides concentrations. The frequency of susceptibility alleles in Mexicans is higher than that found in Europeans for several of the genes with the greatest effect on triglycerides levels. An example is the SNP rs964184 in APOA5. The same trend was observed for ANGPTL3 and TIMD4 variants. In summary, we postulate that the study of the genetic determinants of hypertriglyceridemia in Amerindian populations which have major changes in their lifestyle, may prove to be a great resource to identify new genes and pathways associated with hypertriglyceridemia. PMID:24768220

  2. Genetic and environmental determinants of the susceptibility of Amerindian derived populations for having hypertriglyceridemia.

    PubMed

    Aguilar-Salinas, Carlos A; Tusie-Luna, Teresa; Pajukanta, Päivi

    2014-07-01

    Here, we discuss potential explanations for the higher prevalence of hypertriglyceridemia in populations with an Amerindian background. Although environmental factors are the triggers, the search for the ethnic related factors that explain the increased susceptibility of the Amerindians is a promising area for research. The study of the genetics of hypertriglyceridemia in Hispanic populations faces several challenges. Ethnicity could be a major confounding variable to prove genetic associations. Despite that, the study of hypertriglyceridemia in Hispanics has resulted in significant contributions. Two GWAS reports have exclusively included Mexican mestizos. Fifty percent of the associations reported in Caucasians could be generalized to the Mexicans, but in many cases the Mexican lead SNP was different than that reported in Europeans. Both reports included new associations with apo B or triglycerides concentrations. The frequency of susceptibility alleles in Mexicans is higher than that found in Europeans for several of the genes with the greatest effect on triglycerides levels. An example is the SNP rs964184 in APOA5. The same trend was observed for ANGPTL3 and TIMD4 variants. In summary, we postulate that the study of the genetic determinants of hypertriglyceridemia in Amerindian populations which have major changes in their lifestyle, may prove to be a great resource to identify new genes and pathways associated with hypertriglyceridemia.

  3. Genetic polymorphism of xenobiotic metabolising enzymes, diet and cancer susceptibility.

    PubMed

    Reszka, Edyta; Wasowicz, Wojciech; Gromadzinska, Jolanta

    2006-10-01

    There is increasing evidence identifying the crucial role of numerous dietary components in modifying the process of carcinogenesis. The varied effects exerted by nutrient and non-nutrient dietary compounds on human health and cancer risk are one of the new challenges for nutritional sciences. In the present paper, an attempt is made to review the most recent epidemiological data on interactions between dietary factors and metabolic gene variants in terms of cancer risk. The majority of case-control studies indicate the significant relationship between cancer risk and polymorphic xenobiotic metabolising enzymes in relation to dietary components. The risk of colorectal cancer is associated not only with CYP2E1 high-activity alleles, but also GSTA1 low-activity alleles, among consumers of red or processed meat. Genetic polymorphisms of NAT1 and NAT2 may be also a breast-cancer susceptibility factor among postmenopausal women with a high intake of well-done meat. On the other hand, phytochemicals, especially isothiocyanates, have a protective effect against colorectal and lung cancers in individuals lacking GST genes. Moreover, polymorphism of GSTM1 seems to be involved in the dietary regulation of DNA damage. The European Prospective Investigation into Cancer and Nutrition study shows a significant inverse association between the polycyclic aromatic hydrocarbon-DNA adduct level and dietary antioxidants only among GSTM1-null individuals. However, the absence of a modulatory effect of polymorphic xenobiotic metabolising enzymes and diet on the development of cancer has been indicated by some epidemiological investigations. Studies of interactions between nutrients and genes may have great potential for exploring mechanisms, identifying susceptible populations/individuals and making practical use of study results to develop preventive strategies beneficial to human health.

  4. Susceptibility genetic variants associated with early-onset colorectal cancer.

    PubMed

    Giráldez, María Dolores; López-Dóriga, Adriana; Bujanda, Luis; Abulí, Anna; Bessa, Xavier; Fernández-Rozadilla, Ceres; Muñoz, Jenifer; Cuatrecasas, Miriam; Jover, Rodrigo; Xicola, Rosa M; Llor, Xavier; Piqué, Josep M; Carracedo, Angel; Ruiz-Ponte, Clara; Cosme, Angel; Enríquez-Navascués, José María; Moreno, Victor; Andreu, Montserrat; Castells, Antoni; Balaguer, Francesc; Castellví-Bel, Sergi

    2012-03-01

    Colorectal cancer (CRC) is the second most common cancer in Western countries. Hereditary forms only correspond to 5% of CRC burden. Recently, genome-wide association studies have identified common low-penetrant CRC genetic susceptibility loci. Early-onset CRC (CRC<50 years old) is especially suggestive of hereditary predisposition although 85-90% of heritability still remains unidentified. CRC<50 patients (n = 191) were compared with a late-onset CRC group (CRC>65 years old) (n = 1264). CRC susceptibility variants at 8q23.3 (rs16892766), 8q24.21 (rs6983267), 10p14 (rs10795668), 11q23.1 (rs3802842), 15q13.3 (rs4779584), 18q21 (rs4939827), 14q22.2 (rs4444235), 16q22.1 (rs9929218), 19q13.1 (rs10411210) and 20p12.3 (rs961253) were genotyped in all DNA samples. A genotype-phenotype correlation with clinical and pathological characteristics in both groups was performed. Risk allele carriers for rs3802842 [Odds ratio (OR) = 1.5, 95% confidence interval (CI) 1.1-2.05, P = 0.0096, dominant model) and rs4779584 (OR = 1.39, 95% CI 1.02-1.9, P = 0.0396, dominant model) were more frequent in the CRC<50 group, whereas homozygotes for rs10795668 risk allele were also more frequent in the early-onset CRC (P = 0.02, codominant model). Regarding early-onset cases, 14q22 (rs4444235), 11q23 (rs3802842) and 20p12 (rs961253) variants were more associated with family history of CRC or tumors of the Lynch syndrome spectrum excluding CRC. In our entire cohort, sum of risk alleles was significantly higher in patients with a CRC family history (OR = 1.40, 95% CI 1.06-1.85, P = 0.01). In conclusion, variants at 10p14 (rs10795668), 11q23.1 (rs3802842) and 15q13.3 (rs4779584) may have a predominant role in predisposition to early-onset CRC. Association of CRC susceptibility variants with some patient's familiar and personal features could be relevant for screening and surveillance strategies in this high-risk group and it should be explored in further studies.

  5. Cardiovascular factors explain genetic background differences in VO2max.

    PubMed

    Roy, Jane L P; Hunter, Gary R; Fernandez, Jose R; McCarthy, John P; Larson-Meyer, D Enette; Blaudeau, Tamilane E; Newcomer, Bradley R

    2006-01-01

    The purpose of this study was to further explore factors that may be related to ethnic differences in the maximum rate at which an individual can consume oxygen (VO2max) between 20 African American (AA) and 30 European American (EA) sedentary women who were matched for body weight (kg) and fat-free mass (FFM). VO2max (l/min) was determined during a graded treadmill exercise test. Submaximal steady-state heart rate and submaximal VO2 were determined at a treadmill speed of 1.3 m/sec and a 2.5% grade. Hemoglobin (Hb) was determined by the cyanide method, muscle oxidative capacity by 31P magnetic resonance spectroscopy (ADP time constant), and FFM (kg) by dual-energy x-ray absorptiometry. Genetic classification was self-reported, and in a subset of the sample (N = 32), the determinants of ethnicity were measured by African genetic admixture. AA women had significantly reduced VO2max, Hb levels, and muscle oxidative capacity (longer ADP time constants, P < or = 0.05) than EA women. Submaximal oxygen pulse (O2Psubmax), ADP time constant, Hb, and ethnic background were all significantly related to VO2max (ml/kg/min and ml/kg FFM/min, all P < or = 0.01). By multiple regression modeling, Hb, O2Psubmax, muscle oxidative capacity, and ethnicity were found to explain 61% and 57% of the variance of VO2max in ml/kg/min and ml/kg FFM/min, respectively. Muscle oxidative capacity and O2Psubmax were both significantly and independently related to VO2max in all three models (P < or = 0.05), whereas Hb and ethnicity were not. These results suggest that mitochondrial muscle oxidative capacity and oxygen delivery capabilities, as determined by O2Psubmax, account for most if not all of the ethnic differences in VO2max.

  6. Genetic Susceptibility and Predictors of Paradoxical Reactions in Buruli Ulcer

    PubMed Central

    Johnson, Roch Christian; Phillips, Richard O.; van der Veer, Eveline; van Diemen, Cleo; van der Werf, Tjip S.; Stienstra, Ymkje

    2016-01-01

    Introduction Buruli ulcer (BU) is the third most frequent mycobacterial disease in immunocompetent persons after tuberculosis and leprosy. During the last decade, eight weeks of antimicrobial treatment has become the standard of care. This treatment may be accompanied by transient clinical deterioration, known as paradoxical reaction. We investigate the incidence and the risks factors associated with paradoxical reaction in BU. Methods The lesion size of participants was assessed by careful palpation and recorded by serial acetate sheet tracings. For every time point, surface area was compared with the previous assessment. All patients received antimicrobial treatment for 8 weeks. Serum concentration of 25-hydroxyvitamin D, the primary indicator of vitamin D status, was determined in duplex for blood samples at baseline by a radioimmunoassay. We genotyped four polymorphisms in the SLC11A1 gene, previously associated with susceptibility to BU. For testing the association of genetic variants with paradoxical responses, we used a binary logistic regression analysis with the occurrence of a paradoxical response as the dependent variable. Results Paradoxical reaction occurred in 22% of the patients; the reaction was significantly associated with trunk localization (p = .039 by Χ2), larger lesions (p = .021 by Χ2) and genetic factors. The polymorphisms 3’UTR TGTG ins/ins (OR 7.19, p < .001) had a higher risk for developing paradoxical reaction compared to ins/del or del/del polymorphisms. Conclusions Paradoxical reactions are common in BU. They are associated with trunk localization, larger lesions and polymorphisms in the SLC11A1 gene. PMID:27097163

  7. Genetic susceptibility: radiation effects relevant to space travel.

    PubMed

    Peng, Yuanlin; Nagasawa, Hatsumi; Warner, Christy; Bedford, Joel S

    2012-11-01

    Genetic variation in the capacity to repair radiation damage is an important factor influencing both cellular and tissue radiosensitivity variation among individuals as well as dose rate effects associated with such damage. This paper consists of two parts. The first part reviews some of the available data relating to genetic components governing such variability among individuals in susceptibility to radiation damage relevant for radiation protection and discusses the possibility and extent to which these may also apply for space radiations. The second part focuses on the importance of dose rate effects and genetic-based variations that influence them. Very few dose rate effect studies have been carried out for the kinds of radiations encountered in space. The authors present here new data on the production of chromosomal aberrations in noncycling low passage human ATM+/+ or ATM+/- cells following irradiations with protons (50 MeV or 1 GeV), 1 GeV(-1) n iron ions and gamma rays, where doses were delivered at a high dose rate of 700 mGy(-1) min, or a lower dose rate of 5 mGy min(-1). Dose responses were essentially linear over the dose ranges tested and not significantly different for the two cell strains. Values of the dose rate effectiveness factor (DREF) were expressed as the ratio of the slopes of the dose-response curves for the high versus the lower (5 mGy min(-1)) dose rate exposures. The authors refer to this as the DREF5. For the gamma ray standard, DREF5 values of approximately two were observed. Similar dose rate effects were seen for both energies of protons (DREF5 ≈ 2.2 in both cases). For 1 GeV(-1) n iron ions [linear energy transfer (LET) ≈ 150 keV μ(-1)], the DREF5 was not 1 as might have been expected on the basis of LET alone but was approximately 1.3. From these results and conditions, the authors estimate that the relative biological effectiveness for 1 GeV(-1) n iron ions for high and low dose rates, respectively, were about 10 and 15

  8. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    SciTech Connect

    Balmain, Allan; Song, Ihn Young

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularly when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.

  9. Ethnic Background and Genetic Variation in the Evaluation of Cancer Risk: A Systematic Review

    PubMed Central

    Jing, Lijun; Su, Li; Ring, Brian Z.

    2014-01-01

    The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82 markers in 68 studies across six different cancer types, comparing association results between ethnic groups and examining linkage disequilibrium between risk alleles and nearby genetic loci. We find that the relevance of ethnic background depends on the question. If asked whether the association of variants with disease risk is conserved across ethnic boundaries, we find that the answer is yes, the majority of markers show insignificant variability in association with cancer risk across ethnic groups. However if the question is whether a significant association between a variant and cancer risk is likely to reproduce, the answer is no, most markers do not validate in an ethnic group other than the discovery cohort’s ancestry. This lack of reproducibility is not attributable to studies being inadequately populated due to low allele frequency in other ethnic groups. Instead, differences in local genomic structure between ethnic groups are associated with the strength of association with cancer risk and therefore confound interpretation of the implied physiologic association tracked by the disease allele. This suggest that a biological association for cancer risk alleles may be broadly consistent across ethnic boundaries, but reproduction of a clinical study in another ethnic group is uncommon, in part due to confounding genomic architecture. As clinical studies are increasingly performed globally this has important implications for how cancer risk stratifiers should be studied and

  10. Evaluation of Genetic Susceptibility to Childhood Allergy and ...

    EPA Pesticide Factsheets

    Background: Asthma and allergy represent complex phenotypes, which disproportionately burden ethnic minorities in the United States. Strong evidence for genomic factors predisposing subjects to asthma/allergy is available. However, methods to utilize this information to identify high risk groups are variable and replication of genetic associations in African Americans is warranted. Methods: We evaluated 41 single nucleotide polymorphisms (SNP) and a deletion corresponding to 11 genes demonstrating association with asthma in the literature, for association with asthma, atopy, testing positive for food allergens, eosinophilia, and total serum IgE among 141 African American children living in Detroit, Michigan. Independent SNP and haplotype associations were investigated for association with each trait, and subsequently assessed in concert using a genetic risk score (GRS). Results: Statistically significant associations with asthma were observed for SNPs in GSTM1, MS4A2, and GSTP1 genes, after correction for multiple testing. Chromosome 11 haplotype CTACGAGGCC (corresponding to MS4A2 rs574700, rs1441586, rs556917, rs502581, rs502419 and GSTP1 rs6591256, rs17593068, rs1695, rs1871042, rs947895) was associated with a nearly five-fold increase in the odds of asthma (Odds Ratio (OR) = 4.8, p = 0.007). The GRS was significantly associated with a higher odds of asthma (OR = 1.61, 95% Confidence Interval = 1.21, 2.13; p = 0.001). Conclusions: Variation in genes a

  11. Genetic interactions among cortical malformation genes that influence susceptibility to convulsions in C. elegans.

    PubMed

    Locke, Cody J; Williams, Shelli N; Schwarz, Erich M; Caldwell, Guy A; Caldwell, Kim A

    2006-11-20

    Epilepsy is estimated to affect 1-2% of the world population, yet remains poorly understood at a molecular level. We have previously established the roundworm Caenorhabditis elegans as a model for investigating genetic susceptibilities to seizure-like convulsions in vivo. Here we investigate the behavioral consequences of decreasing the activity of nematode gene homologs within the LIS1 pathway that are associated with a human cortical malformation termed lissencephaly. Bioinformatic analysis revealed the nud-2 gene, encoding the worm homolog of mammalian effectors of LIS1, termed NDE1 and NDEL1. Phenotypic analysis of animals targeted by RNA interference (RNAi) was performed using a pentylenetetrazole (PTZ) exposure paradigm to induce convulsions. Worms depleted for LIS1 pathway components (NUD-1, NUD-2, DHC-1, CDK-5, and CDKA-1) exhibited significant convulsions following PTZ and RNAi treatment. Strains harboring fluorescent markers for GABAergic neuronal architecture and synaptic vesicle trafficking were employed to discern putative mechanisms accounting for observed convulsion behaviors. We found that depletion of LIS1 pathway components resulted in defective GABA synaptic vesicle trafficking. We also utilized combinations of specific genetic backgrounds to create a sensitized state for convulsion susceptibility and discovered that convulsion effects were significantly enhanced when LIS-1 and other pathway components were compromised within the same animals. Thus, interactions among gene products with LIS-1 may mediate intrinsic thresholds of neuronal synchrony.

  12. Role of HLA-DR Alleles to Increase Genetic Susceptibility to Onychomycosis in Nail Psoriasis

    PubMed Central

    Carrillo-Meléndrez, Hilda; Ortega-Hernández, Esteban; Granados, Julio; Arroyo, Sara; Barquera, Rodrigo; Arenas, Roberto

    2016-01-01

    Background Patients with nail psoriasis have an increased risk of onychomycosis. Previous studies suggest it may be due to structural changes of the nails. However, a genetic predisposition seems to be also at play. Objective To determine a genetic susceptibility for onychomycosis in nails with changes of psoriasis. Methods This is a prospective case-control study of patients with suggestive changes of nail psoriasis with onychomycosis (cases) and without onychomycosis (controls) confirmed by mycological tests. HLA typing was performed in all of them by sequence-specific primers. Results Twenty-five patients and 20 controls with a mean age of 50 years (range 37-72 years) were studied. HLA-DRB1*08 was found in 12 cases (48%) and only 3 controls (15%) [p < 0.033, odds ratio (OR) = 3.8, 95% confidence interval (CI): 0.9-19]. HLA-DR1 was found in 9 cases (36%) and only 1 control (5%) (p < 0.023, OR = 8.5, 95% CI: 1-188). Conclusion HLA-DR*08 and HLA-DR*01 probably increase the susceptibility to fungal infection in psoriasis-affected nails, but larger studies are required to confirm this observation. PMID:27843918

  13. Genetic Susceptibility to Coronary Heart Disease in Type 2 Diabetes: Three Independent Studies

    PubMed Central

    Qi, Lu; Parast, Layla; Cai, Tianxi; Powers, Christine; Gervino, Ernest V.; Hauser, Thomas H.; Hu, Frank B.; Doria, Alessandro

    2011-01-01

    Objective To evaluate whether coronary heart disease (CHD)-susceptibility loci identified by genome-wide association studies of the general population also contribute to CHD in type 2 diabetes. Background No study has examined the effects of these genetic variants on CHD in diabetic patients. Methods We genotyped 15 genetic markers of 12 loci in three studies of diabetic patients: the prospective Nurses’ Health Study (309 CHD cases and 544 controls) and Health Professional Follow-up Study (345 CHD cases and 451 controls), and the cross-sectional Joslin Heart Study (422 CHD cases and 435 controls). Results Five SNPs, rs4977574 (CDKN2A/2B), rs12526453 (PHACTR1), rs646776 (CELSR2-PSRC1-SORT1), rs2259816 (HNF1A), and rs11206510 (PCSK9) showed directionally consistent associations with CHD in the three studies, with combined odds ratios (ORs) ranging from 1.17 to 1.25 (p=0.03 to 0.0002). None of the other SNPs reached significance in individual or combined analyses. A genetic risk score (GRS) was created by combining the risk alleles of the five significantly associated loci. The OR of CHD per GRS unit was 1.19 (95% confidence interval [CI] 1.13– 1.26; p<0.0001). Individuals with GRS ≥8 (19% of diabetic subjects) had almost a two-fold increase in CHD risk (OR=1.94, 95% CI 1.60–2.35) as compared to individuals with GRS ≤5 (30% of diabetic subjects). Prediction of CHD was significantly improved (p<0.001) when the GRS was added to a model including clinical predictors in the combined samples. Conclusions Our results illustrate the consistency and differences in the determinants of genetic susceptibility to CHD in diabetic patients and the general populations. PMID:22152955

  14. Complex interplay between neutral and adaptive evolution shaped differential genomic background and disease susceptibility along the Italian peninsula

    PubMed Central

    Sazzini, Marco; Gnecchi Ruscone, Guido Alberto; Giuliani, Cristina; Sarno, Stefania; Quagliariello, Andrea; De Fanti, Sara; Boattini, Alessio; Gentilini, Davide; Fiorito, Giovanni; Catanoso, Mariagrazia; Boiardi, Luigi; Croci, Stefania; Macchioni, Pierluigi; Mantovani, Vilma; Di Blasio, Anna Maria; Matullo, Giuseppe; Salvarani, Carlo; Franceschi, Claudio; Pettener, Davide; Garagnani, Paolo; Luiselli, Donata

    2016-01-01

    The Italian peninsula has long represented a natural hub for human migrations across the Mediterranean area, being involved in several prehistoric and historical population movements. Coupled with a patchy environmental landscape entailing different ecological/cultural selective pressures, this might have produced peculiar patterns of population structure and local adaptations responsible for heterogeneous genomic background of present-day Italians. To disentangle this complex scenario, genome-wide data from 780 Italian individuals were generated and set into the context of European/Mediterranean genomic diversity by comparison with genotypes from 50 populations. To maximize possibility of pinpointing functional genomic regions that have played adaptive roles during Italian natural history, our survey included also ~250,000 exomic markers and ~20,000 coding/regulatory variants with well-established clinical relevance. This enabled fine-grained dissection of Italian population structure through the identification of clusters of genetically homogeneous provinces and of genomic regions underlying their local adaptations. Description of such patterns disclosed crucial implications for understanding differential susceptibility to some inflammatory/autoimmune disorders, coronary artery disease and type 2 diabetes of diverse Italian subpopulations, suggesting the evolutionary causes that made some of them particularly exposed to the metabolic and immune challenges imposed by dietary and lifestyle shifts that involved western societies in the last centuries. PMID:27582244

  15. The genetic background of Southern Iranian couples before marriage

    PubMed Central

    Nariman, A; Sobhan, MR; Savaei, M; Aref-Eshghi, E; Nourinejad, R; Manoochehri, M; Ghahremani, S; Daliri, F

    2016-01-01

    Abstract Genetic service for couples plays an increasingly important role in diagnosis and risk management. This study investigated the status of consanguinity and the medical genetic history (effectiveness and coverage of medical genetic services) in couples residing in a city in southern Iran. We questioned couples who were referred to Behbahan Marital Counseling Center, Behbahan, Iran, during the period from January to November 2014, to obtain information on consanguinity, disease history, and previous referral to a medical genetics center. For the collected data was obtained descriptive statistics with STATA 11.0 software. A total of 500 couples were questioned. Mean age was 24.8 ± 5.2 years. Almost one quarter (23.4%) of the couples were consanguineous. Consanguinity was almost twice as common in rural areas as in urban areas (33.9 vs. 19.2%, p = 0.001). Only a few couples (~3.0%) had ever been referred for genetic counseling. The main reason for previous genetic counseling was consanguinity (85.7%). The majority of the participants (96.3%) had never been tested for any genetic conditions. Our findings suggest that only a small proportion of couples in Khuzestan Province, Iran (Behbahan City) were receiving adequate genetics care. This may reflect the limited accessibility of such services, and inadequate awareness and education among the care providers. PMID:28289591

  16. The genetic background of Southern Iranian couples before marriage.

    PubMed

    Nariman, A; Sobhan, M R; Savaei, M; Aref-Eshghi, E; Nourinejad, R; Manoochehri, M; Ghahremani, S; Daliri, F; Daliri, K

    2016-12-01

    Genetic service for couples plays an increasingly important role in diagnosis and risk management. This study investigated the status of consanguinity and the medical genetic history (effectiveness and coverage of medical genetic services) in couples residing in a city in southern Iran. We questioned couples who were referred to Behbahan Marital Counseling Center, Behbahan, Iran, during the period from January to November 2014, to obtain information on consanguinity, disease history, and previous referral to a medical genetics center. For the collected data was obtained descriptive statistics with STATA 11.0 software. A total of 500 couples were questioned. Mean age was 24.8 ± 5.2 years. Almost one quarter (23.4%) of the couples were consanguineous. Consanguinity was almost twice as common in rural areas as in urban areas (33.9 vs. 19.2%, p = 0.001). Only a few couples (~3.0%) had ever been referred for genetic counseling. The main reason for previous genetic counseling was consanguinity (85.7%). The majority of the participants (96.3%) had never been tested for any genetic conditions. Our findings suggest that only a small proportion of couples in Khuzestan Province, Iran (Behbahan City) were receiving adequate genetics care. This may reflect the limited accessibility of such services, and inadequate awareness and education among the care providers.

  17. Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution.

    PubMed

    Chandler, Christopher H; Chari, Sudarshan; Dworkin, Ian

    2013-06-01

    The premise of genetic analysis is that a causal link exists between phenotypic and allelic variation. However, it has long been documented that mutant phenotypes are not a simple result of a single DNA lesion, but are instead due to interactions of the focal allele with other genes and the environment. Although an experimentally rigorous approach focused on individual mutations and isogenic control strains has facilitated amazing progress within genetics and related fields, a glimpse back suggests that a vast complexity has been omitted from our current understanding of allelic effects. Armed with traditional genetic analyses and the foundational knowledge they have provided, we argue that the time and tools are ripe to return to the underexplored aspects of gene function and embrace the context-dependent nature of genetic effects. We assert that a broad understanding of genetic effects and the evolutionary dynamics of alleles requires identifying how mutational outcomes depend upon the 'wild type' genetic background. Furthermore, we discuss how best to exploit genetic background effects to broaden genetic research programs.

  18. Research Review: genetic vulnerability or differential susceptibility in child development: the case of attachment.

    PubMed

    Bakermans-Kranenburg, Marian J; van Ijzendoorn, Marinus H

    2007-12-01

    Gene-environment interactions interpreted in terms of differential susceptibility may play a large part in the explanation of individual differences in human development. Reviewing studies on the behavioral and molecular genetics of attachment, we present evidence for interactions between genetic and environmental factors explaining individual differences in attachment security and disorganization. In particular, the DRD4 7-repeat polymorphism seems associated with an increased risk for disorganized attachment, but only when combined with environmental risk. Gene-environment (G x E) interactions may be interpreted as genetic vulnerability or differential susceptibility. We found support for the differential susceptibility hypothesis predicting not only more negative outcomes for susceptible children in unfavorable environments, but also positive outcomes for susceptible children in favorable environments.

  19. Transfer of the Rf-1 region from FHH onto the ACI background increases susceptibility to renal impairment.

    PubMed

    Provoost, Abraham P; Shiozawa, Masahide; Van Dokkum, Richard P E; Jacob, Howard J

    2002-02-28

    The genetically hypertensive fawn-hooded (FHH/Eur) rat is characterized by the early presence of systolic and glomerular hypertension, progressive proteinuria (UPV), and albuminuria (UAV), and focal glomerulosclerosis, resulting in premature death from renal failure. Previous studies showed that at least five genetic loci (Rf-1 to Rf-5) were linked to the development of renal impairment. Of these five, Rf-1 appears to play a major role. To study the impact of Rf-1 in the absence of the other loci, we transferred the Rf-1 region of chromosome 1, between the markers D1Mit34 and D1Rat156, Rf-1B for short, onto the genomic background of the normotensive August x Copenhagen Irish (ACI) rat. In this congenic strain, named ACI.FHH-D1Mit34/Rat156 or ACI.FHH-Rf1B, we challenged the renal hemodynamic function of these animals by studying the effects of unilateral nephrectomy (UNX) alone, or combined with N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Following UNX, the congenic strain developed significantly more UPV and UAV than the ACI progenitor. The differences were even more pronounced when UNX was combined with an L-NAME-induced rise in systolic blood pressure to about 150 mmHg, i.e., the level of hypertension present in the parental FHH strain. These findings indicate that the Rf-1B region of the FHH rat contains at least one gene affecting the susceptibility to progressive renal failure, especially in the presence of an increase in blood pressure.

  20. Clinical Course and Genetic Susceptibility of Primary Biliary Cirrhosis: Analysis of a Prospective Cohort

    PubMed Central

    Almasio, Piero Luigi; Licata, Anna; Maida, Marcello; Macaluso, Fabio Salvatore; Costantino, Andrea; Alessi, Nicola; Grimaudo, Stefania; Accardi, Giulia; Caruso, Calogero; Craxi, Antonio

    2016-01-01

    Background Natural history of primary biliary cirrhosis (PBC) is partially characterized in patients from the Mediterranean area whose genetic background differs from that of Northern Europeans. Objectives We aimed to describe genetic susceptibility and clinical course of PBC in patients from Southern Italy. Methods Socio-demographic, clinical, biochemical and histological data at diagnosis as well as disease progression of 81 PBC consecutive patients were collected. All subjects were treated with Ursodeoxycholic acid at a dose of 15 mg/kg. HLA class II DRB1 alleles were compared with those of 237 healthy control subjects. IL28B genotyping for IL28B rs12979860 C/T and rs80899917 G/T was performed in a sub-group of patients. Results HLA-DRB1*07 (RR 5.3, P = 0.0008) and HLA-DRB1*08 (RR n.c. P = 0.0005) were significantly associated with the risk of PBC development. Patients younger than 45 years had significantly higher alanine aminotransferase (P = 0.038) and alkaline phosphatase levels (P = 0.047) than older cases. In comparison to non-CC rs12979860, patients with CC rs12979860 genotype showed an early histological stage at onset (93.8% vs. 62.5%, P = 0.03). After a mean follow-up of 61 months, three patients died, one underwent liver transplantation and sixteen (21.9%) had progression of the disease. At multivariate analysis, extrahepatic autoimmune disease (P = 0.04), pruritus (P = 0.008) and advanced histological stage (P < 0.0001) were independent risk factors for disease progression. Conclusions HLA-DRB1*07 and HLA-DRB1*08 alleles increase susceptibility to disease development. At onset, higher biochemical activity was observed in younger patients, whereas rs12979860 CC genotype was associated with milder histological stage. Pruritus and coexistence of extrahepatic autoimmune diseases were significantly associated with poorer prognosis. PMID:28070198

  1. Genetic Counseling for Breast Cancer Susceptibility in African American Women

    DTIC Science & Technology

    2007-09-01

    counseling and education sessions, (3) completing follow-up telephone interviews, (4) generating peer -reviewed manuscripts, and (5) presenting findings...Differences in Genetic Counseling and Testing Decisions - Genetic and Health Disparities Conference, Institute for Social Research, University of...

  2. Genetic variability of innate immunity impacts human susceptibility to fungal diseases.

    PubMed

    Carvalho, Agostinho; Cunha, Cristina; Pasqualotto, Alessandro C; Pitzurra, Lucia; Denning, David W; Romani, Luigina

    2010-06-01

    Fungi are a major threat in immunocompromised patients. Despite presenting similar degrees of immunosuppression, not all individuals at-risk ultimately develop fungal diseases. The traditional view of immune suppression as a key risk factor for susceptibility to fungal infections needs to be accommodated within new conceptual advances on host immunity and its relationship to fungal disease. The critical role of the immune system emphasizes the contribution of host genetic polymorphisms to fungal disease susceptibility. This review highlights the present knowledge on innate immunity genetics that associates with susceptibility to fungal diseases.

  3. Distinct genetic control of autoimmune neuropathy and diabetes in the non-obese diabetic background.

    PubMed

    Bour-Jordan, Hélène; Thompson, Heather L; Giampaolo, Jennifer R; Davini, Dan; Rosenthal, Wendy; Bluestone, Jeffrey A

    2013-09-01

    The non-obese diabetic (NOD) mouse is susceptible to the development of autoimmune diabetes but also multiple other autoimmune diseases. Over twenty susceptibility loci linked to diabetes have been identified in NOD mice and progress has been made in the definition of candidate genes at many of these loci (termed Idd for insulin-dependent diabetes). The susceptibility to multiple autoimmune diseases in the NOD background is a unique opportunity to examine susceptibility genes that confer a general propensity for autoimmunity versus susceptibility genes that control individual autoimmune diseases. We previously showed that NOD mice deficient for the costimulatory molecule B7-2 (NOD-B7-2KO mice) were protected from diabetes but spontaneously developed an autoimmune peripheral neuropathy. Here, we took advantage of multiple NOD mouse strains congenic for Idd loci to test the role of these Idd loci the development of neuropathy and determine if B6 alleles at Idd loci that are protective for diabetes will also be for neuropathy. Thus, we generated NOD-B7-2KO strains congenic at Idd loci and examined the development of neuritis and clinical neuropathy. We found that the NOD-H-2(g7) MHC region is necessary for development of neuropathy in NOD-B7-2KO mice. In contrast, other Idd loci that significantly protect from diabetes did not affect neuropathy when considered individually. However, we found potent genetic interactions of some Idd loci that provided almost complete protection from neuritis and clinical neuropathy. In addition, defective immunoregulation by Tregs could supersede protection by some, but not other, Idd loci in a tissue-specific manner in a model where neuropathy and diabetes occurred concomitantly. Thus, our study helps identify Idd loci that control tissue-specific disease or confer general susceptibility to autoimmunity, and brings insight to the Treg-dependence of autoimmune processes influenced by given Idd region in the NOD background.

  4. Research Review: Genetic Vulnerability or Differential Susceptibility in Child Development--The Case of Attachment

    ERIC Educational Resources Information Center

    Bakermans-Kranenburg, Marian J.; van IJzendoorn, Marinus H.

    2007-01-01

    Gene-environment interactions interpreted in terms of differential susceptibility may play a large part in the explanation of individual differences in human development. Reviewing studies on the behavioral and molecular genetics of attachment, we present evidence for interactions between genetic and environmental factors explaining individual…

  5. Genetic susceptibility to retinopathy of prematurity: the evidence from clinical and experimental animal studies.

    PubMed

    Holmström, Gerd; van Wijngaarden, Peter; Coster, Douglas J; Williams, Keryn A

    2007-12-01

    Despite advances in management and treatment, retinopathy of prematurity remains a major cause of childhood blindness. Evidence for a genetic basis for susceptibility to retinopathy of prematurity is examined, including the influences of sex, ethnicity, and ocular pigmentation. The role of polymorphisms is explored in the genes for vascular endothelial growth factor and insulin-like growth factor-1, and of mutations in the Norrie disease gene. Insights into the genetic basis of retinopathy of prematurity provided by the animal model of oxygen induced retinopathy are examined. Evidence for a genetic component for susceptibility to retinopathy of prematurity is strong, although the molecular identity of the gene or genes involved remains uncertain.

  6. Evidence for genetic susceptibility to developing early childhood diarrhea among shantytown children living in northeastern Brazil.

    PubMed

    Pinkerton, Relana C; Oriá, Reinaldo B; Kent, Jack W; Kohli, Anita; Abreu, Claudia; Bushen, Oluma; Lima, Aldo A M; Blangero, John; Williams-Blangero, Sarah; Guerrant, Richard L

    2011-11-01

    To explore the genetic components of susceptibility to early childhood diarrhea (ECD), we used a quantitative genetic approach to estimate the heritability of ECD among children from two Brazilian favelas. Shared environment was used to model common exposure to environmental factors. Genetic relatedness was determined from pedigree information collected by screening household participants (n = 3,267) from two geographically related favelas located in Fortaleza, Brazil. There were 277 children within these pedigrees for whom diarrheal episodes in the first two years of life were recorded. Data on environmental exposure and pedigree relationship were combined to quantitatively partition phenotypic variance in ECD into environmental and genetic components by using a variance components approach as implemented in Sequential Oligogenic Linkage Analysis Routines program. Heritability accounted for 54% of variance in ECD and proximity of residence effect accounted for 21% (P < 0.0001). These findings suggest a substantial genetic component to ECD susceptibility and the potential importance of future genetics studies.

  7. Evidence for Genetic Susceptibility to Developing Early Childhood Diarrhea among Shantytown Children Living in Northeastern Brazil

    PubMed Central

    Pinkerton, Relana C.; Oriá, Reinaldo B.; Kent, Jack W.; Kohli, Anita; Abreu, Claudia; Bushen, Oluma; Lima, Aldo A. M.; Blangero, John; Williams-Blangero, Sarah; Guerrant, Richard L.

    2011-01-01

    To explore the genetic components of susceptibility to early childhood diarrhea (ECD), we used a quantitative genetic approach to estimate the heritability of ECD among children from two Brazilian favelas. Shared environment was used to model common exposure to environmental factors. Genetic relatedness was determined from pedigree information collected by screening household participants (n = 3,267) from two geographically related favelas located in Fortaleza, Brazil. There were 277 children within these pedigrees for whom diarrheal episodes in the first two years of life were recorded. Data on environmental exposure and pedigree relationship were combined to quantitatively partition phenotypic variance in ECD into environmental and genetic components by using a variance components approach as implemented in Sequential Oligogenic Linkage Analysis Routines program. Heritability accounted for 54% of variance in ECD and proximity of residence effect accounted for 21% (P < 0.0001). These findings suggest a substantial genetic component to ECD susceptibility and the potential importance of future genetics studies. PMID:22049044

  8. Relationships of OPG Genetic Polymorphisms with Susceptibility to Cardiovascular Disease: A Meta-Analysis

    PubMed Central

    Song, De-Hua; Zhou, Peng-Zhen; Xiu, Xiao-Lin; Zou, Guang-Hui; Sun, Yu-Xia; Song, Chun

    2016-01-01

    Background The aim of this meta-analysis was to determine whether genetic polymorphisms in the osteoprotegerin (OPG) gene contribute to increased risk of cardiovascular disease (CVD). Material/Methods Electronic databases were searched carefully without any language restriction. Analyses of data were conducted using STATA software. Odds ratios (OR) and 95% confidence intervals (95%CI) were also calculated. Results Seven clinical case-control studies that enrolled 1170 CVD patients and 1194 healthy subjects were included. The results indicated that OPG gene polymorphism might be closely associated with susceptibility to CVD, especially for rs2073617 T>C and rs2073618 G>C polymorphisms. Ethnicity-stratified analysis indicated that genetic polymorphism in the OPG were closely related with the pathogenesis of CVD among Asians (all P<0.001), but no obvious relationship was found among Caucasians (all P>0.05). Conclusions Our meta-analysis provided quantitative evidence that OPG gene polymorphism may be closely related to an increased risk of CVD, especially for rs2073617 T>C and rs2073618 G>C polymorphisms. PMID:27068490

  9. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity.

    PubMed

    Bearoff, F; Del Rio, R; Case, L K; Dragon, J A; Nguyen-Vu, T; Lin, C-Y; Blankenhorn, E P; Teuscher, C; Krementsov, D N

    2016-12-01

    Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naive immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific and sex-specific. Bioinformatic analysis of the genetically controlled transcript networks reveals reduced cell type specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS (genome-wide association study candidate genes for MS susceptibility) genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared with PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T-cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease.

  10. [Retinoblastoma: genetic background, modern diagnostic methods and therapies].

    PubMed

    Krzemień, Wojciech; Wojcieszak, Jakub; Zawilska, Jolanta B

    2015-01-01

    Retinoblastoma is the most common intraocular eye tumor of the pediatric age. It develops on account of a mutation on chromosome 13 in the 13q14 locus. New studies additionally demonstrated changes in the expression of other genes classified as oncogenes and suppressor genes. The tumor occurs in two forms--heritable (genetic) and non-heritable (non-genetic, sporadic). The most common clinical features of retinoblastoma are leucocoria and strabismus, however, they are not that specific because may also occur in several other eye diseases, such as Coats disease and toxocarosis. The diagnosis of retinoblastoma requires an indirect ophthalmoscopic examination. In addition, imaging techniques such as ultrasonography (USG), magnetic resonance imaging (MRI) and, less commonly, computer tomography (CT) are used. Biopsy is contraindicated because of the risk of spreading cancer cells to the adjacent tissues and possibility of a metastasis development. Currently, the stage of the disease and the therapy prognosis are classified by the International Intraocular Retinoblastoma Classification. At present, chemotherapy is the standard treatment of retinoblastoma. During the last decades new therapies have been introduced, such as transpupillary thermotherapy (TTT), cryotherapy, brachytherapy, limiting the use of teletherapy and the number of performed enucleations. Patients with therapy-induced remission of retinoblastoma should undergo routine examinations because of the increased risk of subsequent neoplasms and other possible complications.

  11. What's New in Genetic Testing for Cancer Susceptibility?

    PubMed

    Plichta, Jennifer K; Griffin, Molly; Thakuria, Joseph; Hughes, Kevin S

    2016-09-15

    The advent of next-generation sequencing, and its transition further into the clinic with the US Food and Drug Administration approval of a cystic fibrosis assay in 2013, have increased the speed and reduced the cost of DNA sequencing. Coupled with a historic ruling by the Supreme Court of the United States that human genes are not patentable, these events have caused a seismic shift in genetic testing in clinical medicine. More labs are offering genetic testing services; more multigene panels are available for gene testing; more genes and gene mutations are being identified; and more variants of uncertain significance, which may or may not be clinically actionable, have been found. All these factors, taken together, are increasing the complexity of clinical management. While these developments have led to a greater interest in genetic testing, risk assessment, and large-scale population screening, they also present unique challenges. The dilemma for clinicians is how best to understand and manage this rapidly growing body of information to improve patient care. With millions of genetic variants of potential clinical significance and thousands of genes associated with rare but well-established genetic conditions, the complexities of genetic data management clearly will require improved computerized clinical decision support tools, as opposed to continued reliance on traditional rote, memory-based medicine.

  12. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background.

    PubMed

    Fishbein, Lauren; Nathanson, Katherine L

    2012-01-01

    Pheochromocytomas and paragangliomas (PCC/PGL) are tumors derived from the adrenal medulla or extra-adrenal ganglia, respectively. They are rare and often benign tumors that are associated with high morbidity and mortality due to mass effect and high circulating catecholamines. Although most PCCs and PGLs are thought to be sporadic, over one third are associated with 10 known susceptibility genes. Mutations in three genes causing well characterized tumor syndromes are associated with an increased risk of developing PCCs and PGLs, including VHL (von Hippel-Lindau disease), NF1 (Neurofibromatosis Type 1), and RET (Multiple Endocrine Neoplasia Type 2). Mutations in any of the succinate dehydrogenase (SDH) complex subunit genes (SDHA, SDHB, SDHC, SDHD) can lead to PCCs and PGLs with variable penetrance, as can mutations in the subunit cofactor, SDHAF2. Recently, two additional genes have been identified, TMEM127 and MAX. Although these tumors are rare in the general population, occurring in two to eight per million people, they are more commonly associated with an inherited mutation than any other cancer type. This review summarizes the known germline and somatic mutations leading to the development of PCC and PGL, as well as biochemical profiling for PCCs/PGLs and screening of mutation carriers.

  13. A Genetic Lung Cancer Susceptibility Test may have a Positive Effect on Smoking Cessation.

    PubMed

    Kammin, Tammy; Fenton, Andrew K; Thirlaway, Kathryn

    2015-06-01

    Smoking increases the risk of developing lung cancer. Genetic loci have been identified which could form the basis of a lung cancer susceptibility test; but little is known whether such a test would interest or motivate those trying to quit smoking. To address this, we investigated the attitudes of people trying to quit smoking towards genetic susceptibility testing for lung cancer. Participant's attitudes to topics associated with lung cancer susceptibility testing were assessed; were they interested in genetic testing? What impact would a hypothetical high- or low- risk result have on smoking cessation? 680 self-completion questionnaires were given to individuals attending National Health Service stop smoking clinics in three different areas of the United Kingdom between 2011 and 2012. 139 questionnaires were returned, giving a 20 % response rate. Participants expressed an interest in a genetic susceptibility test for lung cancer and almost all reported that a high-risk result would increase their motivation to stop smoking. However, many participants had a neutral attitude towards a low-risk result. Most participants agreed their smoking habit could lead to lung cancer. Lung cancer susceptibility testing may be a useful incentive to help people quit smoking. This study suggests the need for genetic services to work with smoking cessation teams if routine testing becomes available in the future.

  14. Genetic Characterization of Optochin-Susceptible Viridans Group Streptococci

    PubMed Central

    Martín-Galiano, Antonio J.; Balsalobre, Luz; Fenoll, Asunción; de la Campa, Adela G.

    2003-01-01

    Two clinical isolates of viridans group streptococci (VS) with different degrees of susceptibility to optochin (OPT), i.e., fully OPT-susceptible (Opts) VS strain 1162/99 (for which the MIC was equal to that for Streptococcus pneumoniae, 0.75 μg/ml) and intermediate Opts VS strain 1174/97 (MIC, 6 μg/ml) were studied. Besides being OPT susceptible, they showed characteristics typical of VS, such as bile insolubility; lack of reaction with pneumococcal capsular antibodies; and lack of hybridization with rRNA (AccuProbe)-, lytA-, and pnl-specific pneumococcal probes. However, these VS Opts strains and VS type strains hybridized with ant, a gene not present in S. pneumoniae. A detailed characterization of the genes encoding the 16S rRNA and SodA classified isolates 1162/99 and 1174/97 as Streptococcus mitis. Analysis of the atpCAB region, which encodes the c, a, and b subunits of the F0F1 H+-ATPase, the target of optochin, revealed high degrees of similarity between S. mitis 1162/99 and S. pneumoniae in atpC, atpA, and the N terminus of atpB. Moreover, amino acid identity between S. mitis 1174/97 and S. pneumoniae was found in α helix 5 of the a subunit. The organization of the chromosomal region containing the atp operon of the two Opts VS and VS type strains was spr1284-atpC, with spr1284 being located 296 to 556 bp from atpC, whereas in S. pneumoniae this distance was longer than 68 kb. In addition, the gene order in S. pneumoniae was IS1239-74 bp-atpC. The results suggest that the full OPT susceptibility of S. mitis 1162/99 is due to the acquisition of atpC, atpA, and part of atpB from S. pneumoniae and that the intermediate OPT susceptibility of S. mitis 1174/97 correlates with the amino acid composition of its a subunit. PMID:14506029

  15. Genetic evaluation of BRCA1-A complex genes with triple-negative breast cancer susceptibility in Chinese women

    PubMed Central

    Zheng, Yi-Zi; Qiao, Feng; Yao, Ling; Cao, Zhi-Gang; Ye, Fu-Gui; Wu, Jiong; Hu, Xin; Wang, Bin; Shao, Zhi-Ming

    2016-01-01

    Background The tumor suppressor BRCA1 plays a pivotal role in maintaining genomic stability and tumor suppression. The BRCA1-A complex is required for recruitment of BRCA1 to DNA damage sites, DNA repair and cell cycle checkpoint control. Since germline mutations of BRCA1 often lead to breast tumors that are triple-negative breast cancer (TNBC) type, we aimed to investigate whether genetic deficiency in genes of the BRCA1-A complex is associated with risk to TNBC development. Results We found that rs7250266 in the promoter region of NBA1 confers a decreased risk to TNBC development, but not to non-TNBC susceptibility. In addition, the haplotypes containing two polymorphisms rs7250266 and rs2278256 are associated with a lower chance of TNBC development specifically. Our studies also showed that the protective alleles of rs7250266 (C > G) and rs2278256 (T > C) down-regulate promoter activity of NBA1 in mammary epithelial cells. Methods We investigated associations between the BRCA1-A complex genes and TNBC developing risk in first case-control study of Chinese Han Women population including 414 patients with TNBC and 354 cancer-free controls. We detected 37 common variants in ABRAXAS, RAP80, BRE, BRCC36 and NBA1/MERIT40 genes encoding the BRCA1-A complex and evaluated their genetic susceptibility to the risk of TNBC. An additional cohort with 652 other types of breast cancer (non-TNBC) cases and 890 controls was used to investigate the associations between TNBC-specific SNPs genotype and non-TNBCs susceptibility. Conclusions Genetic variants in NBA1 may be an important genetic determinant of TNBC susceptibility. Further investigation and validation of these SNPs in larger cohorts may facilitate in predication and prevention of TNBC and in counseling individuals for risk of TNBC development. PMID:26848770

  16. Patients' Attitudes Towards Disclosure of Genetic Test Results to Family Members: The Impact of Patients' Sociodemographic Background and Counseling Experience.

    PubMed

    Gilbar, Roy; Shalev, Stavit; Spiegel, Ronen; Pras, Elon; Berkenstadt, Michal; Sagi, Michal; Ben-Yehuda, Adi; Mor, Pnina; Perry, Shlomit; Zaccai, Tzipora Falik; Borochowitz, Zvi; Barnoy, Sivia

    2016-04-01

    Many factors predict the intention to disclose genetic information to relatives. The article examines the impact of patients' socio-demographic factors on their intention to disclose genetic testing results to their relatives. Data were collected in eight genetic clinics in Israel. Patients were requested to fill in a questionnaire after counseling. A convenience sample of 564 participants who visited these clinics was collected for a response rate of 85 %. Of them, 282 participants came for susceptibility testing for hereditary cancers (cancer group), and 282 for genetic screening tests (prenatal group). In the cancer group, being secular and having more years of education correlated positively with the intention to disclose test results to relatives. In the prenatal group, being married and female correlated positively with the intention to disclose. In the cancer group, being religious and with less years of education correlated positively with the view that the clinician should deliver the results to the family. In the prenatal group, being male and unmarried correlated positively with this belief. In both groups, being of young age correlated with the perception that genetic information is private. Varied sociodemographic factors affect the intention to inform family members. Thus, knowing the social background of patients will shed light on people's attitudes to genetic information and will help clinicians provide effective counseling in discussions with patients about the implications of test results for relatives.

  17. Final Technical Report for the grant entitled "Genetic Factors Affecting Susceptibility to Low-Dose Radiation"

    SciTech Connect

    Morgan, William, F., Ph.D., D.Sc.

    2006-11-22

    The goal of this proposal was to test the hypothesis that mice heterozygous for the Nijmegen Breakage Syndrome (NBS1) gene are genetically susceptible to low doses of ionizing radiation. The rationale for this is that patients with NBS are radiation sensitive, because of defects in cellular responses to radiation induced genetic damage and haploinsufficiency at this genetic locus provides the potential for genetic susceptibility to low doses of ionizing radiation. Wild type and heterozygous NBS1 mice were irradiated and followed over their lifetime for radiation induced genomic instability, carcinogenesis and non-specific life shortening. No differences in cytogenetic damage, cancer induction or life span were observed between the hypomorphic mice indicating that genetic imbalance at the NBS1 loci does not modulate low dose radiation sensitivity.

  18. Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species.

    PubMed

    Rosenblum, Erica Bree; Poorten, Thomas J; Settles, Matthew; Murdoch, Gordon K

    2012-07-01

    Amphibian populations around the world are threatened by an emerging infectious pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Bd). How can a fungal skin infection kill such a broad range of amphibian hosts? And do different host species have a similar response to Bd infection? Here, we use a genomics approach to understand the genetic response of multiple susceptible frog species to Bd infection. We characterize the transcriptomes of two closely related endangered frog species (Rana muscosa and Rana sierrae) and analyse whole genome expression profiles from frogs in controlled Bd infection experiments. We integrate the Rana results with a comparable data set from a more distantly related susceptible species (Silurana tropicalis). We demonstrate that Bd-infected frogs show massive disruption of skin function and show no evidence of a robust immune response. The genetic response to infection is shared across the focal susceptible species, suggesting a common effect of Bd on susceptible frogs.

  19. Genetic and immunologic susceptibility to statin-related myopathy.

    PubMed

    Patel, Jaideep; Superko, H Robert; Martin, Seth S; Blumenthal, Roger S; Christopher-Stine, Lisa

    2015-05-01

    Statin-related myopathy (SRM) undermines drug adherence that is critical for achieving the benefits of lipid-lowering therapy. While the exact mechanism of SRM remains largely unknown, recent evidence supports specific genetic and immunologic influence on the development of intolerance. Genes of interest include those involved in the pharmacokinetics of statin response (i.e. drug metabolism, uptake transporters, and efflux transporters), pharmacodynamics (i.e. drug toxicity and immune-mediated myopathy), and gene expression. We examine the influence of genetic and immunologic variation on the pharmacokinetics, pharmacodynamics, and gene expression of SRM.

  20. Mendelian Genetics of Human Susceptibility to Fungal Infection

    PubMed Central

    Lionakis, Michail S.; Netea, Mihai G.; Holland, Steven M.

    2014-01-01

    A recent surge in newly described inborn errors of immune function-related genes that result in susceptibility to fungal disease has greatly enhanced our understanding of the cellular and molecular basis of antifungal immune responses. Characterization of single-gene defects that predispose to various combinations of superficial and deep-seated infections caused by yeasts, molds, and dimorphic fungi has unmasked the critical role of novel molecules and signaling pathways in mucosal and systemic antifungal host defense. These experiments of nature offer a unique opportunity for developing new knowledge in immunological research and form the foundation for devising immune-based therapeutic approaches for patients infected with fungal pathogens. PMID:24890837

  1. Vascular Genetic Variants and Ischemic Stroke Susceptibility in Albanians from the Republic of Macedonia

    PubMed Central

    Kamberi, Bajram; Kamberi, Farije; Spiroski, Mirko

    2016-01-01

    BACKGROUND: Acute first-ever ischemic stroke (FIS) is a heterogeneous, polygenic disorder. The contribution of vascular genetic variants as inherited causes of ischemic stroke has remained controversial. AIM: To examine the association of genetic variants in vascular factors with the occurrence of FIS. MATERIAL AND METHODS: The current research was performed in a group of 39 patients with FIS (study group) and 102 healthy volunteers (control group). We analyzed the prevalence of vascular genetic variants in following genes: factor V, prothrombin, methylenetetrahydrofolate reductase (MTHFR), factor XIII, plasminogen activator 1, endothelial protein C receptor (EPCR), apolipoprotein B, apolipoprotein E, β-fibrinogen, human platelet antigen 1, angiotensin-converting enzyme (ACE), endothelial nitric oxide synthase (eNOS) and lymphotoxin alpha. RESULTS: It was found that heterozygous LTA 804C>A and FXIII V34L Leu/Leu were significantly more frequent in patients with FIS than in control group (p = 0.036 and p = 0.017, respectively). The frequency of FXIII V34L Val/Val was significantly lower in patients with FIS than in control group (p = 0.020). Other frequencies of vascular gene variants in patients with FIS and in control group were not significantly different. CONCLUSIONS: This is the first comprehensive study to present data indicating that polymorphism of vascular genes in the prevalence of acute FIS exists in the Albanian population from the Republic of Macedonia. Variations in these genes have been detected in patients with acute FIS, suggesting that their combination might act in a susceptible or protective manner in this Albanian population. PMID:28028391

  2. Molecular Mechanisms of Drug Resistance in Natural Leishmania Populations Vary with Genetic Background

    PubMed Central

    Decuypere, Saskia; Vanaerschot, Manu; Brunker, Kirstyn; Imamura, Hideo; Müller, Sylke; Khanal, Basudha; Rijal, Suman; Dujardin, Jean-Claude; Coombs, Graham H.

    2012-01-01

    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability. PMID:22389733

  3. Connecting the dots between genes, biochemistry, and disease susceptibility: systems biology modeling in human genetics.

    PubMed

    Moore, Jason H; Boczko, Erik M; Summar, Marshall L

    2005-02-01

    Understanding how DNA sequence variations impact human health through a hierarchy of biochemical and physiological systems is expected to improve the diagnosis, prevention, and treatment of common, complex human diseases. We have previously developed a hierarchical dynamic systems approach based on Petri nets for generating biochemical network models that are consistent with genetic models of disease susceptibility. This modeling approach uses an evolutionary computation approach called grammatical evolution as a search strategy for optimal Petri net models. We have previously demonstrated that this approach routinely identifies biochemical network models that are consistent with a variety of genetic models in which disease susceptibility is determined by nonlinear interactions between two or more DNA sequence variations. We review here this approach and then discuss how it can be used to model biochemical and metabolic data in the context of genetic studies of human disease susceptibility.

  4. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity

    PubMed Central

    Bearoff, Frank; del Rio, Roxana; Case, Laure K.; Dragon, Julie A.; Nguyen-Vu, Trang; Lin, Chin-Yo; Blankenhorn, Elizabeth P.; Teuscher, Cory; Krementsov, Dimitry N.

    2016-01-01

    Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases, such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naïve immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific, and sex-specific. Bioinformatic analysis of the genetically-controlled transcript networks reveals reduced cell type-specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared to PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease. PMID:27653816

  5. Salmonella penetration through eggshells of chickens of different genetic backgrounds.

    PubMed

    Rathgeber, Bruce M; McCarron, Paige; Budgell, Krista L

    2013-09-01

    chicken breeds as a genetic resource for the future.

  6. Genetic Counseling for Breast Cancer Susceptibility in African American Women

    DTIC Science & Technology

    2006-09-01

    African American women. J Couns Dev 1992;71: 184–90. [35] Myers LJ. Understanding an Afrocentric worldview: introduction to an optimal psychology Dubuque...this study is to develop a Culturally Tailored Genetic Counseling (CTGC) protocol for African American women and evaluate its impact on psychological ...prophylactic surgery. Reductions in psychological distress will be mediated by increased use of spiritual coping strategies. Secondary Aim To identify

  7. Genetic Influences on Asthma Susceptibility in the Developing Lung

    PubMed Central

    Carpe, Nicole; Mandeville, Isabel; Ribeiro, Leslie; Ponton, Andre; Martin, James G.; Kho, Alvin T.; Chu, Jen-Hwa; Tantisira, Kelan; Weiss, Scott T.; Raby, Benjamin A.; Kaplan, Feige

    2010-01-01

    Asthma is the leading serious pediatric chronic illness in the United States, affecting 7.1 million children. The prevalence of asthma in children under 4 years of age has increased dramatically in the last 2 decades. Existing evidence suggests that this increase in prevalence derives from early environmental exposures acting on a pre-existing asthma-susceptible genotype. We studied the origins of asthma susceptibility in developing lung in rat strains that model the distinct phenotypes of airway hyperresponsiveness (Fisher rats) and atopy (brown Norway [BN] rats). Postnatal BN rat lungs showed increased epithelial proliferation and tracheal goblet cell hyperplasia. Fisher pups showed increased lung resistance at age 2 weeks, with elevated neutrophils throughout the postnatal period. Diverse transcriptomic signatures characterized the distinct respiratory phenotypes of developing lung in both rat models. Linear regression across age and strain identified developmental variation in expression of 1,376 genes, and confirmed both strain and temporal regulation of lung gene expression. Biological processes that were heavily represented included growth and development (including the T Box 1 transcription factor [Tbx5], the epidermal growth factor receptor [Egfr], the transforming growth factor beta-1-induced transcript 1 [Tgfbr1i1]), extracellular matrix and cell adhesion (including collagen and integrin genes), and immune function (including lymphocyte antigen 6 (Ly6) subunits, IL-17b, Toll-interacting protein, and Ficolin B). Genes validated by quantitative RT-PCR and protein analysis included collagen III alpha 1 Col3a1, Ly6b, glucocorticoid receptor and Importin-13 (specific to the BN rat lung), and Serpina1 and Ficolin B (specific to the Fisher lung). Innate differences in patterns of gene expression in developing lung that contribute to individual variation in respiratory phenotype are likely to contribute to the pathogenesis of asthma. PMID:20118217

  8. Seasonal fluctuation in susceptibility to insecticides within natural populations of Drosophila melanogaster. II. Features of genetic variation in susceptibility to organophosphate insecticides within natural populations of D. melanogaster.

    PubMed

    Miyo, Takahiro; Oguma, Yuzuru; Charlesworth, Brian

    2006-08-01

    To elucidate genetic variation in susceptibility to organophosphate insecticides within natural populations of Drosophila melanogaster, we conducted an analysis of variance for mortality data sets of isofemale lines (10-286 lines) used in the previous studies. Susceptibility of isofemale lines to the three organophosphate insecticides was continuously distributed within each natural population, ranging from susceptible to resistant. Analysis of variance showed highly significant variation among isofemale lines in susceptibility to each insecticide for each natural population. Significant genetic variances in susceptibility to the three chemicals were estimated for the Katsunuma population; 0.0529-0.2722 for malathion, 0.0492-0.1603 for prothiophos, and 0.0469-0.1696 for fenitrothion. Contrary to the consistent seasonal tendency towards an increase in mean susceptibility in the fall, reported in the previous study, genetic variances in susceptibility to the three organophosphates did not change significantly in 1997 but tended to increase by 2- to 5-times in 1998. We tested whether both the observed situations, maintenance and increase in genetic variance in organophosphate resistance, can be generated under circumstances in which the levels of resistance to the three organophosphates tended to decrease, by conducting a simulation analysis, based on the hypothesis that resistant genotypes have lower fitnesses than susceptible ones under the density-independent condition. The simulation analysis generally explained the pattern in the mean susceptibility and genetic variances in susceptibility to the three organophosphates, observed in the Katsunuma population of D. melanogaster. It was suggested that the differences in the frequencies of resistance genes in the summer population could affect the patterns in genetic variance in organophosphate resistance in the fall population.

  9. Investigating the genetic background of bovine digital dermatitis using improved definitions of clinical status.

    PubMed

    Schöpke, K; Gomez, A; Dunbar, K A; Swalve, H H; Döpfer, D

    2015-11-01

    Bovine digital dermatitis (DD) is an increasing claw health problem in all cattle production systems worldwide. The objective of this study was to evaluate the use of an improved scoring of the clinical status for DD via M-scores accounting for the dynamics of the disease; that is, the transitions from one stage to another. The newly defined traits were then subjected to a genetic analysis to determine the genetic background for susceptibility to DD. Data consisted of 6,444 clinical observations from 729 Holstein heifers in a commercial dairy herd, collected applying the M-score system. The M-score system is a classification scheme for stages of DD that allows a macroscopic scoring based on clinical inspections of the bovine foot, thus it describes the stages of lesion development. The M-scores were used to define new DD trait definitions with different complexities. Linear mixed models and logistic models were used to identify fixed environmental effects and to estimate variance components. In total, 68% of all observations showed no DD status, whereas 11% were scored as infectious for and affected by DD, and 21% of all observations exhibited an affected but noninfectious status. For all traits, the probability of occurrence and clinical status were associated with age at observation and period of observation. Risk of becoming infected increased with age, and month of observation significantly affected all traits. Identification of the optimal month concerning DD herd status was consistent for all trait definitions; the last month of the trial was identified. In contrast, months exhibiting the highest least squares means of transformed scores differed depending on trait definition. In this respect, traits that can distinguish between healthy, infectious, and noninfectious stages of DD can account for the infectious potential of the herd and can serve as an alert tool. Estimates of heritabilities of traits studied ranged between 0.19 (±0.11) and 0.52 (±0

  10. Genetic Background Specific Hypoxia Resistance in Rat is Correlated with Balanced Activation of a Cross-Chromosomal Genetic Network Centering on Physiological Homeostasis.

    PubMed

    Mao, Lei

    2012-01-01

    Genetic background of an individual can drastically influence an organism's response upon environmental stress and pathological stimulus. Previous studies in inbred rats showed that compared to Brown Norway (BN), Dahl salt-sensitive (SS) rat exerts strong hypoxia susceptibility. However, despite extensive narrow-down approaches via the chromosome substitution methodology, this genome-based physiological predisposition could not be traced back to distinct quantitative trait loci. Upon the completion and public data availability of PhysGen SS-BN consomic (CS) rat platform, I employed systems biology approach attempting to further our understanding of the molecular basis of genetic background effect in light of hypoxia response. I analyzed the physiological screening data of 22 CS rat strains under normoxia and 2-weeks of hypoxia, and cross-compared them to the parental strains. The analyses showed that SS-9(BN) and SS-18(BN) represent the most hypoxia-resistant CS strains with phenotype similar to BN, whereas SS-6(BN) and SS-Y(BN) segregated to the direction of SS. A meta-analysis on the transcriptomic profiles of these CS rat strains under hypoxia treatment showed that although polymorphisms on the substituted BN chromosomes could be directly involved in hypoxia resistance, this seems to be embedded in a more complex trans-chromosomal genetic regulatory network. Via information theory based modeling approach, this hypoxia relevant core genetic network was reverse engineered. Network analyses showed that the protective effects of BN chromosome 9 and 18 were reflected by a balanced activation of this core network centering on physiological homeostasis. Presumably, it is the system robustness constituted on such differential network activation that acts as hypoxia response modifier. Understanding of the intrinsic link between the individual genetic background and the network robustness will set a basis in the current scientific efforts toward personalized medicine.

  11. Genetics of non-alcoholic fatty liver disease: From susceptibility and nutrient interactions to management

    PubMed Central

    Ravi Kanth, Vishnubhotla Venkata; Sasikala, Mitnala; Sharma, Mithun; Rao, Padaki Nagaraja; Reddy, Duvvuru Nageshwar

    2016-01-01

    Genetics plays an important role in determining the susceptibility of an individual to develop a disease. Complex, multi factorial diseases of modern day (diabetes, cardiovascular disease, hypertension and obesity) are a result of disparity between the type of food consumed and genes, suggesting that food which does not match the host genes is probably one of the major reasons for developing life style diseases. Non-alcoholic fatty liver is becoming a global epidemic leading to substantial morbidity. While various genotyping approaches such as whole exome sequencing using next generation sequencers and genome wide association studies have identified susceptibility loci for non-alcoholic fatty liver disease (NAFLD) including variants in patatin-like phospholipase domain containing 3 and transmembrane 6 superfamily member 2 genes apart from others; nutrient based studies emphasized on a combination of vitamin D, E and omega-3 fatty acids to manage fatty liver disease. However majority of the studies were conducted independent of each other and very few studies explored the interactions between the genetic susceptibility and nutrient interactions. Identifying such interactions will aid in optimizing the nutrition tailor made to an individual’s genetic makeup, thereby aiding in delaying the onset of the disease and its progression. The present topic focuses on studies that identified the genetic susceptibility for NAFLD, nutritional recommendations, and their interactions for better management of NAFLD. PMID:27458502

  12. Glucocorticoid-related genetic susceptibility for Alzheimer's disease.

    PubMed

    de Quervain, Dominique J-F; Poirier, Raphael; Wollmer, M Axel; Grimaldi, Luigi M E; Tsolaki, Magdalini; Streffer, Johannes R; Hock, Christoph; Nitsch, Roger M; Mohajeri, M Hasan; Papassotiropoulos, Andreas

    2004-01-01

    Because glucocorticoid excess increases neuronal vulnerability, genetic variations in the glucocorticoid system may be related to the risk for Alzheimer's disease (AD). We analyzed single-nucleotide polymorphisms in 10 glucocorticoid-related genes in a population of 814 AD patients and unrelated control subjects. Set-association analysis revealed that a rare haplotype in the 5' regulatory region of the gene encoding 11beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) was associated with a 6-fold increased risk for sporadic AD. Results of a reporter-gene assay indicated that the rare risk-associated haplotype altered HSD11B1 transcription. HSD11B1 controls tissue levels of biologically active glucocorticoids and thereby influences neuronal vulnerability. Our results indicate that a functional variation in the glucocorticoid system increases the risk for AD, which may have important implications for the diagnosis and treatment of this disease.

  13. Causes and consequences of genetic background effects illuminated by integrative genomic analysis.

    PubMed

    Chandler, Christopher H; Chari, Sudarshan; Tack, David; Dworkin, Ian

    2014-04-01

    The phenotypic consequences of individual mutations are modulated by the wild-type genetic background in which they occur. Although such background dependence is widely observed, we do not know whether general patterns across species and traits exist or about the mechanisms underlying it. We also lack knowledge on how mutations interact with genetic background to influence gene expression and how this in turn mediates mutant phenotypes. Furthermore, how genetic background influences patterns of epistasis remains unclear. To investigate the genetic basis and genomic consequences of genetic background dependence of the scalloped(E3) allele on the Drosophila melanogaster wing, we generated multiple novel genome-level datasets from a mapping-by-introgression experiment and a tagged RNA gene expression dataset. In addition we used whole genome resequencing of the parental lines-two commonly used laboratory strains-to predict polymorphic transcription factor binding sites for SD. We integrated these data with previously published genomic datasets from expression microarrays and a modifier mutation screen. By searching for genes showing a congruent signal across multiple datasets, we were able to identify a robust set of candidate loci contributing to the background-dependent effects of mutations in sd. We also show that the majority of background-dependent modifiers previously reported are caused by higher-order epistasis, not quantitative noncomplementation. These findings provide a useful foundation for more detailed investigations of genetic background dependence in this system, and this approach is likely to prove useful in exploring the genetic basis of other traits as well.

  14. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    SciTech Connect

    Classen, Aimee T; Chapman, Samantha K.; Whitham, Thomas G; Hart, Stephen C; Koch, George W

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimental removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and

  15. Genetic selection for resistance or susceptibility to oral tolerance to ovalbumin affects general mechanisms of tolerance induction in mice.

    PubMed

    Kamphorst, Alice O; da Silva, Maria F S; da Silva, Antônio C; Carvalho, Claudia R; Faria, Ana Maria C

    2004-12-01

    To study the genes involved in oral tolerance susceptibility, two strains of mice were genetically selected for susceptibility (TS) and resistance (TR) to oral tolerance to ovalbumin by bidirectional breeding. Herein we show that the genetic selection process is restricted neither to ovalbumin nor to oral tolerance. It affected oral tolerance to other proteins, such as casein, and tolerance induced the intravenous route.

  16. Genetic susceptibility to severe asthma with fungal sensitization.

    PubMed

    Overton, N L; Simpson, A; Bowyer, P; Denning, D W

    2017-03-31

    Severe asthma is problematic and its pathogenesis poorly understood. Fungal sensitization is common, and many patients with severe asthma with fungal sensitization (SAFS), used to denote this subgroup of asthma, respond to antifungal therapy. We have investigated 325 haplotype-tagging SNPs in 22 candidate genes previously associated with aspergillosis in patients with SAFS, with comparisons in atopic asthmatics and healthy control patients, of whom 47 SAFS, 279 healthy and 152 atopic asthmatic subjects were genotyped successfully. Significant associations with SAFS compared with atopic asthma included Toll-like receptor 3 (TLR3) (p = .009), TLR9 (p = .025), C-type lectin domain family seven member A (dectin-1) (p = .043), interleukin-10 (IL-10) (p = .0010), mannose-binding lectin (MBL2) (p = .007), CC-chemokine ligand 2 (CCL2) (2 SNPs, p = .025 and .041), CCL17 (p = .002), plasminogen (p = .049) and adenosine A2a receptor (p = .024). These associations differ from those found in ABPA in asthma, indicative of contrasting disease processes. Additional and broader genetic association studies in SAFS, combined with experimental work, are likely to contribute to our understanding of different phenotypes of problematic asthma.

  17. [Neurofibromatosis--an inborn genetic disorder with susceptibility to neoplasia].

    PubMed

    Karwacki, Marek W; Woźniak, Wojciech

    2006-01-01

    Among different subtypes of neurofibromatosis (Nf), type 1 (Nf-1) predominates in frequency (approximately 97% of Nfs' patients) with an incidence of approximately 1 in 3500 live births. Nf-2, comprises 2% of the Nf population and is a very rare disease (1:40,000). Both are autosomal dominant disorders with 100% penetration, variable expression and 50% rate of new (de novo) mutations. The protein products of both, NF1 andNF2 genes are best known and the genes serve as tumour suppressors. Mutations result in a predisposition to develop a variety of tumours of the central and peripheral nervous systems, as well as other malignancies. Nf-2 is a multisystem genetic disorder associated with bilateral vestibular schwannomas, spinal cord schwannomas, meningiomas, gliomas, and juvenile cataracts with a paucity of cutaneous features, which are seen more consistently in Nf-1. In contrast to Nf-1, Nf-2 is associated with significant morbidity and decreased life span and a higher incidence of CNS tumours. However, morbidity and mortality rates in Nf-1 are not negligible. The cardinal features of Nf-1 are cafe-au-lait spots, axillary and inguinal freckling, cutaneous neurofibromas, and iris hamartomas (Lisch nodules). Optic gliomas and both malignant and benign peripheral nerve sheet tumours are the most common malignancies arising in Nf-1 patients. Among neurological symptoms epilepsy, intellectual disability and learning difficulty are also observed. Bone dysplasia results in scoliosis. There is no known medical treatment beneficial to both groups of patients. The mainstay of care for Nf patients is anticipatory guidance, and early detection and symptomatic treatment of disease complications.

  18. Coffee consumption, genetic susceptibility and bladder cancer risk

    PubMed Central

    Villanueva, Cristina M.; Silverman, Debra T; Murta-Nascimento, Cristiane; Malats, Núria; Garcia-Closas, Montserrat; Castro, Francesc; Tardon, Adonina; Garcia-Closas, Reina; Serra, Consol; Carrato, Alfredo; Rothman, Nathaniel; Real, Francisco X; Dosemeci, Mustafa; Kogevinas, Manolis

    2010-01-01

    Objective We evaluated the bladder cancer risk associated with coffee consumption in a case-control study in Spain and examined the gene-environment interactions for genetic variants of caffeine metabolizing enzymes. Methods The analyses included 1136 incident cases with urothelial carcinoma of the urinary bladder and 1138 controls. Odds ratios (OR) and 95% confidence intervals (CI) were adjusted for area, age, gender, amount of cigarette smoking and years since quitting among former smokers. Results The OR (95%CI) for ever consumed coffee was 1.25 (0.95–1.64). For consumers of 1, 2, 3 and 4 or more cups/day relative to never drinkers, OR were, respectively: 1.24 (0.92–1.66), 1.11 (95%CI 0.82–1.51), 1.57 (1.13–2.19) and 1.27 (0.88–1.81). Coffee consumption was higher in smokers compared to never smokers. The OR for drinking at least 4 cups/day was: 1.13 (0.61–2.09) in current smokers, 1.57 (0.86–2.90) in former smokers, and 1.23 (0.55–2.76) in never smokers. Gene-coffee interactions evaluated in NAT2, CYP1A2, and CYP2E1-02 and CYP1A1 were not identified after adjusting for multiple testing. Conclusion The modest increased bladder cancer risk among coffee drinkers supports the hypothesis that coffee is a weak carcinogen, although results may, in part, be explained by residual confounding by smoking. The findings from the gene-coffee interactions need replication in further studies. PMID:18798002

  19. Identification of susceptibility genes and genetic modifiers of human diseases

    NASA Astrophysics Data System (ADS)

    Abel, Kenneth; Kammerer, Stefan; Hoyal, Carolyn; Reneland, Rikard; Marnellos, George; Nelson, Matthew R.; Braun, Andreas

    2005-03-01

    The completion of the human genome sequence enables the discovery of genes involved in common human disorders. The successful identification of these genes is dependent on the availability of informative sample sets, validated marker panels, a high-throughput scoring technology, and a strategy for combining these resources. We have developed a universal platform technology based on mass spectrometry (MassARRAY) for analyzing nucleic acids with high precision and accuracy. To fuel this technology, we generated more than 100,000 validated assays for single nucleotide polymorphisms (SNPs) covering virtually all known and predicted human genes. We also established a large DNA sample bank comprised of more than 50,000 consented healthy and diseased individuals. This combination of reagents and technology allows the execution of large-scale genome-wide association studies. Taking advantage of MassARRAY"s capability for quantitative analysis of nucleic acids, allele frequencies are estimated in sample pools containing large numbers of individual DNAs. To compare pools as a first-pass "filtering" step is a tremendous advantage in throughput and cost over individual genotyping. We employed this approach in numerous genome-wide, hypothesis-free searches to identify genes associated with common complex diseases, such as breast cancer, osteoporosis, and osteoarthritis, and genes involved in quantitative traits like high density lipoproteins cholesterol (HDL-c) levels and central fat. Access to additional well-characterized patient samples through collaborations allows us to conduct replication studies that validate true disease genes. These discoveries will expand our understanding of genetic disease predisposition, and our ability for early diagnosis and determination of specific disease subtype or progression stage.

  20. Metabolomics of Apc Min/+ mice genetically susceptible to intestinal cancer

    PubMed Central

    2014-01-01

    Background To determine how diets high in saturated fat could increase polyp formation in the mouse model of intestinal neoplasia, Apc Min/+ , we conducted large-scale metabolome analysis and association study of colon and small intestine polyp formation from plasma and liver samples of Apc Min/+ vs. wild-type littermates, kept on low vs. high-fat diet. Label-free mass spectrometry was used to quantify untargeted plasma and acyl-CoA liver compounds, respectively. Differences in contrasts of interest were analyzed statistically by unsupervised and supervised modeling approaches, namely Principal Component Analysis and Linear Model of analysis of variance. Correlation between plasma metabolite concentrations and polyp numbers was analyzed with a zero-inflated Generalized Linear Model. Results Plasma metabolome in parallel to promotion of tumor development comprises a clearly distinct profile in Apc Min/+ mice vs. wild type littermates, which is further altered by high-fat diet. Further, functional metabolomics pathway and network analyses in Apc Min/+ mice on high-fat diet revealed associations between polyp formation and plasma metabolic compounds including those involved in amino-acids metabolism as well as nicotinamide and hippuric acid metabolic pathways. Finally, we also show changes in liver acyl-CoA profiles, which may result from a combination of Apc Min/+ -mediated tumor progression and high fat diet. The biological significance of these findings is discussed in the context of intestinal cancer progression. Conclusions These studies show that high-throughput metabolomics combined with appropriate statistical modeling and large scale functional approaches can be used to monitor and infer changes and interactions in the metabolome and genome of the host under controlled experimental conditions. Further these studies demonstrate the impact of diet on metabolic pathways and its relation to intestinal cancer progression. Based on our results, metabolic signatures

  1. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE PAGES

    Zhang, Pengju; Lo, Alvin; Huang, Yurong; ...

    2015-03-09

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  2. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    SciTech Connect

    Zhang, Pengju; Lo, Alvin; Huang, Yurong; Huang, Ge; Liang, Guozhou; Mott, Joni; Karpen, Gary H.; Blakely, Eleanor A.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Snijders, Antoine M.; Mao, Jian-Hua

    2015-03-09

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genes involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.

  3. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.

    2013-03-01

    In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence

  4. Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields.

    PubMed

    D'Elia, Massimo; Mariti, Marco; Negro, Francesco

    2013-02-22

    We investigate two flavor quantum chromodynamics (QCD) in the presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective θ term to first order in E[over →] · B[over →]. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, and then exploit the analytic continuation. Our results are relevant to a description of the effective pseudoscalar quantum electrodynamics-QCD interactions.

  5. Genetic variants of SOX9 contribute to susceptibility of gliomas among Chinese population

    PubMed Central

    Wang, Zhen; Xu, Xiaoshan; Qi, Jing; Ren, Dongni; Zhang, Pengxing; Zhang, Yongsheng; Tu, Yanyang

    2016-01-01

    Gliomas make up about 80% of all malignant brain tumors, and cause serious public health problem. Genetic factors and environmental factors jointly caused the development of gliomas, and understanding of the genetic basis is a key component of preventive oncology. However, most genetic factors underlying carcinogenesis of gliomas remain largely unclear. In current study, we systematically evaluated whether genetic variants of SOX9 gene, a transcription factor that plays a central role in the development and differentiation of tumors, contribute to susceptibility of gliomas among Chinese population using a two-stage, case–control study. Results showed that SOX9 rs1042667 was significant associated with increased gliomas risk after adjusted by age, gender, family history of cancer, smoking status and alcohol status (Allele C vs A: OR=1.25; 95% CI=1.11-1.40; P=1.2×10−4). Compared with the carriers of genotype AA, both those of genotype AC (OR=1.37; 95% CI=1.13-1.66) and CC (OR=1.53; 95% CI=1.22-1.91) had significantly increased gliomas risk. This should be the first genetic association study which aims to evaluated the association between genetic variants of SOX9 and susceptibility of gliomas. Additional functional and association studies with different ethnic groups included are needed to further confirm our results. PMID:27589569

  6. American Society of Clinical Oncology Policy Statement Update: Genetic and Genomic Testing for Cancer Susceptibility.

    PubMed

    Robson, Mark E; Bradbury, Angela R; Arun, Banu; Domchek, Susan M; Ford, James M; Hampel, Heather L; Lipkin, Stephen M; Syngal, Sapna; Wollins, Dana S; Lindor, Noralane M

    2015-11-01

    The American Society of Clinical Oncology (ASCO) has long affirmed that the recognition and management of individuals with an inherited susceptibility to cancer are core elements of oncology care. ASCO released its first statement on genetic testing in 1996 and updated that statement in 2003 and 2010 in response to developments in the field. In 2014, the Cancer Prevention and Ethics Committees of ASCO commissioned another update to reflect the impact of advances in this area on oncology practice. In particular, there was an interest in addressing the opportunities and challenges arising from the application of massively parallel sequencing-also known as next-generation sequencing-to cancer susceptibility testing. This technology introduces a new level of complexity into the practice of cancer risk assessment and management, requiring renewed effort on the part of ASCO to ensure that those providing care to patients with cancer receive the necessary education to use this new technology in the most effective, beneficial manner. The purpose of this statement is to explore the challenges of new and emerging technologies in cancer genetics and provide recommendations to ensure their optimal deployment in oncology practice. Specifically, the statement makes recommendations in the following areas: germline implications of somatic mutation profiling, multigene panel testing for cancer susceptibility, quality assurance in genetic testing, education of oncology professionals, and access to cancer genetic services.

  7. Identification of genetic susceptibility loci for intestinal Behçet’s disease

    PubMed Central

    Kim, Seung Won; Jung, Yoon Suk; Ahn, Jae Bum; Shin, Eun-Soon; Jang, Hui Won; Lee, Hyun Jung; Il Kim, Tae; Kim, Do Young; Bang, Dongsik; Kim, Won Ho; Cheon, Jae Hee

    2017-01-01

    Several recent genome-wide association studies (GWAS) identified susceptibility loci/genes for Behçet’s disease (BD). However, no study has specifically investigated the genetic susceptibility loci associated with intestinal involvement in BD. We aimed to identify distinctive genetic susceptibility loci/genes associated with intestinal involvement in BD and determine their roles in intestinal inflammation as well as their interactions with genes involved in inflammatory bowel disease (IBD). GWAS and validation studies showed intestinal BD-specific associations with an NAALADL2 gene locus (rs3914501, P = 3.8 × 10−4) and a YIPF7 gene locus (rs6838327, P = 3.5 × 10−4). Validation, haplotype, and pathway analyses showed distinct genetic architectures between intestinal BD and BD without intestinal involvement. Furthermore, network analysis revealed shared pathogenic pathways between intestinal BD and IBD. Gene functional analyses indicated that down-regulation of NAALADL2 and YIPF7 expression was associated with exacerbating intestinal inflammatory responses both in vitro and in vivo. Our results provide new insights into intestinal BD-specific genetic variations, which represents a distinct pathway from BD without intestinal involvement. Functional consequences of the intestinal BD-specific NAALADL2 and YIPF7 expression patterns proved a suggestive association with intestinal inflammation risk, which warrants further validation. PMID:28045058

  8. Borna disease virus-induced neuronal degeneration dependent on host genetic background and prevented by soluble factors.

    PubMed

    Wu, Yuan-Ju; Schulz, Herbert; Lin, Chia-Ching; Saar, Kathrin; Patone, Giannino; Fischer, Heike; Hübner, Norbert; Heimrich, Bernd; Schwemmle, Martin

    2013-01-29

    Infection of newborn rats with Borne disease virus (BDV) results in selective degeneration of granule cell neurons of the dentate gyrus (DG). To study cellular countermechanisms that might prevent this pathology, we screened for rat strains resistant to this BDV-induced neuronal degeneration. To this end, we infected hippocampal slice cultures of different rat strains with BDV and analyzed for the preservation of the DG. Whereas infected cultures of five rat strains, including Lewis (LEW) rats, exhibited a disrupted DG cytoarchitecture, slices of three other rat strains, including Sprague-Dawley (SD), were unaffected. However, efficiency of viral replication was comparable in susceptible and resistant cultures. Moreover, these rat strain-dependent differences in vulnerability were replicated in vivo in neonatally infected LEW and SD rats. Intriguingly, conditioned media from uninfected cultures of both LEW and SD rats could prevent BDV-induced DG damage in infected LEW hippocampal cultures, whereas infection with BDV suppressed the availability of these factors from LEW but not in SD hippocampal cultures. To gain further insights into the genetic basis for this rat strain-dependent susceptibility, we analyzed DG granule cell survival in BDV-infected cultures of hippocampal neurons derived from the F1 and F2 offspring of the crossing of SD and LEW rats. Genome-wide association analysis revealed one resistance locus on chromosome (chr) 6q16 in SD rats and, surprisingly, a locus on chr3q21-23 that was associated with susceptibility. Thus, BDV-induced neuronal degeneration is dependent on the host genetic background and is prevented by soluble protective factors in the disease-resistant SD rat strain.

  9. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flowering time is one of the major adaptive traits in domestication of maize and an important selection criterion in breeding. To detect more maize flowering time variants we evaluated flowering time traits using an extremely large multi- genetic background population that contained more than 8000 l...

  10. A candidate gene approach for the genetic analysis of susceptibility to tuberculosis

    SciTech Connect

    Morgan, K.; Liu, J.; Boothroyd, L.

    1994-09-01

    Tuberculosis is the most frequent and severe human disease caused by mycobacteria. In the mouse a candidate gene for innate resistance to mycobacteria (Bcg) was recently isolated and termed Nramp. We used SSCA and DNA sequencing to identify mutations in the human homologue, NRAMP, in chromosome region 2q35 in order to test if NRAMP contributes to susceptibility to tuberculosis. We have identified 16 sequence variants in or near NRAMP and defined haplotypes segregating in multiplex tuberculosis families from Canada, Columbia and Hong Kong. We defined a recessive susceptibility model for linkage analysis with four liability classes which take into account clinical status, age, exposure, and BCG vaccination. Our preliminary results support a role of NRAMP in tuberculosis susceptibility in an epidemic situation. This research was supported by grants from the Medical Research Council of Canada and the Canadian Genetic Diseases Network.

  11. Genetic susceptibility for bipolar disorder and response to antidepressants in major depressive disorder.

    PubMed

    Tansey, Katherine E; Guipponi, Michel; Domenici, Enrico; Lewis, Glyn; Malafosse, Alain; O'Donovan, Michael; Wendland, Jens R; Lewis, Cathryn M; McGuffin, Peter; Uher, Rudolf

    2014-01-01

    The high heterogeneity of response to antidepressant treatment in major depressive disorder (MDD) makes individual treatment outcomes currently unpredictable. It has been suggested that resistance to antidepressant treatment might be due to undiagnosed bipolar disorder or bipolar spectrum features. Here, we investigate the relationship between genetic susceptibility for bipolar disorder and response to treatment with antidepressants in MDD. Polygenic scores indexing risk for bipolar disorder were derived from the Psychiatric Genomics Consortium Bipolar Disorder whole genome association study. Linear regressions tested the effect of polygenic risk scores for bipolar disorder on proportional reduction in depression severity in two large samples of individuals with MDD, treated with antidepressants, NEWMEDS (n=1,791) and STAR*D (n=1,107). There was no significant association between polygenic scores for bipolar disorder and response to treatment with antidepressants. Our data indicate that molecular measure of genetic susceptibility to bipolar disorder does not aid in understanding non-response to antidepressants.

  12. Repeated Ozone Exposure Exacerbates Insulin Resistance And Activates Innate Immune Response In Genetically Susceptible Mice

    PubMed Central

    Zhong, Jixin; Allen, Katryn; Rao, Xiaoquan; Ying, Zhekang; Braunstein, Zachary; Kankanala, Saumya R.; Xia, Chang; Wang, Xiaoke; Bramble, Lori A.; Wagner, James G.; Lewandowski, Ryan; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay

    2016-01-01

    Background Inhaled ozone (O3) has been demonstrated as a harmful pollutant and associated with chronic inflammatory diseases such as diabetes and vascular disorders. However, the underlying mechanisms by which O3 mediates harmful effects are poorly understood. Objectives To investigate the effect of O3 exposure on glucose intolerance, immune activation and underlying mechanisms in a genetically susceptible mouse model. Methods Diabetes-prone KK mice were exposed to filtered air (FA), or O3 (0.5 ppm) for 13 consecutive weekdays (4 h/day). Insulin tolerance test (ITT) was performed following the last exposure. Plasma insulin, adiponectin, and leptin were measured by ELISA. Pathologic changes were examined by H&E and oil-red-o staining. Inflammatory responses were detected using flow cytometry and real-time PCR. Results KK mice exposed to O3 displayed an impaired insulin response. Plasma insulin and leptin levels were reduced in O3-exposed mice. Three-week exposure to O3 induced lung inflammation and increased monocytes/macrophages in both blood and visceral adipose tissue. Inflammatory monocytes/macrophages increased both systemically and locally. CD4+ T cell activation was also enhanced by the exposure of O3 although the relative percentage of CD4+ T cell decreased in blood and adipose tissue. Multiple inflammatory genes including CXCL-11, IFN-γ, TNFα, IL-12, and iNOS were up-regulated in visceral adipose tissue. Furthermore, the expression of oxidative stress-related genes such as Cox4, Cox5a, Scd1, Nrf1, and Nrf2, increased in visceral adipose tissue of O3-exposed mice. Conclusions Repeated O3 inhalation induces oxidative stress, adipose inflammation and insulin resistance. PMID:27240593

  13. Genetic and Molecular Functional Characterization of Variants within TNFSF13B, a Positional Candidate Preeclampsia Susceptibility Gene on 13q

    PubMed Central

    Roten, Linda T.; Aas, Per A.; Forsmo, Siri; Klepper, Kjetil; East, Christine E.; Abraham, Lawrence J.; Blangero, John; Brennecke, Shaun P.; Austgulen, Rigmor; Moses, Eric K.

    2010-01-01

    Background Preeclampsia is a serious pregnancy complication, demonstrating a complex pattern of inheritance. The elucidation of genetic liability to preeclampsia remains a major challenge in obstetric medicine. We have adopted a positional cloning approach to identify maternal genetic components, with linkages previously demonstrated to chromosomes 2q, 5q and 13q in an Australian/New Zealand familial cohort. The current study aimed to identify potential functional and structural variants in the positional candidate gene TNFSF13B under the 13q linkage peak and assess their association status with maternal preeclampsia genetic susceptibility. Methodology/Principal Findings The proximal promoter and coding regions of the positional candidate gene TNFSF13B residing within the 13q linkage region was sequenced using 48 proband or founder individuals from Australian/New Zealand families. Ten sequence variants (nine SNPs and one single base insertion) were identified and seven SNPs were successfully genotyped in the total Australian/New Zealand family cohort (74 families/480 individuals). Borderline association to preeclampsia (p = 0.0153) was observed for three rare SNPs (rs16972194, rs16972197 and rs56124946) in strong linkage disequilibrium with each other. Functional evaluation by electrophoretic mobility shift assays showed differential nuclear factor binding to the minor allele of the rs16972194 SNP, residing upstream of the translation start site, making this a putative functional variant. The observed genetic associations were not replicated in a Norwegian case/control cohort (The Nord-Trøndelag Health Study (HUNT2), 851 preeclamptic and 1,440 non-preeclamptic women). Conclusion/Significance TNFSF13B has previously been suggested to contribute to the normal immunological adaption crucial for a successful pregnancy. Our observations support TNFSF13B as a potential novel preeclampsia susceptibility gene. We discuss a possible role for TNFSF13B in preeclampsia

  14. Psychological impact of genetic testing for cancer susceptibility: an update of the literature.

    PubMed

    Meiser, Bettina

    2005-12-01

    This article presents an overview of the rapidly evolving body of literature on the psychological impact of genetic testing for hereditary breast/ovarian cancer susceptibility, hereditary non-polyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP). Uptake of genetic testing for BRCA1/2 and HNPCC-related mutations is more consistently related to psychological factors, rather than sociodemographic variables. Most studies on the psychological impact of genetic testing amongst individuals who have never been affected by cancer demonstrate that non-carriers derive significant psychological benefits from genetic testing, while no adverse effects have been observed amongst carriers. These benefits are more clear-cut for HNPCC, compared to hereditary breast/ovarian cancer, reflecting differences in risk management options. The few studies available on individuals affected with cancer indicate that the impact of genetic testing is mediated and amplified by their former experience of cancer. Future directions and challenges of research in this area are reviewed. In particular, more empirical data are needed on the broader impact of genetic testing on those with inconclusive results or results of uncertain significance. As genetic testing is becoming available for other types of familial cancer, additional investigations will be needed as there is evidence to suggest that the impact of genetic testing may be unique to each type of familial cancer.

  15. Genetic Background and Environment Influence the Effects of Mutations in pykF and Help Reveal Mechanisms Underlying Their Benefit

    DTIC Science & Technology

    2015-08-01

    authorized to U.S. Government agencies only. Genetic Background and Environment Influence the Effects of Mutations in pykF and Help Reveal Mechanisms...OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Canterbury 20 Kirkwood Ave Ilam - ABSTRACT Genetic Background...were evolved. Differences in mutation × background interactions were found to be driven by different suites of mutations in each genetic background

  16. Genetic susceptibility to the delayed sequelae of neonatal respiratory syncytial virus infection is MHC dependent.

    PubMed

    Tregoning, John S; Yamaguchi, Yuko; Wang, Belinda; Mihm, Dagmar; Harker, James A; Bushell, Ellen S C; Zheng, Ming; Liao, Guochun; Peltz, Gary; Openshaw, Peter J M

    2010-11-01

    Respiratory syncytial virus (RSV) is a major cause of respiratory morbidity, resulting in hospitalization for bronchiolitis in some infected infants that is associated with wheeze in later life. Genetic factors are known to affect the severity of the sequelae after RSV infection, but the complexity of the temporal and genetic effects makes it difficult to analyze this response in studies in man. Therefore, we developed a murine genetic model to analyze the sequelae occurring after RSV infection in early life. Haplotype-based genetic analysis of interstrain differences in severity identified the MHC as an important genetic determinant. This was confirmed by analysis of responses in congenic mice with different MHC haplotypes. We also found that susceptible strains had high CD8 levels during secondary infection. Analysis of first filial generation, second filial generation, and back-cross progeny produced by intercrossing resistant (H-2(k), C3H/HeN) and sensitive (H-2(b), BALB/c) strains indicated that susceptibility to sequelae after RSV infection was dominantly inherited but also segregated in a non-MHC-dependent manner. Thus, MHC haplotype and its effect on CD8 cell response is an important determinant of the outcome of neonatal RSV infection.

  17. Cerebral cavernous malformation (CCM) disease: from monogenic forms to genetic susceptibility factors.

    PubMed

    Trapani, E; Retta, S F

    2015-09-01

    Cerebral cavernous malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions manifest across a range of different phenotypes, including wide interindividual differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH), and may remain asymptomatic during the host's lifetime or result in pathological conditions of various type and severity at any age, with symptoms ranging from relatively minor (but still disabling) headaches through to very severe neurological deficits, seizures, and stroke. Currently, surgical removal of accessible lesions is the only direct therapeutic approach for CCM disease. However, whereas little information is available on the natural history of risk for patients to develop serious complications, such as ICH, prognostic biomarkers remain to be identified in order to ensure timely and optimal clinical decision making. In recent years, it has become clear that the three known CCM genes play an important role in controlling signalling pathways involved in cell responses to oxidative stress, pointing to a novel pathogenic mechanism whereby the function of CCM genes may be relevant in preventing vascular dysfunctions triggered by oxidative stress events. In turn, these novel findings have raised the possibility that genetic susceptibility factors related to differences in sensitivity to oxidative stress, including genetic polymorphisms, may contribute to interindividual differences in CCM disease susceptibility and severity. This review discusses recent progress toward the understanding of molecular mechanisms of pathogenesis and the identification of genetic susceptibility factors that could influence onset, progression and clinical severity of CCM disease, as well as consequent implications for the development of novel, safe and effective therapeutic

  18. EXPERIMENTAL INDUCTION OF CHRONIC PULMONARY DISEASE IN GENETICALLY SUSCEPTIBLE RAT MODEL

    EPA Science Inventory



    Experimental induction of chronic pulmonary disease in genetically susceptible rat model. M.C.Schladweiler, BS 1, A.D.Ledbetter 1, K.E.Pinkerton, PhD 2, K.R.Smith, PhD 2, P.S.Gilmour, PhD 1, P.A.Evansky 1, D.L.Costa, ScD 1, W.P.Watkinson, PhD 1, J.P.Nolan 1 and U.P.Kodava...

  19. Genetic relatedness, antimicrobial and biocide susceptibility comparative analysis of methicillin-resistant and -susceptible Staphylococcus pseudintermedius from Portugal.

    PubMed

    Couto, Natacha; Belas, Adriana; Couto, Isabel; Perreten, Vincent; Pomba, Constança

    2014-08-01

    Forty methicillin-resistant and -susceptible Staphylococcus pseudintermedius (MRSP and MSSP, respectively) from colonization and infection in dogs and cats were characterized for clonality, antimicrobial, and biocide susceptibility. MSSP were genetically more diverse than MRSP by multi-locus sequence typing and pulsed-field gel electrophoresis. Three different spa types (t06, t02, t05) and two SCCmec types (II-III and V) were detected in the MRSP isolates. All MRSP and two MSSP strains were multidrug-resistant. Several antibiotic resistance genes (mecA, blaZ, tet(M), tet(K), aac(6')-Ie-aph(2')-Ia, aph(3')-III, ant(6)-Ia, sat4, erm(B), lnu(A), dfr(G), and catp(C221)) were identified by microarray and double mutations in the gyrA and grlA genes and a single mutation in the rpoB gene were detected by sequence analysis. No differences were detected between MSSP and MRSP in the chlorhexidine acetate (CHA) minimum inhibitory concentrations (MICs). However, two MSSP had elevated MIC to triclosan (TCL) and one to benzalkonium chloride and ethidium bromide. One MSSP isolate harboured a qacA gene, while in another a qacB gene was detected. None of the isolates harboured the sh-fabI gene. Three of the biocide products studied had high bactericidal activity (Otodine(®), Clorexyderm Spot Gel(®), Dermocanis Piocure-M(®)), while Skingel(®) failed to achieve a five log reduction in the bacterial counting. S. pseudintermedius have become a serious therapeutic challenge in particular if methicillin- resistance and/or multidrug-resistance are involved. Biocides, like CHA and TCL, seem to be clinically effective and safe topical therapeutic options.

  20. [Genetic factors in susceptibility to age- and noise-related hearing loss].

    PubMed

    Sliwińiska-Kowalska, Mariola; Pawelczyk, Małgorzata; Kowalski, Tomasz Jarema

    2006-10-01

    Individual susceptibility to age-related hearing loss (AHL) and noise-induced hearing loss (NIHL) varies greatly, and this inter-individual variation is due to an interaction of environmental factors, individual factors, and susceptibility genes. Majority of studies on susceptibility genes for AHL and NIHL have been performed in mice model. These findings suggest the role of the same genes in the development of AHL and NIHL, the more so as the pathogenesis of both diseases is similar with a crucial role of oxidative stress. The alleles responsible for AHL have been localized to the chromosome 10 (Ahl gene). Ahl-/- mice develop hearing impairment at early age and are also oversensitive to noise. Ahl gene is a recessive gene and it is probably responsible for the synthesis of cell junction proteins. In mice ahl codes for cadherin (CDH) proteins. The cadherin of interest is named otocadherin or CDH23, and it is localized to the links between stereocilia of hair cells. A hypomorphic 753G>A single nucleotide polymorphism (SNP) in Cdh 23 is associated with AHL, and the 753A variant is also correlated with susceptibility to NIHL. An increased susceptibility to AHL and NIHL may rely on the SNPs of several other genes, including the groups of oxidative stress genes, K+ ions recycling genes, monogenic deafness genes (including Connexin 26 gene, which mutation is responsible for the most frequent hereditary deafness in Caucasians), as well as mitochondrial genes. Several oxidative stress enzyme (sod1-/-, gpx -/-) knock-out mice have been shown to be more susceptible to NIHL than wild strains. Current large-scale cohort studies on AHL and NIHL performed under the European projects in between-lab collaboration along with a dynamic progress in the field of genetics of deafness open up new opportunities to find human AHL and NIHL susceptibility genes and develop methods for AHUNIHL treatment.

  1. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    EPA Science Inventory

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to
    Cadmium-Induced Testicular Injury in Mice

    Jie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2
    and Curtis D. Klaassen1

    ABSTRACT

    Parenteral administrati...

  2. Cellular basis of the genetic susceptibility of murine experimental allergic encephalomyelitis

    SciTech Connect

    Binder, T.A.; Greiner, D.L.; Goldschneider, I.

    1986-03-01

    Murine experimental allergic encephalomyelitis (EAE) is an induced autoimmune disease that resembles human multiple sclerosis. The authors have investigated the cellular basis of the genetic predisposition and resistance of inbred strains of mice to EAE using an adoptive transfer system between two H-2 compatible, Thy 1 antigen disparate strains of mice. Genetically EAE susceptible SJL/J strain mice (H-2/sup s/, Thy 1.2) and resistant B10.S Thy 1.1 (H-2/sub s/, Thy 1.1) strain mice were lethally irradiated (700R) and reconstituted with 5-10 x 10/sup 6/ bone marrow cells from either SJL/J or congenic B10.S (Thy 1.1 or Thy 1.2) donors. After 30-45 days, more than 95% of the thymocytes and 75% of the peripheral T cells in the chimeras were of donor origin. These lymphohemopoietic chimeras were then sensitized in their hind footpads with porcine myelin basic protein in complete Freund's adjuvant containing M. tuberculosis H/sub 37/RA, followed at 24 and 72 hours by i.v. injection of B. pertussis. Clinical signs of EAE developed in unirradiated SJL/J, but not B10.S, controls, and in irradiated B10.S and SJL/J recipients of SJL/J, but not B10.S, bone marrow. These results indicate that bone marrow cells can transfer the predisposition to EAE from genetically susceptible to genetically resistant mouse strains. The cellular component in the bone marrow that is responsible for the transfer of the genetic susceptibility to EAE is under investigation.

  3. [Recent progress in genetic background of chronic obstructive pulmonary disease (COPD)].

    PubMed

    Teramoto, Shinji

    2016-05-01

    A genetic contribution to develop chronic obstructive pulmonary disease(COPD) is estimated. However, candidate gene studies on COPD and related phenotypes have not been well replicated. Research on the genetic pathologic background of COPD using genome-wide association studies (GWASs) has progressed in recent years. The novel candidate genes including CHRNA3/5 (cholinergic nicotine receptor alpha 3/5), IREB2 (iron regulatory binding protein 2), HHIP (hedgehog-interacting protein), and FAM13A (family with sequence similarity 13, member A) are identified in multiple populations. However, their pathological roles remain poorly understood. The nicotine dependency, pulmonary development, and pulmonary/systemic inflammatory diathesis may be involved in genetic background of COPD.

  4. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  5. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    PubMed Central

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-01-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO. PMID:26611622

  6. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds.

    PubMed

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-27

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  7. Classical against molecular-genetic methods for susceptibility testing of antituberculotics.

    PubMed

    Porvaznik, I; Mokry, J; Solovic, I

    2015-01-01

    Tuberculosis currently belongs to rare respiratory diseases in Slovakia. However, the emergence and spread of multi-drug resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) are major challenges for global tuberculosis control, since the treatment of resistant forms creates both medical and financial problems. Cultivation methods of diagnosis are time-consuming, many times exceeding the time of the initial phase of tuberculosis treatment. Therefore, in the presented study we compared the standard procedures, based on the cultivation of mycobacteria and subsequent drug susceptibility testing to antituberculotics, with molecular-genetic methods using PCR diagnostic kits. The molecular-genetic testing enables to obtain direct and fast evidence of Mycobacterium tuberculosis, with genomic verification of resistance to the most important anti-tuberculosis drugs - isoniazid and rifampicin in MDR-TB, and ethambutol, aminoglycosides, and fluoroquinolones in XDR-TB. In 2012-2013, we confirmed 19 cases of drug-resistant tuberculosis in Slovakia. The resistance to rifampicin was confirmed in all strains with both methods. In two cases, the molecular-genetic testing did not show resistance to isoniazid, as confirmed by conventional cultivation. Furthermore, two strains demonstrating susceptibility in conventional microbiological testing to ethambutol and five strains to fluoroquinolones were verified as actually being resistant using a PCR method. Rapid diagnosis and identification of MDR-TB or XDR-TB strains using molecular-genetic testing is an essential tool for the timely and appropriate drug treatment and prevention of spread of drug resistant strains.

  8. Case-control study for colorectal cancer genetic susceptibility in EPICOLON: previously identified variants and mucins

    PubMed Central

    2011-01-01

    Background Colorectal cancer (CRC) is the second leading cause of cancer death in developed countries. Familial aggregation in CRC is also important outside syndromic forms and, in this case, a polygenic model with several common low-penetrance alleles contributing to CRC genetic predisposition could be hypothesized. Mucins and GALNTs (N-acetylgalactosaminyltransferase) are interesting candidates for CRC genetic susceptibility and have not been previously evaluated. We present results for ten genetic variants linked to CRC risk in previous studies (previously identified category) and 18 selected variants from the mucin gene family in a case-control association study from the Spanish EPICOLON consortium. Methods CRC cases and matched controls were from EPICOLON, a prospective, multicenter, nationwide Spanish initiative, comprised of two independent stages. Stage 1 corresponded to 515 CRC cases and 515 controls, whereas stage 2 consisted of 901 CRC cases and 909 controls. Also, an independent cohort of 549 CRC cases and 599 controls outside EPICOLON was available for additional replication. Genotyping was performed for ten previously identified SNPs in ADH1C, APC, CCDN1, IL6, IL8, IRS1, MTHFR, PPARG, VDR and ARL11, and 18 selected variants in the mucin gene family. Results None of the 28 SNPs analyzed in our study was found to be associated with CRC risk. Although four SNPs were significant with a P-value < 0.05 in EPICOLON stage 1 [rs698 in ADH1C (OR = 1.63, 95% CI = 1.06-2.50, P-value = 0.02, recessive), rs1800795 in IL6 (OR = 1.62, 95% CI = 1.10-2.37, P-value = 0.01, recessive), rs3803185 in ARL11 (OR = 1.58, 95% CI = 1.17-2.15, P-value = 0.007, codominant), and rs2102302 in GALNTL2 (OR = 1.20, 95% CI = 1.00-1.44, P-value = 0.04, log-additive 0, 1, 2 alleles], only rs3803185 achieved statistical significance in EPICOLON stage 2 (OR = 1.34, 95% CI = 1.06-1.69, P-value = 0.01, recessive). In the joint analysis for both stages, results were only significant for rs

  9. Genetic Background, Maternal Age, and Interaction Effects Mediate Rates of Crossing Over in Drosophila melanogaster Females.

    PubMed

    Hunter, Chad M; Robinson, Matthew C; Aylor, David L; Singh, Nadia D

    2016-05-03

    Meiotic recombination is a genetic process that is critical for proper chromosome segregation in many organisms. Despite being fundamental for organismal fitness, rates of crossing over vary greatly between taxa. Both genetic and environmental factors contribute to phenotypic variation in crossover frequency, as do genotype-environment interactions. Here, we test the hypothesis that maternal age influences rates of crossing over in a genotypic-specific manner. Using classical genetic techniques, we estimated rates of crossing over for individual Drosophila melanogaster females from five strains over their lifetime from a single mating event. We find that both age and genetic background significantly contribute to observed variation in recombination frequency, as do genotype-age interactions. We further find differences in the effect of age on recombination frequency in the two genomic regions surveyed. Our results highlight the complexity of recombination rate variation and reveal a new role of genotype by maternal age interactions in mediating recombination rate.

  10. A common genetic background could explain early-onset Crohn's disease.

    PubMed

    Bianco, Anna Monica; Zanin, Valentina; Girardelli, Martina; Magnolato, Andrea; Martelossi, Stefano; Martellossi, Stefano; Tommasini, Alberto; Marcuzzi, Annalisa; Crovella, Sergio

    2012-04-01

    Crohn's disease (CD) is a multifactorial disease, in which environmental, microbial and genetic factors play important roles. CD is characterized by a chronic granulomatous inflammation by necrotic scarring with aspects of full-thickness wall. In spite of affecting mainly young adults, sometimes, CD can be present in the first year of life (early onset Crohn disease, EOCD) showing an unpredictable course and being often more severe than at older ages. In this paper we propose the hypothesis that EOCD patients should be analyzed using a Mendelian approach with family studies aimed to identify new loci directly involved in the early onset Crohn's disease. So we will leave the classic association study approach used until now for the identification of genes responsible for susceptibility to CD and propose linkage family analysis as alternative and powerful tool for the identification of new genetic variants associated with familiar cases of EOCD.

  11. CHEMICALLY AND GENETICALLY IMMUNOCOMPROMISED MICE ARE NOT MORE SUSCEPTIBLE THAN IMMUNOCOMPETENT MICE TO INFECTION WITH CRYPTOSPORIDIUM MURIS

    EPA Science Inventory

    The prevailing paradigm is that immunosuppressed individuals are more susceptible to infection and are at higher risk of infection from Cryptosporidium oocysts if present in drinking water. To test this hypothesis, three immune conditions were examined: genetically immunocomprom...

  12. Sulfonylurea receptor -1 (SUR1): genetic and metabolic evidences for a role in the susceptibility to type 2 diabetes mellitus.

    PubMed

    Reis, A F; Velho, G

    2002-02-01

    The pancreatic B-cell ATP-sensitive potassium channel (K(ATP)) is composed of two distinct subunits, an inwardly rectifying ion channel forming the pore (Kir6.2), and a regulatory subunit, namely the sulfonylurea receptor-1 (SUR1), which binds this widely used class of insulin-secreting drugs. Mutations in the genes encoding Kir6.2 and SUR1 may result in familial persistent hyperinsulinemic hypoglycaemia of infancy, demonstrating their role in the regulation of insulin secretion. Studies in various populations with different ethnic background provided evidence that various alleles of single nucleotide polymorphisms (SNPs) in the SUR1 gene, and to a less extent in the Kir6.2 gene, confer a significantly increased risk for the development of type 2 diabetes mellitus (T2DM). Allelic variations of these SNPs were shown to modulate insulin secretion and insulin sensitivity in vivo, thus providing a pathophysiological background to explain their contribution to the genetic susceptibility to T2DM. The aim of this review is to summarise and discuss the significant results of recent literature on the implication of K(ATP), and particularly of SUR1, in the genetic and pathopysiological mechanisms of T2DM.

  13. Antibacterial resistance, genes encoding toxins and genetic background among Staphylococcus aureus isolated from community-acquired skin and soft tissue infections in France: a national prospective survey.

    PubMed

    Lamy, B; Laurent, F; Gallon, O; Doucet-Populaire, F; Etienne, J; Decousser, J-W

    2012-06-01

    The epidemiology of staphylococcal community-acquired skin and soft tissues infections (CA-SSTIs) has changed dramatically. We described prospectively the characteristics of the Staphylococcus aureus isolated from 71 non-teaching French hospitals and implicated in CA-SSTIs: antimicrobial susceptibility (mecA polymerase chain reaction [PCR], disk diffusion method), virulence factor gene (sea, tst, pvl) prevalence and genetic background (agr allele). During November 2006, 235 strains were collected (wound infection: 51%, abscess: 21%, whitlow: 8%, diabetic foot: 7%, furunculosis: 3%). sea, tst and pvl were identified in 22.1, 13.2 and 8.9% strains, respectively. agr allele 1 was the most frequently encountered genetic background, whatever the methicillin susceptibility. Among the 34 methicillin-resistant S. aureus (MRSA, 14.5% of all S. aureus), only one strain (2.9%) harboured pvl (belonging to the European ST80 clone), four (11.8%) tst (belonging to two endemic French clones) and 18 (52.9%) sea gene (mainly the Lyon clone). According to their in vitro activity, pristinamycin or trimethoprim/sulfamethoxazole could be considered as first-choice antibiotics. To date, the international pvl-positive MRSA clones have not spread in France. MRSA strains isolated from putative CA-SSTIs exhibited a genetic and phenotypic background of hospital-acquired (HA) clones. National survey should be continued, in order to monitor the emergence of virulent clones.

  14. Educational outcomes of a workplace screening program for genetic susceptibility to hemochromatosis.

    PubMed

    Nisselle, A E; Collins, V R; Gason, A A; Flouris, A; Delatycki, M B; Allen, K J; Aitken, M A; Metcalfe, S A

    2006-02-01

    Education is an essential component of a genetic screening program. Knowledge outcomes were measured after large-scale workplace education and screening for genetic susceptibility to hereditary hemochromatosis. The aim was to assess knowledge of concepts presented, impact of mode of delivery, and knowledge retention. Education in a group setting was delivered via oral or video presentation and knowledge assessed using self-administered questionnaires at baseline, 1 month, and 12 months. Over 60% of 11 679 participants correctly answered all questions at baseline, scoring higher with clinical concepts (disease etiology and treatment) than genetic concepts (penetrance and genetic heterogeneity). Revising the education program significantly increased correct responses for etiology (p < 0.002), whilst modifying the knowledge assessment tool significantly increased correct responses for etiology (p < 0.001) and gene penetrance (p < 0.001). For three of the four concepts assessed, use of video was as effective as oral presentation for knowledge outcomes. A significantly higher proportion of those at increased risk of disease (n = 44) responded correctly at 12 months than did controls (n = 82; p = 0.011 for etiology, p = 0.002 for treatment and p = 0.003 for penetrance). Hence, genetic screening can be successfully offered in a group workplace setting, with participants remembering clinical concepts better than genetic concepts up to 1 year later.

  15. Genetic variation may explain why females are less susceptible to dental erosion.

    PubMed

    Uhlen, Marte-Mari; Stenhagen, Kjersti R; Dizak, Piper M; Holme, Børge; Mulic, Aida; Tveit, Anne B; Vieira, Alexandre R

    2016-10-01

    Not all individuals at risk for dental erosion (DE) display erosive lesions. The prevalence of DE is higher among male subjects. The occurrence of DE may depend on more than just acidic challenge, with genetics possibly playing a role. The aim of this study was to investigate the association of enamel-formation genes with DE. One premolar and a saliva sample were collected from 90 individuals. Prepared teeth were immersed in 0.01 M HCl (pH 2.2), and enamel loss (μm) was measured using white light interferometry. DNA was extracted from saliva, and 15 single-nucleotide polymorphisms were analysed. Allele and genotype frequencies were related to the enamel loss of the specimens. Single-marker and haplotype analyses were performed using sex as a covariate. Mean enamel loss was higher for male donors than for female donors (P = 0.047). Significant associations were found between enamel loss and amelogenin, X-linked (AMELX), tuftelin 1 (TUFT1), and tuftelin-interacting protein 11 (TFIP11). Analyses showed significant associations between variation in enamel-formation genes and a lower susceptibility to DE in female subjects. The results indicate that susceptibility to DE is influenced by genetic variation, and may, in part, explain why some individuals are more susceptible than others to DE, including differences between female subjects and male subjects.

  16. Genetic and Functional Evidence Supports LPAR1 as a Susceptibility Gene for Hypertension.

    PubMed

    Xu, Ke; Ma, Lu; Li, Yang; Wang, Fang; Zheng, Gu-Yan; Sun, Zhijun; Jiang, Feng; Chen, Yundai; Liu, Huirong; Dang, Aimin; Chen, Xi; Chun, Jerold; Tian, Xiao-Li

    2015-09-01

    Essential hypertension is a complex disease affected by genetic and environmental factors and serves as a major risk factor for cardiovascular diseases. Serum lysophosphatidic acid correlates with an elevated blood pressure in rats, and lysophosphatidic acid interacts with 6 subtypes of receptors. In this study, we assessed the genetic association of lysophosphatidic acid receptors with essential hypertension by genotyping 28 single-nucleotide polymorphisms from genes encoding for lysophosphatidic acid receptors, LPAR1, LPAR2, LPAR3, LPAR4, LPAR5, and LPAR6 and their flanking sequences, in 3 Han Chinese cohorts consisting of 2630 patients and 3171 controls in total. We identified a single-nucleotide polymorphism, rs531003 in the 3'-flanking genomic region of LPAR1, associated with hypertension (the Bonferroni corrected P=1.09×10(-5), odds ratio [95% confidence interval]=1.23 [1.13-1.33]). The risk allele C of rs531003 is associated with the increased expression of LPAR1 and the susceptibility of hypertension, particularly in those with a shortage of sleep (P=4.73×10(-5), odds ratio [95% confidence interval]=1.75 [1.34-2.28]). We further demonstrated that blood pressure elevation caused by sleep deprivation and phenylephrine-induced vasoconstriction was both diminished in LPAR1-deficient mice. Together, we show that LPAR1 is a novel susceptibility gene for human essential hypertension and that stress, such as shortage of sleep, increases the susceptibility of patients with risk allele to essential hypertension.

  17. The genetic basis of aminoglycoside ototoxicity: The search for susceptibility genes

    SciTech Connect

    Prezant, T.R.; Fischel-Ghodsian, F.

    1994-09-01

    The susceptibility to aminoglycoside ototoxicity appears to be genetically determined. Recently we identified a mutation in the small ribosomal RNA gene of the mitochondrial DNA that can cause deafness after aminoglycoside treatment in families with maternally-inherited susceptibility to the ototoxic effect of these antibiotics. The mutation produces a structural change in the 12S rRNA, which allows increased binding of aminoglycosides, mistranslation of mitochondrial proteins, decreased energy production, and cell death. Because only a minority of sporadic patients have mutations in the 12S rRNA gene, we anticipate the involvement of other genes in ototoxic deafness. We have developed a model system in the yeast Saccharomyces cerevisiae to functionally identify genes whose products interact with aminoglycosides. Besides its small genome size and well-developed genetic tools, a unique advantage of using this haploid organism is that recessive drug-responsive mutations will not be missed. An additional advantage is that yeast can be grown in either fermentative or respiratory media, allowing the functional categorization of mutants. Over 100 antibiotic-resistant mutants have now been isolated. The majority of these mutations (69%) are dominant and are being sorted by segregation tests. The 31% of mutations that are recessive have been sorted into two major complementation groups, indicating that two genes appear to be responsible for most of the recessive cases. Our strategy is to isolate the yeast genes that most commonly acquire mutations, clone the human homologs, and screen patients for susceptibility mutations.

  18. THE MITOCHONDRIAL PARADIGM FOR CARDIOVASCULAR DISEASE SUSCEPTIBILITY AND CELLULAR FUNCTION: A COMPLEMENTARY CONCEPT TO MENDELIAN GENETICS

    PubMed Central

    Kryzwanski, David M.; Moellering, Douglas; Fetterman, Jessica L.; Dunham-Snary, Kimberly J.; Sammy, Melissa J.; Ballinger, Scott W.

    2013-01-01

    While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial – nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success. PMID:21647091

  19. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni.

    PubMed

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H; Jeeves, Rose E; Lappin-Scott, Hilary M; Asakura, Hiroshi; Sheppard, Samuel K

    2015-11-01

    Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as Campylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome-wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 Campylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST-21 and ST-45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans.

  20. Effect of genetic background on the dystrophic phenotype in mdx mice

    PubMed Central

    Coley, William D.; Bogdanik, Laurent; Vila, Maria Candida; Yu, Qing; Van Der Meulen, Jack H.; Rayavarapu, Sree; Novak, James S.; Nearing, Marie; Quinn, James L.; Saunders, Allison; Dolan, Connor; Andrews, Whitney; Lammert, Catherine; Austin, Andrew; Partridge, Terence A.; Cox, Gregory A.; Lutz, Cathleen; Nagaraju, Kanneboyina

    2016-01-01

    Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits. PMID:26566673

  1. Genetic Characterization of Spondweni and Zika Viruses and Susceptibility of Geographically Distinct Strains of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae) to Spondweni Virus

    PubMed Central

    Haddow, Andrew D.; Nasar, Farooq; Guzman, Hilda; Ponlawat, Alongkot; Jarman, Richard G.; Tesh, Robert B.; Weaver, Scott C.

    2016-01-01

    Background Zika virus (ZIKV) has extended its known geographic distribution to the New World and is now responsible for severe clinical complications in a subset of patients. While substantial genetic and vector susceptibility data exist for ZIKV, less is known for the closest related flavivirus, Spondweni virus (SPONV). Both ZIKV and SPONV have been known to circulate in Africa since the mid-1900s, but neither has been genetically characterized by gene and compared in parallel. Furthermore, the susceptibility of peridomestic mosquito species incriminated or suspected in the transmission of ZIKV to SPONV was unknown. Methodology/Principal Findings In this study, two geographically distinct strains of SPONV were genetically characterized and compared to nine genetically and geographically distinct ZIKV strains. Additionally, the susceptibility of both SPONV strains was determined in three mosquito species. The open reading frame (ORF) of the SPONV 1952 Nigerian Chuku strain, exhibited a nucleotide and amino acid identity of 97.8% and 99.2%, respectively, when compared to the SPONV 1954 prototype South African SA Ar 94 strain. The ORF of the SPONV Chuku strain exhibited a nucleotide and amino acid identity that ranged from 68.3% to 69.0% and 74.6% to 75.0%, respectively, when compared to nine geographically and genetically distinct strains of ZIKV. The ORF of the nine African and Asian lineage ZIKV strains exhibited limited nucleotide divergence. Aedes aegypti, Ae. albopictus and Culex quinquefasciatus susceptibility and dissemination was low or non-existent following artificial infectious blood feeding of moderate doses of both SPONV strains. Conclusions/Significance SPONV and ZIKV nucleotide and amino acid divergence coupled with differences in geographic distribution, ecology and vector species support previous reports that these viruses are separate species. Furthermore, the low degree of SPONV infection or dissemination in Ae. albopictus, Ae. aegypti and Cx

  2. [Genetic background in common forms of obesity - from studies on identical twins to candidate genes of obesity].

    PubMed

    Bendlová, Běla; Lukášová, Petra; Vaňková, Markéta; Vejražková, Daniela; Bradnová, Olga; Včelák, Josef; Stanická, Soňa; Zamrazilová, Hana; Aldhoon-Hainerová, Irena; Dušátková, Lenka; Kunešová, Marie; Hainer, Vojtěch

    2014-01-01

    Common obesity is a result of interaction between genes and environmental/lifestyle factors, with heritability estimates 40-70%. Not only the susceptibility to obesity but also the success of weight management depends on the genetic background of each individual. This paper summarizes the up-to-date knowledge on genetic causes of common obesities. Introduction of genome-wide association studies (GWAS) led to an identification of a total of 32 variants associated with obesity/BMI and 14 with body fat distribution. Further, a great progress in revealing the mechanisms regulating the energy balance was also noted. However, the proportion of explained variance for BMI is still low, suggesting other mechanisms such as gene-gene and gene-environment interactions, rare gene variants, copy number variants polymorphisms, or epigenetic modifications and microRNAs regulating gene transcription. In summary, we present results of our studies on obesity risk variants in Czech adults, children and adolescents including those evaluating the influence of selected gene variants on the outcomes of weight management.

  3. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies

    SciTech Connect

    Wyrobek, A J; Schmid, T E; Marchetti, F

    2004-06-15

    Some chemotherapy regimens include agents that are mutagenic or clastogenic in model systems. This raises concerns that cancer survivors, who were treated before or during their reproductive years, may be at increased risks for abnormal reproductive outcomes. However, the available data from offspring of cancer survivors are limited, representing diverse cancers, therapies, time-to-pregnancies, and reproductive outcomes. Rodent breeding data after paternal exposures to individual chemotherapeutic agents illustrate the complexity of factors that influence the risk for transmitted genetic damage including agent, dose, endpoint, and the germ-cell susceptibility profiles that vary across agents. Direct measurements of chromosomal abnormalities in sperm of mice and humans by sperm FISH have corroborated the differences in germ-cell susceptibilities. The available evidence suggests that the risk of producing chromosomally defective sperm is highest during the first few weeks after the end of chemotherapy, and decays with time. Thus, sperm samples provided immediately after the initiation of cancer therapies may contain treatment-induced genetic defects that will jeopardize the genetic health of offspring.

  4. Molecular genetic analysis of the cytochrome P450-debrisoquine hydroxylase locus and association with cancer susceptibility.

    PubMed Central

    Smith, C A; Moss, J E; Gough, A C; Spurr, N K; Wolf, C R

    1992-01-01

    The cytochrome P450-dependent monooxygenases play a central role in the metabolism of chemical carcinogens. The action of these enzymes can lead to either carcinogen detoxication or activation. Differences in P450 expression in animal models give rise to large differences in susceptibility to chemical carcinogens, so genetic polymorphisms in P450 expression may be expected to be an important factor in individual human susceptibility to cancer. Of particular interest is the genetic polymorphism at the cytochrome P450-debrisoquine/sparteine hydroxylase locus (CYP2D6). Although this is a minor liver P450, its polymorphic expression is associated with the abnormal metabolism of at least 30 therapeutic drugs, including beta-blockers and tricyclic antidepressants. Conflicting reports have been made on the association of this polymorphism with cancer susceptibility. This disagreement may be attributable to limitations of the phenotyping assay used to identify affected individuals (poor metabolizers, PMs). In order to clarify these anomalies, we have developed a simple DNA-based assay with which we can identify the majority of PMs. The assay is centered around the primary gene defect responsible for the polymorphism, a G to A transition at the junction of intron 3/exon 4 which results in a frame-shift in the resultant mRNA. The frequency of this mutation is 70-80% in PMs. We have studied the frequency of mutated alleles in a control population and in a wide range of cancer patients. No association between this polymorphism and lung cancer susceptibility was observed; however, in other populations of cancer patients some very interesting shifts were found in the proportion of PMs and heterozygotes from that in the normal population. PMID:1486838

  5. The genetic fingerprint of susceptibility for transplant-associated thrombotic microangiopathy

    PubMed Central

    Zhang, Kejian; Zou, Fanggeng; Laskin, Benjamin; Dandoy, Christopher E.; Myers, Kasiani C.; Lane, Adam; Meller, Jaroslav; Medvedovic, Mario; Chen, Jenny; Davies, Stella M.

    2016-01-01

    Transplant-associated thrombotic microangiopathy (TA-TMA) occurs frequently after hematopoietic stem cell transplantation (HSCT) and can lead to significant morbidity and mortality. There are no data addressing individual susceptibility to TA-TMA. We performed a hypothesis-driven analysis of 17 candidate genes known to play a role in complement activation as part of a prospective study of TMA in HSCT recipients. We examined the functional significance of gene variants by using gene expression profiling. Among 77 patients undergoing genetic testing, 34 had TMA. Sixty-five percent of patients with TMA had genetic variants in at least one gene compared with 9% of patients without TMA (P < .0001). Gene variants were increased in patients of all races with TMA, but nonwhites had more variants than whites (2.5 [range, 0-7] vs 0 [range, 0-2]; P < .0001). Variants in ≥3 genes were identified only in nonwhites with TMA and were associated with high mortality (71%). RNA sequencing analysis of pretransplantation samples showed upregulation of multiple complement pathways in patients with TMA who had gene variants, including variants predicted as possibly benign by computer algorithm, compared with those without TMA and without gene variants. Our data reveal important differences in genetic susceptibility to HSCT-associated TMA based on recipient genotype. These data will allow prospective risk assessment and intervention to prevent TMA in highly susceptible transplant recipients. Our findings may explain, at least in part, racial disparities previously reported in transplant recipients and may guide treatment strategies to improve outcomes. PMID:26603840

  6. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches.

    PubMed

    Aguilar, Ramiro; Quesada, Mauricio; Ashworth, Lorena; Herrerias-Diego, Yvonne; Lobo, Jorge

    2008-12-01

    Conservation of genetic diversity, one of the three main forms of biodiversity, is a fundamental concern in conservation biology as it provides the raw material for evolutionary change and thus the potential to adapt to changing environments. By means of meta-analyses, we tested the generality of the hypotheses that habitat fragmentation affects genetic diversity of plant populations and that certain life history and ecological traits of plants can determine differential susceptibility to genetic erosion in fragmented habitats. Additionally, we assessed whether certain methodological approaches used by authors influence the ability to detect fragmentation effects on plant genetic diversity. We found overall large and negative effects of fragmentation on genetic diversity and outcrossing rates but no effects on inbreeding coefficients. Significant increases in inbreeding coefficient in fragmented habitats were only observed in studies analyzing progenies. The mating system and the rarity status of plants explained the highest proportion of variation in the effect sizes among species. The age of the fragment was also decisive in explaining variability among effect sizes: the larger the number of generations elapsed in fragmentation conditions, the larger the negative magnitude of effect sizes on heterozygosity. Our results also suggest that fragmentation is shifting mating patterns towards increased selfing. We conclude that current conservation efforts in fragmented habitats should be focused on common or recently rare species and mainly outcrossing species and outline important issues that need to be addressed in future research on this area.

  7. The Association between GSTM1, GSTT1 Genetic Variants and Gastric Carcinoma Susceptibility in Chinese: A Systematic Review Article

    PubMed Central

    YOU, Dingyun; LU, Nanjia; DUAN, Donghui; LI, Hui; XING, Wenhua

    2016-01-01

    Background: Glutathione S-transferases (GSTs) have been investigated as potential carcinoma susceptible genes. However, the relationship between GSTs (GSTM1, GSTT1) variants and gastric carcinoma (GC) risk has been controversial in Chinese population. Methods: A comprehensive literature search strategy (PubMed, Chinese Biomedical Database, Chinese National Knowledge Infrastructure, Wan fang Database, etc.) was launched. Crude odds ratios (ORs) and confidence intervals (95% CI) were applied to estimate the strength of the association. Results: Significant associations between GSTs genetic polymorphisms and GC were evidenced under random-effects model (ORGSTM1=1.56, 95% CI: 1.39 to 1.76, I2=50.7%, P<0.0001; ORGSTT1=1.24, 95% CI: 1.10 to 1.39, I2=43.6%, P=0.014; ORGSTM1-GSTT1=1.51, 95% CI: 1.26 to 1.81, I2=59.7%, P=0.004). The pooled ORs were not qualitatively changed when any single study was omitted by sensitivity analysis. Conclusion: Our results indicated an increased GC risk in Chinese population with GSTM1 and GSTT1 null genotype and GSTM1-GSTT1 dual null genotype. Further multi-center studies are needed to investigate the gene-gene and gene-environment interactions on the susceptibility of GC. PMID:27957455

  8. The joint effects of background selection and genetic recombination on local gene genealogies.

    PubMed

    Zeng, Kai; Charlesworth, Brian

    2011-09-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data.

  9. Genetic background affects the expansion of macrophage subsets in the lungs of Mycobacterium tuberculosis-infected hosts.

    PubMed

    Bertolini, Thais Barboza; de Souza, Alexandre Ignacio; Gembre, Ana Flávia; Piñeros, Annie Rocio; Prado, Rafael de Queiroz; Silva, João Santana; Ramalho, Leandra Naira Zambelli; Bonato, Vânia Luiza Deperon

    2016-05-01

    M1 macrophages are more effective in the induction of the inflammatory response and clearance of Mycobacterium tuberculosis than M2 macrophages. Infected C57BL/6 mice generate a stronger cellular immune response compared with BALB/c mice. We hypothesized that infected C57BL/6 mice would exhibit a higher frequency and function of M1 macrophages than infected BALB/c mice. Our findings show a higher ratio of macrophages to M2 macrophages in the lungs of chronically infected C57BL/6 mice compared with BALB/c mice. However, there was no difference in the functional ability of M1 and M2 macrophages for the two strains in vitro. In vivo, a deleterious role for M2 macrophages was confirmed by M2 cell transfer, which rendered the infected C57BL/6, but not the BALB/c mice, more susceptible and resulted in mild lung inflammation compared with C57BL/6 mice that did not undergo cell transfer. M1 cell transfer induced a higher inflammatory response, although not protective, in infected BALB/c mice compared with their counterparts that did not undergo cell transfer. These findings demonstrate that an inflammation mediated by M1 macrophages may not induce bacterial tolerance because protection depends on the host genetic background, which drives the magnitude of the inflammatory response against M. tuberculosis in the pulmonary microenvironment. The contribution of our findings is that although M1 macrophage is an effector leucocyte with microbicidal machinery, its dominant role depends on the balance of M1 and M2 subsets, which is driven by the host genetic background.

  10. Multilocus spacer analysis revealed highly homogeneous genetic background of Asian type of Borrelia miyamotoi.

    PubMed

    Mukhacheva, Tatyana A; Salikhova, Irina I; Kovalev, Sergey Y

    2015-04-01

    Borrelia miyamotoi, a member of the relapsing fever group borreliae, was first isolated in Japan and subsequently found in Ixodes ticks in North America, Europe and Russia. Currently, there are three types of B. miyamotoi: Asian or Siberian (transmitted mainly by Ixodes persulcatus), European (Ixodesricinus) and American (Ixodesscapularis and Ixodespacificus). Despite the great genetic distances between B. miyamotoi types, isolates within a type are characterised by an extremely low genetic variability. In particular, strains of B. miyamotoi of Asian type, isolated in Russia from the Baltic sea to the Far East, have been shown to be identical based on the analysis of several conventional genetic markers, such as 16S rRNA, flagellin, outer membrane protein p66 and glpQ genes. Thus, protein or rRNA - coding genes were shown not to be informative enough in studying genetic diversity of B. miyamotoi within a type. In the present paper, we have attempted to design a new multilocus technique based on eight non-coding intergenic spacers (3686bp in total) and have applied it to the analysis of intra-type genetic variability of В. miyamotoi detected in different regions of Russia and from two tick species, I. persulcatus and Ixodespavlovskyi. However, even though potentially the most variable loci were selected, no genetic variability between studied DNA samples was found, except for one nucleotide substitution in two of them. The sequences obtained were identical to those of the reference strain FR64b. Analysis of the data obtained with the GenBank sequences indicates a highly homogeneous genetic background of B. miyamotoi from the Baltic Sea to the Japanese Islands. In this paper, a hypothesis of clonal expansion of B. miyamotoi is discussed, as well as possible mechanisms for the rapid dissemination of one B. miyamotoi clone over large distances.

  11. The genetic background of inflammatory bowel disease: from correlation to causality.

    PubMed

    Uniken Venema, Werna Tc; Voskuil, Michiel D; Dijkstra, Gerard; Weersma, Rinse K; Festen, Eleonora Am

    2017-01-01

    Recent studies have greatly improved our insight into the genetic background of inflammatory bowel disease (IBD). New high-throughput technologies and large-scale international collaborations have contributed to the identification of 200 independent genetic risk loci for IBD. However, in most of these loci, it is unclear which gene conveys the risk for IBD. More importantly, it is unclear which variant within or near the gene is causal to the disease. Using targeted GWAS, imputation, resequencing of risk loci, and in silico fine-mapping of densely typed loci, several causal variants have been identified in IBD risk genes, and various pathological pathways have been uncovered. Current research in the field of IBD focuses on the effect of these causal variants on gene expression and protein function. However, more elements than only the genome must be taken into account to disentangle the multifactorial pathology of IBD. The genetic risk loci identified to date only explain a small part of genetic variance in disease risk. Currently, large multi-omics studies are incorporating factors ranging from the gut microbiome to the environment. In this review, we present the progress that has been made in IBD genetic research and stress the importance of studying causality to increase our understanding of the pathogenesis of IBD. We highlight important causal genetic variants in the candidate genes NOD2, ATG16L1, IRGM, IL23R, CARD9, RNF186, and PRDM1. We describe their downstream effects on protein function and their direct effects on the gut immune system. Furthermore, we discuss the future role of genetics in unravelling disease mechanisms in IBD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. Genetic heterogeneity versus molecular analysis of prion susceptibility in neuroblasma N2a sublines.

    PubMed

    Chasseigneaux, Stéphanie; Pastore, Manuela; Britton-Davidian, Janice; Manié, Elodie; Stern, Marc-Henri; Callebert, Jacques; Catalan, Josette; Casanova, Danielle; Belondrade, Maxime; Provansal, Monique; Zhang, Yonghua; Bürkle, Alexander; Laplanche, Jean-Louis; Sévenet, Nicolas; Lehmann, Sylvain

    2008-01-01

    The neuroblastoma-derived cell line N2a is permissive to certain prion strains but resistant sublines unable to accumulate the pathological proteinase-K resistant form of the prion protein can be isolated. We compared for gene expression and phenotypes different N2a sublines that were susceptible or resistant to the 22L prion strain. Karyotypes and comparative genomic hybridization arrays revealed chromosomal imbalances but did not demonstrate a characteristic profile of genomic alterations linked to prion susceptibility. Likewise, we showed that this phenotype was not dependent on the binding of PrPres, the expression of the prion protein gene, or on its primary sequence. We completed this analysis by looking using real-time quantitative PCR at the expression of a set of genes encoding proteins linked to prion biology. None of the candidates could account by itself for the infection phenotype, nevertheless sublines had distinct transcriptional profiles. Taken together, our results do not support a role for specific genomic abnormalities and possible candidate proteins in N2a prion susceptibility. They also reveal genetic heterogeneity among the sublines and serve as a guidance for further investigation into the molecular mechanisms of prion infection.

  13. Genetic polymorphisms in the carbonic anhydrase VI gene and dental caries susceptibility.

    PubMed

    Li, Z-Q; Hu, X-P; Zhou, J-Y; Xie, X-D; Zhang, J-M

    2015-06-01

    We investigated the role of 7 single nucleotide polymorphisms in the carbonic anhydrase (CA) VI gene (rs2274328, rs17032907, rs11576766, rs2274333, rs10864376, rs3765964, and rs6680186) and the possible association between these polymorphisms and dental caries susceptibility in a Northwestern Chinese population. We collected samples from 164 high caries experience and 191 very low caries experience and conducted a case-control study according to the number of decayed, missing, and filled teeth index and genotyped the 7 polymorphisms using a 384-well plate format with the Sequenom MassARRAY platform. Individuals carrying the rs17032907 TT genotype were more likely to have an increased risk of dental caries compared with carriers of the C/C genotype in the co-dominant model, with an odds ratio (95% confidence interval) of 2.144 (1.096-4.195). We also found that the haplotype (ACA) (rs2274328, rs17032907 and rs11576766) was associated with a low number of decayed, missing, and filled teeth index with an odds ratio (95% confidence interval) of 0.635 (0.440-0.918). However, we found no association between dental caries susceptibility and the rs2274328, rs11576766, rs2274333, rs10864376, rs3765964, and rs6680186 polymorphisms and other haplotypes. The rs17032907 genetic variant and the haplotype (ACA) of CA VI may be associated with dental caries susceptibility.

  14. Risk perceptions, worry, and attitudes about genetic testing for breast cancer susceptibility.

    PubMed

    Cameron, Linda D; Reeve, Jeanne

    2006-01-01

    This study assessed the unique associations of risk perceptions and worry with attitudes about genetic testing for breast cancer susceptibility. Women (general practitioner clinic attenders, university students, and first-degree relatives of breast cancer survivors; N = 303) read information about genetic testing and completed measures assessing perceived cancer risk, cancer worry, and genetic testing attitudes and beliefs. Worry was associated with greater interest in genetic testing, stronger beliefs that testing has detrimental emotional consequences, and positive beliefs about benefits of testing and risk-reducing surgeries. Perceived risk was unrelated to interest and associated with more skeptical beliefs about emotional consequences and benefits of testing and risk-reducing surgeries. At low worry levels, testing interest increased with more positive beliefs about testing benefits; at high worry levels, interest was high regardless of benefits beliefs. The findings support Leventhal's Common-Sense Model of self-regulation delineating interactive influences of risk-related cognitions and emotions on information processing and behavior.

  15. Seeking genetic susceptibility variants for colorectal cancer: the EPICOLON consortium experience.

    PubMed

    Castellví-Bel, Sergi; Ruiz-Ponte, Clara; Fernández-Rozadilla, Ceres; Abulí, Anna; Muñoz, Jenifer; Bessa, Xavier; Brea-Fernández, Alejandro; Ferro, Marta; Giráldez, María Dolores; Xicola, Rosa M; Llor, Xavier; Jover, Rodrigo; Piqué, Josep M; Andreu, Montserrat; Castells, Antoni; Carracedo, Angel

    2012-03-01

    The EPICOLON consortium was initiated in 1999 by the Gastrointestinal Oncology Group of the Spanish Gastroenterology Association. It recruited consecutive, unselected, population-based colorectal cancer (CRC) cases and control subjects matched by age and gender without personal or familial history of cancer all over Spain with the main goal of gaining knowledge in Lynch syndrome and familial CRC. This epidemiological, prospective and multicentre study collected extensive clinical data and biological samples from ∼2000 CRC cases and 2000 controls in Phases 1 and 2 involving 25 and 14 participating hospitals, respectively. Genetic susceptibility projects in EPICOLON have included candidate-gene approaches evaluating single-nucleotide polymorphisms/genes from the historical category (linked to CRC risk by previous studies), from human syntenic CRC susceptibility regions identified in mouse, from the CRC carcinogenesis-related pathways Wnt and BMP, from regions 9q22 and 3q22 with positive linkage in CRC families, and from the mucin gene family. This consortium has also participated actively in the identification 5 of the 16 common, low-penetrance CRC genetic variants identified so far by genome-wide association studies. Finishing their own pangenomic study and performing whole-exome sequencing in selected CRC samples are among EPICOLON future research prospects.

  16. The genetic basis for susceptibility to Rift Valley fever disease in MBT/Pas mice.

    PubMed

    Tokuda, S; Do Valle, T Z; Batista, L; Simon-Chazottes, D; Guillemot, L; Bouloy, M; Flamand, M; Montagutelli, X; Panthier, J-J

    2015-01-01

    The large variation in individual response to infection with Rift Valley fever virus (RVFV) suggests that host genetic determinants play a role in determining virus-induced disease outcomes. These genetic factors are still unknown. The systemic inoculation of mice with RVFV reproduces major pathological features of severe human disease, notably the hepatitis and encephalitis. A genome scan performed on 546 (BALB/c × MBT) F2 progeny identified three quantitative trait loci (QTLs), denoted Rvfs-1 to Rvfs-3, that were associated with disease susceptibility in MBT/Pas mice. Non-parametric interval-mapping revealed one significant and two suggestive linkages with survival time on chromosomes 2 (Rvfs-1), 5 (Rvfs-3) and 11 (Rvfs-2) with respective logarithm of odds (LOD) scores of 4.58, 2.95 and 2.99. The two-part model, combining survival time and survival/death, identified one significant linkage to Rvfs-2 and one suggestive linkage to Rvfs-1 with respective LOD scores of 5.12 and 4.55. Under a multiple model, with additive effects and sex as a covariate, the three QTLs explained 8.3% of the phenotypic variance. Sex had the strongest influence on susceptibility. The contribution of Rvfs-1, Rvfs-2 and Rvfs-3 to survival time of RVFV-infected mice was further confirmed in congenic mice.

  17. Differential Genetic Susceptibility to Child Risk at Birth in Predicting Observed Maternal Behavior

    PubMed Central

    Fortuna, Keren; van IJzendoorn, Marinus H.; Mankuta, David; Kaitz, Marsha; Avinun, Reut; Ebstein, Richard P.; Knafo, Ariel

    2011-01-01

    This study examined parenting as a function of child medical risks at birth and parental genotype (dopamine D4 receptor; DRD4). Our hypothesis was that the relation between child risks and later maternal sensitivity would depend on the presence/absence of a genetic variant in the mothers, thus revealing a gene by environment interaction (GXE). Risk at birth was defined by combining risk indices of children's gestational age at birth, birth weight, and admission to the neonatal intensive care unit. The DRD4-III 7-repeat allele was chosen as a relevant genotype as it was recently shown to moderate the effect of environmental stress on parental sensitivity. Mothers of 104 twin pairs provided DNA samples and were observed with their children in a laboratory play session when the children were 3.5 years old. Results indicate that higher levels of risk at birth were associated with less sensitive parenting only among mothers carrying the 7-repeat allele, but not among mothers carrying shorter alleles. Moreover, mothers who are carriers of the 7-repeat allele and whose children scored low on the risk index were observed to have the highest levels of sensitivity. These findings provide evidence for the interactive effects of genes and environment (in this study, children born at higher risk) on parenting, and are consistent with a genetic differential susceptibility model of parenting by demonstrating that some parents are inherently more susceptible to environmental influences, both good and bad, than are others. PMID:21603618

  18. Genetic Susceptibility to Multiple Sclerosis: The Role of FOXP3 Gene Polymorphism

    PubMed Central

    IŞIK, Nihal; YILDIZ MANUKYAN, Nüket; AYDIN CANTÜRK, İlknur; CANDAN, Fatma; ÜNSAL ÇAKMAK, Ayşen; SARU HAN DİRESKENELİ, Güher

    2014-01-01

    Introduction It is well recognized that both genetic and environmental factors play an important role in the pathogenesis of multiple sclerosis (MS). Immune pathogenesis of MS focuses on pathogenic CD4+ T lymphocytes. CD4+CD25+ regulatory T cells have suppressive function in this cell group. FOXP3 (forkhead boxP3) transcription factor is a key structure in the development and function of regulatory cells. Functional alterations in FOXP3 gene expression have been observed in various autoimmune diseases. Methods We screened a non-synonymous coding single nucleotide polymorphism (exon +2710 C/T) (rs2232369) of human FOXP3 gene in 148 MS patients (118 with Relapsing Remitting MS, 30 with Secondary Progressive MS) and 102 age- and sex-matched healthy controls. The association of polymorphisms with susceptibility, and course of the disease was evaluated. Results We could not detect any single nucleotide polymorphism in MS patients, however, polymorphic allele was detected in 3% of the control group. Consequently, a genetic association between the FOXP3 gene polymorphism and MS was not revealed. Conclusion The distribution of this polymorphism has not been screened in any other MS populations before. Although we could not succeed to find any association between susceptibility to MS and screened FOXP3 gene polymorphisms, we suggest that this particular polymorphism is not appropriate for these kind of studies in the future.

  19. A PRISMA-compliant meta-analysis of MDM4 genetic variants and cancer susceptibility

    PubMed Central

    He, Hairong; Gao, Fan; Yang, Lihong; Dong, Yalin; Lu, Jun

    2016-01-01

    Molecular epidemiological research suggests that mouse double minute 4 (MDM4) polymorphisms may be associated with cancer susceptibility, but results remain controversial. To derive a more precise evaluation, we performed a PRISMA compliant meta-analysis focused on five single nucleotide polymorphisms (rs11801299, rs1380576, rs10900598, rs1563828, and rs4245739) of MDM4. Overall, 23 studies involving 22,218 cases and 55,033 controls were analyzed. The results showed that rs4245739 was significantly associated with a decreased cancer risk in the allelic (C vs. A: odds ratio [OR] = 0.848, 95% confidence interval [CI] = 0.765–0.941, P = 0.002), heterozygous (AC vs. AA: OR = 0.831, 95% CI = 0.735–0.939, P = 0.003), and dominant (AC+CC vs. A: OR = 0.823, 95% CI = 0.727–0.932, P = 0.002) models. The association was more prominent in Asians. No significant association was found using any genetic model for the rs11801299, rs1380576, rs10900598, and rs1563828 SNPs. These results indicate that the rs4245739 polymorphism may contribute to a decreased cancer susceptibility and support the hypothesis that genetic variants in the MDM4 genes act as important modifiers of cancer risk. PMID:27738340

  20. Interaction between common breast cancer susceptibility variants, genetic ancestry, and non-genetic risk factors in Hispanic women

    PubMed Central

    Fejerman, Laura; Stern, Mariana C.; John, Esther M.; Torres-Mejía, Gabriela; Hines, Lisa M.; Wolff, Roger K.; Baumgartner, Kathy B.; Giuliano, Anna R.; Ziv, Elad; Pérez-Stable, Eliseo J.; Slattery, Martha L.

    2015-01-01

    Background Most genetic variants associated with breast cancer risk have been discovered in women of European ancestry, and only a few genome-wide association studies (GWAS) have been conducted in minority groups. This research disparity persists in post-GWAS gene-environment interaction analyses. We tested the interaction between hormonal and lifestyle risk factors for breast cancer, and ten GWAS-identified single nucleotide polymorphisms (SNPs) among 2,107 Hispanic women with breast cancer and 2,587 unaffected controls, to gain insight into a previously reported gene by ancestry interaction in this population. Methods We estimated genetic ancestry with a set of 104 ancestry-informative markers selected to discriminate between Indigenous American and European ancestry. We used logistic regression models to evaluate main effects and interactions. Results We found that the rs13387042-2q35(G/A) SNP was associated with breast cancer risk only among postmenopausal women who never used hormone therapy [per A allele odds ratio (OR): 0.94 (95% confidence interval 0.74–1.20), 1.20 (0.94–1.53) and 1.49 (1.28–1.75) for current, former and never hormone therapy users, respectively, P-interaction 0.002] and premenopausal women who breastfed >12 months [OR: 1.01 (0.72–1.42), 1.19 (0.98–1.45) and 1.69 (1.26–2.26) for never, <12 months, and >12 months breastfeeding, respectively, P-interaction 0.014]. Conclusions The correlation between genetic ancestry, hormone replacement therapy use, and breastfeeding behavior partially explained a previously reported interaction between a breast cancer risk variant and genetic ancestry in Hispanic women. Impact These results highlight the importance of understanding the interplay between genetic ancestry, genetics, and non-genetic risk factors and their contribution to breast cancer risk. PMID:26364163

  1. Cervical Cancer Genetic Susceptibility: A Systematic Review and Meta-Analyses of Recent Evidence

    PubMed Central

    Martínez-Nava, Gabriela A.; Fernández-Niño, Julián A.; Madrid-Marina, Vicente; Torres-Poveda, Kirvis

    2016-01-01

    Introduction Cervical cancer (CC) has one of the highest mortality rates among women worldwide. Several efforts have been made to identify the genetic susceptibility factors underlying CC development. However, only a few polymorphisms have shown consistency among studies. Materials and Methods We conducted a systematic review of all recent case-control studies focused on the evaluation of single nucleotide polymorphisms (SNPs) and CC risk, stringently following the “PRISMA” statement recommendations. The MEDLINE data base was used for the search. A total of 100 case-control studies were included in the meta-analysis. Polymorphisms that had more than two reports were meta-analyzed by fixed or random models according to the heterogeneity presented among studies. Results We found significant negative association between the dominant inheritance model of p21 rs1801270 polymorphism (C/A+A/A) and CC (pooled OR = 0.76; 95%CI: 0.63–0.91; p<0.01). We also found a negative association with the rs2048718 BRIP1 polymorphism dominant inheritance model (T/C+C/C) and CC (pooled OR = 0.83; 95%CI: 0.70–0.98; p = 0.03), as well as with the rs11079454 BRIP1 polymorphism recessive inheritance model and CC (pooled OR = 0.79; 95%CI: 0.63–0.99; p = 0.04). Interestingly, we observed a strong tendency of the meta-analyzed studies to be of Asiatic origin (67%). We also found a significant low representation of African populations (4%). Conclusions Our results provide evidence of the negative association of p21 rs1801270 polymorphism, as well as BRIP1 rs2048718 and rs11079454 polymorphisms, with CC risk. This study suggests the urgent need for more replication studies focused on GWAS identified CC susceptibility variants, in order to reveal the most informative genetic susceptibility markers for CC across different populations. PMID:27415837

  2. Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects.

    PubMed

    Leduc, Renee Y M; Singh, Parmveer; McDermid, Heather E

    2016-10-21

    Neurulation, the early embryonic process of forming the presumptive brain and spinal cord, is highly complex and involves hundreds of genes in multiple genetic pathways. Mice have long served as a genetic model for studying human neurulation, and the resulting neural tube defects (NTDs) that arise when neurulation is disrupted. Because mice appear to show mostly single gene inheritance for NTDs and humans show multifactorial inheritance, mice sometimes have been characterized as a simpler model for the identification and study of NTD genes. But are they a simple model? When viewed on different genetic backgrounds, many genes show significant variation in the penetrance and expressivity of NTD phenotypes, suggesting the presence of modifier loci that interact with the target gene to affect the phenotypic expression. Looking at mutations on different genetic backgrounds provides us with an opportunity to explore these complex genetic interactions, which are likely to better emulate similar processes in human neurulation. Here, we review NTD genes known to show strain-specific phenotypic variation. We focus particularly on the gene Cecr2, which is studied using both a hypomorphic and a presumptive null mutation on two different backgrounds: one susceptible (BALB/c) and one resistant (FVB/N) to NTDs. This strain difference has led to a search for genetic modifiers within a region on murine chromosome 19. Understanding how genetic variants alter the phenotypic outcome in NTD mouse models will help to direct future studies in humans, particularly now that more genome wide sequencing approaches are being used. Birth Defects Research (Part A), 2016. © 2016 Wiley Periodicals, Inc.

  3. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative

  4. Dissecting the Genetic Susceptibility to Graves’ Disease in a Cohort of Patients of Italian Origin

    PubMed Central

    Lombardi, Angela; Menconi, Francesca; Greenberg, David; Concepcion, Erlinda; Leo, Marenza; Rocchi, Roberto; Marinó, Michele; Keddache, Mehdi; Tomer, Yaron

    2016-01-01

    Graves’ disease (GD) is an autoimmune oligogenic disorder with a strong hereditary component. Several GD susceptibility genes have been identified and confirmed during the last two decades. However, there are very few studies that evaluated susceptibility genes for GD in specific geographic subsets. Previously, we mapped a new locus on chromosome 3q that was unique to GD families of Italian origin. In the present study, we used association analysis of single-nucleotide polymorphism (SNPs) at the 3q locus in a cohort of GD patients of Italian origin in order to prioritize the best candidates among the known genes in this locus to choose the one(s) best supported by the association. DNA samples were genotyped using the Illumina GoldenGate genotyping assay analyzing 690 SNP in the linked 3q locus covering all 124 linkage disequilibrium blocks in this locus. Candidate non-HLA (human-leukocyte-antigen) genes previously reported to be associated with GD and/or other autoimmune disorders were analyzed separately. Three SNPs in the 3q locus showed a nominal association (p < 0.05): rs13097181, rs763313, and rs6792646. Albeit these could not be further validated by multiple comparison correction, we were prioritizing candidate genes at a locus already known to harbor a GD-related gene, not hypothesis testing. Moreover, we found significant associations with the thyroid-stimulating hormone receptor (TSHR) gene, the cytotoxic T-lymphocyte antigen-4 (CTLA-4) gene, and the thyroglobulin (TG) gene. In conclusion, we identified three SNPs on chromosome 3q that may map a new GD susceptibility gene in this region which is unique to the Italian population. Furthermore, we confirmed that the TSHR, the CTLA-4, and the TG genes are associated with GD in Italians. Our findings highlight the influence of ethnicity and geographic variations on the genetic susceptibility to GD. PMID:27014188

  5. Dissecting the Genetic Susceptibility to Graves' Disease in a Cohort of Patients of Italian Origin.

    PubMed

    Lombardi, Angela; Menconi, Francesca; Greenberg, David; Concepcion, Erlinda; Leo, Marenza; Rocchi, Roberto; Marinó, Michele; Keddache, Mehdi; Tomer, Yaron

    2016-01-01

    Graves' disease (GD) is an autoimmune oligogenic disorder with a strong hereditary component. Several GD susceptibility genes have been identified and confirmed during the last two decades. However, there are very few studies that evaluated susceptibility genes for GD in specific geographic subsets. Previously, we mapped a new locus on chromosome 3q that was unique to GD families of Italian origin. In the present study, we used association analysis of single-nucleotide polymorphism (SNPs) at the 3q locus in a cohort of GD patients of Italian origin in order to prioritize the best candidates among the known genes in this locus to choose the one(s) best supported by the association. DNA samples were genotyped using the Illumina GoldenGate genotyping assay analyzing 690 SNP in the linked 3q locus covering all 124 linkage disequilibrium blocks in this locus. Candidate non-HLA (human-leukocyte-antigen) genes previously reported to be associated with GD and/or other autoimmune disorders were analyzed separately. Three SNPs in the 3q locus showed a nominal association (p < 0.05): rs13097181, rs763313, and rs6792646. Albeit these could not be further validated by multiple comparison correction, we were prioritizing candidate genes at a locus already known to harbor a GD-related gene, not hypothesis testing. Moreover, we found significant associations with the thyroid-stimulating hormone receptor (TSHR) gene, the cytotoxic T-lymphocyte antigen-4 (CTLA-4) gene, and the thyroglobulin (TG) gene. In conclusion, we identified three SNPs on chromosome 3q that may map a new GD susceptibility gene in this region which is unique to the Italian population. Furthermore, we confirmed that the TSHR, the CTLA-4, and the TG genes are associated with GD in Italians. Our findings highlight the influence of ethnicity and geographic variations on the genetic susceptibility to GD.

  6. Trypanosoma cruzi: H2 complex and genetic background influence on the humoral immune response against epimastigotes.

    PubMed

    Aguillón, J C; Hermosilla, T; Molina, M C; Morello, A; Repetto, Y; Orn, A; Ferreira, A

    2000-08-01

    Using A.SW, A.CA, B10.S and B10.M congenic mouse strains, we measured the IgG specific humoral immune responses against sonicated and live Trypanosoma cruzi epimastigotes. Genes located in the A background (A.SW and A.CA strains) mediate higher IgG responses against the parasite antigenic complexes than those located in the B background (strains B10.S and B10.M), regardless of the H2 haplotypes. Thus, non H2 genetic elements seem to be more important in determining differences in the total IgG immune response against T. cruzi. Whether a detectable H2 effect, in favor of the H2(s) haplotype, occurred in the A or B background, was contingent on the immunisation protocol used. Thus, the H2(s) haplotype mediates a higher IgG response in the A background, if immunised with live epimastigotes, and in the B background against sonicated epimastigotes. Most likely this represents a complex sequence of events, controlled by non-MHC genes, involving antigen handling and processing and depending on the physical form of antigen delivery.

  7. Systematic Evaluation Of Genes And Genetic Variants Associated With Type 1 Diabetes Susceptibility

    PubMed Central

    Ram, Ramesh; Mehta, Munish; Nguyen, Quang T.; Larma, Irma; Boehm, Bernhard O.; Pociot, Flemming; Concannon, Patrick; Morahan, Grant

    2016-01-01

    Genome-wide association studies (GWAS) have found over 60 loci that confer genetic susceptibility to Type 1 diabetes (T1D). Many of these are defined only by anonymous SNPs: the underlying causative genes, and the molecular bases by which they mediate susceptibility, are not known. Identification of how these variants affect the complex mechanisms contributing to the loss of tolerance is a challenge. We performed systematic analyses to characterize these variants. First, all known genes in strong linkage disequilibrium (LD) (r2 > 0.8) with the reported SNPs for each locus were tested for commonly occurring non-synonymous variations. We found only a total of 22 candidate genes at 16 T1D loci with common non-synonymous alleles. Next, we performed functional studies to examine the effect of non-HLA T1D risk alleles on regulating expression levels of genes in four different cell types: EBV- transformed B cell lines (resting and 6h PMA stimulated); purified CD4+ and CD8+ T cells. We mapped cis-acting expression quantitative trait loci (eQTL) and found 24 non-HLA loci that affected the expression of 31 transcripts significantly in at least one cell type. Additionally, we observed 25 loci that affected 38 transcripts in trans. In summary, our systems genetics analyses defined the effect of T1D risk alleles on levels of gene expression and provide novel insights into the complex genetics of T1D, suggesting most of the T1D risk alleles mediate their effect by influencing expression of multiple nearby genes. PMID:26912320

  8. An Unbiased Systems Genetics Approach to Mapping Genetic Loci Modulating Susceptibility to Severe Streptococcal Sepsis

    PubMed Central

    Abdeltawab, Nourtan F.; Aziz, Ramy K.; Kansal, Rita; Rowe, Sarah L.; Su, Yin; Gardner, Lidia; Brannen, Charity; Nooh, Mohammed M.; Attia, Ramy R.; Abdelsamed, Hossam A.; Taylor, William L.; Lu, Lu; Williams, Robert W.; Kotb, Malak

    2008-01-01

    Striking individual differences in severity of group A streptococcal (GAS) sepsis have been noted, even among patients infected with the same bacterial strain. We had provided evidence that HLA class II allelic variation contributes significantly to differences in systemic disease severity by modulating host responses to streptococcal superantigens. Inasmuch as the bacteria produce additional virulence factors that participate in the pathogenesis of this complex disease, we sought to identify additional gene networks modulating GAS sepsis. Accordingly, we applied a systems genetics approach using a panel of advanced recombinant inbred mice. By analyzing disease phenotypes in the context of mice genotypes we identified a highly significant quantitative trait locus (QTL) on Chromosome 2 between 22 and 34 Mb that strongly predicts disease severity, accounting for 25%–30% of variance. This QTL harbors several polymorphic genes known to regulate immune responses to bacterial infections. We evaluated candidate genes within this QTL using multiple parameters that included linkage, gene ontology, variation in gene expression, cocitation networks, and biological relevance, and identified interleukin1 alpha and prostaglandin E synthases pathways as key networks involved in modulating GAS sepsis severity. The association of GAS sepsis with multiple pathways underscores the complexity of traits modulating GAS sepsis and provides a powerful approach for analyzing interactive traits affecting outcomes of other infectious diseases. PMID:18421376

  9. Genetic background influences nicotine-induced conditioned place preference and place aversion in mice.

    PubMed

    Ise, Yuya; Mori, Tomohisa; Katayama, Shirou; Suzuki, Tsutomu; Wang, Tzu-Chueh

    2014-01-01

    This study was designed to determine whether genetic differences influence the rewarding effects of nicotine in 4 inbred strains of mice (DBA/2, BALB/c, C3H, and C57BL/6). Nicotine (subcutaneous) induced a place preference in DBA/2 and BALB/c mice but a place aversion in C57BL/6 mice. A low dose of nicotine produced a significant place preference, whereas a high dose of nicotine produced place aversion in C3H mice. These effects were completely reversed by the nicotinic receptor antagonist mecamylamine. These results strongly suggest that a conditioned state, such as rewarding effects or aversive effects, can be influenced by genetic background.

  10. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds

    PubMed Central

    2011-01-01

    Background Drought is one of the most important abiotic stresses causing drastic reductions in yield in rainfed rice environments. The suitability of grain yield (GY) under drought as a selection criterion has been reported in the past few years. Most of the quantitative trait loci (QTLs) for GY under drought in rice reported so far has been in the background of low-yielding susceptible varieties. Such QTLs have not shown a similar effect in multiple high- yielding drought-susceptible varieties, thus limiting their use in marker-assisted selection. Genetic control of GY under reproductive-stage drought stress (RS) in elite genetic backgrounds was studied in three F3:4 mapping populations derived from crosses of N22, a drought-tolerant aus cultivar, with Swarna, IR64, and MTU1010, three high-yielding popular mega-varieties, with the aim to identify QTLs for GY under RS that show a consistent effect in multiple elite genetic backgrounds. Three populations were phenotyped under RS in the dry seasons (DS) of 2009 and 2010 at IRRI. For genotyping, whole-genome scans for N22/MTU1010 and bulked segregant analysis for N22/Swarna and N22/IR64 were employed using SSR markers. Results A major QTL for GY under RS, qDTY1.1, was identified on rice chromosome 1 flanked by RM11943 and RM431 in all three populations. In combined analysis over two years, qDTY1.1 showed an additive effect of 29.3%, 24.3%, and 16.1% of mean yield in N22/Swarna, N22/IR64, and N22/MTU1010, respectively, under RS. qDTY1.1 also showed a positive effect on GY in non-stress (NS) situations in N22/Swarna, N22/IR64 over both years, and N22/MTU1010 in DS2009. Conclusions This is the first reported QTL in rice with a major and consistent effect in multiple elite genetic backgrounds under both RS and NS situations. Consistency of the QTL effect across different genetic backgrounds makes it a suitable candidate for use in marker-assisted breeding. PMID:22008150

  11. Implication of IL-2/IL-21 region in systemic sclerosis genetic susceptibility

    PubMed Central

    Diaz-Gallo, Lina-Marcela; Simeon, Carmen P; Broen, Jasper C; Ortego-Centeno, Norberto; Beretta, Lorenzo; Vonk, Madelon C; Carreira, Patricia E; Vargas, Sofia; Román-Ivorra, José Andrés; González-Gay, Miguel A; Tolosa, Carlos; López-Longo, Francisco Javier; Espinosa, Gerard; Vicente, Esther F; Hesselstrand, Roger; Riemekasten, Gabriela; Witte, Torsten; Distler, Jörg H W; Voskuyl, Alexandre E; Schuerwegh, Annemie J; Shiels, Paul G; Nordin, Annika; Padyukov, Leonid; Hoffmann-Vold, Anna-Maria; Scorza, Raffaella; Lunardi, Claudio; Airo, Paolo; van Laar, Jacob M; Hunzelmann, Nicolas; Gathof, Birgit S; Kreuter, Alexander; Herrick, Ariane; Worthington, Jane; Denton, Christopher P; Zhou, Xiaodong; Arnett, Frank C; Fonseca, Carmen; Koeleman, Bobby PC; Assasi, Shervin; Radstake, Timothy R D J; Mayes, Maureen D; Martín, Javier

    2013-01-01

    Objective The interleukin 2 (IL-2) and interleukin 21 (IL-21) locus at chromosome 4q27 has been associated with several autoimmune diseases, and both genes are related to immune system functions. The aim of this study was to evaluate the role of the IL-2/IL-21 locus in systemic sclerosis (SSc). Patients and methods The case control study included 4493 SSc Caucasian patients and 5856 healthy controls from eight Caucasian populations (Spain, Germany, The Netherlands, USA, Italy, Sweden, UK and Norway). Four single nucleotide polymorphisms (rs2069762, rs6822844, rs6835457 and rs907715) were genotyped using TaqMan allelic discrimination assays. Results We observed evidence of association of the rs6822844 and rs907715 variants with global SSc (pc=6.6E-4 and pc=7.2E-3, respectively). Similar statistically significant associations were observed for the limited cutaneous form of the disease. The conditional regression analysis suggested that the most likely genetic variation responsible for the association was the rs6822844 polymorphism. Consistently, the rs2069762A-rs6822844T-rs6835457G-rs907715T allelic combination showed evidence of association with SSc and limited cutaneous SSc subtype (pc=1.7E-03 and pc=8E-4, respectively). Conclusions These results suggested that the IL-2/IL-21 locus influences the genetic susceptibility to SSc. Moreover, this study provided further support for the IL-2/IL-21 locus as a common genetic factor in autoimmune diseases. PMID:23172754

  12. Genetic variation between Biomphalaria alexandrina snails susceptible and resistant to Schistosoma mansoni infection.

    PubMed

    El-Nassery, Suzanne M F; Abou-El-Naga, Iman F; Allam, Sonia R; Shaat, Eman A; Mady, Rasha F M

    2013-01-01

    Much effort has been made to control schistosomiasis infection in Egypt. However, enduring effects from such strategies have not yet been achieved. In this study, we sought to determine the genetic variability related to the interaction between Biomphalaria alexandrina snails and Schistosoma mansoni. Using RAPD-PCR with eight (10 mers) random primers, we were able to determine the polymorphic markers that differed between snails susceptible and resistant to Schistosoma mansoni infection using five primers out of the eight. Our results suggest that the RAPD-PCR technique is an efficient means by which to compare genomes and to detect genetic variations between schistosomiasis intermediate hosts. The RAPD technique with the above-noted primers can identify genomic markers that are specifically related to the Biomphalaria alexandrina/Schistosoma mansoni relationship in the absence of specific nucleotide sequence information. This approach could be used in epidemiologic surveys to investigate genetic diversity among Biomphalaria alexandrina snails. The ability to determine resistant markers in Biomphalaria alexandrina snails could potentially lead to further studies that use refractory snails as agents to control the spread of schistosomiasis.

  13. Genetic antimicrobial susceptibility testing in Gram-negative sepsis - impact on time to results in a routine laboratory.

    PubMed

    Kommedal, Øyvind; Aasen, Johanne Lind; Lindemann, Paul Christoffer

    2016-07-01

    Diagnostic testing of positive blood cultures is among the most critical tasks performed by clinical microbiology laboratories, and the total analysis time from sampling to results should be kept as short as possible. By providing identification of pelleted bacteria directly from positive blood-cultures, MALDI-TOF MS opens for relatively low-complex species-adjusted genetic susceptibility testing from the same bacterial pellet. In our lab routine, we prospectively evaluated a rapid in-house real-time PCR targeting the most common aminoglycoside and cephalosporin resistance genes in Escherichia coli and Klebsiella pneumoniae and measured time to preliminary susceptibility reporting for 138 samples. The results were compared to direct phenotypic susceptibility testing with interpretation after 6 h and overnight incubation respectively. Results from the genetic susceptibility testing were available for 69.5% (96/138) of the positive blood cultures within 24 h after sample collection. No phenotypic susceptibility results were available at this time. Compared to overnight direct susceptibility testing, the average time from sample collection to preliminary susceptibility reporting was reduced with 43%, from 45 h and 5 min to 25 h and 44 min, providing an earlier adjustment of antimicrobial therapy for 12 patients. Minor logistic adjustments have the potential to save yet another 4 h.

  14. Genetic Background and Clinical Characters of Pediatric Chronic Pancreatitis: Data and Implications from the East

    PubMed Central

    Liu, Muyun; Xia, Tian; Zhang, Di; Hu, Lianghao; Liao, Zhuan

    2017-01-01

    Background. The clinical pattern and genetic background of juvenile idiopathic chronic pancreatitis (ICP) are yet unclear. Methods. A retrospective study of 73 Chinese juvenile ICP patients was performed, and genetic tests were carried out to detect relevant mutations using direct sequencing technique and high-resolution melting technique. Subjects without pancreatitis served as controls. Results. The SPINK1 c.194+2T>C variant was present in 56.16% and 42.00% of juvenile and adult ICP patients, respectively (p = 0.020), but was not present in any of the control subjects. Thirty-four (46.58%) of the 73 juvenile ICP patients were male, and a significantly higher ratio of male patients in the adult group was identified (46.58% versus 64.00%, p = 0.022). Although most of the juvenile patients presented with abdominal pain (70/73, 95.89%), the patterns of pain attack are significantly different in patients with or without SPINK1 c.194+2T>C mutation. Patients carrying the mutation are more likely to present with recurrent acute pancreatitis (70.70%). Conclusions. The main symptom of pediatric ICP was abdominal pain. SPINK1 c.194+2T>C mutation had a higher occurrence in juvenile ICP patients than in adult group and typically presented with recurrent acute pancreatitis. There may be unidentified factors that lead to a greater incidence rate of ICP in adult male population. PMID:28348582

  15. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia.

    PubMed

    Herzberg-Schäfer, S; Heni, M; Stefan, N; Häring, H-U; Fritsche, A

    2012-10-01

    One major risk factor of type 2 diabetes is the impairment of glucose-induced insulin secretion which is mediated by the individual genetic background and environmental factors. In addition to impairment of glucose-induced insulin secretion, impaired glucagon-like peptide (GLP)1-induced insulin secretion has been identified to be present in subjects with diabetes and impaired glucose tolerance, but little is known about its fundamental mechanisms. The state of GLP1 resistance is probably an important mechanism explaining the reduced incretin effect observed in type 2 diabetes. In this review, we address methods that can be used for the measurement of insulin secretion in response to GLP1 in humans, and studies showing that specific diabetes risk genes are associated with resistance of the secretory function of the β-cell in response to GLP1 administration. Furthermore, we discuss other factors that are associated with impaired GLP1-induced insulin secretion, for example, insulin resistance. Finally, we provide evidence that hyperglycaemia per se, the genetic background and their interaction result in the development of GLP1 resistance of the β-cell. We speculate that the response or the non-response to therapy with GLP1 analogues and/or dipeptidyl peptidase-4 (DPP-IV) inhibitors is critically dependent on GLP1 resistance.

  16. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    PubMed Central

    Faita, Francesca; Cori, Liliana; Bianchi, Fabrizio; Andreassi, Maria Grazia

    2013-01-01

    The arsenic (As) exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects. PMID:23583964

  17. Genetic background drives transcriptional variation in human induced pluripotent stem cells.

    PubMed

    Rouhani, Foad; Kumasaka, Natsuhiko; de Brito, Miguel Cardoso; Bradley, Allan; Vallier, Ludovic; Gaffney, Daniel

    2014-06-01

    Human iPS cells have been generated using a diverse range of tissues from a variety of donors using different reprogramming vectors. However, these cell lines are heterogeneous, which presents a limitation for their use in disease modeling and personalized medicine. To explore the basis of this heterogeneity we generated 25 iPS cell lines under normalised conditions from the same set of somatic tissues across a number of donors. RNA-seq data sets from each cell line were compared to identify the majority contributors to transcriptional heterogeneity. We found that genetic differences between individual donors were the major cause of transcriptional variation between lines. In contrast, residual signatures from the somatic cell of origin, so called epigenetic memory, contributed relatively little to transcriptional variation. Thus, underlying genetic background variation is responsible for most heterogeneity between human iPS cell lines. We conclude that epigenetic effects in hIPSCs are minimal, and that hIPSCs are a stable, robust and powerful platform for large-scale studies of the function of genetic differences between individuals. Our data also suggest that future studies using hIPSCs as a model system should focus most effort on collection of large numbers of donors, rather than generating large numbers of lines from the same donor.

  18. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background

    PubMed Central

    Marsh, Sharon; Hu, Junbo; Feng, Wenke

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and it comprises a spectrum of hepatic abnormalities from simple hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, and liver cancer. While the pathogenesis of NAFLD remains incompletely understood, a multihit model has been proposed that accommodates causal factors from a variety of sources, including intestinal and adipose proinflammatory stimuli acting on the liver simultaneously. Prior cellular and molecular studies of patient and animal models have characterized several common pathogenic mechanisms of NAFLD, including proinflammation cytokines, lipotoxicity, oxidative stress, and endoplasmic reticulum stress. In recent years, gut microbiota has gained much attention, and dysbiosis is recognized as a crucial factor in NAFLD. Moreover, several genetic variants have been identified through genome-wide association studies, particularly rs738409 (Ile748Met) in PNPLA3 and rs58542926 (Glu167Lys) in TM6SF2, which are critical risk alleles of the disease. Although a high-fat diet and inactive lifestyles are typical risk factors for NAFLD, the interplay between diet, gut microbiota, and genetic background is believed to be more important in the development and progression of NAFLD. This review summarizes the common pathogenic mechanisms, the gut microbiota relevant mechanisms, and the major genetic variants leading to NAFLD and its progression. PMID:27247565

  19. The molecular genetic background of familial hypercholesterolemia: data from the Slovak nation-wide survey.

    PubMed

    Gabčová, D; Vohnout, B; Staníková, D; Hučkova, M; Kadurová, M; Debreová, M; Kozárová, M; Fábryová, Ľ; Staník, J; Klimeš, I; Rašlová, K; Gašperiková, D

    2016-11-08

    Familial hypercholesterolemia (FH) is most frequently caused by LDLR or APOB mutations. Therefore, the aim of our study was to examine the genetic background of Slovak patients suspected of FH. Patients with clinical suspicion of FH (235 unrelated probands and 124 family relatives) were recruited throughout Slovakia during the years 2011-2015. The order of DNA analyses in probands was as follows: 1. APOB mutation p.Arg3527Gln by real-time PCR method, 2. direct sequencing of the LDLR gene 3. MLPA analysis of the LDLR gene. We have identified 14 probands and 2 relatives with an APOB mutation p.Arg3527Gln, and 89 probands and 75 relatives with 54 different LDLR mutations. Nine of LDLR mutations were novel (i.e. p.Asp90Glu, c.314-2A>G, p.Asp136Tyr, p.Ser177Pro, p.Lys225_Glu228delinsCysLys, p.Gly478Glu, p.Gly675Trpfs*42, p.Leu680Pro, p.Thr832Argfs*3). In conclusions, this is the first study on molecular genetics of FH in Slovakia encompassing the analysis of whole LDLR gene. Genetic etiology of FH was confirmed in 103 probands (43.8%). Out of them, 86.4% of probands carried the LDLR gene mutation and remaining 13.6% probands carried the p.Arg3527Gln APOB mutation.

  20. Differential Susceptibility: The Genetic Moderation of Peer Pressure on Alcohol Use.

    PubMed

    Griffin, Amanda M; Cleveland, H Harrington; Schlomer, Gabriel L; Vandenbergh, David J; Feinberg, Mark E

    2015-10-01

    Although peer pressure can influence adolescents' alcohol use, individual susceptibility to these pressures varies across individuals. The dopamine receptor D4 gene (DRD4) is a potential candidate gene that may influence adolescents' susceptibility to their peer environment due to the role dopamine plays in reward sensation during social interaction. We hypothesized that DRD4 genotype status would moderate the impact of 7th-grade antisocial peer pressure on 12th-grade lifetime alcohol use (n = 414; 58.7% female; 92.8% White). The results revealed significant main effects for antisocial peer pressure, but no main effects for DRD4 genotype on lifetime alcohol use. Adolescent DRD4 genotype moderated the association between peer pressure and lifetime alcohol use. For individuals who carried at least one copy of the DRD4 7-repeat allele (7+), antisocial peer pressure was associated with increased lifetime alcohol use. These findings indicate that genetic sensitivity to peer pressure confers increased alcohol use in late adolescence.

  1. A genetic model of differential susceptibility to human respiratory syncytial virus (RSV) infection.

    PubMed

    Ciencewicki, Jonathan M; Wang, Xuting; Marzec, Jacqui; Serra, M Elina; Bell, Douglas A; Polack, Fernando P; Kleeberger, Steven R

    2014-04-01

    Respiratory syncytial virus (RSV) is the primary cause of lower respiratory tract infection during childhood and causes severe symptoms in some patients, which may cause hospitalization and death. Mechanisms for differential responses to RSV are unknown. Our objective was to develop an in vitro model of RSV infection to evaluate interindividual variation in response to RSV and identify susceptibility genes. Populations of human-derived HapMap lymphoblastoid cell lines (LCLs) were infected with RSV. Compared with controls, RSV-G mRNA expression varied from ~1- to 400-fold between LCLs. Basal expression of a number of gene transcripts, including myxovirus (influenza virus) resistance 1 (MX1), significantly correlated with RSV-G expression in HapMap LCLs. Individuals in a case-control population of RSV-infected children who were homozygous (n=94) or heterozygous (n=172) for the predicted deleterious A allele in a missense G/A SNP in MX1 had significantly greater risk for developing severe RSV disease relative to those with the major allele (n=108) (χ(2)=5.305, P=0.021; OR: 1.750, 95% CI: 1.110, 2.758, P=0.021). We conclude that genetically diverse human LCLs enable identification of susceptibility genes (e.g., MX1) for RSV disease severity in children, providing insight for disease risk.

  2. Correlation of genetic polymorphism of vascular endothelial growth factor gene with susceptibility to lung cancer.

    PubMed

    Liu, C; Zhou, X; Gao, F; Qi, Z; Zhang, Z; Guo, Y

    2015-06-01

    The aim of the study is to study the correlation of genetic polymorphism of vascular endothelial growth factor (VEGF) gene with susceptibility to primary lung cancer. A total of 414 patients with primary lung cancer and 338 healthy volunteers were enrolled in this case-control study from September 2008 to October 2011. Gene identification with PCR-RFLP (polymerase chain reaction-based restriction fragment length polymorphism) was used to detect in white blood cells from the subjects the single-nucleotide polymorphisms (SNP) of VEGF gene, including +405G/C, -460 T/C, -1154G/A, -2578C/A sites. Association of genotypes or haplotypes with susceptibility of lung cancer was analyzed with unconditional logistic regression adjusted by gender and age. Smoking was significantly associated with increased risk of lung cancer. Gene phenotypic analysis demonstrated that C allele of +405G/C in VEGF gene was significantly associated increased risk of lung cancer in males (P=0.0094, odds ratio=1.634.3), as that with carrying GCTC haplotype (odds ratio=1.349), whereas carrying GACG had decreased risk for lung cancer (odds ratio=0.044). No relationship existed between 460 T/C, -1154G/A, -2578C/A alleles of VEGF gene and risk of lung cancer. VEGF gene polymorphism may have a role in the development of lung cancer.

  3. Association between the APC gene D1822V variant and the genetic susceptibility of colorectal cancer.

    PubMed

    Feng, Maohui; Fang, Xiping; Yang, Qian; Ouyang, Gang; Chen, Daping; Ma, Xiang; Li, Huachi; Xie, Wei

    2014-07-01

    Adenomatous polyposis coli (APC) gene polymorphisms are believed to contribute to tumor susceptibility. However, the association between genetic variants (A/T) in the APC gene D1822V polymorphism and colorectal cancer (CRC) susceptibility remains unknown. To determine this association, a case-control study was performed. The genotype of the APC gene D1822V variants was analyzed by DNA sequencing in blood samples collected from 196 patients with CRC and 279 healthy subjects. There were no significant associations between the case and control groups in the distribution of AT [odds ratio (OR), 0.604; 95% confidence interval (CI), 0.355-1.029) and TT genotypes (OR, 0.438; 95% CI, 0.045-4.247) relative to the AA genotype. The ratio of the T allele was significantly lower (P=0.047) in the case group compared with the control group (OR, 0.611; 95% CI, 0.374-0.997), indicating that the T allele conferred a protective effect in CRC. The frequency of the AT genotype among the subjects diagnosed at >45 years of age was lower than those diagnosed at a younger age (P<0.05). The present study demonstrates that the T allele of the D1822V polymorphism may exert a protective effect against CRC, however, these findings require further validation in a larger sample size.

  4. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility

    PubMed Central

    Fahmideh, Maral Adel; Lavebratt, Catharina; Schüz, Joachim; Röösli, Martin; Tynes, Tore; Grotzer, Michael A.; Johansen, Christoffer; Kuehni, Claudia E; Lannering, Birgitta; Prochazka, Michaela; Schmidt, Lisbeth S; Feychting, Maria

    2016-01-01

    Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk. The study is based on the largest series of PBT cases to date. Saliva DNA from 245 cases and 489 controls, aged 7–19 years at diagnosis/reference date, was genotyped for 68 SNPs. Data were analyzed using unconditional logistic regression. The results showed EGFRrs730437 and EGFRrs11506105 may decrease susceptibility to PBTs, whereas ERCC1rs3212986 may increase risk of these tumors. Moreover, stratified analyses indicated CHAF1Ars243341, CHAF1Ars2992, and XRCC1rs25487 were associated with a decreased risk of astrocytoma subtype. Furthermore, an increased risk of non-astrocytoma subtype associated with EGFRrs9642393, EME1rs12450550, ATMrs170548, and GLTSCRrs1035938 as well as a decreased risk of this subtype associated with XRCC4rs7721416 and XRCC4rs2662242 were detected. This study indicates SNPs in EGFR, ERCC1, CHAF1A, XRCC1, EME1, ATM, GLTSCR1, and XRCC4 may be associated with the risk of PBTs. Therefore, cell cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways. PMID:27613841

  5. Association of genetic polymorphism of HLA-DRB1 antigens with the susceptibility to lepromatous leprosy

    PubMed Central

    ESCAMILLA-TILCH, MONICA; TORRES-CARRILLO, NORA MAGDALENA; PAYAN, ROSALIO RAMOS; AGUILAR-MEDINA, MARIBEL; SALAZAR, MA ISABEL; FAFUTIS-MORRIS, MARY; ARENAS-GUZMAN, ROBERTO; ESTRADA-PARRA, SERGIO; ESTRADA-GARCIA, IRIS; GRANADOS, JULIO

    2013-01-01

    Despite the introduction of multidrug therapy and the overall reduction of leprosy prevalence in Mexico, the disease remains endemic in certain regions of the country. A genetic basis for the immune susceptibility to Mycobacterium leprae has already been established in different populations worldwide. In this study, we investigated the possible association of the HLA-DRB1 alleles with leprosy in a Mexican Mestizo population. The results demonstrated that the HLA-DRB1*01 allele is associated with lepromatous and dimorphic leprosy [P<0.001, odds ratio (OR)=4.6, 95% confidence interval (95% CI): 1.8–11.4; and P=0.03, OR=6.2, 95% CI: 1.1–31.6, respectively] and the frequency of the HLA-DRB1*08 allele was found to be significantly lower among leprosy patients compared to controls (P=0.046, OR=2.4, 95% CI: 1–5.8). In conclusion, although the association of the HLA-DR locus with leprosy has been established in different populations and several studies have demonstrated significant differences in the DR alleles, this study demonstrated an association of the HLA-DRB1*01 allele with susceptibility to lepromatous and dimorphic leprosy, as well as an association of the HLA-DRB1*08 allele with protection against leprosy in a Mexican Mestizo population. PMID:24649058

  6. Differential Susceptibility: The Genetic Moderation of Peer Pressure on Alcohol Use

    PubMed Central

    Cleveland, H. Harrington; Schlomer, Gabriel L.; Vandenbergh, David J.; Feinberg, Mark E.

    2016-01-01

    Although peer pressure can influence adolescents’ alcohol use, individual susceptibility to these pressures varies across individuals. The dopamine receptor D4 gene (DRD4) is a potential candidate gene that may influence adolescents’ susceptibility to their peer environment due to the role dopamine plays in reward sensation during social interaction. We hypothesized that DRD4 genotype status would moderate the impact of 7th-grade antisocial peer pressure on 12th-grade lifetime alcohol use (n = 414; 58.7 % female; 92.8 % White). The results revealed significant main effects for antisocial peer pressure, but no main effects for DRD4 genotype on lifetime alcohol use. Adolescent DRD4 genotype moderated the association between peer pressure and lifetime alcohol use. For individuals who carried at least one copy of the DRD4 7-repeat allele (7+), antisocial peer pressure was associated with increased lifetime alcohol use. These findings indicate that genetic sensitivity to peer pressure confers increased alcohol use in late adolescence. PMID:26307243

  7. Evaluation of breast cancer susceptibility using improved genetic algorithms to generate genotype SNP barcodes.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2013-01-01

    Genetic association is a challenging task for the identification and characterization of genes that increase the susceptibility to common complex multifactorial diseases. To fully execute genetic studies of complex diseases, modern geneticists face the challenge of detecting interactions between loci. A genetic algorithm (GA) is developed to detect the association of genotype frequencies of cancer cases and noncancer cases based on statistical analysis. An improved genetic algorithm (IGA) is proposed to improve the reliability of the GA method for high-dimensional SNP-SNP interactions. The strategy offers the top five results to the random population process, in which they guide the GA toward a significant search course. The IGA increases the likelihood of quickly detecting the maximum ratio difference between cancer cases and noncancer cases. The study systematically evaluates the joint effect of 23 SNP combinations of six steroid hormone metabolisms, and signaling-related genes involved in breast carcinogenesis pathways were systematically evaluated, with IGA successfully detecting significant ratio differences between breast cancer cases and noncancer cases. The possible breast cancer risks were subsequently analyzed by odds-ratio (OR) and risk-ratio analysis. The estimated OR of the best SNP barcode is significantly higher than 1 (between 1.15 and 7.01) for specific combinations of two to 13 SNPs. Analysis results support that the IGA provides higher ratio difference values than the GA between breast cancer cases and noncancer cases over 3-SNP to 13-SNP interactions. A more specific SNP-SNP interaction profile for the risk of breast cancer is also provided.

  8. Genetic susceptibility to dental caries differs between the sexes: a family-based study.

    PubMed

    Shaffer, John R; Wang, Xiaojing; McNeil, Daniel W; Weyant, Robert J; Crout, Richard; Marazita, Mary L

    2015-01-01

    Many of the factors affecting susceptibility to dental caries are likely influenced by genetics. In fact, genetics accounts for up to 65% of inter-individual variation in dental caries experience. Sex differences in dental caries experience have been widely reported, with females usually exhibiting a higher prevalence and severity of disease across all ages. The cause for this sex bias is currently uncertain, although it may be partly due to the differential effects of genetic factors between the sexes: gene-by-sex interactions. In this family based study (N = 2,663; 740 families; ages 1-93 years), we assessed dental caries via intra-oral examination and generated six indices of caries experience (DMFS, dfs, and indices of both pit-and-fissure surface caries and smooth surface caries in both primary and permanent dentitions). We used likelihood-based methods to model the variance in caries experience conditional on the expected genetic sharing among relatives in our sample. This modeling framework allowed us to test two lines of evidence for gene-by-sex interactions: (1) whether the magnitude of the cumulative effect of genes differs between the sexes, and (2) whether different genes are involved. We observed significant evidence of gene-by-sex interactions for caries experience in both the primary and permanent dentitions. In the primary dentition, the magnitude of the effect of genes was greater in males than females. In the permanent dentition, different genes may play important roles in each of the sexes. Overall, this study provides the first direct evidence that sex differences in dental caries experiences may be explained, in part, by gene-by-sex interactions.

  9. Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase.

    PubMed

    Ortiz, Jorge G Muñiz; Opoka, Robert; Kane, Daniel; Cartwright, Iain L

    2009-02-01

    Chronic exposure to arsenic-contaminated drinking water can lead to a variety of serious pathological outcomes. However, differential responsiveness within human populations suggests that interindividual genetic variation plays an important role. We are using Drosophila to study toxic metal response pathways because of unrivalled access to varied genetic approaches and significant demonstrable overlap with many aspects of mammalian physiology and disease phenotypes. Genetic analysis (via chromosomal segregation and microsatellite marker-based recombination) of various wild-type strains exhibiting relative susceptibility or tolerance to the lethal toxic effects of arsenite identified a limited X-chromosomal region (16D-F) able to confer a differential response phenotype. Using an FRT-based recombination approach, we created lines harboring small, overlapping deficiencies within this region and found that relative arsenite sensitivity arose when the dose of the glutathione synthetase (GS) gene (located at 16F1) was reduced by half. Knockdown of GS expression by RNA interference (RNAi) in cultured S2 cells led to enhanced arsenite sensitivity, while GS RNAi applied to intact organisms dramatically reduced the concentration of food-borne arsenite compatible with successful growth and development. Our analyses, initially guided by observations on naturally occurring variants, provide genetic proof that an optimally functioning two-step glutathione (GSH) biosynthetic pathway is required in vivo for a robust defense against arsenite; the enzymatic implications of this are discussed in the context of GSH supply and demand under arsenite-induced stress. Given an identical pathway for human GSH biosynthesis, we suggest that polymorphisms in GSH biosynthetic genes may be an important contributor to differential arsenic sensitivity and exposure risk in human populations.

  10. Hypobaric hypoxia in ascites resistant and susceptible broiler genetic lines influences gut morphology.

    PubMed

    de los, Santos F Solis; Tellez, G; Farnell, M B; Balog, J M; Anthony, N B; Pavlidis, H O; Donoghue, A M

    2005-09-01

    Genetic selection based on rapid growth rates, improved feed conversion, and increased body weights has led to a predisposition to ascites in broiler populations. Sire-family selection was applied to a commercial elite line to produce divergent lines of ascites-resistant (RES) and ascites-susceptible (SUS) broilers by the 8th generation. One objective of this research was to determine the effects of hypobaric hypoxia on gut morphology in these genetic lines. In two separate trials, pedigree broiler chickens were randomly assigned to cages in a hypobaric chamber (simulated 2,900 m above sea level) or a matching local altitude chamber (390 m above sea level). Ascites incidence was characterized by heart enlargement and fluid accumulation in the abdominal cavity. At the end of the study on d 42, all surviving birds were killed and evaluated for the presence of ascites and 2-cm sections from the duodenum and lower ileum were collected from 5 chickens per line, per altitude for each trial for morphometric analysis. At a high altitude, ascites incidence was lower in the RES line (20.9 and 3.7%) than in the SUS line (86.4 and 66.9%, Trials 1 and 2, respectively). No ascites was observed at a local altitude. Under hypoxic conditions, duodenum villus surface area was higher (P < 0.05) in the RES line (181.3 +/- 16.8 and 219 +/- 10.9 microm) compared with the SUS line (130.1 +/- 10.5 and 134.3 +/- 9.3 microm; Trials 1 and 2, respectively). No differences in ileum villus morphology were observed for any of the parameters measured. The reduced surface area in the duodenum of birds selected for ascites susceptibility suggests reduced enteric function and may provide clues as to why these birds have increased incidence of ascites.

  11. Convergent Genetic and Expression Datasets Highlight TREM2 in Parkinson's Disease Susceptibility.

    PubMed

    Liu, Guiyou; Liu, Yongquan; Jiang, Qinghua; Jiang, Yongshuai; Feng, Rennan; Zhang, Liangcai; Chen, Zugen; Li, Keshen; Liu, Jiafeng

    2016-09-01

    A rare TREM2 missense mutation (rs75932628-T) was reported to confer a significant Alzheimer's disease (AD) risk. A recent study indicated no evidence of the involvement of this variant in Parkinson's disease (PD). Here, we used the genetic and expression data to reinvestigate the potential association between TREM2 and PD susceptibility. In stage 1, using 10 independent studies (N = 89,157; 8787 cases and 80,370 controls), we conducted a subgroup meta-analysis. We identified a significant association between rs75932628 and PD (P = 3.10E-03, odds ratio (OR) = 3.88, 95 % confidence interval (CI) 1.58-9.54) in No-Northern Europe subgroup, and significantly increased PD risks (P = 0.01 for Mann-Whitney test) in No-Northern Europe subgroup than in Northern Europe subgroup. In stage 2, we used the summary results from a large-scale PD genome-wide association study (GWAS; N = 108,990; 13,708 cases and 95,282 controls) to search for other TREM2 variants contributing to PD susceptibility. We identified 14 single-nucleotide polymorphisms (SNPs) associated with PD within 50-kb upstream and downstream range of TREM2. In stage 3, using two brain expression GWAS datasets (N = 773), we identified 6 of the 14 SNPs regulating increased expression of TREM2. In stage 4, using the whole human genome microarray data (N = 50), we further identified significantly increased expression of TREM2 in PD cases compared with controls in human prefrontal cortex. In summary, convergent genetic and expression datasets demonstrate that TREM2 is a potent risk factor for PD and may be a therapeutic target in PD and other neurodegenerative diseases.

  12. The genetic profile of susceptibility to infectious diseases in Roman-Period populations from Central Poland.

    PubMed

    Lewandowska, Magda; Jędrychowska-Dańska, Krystyna; Zamerska, Alicja; Płoszaj, Tomasz; Witas, Henryk W

    2017-01-01

    For thousands of years human beings have resisted life-threatening pathogens. This ongoing battle is considered to be the major force shaping our gene pool as every micro-evolutionary process provokes specific shifts in the genome, both that of the host and the pathogen. Past populations were more susceptible to changes in allele frequencies not only due to selection pressure, but also as a result of genetic drift, migration and inbreeding. In the present study we have investigated the frequency of five polymorphisms within innate immune-response genes (SLC11A1 D543N, MBL2 G161A, P2RX7 A1513C, IL10 A-1082G, TLR2 -196 to -174 ins/del) related to susceptibility to infections in humans. The DNA of individuals from two early Roman-Period populations of Linowo and Rogowo was analysed. The distribution of three mutations varied significantly when compared to the modern Polish population. The TAFT analysis suggests that the decreased frequency of SLC11A1 D543N in modern Poles as compared to 2nd century Linowo samples is the result of non-stochastic mechanisms, such as purifying or balancing selection. The disparity in frequency of other mutations is most likely the result of genetic drift, an evolutionary force which is remarkably amplified in low-size groups. Together with the FST analysis, mtDNA haplotypes' distribution and deviation from the Hardy-Weinberg equilibrium, we suggest that the two populations were not interbreeding (despite the close proximity between them), but rather inbreeding, the results of which are particularly pronounced among Rogowo habitants.

  13. Genetic variants of eNOS gene may modify the susceptibility to idiopathic male infertility.

    PubMed

    Ying, Hou-Qun; Pu, Xiao-Ying; Liu, Shuo-Ran; A, Zhou-Cun

    2013-08-01

    In testis, eNOS is responsible for synthesis of nitric oxide (NO) which is an essential gas message regulator in spermatogenesis, suggesting that eNOS gene plays a role in normal spermatogenesis and the genetic variants of eNOS gene may be potential genetic risk factors of spermatogenesis impairment. In this study, the polymorphic distributions of three common polymorphism loci including T-786C, 4A4B and G894T in eNOS gene were investigated in 355 Chinese infertile patients with azoospermia or oligozoospermia and 246 healthy fertile men and a meta-analysis was carried in order to explore the possible relationship between the three loci of eNOS gene and male infertility with spermatogenesis impairment. As a result, allele -786C of T-786C (11.4% versus 6.5%, p = 0.004) and 4A of 4A4B (11.0% versus 6.3%, p = 0.005) as well as genotype TC of T-786C (22.8% versus 13.0%, p = 0.002) and AB of 4A4B (18% versus 11%, p = 0.015) were significantly associated with idiopathic male infertility. The haplotypes T-4A-G (7.4% versus 4.1%, p = 0.015) and C-4B-G (7.6% versus 4.4%, p = 0.028) could increase the susceptibility to male infertility, whereas haplotype T-4B-G (67.0% versus 75.2%, p = 0.002) might be a protective factor for male infertility. The results of meta-analysis revealed that the polymorphism of T-786C was associated with male infertility. These findings suggested that the variants of eNOS gene may modify the susceptibility to male infertility with impaired spermatogenesis.

  14. Extended biofilm susceptibility assay for Staphylococcus aureus bovine mastitis isolates: evidence for association between genetic makeup and biofilm susceptibility.

    PubMed

    Melchior, M B; van Osch, M H J; Lam, T J G M; Vernooij, J C M; Gaastra, W; Fink-Gremmels, J

    2011-12-01

    Staphylococcus aureus is one of the most prevalent causes of bovine mastitis. The antimicrobial treatment of this disease is currently based on antimicrobial susceptibility tests according to Clinical and Laboratory Standards Institute standards. However, various authors have shown a discrepancy between the results of this standard susceptibility test and the actual cure rate of the applied antimicrobial treatment. Increasing evidence suggests that in vivo biofilm formation by Staph. aureus, which is not assessed in the antimicrobial susceptibility tests, is associated with this problem, resulting in disappointing cure rates, especially for infections of longer duration. Previous data obtained with a limited number of strains showed that the extended biofilm antimicrobial susceptibility (EBS) assay reveals differences between strains, which cannot be derived from a standard susceptibility test or from a 24-h biofilm susceptibility test. The objective of this study was to test a collection of Staph. aureus bovine mastitis strains in the EBS assay and to model the effect of antimicrobial exposure, duration of antimicrobial exposure, and genotype profile of the strains on antimicrobial susceptibility. With the results from a previous study with the same collection of strains, the effect of genotype represented by accessory gene regulator gene (agr-type), the presence of insertional sequence 257 (IS257), intercellular adhesion (ica), and the β-lactamase (blaZ) gene were entered as explanatory factors in a logistic regression model. The agr locus of Staph. aureus controls the expression of most of the virulence factors, represses the transcription of several cell wall-associated proteins, and activates several exoproteins during the post-exponential phase. The IS257 gene has been related to biofilm formation in vitro and was found earlier in 50% of the agr-type 2 strains. The ica gene cluster encodes for the production of an extracellular polysaccharide adhesin, termed

  15. Ozone exposure, vitamin C intake, and genetic susceptibility of asthmatic children in Mexico City: a cohort study

    PubMed Central

    2013-01-01

    Background We previously reported that asthmatic children with GSTM1 null genotype may be more susceptible to the acute effect of ozone on the small airways and might benefit from antioxidant supplementation. This study aims to assess the acute effect of ozone on lung function (FEF25-75) in asthmatic children according to dietary intake of vitamin C and the number of putative risk alleles in three antioxidant genes: GSTM1, GSTP1 (rs1695), and NQO1 (rs1800566). Methods 257 asthmatic children from two cohort studies conducted in Mexico City were included. Stratified linear mixed models with random intercepts and random slopes on ozone were used. Potential confounding by ethnicity was assessed. Analyses were conducted under single gene and genotype score approaches. Results The change in FEF25-75 per interquartile range (60 ppb) of ozone in persistent asthmatic children with low vitamin C intake and GSTM1 null was −91.2 ml/s (p = 0.06). Persistent asthmatic children with 4 to 6 risk alleles and low vitamin C intake showed an average decrement in FEF25-75 of 97.2 ml/s per 60 ppb of ozone (p = 0.03). In contrast in children with 1 to 3 risk alleles, acute effects of ozone on FEF25-75 did not differ by vitamin C intake. Conclusions Our results provide further evidence that asthmatic children predicted to have compromised antioxidant defense by virtue of genetic susceptibility combined with deficient antioxidant intake may be at increased risk of adverse effects of ozone on pulmonary function. PMID:23379631

  16. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance

    PubMed Central

    Sardi, Maria; Rovinskiy, Nikolay; Zhang, Yaoping

    2016-01-01

    ABSTRACT A major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast) strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms. IMPORTANCE Recent studies on natural variation within Saccharomyces cerevisiae have uncovered substantial phenotypic diversity. Here, we took advantage of this diversity, using it as a tool to

  17. Host Genetic Factors Affect Susceptibility to Norovirus Infections in Burkina Faso

    PubMed Central

    Nordgren, Johan; Nitiema, Léon W.; Ouermi, Djeneba; Simpore, Jacques; Svensson, Lennart

    2013-01-01

    Norovirus (NoV) constitutes the second most common viral pathogen causing pediatric diarrhea after rotavirus. In Africa, diarrhea is a major health problem in children, and yet few studies have been performed regarding NoV. The association of histo-blood group antigens (HBGA) and susceptibility to NoV infection is well established in Caucasian populations with non-secretors being resistant to many common NoV strains. No study regarding HBGA and NoV susceptibility has yet been performed in Africa. We collected 309 stool and 208 saliva samples from diarrheal children in Ouagadougou, Burkina Faso; May 2009 to March 2010. NoV was detected using real-time PCR, and genotyped by sequencing. Saliva samples were ABO, Lewis and secretor phenotyped using in house ELISA assays. NoV was detected in 12% (n = 37) of the samples. The genotype diversity was unusually large; overall the 37 positive samples belonged to 14 genotypes. Only children <2 years of age were NoV positive and the GII.4 NoVs were more frequent in the late dry season (Jan-May). NoV infections were observed less in children with the secretor-negative phenotype or blood group A (OR 0.18; p = 0.012 and OR 0.31; p = 0.054; respectively), with two non-secretors infected with genotypes GII.7 and GII.4 respectively. Lewis-negative (Lea−b−) children, representing 32% of the study population, were susceptible to GII, but were not infected with any NoV GI. GII.4 strains preferentially infected children with blood group B whereas secretor-positive children with blood group O were infected with the largest variety of genotypes. This is the first study identifying host genetic factors associated with susceptibility to NoV in an African population, and suggests that while the non-secretor phenotype provides protection; the Lewis b antigen is not necessary for GII infection. PMID:23894502

  18. Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia.

    PubMed

    Kumar, Vinod; Cheng, Shih-Chin; Johnson, Melissa D; Smeekens, Sanne P; Wojtowicz, Agnieszka; Giamarellos-Bourboulis, Evangelos; Karjalainen, Juha; Franke, Lude; Withoff, Sebo; Plantinga, Theo S; van de Veerdonk, Frank L; van der Meer, Jos W M; Joosten, Leo A B; Sokol, Harry; Bauer, Hermann; Herrmann, Bernhard G; Bochud, Pierre-Yves; Marchetti, Oscar; Perfect, John R; Xavier, Ramnik J; Kullberg, Bart Jan; Wijmenga, Cisca; Netea, Mihai G

    2014-09-08

    Candidaemia is the fourth most common cause of bloodstream infection, with a high mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we hypothesize that variation in immune genes may predispose to candidaemia. We analyse 118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of European ancestry and a group of 11,920 controls. We validate the significant associations by comparison with a disease-matched control group. We observe significant association between candidaemia and SNPs in the CD58 (P = 1.97 × 10(-11); odds ratio (OR) = 4.68), LCE4A-C1orf68 (P = 1.98 × 10(-10); OR = 4.25) and TAGAP (P = 1.84 × 10(-8); OR = 2.96) loci. Individuals carrying two or more risk alleles have an increased risk for candidaemia of 19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic risk factors for candidaemia, which we subsequently validate for their role in antifungal host defence.

  19. Genetic susceptibility to heroin addiction; a candidate-gene association study

    PubMed Central

    Levran, O.; Londono, D.; O’Hara, K.; Nielsen, D. A.; Peles, E.; Rotrosen, J.; Casadonte, P.; Linzy, S.; Randesi, M.; Ott, J.; Adelson, M.; Kreek, M. J.

    2010-01-01

    Heroin addiction is a chronic complex disease with a substantial genetic contribution. This study was designed to identify genetic variants that are associated with susceptibility to develop heroin addiction, by analyzing 1350 variants in 130 candidate genes. All subjects had Caucasian ancestry. The sample consisted of 412 former severe heroin addicts in methadone treatment, and 184 healthy controls with no history of drug abuse. Nine variants, in six genes, showed the lowest nominal P values in the association tests (P < 0.01). These variants were in non-coding regions of the genes encoding the mu (OPRM1; rs510769, rs3778151), kappa (OPRK1; rs6473797), and delta opioid receptors, (OPRD1; rs2236861, rs2236857 and rs3766951), the neuropeptide galanin (GAL; rs694066), the serotonin receptor subtype 3B (HTR3B; rs3758987) and the casein kinase 1 isoform epsilon (CSNK1E; rs1534891). Several haplotypes and multi-locus genotype patterns showed nominally significant associations (e.g. OPRM1; P = 0.0006 and CSNK1E; P = 0.0007). Analysis of a combined effect of OPRM1 and OPRD1 showed that rs510769 and rs2236861 increase the risk of heroin addiction (P = 0.0005). None of these associations remained significant after adjustment for multiple testing. This study suggests the involvement of several genes and variants in heroin addiction that is worthy of future study. PMID:18518925

  20. Physician exposure to and attitudes toward advertisements for genetic tests for inherited cancer susceptibility.

    PubMed

    Vadaparampil, Susan Thomas; Wideroff, Louise; Olson, Lorayn; Viswanath, K; Freedman, Andrew N

    2005-05-15

    Commercial marketing materials may serve as a source of information for physicians about genetic testing for inherited cancer susceptibility (GTICS) in addition to medical guidelines, continuing education, and journal articles. The primary purposes of this study were to: (1) determine the percentage of physicians who received advertisements for GTICS early in the diffusion of commercial GTICS (1999-2000); (2) assess associated characteristics; and (3) measure the perceived importance of commercial advertisements and promotions in physicians' decisions to recommend testing to patients. A nationally representative, stratified random sample of 1,251 physicians from the American Medical Association (AMA) Physician Masterfile completed a 15-20 min mixed mode questionnaire that assessed specialty, previous use of genetic tests, practice characteristics, age, and receipt of advertising materials (response rate = 71%). Overall, 27.4% (n = 426) had received advertisements. In multivariate analysis, factors associated with receipt of advertisements included: specialties in obstetrics/gynecology, oncology, or gastroenterology; past GTICS use, and age 50+. One of four felt that advertisements would be important in their decision to recommend GTICS. Study results indicate that physicians, particularly in oncology, obstetrics/gynecology, and gastroenterology, began receiving GTICS advertisements commensurate with the early diffusion of commercially available tests into clinical practice. At that time, one-quarter of the physicians considered advertisements to play an important role in their clinical decision making, suggesting attention to other sources of information and additional factors.

  1. The Behavioral Consequence of Phenylketonuria in Mice Depends on the Genetic Background.

    PubMed

    Bruinenberg, Vibeke M; van der Goot, Els; van Vliet, Danique; de Groot, Martijn J; Mazzola, Priscila N; Heiner-Fokkema, M Rebecca; van Faassen, Martijn; van Spronsen, Francjan J; van der Zee, Eddy A

    2016-01-01

    To unravel the role of gene mutations in the healthy and the diseased state, countless studies have tried to link genotype with phenotype. However, over the years, it became clear that the strain of mice can influence these results. Nevertheless, identical gene mutations in different strains are often still considered equals. An example of this, is the research done in phenylketonuria (PKU), an inheritable metabolic disorder. In this field, a PKU mouse model (either on a BTBR or C57Bl/6 background) is often used to examine underlying mechanisms of the disease and/or new treatment strategies. Both strains have a point mutation in the gene coding for the enzyme phenylalanine hydroxylase which causes toxic concentrations of the amino acid phenylalanine in blood and brain, as found in PKU patients. Although the mutation is identical and therefore assumed to equally affect physiology and behavior in both strains, no studies directly compared the two genetic backgrounds to test this assumption. Therefore, this study compared the BTBR and C57Bl/6 wild-type and PKU mice on PKU-relevant amino acid- and neurotransmitter-levels and at a behavioral level. The behavioral paradigms were selected from previous literature on the PKU mouse model and address four domains, namely (1) activity levels, (2) motor performance, (3) anxiety and/or depression-like behavior, and (4) learning and memory. The results of this study showed comparable biochemical changes in phenylalanine and neurotransmitter concentrations. In contrast, clear differences in behavioral outcome between the strains in all four above-mentioned domains were found, most notably in the learning and memory domain. The outcome in this domain seem to be primarily due to factors inherent to the genetic background of the mouse and much less by differences in PKU-specific biochemical parameters in blood and brain. The difference in behavioral outcome between PKU of both strains emphasizes that the consequence of the PAH

  2. The Behavioral Consequence of Phenylketonuria in Mice Depends on the Genetic Background

    PubMed Central

    Bruinenberg, Vibeke M.; van der Goot, Els; van Vliet, Danique; de Groot, Martijn J.; Mazzola, Priscila N.; Heiner-Fokkema, M. Rebecca; van Faassen, Martijn; van Spronsen, Francjan J.; van der Zee, Eddy A.

    2016-01-01

    To unravel the role of gene mutations in the healthy and the diseased state, countless studies have tried to link genotype with phenotype. However, over the years, it became clear that the strain of mice can influence these results. Nevertheless, identical gene mutations in different strains are often still considered equals. An example of this, is the research done in phenylketonuria (PKU), an inheritable metabolic disorder. In this field, a PKU mouse model (either on a BTBR or C57Bl/6 background) is often used to examine underlying mechanisms of the disease and/or new treatment strategies. Both strains have a point mutation in the gene coding for the enzyme phenylalanine hydroxylase which causes toxic concentrations of the amino acid phenylalanine in blood and brain, as found in PKU patients. Although the mutation is identical and therefore assumed to equally affect physiology and behavior in both strains, no studies directly compared the two genetic backgrounds to test this assumption. Therefore, this study compared the BTBR and C57Bl/6 wild-type and PKU mice on PKU-relevant amino acid- and neurotransmitter-levels and at a behavioral level. The behavioral paradigms were selected from previous literature on the PKU mouse model and address four domains, namely (1) activity levels, (2) motor performance, (3) anxiety and/or depression-like behavior, and (4) learning and memory. The results of this study showed comparable biochemical changes in phenylalanine and neurotransmitter concentrations. In contrast, clear differences in behavioral outcome between the strains in all four above-mentioned domains were found, most notably in the learning and memory domain. The outcome in this domain seem to be primarily due to factors inherent to the genetic background of the mouse and much less by differences in PKU-specific biochemical parameters in blood and brain. The difference in behavioral outcome between PKU of both strains emphasizes that the consequence of the PAH

  3. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    SciTech Connect

    Mortensen, Holly M.; Euling, Susan Y.

    2013-09-15

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.

  4. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5)

    PubMed Central

    Walters, Dianne M.; White, Kevin M.; Patel, Ushma; Davis, Martin J.; Veluci-Marlow, Roberta M.; Bhupanapadu Sunkesula, Solomon Raju; Bonner, James C.; Martin, Jessica R.; Gladwell, Wes; Kleeberger, Steven R.

    2014-01-01

    Interstitial lung diseases (ILDs) are characterized by injury, inflammation, and scarring of alveoli, leading to impaired function. The etiology of idiopathic forms of ILD is not understood, making them particularly difficult to study due to the lack of appropriate animal models. Consequently, few effective therapies have emerged. We developed an inbred mouse model of ILD using vanadium pentoxide (V2O5), the most common form of a transition metal found in cigarette smoke, fuel ash, mineral ores, and steel alloys. Pulmonary responses to V2O5, including dose-dependent increases in lung permeability, inflammation, collagen content, and dysfunction, were significantly greater in DBA/2J mice compared to C57BL/6J mice. Inflammatory and fibrotic responses persisted for 4 mo in DBA/2J mice, while limited responses in C57BL/6J mice resolved. We investigated the genetic basis for differential responses through genetic mapping of V2O5-induced lung collagen content in BXD recombinant inbred (RI) strains and identified significant linkage on chromosome 4 with candidate genes that associate with V2O5-induced collagen content across the RI strains. Results suggest that V2O5 may induce pulmonary fibrosis through mechanisms distinct from those in other models of pulmonary fibrosis. These findings should further advance our understanding of mechanisms involved in ILD and thereby aid in identification of new therapeutic targets.—Walters, D. M., White, K. M., Patel, U., Davis, M. J., Veluci-Marlow, R. M., Bhupanapadu Sunkesula, S. R., Bonner, J. C., Martin, J. R., Gladwell, W., Kleeberger, S. R. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5). PMID:24285090

  5. Nutritional status, genetic susceptibility, and insulin resistance--important precedents to atherosclerosis.

    PubMed

    McGillicuddy, Fiona C; Roche, Helen M

    2012-07-01

    Atherosclerosis is a progressive disease that starts early in life and is manifested clinically as coronary artery disease (CAD), cerebrovascular disease, or peripheral artery disease. CAD remains the leading cause of morbidity and mortality in Western society despite the great advances made in understanding its underlying pathophysiology. The key risk factors associated with CAD include hypercholesterolemia, hypertension, poor diet, obesity, age, male gender, smoking, and physical inactivity. Genetics also play an important role that may interact with environmental factors, including diet, nutritional status, and physiological parameters. Furthermore, certain chronic inflammatory conditions also predispose to the development of CAD. The spiraling increase in obesity rates worldwide has made it more pertinent than ever before to understand the metabolic perturbations that link over nutrition to enhanced cardiovascular risk. Great breakthroughs have been made at the pharmacological level to manage CAD; statins and aspirin have revolutionized treatment of CAD and prolonged lifespan. Nonetheless, lifestyle intervention prior to clinical presentation of CAD symptoms would negate/delay the need for chronic pharmacotherapy in at-risk individuals which in turn would relieve healthcare systems of a costly burden. Throughout this review, we debate the relative impact of nutrition versus genetics in driving CAD. We will investigate how overnutrition affects adipose tissue biology and drives IR and will discuss the subsequent implications for the cardiovascular system. Furthermore, we will discuss how lifestyle interventions including diet modification and weight loss can improve both IR and metabolic dyslipidemia that is associated with obesity. We will conclude by delving into the concept that nutritional status interacts with genetic susceptibility, such that perhaps a more personalized nutrition approach may be more effective in determining diet-related risk as well as

  6. Public interest in predictive genetic testing, including direct-to-consumer testing, for susceptibility to major depression: preliminary findings.

    PubMed

    Wilde, Alex; Meiser, Bettina; Mitchell, Philip B; Schofield, Peter R

    2010-01-01

    The past decade has seen rapid advances in the identification of associations between candidate genes and a range of common multifactorial disorders. This paper evaluates public attitudes towards the complexity of genetic risk prediction in psychiatry involving susceptibility genes, uncertain penetrance and gene-environment interactions on which successful molecular-based mental health interventions will depend. A qualitative approach was taken to enable the exploration of the views of the public. Four structured focus groups were conducted with a total of 36 participants. The majority of participants indicated interest in having a genetic test for susceptibility to major depression, if it was available. Having a family history of mental illness was cited as a major reason. After discussion of perceived positive and negative implications of predictive genetic testing, nine of 24 participants initially interested in having such a test changed their mind. Fear of genetic discrimination and privacy issues predominantly influenced change of attitude. All participants still interested in having a predictive genetic test for risk for depression reported they would only do so through trusted medical professionals. Participants were unanimously against direct-to-consumer genetic testing marketed through the Internet, although some would consider it if there was suitable protection against discrimination. The study highlights the importance of general practitioner and public education about psychiatric genetics, and the availability of appropriate treatment and support services prior to implementation of future predictive genetic testing services.

  7. Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects

    PubMed Central

    Lucanic, Mark; Plummer, W. Todd; Chen, Esteban; Harke, Jailynn; Foulger, Anna C.; Onken, Brian; Coleman-Hulbert, Anna L.; Dumas, Kathleen J.; Guo, Suzhen; Johnson, Erik; Bhaumik, Dipa; Xue, Jian; Crist, Anna B.; Presley, Michael P.; Harinath, Girish; Sedore, Christine A.; Chamoli, Manish; Kamat, Shaunak; Chen, Michelle K.; Angeli, Suzanne; Chang, Christina; Willis, John H.; Edgar, Daniel; Royal, Mary Anne; Chao, Elizabeth A.; Patel, Shobhna; Garrett, Theo; Ibanez-Ventoso, Carolina; Hope, June; Kish, Jason L; Guo, Max; Lithgow, Gordon J.; Driscoll, Monica; Phillips, Patrick C.

    2017-01-01

    Limiting the debilitating consequences of ageing is a major medical challenge of our time. Robust pharmacological interventions that promote healthy ageing across diverse genetic backgrounds may engage conserved longevity pathways. Here we report results from the Caenorhabditis Intervention Testing Program in assessing longevity variation across 22 Caenorhabditis strains spanning 3 species, using multiple replicates collected across three independent laboratories. Reproducibility between test sites is high, whereas individual trial reproducibility is relatively low. Of ten pro-longevity chemicals tested, six significantly extend lifespan in at least one strain. Three reported dietary restriction mimetics are mainly effective across C. elegans strains, indicating species and strain-specific responses. In contrast, the amyloid dye ThioflavinT is both potent and robust across the strains. Our results highlight promising pharmacological leads and demonstrate the importance of assessing lifespans of discrete cohorts across repeat studies to capture biological variation in the search for reproducible ageing interventions. PMID:28220799

  8. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds.

    PubMed

    Nilthong, Somrudee; Graybosch, R A; Baenziger, P S

    2012-12-01

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS markers, PPO18, PPO29 and STS01, were used to identify lines with putative alleles at the Ppo-A1 and Ppo-D1 loci conditioning low or high PPO activity. ANOVA showed significant genotypic effects on PPO activity (P < 0.0001) in all populations. The generations and generation × genotype effects were not significant in any population. A putative third (null) genotype at Ppo-A1 (no PCR fragments for PPO18) was discovered in NW07OR1066 and NW07OR1070 derived populations, and these had the lowest mean PPO activities. Results demonstrated that both Ppo-A1 and Ppo-D1 loci affect the kernel PPO activity, but the Ppo-A1 has the major effect. In three populations, contrary results were observed to those predicted from previous work with Ppo-D1 alleles, suggesting the markers for Ppo-D1 allele might give erroneous results in some genetic backgrounds or lineages. Results suggest that selection for low or null alleles only at Ppo-A1 might allow development of low PPO wheat cultivars.

  9. SAP modulates B cell functions in a genetic background-dependent manner.

    PubMed

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients.

  10. Genetic Variants in Toll-Like Receptors Are Not Associated with Rheumatoid Arthritis Susceptibility or Anti-Tumour Necrosis Factor Treatment Outcome

    PubMed Central

    Barrera, Pilar; Schijvenaars, Mascha M. V. A. P.; Toonen, Erik J. M.; Scheffer, Hans; Padyukov, Leonid; Kastbom, Alf; Klareskog, Lars; Barton, Anne; Kievit, Wietske; Rood, Maarten J.; Jansen, Tim L.; Swinkels, Dorine; van Riel, Piet L. C. M.; Franke, Barbara; Bendtzen, Klaus; Radstake, Timothy R. D. J.

    2010-01-01

    Background Several studies point to a role of Toll-like receptors (TLRs) in the development of rheumatoid arthritis (RA). We investigated if genetic variants in TLR genes are associated with RA and response to tumour necrosis factor blocking (anti-TNF) medication. Methodology and Principal Findings 22 single nucleotide polymorphisms (SNPs) in seven TLR genes were genotyped in a Dutch cohort consisting of 378 RA patients and 294 controls. Significantly associated variants were investigated in replication cohorts from The Netherlands, United Kingdom and Sweden (2877 RA patients and 2025 controls). 182 of the Dutch patients were treated with anti-TNF medication. Using these patients and a replication cohort (269 Swedish patients) we analysed if genetic variants in TLR genes were associated with anti-TNF outcome. In the discovery phase of the study we found a significant association of SNPs rs2072493 in TLR5 and rs3853839 in TLR7 with RA disease susceptibility. Meta-analysis of discovery and replication cohorts did not confirm these findings. SNP rs2072493 in TLR5 was associated with anti-TNF outcome in the Dutch but not in the Swedish population. Conclusion We conclude that genetic variants in TLRs do not play a major role in susceptibility for developing RA nor in anti-TNF treatment outcome in a Caucasian population. PMID:21179534

  11. Cytogenetic effects from exposure to mixed pesticides and the influence from genetic susceptibility.

    PubMed Central

    Au, W W; Sierra-Torres, C H; Cajas-Salazar, N; Shipp, B K; Legator, M S

    1999-01-01

    Exposure to pesticides remains a major environmental health problem. Health risk from such exposure needs to be more precisely understood. We conducted three different cytogenetic assays to elucidate the biological effects of exposure to mixed pesticides in 20 Costa Rica farmers (all nonsmokers) compared with 20 matched controls. The farmers were also exposed to dibromochloropropane during the early employment years, and most of them experienced sterility/fertility problems. Our data show that the farmers had consistently higher frequencies of chromosome aberrations, as determined by the standard chromosome aberration assay, and significantly abnormal DNA repair responses (p < 0.05), as determined by the challenge assay, but no statistically significant differences in the tandem-probe fluorescence in situ hybridization (FISH) assay (p > 0.05). Genotype analysis indicates that farmers with certain "unfavorable" versions of polymorphic metabolizing genes (cytochrome P4502E1, the glutathione S-transferases mu and theta, and the paraoxonase genes) had significantly more biological effects, as determined by all three cytogenetic assays, than both the farmers with the "favorable" alleles and the matched controls. A unique observation is that, in individuals who had inherited any of the mentioned "unfavorable" alleles, farmers were consistently underrepresented. In conclusion, the Costa Rican farmers were exposed to genotoxic agents, most likely pesticides, which expressed the induction of biological and adverse health effects. The farmers who had inherited "unfavorable" metabolizing alleles were more susceptible to genotoxic effects than those with "favorable" alleles. Our genotype data suggest that the well-recognized "healthy worker effect" may be influenced by unrecognized occupational selection pressure against genetically susceptible individuals. Images Figure 1 PMID:10339452

  12. Genetic Association Between CDKN1B rs2066827 Polymorphism and Susceptibility to Cancer

    PubMed Central

    Lu, Yongchao; Gao, Kejian; Zhang, Miao; Zhou, Aiyan; Zhou, Xiaoming; Guan, Zhongan; Shi, Xuewen; Ge, Shujian

    2015-01-01

    Abstract Much attention has been directed to the association between cancer risk and rs2066827 polymorphism of the CDKN1B gene. However, the results are indefinitive and inconclusive. This study was devised to evaluate the hypothesis that rs2066827 polymorphism is associated with the risk of cancer. Computer-based databases (EMBASE, PubMed, and CNKI) were used to seek all case–control studies evaluating rs2066827 polymorphism and susceptibility to cancer. The genetic risk was assessed by calculating pooled odds ratio (OR) with its corresponding 95% confidence interval (CI). Fixed-effects pooled ORs were calculated by the Mantel–Haenszel method (Ph > 0.05), and random-effects pooled ORs were estimated by the DerSimonian–Laird method (Ph < 0.05). Data on rs2066827 polymorphism and cancer risk were available for 9038 cancer cases and 11,596 controls participating in 17 studies. Carriage of a TG genotype was associated with a minor but significant decrease in the risk of cancer (pooled OR 0.92, 95% CI: 0.86–0.99; model, TG vs. TT). We observed a moderately decreased risk of ovarian cancer based on 1829 cases and 2868 controls (pooled OR 0.85, 95% CI: 0.74–0.97; model, TG vs. TT). A slightly deceased risk of cancer was also indicated in Caucasians consisting of 6707 cases and 8279 controls (pooled OR 0.91, 95% CI: 0.85–0.98; model, TG vs. TT). These data suggest that carriage of a TG genotype at rs2066827 polymorphism may be associated with decreased susceptibility to cancer, ovarian cancer in particular. PMID:26579796

  13. Genetic variation in IGF1 predicts renal cell carcinoma susceptibility and prognosis in Chinese population

    PubMed Central

    Cao, Qiang; Liang, Chao; Xue, Jianxin; Li, Pu; Li, Jie; Wang, Meilin; Zhang, Zhengdong; Qin, Chao; Lu, Qiang; Hua, Lixin; Shao, Pengfei; Wang, Zengjun

    2016-01-01

    Insulin-like growth factor 1 (IGF1) and IGF binding protein 3 (IGFBP3) play an important role in the development and progression of renal cell carcinoma (RCC). We evaluated the association of functional polymorphisms in IGF1 and IGFBP3 with susceptibility and prognosis of RCC. We genotyped nine potentially functional polymorphisms in IGF1 and IGFBP3 and assessed their association with risk of RCC in a two-stage case-control study compromising 1027 cases and 1094 controls, and with prognosis in a cohort of 311 patients. We found rs5742714 in the 3′-UTR of IGF1 was significantly associated with risk and prognosis of RCC. In the combined set, the rs5742714 GC/CC genotypes were significantly associated with decreased risk of RCC compared with the GG genotype (OR = 0.82; 95% CI = 0.68–0.98, P = 0.002). Furthermore, patients with the rs5742714 GC/CC genotypes showed improved survival than those with the GG genotype (Log-rank P = 0.025, HR = 0.36, 95% CI = 0.14–0.93). Besides, the rs5742714 GC/CC genotypes were associated with significantly decreased expression of IGF1 mRNA and lower IGF1 serum levels. Moreover, the luciferase reporter assays revealed the potential effect of rs5742714 genotype on the binding of microRNAs to IGF1. Our findings suggest that the IGF1 polymorphism rs5742714 may be a genetic predictor of susceptibility and prognosis of RCC. PMID:27976731

  14. MeCP2 Related Studies Benefit from the Use of CD1 as Genetic Background

    PubMed Central

    Cobolli Gigli, Clementina; Scaramuzza, Linda; Gandaglia, Anna; Bellini, Elisa; Gabaglio, Marina; Parolaro, Daniela; Kilstrup-Nielsen, Charlotte; Bedogni, Francesco

    2016-01-01

    MECP2 mutations cause a number of neurological disorders of which Rett syndrome (RTT) represents the most thoroughly analysed condition. Many Mecp2 mouse models have been generated through the years; their validity is demonstrated by the presence of a broad spectrum of phenotypes largely mimicking those manifested by RTT patients. These mouse models, between which the C57BL/6 Mecp2tm1.1Bird strain probably represents the most used, enabled to disclose much of the roles of Mecp2. However, small litters with little viability and poor maternal care hamper the maintenance of the colony, thus limiting research on such animals. For this reason, past studies often used Mecp2 mouse models on mixed genetic backgrounds, thus opening questions on whether modifier genes could be responsible for at least part of the described effects. To verify this possibility, and facilitate the maintenance of the Mecp2 colony, we transferred the Mecp2tm1.1Bird allele on the stronger CD1 background. The CD1 strain is easier to maintain and largely recapitulates the phenotypes already described in Mecp2-null mice. We believe that this mouse model will foster the research on RTT. PMID:27097329

  15. Strain-specific nuclear genetic background differentially affects mitochondria-related phenotypes in Saccharomyces cerevisiae.

    PubMed

    Montanari, Arianna; Francisci, Silvia; Fazzi D'Orsi, Mario; Bianchi, Michele Maria

    2014-06-01

    In the course of our studies on mitochondrial defects, we have observed important phenotypic variations in Saccharomyces cerevisiae strains suggesting that a better characterization of the genetic variability will be essential to define the relationship between the mitochondrial efficiency and the presence of different nuclear backgrounds. In this manuscript, we have extended the study of such relations by comparing phenotypic assays related to mitochondrial functions of three wild-type laboratory strains. In addition to the phenotypic variability among the wild-type strains, important differences have been observed among strains bearing identical mitochondrial tRNA mutations that could be related only to the different nuclear background of the cells. Results showed that strains exhibited an intrinsic variability in the severity of the effects of the mitochondrial mutations and that specific strains might be used preferentially to evaluate the phenotypic effect of mitochondrial mutations on carbon metabolism, stress responses, and mitochondrial DNA stability. In particular, while W303-1B and MCC123 strains should be used to study the effect of severe mitochondrial tRNA mutations, D273-10B/A1 strain is rather suitable for studying the effects of milder mutations.

  16. Unifying Genetic Canalization, Genetic Constraint, and Genotype-by-Environment Interaction: QTL by Genomic Background by Environment Interaction of Flowering Time in Boechera stricta

    PubMed Central

    Lee, Cheng-Ruei; Anderson, Jill T.; Mitchell-Olds, Thomas

    2014-01-01

    Natural populations exhibit substantial variation in quantitative traits. A quantitative trait is typically defined by its mean and variance, and to date most genetic mapping studies focus on loci altering trait means but not (co)variances. For single traits, the control of trait variance across genetic backgrounds is referred to as genetic canalization. With multiple traits, the genetic covariance among different traits in the same environment indicates the magnitude of potential genetic constraint, while genotype-by-environment interaction (GxE) concerns the same trait across different environments. While some have suggested that these three attributes of quantitative traits are different views of similar concepts, it is not yet clear, however, whether they have the same underlying genetic mechanism. Here, we detect quantitative trait loci (QTL) influencing the (co)variance of phenological traits in six distinct environments in Boechera stricta, a close relative of Arabidopsis. We identified nFT as the QTL altering the magnitude of phenological trait canalization, genetic constraint, and GxE. Both the magnitude and direction of nFT's canalization effects depend on the environment, and to our knowledge, this reversibility of canalization across environments has not been reported previously. nFT's effects on trait covariance structure (genetic constraint and GxE) likely result from the variable and reversible canalization effects across different traits and environments, which can be explained by the interaction among nFT, genomic backgrounds, and environmental stimuli. This view is supported by experiments demonstrating significant nFT by genomic background epistatic interactions affecting phenological traits and expression of the candidate gene, FT. In contrast to the well-known canalization gene Hsp90, the case of nFT may exemplify an alternative mechanism: Our results suggest that (at least in traits with major signal integrators such as flowering time) genetic

  17. Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis

    PubMed Central

    Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  18. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    PubMed

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  19. Quantitative assessment of CD44 genetic variants and cancer susceptibility in Asians: a meta-analysis

    PubMed Central

    Gupta, Usha; Mittal, Balraj; Kim, Jong Joo; Rai, Rajani

    2016-01-01

    CD44 is a well-established cancer stem cell marker playing a crucial role in tumor metastasis, recurrence and chemo-resistance. Genetic variants of CD44 have been shown to be associated with susceptibility to various cancers; however, the results are confounding. Hence, we performed a meta-analysis to clarify these associations more accurately. Overall, rs13347 (T vs. C: OR=1.30, p=<0.004, pcorr=0.032; CT vs. CC: OR=1.29, p=0.015, pcorr=0.047; TT vs. CC: OR=1.77, p=<0.000, pcorr=0.018; CT+TT vs. CC: OR=1.34, p=<0.009, pcorr=0.041) and rs187115 (GG vs. AA: OR=2.34, p=<0.000, pcorr=0.025; AG vs. AA: OR=1.59, p=<0.000, pcorr=0.038; G vs. A allele OR=1.56, p=0.000, pcorr=0.05; AG+GG vs. AA: OR=1.63, p=<0.000, pcorr=0.013) polymorphisms were found to significantly increase the cancer risk in Asians. On the other hand, rs11821102 was found to confer low risk (A vs. G: OR=0.87, p=<0.027, pcorr=0.04; AG vs. GG: OR=0.85, p=<0.017, pcorr=0.01; AG+AA vs. GG: OR=0.86, p=<0.020, pcorr=0.02). Based on our analysis, we suggest significant role of CD44 variants (rs13347, rs187115 and rs11821102) in modulating individual's cancer susceptibility in Asians. Therefore, these variants may be used as predictive genetic biomarkers for cancer predisposition in Asian populations. However, more comprehensive studies involving other cancers and/or populations, haplotypes, gene-gene and gene-environment interactions are necessary to delineate the role of these variants in conferring cancer risk. PMID:27521214

  20. Common variants of the PINK1 and PARL genes do not confer genetic susceptibility to schizophrenia in Han Chinese.

    PubMed

    Li, Xiao; Zhang, Wen; Zhang, Chen; Yi, Zhenghui; Zhang, Deng-Feng; Gong, Wei; Tang, Jinsong; Wang, Dong; Lu, Weihong; Chen, Xiaogang; Fang, Yiru; Yao, Yong-Gang

    2015-04-01

    Schizophrenia is a prevalent psychiatric disorder with a complex etiology. Mitochondrial dysfunction has been frequently reported in schizophrenia. Phosphatase and tension homologue-induced kinase 1 (PINK1) and presenilin-associated rhomboid-like protease (PARL) are mitochondrial proteins, and genetic variants of these two genes may confer genetic susceptibility to schizophrenia by influencing mitochondrial function. In this study, we conducted a two-stage genetic association study to test this hypothesis. We genotyped 4 PINK1 and 5 PARL genetic variants and evaluated the potential association of the 9 SNPs with schizophrenia in two independent case-control cohorts of 2510 Han Chinese individuals. No positive association of common genetic variants of the PINK1 and PARL genes with schizophrenia was identified in our samples after Bonferroni correction. Re-analysis of the newly updated Psychiatric Genetics Consortium (PGC) data sets confirmed our negative result. Intriguingly, one PINK1 SNP (rs10916832), which showed a marginally significant association in only Hunan samples (P = 0.032), is associated with the expression of a schizophrenia susceptible gene KIF17 according to the expression quantitative trait locus (eQTL) analysis. Our study indicated that common genetic variants of the PINK1 and PARL genes are unlikely to be involved in schizophrenia. Further studies are essential to characterize the role of the PINK1 and PARL genes in schizophrenia.

  1. Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Gene-Environment Interactions

    PubMed Central

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra; Dunning, Alison M.; Milne, Roger L.; Bojesen, Stig E.; Swerdlow, Anthony; Andrulis, Irene; Brenner, Hermann; Behrens, Sabine; Orr, Nicholas; Jones, Michael; Ashworth, Alan; Li, Jingmei; Cramp, Helen; Connley, Dan; Czene, Kamila; Darabi, Hatef; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Knight, Julia; Glendon, Gord; Mulligan, Anna M.; Dumont, Martine; Severi, Gianluca; Baglietto, Laura; Olson, Janet; Vachon, Celine; Purrington, Kristen; Moisse, Matthieu; Neven, Patrick; Wildiers, Hans; Spurdle, Amanda; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M.; Hamann, Ute; Ko, Yon-Dschun; Dieffenbach, Aida K.; Arndt, Volker; Stegmaier, Christa; Malats, Núria; Arias Perez, JoséI.; Benítez, Javier; Flyger, Henrik; Nordestgaard, Børge G.; Truong, Théresè; Cordina-Duverger, Emilie; Menegaux, Florence; Silva, Isabel dos Santos; Fletcher, Olivia; Johnson, Nichola; Häberle, Lothar; Beckmann, Matthias W.; Ekici, Arif B.; Braaf, Linde; Atsma, Femke; van den Broek, Alexandra J.; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Cox, Angela; Simard, Jacques; Giles, Graham G.; Lambrechts, Diether; Mannermaa, Arto; Brauch, Hiltrud; Guénel, Pascal; Peto, Julian; Fasching, Peter A.; Hopper, John; Flesch-Janys, Dieter; Couch, Fergus; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; Schmidt, Marjanka K.; Hall, Per; Easton, Douglas F.; Chang-Claude, Jenny

    2014-01-01

    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10−07), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m2 (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m2 or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10−05). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci. PMID:24248812

  2. Whole-exome sequencing identifies MST1R as a genetic susceptibility gene in nasopharyngeal carcinoma

    PubMed Central

    Dai, Wei; Zheng, Hong; Cheung, Arthur Kwok Leung; Tang, Clara Sze-man; Ko, Josephine Mun Yee; Wong, Bonnie Wing Yan; Leong, Merrin Man Long; Sham, Pak Chung; Cheung, Florence; Kwong, Dora Lai-Wan; Ngan, Roger Kai Cheong; Ng, Wai Tong; Yau, Chun Chung; Pan, Jianji; Peng, Xun; Tung, Stewart; Zhang, Zengfeng; Ji, Mingfang; Chiang, Alan Kwok-Shing; Lee, Anne Wing-Mui; Lee, Victor Ho-fun; Lam, Ka-On; Au, Kwok Hung; Cheng, Hoi Ching; Yiu, Harry Ho-Yin; Lung, Maria Li

    2016-01-01

    Multiple factors, including host genetics, environmental factors, and Epstein–Barr virus (EBV) infection, contribute to nasopharyngeal carcinoma (NPC) development. To identify genetic susceptibility genes for NPC, a whole-exome sequencing (WES) study was performed in 161 NPC cases and 895 controls of Southern Chinese descent. The gene-based burden test discovered an association between macrophage-stimulating 1 receptor (MST1R) and NPC. We identified 13 independent cases carrying the MST1R pathogenic heterozygous germ-line variants, and 53.8% of these cases were diagnosed with NPC aged at or even younger than 20 y, indicating that MST1R germ-line variants are relevant to disease early-age onset (EAO) (age of ≤20 y). In total, five MST1R missense variants were found in EAO cases but were rare in controls (EAO vs. control, 17.9% vs. 1.2%, P = 7.94 × 10−12). The validation study, including 2,160 cases and 2,433 controls, showed that the MST1R variant c.G917A:p.R306H is highly associated with NPC (odds ratio of 9.0). MST1R is predominantly expressed in the tissue-resident macrophages and is critical for innate immunity that protects organs from tissue damage and inflammation. Importantly, MST1R expression is detected in the ciliated epithelial cells in normal nasopharyngeal mucosa and plays a role in the cilia motility important for host defense. Although no somatic mutation of MST1R was identified in the sporadic NPC tumors, copy number alterations and promoter hypermethylation at MST1R were often observed. Our findings provide new insights into the pathogenesis of NPC by highlighting the involvement of the MST1R-mediated signaling pathways. PMID:26951679

  3. Combined Genetic Biomarkers Confer Susceptibility to Risk of Urothelial Bladder Carcinoma in a Saudi Population

    PubMed Central

    Nassir, Anmar; Saada, Hesham; Dannoun, Anas; Qoqandi, Omar; Alsharif, Ammar; Tayeb, Mohammed Taher

    2017-01-01

    We evaluated the associations between seven single nucleotide polymorphisms and susceptibility to urothelial bladder carcinoma (UBC) in a Saudi population. Genomic DNA was taken from buccal cells of 52 patients with UBC and 104 controls for genotyping of GSTT1, GSTM1, rs4646903, rs1048943, TP53 rs1042522, rs1801133, and rs1801394 using PCR and TaqMan® assays. The rs1801133 and rs1801394 variants showed strong associations with UBC (OR = 2.3, P = 0.0002; OR = 2.6, P = 0.0001, resp.). Homozygosity of Pro72 conferred a significant double risk in cases compared with controls (30.8% versus 15.4%), but the homozygote Arg/Arg had no effect on risk. Genotypic combinations of GSTM1/GSTT1, rs4646903/rs1048943, and rs1801133/rs1801394 exhibited significant linkage with the disease (χ2 = 10.3, P = 0.006; χ2 = 13.9, P = 0.003; and χ2 = 20.4, P = 0.0004, resp.). The GSTM1 and rs1042522Arg and rs1801394G variant alleles were more frequent in current smokers with UBC (52.4%, 52.5%, and 64.3%, resp.) than were the corresponding wild-types. Despite some variants having only a slight effect on UBC risk, the interaction effect of combined genetic biomarkers—or even the presence of one copy of a variant allele—is potentially much greater. Perhaps more studies regarding next-generation genetic sequencing and its utility can add to the risk of UBC. PMID:28348449

  4. PHACTR1 Is a Genetic Susceptibility Locus for Fibromuscular Dysplasia Supporting Its Complex Genetic Pattern of Inheritance

    PubMed Central

    Tucker, Nathan R.; Castro-Vega, Luis-Jaime; Katz, Alexander; D’Escamard, Valentina; Tréard, Cyrielle; Fraher, Daniel; Albuisson, Juliette; Kadian-Dodov, Daniella; Ye, Zi; Austin, Erin; Yang, Min-Lee; Hunker, Kristina; Cusi, Daniele; Galan, Pilar; Empana, Jean-Philippe; Jouven, Xavier; Gimenez-Roqueplo, Anne-Paule; Bruneval, Patrick; Hyun Kim, Esther Soo; Olin, Jeffrey W.; Azizi, Michel; Plouin, Pierre-François; Ellinor, Patrick T.; Kullo, Iftikhar J.; Milan, David J.; Ganesh, Santhi K.; Boutouyrie, Pierre; Bouatia-Naji, Nabila

    2016-01-01

    Fibromuscular dysplasia (FMD) is a nonatherosclerotic vascular disease leading to stenosis, dissection and aneurysm affecting mainly the renal and cerebrovascular arteries. FMD is often an underdiagnosed cause of hypertension and stroke, has higher prevalence in females (~80%) but its pathophysiology is unclear. We analyzed ~26K common variants (MAF>0.05) generated by exome-chip arrays in 249 FMD patients and 689 controls. We replicated 13 loci (P<10−4) in 402 cases and 2,537 controls and confirmed an association between FMD and a variant in the phosphatase and actin regulator 1 gene (PHACTR1). Three additional case control cohorts including 512 cases and 669 replicated this result and overall reached the genomic level of significance (OR = 1.39, P = 7.4×10−10, 1,154 cases and 3,895 controls). The top variant, rs9349379, is intronic to PHACTR1, a risk locus for coronary artery disease, migraine, and cervical artery dissection. The analyses of geometrical parameters of carotids from ~2,500 healthy volunteers indicate higher intima media thickness (P = 1.97×10−4) and wall to lumen ratio (P = 0.002) in rs9349379-A carriers, suggesting indices of carotid hypertrophy previously described in carotids of FMD patients. Immunohistochemistry detected PHACTR1 in endothelium and smooth muscle cells of FMD and normal human carotids. The expression of PHACTR1 by genotypes in primary human fibroblasts showed higher expression in rs9349379-A carriers (N = 86, P = 0.003). Phactr1 knockdown in zebrafish resulted in dilated vessels indicating subtle impaired vascular development. We report the first susceptibility locus for FMD and provide evidence for a complex genetic pattern of inheritance and indices of shared pathophysiology between FMD and other cardiovascular and neurovascular diseases. PMID:27792790

  5. The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool

    PubMed Central

    Diancourt, Laure; Passet, Virginie; Nemec, Alexandr; Dijkshoorn, Lenie; Brisse, Sylvain

    2010-01-01

    Outbreaks of hospital infections caused by multidrug resistant Acinetobacter baumannii strains are of increasing concern worldwide. Although it has been reported that particular outbreak strains are geographically widespread, little is known about the diversity and phylogenetic relatedness of A. baumannii clonal groups. Sequencing of internal portions of seven housekeeping genes (total 2,976 nt) was performed in 154 A. baumannii strains covering the breadth of known diversity and including representatives of previously recognized international clones, and in 19 representatives of other Acinetobacter species. Restricted amounts of diversity and a star-like phylogeny reveal that A. baumannii is a genetically compact species that suffered a severe bottleneck in the recent past, possibly linked to a restricted ecological niche. A. baumannii is neatly demarcated from its closest relative (genomic species 13TU) and other Acinetobacter species. Multilocus sequence typing analysis demonstrated that the previously recognized international clones I to III correspond to three clonal complexes, each made of a central, predominant genotype and few single locus variants, a hallmark of recent clonal expansion. Whereas antimicrobial resistance was almost universal among isolates of these and a novel international clone (ST15), isolates of the other genotypes were mostly susceptible. This dichotomy indicates that antimicrobial resistance is a major selective advantage that drives the ongoing rapid clonal expansion of these highly problematic agents of nosocomial infections. PMID:20383326

  6. Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population

    PubMed Central

    Villanueva, Pia; Newbury, Dianne F; Jara, Lilian; De Barbieri, Zulema; Mirza, Ghazala; Palomino, Hernán M; Fernández, María Angélica; Cazier, Jean-Baptiste; Monaco, Anthony P; Palomino, Hernán

    2011-01-01

    Specific language impairment (SLI) is an unexpected deficit in the acquisition of language skills and affects between 5 and 8% of pre-school children. Despite its prevalence and high heritability, our understanding of the aetiology of this disorder is only emerging. In this paper, we apply genome-wide techniques to investigate an isolated Chilean population who exhibit an increased frequency of SLI. Loss of heterozygosity (LOH) mapping and parametric and non-parametric linkage analyses indicate that complex genetic factors are likely to underlie susceptibility to SLI in this population. Across all analyses performed, the most consistently implicated locus was on chromosome 7q. This locus achieved highly significant linkage under all three non-parametric models (max NPL=6.73, P=4.0 × 10−11). In addition, it yielded a HLOD of 1.24 in the recessive parametric linkage analyses and contained a segment that was homozygous in two affected individuals. Further, investigation of this region identified a two-SNP haplotype that occurs at an increased frequency in language-impaired individuals (P=0.008). We hypothesise that the linkage regions identified here, in particular that on chromosome 7, may contain variants that underlie the high prevalence of SLI observed in this isolated population and may be of relevance to other populations affected by language impairments. PMID:21248734

  7. Glutamate carboxypeptidase II (GCPII) genetic variants as determinants of hyperhomocysteinemia: implications in stroke susceptibility.

    PubMed

    Divyya, Shree; Naushad, Shaik Mohammad; Kaul, Subhash; Anusha, Vuppala; Subbarao, Sreedhar Amere; Kutala, Vijay Kumar

    2012-10-01

    The rationale of this case-control study is to ascertain whether glutamate carboxypeptidase II (GCPII) variants serve as determinants of hyperhomocysteinemia and contribute to the etiology of stroke. Hyperhomocysteinemia was observed in stroke cases compared to controls (14.09 +/- 7.62 micromol/L vs. 8.71 +/- 4.35, P < 0.0001). GCPII sequencing revealed two known variants (R190W and H475Y) and six novel variants (V108A, P160S, Y176H, G206R, G245S and D520E). Among the haplotypes of GCPII, all wild-haplotype H0 showed independent association with stroke risk (OR: 9.89, 95% CI: 4.13-23.68), while H2 representing P160S variant showed reduced risk (OR: 0.17, 95% CI: 0.06-0.50). When compared to subjects with H2 haplotype, H0 haplotype showed elevated homocysteine levels (18.26 +/- 4.31 micromol/L vs. 13.66 +/- 3.72 micromol/L, P = 0.002) and reduced plasma folate levels (7.09 +/- 1.19 ng/ml vs. 8.21 +/- 1.14 ng/ml, P = 0.007). Using GCPII genetic variants, dietary folate and gender as predictor variables and homocysteine as outcome variable, a multiple linear regression model was developed. This model explained 36% variability in plasma homocysteine levels. To conclude, GCPII haplotypes influenced susceptibility to stroke by influencing homocysteine levels.

  8. [Genetics and susceptibility to human papillomaviruses: epidermodysplasia verruciformis, a disease model].

    PubMed

    Orth, Gérard

    2010-06-01

    The outcomes of infection by human papillomaviruses (HPV), both oncogenic and non oncogenic, show major interindividual variability The underlying genetic factors and mechanisms are poorly known, but their complexity is illustrated by epidermodysplasia verruciformis (EV), a rare autosomal recessive genodermatosis associated with a high risk of non melanoma skin cancer. This model disease is characterized by abnormal susceptibility to widespread betapapillomaviruses, including HPV-5, a virus associated with EV cancers. Most cases of EV are caused by a mutation that inactivates either of two related genes, EVER1 and EVER2. This inactivation likely compensates for the absence of a viral gene (E5 or E8) essential for HPV pathogenicity. Proteins E5 and E8 interfere with the interaction between EVER proteins and ZnT1, a zinc transporter EV is thus likely to represent a primary defect of intrinsic (constitutive) immunity or innate immunity to betapapillomaviruses, involving modulation of zinc homeostasis upon keratinocyte infection. It remains to be established which cellular genes are involved in intrinsic, innate or acquired immune responses to other human papillomaviruses, including oncogenic genital types.

  9. An assessment of molecular pathways of obesity susceptible to nutrient, toxicant and genetically induced epigenetic perturbation.

    PubMed

    Xue, Jing; Ideraabdullah, Folami Y

    2016-04-01

    In recent years, the etiology of human disease has greatly improved with the inclusion of epigenetic mechanisms, in particular as a common link between environment and disease. However, for most diseases we lack a detailed interpretation of the epigenetic regulatory pathways perturbed by environment and causal mechanisms. Here, we focus on recent findings elucidating nutrient-related epigenetic changes linked to obesity. We highlight studies demonstrating that obesity is a complex disease linked to disruption of epigenetically regulated metabolic pathways in the brain, adipose tissue and liver. These pathways regulate (1) homeostatic and hedonic eating behaviors, (2) adipocyte differentiation and fat accumulation, and (3) energy expenditure. By compiling these data, we illustrate that obesity-related phenotypes are repeatedly linked to disruption of critical epigenetic mechanisms that regulate key metabolic genes. These data are supported by genetic mutation of key epigenetic regulators, and many of the diet-induced epigenetic mechanisms of obesity are also perturbed by exposure to environmental toxicants. Identifying similarly perturbed epigenetic mechanisms in multiple experimental models of obesity strengthens the translational applications of these findings. We also discuss many of the ongoing challenges to understanding the role of environmentally induced epigenetic pathways in obesity and suggest future studies to elucidate these roles. This assessment illustrates our current understanding of molecular pathways of obesity that are susceptible to environmental perturbation via epigenetic mechanisms. Thus, it lays the groundwork for dissecting the complex interactions between diet, genes and toxicants that contribute to obesity and obesity-related phenotypes.

  10. An assessment of molecular pathways of obesity susceptible to nutrient, toxicant and genetically induced epigenetic perturbation

    PubMed Central

    Xue, Jing; Ideraabdullah, Folami Y.

    2015-01-01

    In recent years, the etiology of human disease has greatly improved with the inclusion of epigenetic mechanisms, in particular as a common link between environment and disease. However, for most diseases we lack a detailed interpretation of the epigenetic regulatory pathways perturbed by environment and causal mechanisms. Here, we focus on recent findings elucidating nutrient-related epigenetic changes linked to obesity. We highlight studies demonstrating that obesity is a complex disease linked to disruption of epigenetically regulated metabolic pathways in the brain, adipose tissue and liver. These pathways regulate (1) homeostatic and hedonic eating behaviors (2) adipocyte differentiation and fat accumulation, and (3) energy expenditure. By compiling these data we illustrate that obesity-related phenotypes are repeatedly linked to disruption of critical epigenetic mechanisms that regulate of key metabolic genes. These data are supported by genetic mutation of key epigenetic regulators and many of the diet induced epigenetic mechanisms of obesity are also perturbed by exposure to environmental toxicants. Identifying similarly perturbed epigenetic mechanisms in multiple experimental models of obesity strengthens the translational applications of these findings. We also discuss many of the ongoing challenges to understanding the role of environmentally-induced epigenetic pathways in obesity and suggest future studies to elucidate these roles. This assessment illustrates our current understanding of molecular pathways of obesity that are susceptible to environmental perturbation via epigenetic mechanisms. Thus, it lays the groundwork for dissecting the complex interactions between diet, genes, and toxicants that contribute to obesity and obesity-related phenotypes. PMID:27012616

  11. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies.

    PubMed

    Wang, Tao; Jia, Weiping; Hu, Cheng

    2015-06-01

    Obesity prevalence has increased in recent years. Lifestyle change fuels obesity, but genetic factors cause more than 50% of average variations in obesity. The advent of genome-wide association studies (GWAS) has hastened the progress of polygenic obesity research. As of this writing, more than 73 obesity susceptibility loci have been identified in ethnic groups through GWAS. The identified loci explain only 2% to 4% of obesity heritability, thereby indicating that a large proportion of loci remain undiscovered. Thus, the next step is to identify and confirm novel loci, which may exhibit smaller effects and lower allele frequencies than established loci. However, achieving these tasks has been difficult for researchers. GWAS help researchers discover the causal loci. Moreover, numerous biological studies have been performed on the polygenic effects on obesity, such as studies on fat mass- and obesity-associated gene (FTO), but the role of these polygenic effects in the mechanism of obesity remains unclear. Thus, obesity-causing variations should be identified, and insights into the biology of polygenic effects on obesity are needed.

  12. Reversal of Refractory Ulcerative Colitis and Severe Chronic Fatigue Syndrome Symptoms Arising from Immune Disturbance in an HLADR/DQ Genetically Susceptible Individual with Multiple Biotoxin Exposures

    PubMed Central

    Gunn, Shelly R.; Gibson Gunn, G.; Mueller, Francis W.

    2016-01-01

    Patient: Male, 25 Final Diagnosis: Ulcerative colitis and chronic fatigue syndrome Symptoms: Colitis • profound fatigue • multi-joint pain • cognitive impairment • corneal keratitis Medication: — Clinical Procedure: VIP replacement therapy Specialty: Family Medicine Objective: Unusual clinical course Background: Patients with multisymptom chronic conditions, such as refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS), present diagnostic and management challenges for clinicians, as well as the opportunity to recognize and treat emerging disease entities. In the current case we report reversal of co-existing RUC and CFS symptoms arising from biotoxin exposures in a genetically susceptible individual. Case Report: A 25-year-old previously healthy male with new-onset refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS) tested negative for autoimmune disease biomarkers. However, urine mycotoxin panel testing was positive for trichothecene group and air filter testing from the patient’s water-damaged rental house identified the toxic mold Stachybotrys chartarum. HLA-DR/DQ testing revealed a multisusceptible haplotype for development of chronic inflammation, and serum chronic inflammatory response syndrome (CIRS) biomarker testing was positive for highly elevated TGF-beta and a clinically undetectable level of vasoactive intestinal peptide (VIP). Following elimination of biotoxin exposures, VIP replacement therapy, dental extractions, and implementation of a mind body intervention-relaxation response (MBI-RR) program, the patient’s symptoms resolved. He is off medications, back to work, and resuming normal exercise. Conclusions: This constellation of RUC and CFS symptoms in an HLA-DR/DQ genetically susceptible individual with biotoxin exposures is consistent with the recently described CIRS disease pathophysiology. Chronic immune disturbance (turbatio immuno) can be identified with clinically available CIRS biomarkers and

  13. Molecular characterization, genetic diversity and antibacterial susceptibility of Escherichia coli encoding Shiga toxin 2f in domestic pigeons.

    PubMed

    Askari Badouei, M; Zahraei Salehi, T; Koochakzadeh, A; Kalantari, A; Tabatabaei, S

    2014-10-01

    This study aimed to evaluate prevalence, characteristics, genotypic diversity and antibacterial susceptibility of Escherichia coli encoding Shiga toxin 2f in domestic pigeons in different provinces of Iran. A total of 117 faecal samples were collected from pigeons and were subjected to molecular detection of stx2f. In total, 20, 25·8, 21·4 and 9% of pigeons from Tehran, Ferdows, Garmsar and Babol cities carried stx2f+ isolates, respectively. Of the 460 E. coli isolates examined, 43 were stx2f+ and most also carried eae (95·3%) and astA (97·7%) genes. Some of the stx2f+ isolates harboured cnf (9·3%), but all were negative for stx1, stx2 (other subtypes) and ehly. Most Strains (90%) were assigned to B1 phylogroup and possessed Intimin-β. Fingerprinting of the stx2f+ isolates using either enterobacterial repetitive intergenic consensus sequences (ERIC) or random amplified polymorphic DNA (RAPD)-polymerase chain reaction revealed seven distinct profiles by each method, with one prevailing (65·1 and 46·5%, respectively). By the combination of methods, 10 profiles were recognized. Ten isolates from different profiles were shown to belong to O20, O78 and O115 serogroups, and eight were 100% identical in the stx2f gene sequence. The strains were consistently resistant to amoxicillin and lincospectin and commonly resistant to tetracycline (88·4%) and doxycycline (74·4%). Overall, the results indicate a limited degree of genetic diversity in stx2f-harbouring E. coli from pigeons. Significance and impact of the study: Carriage of stx2f gene tends to be underreported in pigeon Escherichia coli isolates because most routine genetic and phenotypic tests cannot efficiently target this gene or detect the toxin. Nevertheless, pigeons frequently carry E. coli strains that are stx2f-positive, and this situation is not limited to any distinct geographical area. The current results suggest that genetic background of stx2f-encoding E. coli is distinct from most Shiga toxin

  14. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria.

    PubMed

    Yahiaoui, Merzouk; Robin, Frédéric; Bakour, Rabah; Hamidi, Moufida; Bonnet, Richard; Messai, Yamina

    2015-10-01

    The aim of the study was to investigate antibiotic resistance mechanisms, virulence traits, and genetic background of 150 nonrepetitive community-acquired uropathogenic Escherichia coli (CA-UPEC) from Algeria. A rate of 46.7% of isolates was multidrug resistant. bla genes detected were blaTEM (96.8% of amoxicillin-resistant isolates), blaCTX-M-15 (4%), overexpressed blaAmpC (4%), blaSHV-2a, blaTEM-4, blaTEM-31, and blaTEM-35 (0.7%). All tetracycline-resistant isolates (51.3%) had tetA and/or tetB genes. Sulfonamides and trimethoprim resistance genes were sul2 (60.8%), sul1 (45.9%), sul3 (6.7%), dfrA14 (25.4%), dfrA1 (18.2%), dfrA12 (16.3%), and dfrA25 (5.4%). High-level fluoroquinolone resistance (22.7%) was mediated by mutations in gyrA (S83L-D87N) and parC (S80I-E84G/V or S80I) genes. qnrB5, qnrS1, and aac(6')-Ib-cr were rare (5.3%). Class 1 and/or class 2 integrons were detected (40.7%). Isolates belonged to phylogroups B2+D (50%), A+B1 (36%), and F+C+Clade I (13%). Most of D (72.2%) and 38.6% of B2 isolates were multidrug resistant; they belong to 14 different sequence types, including international successful ST131, ST73, and ST69, reported for the first time in the community in Algeria and new ST4494 and ST4529 described in this study. Besides multidrug resistance, B2 and D isolates possessed virulence factors of colonization, invasion, and long-term persistence. The study highlighted multidrug-resistant CA-UPEC with high virulence traits and an epidemic genetic background.

  15. Mitochondrial genetic background plays a role in increasing risk to asthma.

    PubMed

    Zifa, Emily; Daniil, Zoe; Skoumi, Eleutheria; Stavrou, Maria; Papadimitriou, Kostantinos; Terzenidou, Marini; Kostikas, Konstantinos; Bagiatis, Vasileios; Gourgoulianis, Konstantinos I; Mamuris, Zissis

    2012-04-01

    A number of studies suggest that mitochondrial dysfunction plays a role in the pathogenesis of asthma. To shed light for the first time on the role of the mitochondrial genome in the etiology of asthma we analyzed the mitochondrial tRNA genes and part of their flanking regions in patients with asthma compared with a set of healthy controls. We found a total of 10 mutations in 56 out of 76 asthmatic patients. Four of these mutations were not found in the control group, five were observed at a significantly lower frequency in controls, but none of the combinations of mutations detected in asthma patients was observed in the controls. Furthermore, we observed that 27.6% of the asthma patients (vs. 4% of the controls) belonged to the haplogroup U (Fisher test P = 0.00) and a positive significant correlation was found between the occurrence of the haplogroup U and the severity of the disease (Fisher test P = 0.02). Whereas further studies in larger cohorts are needed to confirm these observations we suggest that the mitochondrial genetic background plays a key role in asthma development.

  16. Genetic Background Modulates lncRNA-Coordinated Tissue Response to Low Dose Ionizing Radiation

    DOE PAGES

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.; ...

    2015-01-01

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  17. The impact of the genetic background in the Noonan syndrome phenotype induced by K-RasV14I

    PubMed Central

    Hernández-Porras, Isabel; Jiménez-Catalán, Beatriz; Schuhmacher, Alberto J; Guerra, Carmen

    2015-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. A significant fraction of NS-patients also develop myeloproliferative disorders. The penetrance of these defects varies considerably among patients. In this study, we have examined the effect of 2 genetic backgrounds (C57BL/6J.OlaHsd and 129S2/SvPasCrl) on the phenotypes displayed by a mouse model of NS induced by germline expression of the mutated K-RasV14I allele, one of the most frequent NS-KRAS mutations. Our results suggest the presence of genetic modifiers associated to the genetic background that are essential for heart development and function at early stages of postnatal life as well as in the severity of the haematopoietic alterations. PMID:26458870

  18. Association of Matrix Metalloproteinase 9 C-1562T Polymorphism with Genetic Susceptibility to Myocardial Infarction: A Meta-Analysis

    PubMed Central

    Juan, Zhang; Wei-Guo, Zhang; Heng-Liang, Song; Da-Guo, Wan

    2015-01-01

    Background Myocardial infarction (MI) is the major cause of death by disease in the world. Many studies have identified the associations between matrix metalloproteinase 9 (MMP9) C-1562T polymorphisms and MI. However, the results remain inconclusive. To clarify the role of MMP9 C-1562T polymorphism in MI risk, we conducted a systematic review and large-scale meta-analysis. Methods Studies published between January 2005 and March 2014 were obtained from the electronic databases PubMed, Medline, and Embase. The odds ratios (ORs) with 95% CIs were calculated for comparisons of the alleles and genotypes in the overall population and in ethnicity subgroups to measure the strength of genetic associations. Results A total of 7 related studies, including 3952 MI cases and 4977 healthy control subjects were included in our meta-analysis. Our results show a statistically significant association between T allele and MI in the overall population (OR = 1.23; 95% CI, 1.02–1.48; P = 0.03). The risk of MI was also significantly higher in patients carrying the T allele (TC + TT genotypes) than in those with the CC genotype (P < 0.05). In stratified analysis by ethnicity, we found the T allele was strongly associated with MI in white populations, whereas in Asian populations there appeared no significant association. Conclusions Our data show that the MMP9 C-1562T polymorphism is a risk factor associated with increased MI susceptibility in the total population and white populations, although no significant association was observed in Asians populations. Further studies with larger sample sizes and assessing gene–gene and gene–environment interactions are required. PMID:26082814

  19. The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background.

    PubMed

    Benoit, Patrick; Sigounas, Vaia Yioula; Thompson, Jenna L; van Rooijen, Nico; Poynter, Matthew E; Wargo, Matthew J; Boyson, Jonathan E

    2015-06-01

    Pseudomonas aeruginosa is an important human opportunistic pathogen, accounting for a significant fraction of hospital-acquired lung infections. CD1d-restricted NKT cells comprise an unusual innate-like T cell subset that plays important roles in both bacterial and viral infections. Previous reports have differed in their conclusions regarding the role of NKT cells in clearance of P. aeruginosa from the lung. Since there is significant strain-dependent variation in NKT cell number and function among different inbred strains of mice, we investigated whether the role of NKT cells was dependent on the host genetic background. We found that NKT cells did indeed play a critical role in the clearance of P. aeruginosa from the lungs of BALB/c mice but that they played no discernible role in clearance from the lungs of C57BL/6 mice. We found that the strain-dependent role of NKT cells was associated with significant strain-dependent differences in cytokine production by lung NKT cells and that impaired clearance of P. aeruginosa in BALB/c CD1d(-/-) mice was associated with an increase in neutrophil influx to the lung and increased levels of proinflammatory cytokines and chemokines after infection. Finally, we found that the role of alveolar macrophages was also dependent on the genetic background. These data provide further support for a model in which the unusually high level of variability in NKT cell number and function among different genetic backgrounds may be an important contributor to infectious-disease susceptibility and pathology.

  20. Genetic Susceptibility to Cancer: the Role of Polymorphisms in Candidate Genes

    PubMed Central

    Dong, Linda M; Potter, John D; White, Emily; Ulrich, Cornelia M; Cardon, Lon R; Peters, Ulrike

    2009-01-01

    Context Continuing advances in genotyping technologies and the inclusion of DNA collection in observational studies have resulted in an increasing number of genetic association studies. Objective To evaluate the overall progress and contribution of candidate gene association studies to current understanding of the genetic susceptibility to cancer. Data Sources We systematically examined the results of meta- and pooled analyses for genetic polymorphisms and cancer risk published through March 2008. Study Selection We identified 161 meta- and pooled analyses, encompassing 18 cancer sites and 99 genes. Analyses had to meet the following criteria: 1) at least 500 cases, 2) cancer risk as outcome, 3) not focused on HLA genetic markers, and 4) published in English. Data Extraction Information on cancer site, gene name, variant, point estimate and 95% confidence interval, allelic frequency, number of studies and cases, tests of study heterogeneity and publication bias were extracted by one investigator and reviewed by other investigators. Results These 161 analyses evaluated 344 gene-variant/cancer associations and included on average 7.3 studies and 3,551 cases (range: 508–19,729 cases) per investigated association. The summary OR for 98 (28%) statistically significant associations (p-value <0.05) were further evaluated by estimating the false-positive report probability (FPRP) at a given prior probability and statistical power. At a prior probability level of 0.001 and statistical power to detect an OR of 1.5, thirteen gene-variant/cancer associations remained noteworthy (FPRP<0.2). Assuming a very low prior probability of 0.000001, similar to a probability assumed for a randomly selected SNP in a genome-wide association study, and statistical power to detect an OR of 1.5, four associations were considered noteworthy as denoted by a FPRP value < 0.2: 1) GSTM1 null and bladder cancer (OR:1.5, 95% CI: 1.3–1.6, p-value=1.9×10−14), 2) NAT2 slow acetylator and bladder

  1. Protective Effect of R Allele of PON1 Gene on the Coronary Artery Disease in the Presence of Specific Genetic Background

    PubMed Central

    Balcerzyk, Anna; Zak, Iwona; Krauze, Jolanta

    2008-01-01

    Background: Genetic susceptibility to CAD may be determined by polymorphic variants of genes encoding isoforms involved in the processes important in the pathogenesis of atherosclerosis, including lipids disorders. Participation of single polymorphic variants is relatively small, however its significance may increase in the presence of specific genetic or environmental background. Aim: The aim of the study was an evaluation a possible association between single polymorphic variants of PON1, APOE, ABCA1 and PPARA genes and CAD and looking for specific multigene genotype patterns which differentiate study groups. Materials and methods: We studied 358 subjects:178 patients with angiographically confirmed CAD and 180 blood donors without history of CAD. Polymorphisms were genotyped using PCR-RFLP method. Results: We observed statistically significant differences in the frequencies of R allele and R allele carriers of PON1 gene between CAD and controls. The distribution of genotypes and alleles of other analyzed genes did not differentiate the study groups, however the presence of specific genotypes (APOE– ɛ3ɛ3, ɛ3ɛ2, ABCA1 – AG, PPARA – GG) increased the protective effect of R allele. Conclusion: The present study revealed an independent protective association between carrier-state of PON1 R allele and CAD. This protective effect was especially strong in the presence of specific genotype arrangements of other analyzed genes. PMID:18219093

  2. Evaluation of genetic damage in Brazilian footwear-workers: biomarkers of exposure, effect, and susceptibility.

    PubMed

    Heuser, Vanina Dahlström; Erdtmann, Bernardo; Kvitko, Kátia; Rohr, Paula; da Silva, Juliana

    2007-04-11

    Employees in the footwear manufacturing industry are routinely exposed to complex mixtures of solvents used in cleaning and as diluents in glues, primers, and degreasers. The objective of this study was to determine the genotoxic effects in a group of footwear-workers occupationally exposed to solvent-based adhesive and solutions containing organic solvents, mainly toluene. Peripheral blood and buccal cells samples were collected from 39 footwear-workers (31 males and 8 females) and 55 controls (44 males and 11 females). As biomarker of exposure, we obtained data on hippuric acid (HA), the main metabolite of toluene in urine, and DNA damage detected by the Comet assay in blood cells. Micronucleus frequencies in binucleated lymphocytes (BNMN) and in epithelial buccal cells (EBCMN) were analyzed as biomarkers of effect, while polymorphisms in genes GSTT1, GSTM1, GSTP1, CYP1A1, and CYP2E1 were used as susceptibility biomarkers. Results of HA and Comet assay showed statistical increased values amongst footwear-workers relative to controls (P < or = 0.001). No differences were observed in BNMN and EBCMN frequencies between the groups, but a correlation test revealed that age was significantly associated with BNMN frequency in both control (r(s)=0.290; P < or = 0.05) and exposed groups (r(s)=0.674; P < or = 0.001). Regarding the results on genetic polymorphisms, GSTM1 null subjects from the control group showed a significant increase in EBCMN frequency relative to GSTM1 non-null subjects (P < or = 0.05). A significant increase in DNA damage detected by Comet assay in leukocytes was obtained for GSTP1 Ile/Val or Val/Val individuals from the exposed group relative to those with GSTP1 Ile/Ile (P < or = 0.05), especially in younger subjects (P < or = 0.01), and a suggestion of interaction with CYP2E1 polymorphism was found. In confirmation of these data, stepwise multiple regression analyses for selecting between the different independent variables showed that about 25% of

  3. Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans

    PubMed Central

    Chen, Fang; Chen, Gary K.; Millikan, Robert C.; John, Esther M.; Ambrosone, Christine B.; Bernstein, Leslie; Zheng, Wei; Hu, Jennifer J.; Ziegler, Regina G.; Deming, Sandra L.; Bandera, Elisa V.; Nyante, Sarah; Palmer, Julie R.; Rebbeck, Timothy R.; Ingles, Sue A.; Press, Michael F.; Rodriguez-Gil, Jorge L.; Chanock, Stephen J.; Le Marchand, Loïc; Kolonel, Laurence N.; Henderson, Brian E.; Stram, Daniel O.; Haiman, Christopher A.

    2011-01-01

    Genome-wide association studies (GWAS) have revealed 19 common genetic variants that are associated with breast cancer risk. Testing of the index signals found through GWAS and fine-mapping of each locus in diverse populations will be necessary for characterizing the role of these risk regions in contributing to inherited susceptibility. In this large study of breast cancer in African-American women (3016 cases and 2745 controls), we tested the 19 known risk variants identified by GWAS and replicated associations (P < 0.05) with only 4 variants. Through fine-mapping, we identified markers in four regions that better capture the association with breast cancer risk in African Americans as defined by the index signal (2q35, 5q11, 10q26 and 19p13). We also identified statistically significant associations with markers in four separate regions (8q24, 10q22, 11q13 and 16q12) that are independent of the index signals and may represent putative novel risk variants. In aggregate, the more informative markers found in the study enhance the association of these risk regions with breast cancer in African Americans [per allele odds ratio (OR) = 1.18, P = 2.8 × 10−24 versus OR = 1.04, P = 6.1 × 10−5]. In this detailed analysis of the known breast cancer risk loci, we have validated and improved upon markers of risk that better characterize their association with breast cancer in women of African ancestry. PMID:21852243

  4. Evaluation of insulin like growth facror-1 genetic polymorphism with gastric cancer susceptibility and clinicopathological features.

    PubMed

    Farahani, Roya Kishani; Azimzadeh, Pedram; Rostami, Elham; Malekpour, Habib; Aghdae, Hamid Asadzadeh; Pourhoseingholi, Mohamad Amin; Nazemalhosseini Mojarad, Ehsan; Zali, Mohammad Reza

    2015-01-01

    Gastric cancer (GC) is one of the most common malignancies in the world. It is the first cause of cancer deaths in both sexes In Iranian population. Circulating insulin-like growth factor-one (IGF-1) levels have been associated for gastric cancer. IGF-1 protein has central roles involved in the regulation of epithelial cell growth, proliferation, transformation, apoptosis and metastasis. Single nucleotide polymorphism in IGF-1 regulatory elements may lead to alter in IGF-1 expression level and GC susceptibility. The aim of this study was to investigate the influence of IGF-1 gene polymorphism (rs5742612) on risk of GC and clinicopathological features for the first time in Iranian population. In total, 241 subjects including 100 patients with GC and 141 healthy controls were recruited in our study. Genotypes were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with DNA from peripheral blood. The polymorphism was statistically analyzed to investigate the relationship with the risk of GC and clinicopathological properties. Logistic regression analysis revealed that there was no significant association between rs5742612 and the risk of GC. In addition, no significant association between genotypes and clinicopathological features was observed (p value>0.05). The frequencies of the CC, CT, and TT genotypes were 97%, 3%, and 0%, respectively, among the cases, and 97.9%, 2.1%, and 0%, respectively, among the controls. CC genotype was more frequent in cases and controls. The frequencies of C and T alleles were 98.9% and 1.1% in controls and 98.5% and 1.5% in patient respectively. Our results provide the first evidence that this variant is rare in Iranian population and it may not be a powerful genetic predisposing biomarker for prediction GC clinicopathological features in an Iranian population.

  5. Genetic analysis of a mouse cross implicates an anti-inflammatory gene in control of atherosclerosis susceptibility.

    PubMed

    Garrett, Norman E; Grainger, Andrew T; Li, Jing; Chen, Mei-Hua; Shi, Weibin

    2017-01-23

    Nearly all genetic crosses generated from Apoe(-/-) or Lldlr(-/-) mice for genetic analysis of atherosclerosis have used C57BL/6 J (B6) mice as one parental strain, thus limiting their mapping power and coverage of allelic diversity. SM/J-Apoe (-/-) and BALB/cJ-Apoe (-/-) mice differ significantly in atherosclerosis susceptibility. 224 male F2 mice were generated from the two Apoe (-/-) strains to perform quantitative trait locus (QTL) analysis of atherosclerosis. F2 mice were fed 5 weeks of Western diet and analyzed for atherosclerotic lesions in the aortic root. Genome-wide scans with 144 informative SNP markers identified a significant locus near 20.2 Mb on chromosome 10 (LOD score: 6.03), named Ath48, and a suggestive locus near 49.5 Mb on chromosome 9 (LOD: 2.29; Ath29) affecting atherosclerotic lesion sizes. Using bioinformatics tools, we prioritized 12 candidate genes for Ath48. Of them, Tnfaip3, an anti-inflammatory gene, is located precisely underneath the linkage peak and contains two non-synonymous SNPs leading to conservative amino acid substitutions. Thus, this study demonstrates the power of forward genetics involving the use of a different susceptible strain and bioinformatics tools in finding atherosclerosis susceptibility genes.

  6. Genetic modifiers of Lepr{sup fa} associated with variability in insulin production and susceptibility to NIDDM

    SciTech Connect

    Chung, W.K.; Zheng, M.; Chua, M.

    1997-05-01

    In an attempt to identify the genetic basis for susceptibility to non-insulin-dependent diabetes mellitus within the context of obesity, we generated 401 genetically obese Lepr{sup fa}/Lepr{sup fa} F2 WKY13M intercross rats that demonstrated wide variation in multiple phenotypic measures related to diabetes, including plasma glucose concentration, percentage of glycosylated hemoglobin, plasma insulin concentration, and pancreatic islet morphology. Using selective genotyping genome scanning approaches, we have identified three quantitative trait loci (QTLs) on Chr. 1 (LOD 7.1 for pancreatic morpholology), Chr. 12 (LOD 5.1 for body mass index and LOD 3.4 for plasma glucose concentration), and Chr. 16 (P < 0.001 for genotype effect on plasma glucose concentration). The obese F2 progeny demonstrated sexual dimorphism for these traits, with increased diabetes susceptibility in the males appearing at approximately 6 weeks of age, as sexual maturation occurred. For each of the QTLs, the linked phenotypes demonstrated sexual dimorphism (more severe affection in males). The QTL on Chr. 1 maps to a region vicinal to that previously linked to adiposity in studies of diabetes susceptibility in the nonobese Goto-Kakizaki rat, which is genetically closely related to the Wistar counterstrain we employed. Several candidate genes, including tubby (tub), multigenic obesity 1 (Mob1), adult obesity and diabetes (Ad), and insulin-like growth factor-2 (Igf2), map to murine regions homologous to the QTL region identified on rat Chr. 1. 60 refs., 5 figs., 4 tabs.

  7. Is variation in susceptibility to Phytophthora ramorum correlated with population genetic structure in coast live oak (Quercus agrifolia)?

    PubMed

    Dodd, Richard S; Hüberli, Daniel; Douhovnikoff, Vlad; Harnik, Tamar Y; Afzal-Rafii, Zara; Garbelotto, Matteo

    2005-01-01

    California coastal woodlands are suffering severe disease and mortality as a result of infection from Phytophthora ramorum. Quercus agrifolia is one of the major woodland species at risk. This study investigated within- and among-population variation in host susceptibility to inoculation with P. ramorum and compared this with population genetic structure using molecular markers. Susceptibility was assessed using a branch-cutting inoculation test. Trees were selected from seven natural populations in California. Amplified fragment length polymorphism molecular markers were analysed for all trees used in the trials. Lesion sizes varied quantitatively among individuals within populations, with up to an eightfold difference. There was little support for population differences in susceptibility. Molecular structure also showed a strong within-population, and weaker among-population, pattern of variation. Our data suggest that susceptibility of Q. agrifolia to P. ramorum is variable and is under the control of several gene loci. This variation exists within populations, so that less susceptible local genotypes may provide the gene pool for regeneration of woodlands where mortality is high.

  8. Genetic background of Escherichia coli isolates from peritoneal dialysis patients with peritonitis and uninfected control subjects.

    PubMed

    Li, Y F; Su, N; Chen, S Y; Hu, W X; Li, F F; Jiang, Z P; Yu, X Q

    2016-03-28

    Escherichia coli is the most common cause of Gram-negative peritonitis resulting in peritoneal function deterioration as well as poor clinical outcome in continuous ambulatory peritoneal dialysis (PD) patients. In this study, we analyzed the phylogenetic background and genetic profile of the E. coli isolates and sought to determine the characteristics of specific bacteria associated with peritonitis. E. coli isolates from 56 episodes of peritonitis in 46 PD patient cases and rectal isolates from 57 matched PD control patient cases were compared for both phylogenetic groups and the presence of virulence factors (VFs). There were no significant differences in terms of demographic data between the peritonitis and control groups. Peritonitis isolates exhibited a significantly greater prevalence of 8 VFs. In multivariate logistic regression analysis, kpsMT II (group 2 capsule synthesis) was the strongest VF predictor of peritonitis (OR = 8.02; 95%CI = 3.18-20.25; P < 0.001), followed by traT (serum-resistance-associated outer membrane protein) (OR = 3.83; 95%CI = 1.33-11.03; P = 0.013). The pathogenic groups of E. coli contained a higher concentration of individual VFs compared to the commensal groups. The prevalence of pathogenic E. coli was much higher in peritoneal isolates than rectal isolates (64.3 vs 31.6%, P = 0.001). Our results indicate that the E. coli peritonitis and rectal isolates are different in PD patients. The specific VFs associated with peritonitis isolates may directly contribute to the pathogenesis of peritonitis.

  9. Genetic Background, Adipocytokines, and Metabolic Disorders in Postmenopausal Overweight and Obese Women.

    PubMed

    Grygiel-Górniak, Bogna; Kaczmarek, Elżbieta; Mosor, Maria; Przysławski, Juliusz; Bogacz, Anna

    2016-10-01

    The relationship between the genetic background, adipocytokines, and metabolic state in postmenopausal women has not yet been fully described. The aim of this study was to determine the relationship between PPAR gamma-2 (Pro12Ala, C1431T) and ADRB3 (Trp64Arg) polymorphisms and serum adipocytokines (adiponectin, visfatin, and resistin) and metabolic disorders in 176 postmenopausal women with increased body mass (BMI ≥ 25 kg m(-2)). The distributions of selected alleles and genotype frequencies were determined with the PCR-RFLP method. The bioimpedance method was used to determine nutritional status, and enzyme-linked immunosorbent assays were applied to determine serum concentrations of adipocytokines. Viscerally obese postmenopausal women had higher body mass, body fat content, serum glucose, insulin, total cholesterol, LDL, triglycerides, uric acid, and HOMA-IR and a higher prevalence of the Ala12 allele. In models based on cytokine concentration, higher body mass and glucose concentration (visfatin model, p = 0.008) and higher insulin and triglyceride levels (resistin model, p = 0.002) were observed in visceral fat deposition and this was potentiated by the presence of the T1431 allele. In resistin models, co-existence of Ala12/X polymorphisms with the T1431 allele was associated with higher resistin and triglyceride concentrations (p = 0.045). In postmenopausal women, metabolic parameters are mainly determined by the distribution of body fat, but Ala12/X polymorphism may increase the metabolic disorders and this effect can be enhanced by the T1431 allele.

  10. Genetic Susceptible Locus in NOTCH2 Interacts with Arsenic in Drinking Water on Risk of Type 2 Diabetes

    PubMed Central

    Pan, Wen-Chi; Kile, Molly L.; Seow, Wei Jie; Lin, Xihong; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Lu, Quan; Christiani, David C.

    2013-01-01

    Background Chronic exposure to arsenic in drinking water is associated with increased risk of type 2 diabetes mellitus (T2DM) but the underlying molecular mechanism remains unclear. Objectives This study evaluated the interaction between single nucleotide polymorphisms (SNPs) in genes associated with diabetes and arsenic exposure in drinking water on the risk of developing T2DM. Methods In 2009–2011, we conducted a follow up study of 957 Bangladeshi adults who participated in a case-control study of arsenic-induced skin lesions in 2001–2003. Logistic regression models were used to evaluate the association between 38 SNPs in 18 genes and risk of T2DM measured at follow up. T2DM was defined as having a blood hemoglobin A1C level greater than or equal to 6.5% at follow-up. Arsenic exposure was characterized by drinking water samples collected from participants' tubewells. False discovery rates were applied in the analysis to control for multiple comparisons. Results Median arsenic levels in 2001–2003 were higher among diabetic participants compared with non-diabetic ones (71.6 µg/L vs. 12.5 µg/L, p-value <0.001). Three SNPs in ADAMTS9 were nominally associated with increased risk of T2DM (rs17070905, Odds Ratio (OR)  = 2.30, 95% confidence interval (CI) 1.17–4.50; rs17070967, OR = 2.02, 95%CI 1.00–4.06; rs6766801, OR = 2.33, 95%CI 1.18–4.60), but these associations did not reach the statistical significance after adjusting for multiple comparisons. A significant interaction between arsenic and NOTCH2 (rs699780) was observed which significantly increased the risk of T2DM (p for interaction = 0.003; q-value = 0.021). Further restricted analysis among participants exposed to water arsenic of less than 148 µg/L showed consistent results for interaction between the NOTCH2 variant and arsenic exposure on T2DM (p for interaction  = 0.048; q-value = 0.004). Conclusions These findings suggest that genetic variation in NOTCH2 increased

  11. PON1 as a model for integration of genetic, epigenetic, and expression data on candidate susceptibility genes

    PubMed Central

    Huen, Karen; Yousefi, Paul; Street, Kelly; Eskenazi, Brenda; Holland, Nina

    2016-01-01

    Recent genome- and epigenome-wide studies demonstrate that the DNA methylation is controlled in part by genetics, highlighting the importance of integrating genetic and epigenetic data. To better understand molecular mechanisms affecting gene expression, we used the candidate susceptibility gene paraoxonase 1 (PON1) as a model to assess associations of PON1 genetic polymorphisms with DNA methylation and arylesterase activity, a marker of PON1 expression. PON1 has been associated with susceptibility to obesity, cardiovascular disease, and pesticide exposure. In this study, we assessed DNA methylation in 18 CpG sites located along PON1 shores, shelves, and its CpG island in blood specimens collected from newborns and 9-year-old children participating (n = 449) in the CHAMACOS birth cohort study. The promoter polymorphism, PON1−108, was strongly associated with methylation, particularly for CpG sites located near the CpG island (P << 0.0005). Among newborns, these relationships were even more pronounced after adjusting for blood cell composition. We also observed significant decreases in arylesterase activity with increased methylation at the same nine CpG sites at both ages. Using causal mediation analysis, we found statistically significant indirect effects of methylation (β(95% confidence interval): 6.9(1.5, 12.4)) providing evidence that DNA methylation mediates the relationship between PON1−108 genotype and PON1 expression. Our findings show that integration of genetic, epigenetic, and expression data can shed light on the functional mechanisms involving genetic and epigenetic regulation of candidate susceptibility genes like PON1. PMID:26913202

  12. Genetic Variants on 3q21 and in the Sp8 Transcription Factor Gene (SP8) as Susceptibility Loci for Psychotic Disorders: A Genetic Association Study

    PubMed Central

    Kondo, Kenji; Ikeda, Masashi; Kajio, Yusuke; Saito, Takeo; Iwayama, Yoshimi; Aleksic, Branko; Yamada, Kazuo; Toyota, Tomoko; Hattori, Eiji; Ujike, Hiroshi; Inada, Toshiya; Kunugi, Hiroshi; Kato, Tadafumi; Yoshikawa, Takeo; Ozaki, Norio; Iwata, Nakao

    2013-01-01

    Background Recent genome-wide association studies (GWASs) investigating bipolar disorder (BD) have detected a number of susceptibility genes. These studies have also provided novel insight into shared genetic components between BD and schizophrenia (SCZ), two major psychotic disorders. To examine the replication of the risk variants for BD and the pleiotropic effect of the variants associated with BD, we conducted a genetic association study of single nucleotide polymorphisms (SNPs) that were selected based upon previous BD GWASs, which targeted psychotic disorders (BD and SCZ) in the Japanese population. Methods Forty-eight SNPs were selected based upon previous GWASs. A two-stage analysis was conducted using first-set screening (for all SNPs: BD = 1,012, SCZ = 1,032 and control = 993) and second-set replication samples (for significant SNPs in the screening analysis: BD = 821, SCZ = 1,808 and control = 2,149). We assessed allelic association between BD, SCZ, psychosis (BD+SCZ) and the SNPs selected for the analysis. Results Eight SNPs revealed nominal association signals for all comparisons (Puncorrected<0.05). Among these SNPs, the top two SNPs (associated with psychosis: Pcorrected = 0.048 and 0.037 for rs2251219 and rs2709722, respectively) were further assessed in the second-set samples, and we replicated the signals from the initial screening analysis (associated with psychosis: Pcorrected = 0.0070 and 0.033 for rs2251219 and rs2709722, respectively). The meta-analysis between the current and previous GWAS results showed that rs2251219 in Polybromo1 (PBRM1) was significant on genome-wide association level (P = 5×10−8) only for BD (P = 9.4×10−9) and psychosis (P = 2.0×10−10). Although the association of rs2709722 in Sp8 transcription factor (SP8) was suggestive in the Asian population (P = 2.1×10−7 for psychosis), this signal weakened when the samples size was increased by including data from a

  13. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background

    PubMed Central

    Liorzou, Mathilde; Pernet, Alix; Li, Shubin; Chastellier, Annie; Thouroude, Tatiana; Michel, Gilles; Malécot, Valéry; Gaillard, Sylvain; Briée, Céline; Foucher, Fabrice; Oghina-Pavie, Cristiana; Clotault, Jérémy; Grapin, Agnès

    2016-01-01

    Hybridization with introduced genetic resources is commonly practiced in ornamental plant breeding to introgress desired traits. The 19th century was a golden age for rose breeding in France. The objective here was to study the evolution of rose genetic diversity over this period, which included the introduction of Asian genotypes into Europe. A large sample of 1228 garden roses encompassing the conserved diversity cultivated during the 18th and 19th centuries was genotyped with 32 microsatellite primer pairs. Its genetic diversity and structure were clarified. Wide diversity structured in 16 genetic groups was observed. Genetic differentiation was detected between ancient European and Asian accessions, and a temporal shift from a European to an Asian genetic background was observed in cultivated European hybrids during the 19th century. Frequent crosses with Asian roses throughout the 19th century and/or selection for Asiatic traits may have induced this shift. In addition, the consistency of the results with respect to a horticultural classification is discussed. Some horticultural groups, defined according to phenotype and/or knowledge of their pedigree, seem to be genetically more consistent than others, highlighting the difficulty of classifying cultivated plants. Therefore, the horticultural classification is probably more appropriate for commercial purposes rather than genetic relatedness, especially to define preservation and breeding strategies. PMID:27406785

  14. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background.

    PubMed

    Liorzou, Mathilde; Pernet, Alix; Li, Shubin; Chastellier, Annie; Thouroude, Tatiana; Michel, Gilles; Malécot, Valéry; Gaillard, Sylvain; Briée, Céline; Foucher, Fabrice; Oghina-Pavie, Cristiana; Clotault, Jérémy; Grapin, Agnès

    2016-08-01

    Hybridization with introduced genetic resources is commonly practiced in ornamental plant breeding to introgress desired traits. The 19th century was a golden age for rose breeding in France. The objective here was to study the evolution of rose genetic diversity over this period, which included the introduction of Asian genotypes into Europe. A large sample of 1228 garden roses encompassing the conserved diversity cultivated during the 18th and 19th centuries was genotyped with 32 microsatellite primer pairs. Its genetic diversity and structure were clarified. Wide diversity structured in 16 genetic groups was observed. Genetic differentiation was detected between ancient European and Asian accessions, and a temporal shift from a European to an Asian genetic background was observed in cultivated European hybrids during the 19th century. Frequent crosses with Asian roses throughout the 19th century and/or selection for Asiatic traits may have induced this shift. In addition, the consistency of the results with respect to a horticultural classification is discussed. Some horticultural groups, defined according to phenotype and/or knowledge of their pedigree, seem to be genetically more consistent than others, highlighting the difficulty of classifying cultivated plants. Therefore, the horticultural classification is probably more appropriate for commercial purposes rather than genetic relatedness, especially to define preservation and breeding strategies.

  15. Genetic Predictions of Prion Disease Susceptibility in Carnivore Species Based on Variability of the Prion Gene Coding Region

    PubMed Central

    Stewart, Paula; Campbell, Lauren; Skogtvedt, Susan; Griffin, Karen A.; Arnemo, Jon M.; Tryland, Morten; Girling, Simon; Miller, Michael W.; Tranulis, Michael A.; Goldmann, Wilfred

    2012-01-01

    Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrPC) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrPC protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter. PMID:23236380

  16. Penicillin-resistant, ampicillin-susceptible Enterococcus faecalis of hospital origin: pbp4 gene polymorphism and genetic diversity.

    PubMed

    Conceição, Natália; da Silva, Lucas Emanuel Pinheiro; Darini, Ana Lúcia da Costa; Pitondo-Silva, André; de Oliveira, Adriana Gonçalves

    2014-12-01

    Despite the spread of penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) isolates in diverse countries, the mechanisms leading to this unusual resistance phenotype have not yet been investigated. The aim of this study was to evaluate whether polymorphism in the pbp4 gene is associated with penicillin resistance in PRASEF isolates and to determine their genetic diversity. E. faecalis isolates were recovered from different clinical specimens of hospitalized patients from February 2006 to June 2010. The β-lactam minimal inhibitory concentrations (MICs) were determined by E-test®. The PCR-amplified pbp4 gene was sequenced with an automated sequencer. The genetic diversities of the isolates were established by PFGE (pulsed-field gel electrophoresis) and MLST (multilocus sequencing typing). Seventeen non-producing β-lactamase PRASEF and 10 penicillin-susceptible, ampicillin-susceptible E. faecalis (PSASEF) strains were analyzed. A single-amino-acid substitution (Asp-573→Glu) in the penicillin-binding domain was significantly found in all PRASEF isolates by sequencing of the pbp4 gene but not in the penicillin-susceptible isolates. In contrast to the PSASEF isolates, a majority of the PRASEFs had similar PFGE profiles. Six representative PRASEF isolates were resolved by MLST into ST9 and ST524 and belong to the globally dispersed clonal complex 9 (CC9). In conclusion, it appears quite likely that the amino acid alteration (Asp-573→Glu) found in the PBP4 of the Brazilian PRASEF isolates may account for their reduced susceptibility to penicillin, although other resistance mechanisms remain to be investigated.

  17. GENETIC POLYMORPHISMS AFFECTING SUSCEPTIBILITY TO MERCURY NEUROTOXICITY IN CHILDREN: SUMMARY FINDINGS FROM THE CASA PIA CHILDREN's AMALGAM CLINICAL TRIAL

    PubMed Central

    Woods, James S.; Heyer, Nicholas J.; Russo, Joan E.; Martin, Michael D.; Farin, Federico M.

    2014-01-01

    Mercury (Hg) is neurotoxic, and children may be particularly susceptible to this effect. A current major challenge is identification of children who may be uniquely susceptible to Hg toxicity because of genetic predisposition. We examined the possibility that common genetic variants that are known to affect neurologic functions or Hg handling in adults would modify the adverse neurobehavioral effects of Hg exposure in children. Three hundred thirty subjects who participated as children in the recently completed Casa Pia Clinical Trial of Dental Amalgams in Children were genotyped for 27 variants of 13 genes that are reported to affect neurologic functions and/or Hg disposition in adults. Urinary Hg concentrations, reflecting Hg exposure from any source, served as the Hg exposure index. Regression modeling strategies were employed to evaluate potential associations between allelic status for individual genes or combinations of genes, Hg exposure, and neurobehavioral test outcomes assessed at baseline and for 7 subsequent years during the clinical trial. Among boys, significant modification of Hg effects on neurobehavioral outcomes over a broad range of neurologic domains was observed with variant genotypes for 4 of 13 genes evaluated. Modification of Hg effects on a more limited number of neurobehavioral outcomes was also observed for variants of another 8 genes. Cluster analyses suggested some genes interacting in common processes to affect Hg neurotoxicity. In contrast, significant modification of Hg effects on neurobehavioral functions among girls with the same genotypes was substantially more limited. These observations suggest increased susceptibility to the adverse neurobehavioral effects of Hg among children, particularly boys, with genetic variants that are relatively common to the general human population. These findings advance public health goals to identify factors underlying susceptibility to Hg toxicity and may contribute to strategies for preventing

  18. Genetic and functional profiling of Crohn's disease: autophagy mechanism and susceptibility to infectious diseases.

    PubMed

    Marcuzzi, Annalisa; Bianco, Anna Monica; Girardelli, Martina; Tommasini, Alberto; Martelossi, Stefano; Monasta, Lorenzo; Crovella, Sergio

    2013-01-01

    Crohn's disease is a complex disease in which genome, microbiome, and environment interact to produce the immunological background of the disease. Disease in childhood is more extensive and characterized by a rapid progression, leading to severe repercussions in the course of the disorder. Several genetic variations have been associated with an increased risk of developing the disease and most of these are also implicated in other autoimmune disorders. The gut has many tiers of defense against incursion by luminal microbes, including the epithelial barrier and the innate and adaptive immune responses. Moreover, recent evidence shows that bacterial and viral infections, as well as inflammasome genes and genes involved in the autophagy process, are implicated in Crohn's disease pathogenesis. The aim of this review is to establish how much the diagnostic system can improve, thus increasing the success of Crohn's disease diagnosis. The major expectation for the near future is to be able to anticipate the possible consequences of the disease already in childhood, thus preventing associated complications, and to choose the best treatment for each patient.

  19. Genetic and Functional Profiling of Crohn's Disease: Autophagy Mechanism and Susceptibility to Infectious Diseases

    PubMed Central

    Bianco, Anna Monica; Girardelli, Martina; Tommasini, Alberto; Martelossi, Stefano

    2013-01-01

    Crohn's disease is a complex disease in which genome, microbiome, and environment interact to produce the immunological background of the disease. Disease in childhood is more extensive and characterized by a rapid progression, leading to severe repercussions in the course of the disorder. Several genetic variations have been associated with an increased risk of developing the disease and most of these are also implicated in other autoimmune disorders. The gut has many tiers of defense against incursion by luminal microbes, including the epithelial barrier and the innate and adaptive immune responses. Moreover, recent evidence shows that bacterial and viral infections, as well as inflammasome genes and genes involved in the autophagy process, are implicated in Crohn's disease pathogenesis. The aim of this review is to establish how much the diagnostic system can improve, thus increasing the success of Crohn's disease diagnosis. The major expectation for the near future is to be able to anticipate the possible consequences of the disease already in childhood, thus preventing associated complications, and to choose the best treatment for each patient. PMID:23738324

  20. Response to Dietary Phosphate Deficiency is Affected by Genetic Background in Growing Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concern over the environmental impact of phosphate (P) excretion from pig production has led to reduced dietary P supplementation. To examine how genetics influence P utilization, 94 gilts sired by 2 genetic lines (PIC337 and PIC280) were fed either a P adequate diet (PA) or a 20% P deficient diet ...

  1. Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Obesity-Related Traits.

    PubMed

    Karaderi, Tugce; Drong, Alexander W; Lindgren, Cecilia M

    2015-10-01

    Obesity and type 2 diabetes (T2D) are common and complex metabolic diseases, which are caused by an interchange between environmental and genetic factors. Recently, a number of large-scale genome-wide association studies (GWAS) have improved our knowledge of the genetic architecture and biological mechanisms of these diseases. Currently, more than ~250 genetic loci have been found for monogenic, syndromic, or common forms of T2D and/or obesity-related traits. In this review, we discuss the implications of these GWAS for obesity and T2D, and investigate the overlap of loci for obesity-related traits and T2D, highlighting potential mechanisms that affect T2D susceptibility.

  2. Identification of shared genetic susceptibility locus for coronary artery disease, type 2 diabetes and obesity: a meta-analysis of genome-wide studies.

    PubMed

    Wu, Chaoneng; Gong, Yunguo; Yuan, Jie; Gong, Hui; Zou, Yunzeng; Ge, Junbo

    2012-06-14

    Type 2 diabetes (2DM), obesity, and coronary artery disease (CAD) are frequently coexisted being as key components of metabolic syndrome. Whether there is shared genetic background underlying these diseases remained unclear. We performed a meta-analysis of 35 genome screens for 2DM, 36 for obesity or body mass index (BMI)-defined obesity, and 21 for CAD using genome search meta-analysis (GSMA), which combines linkage results to identify regions with only weak evidence and provide genetic interactions among different diseases. For each study, 120 genomic bins of approximately 30 cM were defined and ranked according to the best linkage evidence within each bin. For each disease, bin 6.2 achieved genomic significanct evidence, and bin 9.3, 10.5, 16.3 reached suggestive level for 2DM. Bin 11.2 and 16.3, and bin 10.5 and 9.3, reached suggestive evidence for obesity and CAD respectively. In pooled all three diseases, bin 9.3 and 6.5 reached genomic significant and suggestive evidence respectively, being relatively much weaker for 2DM/CAD or 2DM/obesity or CAD/obesity. Further, genomewide significant evidence was observed of bin 16.3 and 4.5 for 2DM/obesity, which is decreased when CAD was added. These findings indicated that bin 9.3 and 6.5 are most likely to be shared by 2DM, obesity and CAD. And bin 16.3 and 4.5 are potentially common regions to 2DM and obesity only. The observed shared susceptibility regions imply a partly overlapping genetic aspects of disease development. Fine scanning of these regions will definitely identify more susceptibility genes and causal variants.

  3. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility

    PubMed Central

    2014-01-01

    To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS) including 26,488 cases and 83,964 controls of European, East Asian, South Asian, and Mexican and Mexican American ancestry. We observed significant excess in directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven novel T2D susceptibility loci. Furthermore, we observed considerable improvements in fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterisation of complex trait loci, and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry. PMID:24509480

  4. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.

    PubMed

    Mahajan, Anubha; Go, Min Jin; Zhang, Weihua; Below, Jennifer E; Gaulton, Kyle J; Ferreira, Teresa; Horikoshi, Momoko; Johnson, Andrew D; Ng, Maggie C Y; Prokopenko, Inga; Saleheen, Danish; Wang, Xu; Zeggini, Eleftheria; Abecasis, Goncalo R; Adair, Linda S; Almgren, Peter; Atalay, Mustafa; Aung, Tin; Baldassarre, Damiano; Balkau, Beverley; Bao, Yuqian; Barnett, Anthony H; Barroso, Ines; Basit, Abdul; Been, Latonya F; Beilby, John; Bell, Graeme I; Benediktsson, Rafn; Bergman, Richard N; Boehm, Bernhard O; Boerwinkle, Eric; Bonnycastle, Lori L; Burtt, Noël; Cai, Qiuyin; Campbell, Harry; Carey, Jason; Cauchi, Stephane; Caulfield, Mark; Chan, Juliana C N; Chang, Li-Ching; Chang, Tien-Jyun; Chang, Yi-Cheng; Charpentier, Guillaume; Chen, Chien-Hsiun; Chen, Han; Chen, Yuan-Tsong; Chia, Kee-Seng; Chidambaram, Manickam; Chines, Peter S; Cho, Nam H; Cho, Young Min; Chuang, Lee-Ming; Collins, Francis S; Cornelis, Marylin C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Danesh, John; Das, Debashish; de Faire, Ulf; Dedoussis, George; Deloukas, Panos; Dimas, Antigone S; Dina, Christian; Doney, Alex S; Donnelly, Peter J; Dorkhan, Mozhgan; van Duijn, Cornelia; Dupuis, Josée; Edkins, Sarah; Elliott, Paul; Emilsson, Valur; Erbel, Raimund; Eriksson, Johan G; Escobedo, Jorge; Esko, Tonu; Eury, Elodie; Florez, Jose C; Fontanillas, Pierre; Forouhi, Nita G; Forsen, Tom; Fox, Caroline; Fraser, Ross M; Frayling, Timothy M; Froguel, Philippe; Frossard, Philippe; Gao, Yutang; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Grallert, Harald; Grant, George B; Grrop, Leif C; Groves, Chrisropher J; Grundberg, Elin; Guiducci, Candace; Hamsten, Anders; Han, Bok-Ghee; Hara, Kazuo; Hassanali, Neelam; Hattersley, Andrew T; Hayward, Caroline; Hedman, Asa K; Herder, Christian; Hofman, Albert; Holmen, Oddgeir L; Hovingh, Kees; Hreidarsson, Astradur B; Hu, Cheng; Hu, Frank B; Hui, Jennie; Humphries, Steve E; Hunt, Sarah E; Hunter, David J; Hveem, Kristian; Hydrie, Zafar I; Ikegami, Hiroshi; Illig, Thomas; Ingelsson, Erik; Islam, Muhammed; Isomaa, Bo; Jackson, Anne U; Jafar, Tazeen; James, Alan; Jia, Weiping; Jöckel, Karl-Heinz; Jonsson, Anna; Jowett, Jeremy B M; Kadowaki, Takashi; Kang, Hyun Min; Kanoni, Stavroula; Kao, Wen Hong L; Kathiresan, Sekar; Kato, Norihiro; Katulanda, Prasad; Keinanen-Kiukaanniemi, Kirkka M; Kelly, Ann M; Khan, Hassan; Khaw, Kay-Tee; Khor, Chiea-Chuen; Kim, Hyung-Lae; Kim, Sangsoo; Kim, Young Jin; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Korpi-Hyövälti, Eeva; Kowlessur, Sudhir; Kraft, Peter; Kravic, Jasmina; Kristensen, Malene M; Krithika, S; Kumar, Ashish; Kumate, Jesus; Kuusisto, Johanna; Kwak, Soo Heon; Laakso, Markku; Lagou, Vasiliki; Lakka, Timo A; Langenberg, Claudia; Langford, Cordelia; Lawrence, Robert; Leander, Karin; Lee, Jen-Mai; Lee, Nanette R; Li, Man; Li, Xinzhong; Li, Yun; Liang, Junbin; Liju, Samuel; Lim, Wei-Yen; Lind, Lars; Lindgren, Cecilia M; Lindholm, Eero; Liu, Ching-Ti; Liu, Jian Jun; Lobbens, Stéphane; Long, Jirong; Loos, Ruth J F; Lu, Wei; Luan, Jian'an; Lyssenko, Valeriya; Ma, Ronald C W; Maeda, Shiro; Mägi, Reedik; Männisto, Satu; Matthews, David R; Meigs, James B; Melander, Olle; Metspalu, Andres; Meyer, Julia; Mirza, Ghazala; Mihailov, Evelin; Moebus, Susanne; Mohan, Viswanathan; Mohlke, Karen L; Morris, Andrew D; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Musk, Bill; Nakamura, Jiro; Nakashima, Eitaro; Navarro, Pau; Ng, Peng-Keat; Nica, Alexandra C; Nilsson, Peter M; Njølstad, Inger; Nöthen, Markus M; Ohnaka, Keizo; Ong, Twee Hee; Owen, Katharine R; Palmer, Colin N A; Pankow, James S; Park, Kyong Soo; Parkin, Melissa; Pechlivanis, Sonali; Pedersen, Nancy L; Peltonen, Leena; Perry, John R B; Peters, Annette; Pinidiyapathirage, Janini M; Platou, Carl G; Potter, Simon; Price, Jackie F; Qi, Lu; Radha, Venkatesan; Rallidis, Loukianos; Rasheed, Asif; Rathman, Wolfgang; Rauramaa, Rainer; Raychaudhuri, Soumya; Rayner, N William; Rees, Simon D; Rehnberg, Emil; Ripatti, Samuli; Robertson, Neil; Roden, Michael; Rossin, Elizabeth J; Rudan, Igor; Rybin, Denis; Saaristo, Timo E; Salomaa, Veikko; Saltevo, Juha; Samuel, Maria; Sanghera, Dharambir K; Saramies, Jouko; Scott, James; Scott, Laura J; Scott, Robert A; Segrè, Ayellet V; Sehmi, Joban; Sennblad, Bengt; Shah, Nabi; Shah, Sonia; Shera, A Samad; Shu, Xiao Ou; Shuldiner, Alan R; Sigurđsson, Gunnar; Sijbrands, Eric; Silveira, Angela; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; So, Wing Yee; Stančáková, Alena; Stefansson, Kari; Steinbach, Gerald; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Strawbridge, Rona J; Stringham, Heather M; Sun, Qi; Suo, Chen

    2014-03-01

    To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.

  5. Allele variations in the OCA2 gene (pink-eyed-dilution locus) are associated with genetic susceptibility to melanoma.

    PubMed

    Jannot, Anne-Sophie; Meziani, Roubila; Bertrand, Guylene; Gérard, Benedicte; Descamps, Vincent; Archimbaud, Alain; Picard, Catherine; Ollivaud, Laurence; Basset-Seguin, Nicole; Kerob, Delphine; Lanternier, Guy; Lebbe, Celeste; Saiag, P; Crickx, Beatrice; Clerget-Darpoux, Françoise; Grandchamp, Bernard; Soufir, Nadem; Melan-Cohort

    2005-08-01

    The occuloalbinism 2 (OCA2) gene, localized at 15q11, encodes a melanosomal transmembrane protein that is involved in the most common form of human occulo-cutaneous albinism, a human genetic disorder characterized by fair pigmentation and susceptibility to skin cancer. We wondered whether allele variations at this locus could influence susceptibility to malignant melanoma (MM). In all, 10 intragenic single-nucleotide polymorphisms (SNPs) were genotyped in 113 patients with melanomas and in 105 Caucasian control subjects with no personal or family history of skin cancer. By comparing allelic distribution between cases and controls, we show that MM and OCA2 are associated (p value=0.030 after correction for multiple testing). Then, a recently developed strategy, the 'combination test' enabled us to show that a combination formed by two SNPs was most strongly associated to MM, suggesting a possible interaction between intragenic SNPs. In addition, the role of OCA2 on MM risk was also detected using a logistic model taking into account the presence of variants of the melanocortin 1 receptor gene (MC1R, a key pigmentation gene) and all pigmentation characteristics as melanoma risk factors. Our data demonstrate that a second pigmentation gene, in addition to MC1R, is involved in genetic susceptibility to melanoma.

  6. Genetic susceptibility to hypertension-induced renal damage in the rat. Evidence based on kidney-specific genome transfer.

    PubMed Central

    Churchill, P C; Churchill, M C; Bidani, A K; Griffin, K A; Picken, M; Pravenec, M; Kren, V; St Lezin, E; Wang, J M; Wang, N; Kurtz, T W

    1997-01-01

    To test the hypothesis that genetic factors can determine susceptibility to hypertension-induced renal damage, we derived an experimental animal model in which two genetically different yet histocompatible kidneys are chronically and simultaneously exposed to the same blood pressure profile and metabolic environment within the same host. Kidneys from normotensive Brown Norway rats were transplanted into unilaterally nephrectomized spontaneously hypertensive rats (SHR-RT1.N strain) that harbor the major histocompatibility complex of the Brown Norway strain. 25 d after the induction of severe hypertension with deoxycorticosterone acetate and salt, proteinuria, impaired glomerular filtration rate, and extensive vascular and glomerular injury were observed in the Brown Norway donor kidneys, but not in the SHR-RT1.N kidneys. Control experiments demonstrated that the strain differences in kidney damage could not be attributed to effects of transplantation-induced renal injury, immunologic rejection phenomena, or preexisting strain differences in blood pressure. These studies (a) demonstrate that the kidney of the normotensive Brown Norway rat is inherently much more susceptible to hypertension-induced damage than is the kidney of the spontaneously hypertensive rat, and (b) establish the feasibility of using organ-specific genome transplants to map genes expressed in the kidney that determine susceptibility to hypertension-induced renal injury in the rat. PMID:9294102

  7. The identification of two regulatory ESCC susceptibility genetic variants in the TERT-CLPTM1L loci.

    PubMed

    Zhou, Liqing; Fu, Guobin; Wei, Jinyu; Shi, Juan; Pan, Wenting; Ren, Yanli; Xiong, Xiangyu; Xia, Jianhong; Shen, Yue; Li, Hongliang; Yang, Ming

    2016-02-02

    The chromosome 5p15.33 TERT-CLPTM1L region has been identified by genome-wide association studies as a susceptibility locus of multiple malignancies. However, the involvement of this locus in esophageal squamous cell carcinoma (ESCC) development is still largely unclear. We fine-mapped the TERT-CLPTM1L region through genotyping 15 haplotype-tagging single nucleotide polymorphisms (htSNPs) using a two stage case-control strategy. After analyzing 2098 ESCC patients and frequency-matched 2150 unaffected controls, we found that rs2853691, rs2736100 and rs451360 genetic polymorphisms are significantly associated with ESCC risk in Chinese (all P<0.05). Reporter gene assays indicated that the ESCC susceptibility SNP rs2736100 locating in a potential TERT intronic promoter has a genotype-specific effect on TERT expression. Similarly, the CLPTM1L rs451360 SNP also showed allelic impacts on gene expression. After measuring TERT and CLPTM1L expression in sixty-six pairs of esophageal cancer and normal tissues, we observed that the rs2736100 G risk allele carriers showed elevated oncogene TERT expression. Also, subjects with the rs451360 protective T allele had much lower oncogene CLPTM1L expression than those with G allele in tissue specimens. Results of these analyses underline the complexity of genetic regulation of telomere biology and further support the important role of telomerase in carcinogenesis. Our data also support the involvement of CLPTM1L in ESCC susceptibility.

  8. Dietary folate, B vitamins, genetic susceptibility and progression to advanced nonexudative age-related macular degeneration with geographic atrophy: a prospective cohort study12

    PubMed Central

    Silver, Rachel E; Rosner, Bernard; Seddon, Johanna M

    2016-01-01

    Background: There is growing evidence of the importance of nutrition in age-related macular degeneration (AMD), but few studies have explored associations with folate and B vitamins. No effective therapeutic strategy for geographic atrophy (GA) is available, and prevention could be of great value. Objective: We investigated associations between dietary folate, B vitamins, and progression to GA and whether these associations might be modified by genetic susceptibility. Design: Among 2525 subjects (4663 eyes) in the Age-Related Eye Disease Study, 405 subjects (528 eyes) progressed to GA over 13 y. Folate and B vitamins were log transformed and calorie adjusted separately for men and women. Ten loci in 7 AMD genes [complement factor H, age-related maculopathy susceptibility 2/high-temperature requirement A serine peptidase 1, complement component 2, complement component 3, complement factor B, collagen type VIII α 1, and RAD51 paralog B] were examined. Survival analysis was used to assess associations between incident GA and dietary intake of folate and B vitamins. Interaction effects between these nutrients and genetic variation on AMD risk were also evaluated. Subjects with at least one eye free of advanced AMD at baseline were included in these analyses. Results: There was a reduced risk of progression to GA with increasing intake of thiamin, riboflavin, and folate after adjusting for age, sex, and total energy intake (P-trend = 0.01, 0.03, and 0.001, respectively). After adjustment for demographic, behavioral, ocular, and genetic covariates, trends remained statistically significant for folate (P-trend = 0.007) and were borderline for thiamin (P-trend = 0.05). Riboflavin did not retain statistical significance (P-trend = 0.20). Folate was significantly associated with lower risk of incident GA among subjects homozygous for the complement component 3 (C3) R102G rs2230199 nonrisk genotype (CC) (HR = 0.43; 95% CI: 0.27, 0.70; P = 0.0005) but not subjects carrying

  9. Mitochondrial genetic effects on latent class variables associated with susceptibility to alcoholism.

    PubMed

    Lease, Loren R; Winnier, Deidre A; Williams, Jeff T; Dyer, Thomas D; Almasy, Laura; Mahaney, Michael C

    2005-12-30

    We report the results of statistical genetic analyses of data from the Collaborative Study on the Genetics of Alcoholism prepared for the Genetic Analysis Workshop 14 to detect and characterize maternally inherited mitochondrial genetic effects on variation in latent class psychiatric/behavioral variables employed in the diagnosis of alcoholism. Using published extensions to variance decomposition methods for statistical genetic analysis of continuous and discrete traits we: 1) estimated the proportion of the variance in each trait due to the effects of mitochondrial DNA (mtDNA), 2) tested for pleiotropy, both mitochondrial genetic and residual additive genetic, between trait pairs, and 3) evaluated whether the simultaneous estimation of mitochondrial genetic effects on these traits improves our ability to detect and localize quantitative trait loci (QTL) in the nuclear genome. After correction for multiple testing, we find significant (p < 0.009) mitochondrial genetic contributions to the variance for two latent class variables. Although we do detect significant residual additive genetic correlations between the two traits, there is no evidence of a residual mitochondrial genetic correlation between them. Evidence for autosomal QTL for these traits is improved when linkage screens are conditioned on significant mitochondrial genetic effects. We conclude that mitochondrial genes may contribute to variation in some latent class psychiatric/behavioral variables associated with alcoholism.

  10. A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity.

    PubMed

    Read, Timothy; Richmond, Phillip A; Dowell, Robin D

    2016-01-01

    Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s) that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.

  11. Elucidation of Genetic Backgrounds Necessary for Chlorophyll a Biosynthesis Toward Artificial Creation of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Tsukatani, Yusuke; Masuda, Shinji

    2015-09-01

    We succeeded to create the genetically modified purple photosynthetic bacterium capable of synthesizing chlorophyll a. The results indicate that not only chlorophyll synthase, but also an enzyme for galactolipid synthesis and reaction center proteins are required for accumulating chlorophyll a.

  12. Genetic background of skin barrier dysfunction in the pathogenesis of psoriasis vulgaris.

    PubMed

    Stawczyk-Macieja, Marta; Szczerkowska-Dobosz, Aneta; Rębała, Krzysztof; Purzycka-Bohdan, Dorota

    2015-04-01

    Psoriasis is a common inflammatory skin disease. It is known to be a complex condition with multifactorial mode of inheritance, however the associations between particular pathogenic pathways remain unclear. A novel report on the pathogenesis of psoriasis has recently included the genetic determination of the skin barrier dysfunction. In this paper, we focus on specific genetic variants associated with formation of the epidermal barrier and their role in the complex pathogenesis of the disease.

  13. Core Concepts in Human Genetics: Understanding the Complex Phenotype of Sport Performance and Susceptibility to Sport Injury.

    PubMed

    Gibson, William T

    2016-01-01

    High-throughput sequencing of multiple human exomes and genomes is rapidly identifying rare genetic variants that cause or contribute to disease. Microarray-based methodologies have also shed light onto the genes that contribute to common, non-disease human traits such as hair and eye colour. Sport scientists should keep in mind several things when interpreting the literature, and when designing their own genetic studies. First of all, most genetic association methods are more powerful for detecting disease phenotypes (such as susceptibility to injury) than they are for detecting healthy phenotypes (such as sport performance). This is because there are likely to be many more biological factors contributing to the latter, and the effect size of most of these biological factors is likely to be small. Second, implicating a particular gene in a human phenotype like athletic performance or injury susceptibility requires an unbiased population data set. Third, new types of non-coding biological variability continue to be uncovered in the human genome (e.g. epigenetic modifications, microRNAs, etc.). These other types of variability may contribute significantly to differences in athletic performance.

  14. The effects of selective breeding against scrapie susceptibility on the genetic variability of the Latxa Black-Faced sheep breed

    PubMed Central

    Alfonso, Leopoldo; Parada, Analia; Legarra, Andrés; Ugarte, Eva; Arana, Ana

    2006-01-01

    Breeding sheep populations for scrapie resistance could result in a loss of genetic variability. In this study, the effect on genetic variability of selection for increasing the ARR allele frequency was estimated in the Latxa breed. Two sources of information were used, pedigree and genetic polymorphisms (fifteen microsatellites). The results based on the genealogical information were conditioned by a low pedigree completeness level that revealed the interest of also using the information provided by the molecular markers. The overall results suggest that no great negative effect on genetic variability can be expected in the short time in the population analysed by selection of only ARR/ARR males. The estimated average relationship of ARR/ARR males with reproductive females was similar to that of all available males whatever its genotype: 0.010 vs. 0.012 for a genealogical relationship and 0.257 vs. 0.296 for molecular coancestry, respectively. However, selection of only ARR/ARR males implied important losses in founder animals (87 percent) and low frequency alleles (30 percent) in the ram population. The evaluation of mild selection strategies against scrapie susceptibility based on the use of some ARR heterozygous males was difficult because the genetic relationships estimated among animals differed when pedigree or molecular information was used, and the use of more molecular markers should be evaluated. PMID:16954042

  15. Genetic Polymorphisms in CYP2E1: Association with Schizophrenia Susceptibility and Risperidone Response in the Chinese Han Population

    PubMed Central

    Wei, Zhiyun; Shen, Lu; Xiong, Yuyu; Wu, Xi; Niu, Jiamin; Han, Xia; Tian, Zhengan; Yang, Lun; Feng, Guoyin; He, Lin; Qin, Shengying

    2012-01-01

    Background CYP2E1 is a member of the cytochrome P450 superfamily, which is involved in the metabolism and activation of both endobiotics and xenobiotics. The genetic polymorphisms of CYP2E1 gene (Chromosome 10q26.3, Accession Number NC_000010.10) are reported to be related to the development of several mental diseases and to be involved in the clinical efficacy of some psychiatric medications. We investigated the possible association of CYP2E1 polymorphisms with susceptibility to schizophrenia in the Chinese Han Population as well as the relationship with response to risperidone in schizophrenia patients. Methods In a case-control study, we identified 11 polymorphisms in the 5' flanking region of CYP2E1 in 228 schizophrenia patients and 384 healthy controls of Chinese Han origin. From among the cases, we chose 130 patients who had undergone 8 weeks of risperidone monotherapy to examine the relationship between their response to risperidone and CYP2E1 polymorphisms. Clinical efficacy was assessed using the Brief Psychiatric Rating Scale (BPRS). Results Statistically significant differences in allele or genotype frequencies were found between cases and controls at rs8192766 (genotype p = 0.0048, permutation p = 0.0483) and rs2070673 (allele: p = 0.0018, permutation p = 0.0199, OR = 1.4528 95%CI = 1.1487–1.8374; genotype: p = 0.0020, permutation p = 0.0225). In addition, a GTCAC haplotype containing 5 SNPs (rs3813867, rs2031920, rs2031921, rs3813870 and rs2031922) was observed to be significantly associated with schizophrenia (p = 7.47E-12, permutation p<0.0001). However, no association was found between CYP2E1 polymorphisms/haplotypes and risperidone response. Conclusions Our results suggest that CYP2E1 may be a potential risk gene for schizophrenia in the Chinese Han population. However, polymorphisms of the CYP2E1 gene may not contribute significantly to individual differences in the therapeutic efficacy of risperidone. Further

  16. NOS2 variants reveal a dual genetic control of nitric oxide levels, susceptibility to Plasmodium infection, and cerebral malaria.

    PubMed

    Trovoada, Maria de Jesus; Martins, Madalena; Ben Mansour, Riadh; Sambo, Maria do Rosário; Fernandes, Ana B; Antunes Gonçalves, Lígia; Borja, Artur; Moya, Roni; Almeida, Paulo; Costa, João; Marques, Isabel; Macedo, M Paula; Coutinho, António; Narum, David L; Penha-Gonçalves, Carlos

    2014-03-01

    Nitric oxide (NO) is a proposed component of malaria pathogenesis, and the inducible nitric oxide synthase gene (NOS2) has been associated to malaria susceptibility. We analyzed the role of NOS2 polymorphisms on NO bioavailability and on susceptibility to infection, Plasmodium carrier status and clinical malaria. Two distinct West African sample collections were studied: a population-based collection of 1,168 apparently healthy individuals from the Príncipe Island and a hospital-based cohort of 269 Angolan children. We found that two NOS2 promoter single-nucleotide polymorphism (SNP) alleles associated to low NO plasma levels in noninfected individuals were also associated to reduced risk of pre-erythrocytic infection as measured anti-CSP antibody levels (6.25E-04 < P < 7.57E-04). In contrast, three SNP alleles within the NOS2 cistronic region conferring increased NO plasma levels in asymptomatic carriers were strongly associated to risk of parasite carriage (8.00E-05 < P < 7.90E-04). Notwithstanding, three SNP alleles in this region protected from cerebral malaria (7.90E-4 < P < 4.33E-02). Cohesively, the results revealed a dual regimen in the genetic control of NO bioavailability afforded by NOS2 depending on the infection status. NOS2 promoter variants operate in noninfected individuals to decrease both NO bioavailability and susceptibility to pre-erythrocytic infection. Conversely, NOS2 cistronic variants (namely, rs6505469) operate in infected individuals to increase NO bioavailability and confer increased susceptibility to unapparent infection but protect from cerebral malaria. These findings corroborate the hypothesis that NO anti-inflammatory properties impact on different steps of malaria pathogenesis, explicitly by favoring infection susceptibility and deterring severe malaria syndromes.

  17. Atopic Dermatitis: Clinical Connotations, Especially a Focus on Concomitant Atopic Undertones in Immunocompromised/Susceptible Genetic and Metabolic Disorders

    PubMed Central

    Sehgal, Virendra N; Khurana, Ananta; Mendiratta, Vibhu; Saxena, Deepti; Srivastava, Govind; Aggarwal, Ashok K; Chatterjee, Kingshuk

    2016-01-01

    Atopic dermatitis (AD) is an intriguing clinical entity. Its clinical connotations are varied, the updates of which are required to be done periodically. An attempt to bring its various facets have been made highlighting its clinical features keeping in view the major and the minor criteria to facilitate the diagnosis, differential diagnosis, complications, and associated dermatoses. The benefit of the current dissertation may percolate to the trainees in dermatology, in addition to revelations that atopic undertones in genetic susceptibility and metabolic disorder may provide substantive insight for the future in the understanding of thus far enigmatic etiopathogenesis of AD. PMID:27293243

  18. Association between fluconazole susceptibility and genetic relatedness among Candida tropicalis isolates in Taiwan.

    PubMed

    Wang, Jang-Shiun; Li, Shu-Ying; Yang, Yun-Liang; Chou, Hsiao-Hui; Lo, Hsiu-Jung

    2007-05-01

    Among the 162 Candida tropicalis isolates collected in the Taiwan Surveillance of Antimicrobial Resistance of Yeasts in 1999, 23 (14.2 %) had fluconazole MICs > or = 64 mg l(-1), and thus fulfilled the definition of resistance. Random amplified polymorphic DNA assay showed that all 23 fluconazole-resistance C. tropicalis isolates collected from different hospitals around Taiwan were closely related. Two distinct pulsotypes associated with fluconazole susceptibility were identified when these 23 resistant isolates, along with 13 susceptible ones, were analysed by PFGE.

  19. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS marker...

  20. Influence of genetic background on anthocyanin and copigment composition and behavior during thermoalkaline processing of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visual color is a primary factor for foods purchase; identifying factors that influence in-situ color quality of pigmented maize during processing is important. We used 24 genetically distinct pigmented maize hybrids (red/blue, blue, red, and purple) to investigate the effect of pigment and copigme...

  1. Analysis of a p53 Mutation Associated with Cancer Susceptibility for Biochemistry and Genetic Laboratory Courses

    ERIC Educational Resources Information Center

    Soto-Cruz, Isabel; Legorreta-Herrera, Martha

    2009-01-01

    We have devised and implemented a module for an upper division undergraduate laboratory based on the amplification and analysis of a p53 polymorphism associated with cancer susceptibility. First, students collected a drop of peripheral blood cells using a sterile sting and then used FTA cards to extract the genomic DNA. The p53 region is then PCR…

  2. An Image-Based Genetic Assay Identifies Genes in T1D Susceptibility Loci Controlling Cellular Antiviral Immunity in Mouse

    PubMed Central

    Liao, Juan; Jijon, Humberto B.; Kim, Ira R.; Goel, Gautam; Doan, Aivi; Sokol, Harry; Bauer, Hermann; Herrmann, Bernhard G.; Lassen, Kara G.; Xavier, Ramnik J.

    2014-01-01

    The pathogenesis of complex diseases, such as type 1 diabetes (T1D), derives from interactions between host genetics and environmental factors. Previous studies have suggested that viral infection plays a significant role in initiation of T1D in genetically predisposed individuals. T1D susceptibility loci may therefore be enriched in previously uncharacterized genes functioning in antiviral defense pathways. To identify genes involved in antiviral immunity, we performed an image-based high-throughput genetic screen using short hairpin RNAs (shRNAs) against 161 genes within T1D susceptibility loci. RAW 264.7 cells transduced with shRNAs were infected with GFP-expressing herpes simplex virus type 1 (HSV-1) and fluorescent microscopy was performed to assess the viral infectivity by fluorescence reporter activity. Of the 14 candidates identified with high confidence, two candidates were selected for further investigation, Il27 and Tagap. Administration of recombinant IL-27 during viral infection was found to act synergistically with interferon gamma (IFN-γ) to activate expression of type I IFNs and proinflammatory cytokines, and to enhance the activities of interferon regulatory factor 3 (IRF3). Consistent with a role in antiviral immunity, Tagap-deficient macrophages demonstrated increased viral replication, reduced expression of proinflammatory chemokines and cytokines, and decreased production of IFN-β. Taken together, our unbiased loss-of-function genetic screen identifies genes that play a role in host antiviral immunity and delineates roles for IL-27 and Tagap in the production of antiviral cytokines. PMID:25268627

  3. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-wide Meta-analysis

    PubMed Central

    Peters, Ulrike; Jiao, Shuo; Schumacher, Fredrick R.; Hutter, Carolyn M.; Aragaki, Aaron K.; Baron, John A.; Berndt, Sonja I.; Bézieau, Stéphane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Chen, Lin S.; Coetzee, Gerhard A.; Coetzee, Simon G.; Conti, David V.; Curtis, Keith R.; Duggan, David; Edwards, Todd; Fuchs, Charles S.; Gallinger, Steven; Giovannucci, Edward L.; Gogarten, Stephanie M.; Gruber, Stephen B.; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Hunter, David J.; Jackson, Rebecca D.; Jee, Sun Ha; Jenkins, Mark A.; Jia, Wei-Hua; Kolonel, Laurence N.; Kooperberg, Charles; Küry, Sébastien; Lacroix, Andrea Z.; Laurie, Cathy C.; Laurie, Cecelia A.; Le Marchand, Loic; Lemire, Mathieu; Levine, David; Lindor, Noralane M.; Liu, Yan; Ma, Jing; Makar, Karen W.; Matsuo, Keitaro; Newcomb, Polly A.; Potter, John D.; Prentice, Ross L.; Qu, Conghui; Rohan, Thomas; Rosse, Stephanie A.; Schoen, Robert E.; Seminara, Daniela; Shrubsole, Martha; Shu, Xiao-Ou; Slattery, Martha L.; Taverna, Darin; Thibodeau, Stephen N.; Ulrich, Cornelia M.; White, Emily; Xiang, Yongbing; Zanke, Brent W.; Zeng, Yi-Xin; Zhang, Ben; Zheng, Wei; Hsu, Li

    2013-01-01

    BACKGROUND & AIMS Heritable factors contribute to the development of colorectal cancer. Identifying the genetic loci associated with colorectal tumor formation could elucidate the mechanisms of pathogenesis. METHODS We conducted a genome-wide association study that included 14 studies, 12,696 cases of colorectal tumors (11,870 cancer, 826 adenoma), and 15,113 controls of European descent. The 10 most statistically significant, previously unreported findings were followed up in 6 studies; these included 3056 colorectal tumor cases (2098 cancer, 958 adenoma) and 6658 controls of European and Asian descent. RESULTS Based on the combined analysis, we identified a locus that reached the conventional genome-wide significance level at less than 5.0 × 10−8: an intergenic region on chromosome 2q32.3, close to nucleic acid binding protein 1 (most significant single nucleotide polymorphism: rs11903757; odds ratio [OR], 1.15 per risk allele; P = 3.7 × 10−8). We also found evidence for 3 additional loci with P values less than 5.0 × 10−7: a locus within the laminin gamma 1 gene on chromosome 1q25.3 (rs10911251; OR, 1.10 per risk allele; P = 9.5 × 10−8), a locus within the cyclin D2 gene on chromosome 12p13.32 (rs3217810 per risk allele; OR, 0.84; P = 5.9 × 10−8), and a locus in the T-box 3 gene on chromosome 12q24.21 (rs59336; OR, 0.91 per risk allele; P = 3.7 × 10−7). CONCLUSIONS In a large genome-wide association study, we associated polymorphisms close to nucleic acid binding protein 1 (which encodes a DNA-binding protein involved in DNA repair) with colorectal tumor risk. We also provided evidence for an association between colorectal tumor risk and polymorphisms in laminin gamma 1 (this is the second gene in the laminin family to be associated with colorectal cancers), cyclin D2 (which encodes for cyclin D2), and T-box 3 (which encodes a T-box transcription factor and is a target of Wnt signaling to β-catenin). The roles of these genes and their products

  4. Refinement of the background genetic map of Xq26-q27 and gene localisation for Boerjeson-Forssman-Lehmann syndrome

    SciTech Connect

    Gedeon, A.K.; Kozman, H.M.; Mulley, J.C.

    1996-07-12

    A detailed map of genetic markers was constructed around the gene for the X-linked mental retardation syndrome of Borjeson-Forssman-Lehmann (BFLS). A multipoint linkage map of framework markers across Xq26-27, based on CEPH families, was integrated with the physical map, based on a YAC contig, to confirm marker order. The remaining genetic markers, which could not be ordered by linkage, were added to create the comprehensive genetic background map, in the order determined by physical mapping, to determine genetic distances between adjacent markers. This background genetic map is applicable to the refinement of the regional localization for any disease gene mapping to this region. The BFLS gene was localized using this background map in an extended version of the family described by Turner et al. The regional localization for BFLS extends between recombination events at DXS425 and DXS105, an interval of 24.6 cM on the background genetic map. The phenotypic findings commonly seen in the feet of affected males and obligate carrier females may represent a useful clinical indicator of carrier status in potential female carriers in the family. Recombination between DXS425 and DXS105 in a female with such characteristic feet suggests that the distal limit of the regional localization for the BFLS gene might reasonably be reduced to DXS294 for the purpose of selecting candidate genes, reducing the interval for the BFLS gene to 15.5 cM. Positional candidate genes from the interval between DXS425 and DXS105 include the SOX3 gene, mapped between DXS51(52A) and DXS98(4D-8). SOX3 may have a role in regulating the development of the nervous system. The HMG-box region of this single exon gene was examined by PCR for a deletion and then sequenced. No deviation from normal was observed, excluding mutations in the conserved HMG-box region as the cause of BFLS in this family. 27 refs., 1 fig., 2 tabs.

  5. Genetic background and phenotypic characterization over two farrowings of leg conformation defects in Landrace and Large White sows.

    PubMed

    de Sevilla, X Fernàndez; Fàbrega, E; Tibau, J; Casellas, J

    2009-05-01

    A Bayesian threshold animal model was applied to evaluate the prevalence over 2 farrowings and genetic background of overall leg conformation score and the presence or absence of 6 specific leg defects (abnormal hoof growth, splay footed, plantigradism, straight pasterns, sickle-hocked legs, and the presence of swelling or injuries) in purebred Landrace and Large White sows. Data sets contained phenotypic records from 2,477 and 1,550 Landrace and Large White females, respectively, at the end of the growing period. Leg conformation data from first and second farrowings were available for 223 and 191 Landrace sows and 213 and 193 Large White sows, respectively. Overall leg conformation deteriorated with age, with statistically relevant differences between females at the end of the growing period, first farrowing (FF), and second farrowing (SF). In a similar way, the prevalence of the 6 specific leg defects increased between the end of the growing period and FF (with the exception of straight pasterns in the Landrace population). Differences between FF and second farrowing were statistically relevant for hoof growth (highest posterior density regions at 95% did not overlap), plantigradism, sickle-hocked legs, and overall leg conformation score in Landrace and for sickle-hocked leg and overall leg conformation score in Large White. The statistical relevance of the genetic background was tested through the Bayes factor (BF) between the model with the additive genetic component and the model with 0 heritability (nonheritable). Heritability (h(2)) was discarded (BF < 1) for sickle-hocked leg in both breeds, whereas decisive evidence (BF > 100) of genetic background was obtained for overall leg conformation score in Landrace and Large White sows (h(2) = 0.27 and 0.38, respectively), hoof growth in both breeds (h(2) = 0.22 and 0.26, respectively), and plantigradism (h(2) = 0.34) and the presence of swelling or injuries in Landrace (h(2) = 0.27). Note that a BF > 100 implies

  6. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    PubMed Central

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  7. The CRHR1 gene contributes to genetic susceptibility of aggressive behavior towards others in Chinese southwest Han population.

    PubMed

    Chen, Bifeng; Gu, Tao; Ma, Bo; Zheng, Guoqing; Ke, Bingxiong; Zhang, Xiufeng; Zhang, Lirui; Wang, Yuanyuan; Hu, Liping; Chen, Yang; Qiu, Jianbo; Nie, Shengjie

    2014-04-01

    Accumulating evidence suggests that the hypothalamic-pituitary-adrenal (HPA) axis might play a major role in genetic susceptibility of aggressive behavior. The aim of the present study is to investigate the association between corticotrophin-releasing hormone receptor 1 (CRHR1) gene and aggressive behavior in Chinese southwest Han population. Participants consist of 282 healthy controls and 177 violent criminals (including robbery and intentional injury, which represent for aggressive behavior towards property and aggressive behavior towards others). Three tag single nucleotide polymorphisms (SNPs) of CRHR1 gene including rs4458044, rs242924, and rs1768996 were genotyped using improved multiplex ligase detection reaction (iMLDR) methods. Single-locus analysis revealed that none of the studied SNPs was significantly associated with the risk of aggressive behavior; however, haplotype analysis showed that a haplotype GGA significantly increased the susceptibility of aggressive behavior towards others with an odds ratios equal to 3.32 (p = 0.003). The present results, for the first time, indicate that the CRHR1 gene polymorphism is significantly associated with aggressive behavior in Chinese southwest Han population. Subjects with GGA haplotype have an increased susceptibility to aggressive behavior towards others.

  8. A First Insight into the Genetic Diversity and Drug Susceptibility Pattern of Mycobacterium tuberculosis Complex in Zhejiang, China

    PubMed Central

    Liu, Zhengwei; Chen, Songhua; Wu, Beibei; He, Haibo; Pan, Aizhen

    2016-01-01

    In this study, our aim was to determine the predominant genotypes among the Mycobacterium tuberculosis (MTB) strains circulating in Zhejiang Province. In addition, we also sought to determine the potential associations between MTB genotypes and susceptibility to first-line drugs. Out of these isolates, 673 (71.6%) were classified into the Beijing genotype, while the other 267 (28.4%) were from non-Beijing families. The highest proportion of Beijing genotype was found in Huzhou (80.0%) and the lowest in Lishui (48.3%). Statistical analysis revealed that there was a significant difference in the prevalence of Beijing genotype among different regions (χ2 = 17.57, P = 0.04). In addition, the overall proportions of drug resistance to INH, RIF, SM, and EMB were 13.2% (124/940), 21.8% (75/940), 3.4% (32/940), and 5.9% (55/940) in Zhejiang, respectively. Further comparison revealed that there was no significant difference in drug susceptibility profiles between Beijing and non-Beijing strains (P > 0.05). In conclusion, we describe the genetic diversity and drug susceptibility pattern of MTB in Zhejiang for the first time. Our data demonstrate that Beijing genotype is the predominant lineage in Zhejiang, while the distribution of Beijing-genotype strains shows geographic diversity. In addition, no correlation is observed between Beijing genotype and anti-TB drug resistance. PMID:27995145

  9. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation.

    PubMed

    Vranckx, Guy; Jacquemyn, Hans; Muys, Bart; Honnay, Olivier

    2012-04-01

    Shrubs and trees are assumed less likely to lose genetic variation in response to habitat fragmentation because they have certain life-history characteristics such as long lifespans and extensive pollen flow. To test this assumption, we conducted a meta-analysis with data on 97 woody plant species derived from 98 studies of habitat fragmentation. We measured the weighted response of four different measures of population-level genetic diversity to habitat fragmentation with Hedge's d and Spearman rank correlation. We tested whether the genetic response to habitat fragmentation was mediated by life-history traits (longevity, pollination mode, and seed dispersal vector) and study characteristics (genetic marker and plant material used). For both tests of effect size habitat fragmentation was associated with a substantial decrease in expected heterozygosity, number of alleles, and percentage of polymorphic loci, whereas the population inbreeding coefficient was not associated with these measures. The largest proportion of variation among effect sizes was explained by pollination mechanism and by the age of the tissue (progeny or adult) that was genotyped. Our primary finding was that wind-pollinated trees and shrubs appeared to be as likely to lose genetic variation as insect-pollinated species, indicating that severe habitat fragmentation may lead to pollen limitation and limited gene flow. In comparison with results of previous meta-analyses on mainly herbaceous species, we found trees and shrubs were as likely to have negative genetic responses to habitat fragmentation as herbaceous species. We also found that the genetic variation in offspring was generally less than that of adult trees, which is evidence of a genetic extinction debt and probably reflects the genetic diversity of the historical, less-fragmented landscape.

  10. Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes.

    PubMed

    Thier, Ricarda; Brüning, Thomas; Roos, Peter H; Rihs, Hans-Peter; Golka, Klaus; Ko, Yon; Bolt, Hermann M

    2003-06-01

    Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of

  11. Relationship between genetic polymorphisms of DNA ligase 1 and non-small cell lung cancer susceptibility and radiosensitivity.

    PubMed

    Tian, H; He, X; Yin, L; Guo, W J; Xia, Y Y; Jiang, Z X

    2015-06-26

    The aim of this study was to examine the relationship between genetic polymorphisms in DNA ligase 1 (LIG1) and non-small cell lung cancer (NSCLC) susceptibility and radiosensitivity in a Chinese population. This was a case-control study that included 352 NSCLC patients and 448 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism analysis was conducted to detect HaeIII polymorphisms in exon 6 of the LIG1 gene in this popula-tion. This information was used to observe the effects of radiation in pa-tients with different genotypes in order to determine the genotypes as-sociated with radiosensitivity. The CC genotype and C allele frequency were significantly higher in the NSCLC group than in the control group (P = 0.012 and P = 0.023, respectively). The relative risk of experienc-ing NSCLC was 2.55 [95% confidence interval (CI), 1.12-3.98] for CC homozygous patients and 0.87 (95%CI, 0.46-1.88) for AA homozygous patients. Analysis of LIG1 genetic polymorphisms and radiosensitiv-ity of NSCLC patients showed that AA homozygous patients were sig-nificantly more radiosensitive than the control group (AA vs AC, P = 0.014; AA vs CC, P < 0.001; AC vs CC, P = 0.023). Therefore, the LIG1 CC genotype was associated with susceptibility to NSCLC, and the AA genotype demonstrated increased radiosensitivity compared to the AC and CC genotypes.

  12. Health communication, genetic determinism, and perceived control: the roles of beliefs about susceptibility and severity versus disease essentialism.

    PubMed

    Parrott, Roxanne; Kahl, Mary L; Ndiaye, Khadidiatou; Traeder, Tara

    2012-08-01

    This research examined the lay public's beliefs about genes and health that might be labeled deterministic. The goals of this research were to sort through the divergent and contested meanings of genetic determinism in an effort to suggest directions for public health genomic communication. A survey conducted in community-based settings of 717 participants included 267 who self-reported race as African American and 450 who self-reported race as Caucasian American. The survey results revealed that the structure of genetic determinism included 2 belief sets. One set aligned with perceived threat, encompassing susceptibility and severity beliefs linked to genes and health. The other set represents beliefs about biological essentialism linked to the role of genes for health. These concepts were found to be modestly positively related. Threat beliefs predicted perceived control over genes. Public health efforts to communicate about genes and health should consider effects of these messages for (a) perceived threat relating to susceptibility and severity and (b) perceptions of disease essentialism. Perceived threat may enhance motivation to act in health protective ways, whereas disease essentialist beliefs may contribute to a loss of motivation associated with control over health.

  13. Legal and ethical issues in genetic testing and counseling for susceptibility to breast, ovarian and colon cancer.

    PubMed Central

    Dickens, B M; Pei, N; Taylor, K M

    1996-01-01

    The prediction of susceptibility to heritable breast, ovarian and colon cancer raises important legal and ethical concerns. Health care professionals have a duty to disclose sufficient information to enable patients to make informed decisions. They must also safeguard the confidentiality of patient data. These duties may come into conflict if a positive finding in one patient implies that family members are also at risk. A legal distinction is made between a breach of confidentiality and the legitimate sharing of information in a patient's interest or to prevent harm to a third party. Physicians also have a fiduciary duty to warn. Other issues concern the legal liability assumed by genetic counsellors, whose disclosures may influence decisions about childbearing, for example, and the risk of socioeconomic discrimination faced by people with a known genetic susceptibility. Traditional ethical orientations and principals may be applied to these and other questions, but feminist ethics will likely have particular importance in the development of an ethical stance toward testing and counseling for heritable breast and ovarian cancer. PMID:8634959

  14. Discovery of genetic susceptibility factors for human birth defects: an opportunity for a National Agenda.

    PubMed

    Olshan, Andrew F; Hobbs, Charlotte A; Shaw, Gary M

    2011-08-01

    A recent workshop highlighted the current challenges and new opportunities for studying the role of genetic factors in the etiology of human birth defects. The workshop provided a series of recommendations pertaining to the use of animal models, key elements of population-based designs, the need for national collaborative projects, biorepositories, and consortia, investigation of new types of structural genetic variants, examination of gene-exposure interactions, and a strategy for gene variant discovery. A key reason to hold the recent workshop and contribute this concise communication to the literature is to draw attention to and initiate action toward advancing discoveries about the genetic etiologies of birth defects.

  15. Genomic selection for recovery of original genetic background from hybrids of endangered and common breeds

    PubMed Central

    Amador, Carmen; Hayes, Ben J; Daetwyler, Hans D

    2014-01-01

    Critically endangered breeds and populations are often crossed with more common breeds or subspecies. This results in genetic admixture that can be undesirable when it challenges the genetic integrity of wild and domestic populations, causing a loss in special characteristics or unique genetic material and ultimately extinction. Here, we present two genomic selection strategies, using genome-wide DNA markers, to recover the genomic content of the original endangered population from admixtures. Each strategy relies on the estimation of the proportion of nonintrogressed genome in individuals based on a different method: either genomic prediction or identification of breed-specific haplotypes. Then, breeding programs that remove introgressed genomic information can be designed. To test these strategies, we used empirical 50K SNP array data from two pure sheep breeds, Merino (used as target breed), Poll Dorset and an existing admixed population of both breeds. Sheep populations with varying degrees of introgression and admixture were simulated starting from these real genotypes. Both strategies were capable of identifying segment origin, and both removed up to the 100% of the Poll Dorset segments. While the selection process led to substantial inbreeding, we controlled it by imposing a minimum number of individuals contributing to the next generation. PMID:24567744

  16. Factors associated with an individual's decision to withdraw from genetic testing for breast and ovarian cancer susceptibility: implications for counseling.

    PubMed

    Godard, Béatrice; Pratte, Annabelle; Dumont, Martine; Simard-Lebrun, Adèle; Simard, Jacques

    2007-01-01

    Our study aimed to examine why individuals withdraw from genetic testing for breast and ovarian cancer susceptibility. We explored the characteristics of 334 individuals from high-risk breast and ovarian cancer families who declined genetic testing for BRCA1/2 mutations, when, and why they did so. Individuals who declined genetic testing were older, and a greater proportion had never developed breast or ovarian cancer. Fifty one per cent (51.1%) of individuals withdrew after the first genetic counseling session. Most of those who declined were afraid of the psychological effects of genetic testing (36.3%). The next most-cited explanations concerned logistic problems such as a limited ability to travel, lack of time, personal issues, advanced age, or health problems (21.7%). The third category included individuals who did not see any advantage in being tested (14.5%). Insurability was a concern (5.9%), mainly for men. Surprisingly, confidentiality was not a frequently reported issue (1.3%). Sixty eight per cent (68%) of individuals belonging to a family in which at least one individual has been tested withdrew after the presence of a deleterious BRCA1/2 mutation in a relative was disclosed, compared to 42% after the disclosure of a nonconclusive test result in at least one relative. Concern about the psychological effects of the result was still one of the major reasons. Several factors may influence an individual's decision to decline genetic testing; a greater understanding of these issues may help health professionals to better meet the needs and concerns of individuals from high-risk families, thus possibly improving their health outcomes.

  17. HLA and Celiac Disease Susceptibility: New Genetic Factors Bring Open Questions about the HLA Influence and Gene-Dosage Effects

    PubMed Central

    Medrano, Luz María; Dema, Bárbara; López-Larios, Arturo; Maluenda, Carlos; Bodas, Andrés; López-Palacios, Natalia; Figueredo, M. Ángeles; Fernández-Arquero, Miguel; Núñez, Concepción

    2012-01-01

    Celiac disease (CD) is a chronic inflammatory disorder triggered after gluten ingestion in genetically susceptible individuals. The major genetic determinants are HLA-DQA1*05 and HLA-DQB1*02, which encode the DQ2 heterodimer. These alleles are commonly inherited in cis with DRB1*03∶01, which is associated with numerous immune-related disorders, in some cases contributing with a different amount of risk depending on the haplotype context. We aimed at investigating those possible differences involving DRB1*03∶01-carrying haplotypes in CD susceptibility. A family (274 trios) and a case-control sample (369 CD cases/461 controls) were analyzed. DRB1*03∶01-carrying individuals were classified according to the haplotype present (ancestral haplotype (AH) 8.1, AH 18.2 or non-conserved haplotype) after genotyping of HLA-DRB1, -DQA1, -DQB1, -B8, TNF -308, TNF -376 and the TNFa and TNFb microsatellites. We observe that the AH 8.1 confers higher risk than the remaining DRB1*03∶01-carrying haplotypes, and this effect only involves individuals possessing a single copy of DQB1*02. CD risk for these individuals is similar to the one conferred by inherit DQA1*05 and DQB1*02 in trans. It seems that an additional CD susceptibility factor is present in the AH 8.1 but not in other DRB1*03∶01-carrying haplotypes. This factor could be shared with individuals possessing DQ2.5 trans, according to the similar risk observed in those two groups of individuals. PMID:23119005

  18. HLA and celiac disease susceptibility: new genetic factors bring open questions about the HLA influence and gene-dosage effects.

    PubMed

    Medrano, Luz María; Dema, Bárbara; López-Larios, Arturo; Maluenda, Carlos; Bodas, Andrés; López-Palacios, Natalia; Figueredo, M Ángeles; Fernández-Arquero, Miguel; Núñez, Concepción

    2012-01-01

    Celiac disease (CD) is a chronic inflammatory disorder triggered after gluten ingestion in genetically susceptible individuals. The major genetic determinants are HLA-DQA1*05 and HLA-DQB1*02, which encode the DQ2 heterodimer. These alleles are commonly inherited in cis with DRB1*03∶01, which is associated with numerous immune-related disorders, in some cases contributing with a different amount of risk depending on the haplotype context. We aimed at investigating those possible differences involving DRB1*03∶01-carrying haplotypes in CD susceptibility. A family (274 trios) and a case-control sample (369 CD cases/461 controls) were analyzed. DRB1*03∶01-carrying individuals were classified according to the haplotype present (ancestral haplotype (AH) 8.1, AH 18.2 or non-conserved haplotype) after genotyping of HLA-DRB1, -DQA1, -DQB1, -B8, TNF -308, TNF -376 and the TNFa and TNFb microsatellites. We observe that the AH 8.1 confers higher risk than the remaining DRB1*03∶01-carrying haplotypes, and this effect only involves individuals possessing a single copy of DQB1*02. CD risk for these individuals is similar to the one conferred by inherit DQA1*05 and DQB1*02 in trans. It seems that an additional CD susceptibility factor is present in the AH 8.1 but not in other DRB1*03∶01-carrying haplotypes. This factor could be shared with individuals possessing DQ2.5 trans, according to the similar risk observed in those two groups of individuals.

  19. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆

    PubMed Central

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  20. Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem.

    PubMed

    Christie, Nanette; Myburg, Alexander A; Joubert, Fourie; Murray, Shane L; Carstens, Maryke; Lin, Yao-Cheng; Meyer, Jacqueline; Crampton, Bridget G; Christensen, Shawn A; Ntuli, Jean F; Wighard, Sara S; Van de Peer, Yves; Berger, Dave K

    2017-02-01

    We used a systems genetics approach to elucidate the molecular mechanisms of the responses of maize to grey leaf spot (GLS) disease caused by Cercospora zeina, a threat to maize production globally. Expression analysis of earleaf samples in a subtropical maize recombinant inbred line population (CML444 × SC Malawi) subjected in the field to C. zeina infection allowed detection of 20 206 expression quantitative trait loci (eQTLs). Four trans-eQTL hotspots coincided with GLS disease QTLs mapped in the same field experiment. Co-expression network analysis identified three expression modules correlated with GLS disease scores. The module (GY-s) most highly correlated with susceptibility (r = 0.71; 179 genes) was enriched for the glyoxylate pathway, lipid metabolism, diterpenoid biosynthesis and responses to pathogen molecules such as chitin. The GY-s module was enriched for genes with trans-eQTLs in hotspots on chromosomes 9 and 10, which also coincided with phenotypic QTLs for susceptibility to GLS. This transcriptional network has significant overlap with the GLS susceptibility response of maize line B73, and may reflect pathogen manipulation for nutrient acquisition and/or unsuccessful defence responses, such as kauralexin production by the diterpenoid biosynthesis pathway. The co-expression module that correlated best with resistance (TQ-r; 1498 genes) was enriched for genes with trans-eQTLs in hotspots coinciding with GLS resistance QTLs on chromosome 9. Jasmonate responses were implicated in resistance to GLS through co-expression of COI1 and enrichment of genes with the Gene Ontology term 'cullin-RING ubiquitin ligase complex' in the TQ-r module. Consistent with this, JAZ repressor expression was highly correlated with the severity of GLS disease in the GY-s susceptibility network.

  1. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects.

    PubMed

    Carbonari, Damiano; Chiarella, Pieranna; Mansi, Antonella; Pigini, Daniela; Iavicoli, Sergio; Tranfo, Giovanna

    2016-01-01

    Benzene is a ubiquitous occupational and environmental pollutant. Improved industrial hygiene allowed airborne concentrations close to the environmental context (1-1000 µg/m(3)). Conversely, new limits for benzene levels in urban air were set (5 µg/m(3)). The biomonitoring of exposure to such low benzene concentrations are performed measuring specific and sensitive biomarkers such as S-phenylmercapturic acid, trans, trans-muconic acid and urinary benzene: many studies referred high variability in the levels of these biomarkers, suggesting the involvement of polymorphic metabolic genes in the individual susceptibility to benzene toxicity. We reviewed the influence of metabolic polymorphisms on the biomarkers levels of benzene exposure and effect, in order to understand the real impact of benzene exposure on subjects with increased susceptibility.

  2. Genetic susceptibility to male infertility: news from genome-wide association studies.

    PubMed

    Aston, K I

    2014-05-01

    A thorough understanding of the genetic basis of male infertility has eluded researchers in spite of significant efforts to identify novel genetic causes of the disease, particularly over the past decade. Approximately half of male factor infertility cases have no known cause; however, it is likely that the majority of idiopathic male factor infertility cases have some unidentified genetic basis. Well-established genetic causes of male infertility are limited to Y chromosome microdeletions and Klinefelter's syndrome, together accounting for 10-20% of cases of severe spermatogenic failure. In addition to these, several genetic polymorphisms have been demonstrated to be significantly associated with male infertility. The discovery of new genetic associations with male infertility has been hampered by two primary factors. First, most studies are underpowered because of insufficient sample size and ethnic and phenotypic heterogeneity. Second, most studies evaluate a single gene, an approach that is very inefficient in the context of male infertility, considering that many hundreds of genes are involved in the process of testicular development and spermatogenesis. Significant recent advances in microarray and next-generation sequencing technologies have enabled the application of whole-genome approaches to the study of male infertility. We recently performed a pilot genome-wide association study (GWAS) for severe spermatogenic failure, and several additional male infertility GWAS have since been published. More recently, genomic microarray tools have been applied to the association of copy number variants with male infertility. These studies are beginning to shed additional light on the genetic architecture of male infertility, and whole-genome studies have proven effective in identifying novel genetic causes of the disease. This review will discuss some of the recent findings of these whole-genome studies as well as future directions for this research that will likely

  3. Geographic Differences in Genetic Susceptibility to IgA Nephropathy: GWAS Replication Study and Geospatial Risk Analysis

    PubMed Central

    Kiryluk, Krzysztof; Li, Yifu; Sanna-Cherchi, Simone; Rohanizadegan, Mersedeh; Suzuki, Hitoshi; Eitner, Frank; Snyder, Holly J.; Choi, Murim; Hou, Ping; Scolari, Francesco; Izzi, Claudia; Gigante, Maddalena; Gesualdo, Loreto; Savoldi, Silvana; Amoroso, Antonio; Cusi, Daniele; Zamboli, Pasquale; Julian, Bruce A.; Novak, Jan; Wyatt, Robert J.; Mucha, Krzysztof; Perola, Markus; Kristiansson, Kati; Viktorin, Alexander; Magnusson, Patrik K.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Stefansson, Kari; Boland, Anne; Metzger, Marie; Thibaudin, Lise; Wanner, Christoph; Jager, Kitty J.; Goto, Shin; Maixnerova, Dita; Karnib, Hussein H.; Nagy, Judit; Panzer, Ulf; Xie, Jingyuan; Chen, Nan; Tesar, Vladimir; Narita, Ichiei; Berthoux, Francois; Floege, Jürgen; Stengel, Benedicte; Zhang, Hong; Lifton, Richard P.; Gharavi, Ali G.

    2012-01-01

    IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5×10−32–3×10−10), with heterogeneity detected only at the PSMB9/TAP1 locus (I2 = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5×10−4). A seven–SNP genetic risk score, which explained 4.7% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3×10−128). This model paralleled the known East–West gradient in disease risk. Moreover, the prediction of a South–North axis was confirmed by registry data showing that the prevalence of IgAN–attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world

  4. The genetics of susceptibility to insulin-dependent diabetes mellitus--possible new markers.

    PubMed

    Field, L L; McArthur, R G

    1987-09-01

    It is well established that the HLA-DR3 and HLA-DR4 genes at the HLA-DR locus on chromosome 6 are strongly associated with increased susceptibility to insulin-dependent diabetes, and that the predisposition is greatest among individuals who possess both of these genes (that is, are HLA-DR3/4 heterozygotes). We report evidence from our Alberta study that the HLA-DR1 gene is also associated with increased susceptibility, primarily when it occurs in heterozygous combination with HLA-DR4 (frequency of HLA-DR1/4 heterozygotes among diabetics: expected = 3%, observed = 11%, p = 0.03). In addition, we report evidence that genes in the region of the GM locus on chromosome 14 also influence susceptibility by interacting with HLA-DR region genes. Alberta diabetics who were HLA-DR3/4 heterozygotes had an increased frequency of the G1m(1) antigen and the G1m(2) antigen compared with non-DR3/4 diabetics; the latter increase was statistically significant (p = .025). When data from all three previously published studies, our Alberta study, and an unpublished American study were pooled. HLA-DR3/4 diabetics had significantly increased frequencies of both G1m(1) (p = 0.001) and G1m(2) (p = 0.014). Finally, we report possible evidence (not statistically significant) that genes in the region of the KM locus on chromosome 2 may exert HLA-dependent effects on susceptibility to diabetes: in our Alberta study and the one other study which employed control subjects, DR4-positive diabetics had higher frequencies of Km(1) than either DR4-positive controls or DR4-negative diabetics.

  5. Polymorphic Regions in the Interleukin-1 Gene and Susceptibility to Chronic Periodontitis: A Genetic Association Study

    PubMed Central

    Lavu, Vamsi; Venkatesan, Vettriselvi; Lakkakula, Bhaskar Venkata Kameswara Subrahmanya; Venugopal, Priyanka; Paul, Solomon Franklin Durairaj

    2015-01-01

    Objective: The objectives of this study were to determine the association between single nucleotide polymorphisms (SNPs) in IL1B (−511, +3954), IL1A (−889, +4845), and the variable number of tandem repeats (VNTRs) polymorphism in the IL-1RN gene with chronic periodontitis susceptibility and to analyze gene–gene interactions in a hospital-based sample population from South India. Subjects and Methods: A total of 400 individuals were recruited for this study; 200 individuals with healthy gingiva and 200 chronic periodontitis patients. Genomic DNA was isolated from peripheral blood samples and genotyping was performed for the above-mentioned single nucleotide and VNTR polymorphisms by polymerase chain reaction, DNA sequencing, and agarose gel electrophoresis. Results: A higher proportion of the variant alleles were observed in the chronic periodontitis group for all the SNPs examined. The SNP at +3954 (C>T) in the IL1B gene was found to be significantly associated with chronic periodontitis (p=0.007). VNTR genotypes (χ2 value: 5.163, df=1, p=0.023) and alleles (χ2 value: 6.818, df=1, p=0.009) were found to have a significant association with chronic periodontitis susceptibility. Conclusion: In the study population examined, the SNP in the IL1B gene (+3954) and VNTR polymorphisms in the IL1RN gene were found to have a significant association with chronic periodontitis susceptibility. PMID:25710474

  6. Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster.

    PubMed

    Sarup, Pernille; Loeschcke, Volker

    2011-04-01

    Hormesis, the beneficial effect of a mild stress, has been proposed as a means to prolong the period of healthy ageing as it can increase the average lifespan of a cohort. However, if we want to use hormesis therapeutically it is important that the treatment is beneficial on the individual level and not just on average at the population level. Long lived lines have been shown not to benefit from a, in other lines, hormesis inducing heat treatment in Drosophila melanogaster, D. buzzatii and mice. Also in many experiments hormesis has been reported to occur in one sex only, usually males but not in females. Here we investigated the interaction between the hormetic response and genetic background, sex and duration of a mild heat stress in D. melanogaster, using three replicate lines that have been selected for increased longevity and their respective control lines. We found that genetic background influences the position of the hormetic zone. The implication of this result could be that in a genetically diverse populations a treatment that is life prolonging in one individual could be life shortening in other individuals. However, we did find a hormetic response in all combinations of line and sex in at least one of the experiments which suggests that if it is possible to identify the optimal hormetic dose individually hormesis might become a therapeutic treatment.

  7. Correlation between XRCC1 Arg399Gln genetic polymorphisms and susceptibility to bladder cancer: a meta-analysis

    PubMed Central

    Liu, Nannan; Fei, Xiawei; Shen, Yi; Shi, Weifeng; Ma, Jinhong

    2016-01-01

    The relationship between XRCC1 polymorphisms and bladder cancer has been widely studied. Here, our meta-analysis was conducted to evaluate the correlations between common genetic polymorphisms in XRCC1 and susceptibility to bladder cancer. In order to derive a more precise estimation of the association, 27 clinical case-control studies (which met all the inclusion criteria) were included in this meta-analysis. A total of 8,539 cancer cases and 10,750 controls were involved in this meta-analysis. Overall, no significant association was detected in allelic model (A allele vs T allele odds ratio [OR] =0.87, 95% confidence interval [CI], 0.71–1.06), homozygote comparison (AA vs GG OR =1.12, 95% CI, 0.68–1.85), heterozygote comparison (AT vs TT OR =1.01, 95% CI, 0.81–1.26), dominant model (AA + AG vs GG OR =0.93, 95% CI, 0.85–1.02), and recessive model (AA vs AG + GG OR =1.01, 95% CI, 0.88–1.15), but a moderately significant association was found for AG vs GG (OR =0.241, 95% CI =0.17–0.35). Subgroup analysis based on ethnicity. Ethnicity analysis suggested that genetic polymorphisms in XRCC1 were not correlated with increased bladder cancer risk among Asians (all P>0.05). Therefore, we concluded that XRCC1 genetic polymorphism may not contribute to bladder cancer susceptibility in the present meta-analysis, and further well-designed studies with a large sample size are warranted to validate our conclusion. PMID:26869802

  8. Cumulative BRCA mutation analysis in the Greek population confirms that homogenous ethnic background facilitates genetic testing.

    PubMed

    Tsigginou, Alexandra; Vlachopoulos, Fotios; Arzimanoglou, Iordanis; Zagouri, Flora; Dimitrakakis, Constantine

    2015-01-01

    Screening for BRCA 1 and BRCA 2 mutations has long moved from the research lab to the clinic as a routine clinical genetic testing. BRCA molecular alteration pattern varies among ethnic groups which makes it already a less straightforward process to select the appropriate mutations for routine genetic testing on the basis of known clinical significance. The present report comprises an in depth literature review of the so far reported BRCA 1 and BRCA 2 molecular alterations in Greek families. Our analysis of Greek cumulative BRCA 1 and 2 molecular data, produced by several independent groups, confirmed that six recurrent deleterious mutations account for almost 60 % and 70 % of all BRCA 1 and 2 and BRCA 1 mutations, respectively. As a result, it makes more sense to perform BRCA mutation analysis in the clinic in two sequential steps, first conventional analysis for the six most prevalent pathogenic mutations and if none identified, a second step of New Generation Sequencing-based whole genome or whole exome sequencing would follow. Our suggested approach would enable more clinically meaningful, considerably easier and less expensive BRCA analysis in the Greek population which is considered homogenous.

  9. Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly.

    PubMed

    Joó, József Gábor

    2009-04-01

    Iniencephaly is a rare and mostly lethal type of neural tube defect. The pattern of inheritance of this group of malformations is multifactorial, rendering the identification of the underlying causes. Numerous studies have been conducted to elucidate the genetic basis of human neurulation. Essential signaling pathways of the development of the CNS include the planar cell polarity pathway, which is important for the initiation of neural tube closure, as well as the sonic hedgehog pathway, which regulates the neural plate bending. Genes influencing the different stages of neurulation have been investigated for their eventual role in the development of these malformations. Among the environmental factors, folic acid seems to be the most important modifier of the risk of human neural tube defects. Genes of the folate metabolism pathways have also been investigated to identify mutations resulting in increased risk of neural tube defects. In this review we have attempted to summarize the knowledge on iniencephaly and neural tube defects, with special regard to genetic factors of the etiology.

  10. High temperature effects on Pi54 conferred resistance to Magnaporthe oryzae in two genetic backgrounds of Oryza sativa.

    PubMed

    Onaga, Geoffrey; Wydra, Kerstin; Koopmann, Birger; Chebotarov, Dmytro; Séré, Yakouba; Von Tiedemann, Andreas

    2017-02-21

    The global temperatures are predicted to rise due to climate change. However, knowledge on the mechanisms underlying the effect of high temperature (HT) on plant pathogen interaction is limited. We investigated the effect of elevated temperature on host phenotypic, biochemical and gene expression patterns in the rice-Magnaporthe oryzae (Mo) pathosystem using two genetic backgrounds, Co39 (Oryzae sativa-indica) and LTH (O. sativa-japonica) with (CO and LT) and without (Co39 and LTH) R gene (Pi54). After exposure to 28°C and 35°C the two genetic backgrounds showed contrasting responses to Mo. At 28°C, CO, Co39 and LTH displayed a more severe disease phenotype than LT. Surprisingly, CO became resistant to Mo after exposure to 35°C. CO and LT were used for further analysis to determine the defence related biochemical and transcriptome changes associated with HT induced resistance. Pre-exposure to 35°C triggered intense callose deposits and cell wall fluorescence of the attacked epidermal cells, as well as, increased hydrogen peroxide (H2O2) and salicylic acid (SA) levels. Transcriptional changes due to combined stress (35°C+Mo) were largely overridden by pathogen infection in both backgrounds, suggesting that the plants tended to shift their response to the pathogen. However, significant differences in global gene expression patterns occurred between CO and LT in response to both single (35°C and Mo) and double stress (35°C+Mo). Collectively, our results suggest that rice lines carrying Pi54 respond to Mo by rapid induction of callose and H2O2, and that these resistance mechanisms are amplified at HT. The relative difference in disease severity between CO and LT at 28°C suggests that the genetic background of japonica rice facilitates the function of Pi54 more than the background of indica rice. The phenotypic plasticity and gene expression differences between CO and LT reveal the presence of intricate background specific molecular signatures that may

  11. The role of genetic diversity and past-history selection pressures in the susceptibility of Chironomus riparius populations to environmental stress.

    PubMed

    Pedrosa, João A M; Cocchiararo, Berardino; Bordalo, Maria D; Rodrigues, Andreia C M; Soares, Amadeu M V M; Barata, Carlos; Nowak, Carsten; Pestana, João L T

    2017-01-15

    Natural populations experiencing intense selection and genetic drift may exhibit limited potential to adapt to environmental change. The present study addresses the following aspects of the "genetic erosion" hypothesis in the midge Chironomus riparius: does long-term mercury (Hg) contamination affect the Hg tolerance of midge populations inhabiting such impacted areas? If so, is there any fitness cost under changing environmental conditions? And does genetic impoverishment influence the susceptibility of C. riparius to cope with environmental stressful conditions? For this end, we tested the acute and chronic tolerance to Hg and salinity in four C. riparius populations differing in their levels of genetic diversity (assessed through microsatellite markers) and past-histories of Hg exposure. Results showed that the midge population collected from a heavily Hg-contaminated site had higher Hg tolerance compared to the population collected from a closely-located reference site suggesting directional selection for Hg-tolerant traits in its native environment despite no genetic erosion in the field. No increased susceptibility under changing environmental conditions of salinity stress was observed. Moreover, results also showed that populations with higher genetic diversity performed better in the partial life-cycle assays providing evidence on the key role that genetic diversity plays as mediator of populations' susceptibility to environmental stress. Our findings are discussed in terms of the suitability of C. riparius as a model organism in evolutionary toxicology studies as well as the validity of ecotoxicological assessments using genetically eroded laboratory populations.

  12. Differential susceptibility of transgenic mice expressing human surfactant protein B genetic variants to Pseudomonas aeruginosa induced pneumonia

    PubMed Central

    Ge, Lin; Liu, Xinyu; Chen, Rimei; Xu, Yongan; Zuo, Yi Y.; Cooney, Robert N; Wang, Guirong

    2015-01-01

    Surfactant protein B (SP-B) is essential for lung function. Previous studies have indicated that a SP-B 1580C/T polymorphism (SNP rs1130866) was associated with lung diseases including pneumonia. The SNP causes an altered N-linked glycosylation modification at Asn129 of proSP-B, e.g. the C allele with this glycosylation site but not in the T allele. This study aimed to generate humanized SP-B transgenic mice carrying either SP-B C or T allele without a mouse SP-B background and then examine functional susceptibility to bacterial pneumonia in vivo. A total of 18 transgenic mouse founders were generated by the DNA microinjection method. These founders were back-crossed with SP-B KO mice to eliminate mouse SP-B background. Four founder lines expressing similar SP-B levels to human lung were chosen for further investigation. After intratracheal infection with 50μl of P. aeruginosa solution (1×107 CFU/mouse) or saline in SP-B-C, SP-B-T mice the mice were sacrificed 24 hours post-infection and tissues were harvested. Analysis of surfactant activity revealed differential susceptibility between SP-B-C and SP-B-T mice to bacterial infection, e.g. higher minimum surface tension in infected SP-B-C versus infected SP-B-T mice. These results demonstrate for the first time that human SP-B C allele is more susceptible to bacterial pneumonia than SP-B T allele in vivo. PMID:26620227

  13. Molecular Assay for Detection of Genetic Markers Associated with Decreased Susceptibility to Cephalosporins in Neisseria gonorrhoeae

    PubMed Central

    Peterson, S. W.; Martin, I.; Demczuk, W.; Bharat, A.; Hoang, L.; Wylie, J.; Allen, V.; Lefebvre, B.; Tyrrell, G.; Horsman, G.; Haldane, D.; Garceau, R.; Wong, T.

    2015-01-01

    The incidence of antimicrobial-resistant Neisseria gonorrhoeae continues to rise in Canada; however, antimicrobial resistance data are lacking for approximately 70% of gonorrhea infections that are diagnosed directly from clinical specimens by nucleic acid amplification tests (NAATs). We developed a molecular assay for surveillance use to detect mutations in genes associated with decreased susceptibility to cephalosporins that can be applied to both culture isolates and clinical samples. Real-time PCR assays were developed to detect single nucleotide polymorphisms (SNPs) in ponA, mtrR, penA, porB, and one N. gonorrhoeae-specific marker (porA). We tested the real-time PCR assay with 252 gonococcal isolates, 50 nongonococcal isolates, 24 N. gonorrhoeae-negative NAAT specimens, and 34 N. gonorrhoeae-positive NAAT specimens. Twenty-four of the N. gonorrhoeae-positive NAAT specimens had matched culture isolates. Assay results were confirmed by comparison with whole-genome sequencing data. For 252 N. gonorrhoeae strains, the agreement between the DNA sequence and real-time PCR was 100% for porA, ponA, and penA, 99.6% for mtrR, and 95.2% for porB. The presence of ≥2 SNPs correlated with decreased susceptibility to ceftriaxone (sensitivities of >98%) and cefixime (sensitivities of >96%). Of 24 NAAT specimens with matched cultures, the agreement between the DNA sequence and real-time PCR was 100% for porB, 95.8% for ponA and mtrR, and 91.7% for penA. We demonstrated the utility of a real-time PCR assay for sensitive detection of known markers for the decreased susceptibility to cephalosporins in N. gonorrhoeae. Preliminary results with clinical NAAT specimens were also promising, as they correlated well with bacterial culture results. PMID:25878350

  14. Genetic background modifies the effects of type 2 cannabinoid receptor deficiency on bone mass and bone turnover.

    PubMed

    Sophocleous, Antonia; Idris, Aymen I; Ralston, Stuart H

    2014-03-01

    Cannabinoid receptors and their ligands play significant roles in regulating bone metabolism. Previous studies of type 1 cannabinoid receptor-deficient mice have shown that genetic background influences the skeletal phenotype. Here, we investigated the effects of genetic background on the skeletal phenotype of mice with type 2 cannabinoid receptor deficiency (Cnr2 (-/-)). We studied Cnr2 (-/-) mice on a CD1 background and compared the findings with those previously reported in Cnr2 (-/-) C57BL/6 mice. Young female Cnr2 (-/-) CD1 mice had low bone turnover and high trabecular bone mass compared with wild-type (WT), contrasting with the situation in Cnr2 (-/-) C57BL/6 mice where trabecular bone mass has been reported to be similar to WT. The Cnr2 (-/-) CD1 mice lost more trabecular bone at the tibia with age than WT due to reduced bone formation, and at 12 months there was no difference in trabecular bone volume between genotypes. This differs from the phenotype previously reported in C57BL/6 Cnr2 (-/-) mice, where bone turnover is increased and bone mass reduced with age. There were no substantial differences in skeletal phenotype between Cnr2 (-/-) and WT in male mice. Cortical bone phenotype was similar in Cnr2 (-/-) and WT mice of both genders. Deficiency of Cnr2 has site- and gender-specific effects on the skeleton, mainly affecting trabecular bone, which are influenced by genetic differences between mouse strains. Further evaluation of the pathways responsible might yield new insights into the mechanisms by which cannabinoid receptors regulate bone metabolism.

  15. Interactions between the Bumblebee Bombus pascuorum and Red Clover (Trifolium pratense) Are Mediated by Plant Genetic Background

    PubMed Central

    Sands, Richard J.; Rowntree, Jennifer K.

    2016-01-01

    Wildflower mixes are often planted around field margins to provide forage for pollinators. Although seed for these mixtures is often wild-sourced, for species where agricultural cultivars are available, for example red clover (Trifolium pratense), cultivars can also be included. Previous evidence suggests that plant genetic background can have a strong influence on plant-arthropod interactions and therefore the provenance and genetic background of the plants included in wildflower mixes could impact plant-pollinator interactions. We tested the performance of five individual T. pratense cultivars against two commercially available wild-sourced T. pratense populations in terms of their ability to attract potential pollinator species (focusing on bumblebees) and their floral traits using greenhouse and garden experiments. The main bumblebee observed interacting with T. pratense was Bombus pascuorum and we found no difference in the absolute number of B. pascuorum visiting the cultivars or wild populations. However, we found variation among cultivars and between wild populations in their ability to attract bumblebees, which seems to be related to their relative investment in different floral traits. There was a positive relationship between biomass and number of inflorescences produced by the wild populations of T. pratense, which was not apparent for the cultivars. This suggests that artificial selection on the cultivars has changed the G-matrix of correlated traits. We show that agricultural cultivars of T. pratense can be as effective as wild populations at attracting pollinators such as bumblebees, but that the genetic background of both cultivars and wild populations can have a significant impact on the attractiveness of the plant to pollinators. We also show divergence in the correlated traits of T. pratense cultivars and wild populations that could lead to outbreeding depression if the plants interbreed. PMID:27552193

  16. Genetic Susceptibility to Type 2 Diabetes and Obesity: Follow-Up of Findings from Genome-Wide Association Studies

    PubMed Central

    Basile, Kevin J.; Johnson, Matthew E.; Xia, Qianghua; Grant, Struan F. A.

    2014-01-01

    Elucidating the underlying genetic variations influencing various complex diseases is one of the major challenges currently facing clinical genetic research. Although these variations are often difficult to uncover, approaches such as genome-wide association studies (GWASs) have been successful at finding statistically significant associations between specific genomic loci and disease susceptibility. GWAS has been especially successful in elucidating genetic variants that influence type 2 diabetes (T2D) and obesity/body mass index (BMI). Specifically, several GWASs have confirmed that a variant in transcription factor 7-like 2 (TCF7L2) confers risk for T2D, while a variant in fat mass and obesity-associated protein (FTO) confers risk for obesity/BMI; indeed both of these signals are considered the most statistically associated loci discovered for these respective traits to date. The discovery of these two key loci in this context has been invaluable for providing novel insight into mechanisms of heritability and disease pathogenesis. As follow-up studies of TCF7L2 and FTO have typically lead the way in how to follow up a GWAS discovery, we outline what has been learned from such investigations and how they have implications for the myriad of other loci that have been subsequently reported in this disease context. PMID:24719615

  17. Evaluation of Genetic Susceptibility to Childhood Allergy and Asthma in an African American Urban Population

    EPA Science Inventory

    Background: Asthma and allergy represent complex phenotypes, which disproportionately burden ethnic minorities in the United States. Strong evidence for genomic factors predisposing subjects to asthma/allergy is available. However, methods to utilize this information to identify ...

  18. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background

    PubMed Central

    2017-01-01

    Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific “signature” that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures. PMID:28288157

  19. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background.

    PubMed

    Vibert, Julien; Thomas-Vaslin, Véronique

    2017-03-01

    Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific "signature" that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures.

  20. Prenatal exposure of mice to the human liver carcinogen aflatoxin B1 reveals a critical window of susceptibility to genetic change.

    PubMed

    Chawanthayatham, Supawadee; Thiantanawat, Apinya; Egner, Patricia A; Groopman, John D; Wogan, Gerald N; Croy, Robert G; Essigmann, John M

    2015-03-15

    It has become axiomatic that critical windows of susceptibility to genotoxins exist and that genetic damage in utero may be a trigger for later life cancers. Data supporting this critical window hypothesis are remarkably few. This study provides a quantitative bridge between DNA damage by the liver carcinogen aflatoxin B1 (AFB1 ) during prenatal development and the risk of later life genetic disease. AFB1 was given to pregnant C57BL/6J mice, carrying F1 gestation day 14 (GD14) embryos of the B6C3F1 genotype. Ultra-high performance liquid chromatography and mass spectrometry (UPLC-MS) using aflatoxin-(15) N5 -guanine adduct standards afforded measurement of the AFB1 -N(7) -Gua and AFB1 -FAPY adducts 6-hr post dosing in liver DNA of mothers and embryos. A parallel cohort gave birth and the livers of the F1 were analyzed for mutations in the gpt gene at 3 and 10 weeks of age. The data revealed mutational spectra dominated by G:C to T:A mutations in both the mother and offspring that are characteristic of AFB1 and distinct from background. It was shown that adducts in GD14 embryos were 20-fold more potent inducers of mutagenesis than adducts in parallel-dosed adults. This sensitivity enhancement correlated with Ki67 staining of the liver, reflecting the proliferative potential of the tissue. Taken together, these data provide insight into the relative genetic risks of prenatal and adult exposures to AFB1 . Early life exposure, especially during the embryonic period, is strikingly more mutagenic than treatment later in life. Moreover the data provide a baseline against which risk prevention strategies can be evaluated.

  1. Genetic testing for TMEM154 mutations associated with lentivirus susceptibility in sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ovine lentiviruses cause incurable, progressive, lymphoproliferative diseases that affect millions of sheep worldwide. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been recently associated with lentivirus infections in U.S. sheep. Sheep with the two most common TMEM1...

  2. Genetic variants in 3'-UTRs of methylenetetrahydrofolate reductase (MTHFR) predict colorectal cancer susceptibility in Koreans.

    PubMed

    Jeon, Young Joo; Kim, Jong Woo; Park, Hye Mi; Kim, Jung O; Jang, Hyo Geun; Oh, Jisu; Hwang, Seong Gyu; Kwon, Sung Won; Oh, Doyeun; Kim, Nam Keun

    2015-06-05

    Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) play important roles in tumor development, progression, and metastasis. Moreover, recent studies have reported that a number of 3'-UTR polymorphisms potentially bind to specific microRNAs in a variety of cancers. The aim of this study was to investigate the association of four MTHFR polymorphisms, 2572C>A [rs4846049], 4869C>G [rs1537514], 5488C>T [rs3737967], and 6685T>C [rs4846048] with colorectal cancer (CRC) in Koreans. A total of 850 participants (450 CRC patients and 400 controls) were enrolled in the study. The genotyping of MTHFR 3'-UTR polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism analysis or TaqMan allelic discrimination assay. We found that MTHFR 2572C>A, 4869C>G, and 5488C>T genotypes were substantially associated with CRC susceptibility. Of the potentially susceptible polymorphisms, MTHFR 2572C>A was associated with increased homocysteine and decreased folate levels in the plasma based on MTHFR 677CC. Our study provides the evidences for 3'-UTR variants in MTHFR gene as potential biomarkers for use in CRC prevention.

  3. Genetic link of type 1 diabetes susceptibility loci with rheumatoid arthritis in Pakistani patients.

    PubMed

    Kiani, Aysha Karim; Jahangir, Sidrah; Jahngir, Sidrah; John, Peter; Bhatti, Attya; Zia, Asima; Wang, Xingbin; Demirci, F Yesim; Kamboh, M Ilyas

    2015-06-01

    Rheumatoid arthritis (RA) and type 1 diabetes (T1D) are two autoimmune disorders that have been reported to co-occur in the same subjects or in different subjects from the same family. This suggests the sharing of disease susceptibility loci between RA and T1D. This study was aimed to find out such susceptibility loci that are common in both T1D and RA in Pakistani population. A total of 366 Pakistanis comprising related and unrelated RA cases and controls were recruited. Blood samples were collected from all patients followed by DNA isolation. Thirty-one single-nucleotide polymorphisms (SNPs) previously reported to be associated with T1D were genotyped in RA cases and controls using TaqMan SNP genotyping assays. Data was analyzed using FamCC software. We have identified seven SNP associations that survived multiple testing corrections using false discovery rate: SKAP2/rs7804356 (p = 2.47E-04), GLIS3/rs7020673 (p = 2.86E-04), GSDMB/rs2290400 (p = 23.48E-04), BACH2/rs11755527 (p = 9.16E-04), C6orf173/ rs9388489 (p = 3.11E-03), PRKCQ/DKFZp667F0711/ rs947474 (p = 4.53E-03), and DLK1/ rs941576 (p = 9.51E-03). Our results support the presence of overlapping loci between RA and T1D in Pakistani patients.

  4. Genetic Variant rs10757278 on Chromosome 9p21 Contributes to Myocardial Infarction Susceptibility.

    PubMed

    Chen, Guangyuan; Fu, Xiuhua; Wang, Guangyu; Liu, Guiyou; Bai, Xiuping

    2015-05-21

    Large-scale genome-wide association studies (GWAS) have revealed that rs10757278 polymorphism (or its proxy rs1333049) on chromosome 9p21 is associated with myocardial infarction (MI) susceptibility in individuals of Caucasian ancestry. Following studies in other populations investigated this association. However, some of these studies reported weak or no significant association. Here, we reevaluated this association using large-scale samples by searching PubMed and Google Scholar databases. Our results showed significant association between rs10757278 polymorphism and MI with p = 6.09 × 10-22, odds ratio (OR) = 1.29, 95% confidence interval (CI) 1.22-1.36 in pooled population. We further performed a subgroup analysis, and found significant association between rs10757278 polymorphism and MI in Asian and Caucasian populations. We identified that the association between rs10757278 polymorphism and MI did not vary substantially by excluding any one study. However, the heterogeneity among the selected studies varies substantially by excluding the study from the Pakistan population. We found even more significant association between rs10757278 polymorphism and MI in pooled population, p = 3.55 × 10-53, after excluding the study from the Pakistan population. In summary, previous studies reported weak or no significant association between rs10757278 polymorphism and MI. Interestingly, our analysis suggests that rs10757278 polymorphism is significantly associated with MI susceptibility by analyzing large-scale samples.

  5. Genetic diversity and antifungal susceptibility testing of Trichosporon asahii isolated of Intensive Care Units patients

    PubMed Central

    de Oliveira Silva, Rosana Bellan; Fusco-Almeida, Ana Marisa; Matsumoto, Marcelo Teruyuki; Baeza, Lilian Cristiane; Benaducci, Tatiane; Mendes-Giannini, Maria José Soares

    2008-01-01

    Trichosporon asahii is an opportunistic pathogen, associated with a high mortality rate in immunocompromised patients. In this study, ten isolates, recovered from oral cavity and urine of patients in Intensive Care Units (ICU) over six months, were identified by classical and molecular methods, typed by RAPD and tested in vitro for susceptibility to fluconazole, itraconazole, 5-flucytosine and amphotericin B. A total agreement between the identification of Trichosporon sp by PCR based on sequences of the Internal Transcribed Spacer Regions (ITS) and on the sequences of small-subunit (SSU) ribosomal DNA (rDNA) was found. Randomly amplified of polymorphic DNA (RAPD), with primers P6 and M13, was used to determine the genomic profiles. The dendogram analysis indicated that almost all strains showed similarity >0.9 among them and all strains were multidrug-resistant. This study brings new results on the identification and genotyping of T. asahii isolated from Brazilian ICU patients and information about their antifungal drugs susceptibility. PMID:24031270

  6. Serotype distribution, antibiotic susceptibility, and genetic relatedness of Neisseria meningitidis strains recently isolated in Italy.

    PubMed

    Mastrantonio, Paola; Stefanelli, Paola; Fazio, Cecilia; Sofia, Tonino; Neri, Arianna; La Rosa, Giuseppina; Marianelli, Cinzia; Muscillo, Michele; Caporali, Maria Grazia; Salmaso, Stefania

    2003-02-15

    The availability of new polysaccharide-protein conjugate vaccines against Neisseria meningitidis serogroup C prompted European National Health authorities to carefully monitor isolate characteristics. In Italy, during 1999-2001, the average incidence was 0.4 cases per 100,000 inhabitants. Serogroup B was predominant and accounted for 75% of the isolates, followed by serogroup C with 24%. Serogroup C was isolated almost twice as frequently in cases of septicemia than in cases of meningitis, and the most common phenotypes were C:2a:P1.5 and C:2b:P1.5. Among serogroup B meningococci, the trend of predominant phenotypes has changed from year to year, with a recent increase in the frequency of B:15:P1.4. Only a few meningococci had decreased susceptibility to penicillin, and, in the penA gene, all of these strains had exogenous DNA blocks deriving from the DNA of commensal Neisseria flavescens, Neisseria cinerea, and Neisseria perflava/sicca. Fluorescent amplified fragment-length polymorphism analysis revealed the nonclonal nature of the strains with decreased susceptibility to penicillin.

  7. Response to dietary phosphorus deficiency is affected by genetic background in growing pigs.

    PubMed

    Alexander, L S; Qu, A; Cutler, S A; Mahajan, A; Lonergan, S M; Rothschild, M F; Weber, T E; Kerr, B J; Stahl, C H

    2008-10-01

    Concern over the environmental effect of P excretion from pig production has led to reduced dietary P supplementation. To examine how genetics influence P utilization, 94 gilts sired by 2 genetic lines (PIC337 and PIC280) were housed individually and fed either a P-adequate diet (PA) or a 20% P-deficient diet (PD) for 14 wk. Initially and monthly, blood samples were collected and BW recorded after an overnight fast. Growth performance and plasma indicators of P status were determined monthly. At the end of the trial, carcass traits, meat quality, bone strength, and ash percentage were determined. Pigs fed the PD diet had decreased (P < 0.05) plasma P concentrations and poorer G:F (P < 0.05) over the length of the trial. After 4 wk on trial, pigs fed the PD diet had increased (P < 0.05) plasma 1,25(OH)(2)D(3) and decreased (P < 0.05) plasma parathyroid hormone compared with those fed the PA diet. At the end of the trial, pigs fed the PD diet had decreased (P < 0.05) BW, HCW, and percentage fat-free lean and tended to have decreased LM area (P = 0.06) and marbling (P = 0.09) and greater (P = 0.12) 10th-rib backfat than pigs fed the PA diet. Additionally, animals fed the PD diet had weaker bones and also decreased (P < 0.05) ash percentage and increased (P < 0.05) concentrations of 1alpha-hydroxylase and parathyroid hormone receptor mRNA in kidney tissue. Regardless of dietary treatment, PIC337-sired pigs consumed more feed and gained more BW than their PIC280-sired counterparts (P < 0.05) during the study. The PIC337-sired pigs also had greater (P < 0.05) HCW, larger (P < 0.01) LM area, and tended to have (P = 0.07) greater dressing percentage. Meat from the PIC337-sired pigs also tended to have greater (P = 0.12) concentrations of lactate but decreased (P = 0.07) concentrations of total glucose units 24 h postslaughter. Although plasma 1,25(OH)(2)D(3) concentrations were elevated (P < 0.05) in all the animals fed the PD diet, this elevation due to P deficiency

  8. Influence of sex and genetic background on anxiety-related and stress-induced behaviour of prodynorphin-deficient mice.

    PubMed

    Kastenberger, Iris; Lutsch, Christian; Herzog, Herbert; Schwarzer, Christoph

    2012-01-01

    The role of dynorphin/kappa opioid receptors in epilepsy and addiction are well accepted, but their function in emotional control is not yet fully understood. Data obtained from different strains of prodynorphin (Pdyn)- and kappa opioid receptor (KOP)-deficient mice do not provide a consistent picture of the functions of Dyn/KOP in anxiety, suggesting the influence of testing conditions and/or genetic background. Therefore, we investigated the behaviour and neurochemistry of male and female Pdyn KO mice on the balb/c and C57Bl/6N background. Consistent with our results obtained from male mice on the C57bl/6N background, we observed a less anxious phenotype in the elevated plus maze, open-field and light-dark test in male mice on the balb/c background. Female mice on the balb/c background also displayed less anxiety like behaviour; however these data reflect high trait anxiety and inter-individual differences. In contrast, female mice on the C57Bl/6N background displayed low trait anxiety and a paradigm-dependent reduction of anxiety. No differences were observed in the forced swim test, while balb/c Pdyn KO mice displayed prolonged immobility in the tail suspension test. In line with our previous results, we observed reduced CRH mRNA in the central amygdala in all groups of mice. In contrast, the recently observed CRH mRNA reduction in the hypothalamic paraventricular nucleus appears restricted to male, but not female mice. Our data support previous data suggesting a pronounced impact of endogenous prodynorphin-derived peptides on anxiety. Moreover, our data support the idea that the less anxious phenotype manifests only at elevated stress levels.

  9. Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy

    PubMed Central

    Feldmeyer, Laurence; Heidemeyer, Kristine; Yawalkar, Nikhil

    2016-01-01

    Acute generalized exanthematous pustulosis (AGEP) is a severe, usually drug-related reaction, characterized by an acute onset of mainly small non-follicular pustules on an erythematous base and spontaneous resolution usually within two weeks. Systemic involvement occurs in about 20% of cases. The course is mostly benign, and only in rare cases complications lead to life-threatening situations. Recent studies highlight the importance of genetic variations in interleukin-36 receptor antagonist gene (IL-36RN) in the pathogenesis of this disease. The physiopathology of AGEP remains unclear, but an involvement of innate and acquired immune cells together with resident cells (keratinocytes), which recruit and activate neutrophils via production of cytokines/chemokines such as IL-17, IL-36, granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha (TNFα) and chemokine (C-X-C motif) ligand 8 (CXCL8)/IL-8, has been postulated. Treatment is based on the removal of the causative drug, supportive care, infection prevention and use of potent topical or systemic steroids. PMID:27472323

  10. Genetic background differences and nonassociative effects in mouse trace fear conditioning.

    PubMed

    Smith, Dani R; Gallagher, Michela; Stanton, Mark E

    2007-09-01

    Fear conditioning, including variants such as delay and trace conditioning that depend on different neural systems, is widely used to behaviorally characterize genetically altered mice. We present data from three strains of mice, C57/BL6 (C57), 129/SvlmJ (129), and a hybrid strain of the two (F(1) hybrids), trained on various versions of a trace fear-conditioning protocol. The initial version was taken from the literature but included unpaired control groups to assess nonassociative effects on test performance. We observed high levels of nonassociative freezing in both contextual and cued test conditions. In particular, nonassociative freezing in unpaired control groups was equivalent to freezing shown by paired groups in the tests for trace conditioning. A number of pilot studies resulted in a new protocol that yielded strong context conditioning and low levels of nonassociative freezing in all mouse strains. During the trace-CS test in this protocol, freezing in unpaired controls remained low in all strains, and both the C57s and F(1) hybrids showed reliable associative trace fear conditioning. Trace conditioning, however, was not obtained in the 129 mice. Our findings indicate that caution is warranted in interpreting mouse fear-conditioning studies that lack control conditions to address nonassociative effects. They also reveal a final set of parameters that are important for minimizing such nonassociative effects and demonstrate strain differences across performance in mouse contextual and trace fear conditioning.

  11. Comparative genomics reveals multiple genetic backgrounds of human pathogenicity in the Trypanosoma brucei complex.

    PubMed

    Sistrom, Mark; Evans, Benjamin; Bjornson, Robert; Gibson, Wendy; Balmer, Oliver; Mäser, Pascal; Aksoy, Serap; Caccone, Adalgisa

    2014-10-05

    The Trypanosoma brucei complex contains a number of subspecies with exceptionally variable life histories, including zoonotic subspecies, which are causative agents of human African trypanosomiasis (HAT) in sub-Saharan Africa. Paradoxically, genomic variation between taxa is extremely low. We analyzed the whole-genome sequences of 39 isolates across the T. brucei complex from diverse hosts and regions, identifying 608,501 single nucleotide polymorphisms that represent 2.33% of the nuclear genome. We show that human pathogenicity occurs across a wide range of parasite genotypes, and taxonomic designation does not reflect genetic variation across the group, as previous studies have suggested based on a small number of genes. This genome-wide study allowed the identification of significant host and geographic location associations. Strong purifying selection was detected in genomic regions associated with cytoskeleton structure, and regulatory genes associated with antigenic variation, suggesting conservation of these regions in African trypanosomes. In agreement with expectations drawn from meiotic reciprocal recombination, differences in average linkage disequilibrium between chromosomes in T. brucei correlate positively with chromosome size. In addition to insights into the life history of a diverse group of eukaryotic parasites, the documentation of genomic variation across the T. brucei complex and its association with specific hosts and geographic localities will aid in the development of comprehensive monitoring tools crucial to the proposed elimination of HAT by 2020, and on a shorter term, for monitoring the feared merger between the two human infective parasites, T. brucei rhodesiense and T. b. gambiense, in northern Uganda.

  12. Data on genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice.

    PubMed

    Grainger, Andrew T; Jones, Michael B; Li, Jing; Chen, Mei-Hua; Manichaikul, Ani; Shi, Weibin

    2016-12-01

    The data presented here are related to the research article, entitled Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice, published in Atherosclerosis 2016;254:124 (A.T. Grainger, M.B. Jones, J. Li, M.H. Chen, A. Manichaikul, W. Shi, 2016) [1]. The supporting materials include original genotypic and phenotypic data obtained from 206 female F2 mice derived from an intercross between BALB and SMJ inbred mice. The F2 mice were fed 12 weeks of Western diet, starting at 6 weeks of age. Atherosclerotic lesion size in the aortic root of each mouse is the sum of the top 8 lesion areas. The data is provided in the format required for determining QTLs using two independent programs, J/QTL and PLINK.

  13. Genetic susceptibility to environmental toxicants: the interface between human and experimental studies in the development of new toxicological concepts.

    PubMed

    Thier, Ricarda; Golka, Klaus; Brüning, Thomas; Ko, Yon; Bolt, Hermann M

    2002-02-28

    The growing knowledge of the genetic polymorphisms of enzymes metabolising xenobiotics in humans and their connections with individual susceptibility towards toxicants has created new and important interfaces between human epidemiology and experimental toxicology. The results of molecular epidemiological studies may provide new hypotheses and concepts, which call for experimental verification, and experimental concepts may obtain further proof by molecular epidemiological studies. If applied diligently, these possibilities may be combined to lead to new strategies of human-oriented toxicological research. This overview will present some outstanding examples for such strategies taken from the practically very important field of occupational toxicology. The main focus is placed on the effects of enzyme polymorphisms of the xenobiotic metabolism in association with the induction of bladder cancer and renal cell cancer after exposure to occupational chemicals. Also, smoking and induction of head and neck squamous cell cancer are considered.

  14. [Sporadic upper urinary tract urothelial cell carcinomas: identification of interaction between toxic carcinogens and individuals genetic susceptibility].

    PubMed

    Colin, P; Koenig, P; Ballereau, C; Phé, V; Berthon, N; Villers, A; Biserte, J; Rouprêt, M

    2010-01-01

    Upper urinary tract urothelial cell carcinomas (UUT UCC) are rare sporadic tumors. Recent epidemiologic and molecular data have shown a singular susceptibility of UUT UCCs for specific risk factors. The main exogenic factors involved in UUT UCCs carcinogenesis remain tobacco and occupational exposure (aromatic amines, polycyclic hydrocarbures and chlored solvents). Enzymatic variants of detoxification system may be responsible of carcinogenesis with these toxics. Tumors induced by phenacetine consumption are decreasing since it was banned in the 1970s. Also, acid aristolochic exposure (Balkan nephropathy, Chinese Herb nephropathy) has been demonstrated to specifically induce UUT UCCs. Familial genic polymorphism of detoxification system would explain geographic distribution in endemic areas. In Taiwan, chronic arsenic exposition would constitute the main risk factor of UUT UCC. However, theses mechanisms of carcinogenesis remain unclear. The knowledge of UUT UCC development mechanisms implying toxic detoxification systems is still incomplete. To date, there is a growing body of evidence supporting that the interaction between individual genetic susceptibilities and environmental toxic exposure is a key to explain carcinogenesis in the majority of sporadic UUT UCC occurrence.

  15. Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility.

    PubMed

    Wright, Daniel J; Day, Felix R; Kerrison, Nicola D; Zink, Florian; Cardona, Alexia; Sulem, Patrick; Thompson, Deborah J; Sigurjonsdottir, Svanhvit; Gudbjartsson, Daniel F; Helgason, Agnar; Chapman, J Ross; Jackson, Steve P; Langenberg, Claudia; Wareham, Nicholas J; Scott, Robert A; Thorsteindottir, Unnur; Ong, Ken K; Stefansson, Kari; Perry, John R B

    2017-03-27

    The Y chromosome is frequently lost in hematopoietic cells, which represents the most common somatic alteration in men. However, the mechanisms that regulate mosaic loss of chromosome Y (mLOY), and its clinical relevance, are unknown. We used genotype-array-intensity data and sequence reads from 85,542 men to identify 19 genomic regions (P < 5 × 10(-8)) that are associated with mLOY. Cumulatively, these loci also predicted X chromosome loss in women (n = 96,123; P = 4 × 10(-6)). Additional epigenome-wide methylation analyses using whole blood highlighted 36 differentially methylated sites associated with mLOY. The genes identified converge on aspects of cell proliferation and cell cycle regulation, including DNA synthesis (NPAT), DNA damage response (ATM), mitosis (PMF1, CENPN and MAD1L1) and apoptosis (TP53). We highlight the shared genetic architecture between mLOY and cancer susceptibility, in addition to inferring a causal effect of smoking on mLOY. Collectively, our results demonstrate that genotype-array-intensity data enables a measure of cell cycle efficiency at population scale and identifies genes implicated in aneuploidy, genome instability and cancer susceptibility.

  16. The role of disease perceptions and results sharing in psychological adaptation after genetic susceptibility testing: the REVEAL Study.

    PubMed

    Ashida, Sato; Koehly, Laura M; Roberts, J Scott; Chen, Clara A; Hiraki, Susan; Green, Robert C

    2010-12-01

    This study evaluates the extent to which psychological adaptation (validated measures of depressive symptoms, anxiety, and test-specific distress) after genetic susceptibility testing is influenced by changes in beliefs about Alzheimer's disease (AD) and sharing of test results with others. Adult children of AD patients (N=269) from a randomized clinical trial involving genetic testing for apolipoprotein E (APOE) provided information before, as well as 6 weeks and 12 months after results disclosure. The levels of adaptation varied highly among participants at 12-month assessment. Participants who learned that they were ε4 negative (lower risk) had a reduction in perceived risk and concern about developing AD compared with those who learned that they were ε4 positive. Those who received results through an extended educational protocol (three in-person visits) had a larger decline in AD concern than those in a condensed protocol (educational brochure and two in-person visits). Increase in AD concern 6 weeks after disclosure was associated with increase in depression scores (b=0.20, P<0.01) and anxiety levels (b=0.20, P<0.01), and higher distress associated with AD genetic testing (b=0.18, P=0.02) 1 year after testing. Increase in perceived risk (b=0.16, P=0.04) was also associated with higher AD genetic testing distress. Sharing the test results with health professionals and friends (but not family) was associated with decrease in depression (b=-0.11, P=0.05) and anxiety levels (b=-0.16, P<0.01), respectively after a year. Enhancing discussion with regard to risks and concerns about AD during pretesting counseling and obtaining support through sharing the results after testing may help facilitate test recipients' long-term psychological adaptation.

  17. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants.

    PubMed

    Sugiura, Kazumitsu

    2014-06-01

    Generalized pustular psoriasis (GPP) is often present in patients with existing or prior psoriasis vulgaris (PV; "GPP with PV"). However, cases of GPP have been known to arise without a history of PV ("GPP alone"). There has long been debate over whether GPP alone and GPP with PV are distinct subtypes that are etiologically different from each other. We recently reported that the majority of GPP alone cases is caused by recessive mutations of IL36RN. In contrast, only a few exceptional cases of GPP with PV were found to have recessive IL36RN mutations. Very recently, we also reported that CARD14 p.Asp176His, a gain-of-function variant, is a predisposing factor for GPP with PV; in contrast, the variant is not associated with GPP alone in the Japanese population. These results suggest that GPP alone is genetically different from GPP with PV. IL36RN mutations are also found in some patients with severe acute generalized exanthematous pustulosis, palmar-plantar pustulosis, and acrodermatitis continua of hallopeau. CARD14 mutations and variants are causal or disease susceptibility factors of PV, GPP, or pityriasis rubra pilaris, depending on the mutation or variant position of CARD14. It is clinically important to analyze IL36RN mutations in patients with sterile pustulosis. For example, identifying recessive IL36RN mutations leads to early diagnosis of GPP, even at the first episode of pustulosis. In addition, individuals with IL36RN mutations are very susceptible to GPP or GPP-related generalized pustulosis induced by drugs (e.g., amoxicillin), infections, pregnancy, or menstruation.

  18. Genetic polymorphism of MMP family and coronary disease susceptibility: a meta-analysis.

    PubMed

    Li, Min; Shi, Jingpu; Fu, Lingyu; Wang, Hailong; Zhou, Bo; Wu, Xiaomei

    2012-03-01

    The issue that genetic polymorphism of matrix metalloproteinase (MMP) family is in association with coronary disease is controversial. So we did a meta-analysis to clarify it clearly. We made a literature search of PubMed, the Web of Science, and Cochrane Collaboration's database to identify eligible reports. The methodological quality of each included studies was assessed. We calculated the pooled ORs with their 95%CI for each genetic polymorphism in STATA 11 software. Separate analysis was performed to address the consistency of results across the subgroup with different continents. A total of 39 studies were included, with a sample of 42269 individuals. This meta-analysis provided evidence that genetic polymorphism of MMP1-1607 1G/2G, MMP3-Gly45lys, MMP3-376 G/C, MMP3-1171 5A/6A, MMP9-1562 C/T and MMP9-R279Q have a small to medium effect on incidence of coronary disease. There was no evidence that MMP1-519 A/G, MMP1-340 T/C and MMP2-1306 C/T polymorphism could increase risk of coronary disease. Results from subgroup analysis supported a relation between MMP3-1711 5A allele, MMP9-1562 C allele and coronary disease especially in Asian population. The results provide moderate association between the six common genetic polymorphism of matrix metalloproteinase family and coronary disease. However, the challenge for researcher is identifying separate effect on different races.

  19. Shared genetic susceptibility of vascular-related biomarkers with ischemic and recurrent stroke

    PubMed Central

    Williams, Stephen R.; Hsu, Fang-Chi; Keene, Keith L.; Chen, Wei-Min; Nelson, Sarah; Southerland, Andrew M.; Madden, Ebony B.; Coull, Bruce; Gogarten, Stephanie M.; Furie, Karen L.; Dzhivhuho, Godfrey; Rowles, Joe L.; Mehndiratta, Prachi; Malik, Rainer; Dupuis, Josée; Lin, Honghuang; Seshadri, Sudha; Rich, Stephen S.; Sale, Michèle M.

    2016-01-01

    Objective: To investigate the genetic contributors to cerebrovascular disease and variation in biomarkers of ischemic stroke. Methods: The Vitamin Intervention for Stroke Prevention Trial (VISP) was a randomized, controlled clinical trial of B vitamin supplementation to prevent recurrent stroke, myocardial infarction, or death. VISP collected baseline measures of C-reactive protein (CRP), fibrinogen, creatinine, prothrombin fragments F1+2, thrombin-antithrombin complex, and thrombomodulin prior to treatment initiation. Genome-wide association scans were conducted for these traits and follow-up replication analyses were performed. Results: We detected an association between CRP single nucleotide polymorphisms (SNPs) and circulating CRP levels (most associated SNP, rs2592902, p = 1.14 × 10−9) in 2,100 VISP participants. We discovered a novel association for CRP level in the AKR1D1 locus (rs2589998, p = 7.3 × 10−8, approaching genome-wide significance) that also is an expression quantitative trait locus for CRP gene expression. We replicated previously identified associations of fibrinogen with SNPs in the FGB and LEPR loci. CRP-associated SNPs and CRP levels were significantly associated with risk of ischemic stroke and recurrent stroke in VISP as well as specific stroke subtypes in METASTROKE. Fibrinogen levels but not fibrinogen-associated SNPs were also found to be associated with recurrent stroke in VISP. Conclusions: Our data identify a genetic contribution to inflammatory and hemostatic biomarkers in a stroke population. Additionally, our results suggest shared genetic contributions to circulating CRP levels measured poststroke and risk for incident and recurrent ischemic stroke. These data broaden our understanding of genetic contributors to biomarker variation and ischemic stroke risk, which should be useful in clinical risk evaluation. PMID:26718567

  20. Genetic variability in the tumor necrosis factor-lymphotoxin region influences susceptibility to rheumatoid arthritis

    SciTech Connect

    Mulcahy, B.; Waldron-Lynch, F.; Adams, C.; O`Gara, F.

    1996-09-01

    The major histocompatibility complex class H1 tumor necrosis factor-tymphotoxin (TNF-LT) region (6p21.3) was investigated as a possible susceptibility locus for rheumatoid arthritis (RA). Inheritance of five TNF microsatellite markers was determined in 50 multiplex families. Overall, 47 different haplotypes were observed. One of these, the TNF a6, b5, c1, d3, e3 (H1) haplotype, was present in 35.3% of affected, but in only 20.5% of unaffected, individuals (P < .005). This haplotype accounted for 21.5% of the parental haplotypes transmitted to affected offspring and only 7.3 % not transmitted to affected offspring (P = .0003). The TNF a6 and TNF c1 alleles were individually associated with RA (P = .0005 and .0008, respectively), as were the HLA-DRB1 {open_quotes}shared epitope{close_quotes} (SE) (P = .0001) and HLA-DRB1*0401 (P = .0018). Both univariate and bivariate conditional logistic regression analysis showed significant effects of TNF c1 and SE in increasing risk to RA (P < .001). Stratification by the presence of SE indicated an independent effect of the TNFc1 allele (P = .0003) and the HLA A1, BS, DR3 extended haplotype (always TNFa2, b3, c1, d1, e3) (P = .0027) in SE heterozygotes, while the H1 haplotype was associated with RA in SE homozygotes (P = .0018). The TNF-LT region appears to influence susceptibility to RA, distinct from HLA-DR. 50 refs., 1 fig., 1 tab.

  1. Association between breast cancer genetic susceptibility variants and terminal duct lobular unit involution of the breast.

    PubMed

    Bodelon, Clara; Oh, Hannah; Chatterjee, Nilanjan; Garcia-Closas, Montserrat; Palakal, Maya; Sherman, Mark E; Pfeiffer, Ruth M; Geller, Berta M; Vacek, Pamela M; Weaver, Donald L; Chicoine, Rachael E; Papathomas, Daphne; Xiang, Jackie; Patel, Deesha A; Khodr, Zeina G; Linville, Laura; Clare, Susan E; Visscher, Daniel W; Mies, Carolyn; Hewitt, Stephen M; Brinton, Louise A; Storniolo, Anna Maria; He, Chunyan; Chanock, Stephen J; Gierach, Gretchen L; Figueroa, Jonine D

    2017-02-15

    Terminal duct lobular units (TDLUs) are the predominant source of future breast cancers, and lack of TDLU involution (higher TDLU counts, higher acini count per TDLU and the product of the two) is a breast cancer risk factor. Numerous breast cancer susceptibility single nucleotide polymorphisms (SNPs) have been identified, but whether they are associated with TDLU involution is unknown. In a pooled analysis of 872 women from two studies, we investigated 62 established breast cancer SNPs and relationships with TDLU involution. Poisson regression models with robust variance were used to calculate adjusted per-allele relative risks (with the non-breast cancer risk allele as the referent) and 95% confidence intervals between TDLU measures and each SNP. All statistical tests were two-sided; P < 0.05 was considered statistically significant. Overall, 36 SNPs (58.1%) were related to higher TDLU counts although this was not statistically significant (p = 0.25). Six of the 62 SNPs (9.7%) were nominally associated with at least one TDLU measure: rs616488 (PEX14), rs11242675 (FOXQ1) and rs6001930 (MKL1) were associated with higher TDLU count (p = 0.047, 0.045 and 0.031, respectively); rs1353747 (PDE4D) and rs6472903 (8q21.11) were associated with higher acini count per TDLU (p = 0.007 and 0.027, respectively); and rs1353747 (PDE4D) and rs204247 (RANBP9) were associated with the product of TDLU and acini counts (p = 0.024 and 0.017, respectively). Our findings suggest breast cancer SNPs may not strongly influence TDLU involution. Agnostic genome-wide association studies of TDLU involution may provide new insights on its biologic underpinnings and breast cancer susceptibility.

  2. Genetic Contribution of MHC Class II Genes in Susceptibility to West Nile Virus Infection.

    PubMed

    Sarri, Constantina A; Markantoni, Maria; Stamatis, Costas; Papa, Anna; Tsakris, Athanasios; Pervanidou, Danai; Baka, Agoritsa; Politis, Constantina; Billinis, Charalambos; Hadjichristodoulou, Christos; Mamuris, Zissis

    2016-01-01

    WNV is a zoonotic neurotropic flavivirus that has recently emerged globally as a significant cause of viral encephalitis. The last five years, 624 incidents of WNV infection have been reported in Greece. The risk for severe WNV disease increases among immunosuppressed individuals implying thus the contribution of the MHC locus to the control of WNV infection. In order to investigate a possible association of MHC class II genes, especially HLA-DPA1, HLA-DQA1, HLA-DRB1, we examined 105 WNV patients, including 68 cases with neuroinvasive disease and 37 cases with mild clinical phenotype, collected during the period from 2010 to2013, and 100 control individuals selected form the Greek population. Typing was performed for exon 2 for all three genes. DQA1*01:01 was considered to be "protective" against WNV infection (25.4% vs 40.1%, P = 0.004) while DQA1*01:02 was associated with increased susceptibility (48.0% vs 32.1%, P = 0.003). Protection against neuroinvasion was associated with the presence of DRB1*11:02 (4.99% vs 0.0%, P = 0.018). DRB1*16:02 was also absent from the control cohort (P = 0.016). Three additional population control groups were used in order to validate our results. No statistically significant association with the disease was found for HLA-DPA alleles. The results of the present study provide some evidence that MHC class II is involved in the response to WNV infection, outlining infection "susceptibility" and "CNS-high-risk" candidates. Furthermore, three new alleles were identified while the frequency of all alleles in the study was compared with worldwide data. The characterization of the MHC locus could help to estimate the risk for severe WNV cases in a country.

  3. Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat.

    PubMed

    Mateus-Vargas, Rafael H; Atanassova, Viktoria; Reich, Felix; Klein, Günter

    2017-05-01

    The increasing number of antimicrobial resistant Enterobacteriaceae both in veterinary and human medicine, the dissemination of these bacteria in several environments and their possible repercussions on human health is causing concern. Game meat is usually seen as free of antimicrobial resistant bacteria. The objective of this study was to evaluate the current antimicrobial susceptibility status in generic Escherichia coli isolated from packed frozen game meat from a game handling establishment in Germany. A total of 229 E. coli isolates were obtained from cuts of red deer, roe deer and wild boar. The susceptibility to 12 antimicrobial agents was evaluated by a broth microdilution method according to ISO 20776-1:2006. Minimal Inhibitory Concentration (MIC) values were compared to breakpoints and cut-off values published by the EUCAST. Isolates showing MICs above the reference values were further studied for associated resistance determinants and phylogrouping by PCR. Overall, 16 E. coli isolates (7.0%) showed resistance (microbiological or clinical) to at least one antimicrobial agent tested. Clinical resistance was recorded to ampicillin (5/229) and chloramphenicol (4/229), whereas the MIC of 9 isolates exceeded the epidemiological cut-off value for doxycycline. One of the ampicillin-resistant isolates showed resistance to the β-lactam antibiotic derivatives tested, cephalosporines and aztreonam. Three of 9 non-wild-type isolates for doxycycline were positive for tet (B) genes. The ß-lactam-resistant isolate was found to harbour blaCTX-M-1 gene. These data show a low prevalence of resistant E. coli in packed game meat compared to studies on conventional meat. Although isolates obtained in this study may also be originating from the processing environment and not necessarily from animals, based on our results, it is important to monitor the development of antimicrobial resistance in game animals and products in order to identify future threats for the

  4. Genetic Contribution of MHC Class II Genes in Susceptibility to West Nile Virus Infection

    PubMed Central

    Sarri, Constantina A.; Markantoni, Maria; Stamatis, Costas; Papa, Anna; Tsakris, Athanasios; Pervanidou, Danai; Baka, Agoritsa; Politis, Constantina; Billinis, Charalambos; Hadjichristodoulou, Christos; Mamuris, Zissis

    2016-01-01

    WNV is a zoonotic neurotropic flavivirus that has recently emerged globally as a significant cause of viral encephalitis. The last five years, 624 incidents of WNV infection have been reported in Greece. The risk for severe WNV disease increases among immunosuppressed individuals implying thus the contribution of the MHC locus to the control of WNV infection. In order to investigate a possible association of MHC class II genes, especially HLA-DPA1, HLA-DQA1, HLA-DRB1, we examined 105 WNV patients, including 68 cases with neuroinvasive disease and 37 cases with mild clinical phenotype, collected during the period from 2010 to2013, and 100 control individuals selected form the Greek population. Typing was performed for exon 2 for all three genes. DQA1*01:01 was considered to be "protective" against WNV infection (25.4% vs 40.1%, P = 0.004) while DQA1*01:02 was associated with increased susceptibility (48.0% vs 32.1%, P = 0.003). Protection against neuroinvasion was associated with the presence of DRB1*11:02 (4.99% vs 0.0%, P = 0.018). DRB1*16:02 was also absent from the control cohort (P = 0.016). Three additional population control groups were used in order to validate our results. No statistically significant association with the disease was found for HLA-DPA alleles. The results of the present study provide some evidence that MHC class II is involved in the response to WNV infection, outlining infection "susceptibility" and "CNS-high-risk" candidates. Furthermore, three new alleles were identified while the frequency of all alleles in the study was compared with worldwide data. The characterization of the MHC locus could help to estimate the risk for severe WNV cases in a country. PMID:27812212

  5. Genetic susceptibility to a complex disease: the key role of functional redundancy.

    PubMed

    Debret, Gaëlle; Jung, Camille; Hugot, Jean-Pierre; Pascoe, Leigh; Victor, Jean-Marc; Lesne, Annick

    2011-01-01

    Complex diseases involve both a genetic component and a response to environmental factors or lifestyle changes. Recently, genome-wide association studies (GWAS) have succeeded in identifying hundreds of polymorphisms that are statistically associated with complex diseases. However, the association is usually weak and none of the associated allelic forms is either necessary or sufficient for the disease occurrence. We argue that this promotes a network view, centred on functional redundancy. We adapted reliability theory to the concerned sub-network, modelled as a parallel array of functional modules. In our model, as long as one module remains active, the function correlated with the respective disease is ensured and disease does not occur. Genetic factors reduce the initial number of available modules while environment, contingent surroundings, personal history, epigenetics, and some intrinsic stochasticity influence their persistence time. This model reproduces age-specific incidence curves and explains the influence of environmental changes. It offers a new paradigm, according to which disease occurs due to a lack of functional elements, depending on many idiosyncratic factors. Genetic risk assessed from GWAS is only a statistical notion with no direct interpretation at the individual level. However, genomic profiling could be useful at population level in devising models to guide decisions in health care policy.

  6. The Effects of Background and Interference Selection on Patterns of Genetic Variation in Subdivided Populations.

    PubMed

    Zeng, Kai; Corcoran, Pádraic

    2015-12-01

    It is well known that most new mutations that affect fitness exert deleterious effects and that natural populations are often composed of subpopulations (demes) connected by gene flow. To gain a better understanding of the joint effects of purifying selection and population structure, we focus on a scenario where an ancestral population splits into multiple demes and study neutral diversity patterns in regions linked to selected sites. In the background selection regime of strong selection, we first derive analytic equations for pairwise coalescent times and FST as a function of time after the ancestral population splits into two demes and then construct a flexible coalescent simulator that can generate samples under complex models such as those involving multiple demes or nonconservative migration. We have carried out extensive forward simulations to show that the new methods can accurately predict diversity patterns both in the nonequilibrium phase following the split of the ancestral population and in the equilibrium between mutation, migration, drift, and selection. In the interference selection regime of many tightly linked selected sites, forward simulations provide evidence that neutral diversity patterns obtained from both the nonequilibrium and equilibrium phases may be virtually indistinguishable for models that have identical variance in fitness, but are nonetheless different with respect to the number of selected sites and the strength of purifying selection. This equivalence in neutral diversity patterns suggests that data collected from subdivided populations may have limited power for differentiating among the selective pressures to which closely linked selected sites are subject.

  7. A Genome-Wide Test of the Differential Susceptibility Hypothesis Reveals a Genetic Predictor of Differential Response to Psychological Treatments for Child Anxiety Disorders

    PubMed Central

    Keers, Robert; Coleman, Jonathan R.I.; Lester, Kathryn J.; Roberts, Susanna; Breen, Gerome; Thastum, Mikael; Bögels, Susan; Schneider, Silvia; Heiervang, Einar; Meiser-Stedman, Richard; Nauta, Maaike; Creswell, Cathy; Thirlwall, Kerstin; Rapee, Ronald M.; Hudson, Jennifer L.; Lewis, Cathryn; Plomin, Robert; Eley, Thalia C.

    2016-01-01

    Background The differential susceptibly hypothesis suggests that certain genetic variants moderate the effects of both negative and positive environments on mental health and may therefore be important predictors of response to psychological treatments. Nevertheless, the identification of such variants has so far been limited to preselected candidate genes. In this study we extended the differential susceptibility hypothesis from a candidate gene to a genome-wide approach to test whether a polygenic score of environmental sensitivity predicted response to cognitive behavioural therapy (CBT) in children with anxiety disorders. Methods We identified variants associated with environmental sensitivity using a novel method in which within-pair variability in emotional problems in 1,026 monozygotic twin pairs was examined as a function of the pairs' genotype. We created a polygenic score of environmental sensitivity based on the whole-genome findings and tested the score as a moderator of parenting on emotional problems in 1,406 children and response to individual, group and brief parent-led CBT in 973 children with anxiety disorders. Results The polygenic score significantly moderated the effects of parenting on emotional problems and the effects of treatment. Individuals with a high score responded significantly better to individual CBT than group CBT or brief parent-led CBT (remission rates: 70.9, 55.5 and 41.6%, respectively). Conclusions Pending successful replication, our results should be considered exploratory. Nevertheless, if replicated, they suggest that individuals with the greatest environmental sensitivity may be more likely to develop emotional problems in adverse environments but also benefit more from the most intensive types of treatment. PMID:27043157

  8. Parent-of-origin genetic background affects the transcriptional levels of circadian and neuronal plasticity genes following sleep loss

    PubMed Central

    Tinarelli, Federico; Garcia-Garcia, Celina; Nicassio, Francesco; Tucci, Valter

    2014-01-01

    Sleep homoeostasis refers to a process in which the propensity to sleep increases as wakefulness progresses and decreases as sleep progresses. Sleep is tightly organized around the circadian clock and is regulated by genetic and epigenetic mechanisms. The homoeostatic response of sleep, which is classically triggered by sleep deprivation, is generally measured as a rebound effect of electrophysiological measures, for example delta sleep. However, more recently, gene expression changes following sleep loss have been investigated as biomarkers of sleep homoeostasis. The genetic background of an individual may affect this sleep-dependent gene expression phenotype. In this study, we investigated whether parental genetic background differentially modulates the expression of genes following sleep loss. We tested the progeny of reciprocal crosses of AKR/J and DBA/2J mouse strains and we show a parent-of-origin effect on the expression of circadian, sleep and neuronal plasticity genes following sleep deprivation. Thus, we further explored, by in silico, specific functions or upstream mechanisms of regulation and we observed that several upstream mechanisms involving signalling pathways (i.e. DICER1, PKA), growth factors (CSF3 and BDNF) and transcriptional regulators (EGR2 and ELK4) may be differentially modulated by parental effects. This is the first report showing that a behavioural manipulation (e.g. sleep deprivation) in adult animals triggers specific gene expression responses according to parent-of-origin genomic mechanisms. Our study suggests that the same mechanism may be extended to other behavioural domains and that the investigation of gene expression following experimental manipulations should take seriously into account parent-of-origin effects. PMID:24446504

  9. Parent-of-origin genetic background affects the transcriptional levels of circadian and neuronal plasticity genes following sleep loss.

    PubMed

    Tinarelli, Federico; Garcia-Garcia, Celina; Nicassio, Francesco; Tucci, Valter

    2014-03-05

    Sleep homoeostasis refers to a process in which the propensity to sleep increases as wakefulness progresses and decreases as sleep progresses. Sleep is tightly organized around the circadian clock and is regulated by genetic and epigenetic mechanisms. The homoeostatic response of sleep, which is classically triggered by sleep deprivation, is generally measured as a rebound effect of electrophysiological measures, for example delta sleep. However, more recently, gene expression changes following sleep loss have been investigated as biomarkers of sleep homoeostasis. The genetic background of an individual may affect this sleep-dependent gene expression phenotype. In this study, we investigated whether parental genetic background differentially modulates the expression of genes following sleep loss. We tested the progeny of reciprocal crosses of AKR/J and DBA/2J mouse strains and we show a parent-of-origin effect on the expression of circadian, sleep and neuronal plasticity genes following sleep deprivation. Thus, we further explored, by in silico, specific functions or upstream mechanisms of regulation and we observed that several upstream mechanisms involving signalling pathways (i.e. DICER1, PKA), growth factors (CSF3 and BDNF) and transcriptional regulators (EGR2 and ELK4) may be differentially modulated by parental effects. This is the first report showing that a behavioural manipulation (e.g. sleep deprivation) in adult animals triggers specific gene expression responses according to parent-of-origin genomic mechanisms. Our study suggests that the same mechanism may be extended to other behavioural domains and that the investigation of gene expression following experimental manipulations should take seriously into account parent-of-origin effects.

  10. Evaluation of polymorphisms in pbp4 gene and genetic diversity in penicillin-resistant, ampicillin-susceptible Enterococcus faecalis from hospitals in different states in Brazil.

    PubMed

    Infante, Victor Hugo Pacagnelli; Conceição, Natália; de Oliveira, Adriana Gonçalves; Darini, Ana Lúcia da Costa

    2016-04-01

    The aim of the present study was to verify whether penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) occurred in Brazil prior to the beginning of the 21st century, and to verify whether ampicillin susceptibility can predict susceptibility to other β-lactams in E. faecalis with this inconsistent phenotype. The presence of polymorphisms in the pbp4 gene and genetic diversity among the isolates were investigated. Of 21 PRASEF analyzed, 5 (23.8%) and 4 (19.0%) were imipenem and piperacillin resistant simultaneously by disk diffusion and broth dilution respectively, contradicting the current internationally accepted standards of susceptibility testing. Sequencing of pbp4 gene revealed an amino acid substitution (Asp-573→Glu) in all PRASEF isolates but not in the penicillin-susceptible, ampicillin-susceptible E. faecalis. Most PRASEF (90.5%) had related pulsed-field gel electrophoresis profiles, but were different from other PRASEF described to date. Results demonstrate that penicillin-resistant, ampicillin-susceptible phenotype was already a reality in the 1990s in E. faecalis isolates in different Brazilian states, and some of these isolates were also imipenem- and piperacillin-resistant; therefore, internationally accepted susceptibility criteria cannot be applied to these isolates. According to pbp4 gene sequencing, this study suggests that a specific amino acid substitution in pbp4 gene found in all PRASEF analyzed is associated with penicillin resistance.

  11. A Systems Genetics Approach Identifies CXCL14, ITGAX, and LPCAT2 as Novel Aggressive Prostate Cancer Susceptibility Genes

    PubMed Central

    Andreas, Jonathan; Patel, Shashank J.; Zhang, Suiyuan; Chines, Peter; Elkahloun, Abdel; Chandrasekharappa, Settara; Gutkind, J. Silvio; Molinolo, Alfredo A.; Crawford, Nigel P. S.

    2014-01-01

    Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL) mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ) F2 intercross males (n = 228), which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ) F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322) were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A) were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2) harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such approaches will

  12. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility.

    PubMed

    Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Buck Louis, Germaine M; Toppari, Jorma; Andersson, Anna-Maria; Eisenberg, Michael L; Jensen, Tina Kold; Jørgensen, Niels; Swan, Shanna H; Sapra, Katherine J; Ziebe, Søren; Priskorn, Lærke; Juul, Anders

    2016-01-01

    It is predicted that Japan and European Union will soon experience appreciable decreases in their populations due to persistently low total fertility rates (TFR) below replacement level (2.1 child per woman). In the United States, where TFR has also declined, there are ethnic differences. Caucasians have rates below replacement, while TFRs among African-Americans and Hispanics are higher. We review possible links between TFR and trends in a range of male reproductive problems, including testicular cancer, disorders of sex development, cryptorchidism, hypospadias, low testosterone levels, poor semen quality, childlessness, changed sex ratio, and increasing demand for assisted reproductive techniques. We present evidence that several adult male reproductive problems arise in utero and are signs of testicular dysgenesis syndrome (TDS). Although TDS might result from genetic mutations, recent evidence suggests that it most often is related to environmental exposures of the fetal testis. However, environmental factors can also affect the adult endocrine system. Based on our review of genetic and environmental factors, we conclude that environmental exposures arising from modern lifestyle, rather than genetics, are the most important factors in the observed trends. These environmental factors might act either directly or via epigenetic mechanisms. In the latter case, the effects of exposures might have an impact for several generations post-exposure. In conclusion, there is an urgent need to prioritize research in reproductive physiology and pathophysiology, particularly in highly industrialized countries facing decreasing populations. We highlight a number of topics that need attention by researchers in human physiology, pathophysiology, environmental health sciences, and demography.

  13. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility

    PubMed Central

    Skakkebaek, Niels E.; Rajpert-De Meyts, Ewa; Buck Louis, Germaine M.; Toppari, Jorma; Andersson, Anna-Maria; Eisenberg, Michael L.; Jensen, Tina Kold; Jørgensen, Niels; Swan, Shanna H.; Sapra, Katherine J.; Ziebe, Søren; Priskorn, Lærke; Juul, Anders

    2015-01-01

    It is predicted that Japan and European Union will soon experience appreciable decreases in their populations due to persistently low total fertility rates (TFR) below replacement level (2.1 child per woman). In the United States, where TFR has also declined, there are ethnic differences. Caucasians have rates below replacement, while TFRs among African-Americans and Hispanics are higher. We review possible links between TFR and trends in a range of male reproductive problems, including testicular cancer, disorders of sex development, cryptorchidism, hypospadias, low testosterone levels, poor semen quality, childlessness, changed sex ratio, and increasing demand for assisted reproductive techniques. We present evidence that several adult male reproductive problems arise in utero and are signs of testicular dysgenesis syndrome (TDS). Although TDS might result from genetic mutations, recent evidence suggests that it most often is related to environmental exposures of the fetal testis. However, environmental factors can also affect the adult endocrine system. Based on our review of genetic and environmental factors, we conclude that environmental exposures arising from modern lifestyle, rather than genetics, are the most important factors in the observed trends. These environmental factors might act either directly or via epigenetic mechanisms. In the latter case, the effects of exposures might have an impact for several generations post-exposure. In conclusion, there is an urgent need to prioritize research in reproductive physiology and pathophysiology, particularly in highly industrialized countries facing decreasing populations. We highlight a number of topics that need attention by researchers in human physiology, pathophysiology, environmental health sciences, and demography. PMID:26582516

  14. [The research progress in genetic susceptibility of noise-induced hearing loss].

    PubMed

    Li, Dapeng; Zheng, Chen; Deng, Jie

    2015-07-01

    Hazards of noise-induced hearing loss (NIHL) to crowd who are long-term exposured and work in the noisy environment is increasingly prominent. But just part of the individuals who are exposed to the same noisy environment have hearing loss, and the severity of hearing loss are different, which indicates genetic predisposition might be associated with NIHL. In recent years, many experts and scholars at home and abroad have done a lot of research in this field, this article summarizes all available studies.

  15. The role of genetic breast cancer susceptibility variants as prognostic factors

    PubMed Central

    Fasching, Peter A.; Pharoah, Paul D.P.; Cox, Angela; Nevanlinna, Heli; Bojesen, Stig E.; Karn, Thomas; Broeks, Annegien; van Leeuwen, Flora E.; van 't Veer, Laura J.; Udo, Renate; Dunning, Alison M.; Greco, Dario; Aittomäki, Kristiina; Blomqvist, Carl; Shah, Mitul; Nordestgaard, Børge G.; Flyger, Henrik; Hopper, John L.; Southey, Melissa C.; Apicella, Carmel; Garcia-Closas, Montserrat; Sherman, Mark; Lissowska, Jolanta; Seynaeve, Caroline; Huijts, Petra E.A.; Tollenaar, Rob A.E.M.; Ziogas, Argyrios; Ekici, Arif B.; Rauh, Claudia; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Andrulis, Irene L.; Ozcelik, Hilmi; Mulligan, Anna-Marie; Glendon, Gord; Hall, Per; Czene, Kamila; Liu, Jianjun; Chang-Claude, Jenny; Wang-Gohrke, Shan; Eilber, Ursula; Nickels, Stefan; Dörk, Thilo; Schiekel, Maria; Bremer, Michael; Park-Simon, Tjoung-Won; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Hooning, Maartje J.; Martens, John W.M.; Jager, Agnes; Kriege, Mieke; Lindblom, Annika; Margolin, Sara; Couch, Fergus J.; Stevens, Kristen N.; Olson, Janet E.; Kosel, Matthew; Cross, Simon S.; Balasubramanian, Sabapathy P.; Reed, Malcolm W.R.; Miron, Alexander; John, Esther M.; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Chenevix-Trench, Georgia; Lambrechts, Diether; Dieudonne, Anne-Sophie; Hatse, Sigrid; van Limbergen, Erik; Benitez, Javier; Milne, Roger L.; Zamora, M. Pilar; Pérez, José Ignacio Arias; Bonanni, Bernardo; Peissel, Bernard; Loris, Bernard; Peterlongo, Paolo; Rajaraman, Preetha; Schonfeld, Sara J.; Anton-Culver, Hoda; Devilee, Peter; Beckmann, Matthias W.; Slamon, Dennis J.; Phillips, Kelly-Anne; Figueroa, Jonine D.; Humphreys, Manjeet K.; Easton, Douglas F.; Schmidt, Marjanka K.

    2012-01-01

    Recent genome-wide association studies identified 11 single nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk. We investigated these and 62 other SNPs for their prognostic relevance. Confirmed BC risk SNPs rs17468277 (CASP8), rs1982073 (TGFB1), rs2981582 (FGFR2), rs13281615 (8q24), rs3817198 (LSP1), rs889312 (MAP3K1), rs3803662 (TOX3), rs13387042 (2q35), rs4973768 (SLC4A7), rs6504950 (COX11) and rs10941679 (5p12) were genotyped for 25 853 BC patients with the available follow-up; 62 other SNPs, which have been suggested as BC risk SNPs by a GWAS or as candidate SNPs from individual studies, were genotyped for replication purposes in subsets of these patients. Cox proportional hazard models were used to test the association of these SNPs with overall survival (OS) and BC-specific survival (BCS). For the confirmed loci, we performed an accessory analysis of publicly available gene expression data and the prognosis in a different patient group. One of the 11 SNPs, rs3803662 (TOX3) and none of the 62 candidate/GWAS SNPs were associated with OS and/or BCS at P<0.01. The genotypic-specific survival for rs3803662 suggested a recessive mode of action [hazard ratio (HR) of rare homozygous carriers=1.21; 95% CI: 1.09–1.35, P=0.0002 and HR=1.29; 95% CI: 1.12–1.47, P=0.0003 for OS and BCS, respectively]. This association was seen similarly in all analyzed tumor subgroups defined by nodal status, tumor size, grade and estrogen receptor. Breast tumor expression of these genes was not associated with prognosis. With the exception of rs3803662 (TOX3), there was no evidence that any of the SNPs associated with BC susceptibility were associated with the BC survival. Survival may be influenced by a distinct set of germline variants from those influencing susceptibility. PMID:22532573

  16. Effect of the genetic background on recombination frequency in the cn-vg region of the second chromosome of natural populations of Drosophila melanogaster.

    PubMed

    Hofmanová, J

    1975-01-01

    Newly established test stocks made it possible to follow the effect of three different defined genetic backgrounds (first and third chromosomes) on recombination frequency in the cn-vg region of the second chromosomes isolated from four natural populations of Drosophila melanogaster. One background was composed of the chromosomes with inversions obtained from the stock (see article) and another two backgrounds were of the standard type consisting one-half of the original chromosomes from the natural population and one-half of the chromosomes of the stocks Oregon R or Samarkand. Using the analysis of variance significant differences in RF values were found between and within populations and especially between the different backgrounds. Some simple and double interactions between the above factors played a role. The highest RF values were obtained on the background [corrected] with inversions. The effect of the different genetic backgrounds [corrected] by the action of the genetic modifiers of RF. The different genetic backgrounds affected the variations in RF values in individual populations and the different populations reacted differentially to the changed genetic background. The design of the experiment permitted an estimation of the causal compoenents of variance and heritability of RF from the sib analysis. The additive component of variance was present in only two of the populations under test; the respective estimates of heritability were very low.

  17. Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer

    PubMed Central

    Grampp, Steffen; Platt, James L.; Lauer, Victoria; Salama, Rafik; Kranz, Franziska; Neumann, Viviana K.; Wach, Sven; Stöhr, Christine; Hartmann, Arndt; Eckardt, Kai-Uwe; Ratcliffe, Peter J.; Mole, David R.; Schödel, Johannes

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by loss of function of the von Hippel–Lindau tumour suppressor (VHL) and unrestrained activation of hypoxia-inducible transcription factors (HIFs). Genetic and epigenetic determinants have an impact on HIF pathways. A recent genome-wide association study on renal cancer susceptibility identified single-nucleotide polymorphisms (SNPs) in an intergenic region located between the oncogenes MYC and PVT1. Here using assays of chromatin conformation, allele-specific chromatin immunoprecipitation and genome editing, we show that HIF binding to this regulatory element is necessary to trans-activate MYC and PVT1 expression specifically in cells of renal tubular origins. Moreover, we demonstrate that the risk-associated polymorphisms increase chromatin accessibility and activity as well as HIF binding to the enhancer. These findings provide further evidence that genetic variation at HIF-binding sites modulates the oncogenic transcriptional output of the VHL–HIF axis and provide a functional explanation for the disease-associated effects of SNPs in ccRCC. PMID:27774982

  18. KCNA5 gene is not confirmed as a systemic sclerosis-related pulmonary arterial hypertension genetic susceptibility factor

    PubMed Central

    2012-01-01

    Introduction Potassium voltage-gated channel shaker-related subfamily member 5 (KCNA5) is implicated in vascular tone regulation, and its inhibition during hypoxia produces pulmonary vasoconstriction. Recently, a protective association of the KCNA5 locus with systemic sclerosis (SSc) patients with pulmonary arterial hypertension (PAH) was reported. Hence, the aim of this study was to replicate these findings in an independent multicenter Caucasian SSc cohort. Methods The 2,343 SSc cases (179 PAH positive, confirmed by right-heart catheterization) and 2,690 matched healthy controls from five European countries were included in this study. Rs10744676 single-nucleotide polymorphism (SNP) was genotyped by using a TaqMan SNP genotyping assay. Results Individual population analyses of the selected KCNA5 genetic variant did not show significant association with SSc or any of the defined subsets (for example, limited cutaneous SSc, diffuse cutaneous SSc, anti-centromere autoantibody positive and anti-topoisomerase autoantibody positive). Furthermore, pooled analyses revealed no significant evidence of association with the disease or any of the subsets, not even the PAH-positive group. The comparison of PAH-positive patients with PAH-negative patients showed no significant differences among patients. Conclusions Our data do not support an important role of KCNA5 as an SSc-susceptibility factor or as a PAH-development genetic marker for SSc patients. PMID:23270786

  19. Genetic characterization and antimicrobial susceptibility of Campylobacter spp. isolated from domestic and imported chicken meats and humans in Korea.

    PubMed

    Ku, Bok Kyung; Kim, Hae Ji; Lee, Young Ju; Kim, Young Ihl; Choi, Jung Su; Park, Mi Young; Kwon, Jin Wook; Nam, Hyang-Mi; Kim, Yong Hwan; Jung, Suk-Chan; Lee, Sun Jin; Kim, Sang Hyun; Kim, Jong Hyun

    2011-03-01

    This study was conducted to examine the in vitro activity of antimicrobials against Campylobacter spp. isolates from chicken and human sources and the genetic interrelation among them. During 2004-2008, a total of 173 Campylobacter spp. isolated from chicken meats (60 domestic and 62 imported chicken meats) and humans (n = 51) were tested for susceptibility to nine antimicrobials. Of 173 isolates, 140 (80.9%) showed multidrug resistance (MDR) against three to eight antimicrobials. The most frequent pattern type was MDR to four antimicrobials: ciprofloxacin, nalidixic acid, ampicillin, and tetracycline. Over 52.6% (91/173) of the isolates tested were resistant to these four antibiotics simultaneously. Especially, two and five isolates originated from Korea and Brazil showed resistance against all antibiotics tested, except for florfenicol. Further, 95% (57/60) of the isolates originated from domestic chicken showed resistance to ciprofloxacin, the antimicrobial agent of choice for treatment of human campylobacteriosis. Genotypic characterization of all Campylobacter isolates performed by pulsed-field gel electrophoresis yielded 74 types among the 173 isolates. Isolates sharing the same or similar genetic clusters were detected in different countries at different times. The pulsed-field gel electrophoresis patterns of chicken-related isolates were closely related to those of isolates from humans with gastroenteritidis. The results of this study suggest that MDR Campylobacter spp. are widespread and that Campylobacter with similar genotypes are circulating both in humans and in chicken meat in Korea.

  20. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity

    PubMed Central

    Bustamante, Jacinta; Boisson-Dupuis, Stéphanie; Abel, Laurent; Casanova, Jean-Laurent

    2014-01-01

    Mendelian susceptibility to mycobacterial disease (MSMD) is a rare condition characterized by predisposition to clinical disease caused by weakly virulent mycobacteria, such as BCG vaccines and environmental mycobacteria, in otherwise healthy individuals with no overt abnormalities in routine hematological and immunological tests. MSMD designation does not recapitulate all the clinical features, as patients are also prone to salmonellosis, candidiasis and tuberculosis, and more rarely to infections with other intramacrophagic bacteria, fungi, or parasites, and even, perhaps, a few viruses. Since 1996, nine MSMD-causing genes, including seven autosomal (IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1, ISG15, and IRF8) and two X-linked (NEMO, CYBB) genes have been discovered. The high level of allelic heterogeneity has already led to the definition of 18 different disorders. The nine gene products are physiologically related, as all are involved in IFN-γ-dependent immunity. These disorders impair the production of (IL12B, IL12RB1, IRF8, ISG15, NEMO) or the response to (IFNGR1, IFNGR2, STAT1, IRF8, CYBB) IFN-γ. These defects account for only about half the known MSMD cases. Patients with MSMD-causing genetic defects may display other infectious diseases, or even remain asymptomatic. Most of these inborn errors do not show complete clinical penetrance for the case-definition phenotype of MSMD. We review here the genetic, immunological, and clinical features of patients with inborn errors of IFN-γ-dependent immunity. PMID:25453225

  1. ZFAT gene variant association with multiple sclerosis in the Arabian Gulf population: A genetic basis for gender-associated susceptibility

    PubMed Central

    Bourguiba-Hachemi, Sonia; Ashkanani, Tebah K.; Kadhem, Fatema J.; Almawi, Wassim Y.; Alroughani, Raed; Fathallah, M. Dahmani

    2016-01-01

    Single nucleotide polymorphisms (SNPs) are useful genetic markers to investigate the onset of multiple sclerosis (MS). A genome wide association study identified 7 SNPs associated with interferon-β therapy response, however, not with MS risk in a Spanish population. To investigate these findings in a different cohort, the 7 SNPs were investigated in an Arabian Gulf population. The SNPs were analyzed in 268 subjects (156 patients and 112 healthy volunteers) from the Arabian Gulf region using restriction fragment length polymorphism-polymerase chain reaction (PCR) and KBioscience Competitive Allele Specific PCR genotyping methods. Associations between the SNPs and MS were investigated using logistic regression. The present study observed, for the first time, that in an Arabian Gulf population, the ZFAT rs733254 polymorphism (T>G) is a gender-specific risk marker for MS. ZFAT was associated with MS in women but not in men. The G variant was highly associated with the risk of MS [odds ratio (OR)=2.38 and 95% confidence interval (CI), 1.45–3.91); P=0.0014]. Whereas variant T was a significantly protective factor [OR=0.420 (95% CI, 0.25–0.69); P=0.0014, recessive model]. The findings of the present study provide a genetic basis for the gender-associated susceptibility to MS. In addition, this MS-associated rs733254 SNP may predict MS onset in females from the Arabian Gulf population. PMID:27572828

  2. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis

    PubMed Central

    Bowes, John; Budu-Aggrey, Ashley; Huffmeier, Ulrike; Uebe, Steffen; Steel, Kathryn; Hebert, Harry L.; Wallace, Chris; Massey, Jonathan; Bruce, Ian N.; Bluett, James; Feletar, Marie; Morgan, Ann W.; Marzo-Ortega, Helena; Donohoe, Gary; Morris, Derek W.; Helliwell, Philip; Ryan, Anthony W.; Kane, David; Warren, Richard B.; Korendowych, Eleanor; Alenius, Gerd-Marie; Giardina, Emiliano; Packham, Jonathan; McManus, Ross; FitzGerald, Oliver; McHugh, Neil; Brown, Matthew A.; Ho, Pauline; Behrens, Frank; Burkhardt, Harald; Reis, Andre; Barton, Anne

    2015-01-01

    Psoriatic arthritis (PsA) is a chronic inflammatory arthritis associated with psoriasis and, despite the larger estimated heritability for PsA, the majority of genetic susceptibility loci identified to date are shared with psoriasis. Here, we present results from a case–control association study on 1,962 PsA patients and 8,923 controls using the Immunochip genotyping array. We identify eight loci passing genome-wide significance, secondary independent effects at three loci and a distinct PsA-specific variant at the IL23R locus. We report two novel loci and evidence of a novel PsA-specific association at chromosome 5q31. Imputation of classical HLA alleles, amino acids and SNPs across the MHC region highlights three independent associations to class I genes. Finally, we find an enrichment of associated variants to markers of open chromatin in CD8+ memory primary T cells. This study identifies key insights into the genetics of PsA that could begin to explain fundamental differences between psoriasis and PsA. PMID:25651891

  3. Contribution of JAK2 and STAT3 variants to the genetic susceptibility of recurrent miscarriage among Bahraini and Tunisian Arabs.

    PubMed

    Messoudi, Safia; Al-Sulaiti, Manar A; Al-Busaidi, Amna S; Dendana, Maryam; Nsiri, Brahim; Almawi, Wassim Y; Mahjoub, Touhami

    2013-01-01

    We investigated the contribution of JAK2 rs2203724 and STAT3 rs1053023 and rs1053004 to the susceptibility of idiopathic recurrent miscarriage (IRM) in Bahraini (246 cases and 279 controls) and Tunisian (235 cases and 235 controls) Arabs. The distribution of JAK2 rs2203724 and STAT3 rs1053023 genotypes were in Hardy-Weinberg equilibrium (HWE) in both communities, while mild deviation from HWE was noted for rs1053004 in Tunisians but not Bahraini. JAK2 rs2203724 was not associated with IRM in either community, while STAT3 rs1053023 was positively associated with IRM in both Bahraini and Tunisian women. STAT3 rs1053004 displayed mixed association: it was positively associated with IRM in Bahraini (P < 0.001), but not Tunisian women (P = 0.10). Genotype association confirmed the association of both STAT3 variants with IRM under additive, dominant, and recessive models, while the association of STAT3 rs1053023 was seen under additive and dominant, but not recessive models in Tunisians. The contribution of JAK2 and STAT3 variants to IRM susceptibility must be evaluated regarding specific variants, and the ethnic/racial background.

  4. Genetic Variants and Susceptibility to Neurological Complications Following West Nile Virus Infection

    PubMed Central

    Eskandarian, Sasha; Rupp, Mark; Fishman, Neil; Gasink, Leanne; Patterson, Jan; Bramson, Jonathan; Hudson, Thomas J; Lemire, Mathieu

    2011-01-01

    To determine genetic factors predisposing to neurological complications following West Nile virus infection, we analyzed a cohort of 560 neuroinvasive case patients and 950 control patients for 13 371 mostly nonsynonymous single-nucleotide polymorphisms (SNPs). The top 3 SNPs on the basis of statistical significance were also in genes of biological plausibility: rs2066786 in RFC1 (replication factor C1) (P = 1.88 × 10−5; odds ratio [OR], 0.68 [95% confidence interval {CI}, .56–.81]); rs2298771 in SCN1A (sodium channel, neuronal type I α subunit) (P = 5.87 × 10−5; OR, 1.47 [95% CI, 1.21–1.77]); and rs25651 in ANPEP (ananyl aminopeptidase) (P = 1.44 × 10−4; OR, 0.69 [95% CI, .56–.83]). Additional genotyping of these SNPs in a separate sample of 264 case patients and 296 control patients resulted in a lack of significance in the replication cohort; joint significance was as follows: rs2066786, P = .0022; rs2298771, P = .005; rs25651, P = .042. Using mostly nonsynonymous variants, we therefore did not identify genetic variants associated with neuroinvasive disease. PMID:21881118

  5. A Rare Truncating BRCA2 Variant and Genetic Susceptibility to Upper Aerodigestive Tract Cancer

    PubMed Central

    Delahaye-Sourdeix, Manon; Anantharaman, Devasena; Timofeeva, Maria N.; Gaborieau, Valérie; Chabrier, Amélie; Vallée, Maxime P.; Lagiou, Pagona; Holcátová, Ivana; Richiardi, Lorenzo; Kjaerheim, Kristina; Agudo, Antonio; Castellsagué, Xavier; Macfarlane, Tatiana V.; Barzan, Luigi; Canova, Cristina; Thakker, Nalin S.; Conway, David I.; Znaor, Ariana; Healy, Claire M.; Ahrens, Wolfgang; Zaridze, David; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Ioan Nicolae; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Curado, Maria Paula; Koifman, Sergio; Menezes, Ana; Wünsch-Filho, Victor; Eluf-Neto, José; Boffetta, Paolo; Fernández Garrote, Leticia; Polesel, Jerry; Lener, Marcin; Jaworowska, Ewa; Lubiński, Jan; Boccia, Stefania; Rajkumar, Thangarajan; Samant, Tanuja A.; Mahimkar, Manoj B.; Matsuo, Keitaro; Franceschi, Silvia; Byrnes, Graham; Brennan, Paul

    2015-01-01

    Deleterious BRCA2 genetic variants markedly increase risk of developing breast cancer. A rare truncating BRCA2 genetic variant, rs11571833 (K3326X), has been associated with a 2.5-fold risk of lung squamous cell carcinoma but only a modest 26% increase in breast cancer risk. We analyzed the association between BRCA2 SNP rs11571833 and upper aerodigestive tract (UADT) cancer risk with multivariable unconditional logistic regression adjusted by sex and combinations of study and country for 5942 UADT squamous cell carcinoma case patients and 8086 control patients from nine different studies. All statistical tests were two-sided. rs11571833 was associated with UADT cancers (odds ratio = 2.53, 95% confidence interval = 1.89 to 3.38, P = 3x10-10) and was present in European, Latin American, and Indian populations but extremely rare in Japanese populations. The association appeared more apparent in smokers (current or former) compared with never smokers (P het = .026). A robust association between a truncating BRCA2 variant and UADT cancer risk suggests that treatment strategies orientated towards BRCA2 mutations may warrant further investigation in UADT tumors. PMID:25838448

  6. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis.

    PubMed

    Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I; Padyukov, Leonid; Toes, Rene E M; Huizinga, Tom W J; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I W; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert M; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane

    2012-12-01

    Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.

  7. Strong Genetic Evidence of DCDC2 as a Susceptibility Gene for Dyslexia

    PubMed Central

    Schumacher, Johannes; Anthoni, Heidi; Dahdouh, Faten; König, Inke R.; Hillmer, Axel M.; Kluck, Nadine; Manthey, Malou; Plume, Ellen; Warnke, Andreas; Remschmidt, Helmut; Hülsmann, Jutta; Cichon, Sven; Lindgren, Cecilia M.; Propping, Peter; Zucchelli, Marco; Ziegler, Andreas; Peyrard-Janvid, Myriam; Schulte-Körne, Gerd; Nöthen, Markus M.; Kere, Juha

    2006-01-01

    We searched for linkage disequilibrium (LD) in 137 triads with dyslexia, using markers that span the most-replicated dyslexia susceptibility region on 6p21-p22, and found association between the disease and markers within the VMP/DCDC2/KAAG1 locus. Detailed refinement of the LD region, involving sequencing and genotyping of additional markers, showed significant association within DCDC2 in single-marker and haplotype analyses. The association appeared to be strongest in severely affected patients. In a second step, the study was extended to include an independent sample of 239 triads with dyslexia, in which the association—in particular, with the severe phenotype of dyslexia—was confirmed. Our expression data showed that DCDC2, which contains a doublecortin homology domain that is possibly involved in cortical neuron migration, is expressed in the fetal and adult CNS, which—together with the hypothesized protein function—is in accordance with findings in dyslexic patients with abnormal neuronal migration and maturation. PMID:16385449

  8. Esophageal Cancer in Golestan Province, Iran: A Review of Genetic Susceptibility and Environmental Risk Factors

    PubMed Central

    Gholipour, Mahin; Islami, Farhad; Roshandel, Gholamreza; Khoshnia, Masoud; Badakhshan, Abbas; Moradi, Abdolvahab; Malekzadeh, Reza

    2016-01-01

    Esophageal squamous cell carcinoma (ESCC) is an aggressive tumor that is typically diagnosed only when the tumor has gained remarkable size, extended to peripheral tissues, and led to dysphagia. Five-year survival of advanced cancer is still very poor (19%), even with improved surgical techniques and adjuvant chemoradiation therapy. Therefore, early detection and prevention are the most important strategies to reduce the burden of ESCC. Our review will focus on the studies conducted in Golestan province, an area with a high prevalence of ESCC in northern Iran. We review three aspects of the research literature on ESCC: epidemiological features, environmental factors (including substance abuse, environmental contaminants, dietary factors, and human papillomavirus [HPV]), and molecular factors (including oncogenes, tumor suppressor genes, cell cycle regulatory proteins, and other relevant biomarkers). Epidemiological and experimental data suggest that some chemicals and lifestyle factors, including polycyclic aromatic hydrocarbons (PAHs), cigarette smoking, opium use, and hot tea drinking are associated with the development of ESCC in Golestan. HPV infects the esophageal epithelium, but so far, no firm evidence of its involvement in esophageal carcinogenesis has been provided. Some of these factors, notably hot tea drinking, may render the esophageal mucosa more susceptible to injury by other carcinogens. There are few studies at molecular level on ESCC in Golestan. Increasing awareness about the known risk factors of ESCC could potentially reduce the burden of ESCC in the region. Further studies on risk factors, identifying high risk populations, and early detection are needed. PMID:27957288

  9. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation.

    PubMed

    Kretschmer, Matthias; Croll, Daniel; Kronstad, James W

    2016-08-26

    The ability of biotrophic fungi to metabolically adapt to the host environment is a critical factor in fungal diseases of crop plants. In this study, we analysed the transcriptome of maize tumours induced by Ustilago maydis to identify key features underlying metabolic shifts during disease. Among other metabolic changes, this analysis highlighted modifications during infection in the transcriptional regulation of carbohydrate allocation and starch metabolism. We confirmed the relevance of these changes by establishing that symptom development was altered in an id1 (indeterminate1) mutant that showed increased accumulation of sucrose as well as being defective in the vegetative to reproductive transition. We further established the relevance of specific metabolic functions related to carbohydrate allocation by assaying disease in su1 (sugary1) mutant plants with altered starch metabolism and in plants treated with glucose, sucrose and silver nitrate during infection. We propose that specific regulatory and metabolic changes influence the balance between susceptibility and resistance by altering carbon allocation to promote fungal growth or to influence plant defence. Taken together, these studies reveal key aspects of metabolism that are critical for biotrophic adaptation during the maize-U. maydis interaction.

  10. PARAOXONASE 1 (PON1) AS A GENETIC DETERMINANT OF SUSCEPTIBILITY TO ORGANOPHOSPHATE TOXICITY

    PubMed Central

    Costa, Lucio G.; Giordano, Gennaro; Cole, Toby B.; Marsillach, Judit; Furlong, Clement E.

    2012-01-01

    Paraoxonase (PON1) is an A-esterase capable of hydrolyzing the active metabolites (oxons) of a number of organophosphorus (OP) insecticides such as parathion, diazinon and chlorpyrifos. PON1 activity is highest in liver and in plasma. Human PON1 displays two polymorphisms in the coding region (Q192R and L55M) and several polymorphisms in the promoter and the 3’-UTR regions. The Q192R polymorphism imparts differential catalytic activity toward some OP substrates, while the polymorphism at position –108 (C/T) is the major contributor of differences in the levels of PON1 expression. Both contribute to determining an individual's PON1 “status”. Animal studies have shown that PON1 is an important determinant of OP toxicity. Administration of exogenous PON1 to rats or mice protects them from the toxicity of specific OPs. PON1 knockout mice display a high sensitivity to the toxicity of diazoxon and chlorpyrifos oxon, but not of paraoxon. In vitro catalytic efficiencies of purified PON192 alloforms for hydrolysis of specific oxon substrates accurately predict the degree of in vivo protection afforded by each isoform. Evidence is slowly emerging that a low PON1 status may increase susceptibility to OP toxicity in humans. Low PON1 activity may also contribute to the developmental toxicity and neurotoxicity of OPs, as shown by animal and human studies. PMID:22884923

  11. Evaluation of late-onset Alzheimer disease genetic susceptibility risks in a Canadian population.

    PubMed

    Omoumi, Ardeshir; Fok, Alice; Greenwood, Talitha; Sadovnick, A Dessa; Feldman, Howard H; Hsiung, Ging-Yuek R

    2014-04-01

    We performed case-control studies using 2 Canadian cohorts to examine the role of 10 promising Alzheimer's disease (AD) loci identified in recent genomewide association studies. Patients age 65 years and older diagnosed with AD at baseline (prevalent cases) or who developed AD during follow-up assessments (incident cases) were compared with control subjects with no cognitive impairment. Our prevalent case study comparing prevalent AD cases (n = 428) with participants with no cognitive impairment (n = 524) revealed a significant association of rs6656401 and rs3818361 (CR1), rs2075650 (TOMM40), rs7561528 (BIN1), and rs3865444 (CD33) with late-onset AD that were robust to adjustment with age and apolipoprotein E ε4 genotype. The incident case study comparing patients who developed AD during longitudinal observation (n = 152) with participants with no cognitive impairment found that rs2075650 (TOMM40) and rs3865444 (CD33) influence the risk of developing AD in this population. In addition, pooled analysis of our AD patients confirmed that CR1, TOMM40, BIN1, and CD33 contribute to late-onset AD susceptibility, in addition to apolipoprotein E.

  12. Detection of PrPres in Genetically Susceptible Fetuses from Sheep with Natural Scrapie

    PubMed Central

    Garza, María Carmen; Fernández-Borges, Natalia; Bolea, Rosa; Badiola, Juan José; Castilla, Joaquín; Monleón, Eva

    2011-01-01

    Scrapie is a transmissible spongiform encephalopathy with a wide PrPres dissemination in many non-neural tissues and with high levels of transmissibility within susceptible populations. Mechanisms of transmission are incompletely understood. It is generally assumed that it is horizontally transmitted by direct contact between animals or indirectly through the environment, where scrapie can remain infectious for years. In contrast, in utero vertical transmission has never been demonstrated and has rarely been studied. Recently, the use of the protein misfolding cyclic amplification technique (PMCA) has allowed prion detection in various tissues and excretions in which PrPres levels have been undetectable by traditional assays. The main goal of this study was to detect PrPres in fetal tissues and the amniotic fluid from natural scrapie infected ewes using the PMCA technique. Six fetuses from three infected pregnant ewes in an advanced clinical stage of the disease were included in the study. From each fetus, amniotic fluid, brain, spleen, ileo-cecal valve and retropharyngeal lymph node samples were collected and analyzed using Western blotting and PMCA. Although all samples were negative using Western blotting, PrPres was detected after in vitro amplification. Our results represent the first time the biochemical detection of prions in fetal tissues, suggesting that the in utero transmission of scrapie in natural infected sheep might be possible. PMID:22194786

  13. Detection of PrPres in genetically susceptible fetuses from sheep with natural scrapie.

    PubMed

    Garza, María Carmen; Fernández-Borges, Natalia; Bolea, Rosa; Badiola, Juan José; Castilla, Joaquín; Monleón, Eva

    2011-01-01

    Scrapie is a transmissible spongiform encephalopathy with a wide PrPres dissemination in many non-neural tissues and with high levels of transmissibility within susceptible populations. Mechanisms of transmission are incompletely understood. It is generally assumed that it is horizontally transmitted by direct contact between animals or indirectly through the environment, where scrapie can remain infectious for years. In contrast, in utero vertical transmission has never been demonstrated and has rarely been studied. Recently, the use of the protein misfolding cyclic amplification technique (PMCA) has allowed prion detection in various tissues and excretions in which PrPres levels have been undetectable by traditional assays. The main goal of this study was to detect PrPres in fetal tissues and the amniotic fluid from natural scrapie infected ewes using the PMCA technique. Six fetuses from three infected pregnant ewes in an advanced clinical stage of the disease were included in the study. From each fetus, amniotic fluid, brain, spleen, ileo-cecal valve and retropharyngeal lymph node samples were collected and analyzed using Western blotting and PMCA. Although all samples were negative using Western blotting, PrPres was detected after in vitro amplification. Our results represent the first time the biochemical detection of prions in fetal tissues, suggesting that the in utero transmission of scrapie in natural infected sheep might be possible.

  14. Common Variants of KCNJ10 Are Associated with Susceptibility and Anti-Epileptic Drug Resistance in Chinese Genetic Generalized Epilepsies

    PubMed Central

    Guo, Yong; Yan, Kui Po; Qu, Qiang; Qu, Jian; Chen, Zi Gui; Song, Tao; Luo, Xiang-Ying; Sun, Zhong-Yi; Bi, Chang-Long; Liu, Jin-Fang

    2015-01-01

    To explore genetic mechanism of genetic generalized epilepsies (GGEs) is challenging because of their complex heritance pattern and genetic heterogeneity. KCNJ10 gene encodes Kir4.1 channels and plays a major role in modulating resting membrane potentials in excitable cells. It may cause GGEs if mutated. The purpose of this study was to investigate the possible association between KCNJ10 common variants and the susceptibility and drug resistance of GGEs in Chinese population. The allele-specific MALDI–TOF mass spectrometry method was used to assess 8 single nucleotide polymorphisms (SNPs) of KCNJ10 in 284 healthy controls and 483 Chinese GGEs patients including 279 anti-epileptic drug responsive patients and 204 drug resistant patients. We found the rs6690889 TC+TT genotypes were lower frequency in the GGEs group than that in the healthy controls (6.7% vs 9.5%, p = 0.01, OR = 0.50[0.29–0.86]). The frequency of rs1053074 G allele was lower in the childhood absence epilepsy (CAE) group than that in the healthy controls (28.4% vs 36.2%, p = 0.01, OR = 0.70[0.53–0.93]). The frequency of rs12729701 G allele and AG+GG genotypes was lower in the CAE group than that in the healthy controls (21.2% vs 28.4%, p = 0.01, OR = 0.74[0.59–0.94] and 36.3% vs 48.1%, p = 0.01, OR = 0.83[0.72–0.96], respectively). The frequency of rs12402969 C allele and the CC+CT genotypes were higher in the GGEs drug responsive patients than that in the drug resistant patients (9.3% vs 5.6%, OR = 1.73[1.06–2.85], p = 0.026 and 36.3% vs 48.1%, p = 0.01, OR = 0.83[0.72–0.96], respectively). This study identifies potential SNPs of KCNJ10 gene that may contribute to seizure susceptibility and anti-epileptic drug resistance. PMID:25874548

  15. Genetic Structure and Drug Susceptibility Patterns of Mycobacterium tuberculosis Complex Strains Responsible of Human Pulmonary Tuberculosis in the Major Rearing Region in Cameroon.

    PubMed

    Koro Koro, Francioli; Um Boock, Alphonse; Kaiyven, Afi Leslie; Noeske, Juergen; Gutierrez, Cristina; Kuaban, Christopher; Etoa, François-Xavier; Eyangoh, Sara Irène

    2016-01-01

    Background. Cameroon this last decade continues to present a low contribution of M. africanum and M. bovis in human tuberculosis (TB), while M. bovis was prevalent in cattle but all these pieces of information only concerned West and Center regions. Methods. We carried out the first study in Adamaoua, one of the most rearing regions of Cameroon, on the genetic structure and drug susceptibility of the MTBC strains isolated from newly diagnosed sputum smear-positive patients aged 15 years and above. For that purpose, spoligotyping, a modified 15 standard MIRU/VNTR loci typing, and the proportion method were used. Results. Four hundred and thirty-seven MTBC isolates were analyzed by spoligotyping. Of these, 423 were identified as M. tuberculosis, within the Cameroon family being dominant with 278 (65.7%) isolates; twelve (2.75%) isolates were classified as M. africanum and two as M. bovis. MIRU/VNTR typing of the most prevalent sublineage (SIT 61) suggested that this lineage is not a unique clone as thought earlier but could constitute a group of strains implicated to different pocket of TB transmission. Only M. tuberculosis sublineages were associated with antituberculosis drug resistance. Conclusion. These results showed the weak contribution of M. africanum and M. bovis to human active pulmonary tuberculosis in Cameroon even in the rearing region.

  16. Genetic Structure and Drug Susceptibility Patterns of Mycobacterium tuberculosis Complex Strains Responsible of Human Pulmonary Tuberculosis in the Major Rearing Region in Cameroon

    PubMed Central

    Um Boock, Alphonse; Noeske, Juergen; Gutierrez, Cristina; Kuaban, Christopher; Etoa, François-Xavier; Eyangoh, Sara Irène

    2016-01-01

    Background. Cameroon this last decade continues to present a low contribution of M. africanum and M. bovis in human tuberculosis (TB), while M. bovis was prevalent in cattle but all these pieces of information only concerned West and Center regions. Methods. We carried out the first study in Adamaoua, one of the most rearing regions of Cameroon, on the genetic structure and drug susceptibility of the MTBC strains isolated from newly diagnosed sputum smear-positive patients aged 15 years and above. For that purpose, spoligotyping, a modified 15 standard MIRU/VNTR loci typing, and the proportion method were used. Results. Four hundred and thirty-seven MTBC isolates were analyzed by spoligotyping. Of these, 423 were identified as M. tuberculosis, within the Cameroon family being dominant with 278 (65.7%) isolates; twelve (2.75%) isolates were classified as M. africanum and two as M. bovis. MIRU/VNTR typing of the most prevalent sublineage (SIT 61) suggested that this lineage is not a unique clone as thought earlier but could constitute a group of strains implicated to different pocket of TB transmission. Only M. tuberculosis sublineages were associated with antituberculosis drug resistance. Conclusion. These results showed the weak contribution of M. africanum and M. bovis to human active pulmonary tuberculosis in Cameroon even in the rearing region. PMID:28119925

  17. Comparison of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Water and Clinical Samples: Antimicrobial Susceptibility and Genetic Relationships

    PubMed Central

    Castillo-Rojas, Gonzalo; Mazari-Hiríart, Marisa; Ponce de León, Sergio; Amieva-Fernández, Rosa I.; Agis-Juárez, Raúl A.; Huebner, Johannes; López-Vidal, Yolanda

    2013-01-01

    Enterococci are part of the normal intestinal flora in a large number of mammals, and these microbes are currently used as indicators of fecal contamination in water and food for human consumption. These organisms are considered one of the primary causes of nosocomial and environmental infections due to their ability to survive in the environment and to their intrinsic resistance to antimicrobials. The aims of this study were to determine the biochemical patterns and antimicrobial susceptibilities of Enterococcus faecalis and E. faecium isolates from clinical samples and from water (groundwater, water from the Xochimilco wetland, and treated water from the Mexico City Metropolitan Area) and to determine the genetic relationships among these isolates. A total of 121 enterococcus strains were studied; 31 and 90 strains were isolated from clinical samples and water (groundwater, water from the Xochimilco wetland, and water for agricultural irrigation), respectively. Identification to the species level was performed using a multiplex PCR assay, and antimicrobial profiles were obtained using a commercial kit. Twenty-eight strains were analyzed by pulsed-field gel electrophoresis (PFGE). E. faecium strains isolated from water showed an atypical biochemical pattern. The clinical isolates showed higher resistance to antibiotics than those from water. Both the enterococci isolated from humans, and those isolated from water showed high genetic diversity according to the PFGE analysis, although some strains seemed to be closely related. In conclusion, enterococci isolated from humans and water are genetically different. However, water represents a potential route of transmission to the community and a source of antimicrobial resistance genes that may be readily transmitted to other, different bacterial species. PMID:23560050

  18. CXCL12 and TP53 genetic polymorphisms as markers of susceptibility in a Brazilian children population with acute lymphoblastic leukemia (ALL).

    PubMed

    de Lourdes Perim, Aparecida; Guembarovski, Roberta Losi; Oda, Julie Massayo Maeda; Lopes, Leandra Fiori; Ariza, Carolina Batista; Amarante, Marla Karine; Fungaro, Maria Helena Pelegrinelli; de Oliveira, Karen Brajão; Watanabe, Maria Angelica Ehara

    2013-07-01

    Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Genetic polymorphisms in the 3'UTR region of the CXCL12 (rs1801157) and TP53 codon 72 (rs1042522) genes may contribute to susceptibility to childhood ALL because they affect some important processes, such as metastasis regulation and tumor suppression. Thus the objective of the present study was to detect the frequency of two genetic polymorphisms in ALL patients and controls and to add information their impact on genetic susceptibility and prognosis. The CXCL12 and TP53 polymorphisms were tested in 54 ALL child patients and in 58 controls by restriction fragment length polymerase chain reaction and allelic specific chain reaction techniques, respectively. The frequencies of both allelic variants were higher in ALL patients than in the controls and indicated a positive association: OR = 2.44; 95 % CI 1.05-5.64 for CXCL12 and OR = 2.20; 95 % CI 1.03-4.70 for TP53. Furthermore, when the two genetic variants were analyzed together, they increased significantly more than fivefold the risk of this neoplasia development (OR = 5.24; 95 % CI 1.39-19.75), indicating their potential as susceptibility markers for ALL disease and the relevance of the allelic variant combination to increased risk of developing malignant tumors. Future studies may indicate a larger panel of genes involved in susceptibility of childhood ALL and other hematological neoplasias.

  19. Genetic susceptibility and gastric cancer risk: the importance of meta-analyses as a statistical tool.

    PubMed

    García-González, María Asunción; Lanas, Angel

    2014-01-01

    Gastric cancer (GC) is a complex disease and a worldwide health burden due to its high prevalence and poor prognosis. A deeper knowledge of the factors involved in the development and progression of GC could help to identify subpopulations at risk that therefore require surveillance or early treatment strategies. Current research is based on the study of genetic variants that confer a higher risk of GC and their interactions with environmental exposure. Recently, meta-analysis has emerged as an important statistical method involving pooling of data from individual association studies to increase statistical power and obtain more conclusive results. Given the importance of chronic inflammation in the process of gastric carcinogenesis, the present article reviews the most recent meta-analyses of the contribution of cytokine gene polymorphisms to GC risk.

  20. Transcriptome outlier analysis implicates schizophrenia susceptibility genes and enriches putatively functional rare genetic variants

    PubMed Central

    Duan, Jubao; Sanders, Alan R.; Moy, Winton; Drigalenko, Eugene I.; Brown, Eric C.; Freda, Jessica; Leites, Catherine; Göring, Harald H. H.; Gejman, Pablo V.

    2015-01-01

    We searched a gene expression dataset comprised of 634 schizophrenia (SZ) cases and 713 controls for expression outliers (i.e., extreme tails of the distribution of transcript expression values) with SZ cases overrepresented compared with controls. These outlier genes were enriched for brain expression and for genes known to be associated with neurodevelopmental disorders. SZ cases showed higher outlier burden (i.e., total outlier events per subject) than controls for genes within copy number variants (CNVs) associated with SZ or neurodevelopmental disorders. Outlier genes were enriched for CNVs and for rare putative regulatory variants, but this only explained a small proportion of the outlier subjects, highlighting the underlying presence of additional genetic and potentially, epigenetic mechanisms. PMID:26022996

  1. Transcriptome outlier analysis implicates schizophrenia susceptibility genes and enriches putatively functional rare genetic variants.

    PubMed

    Duan, Jubao; Sanders, Alan R; Moy, Winton; Drigalenko, Eugene I; Brown, Eric C; Freda, Jessica; Leites, Catherine; Göring, Harald H H; Gejman, Pablo V

    2015-08-15

    We searched a gene expression dataset comprised of 634 schizophrenia (SZ) cases and 713 controls for expression outliers (i.e., extreme tails of the distribution of transcript expression values) with SZ cases overrepresented compared with controls. These outlier genes were enriched for brain expression and for genes known to be associated with neurodevelopmental disorders. SZ cases showed higher outlier burden (i.e., total outlier events per subject) than controls for genes within copy number variants (CNVs) associated with SZ or neurodevelopmental disorders. Outlier genes were enriched for CNVs and for rare putative regulatory variants, but this only explained a small proportion of the outlier subjects, highlighting the underlying presence of additional genetic and potentially, epigenetic mechanisms.

  2. Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions

    PubMed Central

    Sos, Martin L.; Michel, Kathrin; Zander, Thomas; Weiss, Jonathan; Frommolt, Peter; Peifer, Martin; Li, Danan; Ullrich, Roland; Koker, Mirjam; Fischer, Florian; Shimamura, Takeshi; Rauh, Daniel; Mermel, Craig; Fischer, Stefanie; Stückrath, Isabel; Heynck, Stefanie; Beroukhim, Rameen; Lin, William; Winckler, Wendy; Shah, Kinjal; LaFramboise, Thomas; Moriarty, Whei F.; Hanna, Megan; Tolosi, Laura; Rahnenführer, Jörg; Verhaak, Roel; Chiang, Derek; Getz, Gad; Hellmich, Martin; Wolf, Jürgen; Girard, Luc; Peyton, Michael; Weir, Barbara A.; Chen, Tzu-Hsiu; Greulich, Heidi; Barretina, Jordi; Shapiro, Geoffrey I.; Garraway, Levi A.; Gazdar, Adi F.; Minna, John D.; Meyerson, Matthew; Wong, Kwok-Kin; Thomas, Roman K.

    2009-01-01

    Somatic genetic alterations in cancers have been linked with response to targeted therapeutics by creation of specific dependency on activated oncogenic signaling pathways. However, no tools currently exist to systematically connect such genetic lesions to therapeutic vulnerability. We have therefore developed a genomics approach to identify lesions associated with therapeutically relevant oncogene dependency. Using integrated genomic profiling, we have demonstrated that the genomes of a large panel of human non–small cell lung cancer (NSCLC) cell lines are highly representative of those of primary NSCLC tumors. Using cell-based compound screening coupled with diverse computational approaches to integrate orthogonal genomic and biochemical data sets, we identified molecular and genomic predictors of therapeutic response to clinically relevant compounds. Using this approach, we showed that v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations confer enhanced Hsp90 dependency and validated this finding in mice with KRAS-driven lung adenocarcinoma, as these mice exhibited dramatic tumor regression when treated with an Hsp90 inhibitor. In addition, we found that cells with copy number enhancement of v-abl Abelson murine leukemia viral oncogene homolog 2 (ABL2) and ephrin receptor kinase and v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) kinase family genes were exquisitely sensitive to treatment with the SRC/ABL inhibitor dasatinib, both in vitro and when it xenografted into mice. Thus, genomically annotated cell-line collections may help translate cancer genomics information into clinical practice by defining critical pathway dependencies amenable to therapeutic inhibition. PMID:19451690

  3. Associations Between Genetic Variants in 19p13 and 19q13 Regions and Susceptibility to Alzheimer Disease: A Meta-Analysis

    PubMed Central

    Bao, Jie; Wang, Xiao-jie; Mao, Zong-fu

    2016-01-01

    Background Alzheimer disease (AD) has become an epidemic within the growing elderly population and effective therapies of AD have not been discovered. Genetic factors accounted for over 70% of the incidence of AD and the disease-related polymorphisms are located on chromosome 19, which is one of several prominent chromosomes related to the development of AD. Many inconsistent associations between polymorphisms in ABCA7, CD33, and TOMM40 genes and the susceptibility to AD have been suggested by several independent studies. Material/Methods A comprehensive literature search for studies involving the association between gene polymorphisms and AD was performed, and we finally selected 3 genes (4 polymorphisms) for the meta-analysis: ABCA7 (rs3764650), CD33 (rs3865444), and TOMM40 (rs157580, rs2075650). Results A total of 25 articles investigating 3 genes (4 polymorphisms) were included in the meta-analysis. The pooled results of 4 polymorphisms were all significantly associated with the susceptibility to AD. The pooled effect of ABCA7 rs3764605 allele G was significantly associated with an increased the risk of AD (OR=1.20, 95% CI: 1.14–1.26, P value <0.001). Similarly, our evidence suggested that allele A of TOMM40 rs2075650 polymorphism was a risk factor for AD (OR=2.87, 95% CI: 2.46–3.34, P value <0.001). Alleles A of CD33 rs3865444 and A of TOMM40 rs157580 were both protective factors for AD onset (OR=0.94, 95% CI: 0.90–0.98, P value=0.003; OR=0.62, 95% CI: 0.57–0.66, P value <0.001). Conclusions Results from the meta-analysis revealed that the pooled ABCA7 rs376465, CD33 rs3865444, TOMM40 rs157580, and rs2075650 variants were significantly associated with the susceptibility to AD. However, the association differed significantly between Asian and Caucasian groups for SNPs of CD33 rs3865444, TOMM40 rs157580, and rs2075650. PMID:26795201

  4. Green tea consumption, genetic susceptibility, PAH-rich smoky coal, and the risk of lung cancer.

    PubMed

    Bonner, Matthew R; Rothman, Nathaniel; Mumford, Judy L; He, Xingzhou; Shen, Min; Welch, Robert; Yeager, Meredith; Chanock, Stephen; Caporaso, Neil; Lan, Qing

    2005-04-04

    Experimental evidence suggests that green tea (Camellia sinesis) may reduce the risk of lung cancer through several hypothesized mechanisms including scavenging oxidative radicals, inhibition of tumor initiation, and modulation of detoxification enzymes. However, epidemiologic results have not been consistent as to the relationship between green tea consumption and lung caner prevention. We employed a population-based case-control study of 122 cases and 122 controls to investigate the effect that green tea consumption may have on the risk of lung cancer and whether polymorphisms in 8-oxoguanine-DNA glycosylase (OGG1), glutathione-S-transferase M1 (GSTM1), and aldo-keto reductase 1C3 (AKR1C3) modify such an association. Daily green tea consumption was associated with a non-significant reduction in lung cancer risk. However, the effect of smoky coal exposure was higher for non-drinkers (odds ratio (OR)=4.93; 95% confidence interval (95% CI)=1.27-19.13) than for drinkers (OR=1.88; 95% CI=1.01-3.48). Further, among individuals with the OGG1 Cys(326) allele, daily consumption was associated with a 72% reduction (95% CI=0.09-0.94). Among GSTM1 null homozygotes, those who consumed green tea daily had a non-significant reduction in risk compared with non-consumers. Green tea consumption had no effect among OGG1 Ser(326) homozygotes or GSTM1 carriers. In addition, AKR1C3 genotype did not modulate the effect of green tea consumption. The chemopreventive effects of green tea in this population may be restricted to individuals who are particularly susceptible to oxidative stress and oxidative DNA damage.

  5. Liver proteome of mice with different genetic susceptibilities to the effects of fluoride

    PubMed Central

    KHAN, Zohaib Nisar; LEITE, Aline de Lima; CHARONE, Senda; SABINO, Isabela Tomazini; MARTINI, Tatiana; PEREIRA, Heloísa Aparecida Barbosa da Silva; OLIVEIRA, Rodrigo Cardoso; BUZALAF, Marília Afonso Rabelo

    2016-01-01

    ABSTRACT A/J and 129P3/J mice strains have been widely studied over the last few years because they respond quite differently to fluoride (F) exposure. 129P3/J mice are remarkably resistant to the development of dental fluorosis, despite excreting less F in urine and having higher circulating F levels. These two strains also present different characteristics regardless of F exposure. Objective In this study, we investigated the differential pattern of protein expression in the liver of these mice to provide insights on why they have different responses to F. Material and Methods Weanling male A/J and 129P3/J mice (n=10 from each strain) were pared and housed in metabolic cages with ad libitum access to low-F food and deionized water for 42 days. Liver proteome profiles were examined using nLC-MS/MS. Protein function was classified by GO biological process (Cluego v2.0.7 + Clupedia v1.0.8) and protein-protein interaction network was constructed (PSICQUIC, Cytoscape). Results Most proteins with fold change were increased in A/J mice. The functional category with the highest percentage of altered genes was oxidation-reduction process (20%). Subnetwork analysis revealed that proteins with fold change interacted with Disks large homolog 4 and Calcium-activated potassium channel subunit alpha-1. A/J mice had an increase in proteins related to energy flux and oxidative stress. Conclusion This could be a possible explanation for the high susceptibility of these mice to the effects of F, since the exposure also induces oxidative stress. PMID:27383706

  6. Role of genetic variant A-204C of cholesterol 7alpha-hydroxylase (CYP7A1) in susceptibility to gallbladder cancer.

    PubMed

    Srivastava, Anvesha; Pandey, Sachchida Nand; Choudhuri, Gourdas; Mittal, Balraj

    2008-05-01

    Gallbladder carcinoma (GBC) usually arises in the background of gallstone disease. Cholesterol 7alpha-hydroxylase (CYP7A1) is a rate-limiting enzyme for cholesterol catabolism and bile acid synthesis. A-204C genetic polymorphism in CYP7A1 may influence gene expression and thus affect the risk of gallstone disease and GBC. We aimed to study the association of A-204C variation of CYP7A1 gene promoter polymorphism in GBC patients, gallstone patients and healthy subjects. The study included 141 histopathologically proven GBC patients, ultrasonographically proven 185 symptomatic gallstone patients and 200 gallstone-free healthy subjects. Genotyping was done by PCR-RFLP method. CYP7A1 A-204C genotypes in control population were in Hardy-Weinberg equilibrium. The CC genotype conferred marginally significant risk for gallstone disease (p=0.051; OR=1.54; 95% CI=0.9-3.4). In GBC patients, the CYP7A1 A-204C polymorphism conferred high risk for GBC at genotype (p=0.005; OR=2.78; 95% CI: 1.3-5.6) as well as allele levels (p=0.008; OR=1.58 and 95% CI: 1.1-2.2). After stratification of GBC patients on the basis of presence or absence of gallstones, CC genotype imparted higher risk for GBC without stones (p=0.002; OR=4.44: 95% CI=1.7-11.3). The association of the polymorphism with GBC was more pronounced in female GBC patients, and also in cancer patients who developed GBC at advanced age. The CC genotype of CYP7A1 is an independent genetic risk factor for GBC but plays a modest role in susceptibility to gallstone disease. The GBC pathogenesis by CYP7A1 polymorphism appears to be independent of gallstone pathway and probably involves genotoxicity due to lipid peroxidation mechanisms.

  7. Genetic bases of estrogen-induced tumorigenesis in the rat: mapping of loci controlling susceptibility to mammary cancer in a Brown Norway x ACI intercross.

    PubMed

    Schaffer, Beverly S; Lachel, Cynthia M; Pennington, Karen L; Murrin, Clare R; Strecker, Tracy E; Tochacek, Martin; Gould, Karen A; Meza, Jane L; McComb, Rodney D; Shull, James D

    2006-08-01

    Exposure to estrogens is associated with an increased risk of breast cancer. Our laboratory has shown that the ACI rat is uniquely susceptible to 17beta-estradiol (E2)-induced mammary cancer. We previously mapped two loci, Emca1 and Emca2 (estrogen-induced mammary cancer), that act independently to determine susceptibility to E2-induced mammary cancer in crosses between the susceptible ACI rat strain and the genetically related, but resistant, Copenhagen (COP) rat strain. In this study, we evaluate susceptibility to E2-induced mammary cancer in a cross between the ACI strain and the unrelated Brown Norway (BN) rat strain. Whereas nearly 100% of the ACI rats developed mammary cancer when treated continuously with E2, BN rats did not develop palpable mammary cancer during the 196-day course of E2 treatment. Susceptibility to E2-induced mammary cancer segregated as a dominant or incompletely dominant trait in a cross between BN females and ACI males. In a population of 251 female (BN x ACI)F(2) rats, we observed evidence for a total of five genetic determinants of susceptibility. Two loci, Emca4 and Emca5, were identified when mammary cancer status at sacrifice was evaluated as the phenotype, and three additional loci, Emca6, Emca7, and Emca8, were identified when mammary cancer number was evaluated as the phenotype. A total of three genetic interactions were identified. These data indicate that susceptibility to E2-induced mammary cancer in the BN x ACI cross behaves as a complex trait controlled by at least five loci and multiple gene-gene interactions.

  8. Paraoxonase-1 genetic polymorphisms and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides

    SciTech Connect

    Singh, Satyender; Kumar, Vivek; Thakur, Sachin; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Ichhpujani, Rattan Lal; Rai, Arvind

    2011-04-15

    .05). The results indicate that the individuals with PON1 Q/Q and M/M genotypes are more susceptible toward genotoxicity. In conclusion, the study suggests wide variation in enzyme activities and DNA damage due to polymorphisms in PON1 gene, which might have an important role in the identification of individual risk factors in workers occupationally exposed to OPs.