Sample records for background genome wide

  1. Genome-Wide Association Study (GWAS) and Genome-Wide Environment Interaction Study (GWEIS) of Depressive Symptoms in African American and Hispanic/Latina Women

    PubMed Central

    Dunn, Erin C.; Wiste, Anna; Radmanesh, Farid; Almli, Lynn M.; Gogarten, Stephanie M.; Sofer, Tamar; Faul, Jessica D.; Kardia, Sharon L.R.; Smith, Jennifer A.; Weir, David R.; Zhao, Wei; Soare, Thomas W.; Mirza, Saira S.; Hek, Karin; Tiemeier, Henning W.; Goveas, Joseph S.; Sarto, Gloria E.; Snively, Beverly M.; Cornelis, Marilyn; Koenen, Karestan C.; Kraft, Peter; Purcell, Shaun; Ressler, Kerry J.; Rosand, Jonathan; Wassertheil-Smoller, Sylvia; Smoller, Jordan W.

    2016-01-01

    Background Genome-wide association studies (GWAS) have been unable to identify variants linked to depression. We hypothesized that examining depressive symptoms and considering gene-environment interaction (G×E) might improve efficiency for gene discovery. We therefore conducted a GWAS and genome-wide environment interaction study (GWEIS) of depressive symptoms. Methods Using data from the SHARe cohort of the Women’s Health Initiative, comprising African Americans (n=7179) and Hispanics/Latinas (n=3138), we examined genetic main effects and G×E with stressful life events and social support. We also conducted a heritability analysis using genome-wide complex trait analysis (GCTA). Replication was attempted in four independent cohorts. Results No SNPs achieved genome-wide significance for main effects in either discovery sample. The top signals in African Americans were rs73531535 (located 20kb from GPR139, p=5.75×10−8) and rs75407252 (intronic to CACNA2D3, p=6.99×10−7). In Hispanics/Latinas, the top signals were rs2532087 (located 27kb from CD38, p=2.44×10−7) and rs4542757 (intronic to DCC, p=7.31×10−7). In the GWEIS with stressful life events, one interaction signal was genome-wide significant in African Americans (rs4652467; p=4.10×10−10; located 14kb from CEP350). This interaction was not observed in a smaller replication cohort. Although heritability estimates for depressive symptoms and stressful life events were each less than 10%, they were strongly genetically correlated (rG=0.95), suggesting that common variation underlying depressive symptoms and stressful life event exposure, though modest on their own, were highly overlapping in this sample. Conclusions Our results underscore the need for larger samples, more GWEIS, and greater investigation into genetic and environmental determinants of depressive symptoms in minorities. PMID:27038408

  2. Genome-wide signals of positive selection in human evolution

    PubMed Central

    Enard, David; Messer, Philipp W.; Petrov, Dmitri A.

    2014-01-01

    The role of positive selection in human evolution remains controversial. On the one hand, scans for positive selection have identified hundreds of candidate loci, and the genome-wide patterns of polymorphism show signatures consistent with frequent positive selection. On the other hand, recent studies have argued that many of the candidate loci are false positives and that most genome-wide signatures of adaptation are in fact due to reduction of neutral diversity by linked deleterious mutations, known as background selection. Here we analyze human polymorphism data from the 1000 Genomes Project and detect signatures of positive selection once we correct for the effects of background selection. We show that levels of neutral polymorphism are lower near amino acid substitutions, with the strongest reduction observed specifically near functionally consequential amino acid substitutions. Furthermore, amino acid substitutions are associated with signatures of recent adaptation that should not be generated by background selection, such as unusually long and frequent haplotypes and specific distortions in the site frequency spectrum. We use forward simulations to argue that the observed signatures require a high rate of strongly adaptive substitutions near amino acid changes. We further demonstrate that the observed signatures of positive selection correlate better with the presence of regulatory sequences, as predicted by the ENCODE Project Consortium, than with the positions of amino acid substitutions. Our results suggest that adaptation was frequent in human evolution and provide support for the hypothesis of King and Wilson that adaptive divergence is primarily driven by regulatory changes. PMID:24619126

  3. Causes and Consequences of Genetic Background Effects Illuminated by Integrative Genomic Analysis

    PubMed Central

    Chandler, Christopher H.; Chari, Sudarshan; Dworkin, Ian

    2014-01-01

    The phenotypic consequences of individual mutations are modulated by the wild-type genetic background in which they occur. Although such background dependence is widely observed, we do not know whether general patterns across species and traits exist or about the mechanisms underlying it. We also lack knowledge on how mutations interact with genetic background to influence gene expression and how this in turn mediates mutant phenotypes. Furthermore, how genetic background influences patterns of epistasis remains unclear. To investigate the genetic basis and genomic consequences of genetic background dependence of the scallopedE3 allele on the Drosophila melanogaster wing, we generated multiple novel genome-level datasets from a mapping-by-introgression experiment and a tagged RNA gene expression dataset. In addition we used whole genome resequencing of the parental lines—two commonly used laboratory strains—to predict polymorphic transcription factor binding sites for SD. We integrated these data with previously published genomic datasets from expression microarrays and a modifier mutation screen. By searching for genes showing a congruent signal across multiple datasets, we were able to identify a robust set of candidate loci contributing to the background-dependent effects of mutations in sd. We also show that the majority of background-dependent modifiers previously reported are caused by higher-order epistasis, not quantitative noncomplementation. These findings provide a useful foundation for more detailed investigations of genetic background dependence in this system, and this approach is likely to prove useful in exploring the genetic basis of other traits as well. PMID:24504186

  4. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    PubMed Central

    Minster, Ryan L.; Sanders, Jason L.; Singh, Jatinder; Kammerer, Candace M.; Barmada, M. Michael; Matteini, Amy M.; Zhang, Qunyuan; Wojczynski, Mary K.; Daw, E. Warwick; Brody, Jennifer A.; Arnold, Alice M.; Lunetta, Kathryn L.; Murabito, Joanne M.; Christensen, Kaare; Perls, Thomas T.; Province, Michael A.

    2015-01-01

    Background. The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. Methods. We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted for mortality risk in 3,140 individuals selected for familial longevity from the Long Life Family Study. The genome-wide association study used the Long Life Family Study as the discovery cohort and individuals from the Cardiovascular Health Study and the Framingham Heart Study as replication cohorts. Results. There were no genome-wide significant findings from the genome-wide association study; however, several single-nucleotide polymorphisms near ZNF704 on chromosome 8q21.13 were suggestively associated with the HAI in the Long Life Family Study (p < 10− 6) and nominally replicated in the Cardiovascular Health Study and Framingham Heart Study. Linkage results revealed significant evidence (log-odds score = 3.36) for a quantitative trait locus for mortality-optimized HAI in women on chromosome 9p24–p23. However, results of fine-mapping studies did not implicate any specific candidate genes within this region of interest. Conclusions. ZNF704 may be a potential candidate gene for studies of the genetic underpinnings of longevity. PMID:25758594

  5. A Genome-Wide Association Study of Depressive Symptoms

    PubMed Central

    Cornelis, Marilyn C.; Amin, Najaf; Bakshis, Erin; Baumert, Jens; Ding, Jingzhong; Liu, Yongmei; Marciante, Kristin; Meirelles, Osorio; Nalls, Michael A.; Sun, Yan V.; Vogelzangs, Nicole; Yu, Lei; Bandinelli, Stefania; Benjamin, Emelia J.; Bennett, David A.; Boomsma, Dorret; Cannas, Alessandra; Coker, Laura H.; de Geus, Eco; De Jager, Philip L.; Diez-Roux, Ana V.; Purcell, Shaun; Hu, Frank B.; Rimma, Eric B.; Hunter, David J.; Jensen, Majken K.; Curhan, Gary; Rice, Kenneth; Penman, Alan D.; Rotter, Jerome I.; Sotoodehnia, Nona; Emeny, Rebecca; Eriksson, Johan G.; Evans, Denis A.; Ferrucci, Luigi; Fornage, Myriam; Gudnason, Vilmundur; Hofman, Albert; Illig, Thomas; Kardia, Sharon; Kelly-Hayes, Margaret; Koenen, Karestan; Kraft, Peter; Kuningas, Maris; Massaro, Joseph M.; Melzer, David; Mulas, Antonella; Mulder, Cornelis L.; Murray, Anna; Oostra, Ben A.; Palotie, Aarno; Penninx, Brenda; Petersmann, Astrid; Pilling, Luke C.; Psaty, Bruce; Rawal, Rajesh; Reiman, Eric M.; Schulz, Andrea; Shulman, Joshua M.; Singleton, Andrew B.; Smith, Albert V.; Sutin, Angelina R.; Uitterlinden, André G.; Völzke, Henry; Widen, Elisabeth; Yaffe, Kristine; Zonderman, Alan B.; Cucca, Francesco; Harris, Tamara; Ladwig, Karl-Heinz; Llewellyn, David J.; Räikkönen, Katri; Tanaka, Toshiko

    2013-01-01

    Background Depression is a heritable trait that exists on a continuum of varying severity and duration. Yet, the search for genetic variants associated with depression has had few successes. We exploit the entire continuum of depression to find common variants for depressive symptoms. Methods In this genome-wide association study, we combined the results of 17 population-based studies assessing depressive symptoms with the Center for Epidemiological Studies Depression Scale. Replication of the independent top hits (p < 1 × 10−5) was performed in five studies assessing depressive symptoms with other instruments. In addition, we performed a combined meta-analysis of all 22 discovery and replication studies. Results The discovery sample comprised 34,549 individuals (mean age of 66.5) and no loci reached genome-wide significance (lowest p = 1.05 × 10−7). Seven independent single nucleotide polymorphisms were considered for replication. In the replication set (n = 16,709), we found suggestive association of one single nucleotide polymorphism with depressive symptoms (rs161645, 5q21, p = 9.19 × 10−3). This 5q21 region reached genome-wide significance (p = 4.78 × 10−8) in the overall meta-analysis combining discovery and replication studies (n = 51,258). Conclusions The results suggest that only a large sample comprising more than 50,000 subjects may be sufficiently powered to detect genes for depressive symptoms. PMID:23290196

  6. Memory management in genome-wide association studies

    PubMed Central

    2009-01-01

    Genome-wide association is a powerful tool for the identification of genes that underlie common diseases. Genome-wide association studies generate billions of genotypes and pose significant computational challenges for most users including limited computer memory. We applied a recently developed memory management tool to two analyses of North American Rheumatoid Arthritis Consortium studies and measured the performance in terms of central processing unit and memory usage. We conclude that our memory management approach is simple, efficient, and effective for genome-wide association studies. PMID:20018047

  7. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers

    PubMed Central

    2010-01-01

    Background The information provided by dense genome-wide markers using high throughput technology is of considerable potential in human disease studies and livestock breeding programs. Genome-wide association studies relate individual single nucleotide polymorphisms (SNP) from dense SNP panels to individual measurements of complex traits, with the underlying assumption being that any association is caused by linkage disequilibrium (LD) between SNP and quantitative trait loci (QTL) affecting the trait. Often SNP are in genomic regions of no trait variation. Whole genome Bayesian models are an effective way of incorporating this and other important prior information into modelling. However a full Bayesian analysis is often not feasible due to the large computational time involved. Results This article proposes an expectation-maximization (EM) algorithm called emBayesB which allows only a proportion of SNP to be in LD with QTL and incorporates prior information about the distribution of SNP effects. The posterior probability of being in LD with at least one QTL is calculated for each SNP along with estimates of the hyperparameters for the mixture prior. A simulated example of genomic selection from an international workshop is used to demonstrate the features of the EM algorithm. The accuracy of prediction is comparable to a full Bayesian analysis but the EM algorithm is considerably faster. The EM algorithm was accurate in locating QTL which explained more than 1% of the total genetic variation. A computational algorithm for very large SNP panels is described. Conclusions emBayesB is a fast and accurate EM algorithm for implementing genomic selection and predicting complex traits by mapping QTL in genome-wide dense SNP marker data. Its accuracy is similar to Bayesian methods but it takes only a fraction of the time. PMID:20969788

  8. pKWmEB: integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study.

    PubMed

    Ren, Wen-Long; Wen, Yang-Jun; Dunwell, Jim M; Zhang, Yuan-Ming

    2018-03-01

    Although nonparametric methods in genome-wide association studies (GWAS) are robust in quantitative trait nucleotide (QTN) detection, the absence of polygenic background control in single-marker association in genome-wide scans results in a high false positive rate. To overcome this issue, we proposed an integrated nonparametric method for multi-locus GWAS. First, a new model transformation was used to whiten the covariance matrix of polygenic matrix K and environmental noise. Using the transferred model, Kruskal-Wallis test along with least angle regression was then used to select all the markers that were potentially associated with the trait. Finally, all the selected markers were placed into multi-locus model, these effects were estimated by empirical Bayes, and all the nonzero effects were further identified by a likelihood ratio test for true QTN detection. This method, named pKWmEB, was validated by a series of Monte Carlo simulation studies. As a result, pKWmEB effectively controlled false positive rate, although a less stringent significance criterion was adopted. More importantly, pKWmEB retained the high power of Kruskal-Wallis test, and provided QTN effect estimates. To further validate pKWmEB, we re-analyzed four flowering time related traits in Arabidopsis thaliana, and detected some previously reported genes that were not identified by the other methods.

  9. GWAMA: software for genome-wide association meta-analysis.

    PubMed

    Mägi, Reedik; Morris, Andrew P

    2010-05-28

    Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. The GWAMA (Genome-Wide Association Meta-Analysis) software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.

  10. Meta-Analysis in Genome-Wide Association Datasets: Strategies and Application in Parkinson Disease

    PubMed Central

    Evangelou, Evangelos; Maraganore, Demetrius M.; Ioannidis, John P.A.

    2007-01-01

    Background Genome-wide association studies hold substantial promise for identifying common genetic variants that regulate susceptibility to complex diseases. However, for the detection of small genetic effects, single studies may be underpowered. Power may be improved by combining genome-wide datasets with meta-analytic techniques. Methodology/Principal Findings Both single and two-stage genome-wide data may be combined and there are several possible strategies. In the two-stage framework, we considered the options of (1) enhancement of replication data and (2) enhancement of first-stage data, and then, we also considered (3) joint meta-analyses including all first-stage and second-stage data. These strategies were examined empirically using data from two genome-wide association studies (three datasets) on Parkinson disease. In the three strategies, we derived 12, 5, and 49 single nucleotide polymorphisms that show significant associations at conventional levels of statistical significance. None of these remained significant after conservative adjustment for the number of performed analyses in each strategy. However, some may warrant further consideration: 6 SNPs were identified with at least 2 of the 3 strategies and 3 SNPs [rs1000291 on chromosome 3, rs2241743 on chromosome 4 and rs3018626 on chromosome 11] were identified with all 3 strategies and had no or minimal between-dataset heterogeneity (I2 = 0, 0 and 15%, respectively). Analyses were primarily limited by the suboptimal overlap of tested polymorphisms across different datasets (e.g., only 31,192 shared polymorphisms between the two tier 1 datasets). Conclusions/Significance Meta-analysis may be used to improve the power and examine the between-dataset heterogeneity of genome-wide association studies. Prospective designs may be most efficient, if they try to maximize the overlap of genotyping platforms and anticipate the combination of data across many genome-wide association studies. PMID:17332845

  11. ARG-based genome-wide analysis of cacao cultivars

    PubMed Central

    2012-01-01

    Background Ancestral recombinations graph (ARG) is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relatively dense, bi-allelic SNP data. Results While the ARG is a natural model for capturing the inter-relationship between a single chromosome of the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across chromosomes) diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph visualization techniques. In this paper we examine the ARG reconstruction for (1) genome-wide or multiple chromosomes, (2) multi-allelic and (3) extremely sparse data. To aid in the visualization of the results of the reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the ARG. As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao. The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a principled approach to understanding the inter-relationships between the different populations must take the shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats (STR) and are multi-allelic (sometimes as high as 30 distinct possible values at a locus). Each is at a genomic location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only 96 loci from a genome of

  12. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    PubMed Central

    2011-01-01

    Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was

  13. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing.

    PubMed

    Chen, Zhangguo; Gowan, Katherine; Leach, Sonia M; Viboolsittiseri, Sawanee S; Mishra, Ameet K; Kadoishi, Tanya; Diener, Katrina; Gao, Bifeng; Jones, Kenneth; Wang, Jing H

    2016-10-21

    Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics.

  14. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome

    PubMed Central

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-01-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. PMID:27401230

  15. Genome-wide identification of significant aberrations in cancer genome.

    PubMed

    Yuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P; Wang, Roger R; Zhang, Zhen; Wang, Yue

    2012-07-27

    Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is

  16. A Discovery Genome-Wide Association Study of Entrepreneurship

    ERIC Educational Resources Information Center

    Quaye, Lydia; Nicolaou, Nicos; Shane, Scott; Mangino, Massimo

    2012-01-01

    To identify specific genetic variants influencing the phenotype of entrepreneurship, we conducted a genome-wide association study (GWAS) with 3,933 Caucasian females from the TwinsUK Adult Twin Registry. Following stringent genotype quality control, GWAF (genome-wide association analyses for family data) software was used to assess the association…

  17. SuperDCA for genome-wide epistasis analysis.

    PubMed

    Puranen, Santeri; Pesonen, Maiju; Pensar, Johan; Xu, Ying Ying; Lees, John A; Bentley, Stephen D; Croucher, Nicholas J; Corander, Jukka

    2018-05-29

    The potential for genome-wide modelling of epistasis has recently surfaced given the possibility of sequencing densely sampled populations and the emerging families of statistical interaction models. Direct coupling analysis (DCA) has previously been shown to yield valuable predictions for single protein structures, and has recently been extended to genome-wide analysis of bacteria, identifying novel interactions in the co-evolution between resistance, virulence and core genome elements. However, earlier computational DCA methods have not been scalable to enable model fitting simultaneously to 10 4 -10 5 polymorphisms, representing the amount of core genomic variation observed in analyses of many bacterial species. Here, we introduce a novel inference method (SuperDCA) that employs a new scoring principle, efficient parallelization, optimization and filtering on phylogenetic information to achieve scalability for up to 10 5 polymorphisms. Using two large population samples of Streptococcus pneumoniae, we demonstrate the ability of SuperDCA to make additional significant biological findings about this major human pathogen. We also show that our method can uncover signals of selection that are not detectable by genome-wide association analysis, even though our analysis does not require phenotypic measurements. SuperDCA, thus, holds considerable potential in building understanding about numerous organisms at a systems biological level.

  18. A genome-wide 20 K citrus microarray for gene expression analysis

    PubMed Central

    Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose

    2008-01-01

    Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to

  19. Genome-wide association study of antisocial personality disorder

    PubMed Central

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  20. Genome-wide association study of antisocial personality disorder.

    PubMed

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-09-06

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53-3.14), P=1.9 × 10(-5)). Two polymorphisms at 6p21.2 LINC00951-LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37-1.85), P=1.6 × 10(-9)) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder.

  1. Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster

    PubMed Central

    Song, Yun S.

    2012-01-01

    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and

  2. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    PubMed

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    PubMed Central

    2012-01-01

    Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively

  4. Genome wide approaches to identify protein-DNA interactions.

    PubMed

    Ma, Tao; Ye, Zhenqing; Wang, Liguo

    2018-05-29

    Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Significance of genome-wide association studies in molecular anthropology.

    PubMed

    Gupta, Vipin; Khadgawat, Rajesh; Sachdeva, Mohinder Pal

    2009-12-01

    The successful advent of a genome-wide approach in association studies raises the hopes of human geneticists for solving a genetic maze of complex traits especially the disorders. This approach, which is replete with the application of cutting-edge technology and supported by big science projects (like Human Genome Project; and even more importantly the International HapMap Project) and various important databases (SNP database, CNV database, etc.), has had unprecedented success in rapidly uncovering many of the genetic determinants of complex disorders. The magnitude of this approach in the genetics of classical anthropological variables like height, skin color, eye color, and other genome diversity projects has certainly expanded the horizons of molecular anthropology. Therefore, in this article we have proposed a genome-wide association approach in molecular anthropological studies by providing lessons from the exemplary study of the Wellcome Trust Case Control Consortium. We have also highlighted the importance and uniqueness of Indian population groups in facilitating the design and finding optimum solutions for other genome-wide association-related challenges.

  6. Genome-wide screening and identification of antigens for rickettsial vaccine development

    USDA-ARS?s Scientific Manuscript database

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  7. A genome-wide association study in soybean

    USDA-ARS?s Scientific Manuscript database

    A genome-wide association study (GWAS) was performed to estimate the feasibility of identifying genes controlling the quantitative traits, seed protein and oil concentration, in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleo...

  8. Gene expression levels as endophenotypes in genome-wide association studies of Alzheimer disease

    PubMed Central

    Zou, F.; Carrasquillo, M. M.; Pankratz, V. S.; Belbin, O.; Morgan, K.; Allen, M.; Wilcox, S. L.; Ma, L.; Walker, L. P.; Kouri, N.; Burgess, J. D.; Younkin, L. H.; Younkin, Samuel G.; Younkin, C. S.; Bisceglio, G. D.; Crook, J. E.; Dickson, D. W.; Petersen, R. C.; Graff-Radford, N.; Younkin, Steven G.; Ertekin-Taner, N.

    2010-01-01

    Background: Late-onset Alzheimer disease (LOAD) is a common disorder with a substantial genetic component. We postulate that many disease susceptibility variants act by altering gene expression levels. Methods: We measured messenger RNA (mRNA) expression levels of 12 LOAD candidate genes in the cerebella of 200 subjects with LOAD. Using the genotypes from our LOAD genome-wide association study for the cis-single nucleotide polymorphisms (SNPs) (n = 619) of these 12 LOAD candidate genes, we tested for associations with expression levels as endophenotypes. The strongest expression cis-SNP was tested for AD association in 7 independent case-control series (2,280 AD and 2,396 controls). Results: We identified 3 SNPs that associated significantly with IDE (insulin degrading enzyme) expression levels. A single copy of the minor allele for each significant SNP was associated with ∼twofold higher IDE expression levels. The most significant SNP, rs7910977, is 4.2 kb beyond the 3′ end of IDE. The association observed with this SNP was significant even at the genome-wide level (p = 2.7 × 10−8). Furthermore, the minor allele of rs7910977 associated significantly (p = 0.0046) with reduced LOAD risk (OR = 0.81 with a 95% CI of 0.70-0.94), as expected biologically from its association with elevated IDE expression. Conclusions: These results provide strong evidence that IDE is a late-onset Alzheimer disease (LOAD) gene with variants that modify risk of LOAD by influencing IDE expression. They also suggest that the use of expression levels as endophenotypes in genome-wide association studies may provide a powerful approach for the identification of disease susceptibility alleles. GLOSSARY AD = Alzheimer disease; CI = confidence interval; GWAS = genome-wide association study; LOAD = late-onset Alzheimer disease; mRNA = messenger RNA; OR = odds ratio; SNP = single nucleotide polymorphism. PMID:20142614

  9. Genome-Wide Detection and Analysis of Multifunctional Genes

    PubMed Central

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  10. Genome-wide Association Study Identifies African-Specific Susceptibility Loci in African Americans with Inflammatory Bowel Disease

    PubMed Central

    Brant, Steven R.; Okou, David T.; Simpson, Claire L.; Cutler, David J.; Haritunians, Talin; Bradfield, Jonathan P.; Chopra, Pankaj; Prince, Jarod; Begum, Ferdouse; Kumar, Archana; Huang, Chengrui; Venkateswaran, Suresh; Datta, Lisa W.; Wei, Zhi; Thomas, Kelly; Herrinton, Lisa J.; Klapproth, Jan-Micheal A.; Quiros, Antonio J.; Seminerio, Jenifer; Liu, Zhenqiu; Alexander, Jonathan S.; Baldassano, Robert N.; Dudley-Brown, Sharon; Cross, Raymond K.; Dassopoulos, Themistocles; Denson, Lee A.; Dhere, Tanvi A.; Dryden, Gerald W.; Hanson, John S.; Hou, Jason K.; Hussain, Sunny Z.; Hyams, Jeffrey S.; Isaacs, Kim L.; Kader, Howard; Kappelman, Michael D.; Katz, Jeffry; Kellermayer, Richard; Kirschner, Barbara S.; Kuemmerle, John F.; Kwon, John H.; Lazarev, Mark; Li, Ellen; Mack, David; Mannon, Peter; Moulton, Dedrick E.; Newberry, Rodney D.; Osuntokun, Bankole O.; Patel, Ashish S.; Saeed, Shehzad A.; Targan, Stephan R.; Valentine, John F.; Wang, Ming-Hsi; Zonca, Martin; Rioux, John D.; Duerr, Richard H.; Silverberg, Mark S.; Cho, Judy H.; Hakonarson, Hakon; Zwick, Michael E.; McGovern, Dermot P.B.; Kugathasan, Subra

    2016-01-01

    Background & Aims The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn’s disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. Methods We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified [IBD-U]) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P<5.0×10−8 in meta-analysis with a nominal evidence (P<.05) in each scan were considered to have genome-wide significance. Results We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance associations for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P<1.6×10−6): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide significance on conditioning), IL12B, PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. Conclusions We performed a genome-wide association study of African Americans with IBD and identified loci associated with CD and UC in only this population; we also replicated loci identified in European populations. The detection of variants associated with IBD risk in only

  11. GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.

    PubMed

    Stricker, Georg; Engelhardt, Alexander; Schulz, Daniel; Schmid, Matthias; Tresch, Achim; Gagneur, Julien

    2017-08-01

    Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used approach to study protein-DNA interactions. Often, the quantities of interest are the differential occupancies relative to controls, between genetic backgrounds, treatments, or combinations thereof. Current methods for differential occupancy of ChIP-Seq data rely however on binning or sliding window techniques, for which the choice of the window and bin sizes are subjective. Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the well-established and flexible generalized additive models framework to genomic applications using a data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions along chromosomes. Smoothing parameters are objectively estimated from the data by cross-validation, eliminating ad hoc binning and windowing needed by current approaches. GenoGAM provides base-level and region-level significance testing for full factorial designs. Application to a ChIP-Seq dataset in yeast showed increased sensitivity over existing differential occupancy methods while controlling for type I error rate. By analyzing a set of DNA methylation data and illustrating an extension to a peak caller, we further demonstrate the potential of GenoGAM as a generic statistical modeling tool for genome-wide assays. Software is available from Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/GenoGAM.html . gagneur@in.tum.de. Supplementary information is available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. A Genome-Wide Breast Cancer Scan in African Americans

    DTIC Science & Technology

    2010-06-01

    SNPs from the African American breast cancer scan to COGs , a European collaborative study which is has designed a SNP array with that will be genotyped...Award Number: W81XWH-08-1-0383 TITLE: A Genome-wide Breast Cancer Scan in African Americans PRINCIPAL INVESTIGATOR: Christopher A...SUBTITLE A Genome-wide Breast Cancer Scan in African Americans 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0383 5c. PROGRAM

  13. Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies.

    PubMed

    Cowper-Sal lari, Richard; Cole, Michael D; Karagas, Margaret R; Lupien, Mathieu; Moore, Jason H

    2011-01-01

    The conceptual foundation of the genome-wide association study (GWAS) has advanced unchecked since its conception. A revision might seem premature as the potential of GWAS has not been fully realized. Multiple technical and practical limitations need to be overcome before GWAS can be fairly criticized. But with the completion of hundreds of studies and a deeper understanding of the genetic architecture of disease, warnings are being raised. The results compiled to date indicate that risk-associated variants lie predominantly in noncoding regions of the genome. Additionally, alternative methodologies are uncovering large and heterogeneous sets of rare variants underlying disease. The fear is that, even in its fulfillment, the current GWAS paradigm might be incapable of dissecting all kinds of phenotypes. In the following text, we review several initiatives that aim to overcome these limitations. The overarching theme of these studies is the inclusion of biological knowledge to both the analysis and interpretation of genotyping data. GWAS is uninformed of biology by design and although there is some virtue in its simplicity, it is also its most conspicuous deficiency. We propose a framework in which to integrate these novel approaches, both empirical and theoretical, in the form of a genome-wide regulatory network (GWRN). By processing experimental data into networks, emerging data types based on chromatin immunoprecipitation are made computationally tractable. This will give GWAS re-analysis efforts the most current and relevant substrates, and root them firmly on our knowledge of human disease. Copyright © 2010 John Wiley & Sons, Inc.

  14. Genome-wide association study of response to cognitive–behavioural therapy in children with anxiety disorders

    PubMed Central

    Coleman, Jonathan R. I.; Lester, Kathryn J.; Keers, Robert; Roberts, Susanna; Curtis, Charles; Arendt, Kristian; Bögels, Susan; Cooper, Peter; Creswell, Cathy; Dalgleish, Tim; Hartman, Catharina A.; Heiervang, Einar R.; Hötzel, Katrin; Hudson, Jennifer L.; In-Albon, Tina; Lavallee, Kristen; Lyneham, Heidi J.; Marin, Carla E.; Meiser-Stedman, Richard; Morris, Talia; Nauta, Maaike H.; Rapee, Ronald M.; Schneider, Silvia; Schneider, Sophie C.; Silverman, Wendy K.; Thastum, Mikael; Thirlwall, Kerstin; Waite, Polly; Wergeland, Gro Janne; Breen, Gerome; Eley, Thalia C.

    2016-01-01

    Background Anxiety disorders are common, and cognitive–behavioural therapy (CBT) is a first-line treatment. Candidate gene studies have suggested a genetic basis to treatment response, but findings have been inconsistent. Aims To perform the first genome-wide association study (GWAS) of psychological treatment response in children with anxiety disorders (n = 980). Method Presence and severity of anxiety was assessed using semi-structured interview at baseline, on completion of treatment (post-treatment), and 3 to 12 months after treatment completion (follow-up). DNA was genotyped using the Illumina Human Core Exome-12v1.0 array. Linear mixed models were used to test associations between genetic variants and response (change in symptom severity) immediately post-treatment and at 6-month follow-up. Results No variants passed a genome-wide significance threshold (P = 5 × 10−8) in either analysis. Four variants met criteria for suggestive significance (P<5 × 10−6) in association with response post-treatment, and three variants in the 6-month follow-up analysis. Conclusions This is the first genome-wide therapygenetic study. It suggests no common variants of very high effect underlie response to CBT. Future investigations should maximise power to detect single-variant and polygenic effects by using larger, more homogeneous cohorts. PMID:26989097

  15. Landscape genomics reveals altered genome wide diversity within revegetated stands of Eucalyptus microcarpa (Grey Box).

    PubMed

    Jordan, Rebecca; Dillon, Shannon K; Prober, Suzanne M; Hoffmann, Ary A

    2016-12-01

    In order to contribute to evolutionary resilience and adaptive potential in highly modified landscapes, revegetated areas should ideally reflect levels of genetic diversity within and across natural stands. Landscape genomic analyses enable such diversity patterns to be characterized at genome and chromosomal levels. Landscape-wide patterns of genomic diversity were assessed in Eucalyptus microcarpa, a dominant tree species widely used in revegetation in Southeastern Australia. Trees from small and large patches within large remnants, small isolated remnants and revegetation sites were assessed across the now highly fragmented distribution of this species using the DArTseq genomic approach. Genomic diversity was similar within all three types of remnant patches analysed, although often significantly but only slightly lower in revegetation sites compared with natural remnants. Differences in diversity between stand types varied across chromosomes. Genomic differentiation was higher between small, isolated remnants, and among revegetated sites compared with natural stands. We conclude that small remnants and revegetated sites of our E. microcarpa samples largely but not completely capture patterns in genomic diversity across the landscape. Genomic approaches provide a powerful tool for assessing restoration efforts across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Genome-wide chromatin state transitions associated with developmental and environmental cues.

    PubMed

    Zhu, Jiang; Adli, Mazhar; Zou, James Y; Verstappen, Griet; Coyne, Michael; Zhang, Xiaolan; Durham, Timothy; Miri, Mohammad; Deshpande, Vikram; De Jager, Philip L; Bennett, David A; Houmard, Joseph A; Muoio, Deborah M; Onder, Tamer T; Camahort, Ray; Cowan, Chad A; Meissner, Alexander; Epstein, Charles B; Shoresh, Noam; Bernstein, Bradley E

    2013-01-31

    Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine.

    PubMed

    Huang, Yun; Pastor, William A; Zepeda-Martínez, Jorge A; Rao, Anjana

    2012-10-01

    5-Hydroxymethylcytosine (5hmC) is a recently discovered base in the mammalian genome, produced upon oxidation of 5-methylcytosine (5mC) in a process catalyzed by TET proteins. The biological functions of 5hmC and further oxidation products of 5mC are under intense investigation, as they are likely intermediates in DNA demethylation pathways. Here we describe a novel protocol to profile 5hmC at a genome-wide scale. This approach is based on sodium bisulfite-mediated conversion of 5hmC to cytosine-5-methylenesulfonate (CMS); CMS-containing DNA fragments are then immunoprecipitated using a CMS-specific antiserum. The anti-CMS technique is highly specific with a low background, and is much less dependent on 5hmC density than anti-5hmC immunoprecipitation (IP). Moreover, it does not enrich for CA and CT repeats, as noted for 5hmC DNA IP using antibodies to 5hmC. The anti-CMS protocol takes 3 d to complete.

  18. Educational Attainment: A Genome Wide Association Study in 9538 Australians

    PubMed Central

    Martin, Nicolas W.; Medland, Sarah E.; Verweij, Karin J. H.; Lee, S. Hong; Nyholt, Dale R.; Madden, Pamela A.; Heath, Andrew C.; Montgomery, Grant W.; Wright, Margaret J.; Martin, Nicholas G.

    2011-01-01

    Background Correlations between Educational Attainment (EA) and measures of cognitive performance are as high as 0.8. This makes EA an attractive alternative phenotype for studies wishing to map genes affecting cognition due to the ease of collecting EA data compared to other cognitive phenotypes such as IQ. Methodology In an Australian family sample of 9538 individuals we performed a genome-wide association scan (GWAS) using the imputed genotypes of ∼2.4 million single nucleotide polymorphisms (SNP) for a 6-point scale measure of EA. Top hits were checked for replication in an independent sample of 968 individuals. A gene-based test of association was then applied to the GWAS results. Additionally we performed prediction analyses using the GWAS results from our discovery sample to assess the percentage of EA and full scale IQ variance explained by the predicted scores. Results The best SNP fell short of having a genome-wide significant p-value (p = 9.77×10−7). In our independent replication sample six SNPs among the top 50 hits pruned for linkage disequilibrium (r2<0.8) had a p-value<0.05 but only one of these SNPs survived correction for multiple testing - rs7106258 (p = 9.7*10−4) located in an intergenic region of chromosome 11q14.1. The gene based test results were non-significant and our prediction analyses show that the predicted scores explained little variance in EA in our replication sample. Conclusion While we have identified a polymorphism chromosome 11q14.1 associated with EA, further replication is warranted. Overall, the absence of genome-wide significant p-values in our large discovery sample confirmed the high polygenic architecture of EA. Only the assembly of large samples or meta-analytic efforts will be able to assess the implication of common DNA polymorphisms in the etiology of EA. PMID:21694764

  19. A Genome-Wide Map of Mitochondrial DNA Recombination in Yeast

    PubMed Central

    Fritsch, Emilie S.; Chabbert, Christophe D.; Klaus, Bernd; Steinmetz, Lars M.

    2014-01-01

    In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome

  20. A genome-wide map of mitochondrial DNA recombination in yeast.

    PubMed

    Fritsch, Emilie S; Chabbert, Christophe D; Klaus, Bernd; Steinmetz, Lars M

    2014-10-01

    In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome

  1. GENOME-WIDE ASSOCIATION STUDY (GWAS) AND GENOME-WIDE BY ENVIRONMENT INTERACTION STUDY (GWEIS) OF DEPRESSIVE SYMPTOMS IN AFRICAN AMERICAN AND HISPANIC/LATINA WOMEN.

    PubMed

    Dunn, Erin C; Wiste, Anna; Radmanesh, Farid; Almli, Lynn M; Gogarten, Stephanie M; Sofer, Tamar; Faul, Jessica D; Kardia, Sharon L R; Smith, Jennifer A; Weir, David R; Zhao, Wei; Soare, Thomas W; Mirza, Saira S; Hek, Karin; Tiemeier, Henning; Goveas, Joseph S; Sarto, Gloria E; Snively, Beverly M; Cornelis, Marilyn; Koenen, Karestan C; Kraft, Peter; Purcell, Shaun; Ressler, Kerry J; Rosand, Jonathan; Wassertheil-Smoller, Sylvia; Smoller, Jordan W

    2016-04-01

    Genome-wide association studies (GWAS) have made little progress in identifying variants linked to depression. We hypothesized that examining depressive symptoms and considering gene-environment interaction (GxE) might improve efficiency for gene discovery. We therefore conducted a GWAS and genome-wide by environment interaction study (GWEIS) of depressive symptoms. Using data from the SHARe cohort of the Women's Health Initiative, comprising African Americans (n = 7,179) and Hispanics/Latinas (n = 3,138), we examined genetic main effects and GxE with stressful life events and social support. We also conducted a heritability analysis using genome-wide complex trait analysis (GCTA). Replication was attempted in four independent cohorts. No SNPs achieved genome-wide significance for main effects in either discovery sample. The top signals in African Americans were rs73531535 (located 20 kb from GPR139, P = 5.75 × 10(-8) ) and rs75407252 (intronic to CACNA2D3, P = 6.99 × 10(-7) ). In Hispanics/Latinas, the top signals were rs2532087 (located 27 kb from CD38, P = 2.44 × 10(-7) ) and rs4542757 (intronic to DCC, P = 7.31 × 10(-7) ). In the GEWIS with stressful life events, one interaction signal was genome-wide significant in African Americans (rs4652467; P = 4.10 × 10(-10) ; located 14 kb from CEP350). This interaction was not observed in a smaller replication cohort. Although heritability estimates for depressive symptoms and stressful life events were each less than 10%, they were strongly genetically correlated (rG = 0.95), suggesting that common variation underlying self-reported depressive symptoms and stressful life event exposure, though modest on their own, were highly overlapping in this sample. Our results underscore the need for larger samples, more GEWIS, and greater investigation into genetic and environmental determinants of depressive symptoms in minorities. © 2016 Wiley Periodicals, Inc.

  2. FGWAS: Functional genome wide association analysis.

    PubMed

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Meta-analysis of genome-wide association from genomic prediction models

    USDA-ARS?s Scientific Manuscript database

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  4. Influence of Background Genome on Enzymatic Characteristics of Yellow (Ay/-, Avy/-) Mice

    PubMed Central

    Wolff, George L.; Pitot, Henry C.

    1973-01-01

    Identification of the fundamental polypeptide difference between yellow (Ay/-, Avy/-) and non-yellow mice is important for biomedical research because of the influence of the yellow genotype on normal and neoplastic growth and obesity. The complexity of the "yellow mouse syndrome" makes attainment of this objective dependent on the separation of those pleiotropic enzyme differences which are secondary, and depend on the background genome, from those which are primary, and depend primarily on the agouti locus genotype.—Four of nine hepatic enzyme activities assayed simultaneously differed between eight-week-old yellow (Ay/-, Avy/-) and non-yellow (A/-, a/a) male inbred and F1 hybrid mice. Among these four, only cytoplasmic malic enzyme activity was elevated in all yellow mice, as compared with the non-yellow sibs, regardless of background genome. Glucokinase, serine dehydratase, and tyrosine α-ketoglutarate transaminase activities were also changed in yellow mice, but these alterations depended on the background genome.—The ratio of malic enzyme activity to citrate-cleavage enzyme activity, possibly related to the altered fat metabolism of yellow mice, was influenced by background genome as well as by the yellow genotype.——Significant deviations of enzyme activities from mid-parent values among F1 hybrids were associated with particular background genomes; the number of such deviations was larger among yellow mice than among non-yellows and this difference was greater among C3H F1 hybrids than among C57BL/6 F1 hybrids. PMID:4405752

  5. Fast and Accurate Approximation to Significance Tests in Genome-Wide Association Studies

    PubMed Central

    Zhang, Yu; Liu, Jun S.

    2011-01-01

    Genome-wide association studies commonly involve simultaneous tests of millions of single nucleotide polymorphisms (SNP) for disease association. The SNPs in nearby genomic regions, however, are often highly correlated due to linkage disequilibrium (LD, a genetic term for correlation). Simple Bonferonni correction for multiple comparisons is therefore too conservative. Permutation tests, which are often employed in practice, are both computationally expensive for genome-wide studies and limited in their scopes. We present an accurate and computationally efficient method, based on Poisson de-clumping heuristics, for approximating genome-wide significance of SNP associations. Compared with permutation tests and other multiple comparison adjustment approaches, our method computes the most accurate and robust p-value adjustments for millions of correlated comparisons within seconds. We demonstrate analytically that the accuracy and the efficiency of our method are nearly independent of the sample size, the number of SNPs, and the scale of p-values to be adjusted. In addition, our method can be easily adopted to estimate false discovery rate. When applied to genome-wide SNP datasets, we observed highly variable p-value adjustment results evaluated from different genomic regions. The variation in adjustments along the genome, however, are well conserved between the European and the African populations. The p-value adjustments are significantly correlated with LD among SNPs, recombination rates, and SNP densities. Given the large variability of sequence features in the genome, we further discuss a novel approach of using SNP-specific (local) thresholds to detect genome-wide significant associations. This article has supplementary material online. PMID:22140288

  6. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists.

    PubMed

    Sanitá Lima, Matheus; Smith, David Roy

    2017-11-06

    Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq) data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb), indicating that most of the organelle DNA-coding and noncoding-is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb) and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells. Copyright © 2017 Sanitá Lima and Smith.

  7. Family-Based Genome-Wide Association Scan of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Mick, Eric; Todorov, Alexandre; Smalley, Susan; Hu, Xiaolan; Loo, Sandra; Todd, Richard D.; Biederman, Joseph; Byrne, Deirdre; Dechairo, Bryan; Guiney, Allan; McCracken, James; McGough, James; Nelson, Stanley F.; Reiersen, Angela M.; Wilens, Timothy E.; Wozniak, Janet; Neale, Benjamin M.; Faraone, Stephen V.

    2010-01-01

    Objective: Genes likely play a substantial role in the etiology of attention-deficit/hyperactivity disorder (ADHD). However, the genetic architecture of the disorder is unknown, and prior genome-wide association studies (GWAS) have not identified a genome-wide significant association. We have conducted a third, independent, multisite GWAS of…

  8. Gigwa-Genotype investigator for genome-wide analyses.

    PubMed

    Sempéré, Guilhem; Philippe, Florian; Dereeper, Alexis; Ruiz, Manuel; Sarah, Gautier; Larmande, Pierre

    2016-06-06

    Exploring the structure of genomes and analyzing their evolution is essential to understanding the ecological adaptation of organisms. However, with the large amounts of data being produced by next-generation sequencing, computational challenges arise in terms of storage, search, sharing, analysis and visualization. This is particularly true with regards to studies of genomic variation, which are currently lacking scalable and user-friendly data exploration solutions. Here we present Gigwa, a web-based tool that provides an easy and intuitive way to explore large amounts of genotyping data by filtering it not only on the basis of variant features, including functional annotations, but also on genotype patterns. The data storage relies on MongoDB, which offers good scalability properties. Gigwa can handle multiple databases and may be deployed in either single- or multi-user mode. In addition, it provides a wide range of popular export formats. The Gigwa application is suitable for managing large amounts of genomic variation data. Its user-friendly web interface makes such processing widely accessible. It can either be simply deployed on a workstation or be used to provide a shared data portal for a given community of researchers.

  9. Genetics of Venous Thrombosis: Insights from a New Genome Wide Association Study

    PubMed Central

    Germain, Marine; Saut, Noémie; Greliche, Nicolas; Dina, Christian; Lambert, Jean-Charles; Perret, Claire; Cohen, William; Oudot-Mellakh, Tiphaine; Antoni, Guillemette; Alessi, Marie-Christine; Zelenika, Diana; Cambien, François; Tiret, Laurence; Bertrand, Marion; Dupuy, Anne-Marie; Letenneur, Luc; Lathrop, Mark; Emmerich, Joseph; Amouyel, Philippe; Trégouët, David-Alexandre; Morange, Pierre-Emmanuel

    2011-01-01

    Background Venous Thrombosis (VT) is a common multifactorial disease associated with a major public health burden. Genetics factors are known to contribute to the susceptibility of the disease but how many genes are involved and their contribution to VT risk still remain obscure. We aimed to identify genetic variants associated with VT risk. Methodology/Principal Findings We conducted a genome-wide association study (GWAS) based on 551,141 SNPs genotyped in 1,542 cases and 1,110 controls. Twelve SNPs reached the genome-wide significance level of 2.0×10−8 and encompassed four known VT-associated loci, ABO, F5, F11 and FGG. By means of haplotype analyses, we also provided novel arguments in favor of a role of HIVEP1, PROCR and STAB2, three loci recently hypothesized to participate in the susceptibility to VT. However, no novel VT-associated loci came out of our GWAS. Using a recently proposed statistical methodology, we also showed that common variants could explain about 35% of the genetic variance underlying VT susceptibility among which 3% could be attributable to the main identified VT loci. This analysis additionally suggested that the common variants left to be identified are not uniformly distributed across the genome and that chromosome 20, itself, could contribute to ∼7% of the total genetic variance. Conclusions/Significance This study might also provide a valuable source of information to expand our understanding of biological mechanisms regulating quantitative biomarkers for VT. PMID:21980494

  10. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies

    PubMed Central

    2014-01-01

    Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the

  11. Genome-wide association studies and resting heart rate.

    PubMed

    Kilpeläinen, Tuomas O

    Genome-wide association studies (GWASs) have revolutionized the search for genetic variants regulating resting heart rate. In the last 10years, GWASs have led to the identification of at least 21 novel heart rate loci. These discoveries have provided valuable insights into the mechanisms and pathways that regulate heart rate and link heart rate to cardiovascular morbidity and mortality. GWASs capture majority of genetic variation in a population sample by utilizing high-throughput genotyping chips measuring genotypes for up to several millions of SNPs across the genome in thousands of individuals. This allows the identification of the strongest heart rate associated signals at genome-wide level. While GWASs provide robust statistical evidence of the association of a given genetic locus with heart rate, they are only the starting point for detailed follow-up studies to locate the causal variants and genes and gain further insights into the biological mechanisms underlying the observed associations. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea

    PubMed Central

    Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C.L.L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23–47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea. PMID:26058368

  13. Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah; Ripke, Stephan; Anney, Richard J. L.; Asherson, Philip; Buitelaar, Jan; Franke, Barbara; Gill, Michael; Kent, Lindsey; Holmans, Peter; Middleton, Frank; Thapar, Anita; Lesch, Klaus-Peter; Faraone, Stephen V.; Daly, Mark; Nguyen, Thuy Trang; Schafer, Helmut; Steinhausen, Hans-Christoph; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Freitag, Christine; Meyer, Jobst; Palmason, Haukur; Rothenberger, Aribert; Hawi, Ziarih; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus additional genome-wide association studies (GWAS) are needed. Method: We used case-control analyses of 896 cases…

  14. snpGeneSets: An R Package for Genome-Wide Study Annotation

    PubMed Central

    Mei, Hao; Li, Lianna; Jiang, Fan; Simino, Jeannette; Griswold, Michael; Mosley, Thomas; Liu, Shijian

    2016-01-01

    Genome-wide studies (GWS) of SNP associations and differential gene expressions have generated abundant results; next-generation sequencing technology has further boosted the number of variants and genes identified. Effective interpretation requires massive annotation and downstream analysis of these genome-wide results, a computationally challenging task. We developed the snpGeneSets package to simplify annotation and analysis of GWS results. Our package integrates local copies of knowledge bases for SNPs, genes, and gene sets, and implements wrapper functions in the R language to enable transparent access to low-level databases for efficient annotation of large genomic data. The package contains functions that execute three types of annotations: (1) genomic mapping annotation for SNPs and genes and functional annotation for gene sets; (2) bidirectional mapping between SNPs and genes, and genes and gene sets; and (3) calculation of gene effect measures from SNP associations and performance of gene set enrichment analyses to identify functional pathways. We applied snpGeneSets to type 2 diabetes (T2D) results from the NHGRI genome-wide association study (GWAS) catalog, a Finnish GWAS, and a genome-wide expression study (GWES). These studies demonstrate the usefulness of snpGeneSets for annotating and performing enrichment analysis of GWS results. The package is open-source, free, and can be downloaded at: https://www.umc.edu/biostats_software/. PMID:27807048

  15. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension

    PubMed Central

    Lu, Xiangfeng; Wang, Laiyuan; Lin, Xu; Huang, Jianfeng; Charles Gu, C.; He, Meian; Shen, Hongbing; He, Jiang; Zhu, Jingwen; Li, Huaixing; Hixson, James E.; Wu, Tangchun; Dai, Juncheng; Lu, Ling; Shen, Chong; Chen, Shufeng; He, Lin; Mo, Zengnan; Hao, Yongchen; Mo, Xingbo; Yang, Xueli; Li, Jianxin; Cao, Jie; Chen, Jichun; Fan, Zhongjie; Li, Ying; Zhao, Liancheng; Li, Hongfan; Lu, Fanghong; Yao, Cailiang; Yu, Lin; Xu, Lihua; Mu, Jianjun; Wu, Xianping; Deng, Ying; Hu, Dongsheng; Zhang, Weidong; Ji, Xu; Guo, Dongshuang; Guo, Zhirong; Zhou, Zhengyuan; Yang, Zili; Wang, Renping; Yang, Jun; Zhou, Xiaoyang; Yan, Weili; Sun, Ningling; Gao, Pingjin; Gu, Dongfeng

    2015-01-01

    Hypertension is a common disorder and the leading risk factor for cardiovascular disease and premature deaths worldwide. Genome-wide association studies (GWASs) in the European population have identified multiple chromosomal regions associated with blood pressure, and the identified loci altogether explain only a small fraction of the variance for blood pressure. The differences in environmental exposures and genetic background between Chinese and European populations might suggest potential different pathways of blood pressure regulation. To identify novel genetic variants affecting blood pressure variation, we conducted a meta-analysis of GWASs of blood pressure and hypertension in 11 816 subjects followed by replication studies including 69 146 additional individuals. We identified genome-wide significant (P < 5.0 × 10−8) associations with blood pressure, which included variants at three new loci (CACNA1D, CYP21A2, and MED13L) and a newly discovered variant near SLC4A7. We also replicated 14 previously reported loci, 8 (CASZ1, MOV10, FGF5, CYP17A1, SOX6, ATP2B1, ALDH2, and JAG1) at genome-wide significance, and 6 (FIGN, ULK4, GUCY1A3, HFE, TBX3-TBX5, and TBX3) at a suggestive level of P = 1.81 × 10−3 to 5.16 × 10−8. These findings provide new mechanistic insights into the regulation of blood pressure and potential targets for treatments. PMID:25249183

  16. CONAN: copy number variation analysis software for genome-wide association studies

    PubMed Central

    2010-01-01

    Background Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNPs) revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs) promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes. Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing. However, while several software packages support the determination of CNVs from SNP chip data, the downstream statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions, thus strongly limiting the performance of GWAS based on CNVs. Results CONAN is a freely available client-server software solution which provides an intuitive graphical user interface for categorizing, analyzing and associating CNVs with phenotypes. Moreover, CONAN assists the evaluation process by visualizing detected associations via Manhattan plots in order to enable a rapid identification of genome-wide significant CNV regions. Various file formats including the information on CNVs in population samples are supported as input data. Conclusions CONAN facilitates the performance of GWAS based on CNVs and the visual analysis of calculated results. CONAN provides a rapid, valid and straightforward software solution to identify genetic variation underlying the 'missing' heritability for complex traits that remains unexplained by recent GWAS. The freely available software can be downloaded at http://genepi-conan.i-med.ac.at. PMID:20546565

  17. Genome-wide comparative analysis of four Indian Drosophila species.

    PubMed

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  18. Genome-wide association studies and epigenome-wide association studies go together in cancer control

    PubMed Central

    Verma, Mukesh

    2016-01-01

    Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment. PMID:27079684

  19. Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease

    PubMed Central

    2011-01-01

    Background Addison's disease (AD) is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV) could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352) and healthy controls (n = 353) by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28) and T cell maturation (ADAM3A). Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity. PMID:21851588

  20. Validation of Genome-Wide Prostate Cancer Associations in Men of African Descent

    PubMed Central

    Chang, Bao-Li; Spangler, Elaine; Gallagher, Stephen; Haiman, Christopher A.; Henderson, Brian; Isaacs, William; Benford, Marnita L.; Kidd, LaCreis R.; Cooney, Kathleen; Strom, Sara; Ann Ingles, Sue; Stern, Mariana C.; Corral, Roman; Joshi, Amit D.; Xu, Jianfeng; Giri, Veda N.; Rybicki, Benjamin; Neslund-Dudas, Christine; Kibel, Adam S.; Thompson, Ian M.; Leach, Robin J.; Ostrander, Elaine A.; Stanford, Janet L.; Witte, John; Casey, Graham; Eeles, Rosalind; Hsing, Ann W.; Chanock, Stephen; Hu, Jennifer J.; John, Esther M.; Park, Jong; Stefflova, Klara; Zeigler-Johnson, Charnita; Rebbeck, Timothy R.

    2010-01-01

    Background Genome-wide association studies (GWAS) have identified numerous prostate cancer susceptibility alleles, but these loci have been identified primarily in men of European descent. There is limited information about the role of these loci in men of African descent. Methods We identified 7,788 prostate cancer cases and controls with genotype data for 47 GWAS-identified loci. Results We identified significant associations for SNP rs10486567 at JAZF1, rs10993994 at MSMB, rs12418451 and rs7931342 at 11q13, and rs5945572 and rs5945619 at NUDT10/11. These associations were in the same direction and of similar magnitude as those reported in men of European descent. Significance was attained at all report prostate cancer susceptibility regions at chromosome 8q24, including associations reaching genome-wide significance in region 2. Conclusion We have validated in men of African descent the associations at some, but not all, prostate cancer susceptibility loci originally identified in European descent populations. This may be due to heterogeneity in genetic etiology or in the pattern of genetic variation across populations. Impact The genetic etiology of prostate cancer in men of African descent differs from that of men of European descent. PMID:21071540

  1. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707

  2. The Glyphosate-Based Herbicide Roundup Does not Elevate Genome-Wide Mutagenesis of Escherichia coli.

    PubMed

    Tincher, Clayton; Long, Hongan; Behringer, Megan; Walker, Noah; Lynch, Michael

    2017-10-05

    Mutations induced by pollutants may promote pathogen evolution, for example by accelerating mutations conferring antibiotic resistance. Generally, evaluating the genome-wide mutagenic effects of long-term sublethal pollutant exposure at single-nucleotide resolution is extremely difficult. To overcome this technical barrier, we use the mutation accumulation/whole-genome sequencing (MA/WGS) method as a mutagenicity test, to quantitatively evaluate genome-wide mutagenesis of Escherichia coli after long-term exposure to a wide gradient of the glyphosate-based herbicide (GBH) Roundup Concentrate Plus. The genome-wide mutation rate decreases as GBH concentration increases, suggesting that even long-term GBH exposure does not compromise the genome stability of bacteria. Copyright © 2017 Tincher et al.

  3. Inferring genome-wide interplay landscape between DNA methylation and transcriptional regulation.

    PubMed

    Tang, Binhua; Wang, Xin

    2015-01-01

    DNA methylation and transcriptional regulation play important roles in cancer cell development and differentiation processes. Based on the currently available cell line profiling information from the ENCODE Consortium, we propose a Bayesian inference model to infer and construct genome-wide interaction landscape between DNA methylation and transcriptional regulation, which sheds light on the underlying complex functional mechanisms important within the human cancer and disease context. For the first time, we select all the currently available cell lines (>=20) and transcription factors (>=80) profiling information from the ENCODE Consortium portal. Through the integration of those genome-wide profiling sources, our genome-wide analysis detects multiple functional loci of interest, and indicates that DNA methylation is cell- and region-specific, due to the interplay mechanisms with transcription regulatory activities. We validate our analysis results with the corresponding RNA-sequencing technique for those detected genomic loci. Our results provide novel and meaningful insights for the interplay mechanisms of transcriptional regulation and gene expression for the human cancer and disease studies.

  4. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing.

    PubMed

    Palaiokostas, Christos; Cariou, Sophie; Bestin, Anastasia; Bruant, Jean-Sebastien; Haffray, Pierrick; Morin, Thierry; Cabon, Joëlle; Allal, François; Vandeputte, Marc; Houston, Ross D

    2018-06-08

    European sea bass (Dicentrarchus labrax) is one of the most important species for European aquaculture. Viral nervous necrosis (VNN), commonly caused by the redspotted grouper nervous necrosis virus (RGNNV), can result in high levels of morbidity and mortality, mainly during the larval and juvenile stages of cultured sea bass. In the absence of efficient therapeutic treatments, selective breeding for host resistance offers a promising strategy to control this disease. Our study aimed at investigating genetic resistance to VNN and genomic-based approaches to improve disease resistance by selective breeding. A population of 1538 sea bass juveniles from a factorial cross between 48 sires and 17 dams was challenged with RGNNV with mortalities and survivors being recorded and sampled for genotyping by the RAD sequencing approach. We used genome-wide genotype data from 9195 single nucleotide polymorphisms (SNPs) for downstream analysis. Estimates of heritability of survival on the underlying scale for the pedigree and genomic relationship matrices were 0.27 (HPD interval 95%: 0.14-0.40) and 0.43 (0.29-0.57), respectively. Classical genome-wide association analysis detected genome-wide significant quantitative trait loci (QTL) for resistance to VNN on chromosomes (unassigned scaffolds in the case of 'chromosome' 25) 3, 20 and 25 (P < 1e06). Weighted genomic best linear unbiased predictor provided additional support for the QTL on chromosome 3 and suggested that it explained 4% of the additive genetic variation. Genomic prediction approaches were tested to investigate the potential of using genome-wide SNP data to estimate breeding values for resistance to VNN and showed that genomic prediction resulted in a 13% increase in successful classification of resistant and susceptible animals compared to pedigree-based methods, with Bayes A and Bayes B giving the highest predictive ability. Genome-wide significant QTL were identified but each with relatively small effects on

  5. Genome-Wide Association Study of Cardiac Structure and Systolic Function in African Americans: The Candidate Gene Association Resource (CARe) Study

    PubMed Central

    Fox, Ervin R.; Musani, Solomon K.; Barbalic, Maja; Lin, Honghuang; Yu, Bing; Ogunyankin, Kofo O.; Smith, Nicholas L.; Kutlar, Abdullah; Glazer, Nicole L.; Post, Wendy S.; Paltoo, Dina N.; Dries, Daniel L.; Farlow, Deborah N.; Duarte, Christine W.; Kardia, Sharon L.; Meyers, Kristin J.; Sun, Yan V.; Arnett, Donna K.; Patki, Amit A.; Sha, Jin; Cui, Xiangqui; Samdarshi, Tandaw E.; Penman, Alan D.; Bibbins-Domingo, Kirsten; Bůžková, Petra; Benjamin, Emelia J.; Bluemke, David A.; Morrison, Alanna C.; Heiss, Gerardo; Carr, J. Jeffrey; Tracy, Russell P.; Mosley, Thomas H.; Taylor, Herman A.; Psaty, Bruce M.; Heckbert, Susan R.; Cappola, Thomas P.; Vasan, Ramachandran S.

    2013-01-01

    Background Using data from four community-based cohorts of African Americans (AA), we tested the association between genome-wide markers (SNPs) and cardiac phenotypes in the Candidate-gene Association REsource (CARe) study. Methods and Results Among 6,765 AA, we related age, sex, height and weight-adjusted residuals for nine cardiac phenotypes (assessed by echocardiogram or MRI) to 2.5 million SNPs genotyped using Genome-Wide Affymetrix Human SNP Array 6.0 (Affy6.0) and the remainder imputed. Within cohort genome-wide association analysis was conducted followed by meta-analysis across cohorts using inverse variance weights (genome-wide significance threshold=4.0 ×10−07). Supplementary pathway analysis was performed. We attempted replication in 3 smaller cohorts of African ancestry and tested look-ups in one consortium of European ancestry (EchoGEN). Across the 9 phenotypes, variants in 4 genetic loci reached genome-wide significance: rs4552931 in UBE2V2 (p=1.43 × 10−07) for left ventricular mass (LVM); rs7213314 in WIPI1 (p=1.68 × 10−07) for LV internal diastolic diameter (LVIDD); rs1571099 in PPAPDC1A (p= 2.57 × 10−08) for interventricular septal wall thickness (IVST); and rs9530176 in KLF5 (p=4.02 × 10−07) for ejection fraction (EF). Associated variants were enriched in three signaling pathways involved in cardiac remodeling. None of the 4 loci replicated in cohorts of African ancestry were confirmed in look-ups in EchoGEN. Conclusions In the largest GWAS of cardiac structure and function to date in AA, we identified 4 genetic loci related to LVM, IVST, LVIDD and EF that reached genome-wide significance. Replication results suggest that these loci may represent unique to individuals of African ancestry. Additional large-scale studies are warranted for these complex phenotypes. PMID:23275298

  6. A genome-wide association study of seed protein and oil content in soybean

    PubMed Central

    2014-01-01

    Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome

  7. ARG-based genome-wide analysis of cacao cultivars.

    PubMed

    Utro, Filippo; Cornejo, Omar Eduardo; Livingstone, Donald; Motamayor, Juan Carlos; Parida, Laxmi

    2012-01-01

    Ancestral recombinations graph (ARG) is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relatively dense, bi-allelic SNP data. While the ARG is a natural model for capturing the inter-relationship between a single chromosome of the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across chromosomes) diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph visualization techniques. In this paper we examine the ARG reconstruction for (1) genome-wide or multiple chromosomes, (2) multi-allelic and (3) extremely sparse data. To aid in the visualization of the results of the reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the ARG.As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao. The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a principled approach to understanding the inter-relationships between the different populations must take the shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats (STR) and are multi-allelic (sometimes as high as 30 distinct possible values at a locus). Each is at a genomic location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only 96 loci from a genome of approximately 400 megabases

  8. Genome-wide measures of DNA methylation in peripheral blood and the risk of urothelial cell carcinoma: a prospective nested case–control study

    PubMed Central

    Dugué, Pierre-Antoine; Brinkman, Maree T; Milne, Roger L; Wong, Ee Ming; FitzGerald, Liesel M; Bassett, Julie K; Joo, Jihoon E; Jung, Chol-Hee; Makalic, Enes; Schmidt, Daniel F; Park, Daniel J; Chung, Jessica; Ta, Anthony D; Bolton, Damien M; Lonie, Andrew; Longano, Anthony; Hopper, John L; Severi, Gianluca; Saffery, Richard; English, Dallas R; Southey, Melissa C; Giles, Graham G

    2016-01-01

    Background: Global DNA methylation has been reported to be associated with urothelial cell carcinoma (UCC) by studies using blood samples collected at diagnosis. Using the Illumina HumanMethylation450 assay, we derived genome-wide measures of blood DNA methylation and assessed them for their prospective association with UCC risk. Methods: We used 439 case–control pairs from the Melbourne Collaborative Cohort Study matched on age, sex, country of birth, DNA sample type, and collection period. Conditional logistic regression was used to compute odds ratios (OR) of UCC risk per s.d. of each genome-wide measure of DNA methylation and 95% confidence intervals (CIs), adjusted for potential confounders. We also investigated associations by disease subtype, sex, smoking, and time since blood collection. Results: The risk of superficial UCC was decreased for individuals with higher levels of our genome-wide DNA methylation measure (OR=0.71, 95% CI: 0.54–0.94; P=0.02). This association was particularly strong for current smokers at sample collection (OR=0.47, 95% CI: 0.27–0.83). Intermediate levels of our genome-wide measure were associated with decreased risk of invasive UCC. Some variation was observed between UCC subtypes and the location and regulatory function of the CpGs included in the genome-wide measures of methylation. Conclusions: Higher levels of our genome-wide DNA methylation measure were associated with decreased risk of superficial UCC and intermediate levels were associated with reduced risk of invasive disease. These findings require replication by other prospective studies. PMID:27490804

  9. Genome-wide scans for loci under selection in humans

    PubMed Central

    2005-01-01

    Natural selection, which can be defined as the differential contribution of genetic variants to future generations, is the driving force of Darwinian evolution. Identifying regions of the human genome that have been targets of natural selection is an important step in clarifying human evolutionary history and understanding how genetic variation results in phenotypic diversity, it may also facilitate the search for complex disease genes. Technological advances in high-throughput DNA sequencing and single nucleotide polymorphism genotyping have enabled several genome-wide scans of natural selection to be undertaken. Here, some of the observations that are beginning to emerge from these studies will be reviewed, including evidence for geographically restricted selective pressures (ie local adaptation) and a relationship between genes subject to natural selection and human disease. In addition, the paper will highlight several important problems that need to be addressed in future genome-wide studies of natural selection. PMID:16004726

  10. Genome-wide association study of pigmentary traits (skin and iris color) in individuals of East Asian ancestry

    PubMed Central

    Rawofi, Lida; Edwards, Melissa; Krithika, S; Le, Phuong; Cha, David; Yang, Zhaohui; Ma, Yanyun; Wang, Jiucun; Su, Bing; Jin, Li; Norton, Heather L.

    2017-01-01

    Background Currently, there is limited knowledge about the genetics underlying pigmentary traits in East Asian populations. Here, we report the results of the first genome-wide association study of pigmentary traits (skin and iris color) in individuals of East Asian ancestry. Methods We obtained quantitative skin pigmentation measures (M-index) in the inner upper arm of the participants using a portable reflectometer (N = 305). Quantitative measures of iris color (expressed as L*, a* and b* CIELab coordinates) were extracted from high-resolution iris pictures (N = 342). We also measured the color differences between the pupillary and ciliary regions of the iris (e.g., iris heterochromia). DNA samples were genotyped with Illumina’s Infinium Multi-Ethnic Global Array (MEGA) and imputed using the 1000 Genomes Phase 3 samples as reference haplotypes. Results For skin pigmentation, we did not observe any genome-wide significant signal. We followed-up in three independent Chinese samples the lead SNPs of five regions showing multiple common markers (minor allele frequency ≥ 5%) with good imputation scores and suggestive evidence of association (p-values < 10−5). One of these markers, rs2373391, which is located in an intron of the ZNF804B gene on chromosome 7, was replicated in one of the Chinese samples (p = 0.003). For iris color, we observed genome-wide signals in the OCA2 region on chromosome 15. This signal is driven by the non-synonymous rs1800414 variant, which explains 11.9%, 10.4% and 6% of the variation observed in the b*, a* and L* coordinates in our sample, respectively. However, the OCA2 region was not associated with iris heterochromia. Discussion Additional genome-wide association studies in East Asian samples will be necessary to further disentangle the genetic architecture of pigmentary traits in East Asian populations. PMID:29109912

  11. Novel Loci Associated with PR Interval in a Genome-Wide Association Study of Ten African American Cohorts

    PubMed Central

    Butler, Anne M.; Yin, Xiaoyan; Evans, Daniel S.; Nalls, Michael A.; Smith, Erin N.; Tanaka, Toshiko; Li, Guo; Buxbaum, Sarah G.; Whitsel, Eric A.; Alonso, Alvaro; Arking, Dan E.; Benjamin, Emelia J.; Berenson, Gerald S.; Bis, Josh C.; Chen, Wei; Deo, Rajat; Ellinor, Patrick T.; Heckbert, Susan R.; Heiss, Gerardo; Hsueh, Wen-Chi; Keating, Brendan J.; Kerr, Kathleen F.; Li, Yun; Limacher, Marian C.; Liu, Yongmei; Lubitz, Steven A.; Marciante, Kristin D.; Mehra, Reena; Meng, Yan A.; Newman, Anne B.; Newton-Cheh, Christopher; North, Kari E.; Palmer, Cameron D.; Psaty, Bruce M.; Quibrera, P. Miguel; Redline, Susan; Reiner, Alex P.; Rotter, Jerome I.; Schnabel, Renate B.; Schork, Nicholas J.; Singleton, Andrew B.; Smith, J. Gustav; Soliman, Elsayed Z.; Srinivasan, Sathanur R.; Zhang, Zhu-ming; Zonderman, Alan B.; Ferrucci, Luigi; Murray, Sarah S.; Evans, Michele K.; Sotoodehnia, Nona; Magnani, Jared W.; Avery, Christy L.

    2013-01-01

    Background The PR interval (PR) as measured by the resting, standard 12-lead electrocardiogram (ECG) reflects the duration of atrial/atrioventricular nodal depolarization. Substantial evidence exists for a genetic contribution to PR, including genome-wide association studies that have identified common genetic variants at nine loci influencing PR in populations of European and Asian descent. However, few studies have examined loci associated with PR in African Americans. Methods and Results We present results from the largest genome-wide association study to date of PR in 13,415 adults of African descent from ten cohorts. We tested for association between PR (ms) and approximately 2.8 million genotyped and imputed single nucleotide polymorphisms. Imputation was performed using HapMap 2 YRI and CEU panels. Study-specific results, adjusted for global ancestry and clinical correlates of PR, were meta-analyzed using the inverse variance method. Variation in genome-wide test statistic distributions was noted within studies (lambda range: 0.9–1.1), although not after genomic control correction was applied to the overall meta-analysis (lambda: 1.008). In addition to generalizing previously reported associations with MEIS1, SCN5A, ARHGAP24, CAV1, and TBX5 to African American populations at the genome-wide significance level (P<5.0×10−8), we also identified a novel locus: ITGA9, located in a region previously implicated in SCN5A expression. The 3p21 region harboring SCN5A also contained two additional independent secondary signals influencing PR (P<5.0×10−8). Conclusions This study demonstrates the ability to map novel loci in African Americans as well as the generalizability of loci associated with PR across populations of African, European and Asian descent. PMID:23139255

  12. Meta-analysis of 32 genome-wide linkage studies of schizophrenia

    PubMed Central

    Ng, MYM; Levinson, DF; Faraone, SV; Suarez, BK; DeLisi, LE; Arinami, T; Riley, B; Paunio, T; Pulver, AE; Irmansyah; Holmans, PA; Escamilla, M; Wildenauer, DB; Williams, NM; Laurent, C; Mowry, BJ; Brzustowicz, LM; Maziade, M; Sklar, P; Garver, DL; Abecasis, GR; Lerer, B; Fallin, MD; Gurling, HMD; Gejman, PV; Lindholm, E; Moises, HW; Byerley, W; Wijsman, EM; Forabosco, P; Tsuang, MT; Hwu, H-G; Okazaki, Y; Kendler, KS; Wormley, B; Fanous, A; Walsh, D; O’Neill, FA; Peltonen, L; Nestadt, G; Lasseter, VK; Liang, KY; Papadimitriou, GM; Dikeos, DG; Schwab, SG; Owen, MJ; O’Donovan, MC; Norton, N; Hare, E; Raventos, H; Nicolini, H; Albus, M; Maier, W; Nimgaonkar, VL; Terenius, L; Mallet, J; Jay, M; Godard, S; Nertney, D; Alexander, M; Crowe, RR; Silverman, JM; Bassett, AS; Roy, M-A; Mérette, C; Pato, CN; Pato, MT; Roos, J Louw; Kohn, Y; Amann-Zalcenstein, D; Kalsi, G; McQuillin, A; Curtis, D; Brynjolfson, J; Sigmundsson, T; Petursson, H; Sanders, AR; Duan, J; Jazin, E; Myles-Worsley, M; Karayiorgou, M; Lewis, CM

    2009-01-01

    A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. PMID:19349958

  13. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits which have been validated with fine-mapping and functional analysis. Many sequence variants associated with complex traits in maize have small effects and low repeatability, howev...

  14. Genome-Wide Association Scan in HIV-1-Infected Individuals Identifying Variants Influencing Disease Course

    PubMed Central

    van Manen, Daniëlle; Delaneau, Olivier; Kootstra, Neeltje A.; Boeser-Nunnink, Brigitte D.; Limou, Sophie; Bol, Sebastiaan M.; Burger, Judith A.; Zwinderman, Aeilko H.; Moerland, Perry D.; van 't Slot, Ruben; Zagury, Jean-François; van 't Wout, Angélique B.; Schuitemaker, Hanneke

    2011-01-01

    Background AIDS develops typically after 7–11 years of untreated HIV-1 infection, with extremes of very rapid disease progression (<2 years) and long-term non-progression (>15 years). To reveal additional host genetic factors that may impact on the clinical course of HIV-1 infection, we designed a genome-wide association study (GWAS) in 404 participants of the Amsterdam Cohort Studies on HIV-1 infection and AIDS. Methods The association of SNP genotypes with the clinical course of HIV-1 infection was tested in Cox regression survival analyses using AIDS-diagnosis and AIDS-related death as endpoints. Results Multiple, not previously identified SNPs, were identified to be strongly associated with disease progression after HIV-1 infection, albeit not genome-wide significant. However, three independent SNPs in the top ten associations between SNP genotypes and time between seroconversion and AIDS-diagnosis, and one from the top ten associations between SNP genotypes and time between seroconversion and AIDS-related death, had P-values smaller than 0.05 in the French Genomics of Resistance to Immunodeficiency Virus cohort on disease progression. Conclusions Our study emphasizes that the use of different phenotypes in GWAS may be useful to unravel the full spectrum of host genetic factors that may be associated with the clinical course of HIV-1 infection. PMID:21811574

  15. Genome-wide association study for cheese yield and curd nutrient recovery in dairy cows.

    PubMed

    Dadousis, C; Biffani, S; Cipolat-Gotet, C; Nicolazzi, E L; Rosa, G J M; Gianola, D; Rossoni, A; Santus, E; Bittante, G; Cecchinato, A

    2017-02-01

    Cheese production and consumption are increasing in many countries worldwide. As a result, interest has increased in strategies for genetic selection of individuals for technological traits of milk related to cheese yield (CY) in dairy cattle breeding. However, little is known about the genetic background of a cow's ability to produce cheese. Recently, a relatively large panel (1,264 cows) of different measures of individual cow CY and milk nutrient and energy recoveries in the cheese (REC) became available. Genetic analyses showed considerable variation for CY and for aptitude to retain high proportions of fat, protein, and water in the coagulum. For the dairy industry, these characteristics are of major economic importance. Nevertheless, use of this knowledge in dairy breeding is hampered by high costs, intense labor requirement, and lack of appropriate technology. However, in the era of genomics, new possibilities are available for animal breeding and genetic improvement. For example, identification of genomic regions involved in cow CY might provide potential for marker-assisted selection. The objective of this study was to perform genome-wide association studies on different CY and REC measures. Milk and DNA samples from 1,152 Italian Brown Swiss cows were used. Three CY traits expressing the weight (wt) of fresh curd (%CY CURD ), curd solids (%CY SOLIDS ), and curd moisture (%CY WATER ) as a percentage of weight of milk processed, and 4 REC (REC FAT , REC PROTEIN , REC SOLIDS , and REC ENERGY , calculated as the % ratio between the nutrient in curd and the corresponding nutrient in processed milk) were analyzed. Animals were genotyped with the Illumina BovineSNP50 Bead Chip v.2. Single marker regressions were fitted using the GenABEL R package (genome-wide association using mixed model and regression-genomic control). In total, 103 significant associations (88 single nucleotide polymorphisms) were identified in 10 chromosomes (2, 6, 9, 11, 12, 14, 18, 19, 27

  16. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  17. Genome-wide association study of Tourette Syndrome

    PubMed Central

    Scharf, Jeremiah M.; Yu, Dongmei; Mathews, Carol A.; Neale, Benjamin M.; Stewart, S. Evelyn; Fagerness, Jesen A; Evans, Patrick; Gamazon, Eric; Edlund, Christopher K.; Service, Susan; Tikhomirov, Anna; Osiecki, Lisa; Illmann, Cornelia; Pluzhnikov, Anna; Konkashbaev, Anuar; Davis, Lea K; Han, Buhm; Crane, Jacquelyn; Moorjani, Priya; Crenshaw, Andrew T.; Parkin, Melissa A.; Reus, Victor I.; Lowe, Thomas L.; Rangel-Lugo, Martha; Chouinard, Sylvain; Dion, Yves; Girard, Simon; Cath, Danielle C; Smit, Jan H; King, Robert A.; Fernandez, Thomas; Leckman, James F.; Kidd, Kenneth K.; Kidd, Judith R.; Pakstis, Andrew J.; State, Matthew; Herrera, Luis Diego; Romero, Roxana; Fournier, Eduardo; Sandor, Paul; Barr, Cathy L; Phan, Nam; Gross-Tsur, Varda; Benarroch, Fortu; Pollak, Yehuda; Budman, Cathy L.; Bruun, Ruth D.; Erenberg, Gerald; Naarden, Allan L; Lee, Paul C; Weiss, Nicholas; Kremeyer, Barbara; Berrío, Gabriel Bedoya; Campbell, Desmond; Silgado, Julio C. Cardona; Ochoa, William Cornejo; Restrepo, Sandra C. Mesa; Muller, Heike; Duarte, Ana V. Valencia; Lyon, Gholson J; Leppert, Mark; Morgan, Jubel; Weiss, Robert; Grados, Marco A.; Anderson, Kelley; Davarya, Sarah; Singer, Harvey; Walkup, John; Jankovic, Joseph; Tischfield, Jay A.; Heiman, Gary A.; Gilbert, Donald L.; Hoekstra, Pieter J.; Robertson, Mary M.; Kurlan, Roger; Liu, Chunyu; Gibbs, J. Raphael; Singleton, Andrew; Hardy, John; Strengman, Eric; Ophoff, Roel; Wagner, Michael; Moessner, Rainald; Mirel, Daniel B.; Posthuma, Danielle; Sabatti, Chiara; Eskin, Eleazar; Conti, David V.; Knowles, James A.; Ruiz-Linares, Andres; Rouleau, Guy A.; Purcell, Shaun; Heutink, Peter; Oostra, Ben A.; McMahon, William; Freimer, Nelson; Cox, Nancy J.; Pauls, David L.

    2012-01-01

    Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder. PMID:22889924

  18. Genome-wide control of the distribution of meiotic recombination.

    PubMed

    Grey, Corinne; Baudat, Frédéric; de Massy, Bernard

    2009-02-17

    Meiotic recombination events are not randomly distributed in the genome but occur in specific regions called recombination hotspots. Hotspots are predicted to be preferred sites for the initiation of meiotic recombination and their positions and activities are regulated by yet-unknown controls. The activity of the Psmb9 hotspot on mouse Chromosome 17 (Chr 17) varies according to genetic background. It is active in strains carrying a recombinant Chr 17 where the proximal third is derived from Mus musculus molossinus. We have identified the genetic locus required for Psmb9 activity, named Dsbc1 for Double-strand break control 1, and mapped this locus within a 6.7-Mb region on Chr 17. Based on cytological analysis of meiotic DNA double-strand breaks (DSB) and crossovers (COs), we show that Dsbc1 influences DSB and CO, not only at Psmb9, but in several other regions of Chr 17. We further show that CO distribution is also influenced by Dsbc1 on Chrs 15 and 18. Finally, we provide direct molecular evidence for the regulation in trans mediated by Dsbc1, by showing that it controls the CO activity at the Hlx1 hotspot on Chr 1. We thus propose that Dsbc1 encodes for a trans-acting factor involved in the specification of initiation sites of meiotic recombination genome wide in mice.

  19. Genome-wide association study of the four-constitution medicine.

    PubMed

    Yin, Chang Shik; Park, Hi Joon; Chung, Joo-Ho; Lee, Hye-Jung; Lee, Byung-Cheol

    2009-12-01

    Four-constitution medicine (FCM), also known as Sasang constitutional medicine, and the heritage of the long history of individualized acupuncture medicine tradition, is one of the holistic and traditional systems of constitution to appraise and categorize individual differences into four major types. This study first reports a genome-wide association study on FCM, to explore the genetic basis of FCM and facilitate the integration of FCM with conventional individual differences research. Healthy individuals of the Korean population were classified into the four constitutional types (FCTs). A total of 353,202 single nucleotide polymorphisms (SNPs) were typed using whole genome amplified samples, and six-way comparison of FCM types provided lists of significantly differential SNPs. In one-to-one FCT comparisons, 15,944 SNPs were significantly differential, and 5 SNPs were commonly significant in all of the three comparisons. In one-to-two FCT comparisons, 22,616 SNPs were significantly differential, and 20 SNPs were commonly significant in all of the three comparison groups. This study presents the association between genome-wide SNP profiles and the categorization of the FCM, and it could further provide a starting point of genome-based identification and research of the constitutions of FCM.

  20. Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium

    PubMed Central

    Debette, Stéphanie; Ibrahim Verbaas, Carla A.; Bressler, Jan; Schuur, Maaike; Smith, Albert; Bis, Joshua C.; Davies, Gail; Wolf, Christiane; Gudnason, Vilmundur; Chibnik, Lori B.; Yang, Qiong; deStefano, Anita L.; de Quervain, Dominique J.F.; Srikanth, Velandai; Lahti, Jari; Grabe, Hans J.; Smith, Jennifer A.; Priebe, Lutz; Yu, Lei; Karbalai, Nazanin; Hayward, Caroline; Wilson, James F.; Campbell, Harry; Petrovic, Katja; Fornage, Myriam; Chauhan, Ganesh; Yeo, Robin; Boxall, Ruth; Becker, James; Stegle, Oliver; Mather, Karen A.; Chouraki, Vincent; Sun, Qi; Rose, Lynda M.; Resnick, Susan; Oldmeadow, Christopher; Kirin, Mirna; Wright, Alan F.; Jonsdottir, Maria K.; Au, Rhoda; Becker, Albert; Amin, Najaf; Nalls, Mike A.; Turner, Stephen T.; Kardia, Sharon L.R.; Oostra, Ben; Windham, Gwen; Coker, Laura H.; Zhao, Wei; Knopman, David S.; Heiss, Gerardo; Griswold, Michael E.; Gottesman, Rebecca F.; Vitart, Veronique; Hastie, Nicholas D.; Zgaga, Lina; Rudan, Igor; Polasek, Ozren; Holliday, Elizabeth G.; Schofield, Peter; Choi, Seung Hoan; Tanaka, Toshiko; An, Yang; Perry, Rodney T.; Kennedy, Richard E.; Sale, Michèle M.; Wang, Jing; Wadley, Virginia G.; Liewald, David C.; Ridker, Paul M.; Gow, Alan J.; Pattie, Alison; Starr, John M.; Porteous, David; Liu, Xuan; Thomson, Russell; Armstrong, Nicola J.; Eiriksdottir, Gudny; Assareh, Arezoo A.; Kochan, Nicole A.; Widen, Elisabeth; Palotie, Aarno; Hsieh, Yi-Chen; Eriksson, Johan G.; Vogler, Christian; van Swieten, John C.; Shulman, Joshua M.; Beiser, Alexa; Rotter, Jerome; Schmidt, Carsten O.; Hoffmann, Wolfgang; Nöthen, Markus M.; Ferrucci, Luigi; Attia, John; Uitterlinden, Andre G.; Amouyel, Philippe; Dartigues, Jean-François; Amieva, Hélène; Räikkönen, Katri; Garcia, Melissa; Wolf, Philip A.; Hofman, Albert; Longstreth, W.T.; Psaty, Bruce M.; Boerwinkle, Eric; DeJager, Philip L.; Sachdev, Perminder S.; Schmidt, Reinhold; Breteler, Monique M.B.; Teumer, Alexander; Lopez, Oscar L.; Cichon, Sven; Chasman, Daniel I.; Grodstein, Francine; Müller-Myhsok, Bertram; Tzourio, Christophe; Papassotiropoulos, Andreas; Bennett, David A.; Ikram, Arfan M.; Deary, Ian J.; van Duijn, Cornelia M.; Launer, Lenore; Fitzpatrick, Annette L.; Seshadri, Sudha; Mosley, Thomas H.

    2015-01-01

    BACKGROUND Memory performance in older persons can reflect genetic influences on cognitive function and dementing processes. We aimed to identify genetic contributions to verbal declarative memory in a community setting. METHODS We conducted genome-wide association studies for paragraph or word list delayed recall in 19 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, comprising 29,076 dementia-and stroke-free individuals of European descent, aged ≥45 years. Replication of suggestive associations (p < 5 × 10−6) was sought in 10,617 participants of European descent, 3811 African-Americans, and 1561 young adults. RESULTS rs4420638, near APOE, was associated with poorer delayed recall performance in discovery (p = 5.57 × 10−10) and replication cohorts (p = 5.65 × 10−8). This association was stronger for paragraph than word list delayed recall and in the oldest persons. Two associations with specific tests, in subsets of the total sample, reached genome-wide significance in combined analyses of discovery and replication (rs11074779 [HS3ST4], p = 3.11 × 10−8, and rs6813517 [SPOCK3], p = 2.58 × 10−8) near genes involved in immune response. A genetic score combining 58 independent suggestive memory risk variants was associated with increasing Alzheimer disease pathology in 725 autopsy samples. Association of memory risk loci with gene expression in 138 human hippocampus samples showed cis-associations with WDR48 and CLDN5, both related to ubiquitin metabolism. CONCLUSIONS This largest study to date exploring the genetics of memory function in ~ 40,000 older individuals revealed genome-wide associations and suggested an involvement of immune and ubiquitin pathways. PMID:25648963

  1. Genome-wide Association Study Implicates PARD3B-based AIDS Restriction

    PubMed Central

    Nelson, George W.; Lautenberger, James A.; Chinn, Leslie; McIntosh, Carl; Johnson, Randall C.; Sezgin, Efe; Kessing, Bailey; Malasky, Michael; Hendrickson, Sher L.; Pontius, Joan; Tang, Minzhong; An, Ping; Winkler, Cheryl A.; Limou, Sophie; Le Clerc, Sigrid; Delaneau, Olivier; Zagury, Jean-François; Schuitemaker, Hanneke; van Manen, Daniëlle; Bream, Jay H.; Gomperts, Edward D.; Buchbinder, Susan; Goedert, James J.; Kirk, Gregory D.; O'Brien, Stephen J.

    2011-01-01

    Background. Host genetic variation influences human immunodeficiency virus (HIV) infection and progression to AIDS. Here we used clinically well-characterized subjects from 5 pretreatment HIV/AIDS cohorts for a genome-wide association study to identify gene associations with rate of AIDS progression. Methods.  European American HIV seroconverters (n = 755) were interrogated for single-nucleotide polymorphisms (SNPs) (n = 700,022) associated with progression to AIDS 1987 (Cox proportional hazards regression analysis, co-dominant model). Results.  Association with slower progression was observed for SNPs in the gene PARD3B. One of these, rs11884476, reached genome-wide significance (relative hazard = 0.3; P =3. 370 × 10−9) after statistical correction for 700,022 SNPs and contributes 4.52% of the overall variance in AIDS progression in this study. Nine of the top-ranked SNPs define a PARD3B haplotype that also displays significant association with progression to AIDS (hazard ratio, 0.3; P = 3.220 × 10−8). One of these SNPs, rs10185378, is a predicted exonic splicing enhancer; significant alteration in the expression profile of PARD3B splicing transcripts was observed in B cell lines with alternate rs10185378 genotypes. This SNP was typed in European cohorts of rapid progressors and was found to be protective for AIDS 1993 definition (odds ratio, 0.43, P = .025). Conclusions. These observations suggest a potential unsuspected pathway of host genetic influence on the dynamics of AIDS progression. PMID:21502085

  2. Genome-wide signatures of population bottlenecks and diversifying selection in European wolves

    PubMed Central

    Pilot, M; Greco, C; vonHoldt, B M; Jędrzejewska, B; Randi, E; Jędrzejewski, W; Sidorovich, V E; Ostrander, E A; Wayne, R K

    2014-01-01

    Genomic resources developed for domesticated species provide powerful tools for studying the evolutionary history of their wild relatives. Here we use 61K single-nucleotide polymorphisms (SNPs) evenly spaced throughout the canine nuclear genome to analyse evolutionary relationships among the three largest European populations of grey wolves in comparison with other populations worldwide, and investigate genome-wide effects of demographic bottlenecks and signatures of selection. European wolves have a discontinuous range, with large and connected populations in Eastern Europe and relatively smaller, isolated populations in Italy and the Iberian Peninsula. Our results suggest a continuous decline in wolf numbers in Europe since the Late Pleistocene, and long-term isolation and bottlenecks in the Italian and Iberian populations following their divergence from the Eastern European population. The Italian and Iberian populations have low genetic variability and high linkage disequilibrium, but relatively few autozygous segments across the genome. This last characteristic clearly distinguishes them from populations that underwent recent drastic demographic declines or founder events, and implies long-term bottlenecks in these two populations. Although genetic drift due to spatial isolation and bottlenecks seems to be a major evolutionary force diversifying the European populations, we detected 35 loci that are putatively under diversifying selection. Two of these loci flank the canine platelet-derived growth factor gene, which affects bone growth and may influence differences in body size between wolf populations. This study demonstrates the power of population genomics for identifying genetic signals of demographic bottlenecks and detecting signatures of directional selection in bottlenecked populations, despite their low background variability. PMID:24346500

  3. Genomic prediction and genome-wide association analysis of female longevity in a composite beef cattle breed.

    PubMed

    Hamidi Hay, E; Roberts, A

    2017-04-01

    Longevity is a highly important trait to the efficiency of beef cattle production. The objective of this study was to evaluate the genomic prediction of longevity and identify genomic regions associated with this trait. The data used in this study consisted of 547 Composite Gene Combination cows (1/2 Red Angus, 1/4 Charolais, 1/4 Tarentaise) born from 2002 to 2011 genotyped with Illumina BovineSNP50 BeadChip. Three models were used to assess genomic prediction: Bayes A, Bayes B and GBLUP using a genomic relationship matrix. To identify genomic regions associated with longevity 2 approaches were adopted: single marker genome wide association and Bayesian approach using GenSel software. The genomic prediction accuracy was low 0.28, 0.25, and 0.22 for Bayes A, Bayes B and GBLUP, respectively. The single-marker genome wide association study (GWAS)identified 5 loci with -value less than 0.05 after false discovery correction: UA-IFASA-7571 on chromosome 19 (58.03 Mb), ARS-BFGL-BAC-15059 on BTA 1 (28.8 Mb), ARS-BFGL-NGS-104159 on BTA3 (29.4 Mb), ARS-BFGL-NGS-32882 on BTA9 (104.07 Mb) and ARS-BFGL-NGS-32883 on BTA25 (33.77 Mb). The Bayesian GWAS yielded 4 genomic regions overlapping with the single marker GWAS results. The region with the highest percentage of genomic variance (3.73%) was detected on chromosome 19. Both GWAS approaches adopted in this study showed evidence for association with various chromosomal locations.

  4. Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set.

    PubMed

    Kanai, Masahiro; Tanaka, Toshihiro; Okada, Yukinori

    2016-10-01

    To assess the statistical significance of associations between variants and traits, genome-wide association studies (GWAS) should employ an appropriate threshold that accounts for the massive burden of multiple testing in the study. Although most studies in the current literature commonly set a genome-wide significance threshold at the level of P=5.0 × 10 -8 , the adequacy of this value for respective populations has not been fully investigated. To empirically estimate thresholds for different ancestral populations, we conducted GWAS simulations using the 1000 Genomes Phase 3 data set for Africans (AFR), Europeans (EUR), Admixed Americans (AMR), East Asians (EAS) and South Asians (SAS). The estimated empirical genome-wide significance thresholds were P sig =3.24 × 10 -8 (AFR), 9.26 × 10 -8 (EUR), 1.83 × 10 -7 (AMR), 1.61 × 10 -7 (EAS) and 9.46 × 10 -8 (SAS). We additionally conducted trans-ethnic meta-analyses across all populations (ALL) and all populations except for AFR (ΔAFR), which yielded P sig =3.25 × 10 -8 (ALL) and 4.20 × 10 -8 (ΔAFR). Our results indicate that the current threshold (P=5.0 × 10 -8 ) is overly stringent for all ancestral populations except for Africans; however, we should employ a more stringent threshold when conducting a meta-analysis, regardless of the presence of African samples.

  5. Genome Wide Association Study of Sepsis in Extremely Premature Infants

    PubMed Central

    Srinivasan, Lakshmi; Page, Grier; Kirpalani, Haresh; Murray, Jeffrey C.; Das, Abhik; Higgins, Rosemary D.; Carlo, Waldemar A.; Bell, Edward F.; Goldberg, Ronald N.; Schibler, Kurt; Sood, Beena G.; Stevenson, David K.; Stoll, Barbara J.; Van Meurs, Krisa P.; Johnson, Karen J.; Levy, Joshua; McDonald, Scott A.; Zaterka-Baxter, Kristin M.; Kennedy, Kathleen A.; Sánchez, Pablo J.; Duara, Shahnaz; Walsh, Michele C.; Shankaran, Seetha; Wynn, James L.; Cotten, C. Michael

    2017-01-01

    Objective To identify genetic variants associated with sepsis (early and late-onset) using a genome wide association (GWA) analysis in a cohort of extremely premature infants. Study Design Previously generated GWA data from the Neonatal Research Network’s anonymized genomic database biorepository of extremely premature infants were used for this study. Sepsis was defined as culture-positive early-onset or late-onset sepsis or culture-proven meningitis. Genomic and whole genome amplified DNA was genotyped for 1.2 million single nucleotide polymorphisms (SNPs); 91% of SNPs were successfully genotyped. We imputed 7.2 million additional SNPs. P values and false discovery rates were calculated from multivariate logistic regression analysis adjusting for gender, gestational age and ancestry. Target statistical value was p<10−5. Secondary analyses assessed associations of SNPs with pathogen type. Pathway analyses were also run on primary and secondary end points. Results Data from 757 extremely premature infants were included: 351 infants with sepsis and 406 infants without sepsis. No SNPs reached genome-wide significance levels (5×10−8); two SNPs in proximity to FOXC2 and FOXL1 genes achieved target levels of significance. In secondary analyses, SNPs for ELMO1, IRAK2 (Gram positive sepsis), RALA, IMMP2L (Gram negative sepsis) and PIEZO2 (fungal sepsis) met target significance levels. Pathways associated with sepsis and Gram negative sepsis included gap junctions, fibroblast growth factor receptors, regulators of cell division and Interleukin-1 associated receptor kinase 2 (p values<0.001 and FDR<20%). Conclusions No SNPs met genome-wide significance in this cohort of ELBW infants; however, areas of potential association and pathways meriting further study were identified. PMID:28283553

  6. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms

    PubMed Central

    Nimmakayala, Padma; Abburi, Venkata L.; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C. V. Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K.

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9–2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers. PMID:27857720

  7. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms.

    PubMed

    Nimmakayala, Padma; Abburi, Venkata L; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C V Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum , indicating a population bottleneck during domestication of C. baccatum . In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum , 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index ( F ST ) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9-2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers.

  8. Computer vision and machine learning for robust phenotyping in genome-wide studies

    PubMed Central

    Zhang, Jiaoping; Naik, Hsiang Sing; Assefa, Teshale; Sarkar, Soumik; Reddy, R. V. Chowda; Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh K.

    2017-01-01

    Traditional evaluation of crop biotic and abiotic stresses are time-consuming and labor-intensive limiting the ability to dissect the genetic basis of quantitative traits. A machine learning (ML)-enabled image-phenotyping pipeline for the genetic studies of abiotic stress iron deficiency chlorosis (IDC) of soybean is reported. IDC classification and severity for an association panel of 461 diverse plant-introduction accessions was evaluated using an end-to-end phenotyping workflow. The workflow consisted of a multi-stage procedure including: (1) optimized protocols for consistent image capture across plant canopies, (2) canopy identification and registration from cluttered backgrounds, (3) extraction of domain expert informed features from the processed images to accurately represent IDC expression, and (4) supervised ML-based classifiers that linked the automatically extracted features with expert-rating equivalent IDC scores. ML-generated phenotypic data were subsequently utilized for the genome-wide association study and genomic prediction. The results illustrate the reliability and advantage of ML-enabled image-phenotyping pipeline by identifying previously reported locus and a novel locus harboring a gene homolog involved in iron acquisition. This study demonstrates a promising path for integrating the phenotyping pipeline into genomic prediction, and provides a systematic framework enabling robust and quicker phenotyping through ground-based systems. PMID:28272456

  9. Genome-wide association study of alcohol dependence

    PubMed Central

    Treutlein, Jens; Cichon, Sven; Ridinger, Monika; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Maier, Wolfgang; Moessner, Rainald; Gaebel, Wolfgang; Dahmen, Norbert; Fehr, Christoph; Scherbaum, Norbert; Steffens, Michael; Ludwig, Kerstin U.; Frank, Josef; Wichmann, H.- Erich; Schreiber, Stefan; Dragano, Nico; Sommer, Wolfgang; Leonardi-Essmann, Fernando; Lourdusamy, Anbarasu; Gebicke-Haerter, Peter; Wienker, Thomas F.; Sullivan, Patrick F.; Nöthen, Markus M.; Kiefer, Falk; Spanagel, Rainer; Mann, Karl; Rietschel, Marcella

    2014-01-01

    Context Identification of genes contributing to alcohol dependence will improve our understanding of the mechanisms underlying this disorder. Objective To identify susceptibility genes for alcohol dependence through a genome-wide association study (GWAS) and follow-up study in a population of German male inpatients with an early age at onset. Design The GWAS included 487 male inpatients with DSM-IV alcohol dependence with an age at onset below 28 years and 1,358 population based control individuals. The follow-up study included 1,024 male inpatients and 996 age-matched male controls. All subjects were of German descent. The GWAS tested 524,396 single nucleotide polymorphisms (SNPs). All SNPs with p<10-4 were subjected to the follow-up study. In addition, nominally significant SNPs from those genes that had also shown expression changes in rat brains after chronic alcohol consumption were selected for the follow-up step. Results The GWAS produced 121 SNPs with nominal p<10-4. These, together with 19 additional SNPs from homologs of rat genes showing differential expression, were genotyped in the follow-up sample. Fifteen SNPs showed significant association with the same allele as in the GWAS. In the combined analysis, two closely linked intergenic SNPs met genome-wide significance (rs7590720 p=9.72×10-9; rs1344694 p=1.69×10-8). They are located on chromosome 2q35, a region which has been implicated in linkage studies for alcohol phenotypes. Nine SNPs were located in genes, including CDH13 and ADH1C genes which have been reported to be associated with alcohol dependence. Conclusion This is the first GWAS and follow-up study to identify a genome-wide significant association in alcohol dependence. Further independent studies are required to confirm these findings. PMID:19581569

  10. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase.

    PubMed

    Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R; Jha, Rajiv Kumar; Cole, Stewart T; Nagaraja, Valakunja

    2017-05-01

    Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase.

  11. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase

    PubMed Central

    Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R.; Jha, Rajiv Kumar

    2017-01-01

    Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase. PMID:28463980

  12. Genome-wide analysis of tandem repeats in plants and green algae

    Treesearch

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  13. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa.

    PubMed

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-05-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10 -6 ), and rs7700147, an intergenic variant (P=2.93 × 10 -5 ). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes.

  14. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    PubMed Central

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Adan, R A H; Alfredsson, L; Ando, T; Andreassen, O A; Aschauer, H; Baker, J H; Barrett, J C; Bencko, V; Bergen, A W; Berrettini, W H; Birgegard, A; Boni, C; Boraska Perica, V; Brandt, H; Breen, G; Bulik, C M; Carlberg, L; Cassina, M; Cichon, S; Clementi, M; Cohen-Woods, S; Coleman, J; Cone, R D; Courtet, P; Crawford, S; Crow, S; Crowley, J; Danner, U N; Davis, O S P; de Zwaan, M; Dedoussis, G; Degortes, D; DeSocio, J E; Dick, D M; Dikeos, D; Dina, C; Ding, B; Dmitrzak-Weglarz, M; Docampo, E; Duncan, L; Egberts, K; Ehrlich, S; Escaramís, G; Esko, T; Espeseth, T; Estivill, X; Favaro, A; Fernández-Aranda, F; Fichter, M M; Finan, C; Fischer, K; Floyd, J A B; Foretova, L; Forzan, M; Franklin, C S; Gallinger, S; Gambaro, G; Gaspar, H A; Giegling, I; Gonidakis, F; Gorwood, P; Gratacos, M; Guillaume, S; Guo, Y; Hakonarson, H; Halmi, K A; Hatzikotoulas, K; Hauser, J; Hebebrand, J; Helder, S; Herms, S; Herpertz-Dahlmann, B; Herzog, W; Hilliard, C E; Hinney, A; Hübel, C; Huckins, L M; Hudson, J I; Huemer, J; Inoko, H; Janout, V; Jiménez-Murcia, S; Johnson, C; Julià, A; Juréus, A; Kalsi, G; Kaminska, D; Kaplan, A S; Kaprio, J; Karhunen, L; Karwautz, A; Kas, M J H; Kaye, W; Kennedy, J L; Keski-Rahkonen, A; Kiezebrink, K; Klareskog, L; Klump, K L; Knudsen, G P S; Koeleman, B P C; Koubek, D; La Via, M C; Landén, M; Le Hellard, S; Levitan, R D; Li, D; Lichtenstein, P; Lilenfeld, L; Lissowska, J; Lundervold, A; Magistretti, P; Maj, M; Mannik, K; Marsal, S; Martin, N; Mattingsdal, M; McDevitt, S; McGuffin, P; Merl, E; Metspalu, A; Meulenbelt, I; Micali, N; Mitchell, J; Mitchell, K; Monteleone, P; Monteleone, A M; Mortensen, P; Munn-Chernoff, M A; Navratilova, M; Nilsson, I; Norring, C; Ntalla, I; Ophoff, R A; O'Toole, J K; Palotie, A; Pante, J; Papezova, H; Pinto, D; Rabionet, R; Raevuori, A; Rajewski, A; Ramoz, N; Rayner, N W; Reichborn-Kjennerud, T; Ripatti, S; Roberts, M; Rotondo, A; Rujescu, D; Rybakowski, F; Santonastaso, P; Scherag, A; Scherer, S W; Schmidt, U; Schork, N J; Schosser, A; Slachtova, L; Sladek, R; Slagboom, P E; Slof-Op 't Landt, M C T; Slopien, A; Soranzo, N; Southam, L; Steen, V M; Strengman, E; Strober, M; Sullivan, P F; Szatkiewicz, J P; Szeszenia-Dabrowska, N; Tachmazidou, I; Tenconi, E; Thornton, L M; Tortorella, A; Tozzi, F; Treasure, J; Tsitsika, A; Tziouvas, K; van Elburg, A A; van Furth, E F; Wagner, G; Walton, E; Watson, H; Wichmann, H-E; Widen, E; Woodside, D B; Yanovski, J; Yao, S; Yilmaz, Z; Zeggini, E; Zerwas, S; Zipfel, S; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-01-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes. PMID:29155802

  15. Genome-wide association study of rice grain width variation.

    PubMed

    Zheng, Xiao-Ming; Gong, Tingting; Ou, Hong-Ling; Xue, Dayuan; Qiao, Weihua; Wang, Junrui; Liu, Sha; Yang, Qingwen; Olsen, Kenneth M

    2018-04-01

    Seed size is variable within many plant species, and understanding the underlying genetic factors can provide insights into mechanisms of local environmental adaptation. Here we make use of the abundant genomic and germplasm resources available for rice (Oryza sativa) to perform a large-scale genome-wide association study (GWAS) of grain width. Grain width varies widely within the crop and is also known to show climate-associated variation across populations of its wild progenitor. Using a filtered dataset of >1.9 million genome-wide SNPs in a sample of 570 cultivated and wild rice accessions, we performed GWAS with two complementary models, GLM and MLM. The models yielded 10 and 33 significant associations, respectively, and jointly yielded seven candidate locus regions, two of which have been previously identified. Analyses of nucleotide diversity and haplotype distributions at these loci revealed signatures of selection and patterns consistent with adaptive introgression of grain width alleles across rice variety groups. The results provide a 50% increase in the total number of rice grain width loci mapped to date and support a polygenic model whereby grain width is shaped by gene-by-environment interactions. These loci can potentially serve as candidates for studies of adaptive seed size variation in wild grass species.

  16. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins

    PubMed Central

    Postmus, Iris; Warren, Helen R; Trompet, Stella; Arsenault, Benoit J; Avery, Christy L; Bis, Joshua C; Chasman, Daniel I; de Keyser, Catherine E; Deshmukh, Harshal A; Evans, Daniel S; Feng, QiPing; Li, Xiaohui; Smit, Roelof AJ; Smith, Albert V; Sun, Fangui; Taylor, Kent D; Arnold, Alice M; Barnes, Michael R; Barratt, Bryan J; Betteridge, John; Boekholdt, S Matthijs; Boerwinkle, Eric; Buckley, Brendan M; Chen, Y-D Ida; de Craen, Anton JM; Cummings, Steven R; Denny, Joshua C; Dubé, Marie Pierre; Durrington, Paul N; Eiriksdottir, Gudny; Ford, Ian; Guo, Xiuqing; Harris, Tamara B; Heckbert, Susan R; Hofman, Albert; Hovingh, G Kees; Kastelein, John JP; Launer, Leonore J; Liu, Ching-Ti; Liu, Yongmei; Lumley, Thomas; McKeigue, Paul M; Munroe, Patricia B; Neil, Andrew; Nickerson, Deborah A; Nyberg, Fredrik; O’Brien, Eoin; O’Donnell, Christopher J; Post, Wendy; Poulter, Neil; Vasan, Ramachandran S; Rice, Kenneth; Rich, Stephen S; Rivadeneira, Fernando; Sattar, Naveed; Sever, Peter; Shaw-Hawkins, Sue; Shields, Denis C; Slagboom, P Eline; Smith, Nicholas L; Smith, Joshua D; Sotoodehnia, Nona; Stanton, Alice; Stott, David J; Stricker, Bruno H; Stürmer, Til; Uitterlinden, André G; Wei, Wei-Qi; Westendorp, Rudi GJ; Whitsel, Eric A; Wiggins, Kerri L; Wilke, Russell A; Ballantyne, Christie M; Colhoun, Helen M; Cupples, L Adrienne; Franco, Oscar H; Gudnason, Vilmundur; Hitman, Graham; Palmer, Colin NA; Psaty, Bruce M; Ridker, Paul M; Stafford, Jeanette M; Stein, Charles M; Tardif, Jean-Claude; Caulfield, Mark J; Jukema, J Wouter; Rotter, Jerome I; Krauss, Ronald M

    2017-01-01

    Background In addition to lowering low density lipoprotein-cholesterol (LDL-C), statin therapy also raises high density lipoprotein-cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. Methods and Results We performed a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced HDL-C changes. The 123 most promising signals with P<1×10−4 from the 16,769 statin-treated participants in the first analysis stage were followed up in an independent group of 10,951 statin-treated individuals, providing a total sample size of 27,720 individuals. The only associations of genome-wide significance (P<5×10−8) were between minor alleles at the CETP locus and greater HDL-C response to statin treatment. Conclusion Based on results from this study that included a relatively large sample size, we suggest that CETP may be the only detectable locus with common genetic variants that influence HDL-C response to statins substantially in individuals of European descent. Although CETP is known to be associated with HDL-C, we provide evidence that this pharmacogenetic effect is independent of its association with baseline HDL-C levels. PMID:27587472

  17. AID/APOBEC cytosine deaminase induces genome-wide kataegis

    PubMed Central

    2012-01-01

    Clusters of localized hypermutation in human breast cancer genomes, named “kataegis” (from the Greek for thunderstorm), are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events. Reviewers This article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov. PMID:23249472

  18. Shared genetic susceptibility to ischemic stroke and coronary artery disease – a genome-wide analysis of common variants

    PubMed Central

    Dichgans, Martin; Malik, Rainer; König, Inke R.; Rosand, Jonathan; Clarke, Robert; Gretarsdottir, Solveig; Thorleifsson, Gudmar; Mitchell, Braxton D.; Assimes, Themistocles L.; Levi, Christopher; O′Donnell, Christopher J.; Fornage, Myriam; Thorsteinsdottir, Unnur; Psaty, Bruce M.; Hengstenberg, Christian; Seshadri, Sudha; Erdmann, Jeanette; Bis, Joshua C.; Peters, Annette; Boncoraglio, Giorgio B.; März, Winfried; Meschia, James F.; Kathiresan, Sekar; Ikram, M. Arfan; McPherson, Ruth; Stefansson, Kari; Sudlow, Cathie; Reilly, Muredach P.; Thompson, John R.; Sharma, Pankaj; Hopewell, Jemma C.; Chambers, John C.; Watkins, Hugh; Rothwell, Peter M.; Roberts, Robert; Markus, Hugh S.; Samani, Nilesh J.; Farrall, Martin; Schunkert, Heribert

    2014-01-01

    Summary Background and Purpose Ischemic stroke (IS) and coronary artery disease (CAD) share several risk factors and each have a substantial heritability. We conducted a genome-wide analysis to evaluate the extent of shared genetic determination of the two diseases. Methods Genome-wide association data were obtained from the METASTROKE, CARDIoGRAM, and C4D consortia. We first analyzed common variants reaching a nominal threshold of significance (p<0.01) for CAD for their association with IS and vice versa. We then examined specific overlap across phenotypes for variants that reached a high threshold of significance. Finally, we conducted a joint meta-analysis on the combined phenotype of IS or CAD. Corresponding analyses were performed restricted to the 2,167 individuals with the ischemic large artery stroke (LAS) subtype. Results Common variants associated with CAD at p<0.01 were associated with a significant excess risk for IS and for LAS and vice versa. Among the 42 known genome-wide significant loci for CAD, three and five loci were significantly associated with IS and LAS, respectively. In the joint meta-analyses, 15 loci passed genome-wide significance (p<5×10-8) for the combined phenotype of IS or CAD and 17 loci passed genome-wide significance for LAS or CAD. Since these loci had prior evidence for genome-wide significance for CAD we specifically analyzed the respective signals for IS and LAS and found evidence for association at chr12q24/SH2B3 (pIS=1.62×10-07) and ABO (pIS =2.6×10-4) as well as at HDAC9 (pLAS=2.32×10-12), 9p21 (pLAS =3.70×10-6), RAI1-PEMT-RASD1 (pLAS =2.69×10-5), EDNRA (pLAS =7.29×10-4), and CYP17A1-CNNM2-NT5C2 (pLAS =4.9×10-4). Conclusions Our results demonstrate substantial overlap in the genetic risk of ischemic stroke and particularly the large artery stroke subtype with coronary artery disease. PMID:24262325

  19. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  20. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index.

    PubMed

    Minster, Ryan L; Sanders, Jason L; Singh, Jatinder; Kammerer, Candace M; Barmada, M Michael; Matteini, Amy M; Zhang, Qunyuan; Wojczynski, Mary K; Daw, E Warwick; Brody, Jennifer A; Arnold, Alice M; Lunetta, Kathryn L; Murabito, Joanne M; Christensen, Kaare; Perls, Thomas T; Province, Michael A; Newman, Anne B

    2015-08-01

    The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted for mortality risk in 3,140 individuals selected for familial longevity from the Long Life Family Study. The genome-wide association study used the Long Life Family Study as the discovery cohort and individuals from the Cardiovascular Health Study and the Framingham Heart Study as replication cohorts. There were no genome-wide significant findings from the genome-wide association study; however, several single-nucleotide polymorphisms near ZNF704 on chromosome 8q21.13 were suggestively associated with the HAI in the Long Life Family Study (p < 10(-) (6)) and nominally replicated in the Cardiovascular Health Study and Framingham Heart Study. Linkage results revealed significant evidence (log-odds score = 3.36) for a quantitative trait locus for mortality-optimized HAI in women on chromosome 9p24-p23. However, results of fine-mapping studies did not implicate any specific candidate genes within this region of interest. ZNF704 may be a potential candidate gene for studies of the genetic underpinnings of longevity. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. [Genome-wide association in type 2 diabetes and its clinical application].

    PubMed

    Esparza-Castro, Dagoberto; Andrade-Ancira, Francisco Javier; Merelo-Arias, Carlos Adrián; Cruz, Miguel; Valladares-Salgado, Adán

    2015-01-01

    Diabetes mellitus is a complex and chronical disease, which represents one of the biggest health issues the world, with alarming numbers and constantly increasing it demands the creation of new diagnostic, therapeutic and preventive techniques. The complete Genome Wide Association (GWA) in type 2 diabetes (T2D) is a useful research tool for the characterization of genetic markers and physiopathogenic pathways, with potential clinical utility either as a T2D risk prediction or its complications. In Mexico is necessary to make a comprehensive dissection of the genetic background of T2D by the complex genetic mosaic of our population and increase the knowledge of the molecular and pathophysiological mechanisms that lead to this condition. There are several genetic studies for the Mexican population, linked to the 1000 genomes project, which have led to define some specific genetic markers for our population which are not described in European populations, until the moment, 78 loci have been associated with T2D. Recently in the global meta-analysis, with the participation of Mexico, we demonstrated at least 7 new variants associated with T2D.

  2. The genome- and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens

    PubMed Central

    2013-01-01

    Background The brown planthopper (Nilaparvata lugens) is one of the most serious rice plant pests in Asia. N. lugens causes extensive rice damage by sucking rice phloem sap, which results in stunted plant growth and the transmission of plant viruses. Despite the importance of this insect pest, little is known about the immunological mechanisms occurring in this hemimetabolous insect species. Results In this study, we performed a genome- and transcriptome-wide analysis aiming at the immune-related genes. The transcriptome datasets include the N. lugens intestine, the developmental stage, wing formation, and sex-specific expression information that provided useful gene expression sequence data for the genome-wide analysis. As a result, we identified a large number of genes encoding N. lugens pattern recognition proteins, modulation proteins in the prophenoloxidase (proPO) activating cascade, immune effectors, and the signal transduction molecules involved in the immune pathways, including the Toll, Immune deficiency (Imd) and Janus kinase signal transducers and activators of transcription (JAK-STAT) pathways. The genome scale analysis revealed detailed information of the gene structure, distribution and transcription orientations in scaffolds. A comparison of the genome-available hemimetabolous and metabolous insect species indicate the differences in the immune-related gene constitution. We investigated the gene expression profiles with regards to how they responded to bacterial infections and tissue, as well as development and sex expression specificity. Conclusions The genome- and transcriptome-wide analysis of immune-related genes including pattern recognition and modulation molecules, immune effectors, and the signal transduction molecules involved in the immune pathways is an important step in determining the overall architecture and functional network of the immune components in N. lugens. Our findings provide the comprehensive gene sequence resource and

  3. Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations

    PubMed Central

    Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M

    2014-01-01

    Aims Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Methods Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Results Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10−9) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10−16), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. Conclusions In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. PMID:24528284

  4. Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations.

    PubMed

    Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M

    2014-08-01

    Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10(-9) ) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10(-16) ), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. © 2014 The British Pharmacological Society.

  5. A genome-wide approach to children's aggressive behavior: The EAGLE consortium.

    PubMed

    Pappa, Irene; St Pourcain, Beate; Benke, Kelly; Cavadino, Alana; Hakulinen, Christian; Nivard, Michel G; Nolte, Ilja M; Tiesler, Carla M T; Bakermans-Kranenburg, Marian J; Davies, Gareth E; Evans, David M; Geoffroy, Marie-Claude; Grallert, Harald; Groen-Blokhuis, Maria M; Hudziak, James J; Kemp, John P; Keltikangas-Järvinen, Liisa; McMahon, George; Mileva-Seitz, Viara R; Motazedi, Ehsan; Power, Christine; Raitakari, Olli T; Ring, Susan M; Rivadeneira, Fernando; Rodriguez, Alina; Scheet, Paul A; Seppälä, Ilkka; Snieder, Harold; Standl, Marie; Thiering, Elisabeth; Timpson, Nicholas J; Veenstra, René; Velders, Fleur P; Whitehouse, Andrew J O; Smith, George Davey; Heinrich, Joachim; Hypponen, Elina; Lehtimäki, Terho; Middeldorp, Christel M; Oldehinkel, Albertine J; Pennell, Craig E; Boomsma, Dorret I; Tiemeier, Henning

    2016-07-01

    Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of aggressive behavior in children. We analyzed data from nine population-based studies and assessed aggressive behavior using well-validated parent-reported questionnaires. This is the largest sample exploring children's aggressive behavior to date (N = 18,988), with measures in two developmental stages (N = 15,668 early childhood and N = 16,311 middle childhood/early adolescence). First, we estimated the additive genetic variance of children's aggressive behavior based on genome-wide SNP information, using genome-wide complex trait analysis (GCTA). Second, genetic associations within each study were assessed using a quasi-Poisson regression approach, capturing the highly right-skewed distribution of aggressive behavior. Third, we performed meta-analyses of genome-wide associations for both the total age-mixed sample and the two developmental stages. Finally, we performed a gene-based test using the summary statistics of the total sample. GCTA quantified variance tagged by common SNPs (10-54%). The meta-analysis of the total sample identified one region in chromosome 2 (2p12) at near genome-wide significance (top SNP rs11126630, P = 5.30 × 10(-8) ). The separate meta-analyses of the two developmental stages revealed suggestive evidence of association at the same locus. The gene-based analysis indicated association of variation within AVPR1A with aggressive behavior. We conclude that common variants at 2p12 show suggestive evidence for association with childhood aggression. Replication of these initial findings is needed, and further studies should clarify its biological meaning. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Genome-wide comparisons of phylogenetic similarities between partial genomic regions and the full-length genome in Hepatitis E virus genotyping.

    PubMed

    Wang, Shuai; Wei, Wei; Luo, Xuenong; Cai, Xuepeng

    2014-01-01

    Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV) have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3'-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.

  7. GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases

    PubMed Central

    Nguyen, Nhu T.; Liebers, Matthew; Topkar, Ved V.; Thapar, Vishal; Wyvekens, Nicolas; Khayter, Cyd; Iafrate, A. John; Le, Long P.; Aryee, Martin J.; Joung, J. Keith

    2014-01-01

    CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called Genome-wide Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-Seq), relies on capture of double-stranded oligodeoxynucleotides into breaks Application of GUIDE-Seq to thirteen RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or ChIP-Seq. GUIDE-Seq also identified RGN-independent genomic breakpoint ‘hotspots’. Finally, GUIDE-Seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases prior to clinical use. PMID:25513782

  8. Genome-wide association as a means to understanding the mammary gland

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing and related technologies have facilitated the creation of enormous public databases that catalogue genomic variation. These databases have facilitated a variety of approaches to discover new genes that regulate normal biology as well as disease. Genome wide association (...

  9. Parent-Of-Origin Effects in Autism Identified through Genome-Wide Linkage Analysis of 16,000 SNPs

    PubMed Central

    Fradin, Delphine; Cheslack-Postava, Keely; Ladd-Acosta, Christine; Newschaffer, Craig; Chakravarti, Aravinda; Arking, Dan E.; Feinberg, Andrew; Fallin, M. Daniele

    2010-01-01

    Background Autism is a common heritable neurodevelopmental disorder with complex etiology. Several genome-wide linkage and association scans have been carried out to identify regions harboring genes related to autism or autism spectrum disorders, with mixed results. Given the overlap in autism features with genetic abnormalities known to be associated with imprinting, one possible reason for lack of consistency would be the influence of parent-of-origin effects that may mask the ability to detect linkage and association. Methods and Findings We have performed a genome-wide linkage scan that accounts for potential parent-of-origin effects using 16,311 SNPs among families from the Autism Genetic Resource Exchange (AGRE) and the National Institute of Mental Health (NIMH) autism repository. We report parametric (GH, Genehunter) and allele-sharing linkage (Aspex) results using a broad spectrum disorder case definition. Paternal-origin genome-wide statistically significant linkage was observed on chromosomes 4 (LODGH = 3.79, empirical p<0.005 and LODAspex = 2.96, p = 0.008), 15 (LODGH = 3.09, empirical p<0.005 and LODAspex = 3.62, empirical p = 0.003) and 20 (LODGH = 3.36, empirical p<0.005 and LODAspex = 3.38, empirical p = 0.006). Conclusions These regions may harbor imprinted sites associated with the development of autism and offer fruitful domains for molecular investigation into the role of epigenetic mechanisms in autism. PMID:20824079

  10. A Genome-Wide Breast Cancer Scan in African Americans

    DTIC Science & Technology

    2011-06-01

    cancer in women of African ancestry. 13 References 1. Easton DF, P.K., Dunning AM, Pharoah PDP, Thompson D, Ballinger DG, et al . Genome...M, Hankinson, SE, et al . A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer...Millikan, R.C. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. Jama 295, 2492-502 ( 2006 ). 16 17. Huo, D., Ikpatt

  11. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    DTIC Science & Technology

    2011-09-01

    Almasy, L, Blangero, J. (2009) Human QTL linkage mapping. Genetica 136:333-340. Amos, CI. (2007) Successful design and conduct of genome-wide...quantitative trait loci. Genetica 136:237-243. Skol AD, Scott LJ, Abecasis GR, Boehnke M. (2006) Joint analysis is more efficient than replication

  12. Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed.

    PubMed

    Martínez-Montes, Ángel M; Fernández, Almudena; Muñoz, María; Noguera, Jose Luis; Folch, Josep M; Fernández, Ana I

    2018-01-01

    One of the major limitation for the application of QTL results in pig breeding and QTN identification has been the limited number of QTL effects validated in different animal material. The aim of the current work was to validate QTL regions through joint and specific genome wide association and haplotype analyses for growth, fatness and premier cut weights in three different genetic backgrounds, backcrosses based on Iberian pigs, which has a major role in the analysis due to its high productive relevance. The results revealed nine common QTL regions, three segregating in all three backcrosses on SSC1, 0-3 Mb, for body weight, on SSC2, 3-9 Mb, for loin bone-in weight, and on SSC7, 3 Mb, for shoulder weight, and six segregating in two of the three backcrosses, on SSC2, SSC4, SSC6 and SSC10 for backfat thickness, shoulder and ham weights. Besides, 18 QTL regions were specifically identified in one of the three backcrosses, five identified only in BC_LD, seven in BC_DU and six in BC_PI. Beyond identifying and validating QTL, candidate genes and gene variants within the most interesting regions have been explored using functional annotation, gene expression data and SNP identification from RNA-Seq data. The results allowed us to propose a promising list of candidate mutations, those identified in PDE10A, DHCR7, MFN2 and CCNY genes located within the common QTL regions and those identified near ssc-mir-103-1 considered PANK3 regulators to be further analysed.

  13. Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed

    PubMed Central

    Martínez-Montes, Ángel M.; Fernández, Almudena; Muñoz, María; Noguera, Jose Luis; Folch, Josep M.

    2018-01-01

    One of the major limitation for the application of QTL results in pig breeding and QTN identification has been the limited number of QTL effects validated in different animal material. The aim of the current work was to validate QTL regions through joint and specific genome wide association and haplotype analyses for growth, fatness and premier cut weights in three different genetic backgrounds, backcrosses based on Iberian pigs, which has a major role in the analysis due to its high productive relevance. The results revealed nine common QTL regions, three segregating in all three backcrosses on SSC1, 0–3 Mb, for body weight, on SSC2, 3–9 Mb, for loin bone-in weight, and on SSC7, 3 Mb, for shoulder weight, and six segregating in two of the three backcrosses, on SSC2, SSC4, SSC6 and SSC10 for backfat thickness, shoulder and ham weights. Besides, 18 QTL regions were specifically identified in one of the three backcrosses, five identified only in BC_LD, seven in BC_DU and six in BC_PI. Beyond identifying and validating QTL, candidate genes and gene variants within the most interesting regions have been explored using functional annotation, gene expression data and SNP identification from RNA-Seq data. The results allowed us to propose a promising list of candidate mutations, those identified in PDE10A, DHCR7, MFN2 and CCNY genes located within the common QTL regions and those identified near ssc-mir-103-1 considered PANK3 regulators to be further analysed. PMID:29522525

  14. Genome-wide selection components analysis in a fish with male pregnancy.

    PubMed

    Flanagan, Sarah P; Jones, Adam G

    2017-04-01

    A major goal of evolutionary biology is to identify the genome-level targets of natural and sexual selection. With the advent of next-generation sequencing, whole-genome selection components analysis provides a promising avenue in the search for loci affected by selection in nature. Here, we implement a genome-wide selection components analysis in the sex role reversed Gulf pipefish, Syngnathus scovelli. Our approach involves a double-digest restriction-site associated DNA sequencing (ddRAD-seq) technique, applied to adult females, nonpregnant males, pregnant males, and their offspring. An F ST comparison of allele frequencies among these groups reveals 47 genomic regions putatively experiencing sexual selection, as well as 468 regions showing a signature of differential viability selection between males and females. A complementary likelihood ratio test identifies similar patterns in the data as the F ST analysis. Sexual selection and viability selection both tend to favor the rare alleles in the population. Ultimately, we conclude that genome-wide selection components analysis can be a useful tool to complement other approaches in the effort to pinpoint genome-level targets of selection in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  15. Genome-wide expression profiling in pediatric septic shock

    PubMed Central

    Wong, Hector R.

    2013-01-01

    For nearly a decade, our research group has had the privilege of developing and mining a multi-center, microarray-based, genome-wide expression database of critically ill children (≤ 10 years of age) with septic shock. Using bioinformatic and systems biology approaches, the expression data generated through this discovery-oriented, exploratory approach have been leveraged for a variety of objectives, which will be reviewed. Fundamental observations include wide spread repression of gene programs corresponding to the adaptive immune system, and biologically significant differential patterns of gene expression across developmental age groups. The data have also identified gene expression-based subclasses of pediatric septic shock having clinically relevant phenotypic differences. The data have also been leveraged for the discovery of novel therapeutic targets, and for the discovery and development of novel stratification and diagnostic biomarkers. Almost a decade of genome-wide expression profiling in pediatric septic shock is now demonstrating tangible results. The studies have progressed from an initial discovery-oriented and exploratory phase, to a new phase where the data are being translated and applied to address several areas of clinical need. PMID:23329198

  16. A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice.

    PubMed

    McIntyre, Rebecca E; Nicod, Jérôme; Robles-Espinoza, Carla Daniela; Maciejowski, John; Cai, Na; Hill, Jennifer; Verstraten, Ruth; Iyer, Vivek; Rust, Alistair G; Balmus, Gabriel; Mott, Richard; Flint, Jonathan; Adams, David J

    2016-08-09

    In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males. Copyright © 2016 McIntyre et al.

  17. StereoGene: rapid estimation of genome-wide correlation of continuous or interval feature data.

    PubMed

    Stavrovskaya, Elena D; Niranjan, Tejasvi; Fertig, Elana J; Wheelan, Sarah J; Favorov, Alexander V; Mironov, Andrey A

    2017-10-15

    Genomics features with similar genome-wide distributions are generally hypothesized to be functionally related, for example, colocalization of histones and transcription start sites indicate chromatin regulation of transcription factor activity. Therefore, statistical algorithms to perform spatial, genome-wide correlation among genomic features are required. Here, we propose a method, StereoGene, that rapidly estimates genome-wide correlation among pairs of genomic features. These features may represent high-throughput data mapped to reference genome or sets of genomic annotations in that reference genome. StereoGene enables correlation of continuous data directly, avoiding the data binarization and subsequent data loss. Correlations are computed among neighboring genomic positions using kernel correlation. Representing the correlation as a function of the genome position, StereoGene outputs the local correlation track as part of the analysis. StereoGene also accounts for confounders such as input DNA by partial correlation. We apply our method to numerous comparisons of ChIP-Seq datasets from the Human Epigenome Atlas and FANTOM CAGE to demonstrate its wide applicability. We observe the changes in the correlation between epigenomic features across developmental trajectories of several tissue types consistent with known biology and find a novel spatial correlation of CAGE clusters with donor splice sites and with poly(A) sites. These analyses provide examples for the broad applicability of StereoGene for regulatory genomics. The StereoGene C ++ source code, program documentation, Galaxy integration scripts and examples are available from the project homepage http://stereogene.bioinf.fbb.msu.ru/. favorov@sensi.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population.

    PubMed

    Xavier, Alencar; Jarquin, Diego; Howard, Reka; Ramasubramanian, Vishnu; Specht, James E; Graef, George L; Beavis, William D; Diers, Brian W; Song, Qijian; Cregan, Perry B; Nelson, Randall; Mian, Rouf; Shannon, J Grover; McHale, Leah; Wang, Dechun; Schapaugh, William; Lorenz, Aaron J; Xu, Shizhong; Muir, William M; Rainey, Katy M

    2018-02-02

    Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations. Copyright © 2018 Xavier et al.

  19. Genome-Wide Negative Feedback Drives Transgenerational DNA Methylation Dynamics in Arabidopsis

    PubMed Central

    Kassam, Mohamed; Duvernois-Berthet, Evelyne; Cortijo, Sandra; Takashima, Kazuya; Saze, Hidetoshi; Toyoda, Atsushi; Fujiyama, Asao; Colot, Vincent; Kakutani, Tetsuji

    2015-01-01

    Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3’ regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome. PMID:25902052

  20. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering.

    PubMed

    Garst, Andrew D; Bassalo, Marcelo C; Pines, Gur; Lynch, Sean A; Halweg-Edwards, Andrea L; Liu, Rongming; Liang, Liya; Wang, Zhiwen; Zeitoun, Ramsey; Alexander, William G; Gill, Ryan T

    2017-01-01

    Improvements in DNA synthesis and sequencing have underpinned comprehensive assessment of gene function in bacteria and eukaryotes. Genome-wide analyses require high-throughput methods to generate mutations and analyze their phenotypes, but approaches to date have been unable to efficiently link the effects of mutations in coding regions or promoter elements in a highly parallel fashion. We report that CRISPR-Cas9 gene editing in combination with massively parallel oligomer synthesis can enable trackable editing on a genome-wide scale. Our method, CRISPR-enabled trackable genome engineering (CREATE), links each guide RNA to homologous repair cassettes that both edit loci and function as barcodes to track genotype-phenotype relationships. We apply CREATE to site saturation mutagenesis for protein engineering, reconstruction of adaptive laboratory evolution experiments, and identification of stress tolerance and antibiotic resistance genes in bacteria. We provide preliminary evidence that CREATE will work in yeast. We also provide a webtool to design multiplex CREATE libraries.

  1. Genome-Wide Landscapes of Human Local Adaptation in Asia

    PubMed Central

    Lu, Dongsheng; Xu, Shuhua

    2013-01-01

    Genetic studies of human local adaptation have been facilitated greatly by recent advances in high-throughput genotyping and sequencing technologies. However, few studies have investigated local adaptation in Asian populations on a genome-wide scale and with a high geographic resolution. In this study, taking advantage of the dense population coverage in Southeast Asia, which is the part of the world least studied in term of natural selection, we depicted genome-wide landscapes of local adaptations in 63 Asian populations representing the majority of linguistic and ethnic groups in Asia. Using genome-wide data analysis, we discovered many genes showing signs of local adaptation or natural selection. Notable examples, such as FOXQ1, MAST2, and CDH4, were found to play a role in hair follicle development and human cancer, signal transduction, and tumor repression, respectively. These showed strong indications of natural selection in Philippine Negritos, a group of aboriginal hunter-gatherers living in the Philippines. MTTP, which has associations with metabolic syndrome, body mass index, and insulin regulation, showed a strong signature of selection in Southeast Asians, including Indonesians. Functional annotation analysis revealed that genes and genetic variants underlying natural selections were generally enriched in the functional category of alternative splicing. Specifically, many genes showing significant difference with respect to allele frequency between northern and southern Asian populations were found to be associated with human height and growth and various immune pathways. In summary, this study contributes to the overall understanding of human local adaptation in Asia and has identified both known and novel signatures of natural selection in the human genome. PMID:23349834

  2. CMS: A Web-Based System for Visualization and Analysis of Genome-Wide Methylation Data of Human Cancers

    PubMed Central

    Huang, Yi-Wen; Roa, Juan C.; Goodfellow, Paul J.; Kizer, E. Lynette; Huang, Tim H. M.; Chen, Yidong

    2013-01-01

    Background DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Methodology/Principal Findings Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. Conclusions/Significance CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful

  3. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    PubMed

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  4. ParallABEL: an R library for generalized parallelization of genome-wide association studies

    PubMed Central

    2010-01-01

    Background Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files. Results Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity

  5. Genome-wide introgression among distantly related Heliconius butterfly species.

    PubMed

    Zhang, Wei; Dasmahapatra, Kanchon K; Mallet, James; Moreira, Gilson R P; Kronforst, Marcus R

    2016-02-27

    Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded 'postman' wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna. We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades. Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets.

  6. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  7. In Search of Genes Associated with Risk for Psychopathic Tendencies in Children: A Two-Stage Genome-Wide Association Study of Pooled DNA

    ERIC Educational Resources Information Center

    Viding, Essi; Hanscombe, Ken B.; Curtis, Charles J. C.; Davis, Oliver S. P.; Meaburn, Emma L.; Plomin, Robert

    2010-01-01

    Background: Quantitative genetic data from our group indicates that antisocial behaviour (AB) is strongly heritable when coupled with psychopathic, callous-unemotional (CU) personality traits. We have also demonstrated that the genetic influences for AB and CU overlap considerably. We conducted a genome-wide association scan that capitalises on…

  8. BiFCROS: A Low-Background Fluorescence Repressor Operator System for Labeling of Genomic Loci.

    PubMed

    Milbredt, Sarah; Waldminghaus, Torsten

    2017-06-07

    Fluorescence-based methods are widely used to analyze elementary cell processes such as DNA replication or chromosomal folding and segregation. Labeling DNA with a fluorescent protein allows the visualization of its temporal and spatial organization. One popular approach is FROS (fluorescence repressor operator system). This method specifically labels DNA in vivo through binding of a fusion of a fluorescent protein and a repressor protein to an operator array, which contains numerous copies of the repressor binding site integrated into the genomic site of interest. Bound fluorescent proteins are then visible as foci in microscopic analyses and can be distinguished from the background fluorescence caused by unbound fusion proteins. Even though this method is widely used, no attempt has been made so far to decrease the background fluorescence to facilitate analysis of the actual signal of interest. Here, we present a new method that greatly reduces the background signal of FROS. BiFCROS (Bimolecular Fluorescence Complementation and Repressor Operator System) is based on fusions of repressor proteins to halves of a split fluorescent protein. Binding to a hybrid FROS array results in fluorescence signals due to bimolecular fluorescence complementation. Only proteins bound to the hybrid FROS array fluoresce, greatly improving the signal to noise ratio compared to conventional FROS. We present the development of BiFCROS and discuss its potential to be used as a fast and single-cell readout for copy numbers of genetic loci. Copyright © 2017 Milbredt and Waldminghaus.

  9. BiFCROS: A Low-Background Fluorescence Repressor Operator System for Labeling of Genomic Loci

    PubMed Central

    Milbredt, Sarah; Waldminghaus, Torsten

    2017-01-01

    Fluorescence-based methods are widely used to analyze elementary cell processes such as DNA replication or chromosomal folding and segregation. Labeling DNA with a fluorescent protein allows the visualization of its temporal and spatial organization. One popular approach is FROS (fluorescence repressor operator system). This method specifically labels DNA in vivo through binding of a fusion of a fluorescent protein and a repressor protein to an operator array, which contains numerous copies of the repressor binding site integrated into the genomic site of interest. Bound fluorescent proteins are then visible as foci in microscopic analyses and can be distinguished from the background fluorescence caused by unbound fusion proteins. Even though this method is widely used, no attempt has been made so far to decrease the background fluorescence to facilitate analysis of the actual signal of interest. Here, we present a new method that greatly reduces the background signal of FROS. BiFCROS (Bimolecular Fluorescence Complementation and Repressor Operator System) is based on fusions of repressor proteins to halves of a split fluorescent protein. Binding to a hybrid FROS array results in fluorescence signals due to bimolecular fluorescence complementation. Only proteins bound to the hybrid FROS array fluoresce, greatly improving the signal to noise ratio compared to conventional FROS. We present the development of BiFCROS and discuss its potential to be used as a fast and single-cell readout for copy numbers of genetic loci. PMID:28450375

  10. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek's disease virus infection via analysis of allele-specific expression

    USDA-ARS?s Scientific Manuscript database

    Background Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally-occurring oncogenic alphaherpesvirus. We attempted to identify genes conferring MD resistance, by completing a genome-wide screen for allele-specific expr...

  11. Genome-Wide Linkage Analysis to Identify Genetic Modifiers of ALK Mutation Penetrance in Familial Neuroblastoma

    PubMed Central

    Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael

    2011-01-01

    Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404

  12. A genome-wide association study of chronic obstructive pulmonary disease in Hispanics.

    PubMed

    Chen, Wei; Brehm, John M; Manichaikul, Ani; Cho, Michael H; Boutaoui, Nadia; Yan, Qi; Burkart, Kristin M; Enright, Paul L; Rotter, Jerome I; Petersen, Hans; Leng, Shuguang; Obeidat, Ma'en; Bossé, Yohan; Brandsma, Corry-Anke; Hao, Ke; Rich, Stephen S; Powell, Rhea; Avila, Lydiana; Soto-Quiros, Manuel; Silverman, Edwin K; Tesfaigzi, Yohannes; Barr, R Graham; Celedón, Juan C

    2015-03-01

    Genome-wide association studies (GWAS) of chronic obstructive pulmonary disease (COPD) have identified disease-susceptibility loci, mostly in subjects of European descent. We hypothesized that by studying Hispanic populations we would be able to identify unique loci that contribute to COPD pathogenesis in Hispanics but remain undetected in GWAS of non-Hispanic populations. We conducted a metaanalysis of two GWAS of COPD in independent cohorts of Hispanics in Costa Rica and the United States (Multi-Ethnic Study of Atherosclerosis [MESA]). We performed a replication study of the top single-nucleotide polymorphisms in an independent Hispanic cohort in New Mexico (the Lovelace Smokers Cohort). We also attempted to replicate prior findings from genome-wide studies in non-Hispanic populations in Hispanic cohorts. We found no genome-wide significant association with COPD in our metaanalysis of Costa Rica and MESA. After combining the top results from this metaanalysis with those from our replication study in the Lovelace Smokers Cohort, we identified two single-nucleotide polymorphisms approaching genome-wide significance for an association with COPD. The first (rs858249, combined P value = 6.1 × 10(-8)) is near the genes KLHL7 and NUPL2 on chromosome 7. The second (rs286499, combined P value = 8.4 × 10(-8)) is located in an intron of DLG2. The two most significant single-nucleotide polymorphisms in FAM13A from a previous genome-wide study in non-Hispanics were associated with COPD in Hispanics. We have identified two novel loci (in or near the genes KLHL7/NUPL2 and DLG2) that may play a role in COPD pathogenesis in Hispanic populations.

  13. Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma

    PubMed Central

    Navarro, Antonia; Yin, Ping; Monsivais, Diana; Lin, Simon M.; Du, Pan; Wei, Jian-Jun; Bulun, Serdar E.

    2012-01-01

    Background Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown. Principal Findings We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62%) displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels. Conclusions These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women. PMID:22428009

  14. Genome-wide Association Study of Virologic Response with Efavirenz- or Abacavir-containing Regimens in AIDS Clinical Trials Group Protocols

    PubMed Central

    Lehmann, David S.; Ribaudo, Heather J.; Daar, Eric S.; Gulick, Roy M.; Haubrich, Richard H.; Robbins, Gregory K.; de Bakker, Paul I.W.; Haas, David W.; McLaren, Paul J.

    2015-01-01

    Background Efavirenz and abacavir are components of recommended first-line regimens for human immunodeficiency virus (HIV)-1 infection. We used genome-wide genotyping and clinical data to explore genetic associations with virologic failure among subjects randomized to efavirenz- or abacavir-containing regimens in AIDS Clinical Trials Group (ACTG) protocols. Methods Virologic response and genome-wide genotype data were available from treatment-naive subjects randomized to efavirenz-containing (n=1,596) or abacavir-containing (n=786) regimens in ACTG protocols 384, A5142, A5095, and A5202. Results Meta-analysis of association results across race/ethnic groups showed no genome-wide significant associations (p<5×10−8) with virologic response for either efavirenz or abacavir. Our sample size provided 80% power to detect a genotype relative risk of 1.8 for efavirenz, and 2.4 for abacavir. Analyses focused on CYP2B genotypes that define the lowest plasma efavirenz exposure stratum did not reveal associations, nor did analysis limited to gene sets predicted to be relevant to efavirenz and abacavir disposition. Conclusions No single polymorphism is strongly associated with virologic failure with efavirenz- or abacavir-containing regimens. Analyses to better consider context, and that minimize confounding by non-genetic factors, may reveal associations not apparent herein. PMID:25461247

  15. Genome-wide analysis of disease progression in age-related macular degeneration.

    PubMed

    Yan, Qi; Ding, Ying; Liu, Yi; Sun, Tao; Fritsche, Lars G; Clemons, Traci; Ratnapriya, Rinki; Klein, Michael L; Cook, Richard J; Liu, Yu; Fan, Ruzong; Wei, Lai; Abecasis, Gonçalo R; Swaroop, Anand; Chew, Emily Y; Weeks, Daniel E; Chen, Wei

    2018-03-01

    Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.

  16. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia

    PubMed Central

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-01-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38–0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (<0.2) in all soluble solid content and vigor of tree. Results suggest the potential of GWAS and GS for use in future breeding programs in Japanese pear. PMID:23641189

  17. Transethnic genome-wide scan identifies novel Alzheimer's disease loci.

    PubMed

    Jun, Gyungah R; Chung, Jaeyoon; Mez, Jesse; Barber, Robert; Beecham, Gary W; Bennett, David A; Buxbaum, Joseph D; Byrd, Goldie S; Carrasquillo, Minerva M; Crane, Paul K; Cruchaga, Carlos; De Jager, Philip; Ertekin-Taner, Nilufer; Evans, Denis; Fallin, M Danielle; Foroud, Tatiana M; Friedland, Robert P; Goate, Alison M; Graff-Radford, Neill R; Hendrie, Hugh; Hall, Kathleen S; Hamilton-Nelson, Kara L; Inzelberg, Rivka; Kamboh, M Ilyas; Kauwe, John S K; Kukull, Walter A; Kunkle, Brian W; Kuwano, Ryozo; Larson, Eric B; Logue, Mark W; Manly, Jennifer J; Martin, Eden R; Montine, Thomas J; Mukherjee, Shubhabrata; Naj, Adam; Reiman, Eric M; Reitz, Christiane; Sherva, Richard; St George-Hyslop, Peter H; Thornton, Timothy; Younkin, Steven G; Vardarajan, Badri N; Wang, Li-San; Wendlund, Jens R; Winslow, Ashley R; Haines, Jonathan; Mayeux, Richard; Pericak-Vance, Margaret A; Schellenberg, Gerard; Lunetta, Kathryn L; Farrer, Lindsay A

    2017-07-01

    Genetic loci for Alzheimer's disease (AD) have been identified in whites of European ancestry, but the genetic architecture of AD among other populations is less understood. We conducted a transethnic genome-wide association study (GWAS) for late-onset AD in Stage 1 sample including whites of European Ancestry, African-Americans, Japanese, and Israeli-Arabs assembled by the Alzheimer's Disease Genetics Consortium. Suggestive results from Stage 1 from novel loci were followed up using summarized results in the International Genomics Alzheimer's Project GWAS dataset. Genome-wide significant (GWS) associations in single-nucleotide polymorphism (SNP)-based tests (P < 5 × 10 -8 ) were identified for SNPs in PFDN1/HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1 and for the interaction of the (apolipoprotein E) APOE ε4 allele with NFIC SNP. We also obtained GWS evidence (P < 2.7 × 10 -6 ) for gene-based association in the total sample with a novel locus, TPBG (P = 1.8 × 10 -6 ). Our findings highlight the value of transethnic studies for identifying novel AD susceptibility loci. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones

    USGS Publications Warehouse

    Kovach, Ryan P.; Hand, Brian K.; Hohenlohe, Paul A.; Cosart, Ted F.; Boyer, Matthew C.; Neville, Helen H.; Muhlfeld, Clint C.; Amish, Stephen J.; Carim, Kellie; Narum, Shawn R.; Lowe, Winsor H.; Allendorf, Fred W.; Luikart, Gordon

    2016-01-01

    Evolutionary and ecological consequences of hybridization between native and invasive species are notoriously complicated because patterns of selection acting on non-native alleles can vary throughout the genome and across environments. Rapid advances in genomics now make it feasible to assess locus-specific and genome-wide patterns of natural selection acting on invasive introgression within and among natural populations occupying diverse environments. We quantified genome-wide patterns of admixture across multiple independent hybrid zones of native westslope cutthroat trout and invasive rainbow trout, the world's most widely introduced fish, by genotyping 339 individuals from 21 populations using 9380 species-diagnostic loci. A significantly greater proportion of the genome appeared to be under selection favouring native cutthroat trout (rather than rainbow trout), and this pattern was pervasive across the genome (detected on most chromosomes). Furthermore, selection against invasive alleles was consistent across populations and environments, even in those where rainbow trout were predicted to have a selective advantage (warm environments). These data corroborate field studies showing that hybrids between these species have lower fitness than the native taxa, and show that these fitness differences are due to selection favouring many native genes distributed widely throughout the genome.

  19. Meta-analysis of sex-specific genome-wide association studies.

    PubMed

    Magi, Reedik; Lindgren, Cecilia M; Morris, Andrew P

    2010-12-01

    Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this "missing heritability" is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional "sex-combined" approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data. © 2010 Wiley-Liss, Inc.

  20. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA.

    PubMed

    Skvortsova, Ksenia; Zotenko, Elena; Luu, Phuc-Loi; Gould, Cathryn M; Nair, Shalima S; Clark, Susan J; Stirzaker, Clare

    2017-01-01

    The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. We

  1. A Method to Evaluate Genome-Wide Methylation in Archival Formalin-Fixed, Paraffin-Embedded Ovarian Epithelial Cells

    PubMed Central

    Li, Qiling; Li, Min; Ma, Li; Li, Wenzhi; Wu, Xuehong; Richards, Jendai; Fu, Guoxing; Xu, Wei; Bythwood, Tameka; Li, Xu; Wang, Jianxin; Song, Qing

    2014-01-01

    Background The use of DNA from archival formalin and paraffin embedded (FFPE) tissue for genetic and epigenetic analyses may be problematic, since the DNA is often degraded and only limited amounts may be available. Thus, it is currently not known whether genome-wide methylation can be reliably assessed in DNA from archival FFPE tissue. Methodology/Principal Findings Ovarian tissues, which were obtained and formalin-fixed and paraffin-embedded in either 1999 or 2011, were sectioned and stained with hematoxylin-eosin (H&E).Epithelial cells were captured by laser micro dissection, and their DNA subjected to whole genomic bisulfite conversion, whole genomic polymerase chain reaction (PCR) amplification, and purification. Sequencing and software analyses were performed to identify the extent of genomic methylation. We observed that 31.7% of sequence reads from the DNA in the 1999 archival FFPE tissue, and 70.6% of the reads from the 2011 sample, could be matched with the genome. Methylation rates of CpG on the Watson and Crick strands were 32.2% and 45.5%, respectively, in the 1999 sample, and 65.1% and 42.7% in the 2011 sample. Conclusions/Significance We have developed an efficient method that allows DNA methylation to be assessed in archival FFPE tissue samples. PMID:25133528

  2. Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    PubMed Central

    2011-01-01

    Background Laribacter hongkongensis is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of L. hongkongensis, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances. Results A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the L. hongkongensis genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. L. hongkongensis is unique among closely related members of Neisseriaceae family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C4-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the L. hongkongensis genome also contained two copies of qseB/qseC homologues of the AI-3 quorum sensing system. Conclusions The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to

  3. Background selection as null hypothesis in population genomics: insights and challenges from Drosophila studies

    PubMed Central

    2017-01-01

    The consequences of selection at linked sites are multiple and widespread across the genomes of most species. Here, I first review the main concepts behind models of selection and linkage in recombining genomes, present the difficulty in parametrizing these models simply as a reduction in effective population size (Ne) and discuss the predicted impact of recombination rates on levels of diversity across genomes. Arguments are then put forward in favour of using a model of selection and linkage with neutral and deleterious mutations (i.e. the background selection model, BGS) as a sensible null hypothesis for investigating the presence of other forms of selection, such as balancing or positive. I also describe and compare two studies that have generated high-resolution landscapes of the predicted consequences of selection at linked sites in Drosophila melanogaster. Both studies show that BGS can explain a very large fraction of the observed variation in diversity across the whole genome, thus supporting its use as null model. Finally, I identify and discuss a number of caveats and challenges in studies of genetic hitchhiking that have been often overlooked, with several of them sharing a potential bias towards overestimating the evidence supporting recent selective sweeps to the detriment of a BGS explanation. One potential source of bias is the analysis of non-equilibrium populations: it is precisely because models of selection and linkage predict variation in Ne across chromosomes that demographic dynamics are not expected to be equivalent chromosome- or genome-wide. Other challenges include the use of incomplete genome annotations, the assumption of temporally stable recombination landscapes, the presence of genes under balancing selection and the consequences of ignoring non-crossover (gene conversion) recombination events. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID

  4. WordSeeker: concurrent bioinformatics software for discovering genome-wide patterns and word-based genomic signatures

    PubMed Central

    2010-01-01

    Background An important focus of genomic science is the discovery and characterization of all functional elements within genomes. In silico methods are used in genome studies to discover putative regulatory genomic elements (called words or motifs). Although a number of methods have been developed for motif discovery, most of them lack the scalability needed to analyze large genomic data sets. Methods This manuscript presents WordSeeker, an enumerative motif discovery toolkit that utilizes multi-core and distributed computational platforms to enable scalable analysis of genomic data. A controller task coordinates activities of worker nodes, each of which (1) enumerates a subset of the DNA word space and (2) scores words with a distributed Markov chain model. Results A comprehensive suite of performance tests was conducted to demonstrate the performance, speedup and efficiency of WordSeeker. The scalability of the toolkit enabled the analysis of the entire genome of Arabidopsis thaliana; the results of the analysis were integrated into The Arabidopsis Gene Regulatory Information Server (AGRIS). A public version of WordSeeker was deployed on the Glenn cluster at the Ohio Supercomputer Center. Conclusion WordSeeker effectively utilizes concurrent computing platforms to enable the identification of putative functional elements in genomic data sets. This capability facilitates the analysis of the large quantity of sequenced genomic data. PMID:21210985

  5. Multi-Instance Metric Transfer Learning for Genome-Wide Protein Function Prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Wu, Qingyao; Song, Hengjie; Ye, Bicui

    2017-02-06

    Multi-Instance (MI) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with multiple instances. Many studies in this literature attempted to find an appropriate Multi-Instance Learning (MIL) method for genome-wide protein function prediction under a usual assumption, the underlying distribution from testing data (target domain, i.e., TD) is the same as that from training data (source domain, i.e., SD). However, this assumption may be violated in real practice. To tackle this problem, in this paper, we propose a Multi-Instance Metric Transfer Learning (MIMTL) approach for genome-wide protein function prediction. In MIMTL, we first transfer the source domain distribution to the target domain distribution by utilizing the bag weights. Then, we construct a distance metric learning method with the reweighted bags. At last, we develop an alternative optimization scheme for MIMTL. Comprehensive experimental evidence on seven real-world organisms verifies the effectiveness and efficiency of the proposed MIMTL approach over several state-of-the-art methods.

  6. Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study

    PubMed Central

    Preuss, Michael; König, Inke R.; Thompson, John R.; Erdmann, Jeanette; Absher, Devin; Assimes, Themistocles L.; Blankenberg, Stefan; Boerwinkle, Eric; Chen, Li; Cupples, L. Adrienne; Hall, Alistair S.; Halperin, Eran; Hengstenberg, Christian; Holm, Hilma; Laaksonen, Reijo; Li, Mingyao; März, Winfried; McPherson, Ruth; Musunuru, Kiran; Nelson, Christopher P.; Burnett, Mary Susan; Epstein, Stephen E.; O’Donnell, Christopher J.; Quertermous, Thomas; Rader, Daniel J.; Roberts, Robert; Schillert, Arne; Stefansson, Kari; Stewart, Alexandre F.R.; Thorleifsson, Gudmar; Voight, Benjamin F.; Wells, George A.; Ziegler, Andreas; Kathiresan, Sekar; Reilly, Muredach P.; Samani, Nilesh J.; Schunkert, Heribert

    2011-01-01

    Background Recent genome-wide association studies (GWAS) of myocardial infarction (MI) and other forms of coronary artery disease (CAD) have led to the discovery of at least 13 genetic loci. In addition to the effect size, power to detect associations is largely driven by sample size. Therefore, to maximize the chance of finding novel susceptibility loci for CAD and MI, the Coronary ARtery DIsease Genome-wide Replication And Meta-analysis (CARDIoGRAM) consortium was formed. Methods and Results CARDIoGRAM combines data from all published and several unpublished GWAS in individuals with European ancestry; includes >22 000 cases with CAD, MI, or both and >60 000 controls; and unifies samples from the Atherosclerotic Disease VAscular functioN and genetiC Epidemiology study, CADomics, Cohorts for Heart and Aging Research in Genomic Epidemiology, deCODE, the German Myocardial Infarction Family Studies I, II, and III, Ludwigshafen Risk and Cardiovascular Heath Study/AtheroRemo, MedStar, Myocardial Infarction Genetics Consortium, Ottawa Heart Genomics Study, PennCath, and the Wellcome Trust Case Control Consortium. Genotyping was carried out on Affymetrix or Illumina platforms followed by imputation of genotypes in most studies. On average, 2.2 million single nucleotide polymorphisms were generated per study. The results from each study are combined using meta-analysis. As proof of principle, we meta-analyzed risk variants at 9p21 and found that rs1333049 confers a 29% increase in risk for MI per copy (P=2×10−20). Conclusion CARDIoGRAM is poised to contribute to our understanding of the role of common genetic variation on risk for CAD and MI. PMID:20923989

  7. A genome-wide perspective about the diversity and demographic history of seven Spanish goat breeds.

    PubMed

    Manunza, Arianna; Noce, Antonia; Serradilla, Juan Manuel; Goyache, Félix; Martínez, Amparo; Capote, Juan; Delgado, Juan Vicente; Jordana, Jordi; Muñoz, Eva; Molina, Antonio; Landi, Vincenzo; Pons, Agueda; Balteanu, Valentin; Traoré, Amadou; Vidilla, Montse; Sánchez-Rodríguez, Manuel; Sànchez, Armand; Cardoso, Tainã Figueiredo; Amills, Marcel

    2016-07-25

    The main goal of the current work was to infer the demographic history of seven Spanish goat breeds (Malagueña, Murciano-Granadina, Florida, Palmera, Mallorquina, Bermeya and Blanca de Rasquera) based on genome-wide diversity data generated with the Illumina Goat SNP50 BeadChip (population size, N = 176). Five additional populations from Europe (Saanen and Carpathian) and Africa (Tunisian, Djallonké and Sahel) were also included in this analysis (N = 80) for comparative purposes. Our results show that the genetic background of Spanish goats traces back mainly to European breeds although signs of North African admixture were detected in two Andalusian breeds (Malagueña and Murciano-Granadina). In general, observed and expected heterozygosities were quite similar across the seven Spanish goat breeds under analysis irrespective of their population size and conservation status. For the Mallorquina and Blanca de Rasquera breeds, which have suffered strong population declines during the past decades, we observed increased frequencies of large-sized (ROH), a finding that is consistent with recent inbreeding. In contrast, a substantial part of the genome of the Palmera goat breed comprised short ROH, which suggests a strong and ancient founder effect. Admixture with African goats, genetic drift and inbreeding have had different effects across the seven Spanish goat breeds analysed in the current work. This has generated distinct patterns of genome-wide diversity that provide new clues about the demographic history of these populations.

  8. A Genome-Wide Survey of Date Palm Cultivars Supports Two Major Subpopulations in Phoenix dactylifera.

    PubMed

    Mathew, Lisa S; Seidel, Michael A; George, Binu; Mathew, Sweety; Spannagl, Manuel; Haberer, Georg; Torres, Maria F; Al-Dous, Eman K; Al-Azwani, Eman K; Diboun, Ilhem; Krueger, Robert R; Mayer, Klaus F X; Mohamoud, Yasmin Ali; Suhre, Karsten; Malek, Joel A

    2015-05-08

    The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is intimately tied to the history of human civilization. There are hundreds of commercial cultivars with distinct fruit shapes, colors, and sizes growing mainly in arid lands from the west of North Africa to India. The origin of date palm domestication is still uncertain, and few studies have attempted to document genetic diversity across multiple regions. We conducted genotyping-by-sequencing on 70 female cultivar samples from across the date palm-growing regions, including four Phoenix species as the outgroup. Here, for the first time, we generate genome-wide genotyping data for 13,000-65,000 SNPs in a diverse set of date palm fruit and leaf samples. Our analysis provides the first genome-wide evidence confirming recent findings that the date palm cultivars segregate into two main regions of shared genetic background from North Africa and the Arabian Gulf. We identify genomic regions with high densities of geographically segregating SNPs and also observe higher levels of allele fixation on the recently described X-chromosome than on the autosomes. Our results fit a model with two centers of earliest cultivation including date palms autochthonous to North Africa. These results adjust our understanding of human agriculture history and will provide the foundation for more directed functional studies and a better understanding of genetic diversity in date palm. Copyright © 2015 Mathew et al.

  9. A Genome-Wide Survey of Date Palm Cultivars Supports Two Major Subpopulations in Phoenix dactylifera

    PubMed Central

    Mathew, Lisa S.; Seidel, Michael A.; George, Binu; Mathew, Sweety; Spannagl, Manuel; Haberer, Georg; Torres, Maria F.; Al-Dous, Eman K.; Al-Azwani, Eman K.; Diboun, Ilhem; Krueger, Robert R.; Mayer, Klaus F. X.; Mohamoud, Yasmin Ali; Suhre, Karsten; Malek, Joel A.

    2015-01-01

    The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is intimately tied to the history of human civilization. There are hundreds of commercial cultivars with distinct fruit shapes, colors, and sizes growing mainly in arid lands from the west of North Africa to India. The origin of date palm domestication is still uncertain, and few studies have attempted to document genetic diversity across multiple regions. We conducted genotyping-by-sequencing on 70 female cultivar samples from across the date palm–growing regions, including four Phoenix species as the outgroup. Here, for the first time, we generate genome-wide genotyping data for 13,000–65,000 SNPs in a diverse set of date palm fruit and leaf samples. Our analysis provides the first genome-wide evidence confirming recent findings that the date palm cultivars segregate into two main regions of shared genetic background from North Africa and the Arabian Gulf. We identify genomic regions with high densities of geographically segregating SNPs and also observe higher levels of allele fixation on the recently described X-chromosome than on the autosomes. Our results fit a model with two centers of earliest cultivation including date palms autochthonous to North Africa. These results adjust our understanding of human agriculture history and will provide the foundation for more directed functional studies and a better understanding of genetic diversity in date palm. PMID:25957276

  10. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome.

    PubMed

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M Vargas; Parker, Brian J; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J; Kelly, Theresa K; Vang, Søren; Andersson, Robin; Jones, Peter A; Hoover, Cindi A; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M; Sandelin, Albin; Gilbert, M Thomas P; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-03-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.

  11. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    PubMed Central

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M. Vargas; Parker, Brian J.; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J.; Kelly, Theresa K.; Vang, Søren; Andersson, Robin; Jones, Peter A.; Hoover, Cindi A.; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M.; Sandelin, Albin; Gilbert, M. Thomas P.; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics. PMID:24299735

  12. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research

    PubMed Central

    2016-01-01

    SUMMARY The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle. PMID:27357278

  13. A Genome-Wide Association Study of Chronic Obstructive Pulmonary Disease in Hispanics

    PubMed Central

    Chen, Wei; Brehm, John M.; Manichaikul, Ani; Cho, Michael H.; Boutaoui, Nadia; Yan, Qi; Burkart, Kristin M.; Enright, Paul L.; Rotter, Jerome I.; Petersen, Hans; Leng, Shuguang; Obeidat, Ma’en; Bossé, Yohan; Brandsma, Corry-Anke; Hao, Ke; Rich, Stephen S.; Powell, Rhea; Avila, Lydiana; Soto-Quiros, Manuel; Silverman, Edwin K.; Tesfaigzi, Yohannes; Barr, R. Graham

    2015-01-01

    Rationale: Genome-wide association studies (GWAS) of chronic obstructive pulmonary disease (COPD) have identified disease-susceptibility loci, mostly in subjects of European descent. Objectives: We hypothesized that by studying Hispanic populations we would be able to identify unique loci that contribute to COPD pathogenesis in Hispanics but remain undetected in GWAS of non-Hispanic populations. Methods: We conducted a metaanalysis of two GWAS of COPD in independent cohorts of Hispanics in Costa Rica and the United States (Multi-Ethnic Study of Atherosclerosis [MESA]). We performed a replication study of the top single-nucleotide polymorphisms in an independent Hispanic cohort in New Mexico (the Lovelace Smokers Cohort). We also attempted to replicate prior findings from genome-wide studies in non-Hispanic populations in Hispanic cohorts. Measurements and Main Results: We found no genome-wide significant association with COPD in our metaanalysis of Costa Rica and MESA. After combining the top results from this metaanalysis with those from our replication study in the Lovelace Smokers Cohort, we identified two single-nucleotide polymorphisms approaching genome-wide significance for an association with COPD. The first (rs858249, combined P value = 6.1 × 10−8) is near the genes KLHL7 and NUPL2 on chromosome 7. The second (rs286499, combined P value = 8.4 × 10−8) is located in an intron of DLG2. The two most significant single-nucleotide polymorphisms in FAM13A from a previous genome-wide study in non-Hispanics were associated with COPD in Hispanics. Conclusions: We have identified two novel loci (in or near the genes KLHL7/NUPL2 and DLG2) that may play a role in COPD pathogenesis in Hispanic populations. PMID:25584925

  14. Assessing Predictive Properties of Genome-Wide Selection in Soybeans

    PubMed Central

    Xavier, Alencar; Muir, William M.; Rainey, Katy Martin

    2016-01-01

    Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. PMID:27317786

  15. Genome-wide Association Study of Obsessive-Compulsive Disorder

    PubMed Central

    Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L

    2014-01-01

    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921

  16. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis.

    PubMed

    Kooke, Rik; Kruijer, Willem; Bours, Ralph; Becker, Frank; Kuhn, André; van de Geest, Henri; Buntjer, Jaap; Doeswijk, Timo; Guerra, José; Bouwmeester, Harro; Vreugdenhil, Dick; Keurentjes, Joost J B

    2016-04-01

    Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    PubMed

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  18. GStream: Improving SNP and CNV Coverage on Genome-Wide Association Studies

    PubMed Central

    Alonso, Arnald; Marsal, Sara; Tortosa, Raül; Canela-Xandri, Oriol; Julià, Antonio

    2013-01-01

    We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method. PMID:23844243

  19. Genome wide linkage disequilibrium and genetic structure in Sicilian dairy sheep breeds.

    PubMed

    Mastrangelo, Salvatore; Di Gerlando, Rosalia; Tolone, Marco; Tortorici, Lina; Sardina, Maria Teresa; Portolano, Baldassare

    2014-10-10

    The recent availability of sheep genome-wide SNP panels allows providing background information concerning genome structure in domestic animals. The aim of this work was to investigate the patterns of linkage disequilibrium (LD), the genetic diversity and population structure in Valle del Belice, Comisana, and Pinzirita dairy sheep breeds using the Illumina Ovine SNP50K Genotyping array. Average r (2) between adjacent SNPs across all chromosomes was 0.155 ± 0.204 for Valle del Belice, 0.156 ± 0.208 for Comisana, and 0.128 ± 0.188 for Pinzirita breeds, and some variations in LD value across chromosomes were observed, in particular for Valle del Belice and Comisana breeds. Average values of r (2) estimated for all pairwise combinations of SNPs pooled over all autosomes were 0.058 ± 0.023 for Valle del Belice, 0.056 ± 0.021 for Comisana, and 0.037 ± 0.017 for Pinzirita breeds. The LD declined as a function of distance and average r (2) was lower than the values observed in other sheep breeds. Consistency of results among the several used approaches (Principal component analysis, Bayesian clustering, F ST, Neighbor networks) showed that while Valle del Belice and Pinzirita breeds formed a unique cluster, Comisana breed showed the presence of substructure. In Valle del Belice breed, the high level of genetic differentiation within breed, the heterogeneous cluster in Admixture analysis, but at the same time the highest inbreeding coefficient, suggested that the breed had a wide genetic base with inbred individuals belonging to the same flock. The Sicilian breeds were characterized by low genetic differentiation and high level of admixture. Pinzirita breed displayed the highest genetic diversity (He, Ne) whereas the lowest value was found in Valle del Belice breed. This study has reported for the first time estimates of LD and genetic diversity from a genome-wide perspective in Sicilian dairy sheep breeds. Our results indicate that breeds formed non

  20. Hematopoietic transcriptional mechanisms: from locus-specific to genome-wide vantage points.

    PubMed

    DeVilbiss, Andrew W; Sanalkumar, Rajendran; Johnson, Kirby D; Keles, Sunduz; Bresnick, Emery H

    2014-08-01

    Hematopoiesis is an exquisitely regulated process in which stem cells in the developing embryo and the adult generate progenitor cells that give rise to all blood lineages. Master regulatory transcription factors control hematopoiesis by integrating signals from the microenvironment and dynamically establishing and maintaining genetic networks. One of the most rudimentary aspects of cell type-specific transcription factor function, how they occupy a highly restricted cohort of cis-elements in chromatin, remains poorly understood. Transformative technologic advances involving the coupling of next-generation DNA sequencing technology with the chromatin immunoprecipitation assay (ChIP-seq) have enabled genome-wide mapping of factor occupancy patterns. However, formidable problems remain; notably, ChIP-seq analysis yields hundreds to thousands of chromatin sites occupied by a given transcription factor, and only a fraction of the sites appear to be endowed with critical, non-redundant function. It has become en vogue to map transcription factor occupancy patterns genome-wide, while using powerful statistical tools to establish correlations to inform biology and mechanisms. With the advent of revolutionary genome editing technologies, one can now reach beyond correlations to conduct definitive hypothesis testing. This review focuses on key discoveries that have emerged during the path from single loci to genome-wide analyses, specifically in the context of hematopoietic transcriptional mechanisms. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  1. Creating a RAW264.7 CRISPR-Cas9 Genome Wide Library

    PubMed Central

    Napier, Brooke A; Monack, Denise M

    2017-01-01

    The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome editing tools are used in mammalian cells to knock-out specific genes of interest to elucidate gene function. The CRISPR-Cas9 system requires that the mammalian cell expresses Cas9 endonuclease, guide RNA (gRNA) to lead the endonuclease to the gene of interest, and the PAM sequence that links the Cas9 to the gRNA. CRISPR-Cas9 genome wide libraries are used to screen the effect of each gene in the genome on the cellular phenotype of interest, in an unbiased high-throughput manner. In this protocol, we describe our method of creating a CRISPR-Cas9 genome wide library in a transformed murine macrophage cell-line (RAW264.7). We have employed this library to identify novel mediators in the caspase-11 cell death pathway (Napier et al., 2016); however, this library can then be used to screen the importance of specific genes in multiple murine macrophage cellular pathways. PMID:28868328

  2. DNA Breaks and End Resection Measured Genome-wide by End Sequencing.

    PubMed

    Canela, Andres; Sridharan, Sriram; Sciascia, Nicholas; Tubbs, Anthony; Meltzer, Paul; Sleckman, Barry P; Nussenzweig, André

    2016-09-01

    DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice. Published by Elsevier Inc.

  3. A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes.

    PubMed

    Duan, Zhijun; Andronescu, Mirela; Schutz, Kevin; Lee, Choli; Shendure, Jay; Fields, Stanley; Noble, William S; Anthony Blau, C

    2012-11-01

    Accumulating evidence demonstrates that the three-dimensional (3D) organization of chromosomes within the eukaryotic nucleus reflects and influences genomic activities, including transcription, DNA replication, recombination and DNA repair. In order to uncover structure-function relationships, it is necessary first to understand the principles underlying the folding and the 3D arrangement of chromosomes. Chromosome conformation capture (3C) provides a powerful tool for detecting interactions within and between chromosomes. A high throughput derivative of 3C, chromosome conformation capture on chip (4C), executes a genome-wide interrogation of interaction partners for a given locus. We recently developed a new method, a derivative of 3C and 4C, which, similar to Hi-C, is capable of comprehensively identifying long-range chromosome interactions throughout a genome in an unbiased fashion. Hence, our method can be applied to decipher the 3D architectures of genomes. Here, we provide a detailed protocol for this method. Published by Elsevier Inc.

  4. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.

    PubMed

    Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W

    2018-05-31

    In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.

  5. Genome-wide significant loci for addiction and anxiety.

    PubMed

    Hodgson, K; Almasy, L; Knowles, E E M; Kent, J W; Curran, J E; Dyer, T D; Göring, H H H; Olvera, R L; Fox, P T; Pearlson, G D; Krystal, J H; Duggirala, R; Blangero, J; Glahn, D C

    2016-08-01

    Psychiatric comorbidity is common among individuals with addictive disorders, with patients frequently suffering from anxiety disorders. While the genetic architecture of comorbid addictive and anxiety disorders remains unclear, elucidating the genes involved could provide important insights into the underlying etiology. Here we examine a sample of 1284 Mexican-Americans from randomly selected extended pedigrees. Variance decomposition methods were used to examine the role of genetics in addiction phenotypes (lifetime history of alcohol dependence, drug dependence or chronic smoking) and various forms of clinically relevant anxiety. Genome-wide univariate and bivariate linkage scans were conducted to localize the chromosomal regions influencing these traits. Addiction phenotypes and anxiety were shown to be heritable and univariate genome-wide linkage scans revealed significant quantitative trait loci for drug dependence (14q13.2-q21.2, LOD=3.322) and a broad anxiety phenotype (12q24.32-q24.33, LOD=2.918). Significant positive genetic correlations were observed between anxiety and each of the addiction subtypes (ρg=0.550-0.655) and further investigation with bivariate linkage analyses identified significant pleiotropic signals for alcohol dependence-anxiety (9q33.1-q33.2, LOD=3.054) and drug dependence-anxiety (18p11.23-p11.22, LOD=3.425). This study confirms the shared genetic underpinnings of addiction and anxiety and identifies genomic loci involved in the etiology of these comorbid disorders. The linkage signal for anxiety on 12q24 spans the location of TMEM132D, an emerging gene of interest from previous GWAS of anxiety traits, whilst the bivariate linkage signal identified for anxiety-alcohol on 9q33 peak coincides with a region where rare CNVs have been associated with psychiatric disorders. Other signals identified implicate novel regions of the genome in addiction genetics. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics

    PubMed Central

    2012-01-01

    Susceptibility to HIV-1 and the clinical course after infection show a substantial heterogeneity between individuals. Part of this variability can be attributed to host genetic variation. Initial candidate gene studies have revealed interesting host factors that influence HIV infection, replication and pathogenesis. Recently, genome-wide association studies (GWAS) were utilized for unbiased searches at a genome-wide level to discover novel genetic factors and pathways involved in HIV-1 infection. This review gives an overview of findings from the GWAS performed on HIV infection, within different cohorts, with variable patient and phenotype selection. Furthermore, novel techniques and strategies in research that might contribute to the complete understanding of virus-host interactions and its role on the pathogenesis of HIV infection are discussed. PMID:22920050

  7. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary.

    PubMed

    Brynildsrud, Ola; Bohlin, Jon; Scheffer, Lonneke; Eldholm, Vegard

    2016-11-25

    Genome-wide association studies (GWAS) have become indispensable in human medicine and genomics, but very few have been carried out on bacteria. Here we introduce Scoary, an ultra-fast, easy-to-use, and widely applicable software tool that scores the components of the pan-genome for associations to observed phenotypic traits while accounting for population stratification, with minimal assumptions about evolutionary processes. We call our approach pan-GWAS to distinguish it from traditional, single nucleotide polymorphism (SNP)-based GWAS. Scoary is implemented in Python and is available under an open source GPLv3 license at https://github.com/AdmiralenOla/Scoary .

  8. A Genome-Wide Investigation of Autozygosity and Breast Cancer Risk

    DTIC Science & Technology

    2011-07-01

    cases than in controls, using logistic regression methods. Using genome-wide SNP data (525,000 SNPs) on 1,647 non-Hispanic white, early-onset...premenopausal breast cancer cases and 1,556 matched controls we identified over 65,000 individual RoHs and 423 genomic regions harbor RoHs for at least 10...we hypothesize that germline autozygosity is more common in breast cancer cases than in controls. More specifically, we hypothesize that there are

  9. Genome-wide analysis of WRKY gene family in Cucumis sativus

    PubMed Central

    2011-01-01

    Background WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. Results We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Conclusions Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes. PMID:21955985

  10. A hierarchical and modular approach to the discovery of robust associations in genome-wide association studies from pooled DNA samples

    PubMed Central

    Sebastiani, Paola; Zhao, Zhenming; Abad-Grau, Maria M; Riva, Alberto; Hartley, Stephen W; Sedgewick, Amanda E; Doria, Alessandro; Montano, Monty; Melista, Efthymia; Terry, Dellara; Perls, Thomas T; Steinberg, Martin H; Baldwin, Clinton T

    2008-01-01

    Background One of the challenges of the analysis of pooling-based genome wide association studies is to identify authentic associations among potentially thousands of false positive associations. Results We present a hierarchical and modular approach to the analysis of genome wide genotype data that incorporates quality control, linkage disequilibrium, physical distance and gene ontology to identify authentic associations among those found by statistical association tests. The method is developed for the allelic association analysis of pooled DNA samples, but it can be easily generalized to the analysis of individually genotyped samples. We evaluate the approach using data sets from diverse genome wide association studies including fetal hemoglobin levels in sickle cell anemia and a sample of centenarians and show that the approach is highly reproducible and allows for discovery at different levels of synthesis. Conclusion Results from the integration of Bayesian tests and other machine learning techniques with linkage disequilibrium data suggest that we do not need to use too stringent thresholds to reduce the number of false positive associations. This method yields increased power even with relatively small samples. In fact, our evaluation shows that the method can reach almost 70% sensitivity with samples of only 100 subjects. PMID:18194558

  11. Genome-wide association mapping of qualitatively inherited traits in a germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association (GWA) has been used as a tool for dissecting the genetic architecture of quantitatively inherited traits. We demonstrate here that GWA can also be highly useful for detecting the genomic locations of major genes governing categorically defined phenotype variants that exist fo...

  12. Complex interplay between neutral and adaptive evolution shaped differential genomic background and disease susceptibility along the Italian peninsula.

    PubMed

    Sazzini, Marco; Gnecchi Ruscone, Guido Alberto; Giuliani, Cristina; Sarno, Stefania; Quagliariello, Andrea; De Fanti, Sara; Boattini, Alessio; Gentilini, Davide; Fiorito, Giovanni; Catanoso, Mariagrazia; Boiardi, Luigi; Croci, Stefania; Macchioni, Pierluigi; Mantovani, Vilma; Di Blasio, Anna Maria; Matullo, Giuseppe; Salvarani, Carlo; Franceschi, Claudio; Pettener, Davide; Garagnani, Paolo; Luiselli, Donata

    2016-09-01

    The Italian peninsula has long represented a natural hub for human migrations across the Mediterranean area, being involved in several prehistoric and historical population movements. Coupled with a patchy environmental landscape entailing different ecological/cultural selective pressures, this might have produced peculiar patterns of population structure and local adaptations responsible for heterogeneous genomic background of present-day Italians. To disentangle this complex scenario, genome-wide data from 780 Italian individuals were generated and set into the context of European/Mediterranean genomic diversity by comparison with genotypes from 50 populations. To maximize possibility of pinpointing functional genomic regions that have played adaptive roles during Italian natural history, our survey included also ~250,000 exomic markers and ~20,000 coding/regulatory variants with well-established clinical relevance. This enabled fine-grained dissection of Italian population structure through the identification of clusters of genetically homogeneous provinces and of genomic regions underlying their local adaptations. Description of such patterns disclosed crucial implications for understanding differential susceptibility to some inflammatory/autoimmune disorders, coronary artery disease and type 2 diabetes of diverse Italian subpopulations, suggesting the evolutionary causes that made some of them particularly exposed to the metabolic and immune challenges imposed by dietary and lifestyle shifts that involved western societies in the last centuries.

  13. Genome-Wide Mapping of Loci Explaining Variance in Scrotal Circumference in Nellore Cattle

    PubMed Central

    Utsunomiya, Yuri T.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Matos, Márcia C.; Zavarez, Ludmilla B.; Ito, Pier K. R. K.; Pérez O'Brien, Ana M.; Sölkner, Johann; Porto-Neto, Laercio R.; Schenkel, Flávio S.; McEwan, John; Cole, John B.; da Silva, Marcos V. G. B.; Van Tassell, Curtis P.; Sonstegard, Tad S.; Garcia, José Fernando

    2014-01-01

    The reproductive performance of bulls has a high impact on the beef cattle industry. Scrotal circumference (SC) is the most recorded reproductive trait in beef herds, and is used as a major selection criterion to improve precocity and fertility. The characterization of genomic regions affecting SC can contribute to the identification of diagnostic markers for reproductive performance and uncover molecular mechanisms underlying complex aspects of bovine reproductive biology. In this paper, we report a genome-wide scan for chromosome segments explaining differences in SC, using data of 861 Nellore bulls (Bos indicus) genotyped for over 777,000 single nucleotide polymorphisms. Loci that excel from the genome background were identified on chromosomes 4, 6, 7, 10, 14, 18 and 21. The majority of these regions were previously found to be associated with reproductive and body size traits in cattle. The signal on chromosome 14 replicates the pleiotropic quantitative trait locus encompassing PLAG1 that affects male fertility in cattle and stature in several species. Based on intensive literature mining, SP4, MAGEL2, SH3RF2, PDE5A and SNAI2 are proposed as novel candidate genes for SC, as they affect growth and testicular size in other animal models. These findings contribute to linking reproductive phenotypes to gene functions, and may offer new insights on the molecular biology of male fertility. PMID:24558400

  14. Genome-wide meta-analyses identify novel loci associated with n-3 and n-6 polyunsaturated fatty acid levels in Chinese and European-ancestry populations.

    PubMed

    Hu, Yao; Li, Huaixing; Lu, Ling; Manichaikul, Ani; Zhu, Jingwen; Chen, Yii-Der I; Sun, Liang; Liang, Shuang; Siscovick, David S; Steffen, Lyn M; Tsai, Michael Y; Rich, Stephen S; Lemaitre, Rozenn N; Lin, Xu

    2016-03-15

    Epidemiological studies suggest that levels of n-3 and n-6 long-chain polyunsaturated fatty acids are associated with risk of cardio-metabolic outcomes across different ethnic groups. Recent genome-wide association studies in populations of European ancestry have identified several loci associated with plasma and/or erythrocyte polyunsaturated fatty acids. To identify additional novel loci, we carried out a genome-wide association study in two population-based cohorts consisting of 3521 Chinese participants, followed by a trans-ethnic meta-analysis with meta-analysis results from 8962 participants of European ancestry. Four novel loci (MYB, AGPAT4, DGAT2 and PPT2) reached genome-wide significance in the trans-ethnic meta-analysis (log10(Bayes Factor) ≥ 6). Of them, associations of MYB and AGPAT4 with docosatetraenoic acid (log10(Bayes Factor) = 11.5 and 8.69, respectively) also reached genome-wide significance in the Chinese-specific genome-wide association analyses (P = 4.15 × 10(-14) and 4.30 × 10(-12), respectively), while associations of DGAT2 with gamma-linolenic acid (log10(Bayes Factor) = 6.16) and of PPT2 with docosapentaenoic acid (log10(Bayes Factor) = 6.24) were nominally significant in both Chinese- and European-specific genome-wide association analyses (P ≤ 0.003). We also confirmed previously reported loci including FADS1, NTAN1, NRBF2, ELOVL2 and GCKR. Different effect sizes in FADS1 and independent association signals in ELOVL2 were observed. These results provide novel insight into the genetic background of polyunsaturated fatty acids and their differences between Chinese and European populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Genome-wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies.

    PubMed

    Willing, Eva-Maria; Bentzen, Paul; van Oosterhout, Cock; Hoffmann, Margarete; Cable, Joanne; Breden, Felix; Weigel, Detlef; Dreyer, Christine

    2010-03-01

    Adaptation of guppies (Poecilia reticulata) to contrasting upland and lowland habitats has been extensively studied with respect to behaviour, morphology and life history traits. Yet population history has not been studied at the whole-genome level. Although single nucleotide polymorphisms (SNPs) are the most abundant form of variation in many genomes and consequently very informative for a genome-wide picture of standing natural variation in populations, genome-wide SNP data are rarely available for wild vertebrates. Here we use genetically mapped SNP markers to comprehensively survey genetic variation within and among naturally occurring guppy populations from a wide geographic range in Trinidad and Venezuela. Results from three different clustering methods, Neighbor-net, principal component analysis (PCA) and Bayesian analysis show that the population substructure agrees with geographic separation and largely with previously hypothesized patterns of historical colonization. Within major drainages (Caroni, Oropouche and Northern), populations are genetically similar, but those in different geographic regions are highly divergent from one another, with some indications of ancient shared polymorphisms. Clear genomic signatures of a previous introduction experiment were seen, and we detected additional potential admixture events. Headwater populations were significantly less heterozygous than downstream populations. Pairwise F(ST) values revealed marked differences in allele frequencies among populations from different regions, and also among populations within the same region. F(ST) outlier methods indicated some regions of the genome as being under directional selection. Overall, this study demonstrates the power of a genome-wide SNP data set to inform for studies on natural variation, adaptation and evolution of wild populations.

  16. Genome-Wide Identification of Molecular Mimicry Candidates in Parasites

    PubMed Central

    Ludin, Philipp; Nilsson, Daniel; Mäser, Pascal

    2011-01-01

    Among the many strategies employed by parasites for immune evasion and host manipulation, one of the most fascinating is molecular mimicry. With genome sequences available for host and parasite, mimicry of linear amino acid epitopes can be investigated by comparative genomics. Here we developed an in silico pipeline for genome-wide identification of molecular mimicry candidate proteins or epitopes. The predicted proteome of a given parasite was broken down into overlapping fragments, each of which was screened for close hits in the human proteome. Control searches were carried out against unrelated, free-living eukaryotes to eliminate the generally conserved proteins, and with randomized versions of the parasite proteins to get an estimate of statistical significance. This simple but computation-intensive approach yielded interesting candidates from human-pathogenic parasites. From Plasmodium falciparum, it returned a 14 amino acid motif in several of the PfEMP1 variants identical to part of the heparin-binding domain in the immunosuppressive serum protein vitronectin. And in Brugia malayi, fragments were detected that matched to periphilin-1, a protein of cell-cell junctions involved in barrier formation. All the results are publicly available by means of mimicDB, a searchable online database for molecular mimicry candidates from pathogens. To our knowledge, this is the first genome-wide survey for molecular mimicry proteins in parasites. The strategy can be adopted to any pair of host and pathogen, once appropriate negative control organisms are chosen. MimicDB provides a host of new starting points to gain insights into the molecular nature of host-pathogen interactions. PMID:21408160

  17. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator

    PubMed Central

    Bonasio, Roberto; Li, Qiye; Lian, Jinmin; Mutti, Navdeep S.; Jin, Lijun; Zhao, Hongmei; Zhang, Pei; Wen, Ping; Xiang, Hui; Ding, Yun; Jin, Zonghui; Shen, Steven S.; Wang, Zongji; Wang, Wen; Wang, Jun; Berger, Shelley L.; Liebig, Jürgen; Zhang, Guojie; Reinberg, Danny

    2012-01-01

    SUMMARY Background Ant societies comprise individuals belonging to different castes characterized by specialized morphologies and behaviors. Because ant embryos can follow different developmental trajectories, epigenetic mechanisms must play a role in caste determination. Ants have a full set of DNA methyltransferase and their genomes contain methylcytosine. To determine the relationship between DNA methylation and phenotypic plasticity in ants, we obtained and compared the genome-wide methylomes of different castes and developmental stages of Camponotus floridanus and Harpegnathos saltator. Results In the ant genomes, methylcytosines are found both in CpG and non-CpG contexts and are strongly enriched at exons of active genes. Changes in exonic DNA methylation correlate with alternative splicing events such as exon skipping and alternative splice site selection. Several genes exhibit caste-specific and developmental changes in DNA methylation that are conserved between the two species, including genes involved in reproduction, telomere maintenance, and noncoding RNA metabolism. Several loci are methylated and expressed monoallelically, and in some cases the choice of methylated allele depends on the caste. Conclusions These first ant methylomes and their intra- and inter-species comparison reveal an exonic methylation pattern that points to a connection between DNA methylation and splicing. The presence of monoallelic DNA methylation and the methylation of non-CpG sites in all samples suggest roles in genome regulation in these social insects, including the intriguing possibility of parental or caste-specific genomic imprinting. PMID:22885060

  18. Pooled genome wide association detects association upstream of FCRL3 with Graves' disease.

    PubMed

    Khong, Jwu Jin; Burdon, Kathryn P; Lu, Yi; Laurie, Kate; Leonardos, Lefta; Baird, Paul N; Sahebjada, Srujana; Walsh, John P; Gajdatsy, Adam; Ebeling, Peter R; Hamblin, Peter Shane; Wong, Rosemary; Forehan, Simon P; Fourlanos, Spiros; Roberts, Anthony P; Doogue, Matthew; Selva, Dinesh; Montgomery, Grant W; Macgregor, Stuart; Craig, Jamie E

    2016-11-18

    Graves' disease is an autoimmune thyroid disease of complex inheritance. Multiple genetic susceptibility loci are thought to be involved in Graves' disease and it is therefore likely that these can be identified by genome wide association studies. This study aimed to determine if a genome wide association study, using a pooling methodology, could detect genomic loci associated with Graves' disease. Nineteen of the top ranking single nucleotide polymorphisms including HLA-DQA1 and C6orf10, were clustered within the Major Histo-compatibility Complex region on chromosome 6p21, with rs1613056 reaching genome wide significance (p = 5 × 10 -8 ). Technical validation of top ranking non-Major Histo-compatablity complex single nucleotide polymorphisms with individual genotyping in the discovery cohort revealed four single nucleotide polymorphisms with p ≤ 10 -4 . Rs17676303 on chromosome 1q23.1, located upstream of FCRL3, showed evidence of association with Graves' disease across the discovery, replication and combined cohorts. A second single nucleotide polymorphism rs9644119 downstream of DPYSL2 showed some evidence of association supported by finding in the replication cohort that warrants further study. Pooled genome wide association study identified a genetic variant upstream of FCRL3 as a susceptibility locus for Graves' disease in addition to those identified in the Major Histo-compatibility Complex. A second locus downstream of DPYSL2 is potentially a novel genetic variant in Graves' disease that requires further confirmation.

  19. A robust clustering algorithm for identifying problematic samples in genome-wide association studies.

    PubMed

    Bellenguez, Céline; Strange, Amy; Freeman, Colin; Donnelly, Peter; Spencer, Chris C A

    2012-01-01

    High-throughput genotyping arrays provide an efficient way to survey single nucleotide polymorphisms (SNPs) across the genome in large numbers of individuals. Downstream analysis of the data, for example in genome-wide association studies (GWAS), often involves statistical models of genotype frequencies across individuals. The complexities of the sample collection process and the potential for errors in the experimental assay can lead to biases and artefacts in an individual's inferred genotypes. Rather than attempting to model these complications, it has become a standard practice to remove individuals whose genome-wide data differ from the sample at large. Here we describe a simple, but robust, statistical algorithm to identify samples with atypical summaries of genome-wide variation. Its use as a semi-automated quality control tool is demonstrated using several summary statistics, selected to identify different potential problems, and it is applied to two different genotyping platforms and sample collections. The algorithm is written in R and is freely available at www.well.ox.ac.uk/chris-spencer chris.spencer@well.ox.ac.uk Supplementary data are available at Bioinformatics online.

  20. Genome-wide association studies in maize: praise and stargaze

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association study (GWAS) has appeared as a widespread strategy in decoding genotype-phenotype associations in many species thanks to technical advances in next-generation sequencing (NGS) applications. Maize is an ideal crop for GWAS and significant progress has been made in the last dec...

  1. A Genome-Wide Scan for Breast Cancer Risk Haplotypes among African American Women

    PubMed Central

    Song, Chi; Chen, Gary K.; Millikan, Robert C.; Ambrosone, Christine B.; John, Esther M.; Bernstein, Leslie; Zheng, Wei; Hu, Jennifer J.; Ziegler, Regina G.; Nyante, Sarah; Bandera, Elisa V.; Ingles, Sue A.; Press, Michael F.; Deming, Sandra L.; Rodriguez-Gil, Jorge L.; Chanock, Stephen J.; Wan, Peggy; Sheng, Xin; Pooler, Loreall C.; Van Den Berg, David J.; Le Marchand, Loic; Kolonel, Laurence N.; Henderson, Brian E.; Haiman, Chris A.; Stram, Daniel O.

    2013-01-01

    Genome-wide association studies (GWAS) simultaneously investigating hundreds of thousands of single nucleotide polymorphisms (SNP) have become a powerful tool in the investigation of new disease susceptibility loci. Haplotypes are sometimes thought to be superior to SNPs and are promising in genetic association analyses. The application of genome-wide haplotype analysis, however, is hindered by the complexity of haplotypes themselves and sophistication in computation. We systematically analyzed the haplotype effects for breast cancer risk among 5,761 African American women (3,016 cases and 2,745 controls) using a sliding window approach on the genome-wide scale. Three regions on chromosomes 1, 4 and 18 exhibited moderate haplotype effects. Furthermore, among 21 breast cancer susceptibility loci previously established in European populations, 10p15 and 14q24 are likely to harbor novel haplotype effects. We also proposed a heuristic of determining the significance level and the effective number of independent tests by the permutation analysis on chromosome 22 data. It suggests that the effective number was approximately half of the total (7,794 out of 15,645), thus the half number could serve as a quick reference to evaluating genome-wide significance if a similar sliding window approach of haplotype analysis is adopted in similar populations using similar genotype density. PMID:23468962

  2. Genome-wide patterns of selection in 230 ancient Eurasians

    PubMed Central

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R.; Llamas, Bastien; Dryomov, Stanislav; Pickrel, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vayacheslav; Rojo Guerra, Manuel A.; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W.; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2016-01-01

    Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height. PMID:26595274

  3. Genome-wide association studies of obesity and metabolic syndrome.

    PubMed

    Fall, Tove; Ingelsson, Erik

    2014-01-25

    Until just a few years ago, the genetic determinants of obesity and metabolic syndrome were largely unknown, with the exception of a few forms of monogenic extreme obesity. Since genome-wide association studies (GWAS) became available, large advances have been made. The first single nucleotide polymorphism robustly associated with increased body mass index (BMI) was in 2007 mapped to a gene with for the time unknown function. This gene, now known as fat mass and obesity associated (FTO) has been repeatedly replicated in several ethnicities and is affecting obesity by regulating appetite. Since the first report from a GWAS of obesity, an increasing number of markers have been shown to be associated with BMI, other measures of obesity or fat distribution and metabolic syndrome. This systematic review of obesity GWAS will summarize genome-wide significant findings for obesity and metabolic syndrome and briefly give a few suggestions of what is to be expected in the next few years. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Microbial genome-wide association studies: lessons from human GWAS.

    PubMed

    Power, Robert A; Parkhill, Julian; de Oliveira, Tulio

    2017-01-01

    The reduced costs of sequencing have led to whole-genome sequences for a large number of microorganisms, enabling the application of microbial genome-wide association studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and identifying potential drug targets, microbial GWAS are likely to further advance our understanding of infectious diseases. These advances include insights into pressing global health problems, such as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can direct the future of the field.

  5. A GENOME-WIDE LINKAGE AND ASSOCIATION SCAN REVEALS NOVEL LOCI FOR AUTISM

    PubMed Central

    Weiss, Lauren A.; Arking, Dan E.

    2009-01-01

    Summary Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific susceptibility genes have thus far met with limited success 1. Genome-wide association studies (GWAS) using half a million or more markers, particularly those with very large sample sizes achieved through meta-analysis, have shown great success in mapping genes for other complex genetic traits (http://www.genome.gov/26525384). Consequently, we initiated a linkage and association mapping study using half a million genome-wide SNPs in a common set of 1,031 multiplex autism families (1,553 affected offspring). We identified regions of suggestive and significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield genome-wide significant associations; however, genotyping of top hits in additional families revealed a SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with autism (P = 2 × 10−7). We also demonstrated that expression of SEMA5A is reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility gene. The linkage regions reported here provide targets for rare variation screening while the discovery of a single novel association demonstrates the action of common variants. PMID:19812673

  6. MAGNAMWAR: an R package for genome-wide association studies of bacterial orthologs.

    PubMed

    Sexton, Corinne E; Smith, Hayden Z; Newell, Peter D; Douglas, Angela E; Chaston, John M

    2018-06-01

    Here we report on an R package for genome-wide association studies of orthologous genes in bacteria. Before using the software, orthologs from bacterial genomes or metagenomes are defined using local or online implementations of OrthoMCL. These presence-absence patterns are statistically associated with variation in user-collected phenotypes using the Mono-Associated GNotobiotic Animals Metagenome-Wide Association R package (MAGNAMWAR). Genotype-phenotype associations can be performed with several different statistical tests based on the type and distribution of the data. MAGNAMWAR is available on CRAN. john_chaston@byu.edu.

  7. Genome-Wide Association of Implantable Cardioverter-Defibrillator Activation With Life-Threatening Arrhythmias

    PubMed Central

    Murray, Sarah S.; Smith, Erin N.; Villarasa, Nikki; Nahey, Tara; Lande, Jeff; Goldberg, Harold; Shaw, Marian; Rosenthal, Lawrence; Ramza, Brian; Alaeddini, Jamshid; Han, Xinqiang; Damani, Samir; Soykan, Orhan; Kowal, Robert C.; Topol, Eric J.

    2012-01-01

    Objectives To identify genetic factors that would be predictive of individuals who require an implantable cardioverter-defibrillator (ICD), we conducted a genome-wide association study among individuals with an ICD who experienced a life-threatening arrhythmia (LTA; cases) vs. those who did not over at least a 3-year period (controls). Background Most individuals that receive implantable cardioverter-defibrillators never experience a life-threatening arrhythmia. Genetic factors may help identify who is most at risk. Methods Patients with an ICD and extended follow-up were recruited from 34 clinical sites with the goal of oversampling those who had experienced LTA, with a cumulative 607 cases and 297 controls included in the analysis. A total of 1,006 Caucasian patients were enrolled during a time period of 13 months. Arrhythmia status of 904 patients could be confirmed and their genomic data were included in the analysis. In this cohort, there were 704 males, 200 females, and the average age was 73.3 years. We genotyped DNA samples using the Illumina Human660 W Genotyping BeadChip and tested for association between genotype at common variants and the phenotype of having an LTA. Results and Conclusions We did not find any associations reaching genome-wide significance, with the strongest association at chromosome 13, rs11856574 at P = 5×10−6. Loci previously implicated in phenotypes such as QT interval (measure of the time between the start of the Q wave and the end of the T wave as measured by electrocardiogram) were not found to be significantly associated with having an LTA. Although powered to detect such associations, we did not find common genetic variants of large effect associated with having a LTA in those of European descent. This indicates that common gene variants cannot be used at this time to guide ICD risk-stratification. Trial Registration ClinicalTrials.gov NCT00664807 PMID:22247754

  8. Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns.

    PubMed

    Grusz, Amanda L; Rothfels, Carl J; Schuettpelz, Eric

    2016-08-30

    Transcriptomics in non-model plant systems has recently reached a point where the examination of nuclear genome-wide patterns in understudied groups is an achievable reality. This progress is especially notable in evolutionary studies of ferns, for which molecular resources to date have been derived primarily from the plastid genome. Here, we utilize transcriptome data in the first genome-wide comparative study of molecular evolutionary rate in ferns. We focus on the ecologically diverse family Pteridaceae, which comprises about 10 % of fern diversity and includes the enigmatic vittarioid ferns-an epiphytic, tropical lineage known for dramatically reduced morphologies and radically elongated phylogenetic branch lengths. Using expressed sequence data for 2091 loci, we perform pairwise comparisons of molecular evolutionary rate among 12 species spanning the three largest clades in the family and ask whether previously documented heterogeneity in plastid substitution rates is reflected in their nuclear genomes. We then inquire whether variation in evolutionary rate is being shaped by genes belonging to specific functional categories and test for differential patterns of selection. We find significant, genome-wide differences in evolutionary rate for vittarioid ferns relative to all other lineages within the Pteridaceae, but we recover few significant correlations between faster/slower vittarioid loci and known functional gene categories. We demonstrate that the faster rates characteristic of the vittarioid ferns are likely not driven by positive selection, nor are they unique to any particular type of nucleotide substitution. Our results reinforce recently reviewed mechanisms hypothesized to shape molecular evolutionary rates in vittarioid ferns and provide novel insight into substitution rate variation both within and among fern nuclear genomes.

  9. A review of genome-wide approaches to study the genetic basis for spermatogenic defects.

    PubMed

    Aston, Kenneth I; Conrad, Donald F

    2013-01-01

    Rapidly advancing tools for genetic analysis on a genome-wide scale have been instrumental in identifying the genetic bases for many complex diseases. About half of male infertility cases are of unknown etiology in spite of tremendous efforts to characterize the genetic basis for the disorder. Advancing our understanding of the genetic basis for male infertility will require the application of established and emerging genomic tools. This chapter introduces many of the tools available for genetic studies on a genome-wide scale along with principles of study design and data analysis.

  10. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia.

    PubMed

    Li, Zhiqiang; Chen, Jianhua; Yu, Hao; He, Lin; Xu, Yifeng; Zhang, Dai; Yi, Qizhong; Li, Changgui; Li, Xingwang; Shen, Jiawei; Song, Zhijian; Ji, Weidong; Wang, Meng; Zhou, Juan; Chen, Boyu; Liu, Yahui; Wang, Jiqiang; Wang, Peng; Yang, Ping; Wang, Qingzhong; Feng, Guoyin; Liu, Benxiu; Sun, Wensheng; Li, Baojie; He, Guang; Li, Weidong; Wan, Chunling; Xu, Qi; Li, Wenjin; Wen, Zujia; Liu, Ke; Huang, Fang; Ji, Jue; Ripke, Stephan; Yue, Weihua; Sullivan, Patrick F; O'Donovan, Michael C; Shi, Yongyong

    2017-11-01

    We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia.

  11. Partitioning heritability by functional annotation using genome-wide association summary statistics.

    PubMed

    Finucane, Hilary K; Bulik-Sullivan, Brendan; Gusev, Alexander; Trynka, Gosia; Reshef, Yakir; Loh, Po-Ru; Anttila, Verneri; Xu, Han; Zang, Chongzhi; Farh, Kyle; Ripke, Stephan; Day, Felix R; Purcell, Shaun; Stahl, Eli; Lindstrom, Sara; Perry, John R B; Okada, Yukinori; Raychaudhuri, Soumya; Daly, Mark J; Patterson, Nick; Neale, Benjamin M; Price, Alkes L

    2015-11-01

    Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here we analyze a broad set of functional elements, including cell type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits with an average sample size of 73,599. To enable this analysis, we introduce a new method, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers. This new method is computationally tractable at very large sample sizes and leverages genome-wide information. Our findings include a large enrichment of heritability in conserved regions across many traits, a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers and many cell type-specific enrichments, including significant enrichment of central nervous system cell types in the heritability of body mass index, age at menarche, educational attainment and smoking behavior.

  12. Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease

    PubMed Central

    Nalls, Michael A.; Martinez, Maria; Schulte, Claudia; Holmans, Peter; Gasser, Thomas; Hardy, John; Singleton, Andrew B.; Wood, Nicholas W.; Brice, Alexis; Heutink, Peter; Williams, Nigel; Morris, Huw R.

    2012-01-01

    Parkinson's disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes, PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder, which may appear in extended runs of homozygosity. We carried out genome wide SNP genotyping to look for extended runs of homozygosity (ROHs) in 1,445 EOPD cases and 6,987 controls. Logistic regression analyses showed an increased level of genomic homozygosity in EOPD cases compared to controls. These differences are larger for ROH of 9 Mb and above, where there is a more than three-fold increase in the proportion of cases carrying a ROH. These differences are not explained by occult recessive mutations at existing loci. Controlling for genome wide homozygosity in logistic regression analyses increased the differences between cases and controls, indicating that in EOPD cases ROHs do not simply relate to genome wide measures of inbreeding. Homozygosity at a locus on chromosome19p13.3 was identified as being more common in EOPD cases as compared to controls. Sequencing analysis of genes and predicted transcripts within this locus failed to identify a novel mutation causing EOPD in our cohort. There is an increased rate of genome wide homozygosity in EOPD, as measured by an increase in ROHs. These ROHs are a signature of inbreeding and do not necessarily harbour disease-causing genetic variants. Although there might be other regions of interest apart from chromosome 19p13.3, we lack the power to detect them with this analysis. PMID:22427796

  13. Genome-Wide Association of Heroin Dependence in Han Chinese.

    PubMed

    Kalsi, Gursharan; Euesden, Jack; Coleman, Jonathan R I; Ducci, Francesca; Aliev, Fazil; Newhouse, Stephen J; Liu, Xiehe; Ma, Xiaohong; Wang, Yingcheng; Collier, David A; Asherson, Philip; Li, Tao; Breen, Gerome

    2016-01-01

    Drug addiction is a costly and recurring healthcare problem, necessitating a need to understand risk factors and mechanisms of addiction, and to identify new biomarkers. To date, genome-wide association studies (GWAS) for heroin addiction have been limited; moreover they have been restricted to examining samples of European and African-American origin due to difficulty of recruiting samples from other populations. This is the first study to test a Han Chinese population; we performed a GWAS on a homogeneous sample of 370 Han Chinese subjects diagnosed with heroin dependence using the DSM-IV criteria and 134 ethnically matched controls. Analysis using the diagnostic criteria of heroin dependence yielded suggestive evidence for association between variants in the genes CCDC42 (coiled coil domain 42; p = 2.8x10-7) and BRSK2 (BR serine/threonine 2; p = 4.110-6). In addition, we found evidence for risk variants within the ARHGEF10 (Rho guanine nucleotide exchange factor 10) gene on chromosome 8 and variants in a region on chromosome 20q13, which is gene-poor but has a concentration of mRNAs and predicted miRNAs. Gene-based association analysis identified genome-wide significant association between variants in CCDC42 and heroin addiction. Additionally, when we investigated shared risk variants between heroin addiction and risk of other addiction-related and psychiatric phenotypes using polygenic risk scores, we found a suggestive relationship with variants predicting tobacco addiction, and a significant relationship with variants predicting schizophrenia. Our genome wide association study of heroin dependence provides data in a novel sample, with functionally plausible results and evidence of genetic data of value to the field.

  14. Meta-analysis and genome-wide interpretation of genetic susceptibility to drug addiction

    PubMed Central

    2011-01-01

    Background Classical genetic studies provide strong evidence for heritable contributions to susceptibility to developing dependence on addictive substances. Candidate gene and genome-wide association studies (GWAS) have sought genes, chromosomal regions and allelic variants likely to contribute to susceptibility to drug addiction. Results Here, we performed a meta-analysis of addiction candidate gene association studies and GWAS to investigate possible functional mechanisms associated with addiction susceptibility. From meta-data retrieved from 212 publications on candidate gene association studies and 5 GWAS reports, we linked a total of 843 haplotypes to addiction susceptibility. We mapped the SNPs in these haplotypes to functional and regulatory elements in the genome and estimated the magnitude of the contributions of different molecular mechanisms to their effects on addiction susceptibility. In addition to SNPs in coding regions, these data suggest that haplotypes in gene regulatory regions may also contribute to addiction susceptibility. When we compared the lists of genes identified by association studies and those identified by molecular biological studies of drug-regulated genes, we observed significantly higher participation in the same gene interaction networks than expected by chance, despite little overlap between the two gene lists. Conclusions These results appear to offer new insights into the genetic factors underlying drug addiction. PMID:21999673

  15. A genome-wide association study of corneal astigmatism: The CREAM Consortium.

    PubMed

    Shah, Rupal L; Li, Qing; Zhao, Wanting; Tedja, Milly S; Tideman, J Willem L; Khawaja, Anthony P; Fan, Qiao; Yazar, Seyhan; Williams, Katie M; Verhoeven, Virginie J M; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J; Pärssinen, Olavi; Wedenoja, Juho; Biino, Ginevra; Concas, Maria Pina; Uitterlinden, André; Rivadeneira, Fernando; Jaddoe, Vincent W V; Hysi, Pirro G; Sim, Xueling; Tan, Nicholas; Tham, Yih-Chung; Sensaki, Sonoko; Hofman, Albert; Vingerling, Johannes R; Jonas, Jost B; Mitchell, Paul; Hammond, Christopher J; Höhn, René; Baird, Paul N; Wong, Tien-Yin; Cheng, Chinfsg-Yu; Teo, Yik Ying; Mackey, David A; Williams, Cathy; Saw, Seang-Mei; Klaver, Caroline C W; Guggenheim, Jeremy A; Bailey-Wilson, Joan E

    2018-01-01

    To identify genes and genetic markers associated with corneal astigmatism. A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha ( PDGFRA ) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08-1.16), p=5.55×10 -9 . No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans-claudin-7 ( CLDN7 ), acid phosphatase 2, lysosomal ( ACP2 ), and TNF alpha-induced protein 8 like 3 ( TNFAIP8L3 ). In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7 , ACP2 , and TNFAIP8L3 , that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism.

  16. A genome-wide association study of corneal astigmatism: The CREAM Consortium

    PubMed Central

    Shah, Rupal L.; Li, Qing; Zhao, Wanting; Tedja, Milly S.; Tideman, J. Willem L.; Khawaja, Anthony P.; Fan, Qiao; Yazar, Seyhan; Williams, Katie M.; Verhoeven, Virginie J.M.; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J.; Pärssinen, Olavi; Wedenoja, Juho; Biino, Ginevra; Concas, Maria Pina; Uitterlinden, André; Rivadeneira, Fernando; Jaddoe, Vincent W.V.; Hysi, Pirro G.; Sim, Xueling; Tan, Nicholas; Tham, Yih-Chung; Sensaki, Sonoko; Hofman, Albert; Vingerling, Johannes R.; Jonas, Jost B.; Mitchell, Paul; Hammond, Christopher J.; Höhn, René; Baird, Paul N.; Wong, Tien-Yin; Cheng, Chinfsg-Yu; Teo, Yik Ying; Mackey, David A.; Williams, Cathy; Saw, Seang-Mei; Klaver, Caroline C.W.; Bailey-Wilson, Joan E.

    2018-01-01

    Purpose To identify genes and genetic markers associated with corneal astigmatism. Methods A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. Results The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha (PDGFRA) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08–1.16), p=5.55×10−9. No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans—claudin-7 (CLDN7), acid phosphatase 2, lysosomal (ACP2), and TNF alpha-induced protein 8 like 3 (TNFAIP8L3). Conclusions In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7, ACP2, and TNFAIP8L3, that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism. PMID:29422769

  17. Population Stratification in the Context of Diverse Epidemiologic Surveys Sans Genome-Wide Data

    PubMed Central

    Oetjens, Matthew T.; Brown-Gentry, Kristin; Goodloe, Robert; Dilks, Holli H.; Crawford, Dana C.

    2016-01-01

    Population stratification or confounding by genetic ancestry is a potential cause of false associations in genetic association studies. Estimation of and adjustment for genetic ancestry has become common practice thanks in part to the availability of ancestry informative markers on genome-wide association study (GWAS) arrays. While array data is now widespread, these data are not ubiquitous as several large epidemiologic and clinic-based studies lack genome-wide data. One such large epidemiologic-based study lacking genome-wide data accessible to investigators is the National Health and Nutrition Examination Surveys (NHANES), population-based cross-sectional surveys of Americans linked to demographic, health, and lifestyle data conducted by the Centers for Disease Control and Prevention. DNA samples (n = 14,998) were extracted from biospecimens from consented NHANES participants between 1991–1994 (NHANES III, phase 2) and 1999–2002 and represent three major self-identified racial/ethnic groups: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We as the Epidemiologic Architecture for Genes Linked to Environment study genotyped candidate gene and GWAS-identified index variants in NHANES as part of the larger Population Architecture using Genomics and Epidemiology I study for collaborative genetic association studies. To enable basic quality control such as estimation of genetic ancestry to control for population stratification in NHANES san genome-wide data, we outline here strategies that use limited genetic data to identify the markers optimal for characterizing genetic ancestry. From among 411 and 295 autosomal SNPs available in NHANES III and NHANES 1999–2002, we demonstrate that markers with ancestry information can be identified to estimate global ancestry. Despite limited resolution, global genetic ancestry is highly correlated with self-identified race for the majority of participants, although less so

  18. The genome-wide structure of two economically important indigenous Sicilian cattle breeds.

    PubMed

    Mastrangelo, S; Saura, M; Tolone, M; Salces-Ortiz, J; Di Gerlando, R; Bertolini, F; Fontanesi, L; Sardina, M T; Serrano, M; Portolano, B

    2014-11-01

    Genomic technologies, such as high-throughput genotyping based on SNP arrays, provided background information concerning genome structure in domestic animals. The aim of this work was to investigate the genetic structure, the genome-wide estimates of inbreeding, coancestry, effective population size (Ne), and the patterns of linkage disequilibrium (LD) in 2 economically important Sicilian local cattle breeds, Cinisara (CIN) and Modicana (MOD), using the Illumina Bovine SNP50K v2 BeadChip. To understand the genetic relationship and to place both Sicilian breeds in a global context, genotypes from 134 other domesticated bovid breeds were used. Principal component analysis showed that the Sicilian cattle breeds were closer to individuals of Bos taurus taurus from Eurasia and formed nonoverlapping clusters with other breeds. Between the Sicilian cattle breeds, MOD was the most differentiated, whereas the animals belonging to the CIN breed showed a lower value of assignment, the presence of substructure, and genetic links with the MOD breed. The average molecular inbreeding and coancestry coefficients were moderately high, and the current estimates of Ne were low in both breeds. These values indicated a low genetic variability. Considering levels of LD between adjacent markers, the average r(2) in the MOD breed was comparable to those reported for others cattle breeds, whereas CIN showed a lower value. Therefore, these results support the need of more dense SNP arrays for a high-power association mapping and genomic selection efficiency, particularly for the CIN cattle breed. Controlling molecular inbreeding and coancestry would restrict inbreeding depression, the probability of losing beneficial rare alleles, and therefore the risk of extinction. The results generated from this study have important implications for the development of conservation and/or selection breeding programs in these 2 local cattle breeds.

  19. Genome-wide investigation reveals high evolutionary rates in annual model plants.

    PubMed

    Yue, Jia-Xing; Li, Jinpeng; Wang, Dan; Araki, Hitoshi; Tian, Dacheng; Yang, Sihai

    2010-11-09

    Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those

  20. Genome-wide characterization of Mediator recruitment, function, and regulation.

    PubMed

    Grünberg, Sebastian; Zentner, Gabriel E

    2017-05-27

    Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression.

  1. Multi-trait analysis of genome-wide association summary statistics using MTAG.

    PubMed

    Turley, Patrick; Walters, Raymond K; Maghzian, Omeed; Okbay, Aysu; Lee, James J; Fontana, Mark Alan; Nguyen-Viet, Tuan Anh; Wedow, Robbee; Zacher, Meghan; Furlotte, Nicholas A; Magnusson, Patrik; Oskarsson, Sven; Johannesson, Magnus; Visscher, Peter M; Laibson, David; Cesarini, David; Neale, Benjamin M; Benjamin, Daniel J

    2018-02-01

    We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff  = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.

  2. Bioinformatics challenges for genome-wide association studies.

    PubMed

    Moore, Jason H; Asselbergs, Folkert W; Williams, Scott M

    2010-02-15

    The sequencing of the human genome has made it possible to identify an informative set of >1 million single nucleotide polymorphisms (SNPs) across the genome that can be used to carry out genome-wide association studies (GWASs). The availability of massive amounts of GWAS data has necessitated the development of new biostatistical methods for quality control, imputation and analysis issues including multiple testing. This work has been successful and has enabled the discovery of new associations that have been replicated in multiple studies. However, it is now recognized that most SNPs discovered via GWAS have small effects on disease susceptibility and thus may not be suitable for improving health care through genetic testing. One likely explanation for the mixed results of GWAS is that the current biostatistical analysis paradigm is by design agnostic or unbiased in that it ignores all prior knowledge about disease pathobiology. Further, the linear modeling framework that is employed in GWAS often considers only one SNP at a time thus ignoring their genomic and environmental context. There is now a shift away from the biostatistical approach toward a more holistic approach that recognizes the complexity of the genotype-phenotype relationship that is characterized by significant heterogeneity and gene-gene and gene-environment interaction. We argue here that bioinformatics has an important role to play in addressing the complexity of the underlying genetic basis of common human diseases. The goal of this review is to identify and discuss those GWAS challenges that will require computational methods.

  3. Genome-wide Analysis Reveals Extensive Functional Interaction between DNA Replication Initiation and Transcription in the Genome of Trypanosoma brucei

    PubMed Central

    Tiengwe, Calvin; Marcello, Lucio; Farr, Helen; Dickens, Nicholas; Kelly, Steven; Swiderski, Michal; Vaughan, Diane; Gull, Keith; Barry, J. David; Bell, Stephen D.; McCulloch, Richard

    2012-01-01

    Summary Identification of replication initiation sites, termed origins, is a crucial step in understanding genome transmission in any organism. Transcription of the Trypanosoma brucei genome is highly unusual, with each chromosome comprising a few discrete transcription units. To understand how DNA replication occurs in the context of such organization, we have performed genome-wide mapping of the binding sites of the replication initiator ORC1/CDC6 and have identified replication origins, revealing that both localize to the boundaries of the transcription units. A remarkably small number of active origins is seen, whose spacing is greater than in any other eukaryote. We show that replication and transcription in T. brucei have a profound functional overlap, as reducing ORC1/CDC6 levels leads to genome-wide increases in mRNA levels arising from the boundaries of the transcription units. In addition, ORC1/CDC6 loss causes derepression of silent Variant Surface Glycoprotein genes, which are critical for host immune evasion. PMID:22840408

  4. Frontotemporal dementia and its subtypes: a genome-wide association study

    PubMed Central

    Ferrari, Raffaele; Hernandez, Dena G; Nalls, Michael A; Rohrer, Jonathan D; Ramasamy, Adaikalavan; Kwok, John B J; Dobson-Stone, Carol; Brooks, William S; Schofield, Peter R; Halliday, Glenda M; Hodges, John R; Piguet, Olivier; Bartley, Lauren; Thompson, Elizabeth; Haan, Eric; Hernández, Isabel; Ruiz, Agustín; Boada, Mercè; Borroni, Barbara; Padovani, Alessandro; Cruchaga, Carlos; Cairns, Nigel J; Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta; Forloni, Gianluigi; Galimberti, Daniela; Fenoglio, Chiara; Serpente, Maria; Scarpini, Elio; Clarimón, Jordi; Lleó, Alberto; Blesa, Rafael; Waldö, Maria Landqvist; Nilsson, Karin; Nilsson, Christer; Mackenzie, Ian R A; Hsiung, Ging-Yuek R; Mann, David M A; Grafman, Jordan; Morris, Christopher M; Attems, Johannes; Griffiths, Timothy D; McKeith, Ian G; Thomas, Alan J; Pietrini, P; Huey, Edward D; Wassermann, Eric M; Baborie, Atik; Jaros, Evelyn; Tierney, Michael C; Pastor, Pau; Razquin, Cristina; Ortega-Cubero, Sara; Alonso, Elena; Perneczky, Robert; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Kurz, Alexander; Rainero, Innocenzo; Rubino, Elisa; Pinessi, Lorenzo; Rogaeva, Ekaterina; George-Hyslop, Peter St; Rossi, Giacomina; Tagliavini, Fabrizio; Giaccone, Giorgio; Rowe, James B; Schlachetzki, J C M; Uphill, James; Collinge, John; Mead, S; Danek, Adrian; Van Deerlin, Vivianna M; Grossman, Murray; Trojanowsk, John Q; van der Zee, Julie; Deschamps, William; Van Langenhove, Tim; Cruts, Marc; Van Broeckhoven, Christine; Cappa, Stefano F; Le Ber, Isabelle; Hannequin, Didier; Golfier, Véronique; Vercelletto, Martine; Brice, Alexis; Nacmias, Benedetta; Sorbi, Sandro; Bagnoli, Silvia; Piaceri, Irene; Nielsen, Jørgen E; Hjermind, Lena E; Riemenschneider, Matthias; Mayhaus, Manuel; Ibach, Bernd; Gasparoni, Gilles; Pichler, Sabrina; Gu, Wei; Rossor, Martin N; Fox, Nick C; Warren, Jason D; Spillantini, Maria Grazia; Morris, Huw R; Rizzu, Patrizia; Heutink, Peter; Snowden, Julie S; Rollinson, Sara; Richardson, Anna; Gerhard, Alexander; Bruni, Amalia C; Maletta, Raffaele; Frangipane, Francesca; Cupidi, Chiara; Bernardi, Livia; Anfossi, Maria; Gallo, Maura; Conidi, Maria Elena; Smirne, Nicoletta; Rademakers, Rosa; Baker, Matt; Dickson, Dennis W; Graff-Radford, Neill R; Petersen, Ronald C; Knopman, David; Josephs, Keith A; Boeve, Bradley F; Parisi, Joseph E; Seeley, William W; Miller, Bruce L; Karydas, Anna M; Rosen, Howard; van Swieten, John C; Dopper, Elise G P; Seelaar, Harro; Pijnenburg, Yolande AL; Scheltens, Philip; Logroscino, Giancarlo; Capozzo, Rosa; Novelli, Valeria; Puca, Annibale A; Franceschi, M; Postiglione, Alfredo; Milan, Graziella; Sorrentino, Paolo; Kristiansen, Mark; Chiang, Huei-Hsin; Graff, Caroline; Pasquier, Florence; Rollin, Adeline; Deramecourt, Vincent; Lebert, Florence; Kapogiannis, Dimitrios; Ferrucci, Luigi; Pickering-Brown, Stuart; Singleton, Andrew B; Hardy, John; Momeni, Parastoo

    2014-01-01

    Summary Background Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. All participants had European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) and suggestive single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8) that encompassed the HLA locus at 6p21.3 in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC, for the behavioural FTD subtype. Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation incis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and possibly to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of

  5. Five endometrial cancer risk loci identified through genome-wide association analysis.

    PubMed

    Cheng, Timothy Ht; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica Mj; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Consortium, Chibcha; Jun Li, Mulin; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.

  6. Genome-wide pleiotropy and shared biological pathways for resistance to bovine pathogens

    PubMed Central

    Zeng, Y.; Yin, T.; Brügemann, K.

    2018-01-01

    Host genetic architecture is a major factor in resistance to pathogens and parasites. The collection and analysis of sufficient data on both disease resistance and host genetics has, however, been a major obstacle to dissection the genetics of resistance to single or multiple pathogens. A severe challenge in the estimation of heritabilities and genetic correlations from pedigree-based studies has been the confounding effects of the common environment shared among relatives which are difficult to model in pedigree analyses, especially for health traits with low incidence rates. To circumvent this problem we used genome-wide single-nucleotide polymorphism data and implemented the Genomic-Restricted Maximum Likelihood (G-REML) method to estimate the heritabilities and genetic correlations for resistance to 23 different infectious pathogens in calves and cows in populations undergoing natural pathogen challenge. Furthermore, we conducted gene-based analysis and generalized gene-set analysis to understand the biological background of resistance to infectious diseases. The results showed relatively higher heritabilities of resistance in calves than in cows and significant pleiotropy (both positive and negative) among some calf and cow resistance traits. We also found significant pleiotropy between resistance and performance in both calves and cows. Finally, we confirmed the role of the B-lymphocyte pathway as one of the most important biological pathways associated with resistance to all pathogens. These results both illustrate the potential power of these approaches to illuminate the genetics of pathogen resistance in cattle and provide foundational information for future genomic selection aimed at improving the overall production fitness of cattle. PMID:29608619

  7. Sniffing out significant "Pee values": genome wide association study of asparagus anosmia.

    PubMed

    Markt, Sarah C; Nuttall, Elizabeth; Turman, Constance; Sinnott, Jennifer; Rimm, Eric B; Ecsedy, Ethan; Unger, Robert H; Fall, Katja; Finn, Stephen; Jensen, Majken K; Rider, Jennifer R; Kraft, Peter; Mucci, Lorelei A

    2016-12-13

     To determine the inherited factors associated with the ability to smell asparagus metabolites in urine.  Genome wide association study.  Nurses' Health Study and Health Professionals Follow-up Study cohorts.  6909 men and women of European-American descent with available genetic data from genome wide association studies.  Participants were characterized as asparagus smellers if they strongly agreed with the prompt "after eating asparagus, you notice a strong characteristic odor in your urine," and anosmic if otherwise. We calculated per-allele estimates of asparagus anosmia for about nine million single nucleotide polymorphisms using logistic regression. P values <5×10 -8 were considered as genome wide significant.  58.0% of men (n=1449/2500) and 61.5% of women (n=2712/4409) had anosmia. 871 single nucleotide polymorphisms reached genome wide significance for asparagus anosmia, all in a region on chromosome 1 (1q44: 248139851-248595299) containing multiple genes in the olfactory receptor 2 (OR2) family. Conditional analyses revealed three independent markers associated with asparagus anosmia: rs13373863, rs71538191, and rs6689553.  A large proportion of people have asparagus anosmia. Genetic variation near multiple olfactory receptor genes is associated with the ability of an individual to smell the metabolites of asparagus in urine. Future replication studies are necessary before considering targeted therapies to help anosmic people discover what they are missing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    PubMed

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C

    2016-12-01

    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.

  9. Minimalist ensemble algorithms for genome-wide protein localization prediction

    PubMed Central

    2012-01-01

    Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We

  10. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition.

    PubMed

    Si, Zengzhi; Du, Bing; Huo, Jinxi; He, Shaozhen; Liu, Qingchang; Zhai, Hong

    2016-11-21

    Sweetpotato, Ipomoea batatas (L.) Lam., is an important food crop widely grown in the world. However, little is known about the genome of this species because it is a highly heterozygous hexaploid. Gaining a more in-depth knowledge of sweetpotato genome is therefore necessary and imperative. In this study, the first bacterial artificial chromosome (BAC) library of sweetpotato was constructed. Clones from the BAC library were end-sequenced and analyzed to provide genome-wide information about this species. The BAC library contained 240,384 clones with an average insert size of 101 kb and had a 7.93-10.82 × coverage of the genome, and the probability of isolating any single-copy DNA sequence from the library was more than 99%. Both ends of 8310 BAC clones randomly selected from the library were sequenced to generate 11,542 high-quality BAC-end sequences (BESs), with an accumulative length of 7,595,261 bp and an average length of 658 bp. Analysis of the BESs revealed that 12.17% of the sweetpotato genome were known repetitive DNA, including 7.37% long terminal repeat (LTR) retrotransposons, 1.15% Non-LTR retrotransposons and 1.42% Class II DNA transposons etc., 18.31% of the genome were identified as sweetpotato-unique repetitive DNA and 10.00% of the genome were predicted to be coding regions. In total, 3,846 simple sequences repeats (SSRs) were identified, with a density of one SSR per 1.93 kb, from which 288 SSRs primers were designed and tested for length polymorphism using 20 sweetpotato accessions, 173 (60.07%) of them produced polymorphic bands. Sweetpotato BESs had significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum than those of Vitis vinifera, Theobroma cacao and Arabidopsis thaliana. The first BAC library for sweetpotato has been successfully constructed. The high quality BESs provide first insights into sweetpotato genome composition, and have significant hits to the genome

  11. Genome-Wide Analysis in Brazilians Reveals Highly Differentiated Native American Genome Regions

    PubMed Central

    Havt, Alexandre; Nayak, Uma; Pinkerton, Relana; Farber, Emily; Concannon, Patrick; Lima, Aldo A.; Guerrant, Richard L.

    2017-01-01

    Despite its population, geographic size, and emerging economic importance, disproportionately little genome-scale research exists into genetic factors that predispose Brazilians to disease, or the population genetics of risk. After identification of suitable proxy populations and careful analysis of tri-continental admixture in 1,538 North-Eastern Brazilians to estimate individual ancestry and ancestral allele frequencies, we computed 400,000 genome-wide locus-specific branch length (LSBL) Fst statistics of Brazilian Amerindian ancestry compared to European and African; and a similar set of differentiation statistics for their Amerindian component compared with the closest Asian 1000 Genomes population (surprisingly, Bengalis in Bangladesh). After ranking SNPs by these statistics, we identified the top 10 highly differentiated SNPs in five genome regions in the LSBL tests of Brazilian Amerindian ancestry compared to European and African; and the top 10 SNPs in eight regions comparing their Amerindian component to the closest Asian 1000 Genomes population. We found SNPs within or proximal to the genes CIITA (rs6498115), SMC6 (rs1834619), and KLHL29 (rs2288697) were most differentiated in the Amerindian-specific branch, while SNPs in the genes ADAMTS9 (rs7631391), DOCK2 (rs77594147), SLC28A1 (rs28649017), ARHGAP5 (rs7151991), and CIITA (rs45601437) were most highly differentiated in the Asian comparison. These genes are known to influence immune function, metabolic and anthropometry traits, and embryonic development. These analyses have identified candidate genes for selection within Amerindian ancestry, and by comparison of the two analyses, those for which the differentiation may have arisen during the migration from Asia to the Americas. PMID:28100790

  12. Genome-wide identification of conserved intronic non-coding sequences using a Bayesian segmentation approach.

    PubMed

    Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M

    2017-03-27

    Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome-wide

  13. Genome-Wide Profiling of DNA Double-Strand Breaks by the BLESS and BLISS Methods.

    PubMed

    Mirzazadeh, Reza; Kallas, Tomasz; Bienko, Magda; Crosetto, Nicola

    2018-01-01

    DNA double-strand breaks (DSBs) are major DNA lesions that are constantly formed during physiological processes such as DNA replication, transcription, and recombination, or as a result of exogenous agents such as ionizing radiation, radiomimetic drugs, and genome editing nucleases. Unrepaired DSBs threaten genomic stability by leading to the formation of potentially oncogenic rearrangements such as translocations. In past few years, several methods based on next-generation sequencing (NGS) have been developed to study the genome-wide distribution of DSBs or their conversion to translocation events. We developed Breaks Labeling, Enrichment on Streptavidin, and Sequencing (BLESS), which was the first method for direct labeling of DSBs in situ followed by their genome-wide mapping at nucleotide resolution (Crosetto et al., Nat Methods 10:361-365, 2013). Recently, we have further expanded the quantitative nature, applicability, and scalability of BLESS by developing Breaks Labeling In Situ and Sequencing (BLISS) (Yan et al., Nat Commun 8:15058, 2017). Here, we first present an overview of existing methods for genome-wide localization of DSBs, and then focus on the BLESS and BLISS methods, discussing different assay design options depending on the sample type and application.

  14. Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows

    PubMed Central

    Vangestel, Carl; Mergeay, Joachim; Dawson, Deborah A.; Vandomme, Viki; Lens, Luc

    2011-01-01

    Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed. PMID:21747940

  15. Genome-wide characterization of Mediator recruitment, function, and regulation

    PubMed Central

    2017-01-01

    ABSTRACT Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression. PMID:28301289

  16. GST-PRIME: an algorithm for genome-wide primer design.

    PubMed

    Leister, Dario; Varotto, Claudio

    2007-01-01

    The profiling of mRNA expression based on DNA arrays has become a powerful tool to study genome-wide transcription of genes in a number of organisms. GST-PRIME is a software package created to facilitate large-scale primer design for the amplification of probes to be immobilized on arrays for transcriptome analyses, even though it can be also applied in low-throughput approaches. GST-PRIME allows highly efficient, direct amplification of gene-sequence tags (GSTs) from genomic DNA (gDNA), starting from annotated genome or transcript sequences. GST-PRIME provides a customer-friendly platform for automatic primer design, and despite the relative simplicity of the algorithm, experimental tests in the model plant species Arabidopsis thaliana confirmed the reliability of the software. This chapter describes the algorithm used for primer design, its input and output files, and the installation of the standalone package and its use.

  17. Genome-wide linkage in Utah autism pedigrees

    PubMed Central

    Allen-Brady, K; Robison, R; Cannon, D; Varvil, T; Villalobos, M; Pingree, C; Leppert, MF; Miller, J; McMahon, WM; Coon, H

    2014-01-01

    Genetic studies of autism over the past decade suggest a complex landscape of multiple genes. In the face of this heterogeneity, studies that include large extended pedigrees may offer valuable insight, as the relatively few susceptibility genes within single large families may be more easily discerned. This genome-wide screen of 70 families includes 20 large extended pedigrees of 6–9 generations, 6 moderate-sized families of 4–5 generations, and 44 smaller families of 2–3 generations. The Center for Inherited Disease Research (CIDR) provided genotyping using the Illumina Linkage Panel 12, a 6K single nucleotide polymorphism (SNP) platform. Results from 192 subjects with an Autism Spectrum Disorder (ASD), and 461 of their relatives revealed genome-wide significance on chromosome 15q, with three possibly distinct peaks: 15q13.1-q14 (HLOD=4.09 at 29,459,872bp); 15q14-q21.1 (HLOD=3.59 at 36,837,208bp); and 15q21.1-q22.2 (HLOD=5.31 at 55,629,733bp). Two of these peaks replicate previous findings. There were additional suggestive results on chromosomes 2p25.3-p24.1 (HLOD=1.87), 7q31.31-q32.3 (HLOD=1.97), and 13q12.11-q12.3 (HLOD=1.93). Affected subjects in families supporting the linkage peaks found in this study did not reveal strong evidence for distinct phenotypic subgroups. PMID:19455147

  18. Implementing meta-analysis from genome-wide association studies for pork quality traits

    USDA-ARS?s Scientific Manuscript database

    Pork quality plays an important role in the meat processing industry, thus different methodologies have been implemented to elucidate the genetic architecture of traits affecting meat quality. One of the most common and widely used approaches is to perform genome-wide association (GWA) studies. Howe...

  19. Genome-wide alterations of the DNA replication program during tumor progression

    NASA Astrophysics Data System (ADS)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  20. Adult monozygotic twins discordant for intra-uterine growth have indistinguishable genome-wide DNA methylation profiles

    PubMed Central

    2013-01-01

    Background Low birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intra-uterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. To address this, we acquire genome-wide DNA methylation profiles from saliva DNA in a unique cohort of 17 monozygotic monochorionic female twins very discordant for birth weight. We examine if adverse prenatal growth conditions experienced by the smaller co-twins lead to long-lasting DNA methylation changes. Results Overall, co-twins show very similar genome-wide DNA methylation profiles. Since observed differences are almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3,153 are differentially methylated between the heavy and light co-twins at nominal significance, of which 45 show sensible absolute mean β-value differences. Deep bisulfite sequencing of eight such loci reveals that differences remain in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicates no significant intra-pair differences. Conclusions Severe intra-uterine growth differences observed within these monozygotic twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies. PMID:23706164

  1. Genome-wide analysis of epistasis in body mass index using multiple human populations.

    PubMed

    Wei, Wen-Hua; Hemani, Gib; Gyenesei, Attila; Vitart, Veronique; Navarro, Pau; Hayward, Caroline; Cabrera, Claudia P; Huffman, Jennifer E; Knott, Sara A; Hicks, Andrew A; Rudan, Igor; Pramstaller, Peter P; Wild, Sarah H; Wilson, James F; Campbell, Harry; Hastie, Nicholas D; Wright, Alan F; Haley, Chris S

    2012-08-01

    We surveyed gene-gene interactions (epistasis) in human body mass index (BMI) in four European populations (n<1200) via exhaustive pair-wise genome scans where interactions were computed as F ratios by testing a linear regression model fitting two single-nucleotide polymorphisms (SNPs) with interactions against the one without. Before the association tests, BMI was corrected for sex and age, normalised and adjusted for relatedness. Neither single SNPs nor SNP interactions were genome-wide significant in either cohort based on the consensus threshold (P=5.0E-08) and a Bonferroni corrected threshold (P=1.1E-12), respectively. Next we compared sub genome-wide significant SNP interactions (P<5.0E-08) across cohorts to identify common epistatic signals, where SNPs were annotated to genes to test for gene ontology (GO) enrichment. Among the epistatic genes contributing to the commonly enriched GO terms, 19 were shared across study cohorts of which 15 are previously published genome-wide association loci, including CDH13 (cadherin 13) associated with height and SORCS2 (sortilin-related VPS10 domain containing receptor 2) associated with circulating insulin-like growth factor 1 and binding protein 3. Interactions between the 19 shared epistatic genes and those involving BMI candidate loci (P<5.0E-08) were tested across cohorts and found eight replicated at the SNP level (P<0.05) in at least one cohort, which were further tested and showed limited replication in a separate European population (n>5000). We conclude that genome-wide analysis of epistasis in multiple populations is an effective approach to provide new insights into the genetic regulation of BMI but requires additional efforts to confirm the findings.

  2. Genome-wide identification of bacterial plant colonization genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  3. Genome-wide identification of bacterial plant colonization genes

    DOE PAGES

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.; ...

    2017-09-22

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  4. Improvement of experimental testing and network training conditions with genome-wide microarrays for more accurate predictions of drug gene targets

    PubMed Central

    2014-01-01

    Background Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene expression data combined with off-target transcriptional responses many times induced by a drug treatment. This study demonstrates how experimental and computational methods can interact with each other, to arrive at more accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in a well-studied organism. Results S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different network training conditions. Gene expression results were evaluated using both gene set and single gene target analyses, and the drug’s transcriptional effects were narrowed first by pathway and then by individual genes. Variables included: (i) Testing conditions – exposure time and concentration and (ii) Network training conditions – training compendium modifications. Two analyses of SSEM-Lasso output – gene set and single gene – were conducted to gain a better understanding of how SSEM-Lasso predicts perturbation targets. Conclusions This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations through a network of gene regulatory interactions is achieved

  5. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    PubMed Central

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  6. Quality control and conduct of genome-wide association meta-analyses

    PubMed Central

    Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Mägi, Reedik; Ferreira, Teresa; Fall, Tove; Graff, Mariaelisa; Justice, Anne E; Luan, Jian'an; Gustafsson, Stefan; Randall, Joshua C; Vedantam, Sailaja; Workalemahu, Tsegaselassie; Kilpeläinen, Tuomas O; Scherag, André; Esko, Tonu; Kutalik, Zoltán; Heid, Iris M; Loos, Ruth JF

    2014-01-01

    Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for [1] organizational aspects of GWAMAs, and for [2] QC at the study file level, the meta-level across studies, and the meta-analysis output level. Real–world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for use of a powerful and flexible software package called EasyQC. For consortia of comparable size to the GIANT consortium, the present protocol takes a minimum of about 10 months to complete. PMID:24762786

  7. Genome-wide association analysis identifies 13 new risk loci for schizophrenia.

    PubMed

    Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L; Kähler, Anna K; Akterin, Susanne; Bergen, Sarah E; Collins, Ann L; Crowley, James J; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik K E; Sanchez, Nick; Stahl, Eli A; Williams, Stephanie; Wray, Naomi R; Xia, Kai; Bettella, Francesco; Borglum, Anders D; Bulik-Sullivan, Brendan K; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L; Holmans, Peter; Hougaard, David M; Kendler, Kenneth S; Lin, Kuang; Morris, Derek W; Mors, Ole; Mortensen, Preben B; Neale, Benjamin M; O'Neill, Francis A; Owen, Michael J; Milovancevic, Milica Pejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L; Riley, Brien P; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T; Levinson, Douglas F; Gejman, Pablo V; Kendler, Kenneth S; Laurent, Claudine; Mowry, Bryan J; O'Donovan, Michael C; Owen, Michael J; Pulver, Ann E; Riley, Brien P; Schwab, Sibylle G; Wildenauer, Dieter B; Dudbridge, Frank; Holmans, Peter; Shi, Jianxin; Albus, Margot; Alexander, Madeline; Campion, Dominique; Cohen, David; Dikeos, Dimitris; Duan, Jubao; Eichhammer, Peter; Godard, Stephanie; Hansen, Mark; Lerer, F Bernard; Liang, Kung-Yee; Maier, Wolfgang; Mallet, Jacques; Nertney, Deborah A; Nestadt, Gerald; Norton, Nadine; O'Neill, Francis A; Papadimitriou, George N; Ribble, Robert; Sanders, Alan R; Silverman, Jeremy M; Walsh, Dermot; Williams, Nigel M; Wormley, Brandon; Arranz, Maria J; Bakker, Steven; Bender, Stephan; Bramon, Elvira; Collier, David; Crespo-Facorro, Benedicto; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, Rene S; Kalaydjieva, Luba; Lawrie, Stephen; Lewis, Cathryn M; Lin, Kuang; Linszen, Don H; Mata, Ignacio; McIntosh, Andrew; Murray, Robin M; Ophoff, Roel A; Powell, John; Rujescu, Dan; Van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Wiersma, Durk; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden P; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Spencer, Chris C A; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard D; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T; Liddle, Jennifer; Potter, Simon C; Ravindrarajah, Radhi; Ricketts, Michelle; Tashakkori-Ghanbaria, Avazeh; Waller, Matthew J; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G; Blackwell, Jenefer M; Brown, Matthew A; Corvin, Aiden P; McCarthy, Mark I; Spencer, Chris C A; Bramon, Elvira; Corvin, Aiden P; O'Donovan, Michael C; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steven A; Sklar, Pamela; Hultman, Christina M; Sullivan, Patrick F

    2013-10-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.

  8. Genetically contextual effects of smoking on genome wide DNA methylation.

    PubMed

    Dogan, Meeshanthini V; Beach, Steven R H; Philibert, Robert A

    2017-09-01

    Smoking is the leading cause of death in the United States. It exerts its effects by increasing susceptibility to a variety of complex disorders among those who smoke, and if pregnant, to their unborn children. In prior efforts to understand the epigenetic mechanisms through which this increased vulnerability is conveyed, a number of investigators have conducted genome wide methylation analyses. Unfortunately, secondary to methodological limitations, these studies were unable to examine methylation in gene regions with significant amounts of genetic variation. Using genome wide genetic and epigenetic data from the Framingham Heart Study, we re-examined the relationship of smoking status to genome wide methylation status. When only methylation status is considered, smoking was significantly associated with differential methylation in 310 genes that map to a variety of biological process and cellular differentiation pathways. However, when SNP effects on the magnitude of smoking associated methylation changes are also considered, cis and trans-interaction effects were noted at a total of 266 and 4353 genes with no marked enrichment for any biological pathways. Furthermore, the SNP variation participating in the significant interaction effects is enriched for loci previously associated with complex medical illnesses. The enlarged scope of the methylome shown to be affected by smoking may better explicate the mediational pathways linking smoking with a myriad of smoking related complex syndromes. Additionally, these results strongly suggest that combined epigenetic and genetic data analyses may be critical for a more complete understanding of the relationship between environmental variables, such as smoking, and pathophysiological outcomes. © 2017 Wiley Periodicals, Inc.

  9. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    DOE PAGES

    Bendall, Matthew L.; Stevens, Sarah L.R.; Chan, Leong-Keat; ...

    2016-01-08

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Using a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of genemore » gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. Furthermore, these patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Finally, evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.« less

  10. Use of a Drosophila Genome-Wide Conserved Sequence Database to Identify Functionally Related cis-Regulatory Enhancers

    PubMed Central

    Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F

    2012-01-01

    Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086

  11. Sniffing out significant “Pee values”: genome wide association study of asparagus anosmia

    PubMed Central

    Markt, Sarah C; Nuttall, Elizabeth; Turman, Constance; Sinnott, Jennifer; Rimm, Eric B; Ecsedy, Ethan; Unger, Robert H; Fall, Katja; Finn, Stephen; Jensen, Majken K; Rider, Jennifer R; Kraft, Peter

    2016-01-01

    Objective To determine the inherited factors associated with the ability to smell asparagus metabolites in urine. Design Genome wide association study. Setting Nurses’ Health Study and Health Professionals Follow-up Study cohorts. Participants 6909 men and women of European-American descent with available genetic data from genome wide association studies. Main outcome measure Participants were characterized as asparagus smellers if they strongly agreed with the prompt “after eating asparagus, you notice a strong characteristic odor in your urine,” and anosmic if otherwise. We calculated per-allele estimates of asparagus anosmia for about nine million single nucleotide polymorphisms using logistic regression. P values <5×10-8 were considered as genome wide significant. Results 58.0% of men (n=1449/2500) and 61.5% of women (n=2712/4409) had anosmia. 871 single nucleotide polymorphisms reached genome wide significance for asparagus anosmia, all in a region on chromosome 1 (1q44: 248139851-248595299) containing multiple genes in the olfactory receptor 2 (OR2) family. Conditional analyses revealed three independent markers associated with asparagus anosmia: rs13373863, rs71538191, and rs6689553. Conclusion A large proportion of people have asparagus anosmia. Genetic variation near multiple olfactory receptor genes is associated with the ability of an individual to smell the metabolites of asparagus in urine. Future replication studies are necessary before considering targeted therapies to help anosmic people discover what they are missing. PMID:27965198

  12. A Genome-Wide Study of Modern-Day Tuscans: Revisiting Herodotus's Theory on the Origin of the Etruscans

    PubMed Central

    Gómez-Carballa, Alberto; Amigo, Jorge; Martinón-Torres, Federico

    2014-01-01

    Background The origin of the Etruscan civilization (Etruria, Central Italy) is a long-standing subject of debate among scholars from different disciplines. The bulk of the information has been reconstructed from ancient texts and archaeological findings and, in the last few years, through the analysis of uniparental genetic markers. Methods By meta-analyzing genome-wide data from The 1000 Genomes Project and the literature, we were able to compare the genomic patterns (>540,000 SNPs) of present day Tuscans (N = 98) with other population groups from the main hypothetical source populations, namely, Europe and the Middle East. Results Admixture analysis indicates the presence of 25–34% of Middle Eastern component in modern Tuscans. Different analyses have been carried out using identity-by-state (IBS) values and genetic distances point to Eastern Anatolia/Southern Caucasus as the most likely geographic origin of the main Middle Eastern genetic component observed in the genome of modern Tuscans. Conclusions The data indicate that the admixture event between local Tuscans and Middle Easterners could have occurred in Central Italy about 2,600–3,100 years ago (y.a.). On the whole, the results validate the theory of the ancient historian Herodotus on the origin of Etruscans. PMID:25230205

  13. Genome-wide association analysis of age-at-onset in Alzheimer's disease.

    PubMed

    Kamboh, M I; Barmada, M M; Demirci, F Y; Minster, R L; Carrasquillo, M M; Pankratz, V S; Younkin, S G; Saykin, A J; Sweet, R A; Feingold, E; DeKosky, S T; Lopez, O L

    2012-12-01

    The risk of Alzheimer's disease (AD) is strongly determined by genetic factors and recent genome-wide association studies (GWAS) have identified several genes for the disease risk. In addition to the disease risk, age-at-onset (AAO) of AD has also strong genetic component with an estimated heritability of 42%. Identification of AAO genes may help to understand the biological mechanisms that regulate the onset of the disease. Here we report the first GWAS focused on identifying genes for the AAO of AD. We performed a genome-wide meta-analysis on three samples comprising a total of 2222 AD cases. A total of ~2.5 million directly genotyped or imputed single-nucleotide polymorphisms (SNPs) were analyzed in relation to AAO of AD. As expected, the most significant associations were observed in the apolipoprotein E (APOE) region on chromosome 19 where several SNPs surpassed the conservative genome-wide significant threshold (P<5E-08). The most significant SNP outside the APOE region was located in the DCHS2 gene on chromosome 4q31.3 (rs1466662; P=4.95E-07). There were 19 additional significant SNPs in this region at P<1E-04 and the DCHS2 gene is expressed in the cerebral cortex and thus is a potential candidate for affecting AAO in AD. These findings need to be confirmed in additional well-powered samples.

  14. Investigation of Maternal Genotype Effects in Autism by Genome-Wide Association

    PubMed Central

    Yuan, Han; Dougherty, Joseph D.

    2014-01-01

    Lay Abstract Autism spectrum disorders (ASDs) are pervasive developmental disorders which have both a genetic and environmental component. One source of the environmental component is the in utero (prenatal) environment. The maternal genome can potentially contribute to the risk of autism in children by altering this prenatal environment. In this study, the possibility of maternal genotype effects was explored by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. We performed a case/control genome-wide association study (GWAS) using mothers of probands as cases and either fathers of probands or normal females as controls, using two collections of families with autism. We did not identify any SNP that reached significance and thus a common variant of large effect is unlikely. However, there was evidence for the possibility of a large number of alleles each carrying a small effect. This suggested that if there is a contribution to autism risk through common-variant maternal genetic effects, it may be the result of multiple loci of small effects. We did not investigate rare variants in this study. Scientific Abstract Like most psychiatric disorders, autism spectrum disorders have both a genetic and an environmental component. While previous studies have clearly demonstrated the contribution of in utero (prenatal) environment on autism risk, most of them focused on transient environmental factors. Based on a recent sibling study, we hypothesized that environmental factors could also come from the maternal genome, which would result in persistent effects across siblings. In this study, the possibility of maternal genotype effects was examined by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. A case/control genome-wide association study (GWAS) was performed using mothers of

  15. Genome-wide association studies in cardiac electrophysiology: recent discoveries and implications for clinical practice.

    PubMed

    Milan, David J; Lubitz, Steven A; Kääb, Stefan; Ellinor, Patrick T

    2010-08-01

    Genome-wide association studies have been increasingly used to study the genetics of complex human diseases. Within the field of cardiac electrophysiology, this technique has been applied to conditions such as atrial fibrillation, and several electrocardiographic parameters including the QT interval. While these studies have identified multiple genomic regions associated with each trait, questions remain, including the best way to explore the pathophysiology of each association and the potential for clinical utility. This review will summarize recent genome-wide association study results within cardiac electrophysiology and discuss their broader implications in basic science and clinical medicine. Copyright 2010 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  16. Electron transfer to nitrogenase in different genomic and metabolic backgrounds.

    PubMed

    Poudel, Saroj; Colman, Daniel R; Fixen, Kathryn R; Ledbetter, Rhesa N; Zheng, Yanning; Pence, Natasha; Seefeldt, Lance C; Peters, John W; Harwood, Caroline S; Boyd, Eric S

    2018-02-26

    Nitrogenase catalyzes the reduction of dinitrogen (N 2 ) using low potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O 2 ) sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd/Fld-reducing enzymes in 359 genomes of putative N 2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified and their distributions largely corresponded to differences in the host cells' ability to integrate O 2 or light into energy metabolism. Predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the level of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N 2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation. IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs

  17. Accurate computation of survival statistics in genome-wide studies.

    PubMed

    Vandin, Fabio; Papoutsaki, Alexandra; Raphael, Benjamin J; Upfal, Eli

    2015-05-01

    A key challenge in genomics is to identify genetic variants that distinguish patients with different survival time following diagnosis or treatment. While the log-rank test is widely used for this purpose, nearly all implementations of the log-rank test rely on an asymptotic approximation that is not appropriate in many genomics applications. This is because: the two populations determined by a genetic variant may have very different sizes; and the evaluation of many possible variants demands highly accurate computation of very small p-values. We demonstrate this problem for cancer genomics data where the standard log-rank test leads to many false positive associations between somatic mutations and survival time. We develop and analyze a novel algorithm, Exact Log-rank Test (ExaLT), that accurately computes the p-value of the log-rank statistic under an exact distribution that is appropriate for any size populations. We demonstrate the advantages of ExaLT on data from published cancer genomics studies, finding significant differences from the reported p-values. We analyze somatic mutations in six cancer types from The Cancer Genome Atlas (TCGA), finding mutations with known association to survival as well as several novel associations. In contrast, standard implementations of the log-rank test report dozens-hundreds of likely false positive associations as more significant than these known associations.

  18. Accurate Computation of Survival Statistics in Genome-Wide Studies

    PubMed Central

    Vandin, Fabio; Papoutsaki, Alexandra; Raphael, Benjamin J.; Upfal, Eli

    2015-01-01

    A key challenge in genomics is to identify genetic variants that distinguish patients with different survival time following diagnosis or treatment. While the log-rank test is widely used for this purpose, nearly all implementations of the log-rank test rely on an asymptotic approximation that is not appropriate in many genomics applications. This is because: the two populations determined by a genetic variant may have very different sizes; and the evaluation of many possible variants demands highly accurate computation of very small p-values. We demonstrate this problem for cancer genomics data where the standard log-rank test leads to many false positive associations between somatic mutations and survival time. We develop and analyze a novel algorithm, Exact Log-rank Test (ExaLT), that accurately computes the p-value of the log-rank statistic under an exact distribution that is appropriate for any size populations. We demonstrate the advantages of ExaLT on data from published cancer genomics studies, finding significant differences from the reported p-values. We analyze somatic mutations in six cancer types from The Cancer Genome Atlas (TCGA), finding mutations with known association to survival as well as several novel associations. In contrast, standard implementations of the log-rank test report dozens-hundreds of likely false positive associations as more significant than these known associations. PMID:25950620

  19. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    PubMed

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    PubMed Central

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  1. SvABA: genome-wide detection of structural variants and indels by local assembly.

    PubMed

    Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah F; O'Rourke, Ryan; Sharpe, Ted; Stewart, Chip; Schumacher, Steve; Li, Yilong; Weischenfeldt, Joachim; Yao, Xiaotong; Nusbaum, Chad; Campbell, Peter; Getz, Gad; Meyerson, Matthew; Zhang, Cheng-Zhong; Imielinski, Marcin; Beroukhim, Rameen

    2018-04-01

    Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA's performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs. © 2018 Wala et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Transcriptome profiling of the demosponge Amphimedon queenslandica reveals genome-wide events that accompany major life cycle transitions

    PubMed Central

    2012-01-01

    Background The biphasic life cycle with pelagic larva and benthic adult stages is widely observed in the animal kingdom, including the Porifera (sponges), which are the earliest branching metazoans. The demosponge, Amphimedon queenslandica, undergoes metamorphosis from a free-swimming larva into a sessile adult that bears no morphological resemblance to other animals. While the genome of A. queenslandica contains an extensive repertoire of genes very similar to that of complex bilaterians, it is as yet unclear how this is drawn upon to coordinate changing morphological features and ecological demands throughout the sponge life cycle. Results To identify genome-wide events that accompany the pelagobenthic transition in A. queenslandica, we compared global gene expression profiles at four key developmental stages by sequencing the poly(A) transcriptome using SOLiD technology. Large-scale changes in transcription were observed as sponge larvae settled on the benthos and began metamorphosis. Although previous systematics suggest that the only clear homology between Porifera and other animals is in the embryonic and larval stages, we observed extensive use of genes involved in metazoan-associated cellular processes throughout the sponge life cycle. Sponge-specific transcripts are not over-represented in the morphologically distinct adult; rather, many genes that encode typical metazoan features, such as cell adhesion and immunity, are upregulated. Our analysis further revealed gene families with candidate roles in competence, settlement, and metamorphosis in the sponge, including transcription factors, G-protein coupled receptors and other signaling molecules. Conclusions This first genome-wide study of the developmental transcriptome in an early branching metazoan highlights major transcriptional events that accompany the pelagobenthic transition and point to a network of regulatory mechanisms that coordinate changes in morphology with shifting environmental demands

  3. Efficient genome-wide association in biobanks using topic modeling identifies multiple novel disease loci.

    PubMed

    McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H

    2017-08-31

    Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that may be unreliable and fail to capture the relationship between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records (EHR) for 10845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes are included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p<1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than for single phenome-wide diagnostic codes, and incorporation of less strongly-loading diagnostic codes enhanced association. This strategy provides a more efficient means of phenome-wide association in biobanks with coded clinical data.

  4. Efficient Genome-wide Association in Biobanks Using Topic Modeling Identifies Multiple Novel Disease Loci

    PubMed Central

    McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H

    2017-01-01

    Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that can be unreliable and fail to capture relationships between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records for 10,845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted a genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes were included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p < 1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than single phenome-wide diagnostic codes, and incorporation of less strongly loading diagnostic codes enhanced association. This strategy provides a more efficient means of identifying phenome-wide associations in biobanks with coded clinical data. PMID:28861588

  5. Genome-wide Association Studies from the Cancer Genetic Markers of Susceptibility (CGEMS) Initiative | Office of Cancer Genomics

    Cancer.gov

    CGEMS identifies common inherited genetic variations associated with a number of cancers, including breast and prostate. Data from these genome-wide association studies (GWAS) are available through the Division of Cancer Epidemiology & Genetics website.

  6. Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis.

    PubMed

    Hayden, Lystra P; Cho, Michael H; McDonald, Merry-Lynn N; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P

    2017-01-01

    Previous studies have indicated that in adult smokers, a history of childhood pneumonia is associated with reduced lung function and chronic obstructive pulmonary disease. There have been few previous investigations using genome-wide association studies to investigate genetic predisposition to pneumonia. This study aims to identify the genetic variants associated with the development of pneumonia during childhood and over the course of the lifetime. Study subjects included current and former smokers with and without chronic obstructive pulmonary disease participating in the COPDGene Study. Pneumonia was defined by subject self-report, with childhood pneumonia categorized as having the first episode at <16 years. Genome-wide association studies for childhood pneumonia (843 cases, 9,091 control subjects) and lifetime pneumonia (3,766 cases, 5,659 control subjects) were performed separately in non-Hispanic whites and African Americans. Non-Hispanic white and African American populations were combined in the meta-analysis. Top genetic variants from childhood pneumonia were assessed in network analysis. No single-nucleotide polymorphisms reached genome-wide significance, although we identified potential regions of interest. In the childhood pneumonia analysis, this included variants in NGR1 (P = 6.3 × 10 -8 ), PAK6 (P = 3.3 × 10 -7 ), and near MATN1 (P = 2.8 × 10 -7 ). In the lifetime pneumonia analysis, this included variants in LOC339862 (P = 8.7 × 10 -7 ), RAPGEF2 (P = 8.4 × 10 -7 ), PHACTR1 (P = 6.1 × 10 -7 ), near PRR27 (P = 4.3 × 10 -7 ), and near MCPH1 (P = 2.7 × 10 -7 ). Network analysis of the genes associated with childhood pneumonia included top networks related to development, blood vessel morphogenesis, muscle contraction, WNT signaling, DNA damage, apoptosis, inflammation, and immune response (P ≤ 0.05). We have identified genes potentially associated with the risk of pneumonia

  7. Genome-wide association studies in Alzheimer disease.

    PubMed

    Waring, Stephen C; Rosenberg, Roger N

    2008-03-01

    The genetics of Alzheimer disease (AD) to date support an age-dependent dichotomous model whereby earlier age of disease onset (< 60 years) is explained by 3 fully penetrant genes (APP [NCBI Entrez gene 351], PSEN1 [NCBI Entrez gene 5663], and PSEN2 [NCBI Entrez gene 5664]), whereas later age of disease onset (> or = 65 years) representing most cases of AD has yet to be explained by a purely genetic model. The APOE gene (NCBI Entrez gene 348) is the strongest genetic risk factor for later onset, although it is neither sufficient nor necessary to explain all occurrences of disease. Numerous putative genetic risk alleles and genetic variants have been reported. Although all have relevance to biological mechanisms that may be associated with AD pathogenesis, they await replication in large representative populations. Genome-wide association studies have emerged as an increasingly effective tool for identifying genetic contributions to complex diseases and represent the next frontier for furthering our understanding of the underlying etiologic, biological, and pathologic mechanisms associated with chronic complex disorders. There have already been success stories for diseases such as macular degeneration and diabetes mellitus. Whether this will hold true for a genetically complex and heterogeneous disease such as AD is not known, although early reports are encouraging. This review considers recent publications from studies that have successfully applied genome-wide association methods to investigations of AD by taking advantage of the currently available high-throughput arrays, bioinformatics, and software advances. The inherent strengths, limitations, and challenges associated with study design issues in the context of AD are presented herein.

  8. Quality control and conduct of genome-wide association meta-analyses.

    PubMed

    Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C; Wood, Andrew R; Locke, Adam E; Mägi, Reedik; Ferreira, Teresa; Fall, Tove; Graff, Mariaelisa; Justice, Anne E; Luan, Jian'an; Gustafsson, Stefan; Randall, Joshua C; Vedantam, Sailaja; Workalemahu, Tsegaselassie; Kilpeläinen, Tuomas O; Scherag, André; Esko, Tonu; Kutalik, Zoltán; Heid, Iris M; Loos, Ruth J F

    2014-05-01

    Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.

  9. A hidden two-locus disease association pattern in genome-wide association studies

    PubMed Central

    2011-01-01

    Background Recent association analyses in genome-wide association studies (GWAS) mainly focus on single-locus association tests (marginal tests) and two-locus interaction detections. These analysis methods have provided strong evidence of associations between genetics variances and complex diseases. However, there exists a type of association pattern, which often occurs within local regions in the genome and is unlikely to be detected by either marginal tests or interaction tests. This association pattern involves a group of correlated single-nucleotide polymorphisms (SNPs). The correlation among SNPs can lead to weak marginal effects and the interaction does not play a role in this association pattern. This phenomenon is due to the existence of unfaithfulness: the marginal effects of correlated SNPs do not express their significant joint effects faithfully due to the correlation cancelation. Results In this paper, we develop a computational method to detect this association pattern masked by unfaithfulness. We have applied our method to analyze seven data sets from the Wellcome Trust Case Control Consortium (WTCCC). The analysis for each data set takes about one week to finish the examination of all pairs of SNPs. Based on the empirical result of these real data, we show that this type of association masked by unfaithfulness widely exists in GWAS. Conclusions These newly identified associations enrich the discoveries of GWAS, which may provide new insights both in the analysis of tagSNPs and in the experiment design of GWAS. Since these associations may be easily missed by existing analysis tools, we can only connect some of them to publicly available findings from other association studies. As independent data set is limited at this moment, we also have difficulties to replicate these findings. More biological implications need further investigation. Availability The software is freely available at http://bioinformatics.ust.hk/hidden_pattern_finder.zip. PMID

  10. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    USDA-ARS?s Scientific Manuscript database

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...

  11. Genome-wide dissection of hybrid sterility in Drosophila confirms a polygenic threshold architecture.

    PubMed

    Morán, Tomás; Fontdevila, Antonio

    2014-01-01

    To date, different studies about the genetic basis of hybrid male sterility (HMS), a postzygotic reproductive barrier thoroughly investigated using Drosophila species, have demonstrated that no single major gene can produce hybrid sterility without the cooperation of several genetic factors. Early work using hybrids between Drosophila koepferae (Dk) and Drosophila buzzatii (Db) was consistent with the idea that HMS requires the cooperation of several genetic factors, supporting a polygenic threshold (PT) model. Here we present a genome-wide mapping strategy to test the PT model, analyzing serially backcrossed fertile and sterile males in which the Dk genome was introgressed into the Db background. We identified 32 Dk-specific markers significantly associated with hybrid sterility. Our results demonstrate 1) a strong correlation between the number of segregated sterility markers and males' degree of sterility, 2) the exchangeability among markers, 3) their tendency to cluster into low-recombining chromosomal regions, and 4) the requirement for a minimum number (threshold) of markers to elicit sterility. Although our findings do not contradict a role for occasional major hybrid-sterility genes, they conform more to the view that HMS primarily evolves by the cumulative action of many interacting genes of minor effect in a complex PT architecture.

  12. Detection of genome-wide copy number variants in myeloid malignancies using next-generation sequencing.

    PubMed

    Shen, Wei; Paxton, Christian N; Szankasi, Philippe; Longhurst, Maria; Schumacher, Jonathan A; Frizzell, Kimberly A; Sorrells, Shelly M; Clayton, Adam L; Jattani, Rakhi P; Patel, Jay L; Toydemir, Reha; Kelley, Todd W; Xu, Xinjie

    2018-04-01

    Genetic abnormalities, including copy number variants (CNV), copy number neutral loss of heterozygosity (CN-LOH) and gene mutations, underlie the pathogenesis of myeloid malignancies and serve as important diagnostic, prognostic and/or therapeutic markers. Currently, multiple testing strategies are required for comprehensive genetic testing in myeloid malignancies. The aim of this proof-of-principle study was to investigate the feasibility of combining detection of genome-wide large CNVs, CN-LOH and targeted gene mutations into a single assay using next-generation sequencing (NGS). For genome-wide CNV detection, we designed a single nucleotide polymorphism (SNP) sequencing backbone with 22 762 SNP regions evenly distributed across the entire genome. For targeted mutation detection, 62 frequently mutated genes in myeloid malignancies were targeted. We combined this SNP sequencing backbone with a targeted mutation panel, and sequenced 9 healthy individuals and 16 patients with myeloid malignancies using NGS. We detected 52 somatic CNVs, 11 instances of CN-LOH and 39 oncogenic mutations in the 16 patients with myeloid malignancies, and none in the 9 healthy individuals. All CNVs and CN-LOH were confirmed by SNP microarray analysis. We describe a genome-wide SNP sequencing backbone which allows for sensitive detection of genome-wide CNVs and CN-LOH using NGS. This proof-of-principle study has demonstrated that this strategy can provide more comprehensive genetic profiling for patients with myeloid malignancies using a single assay. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data

    PubMed Central

    Wright, Caroline F; Fitzgerald, Tomas W; Jones, Wendy D; Clayton, Stephen; McRae, Jeremy F; van Kogelenberg, Margriet; King, Daniel A; Ambridge, Kirsty; Barrett, Daniel M; Bayzetinova, Tanya; Bevan, A Paul; Bragin, Eugene; Chatzimichali, Eleni A; Gribble, Susan; Jones, Philip; Krishnappa, Netravathi; Mason, Laura E; Miller, Ray; Morley, Katherine I; Parthiban, Vijaya; Prigmore, Elena; Rajan, Diana; Sifrim, Alejandro; Swaminathan, G Jawahar; Tivey, Adrian R; Middleton, Anna; Parker, Michael; Carter, Nigel P; Barrett, Jeffrey C; Hurles, Matthew E; FitzPatrick, David R; Firth, Helen V

    2015-01-01

    Summary Background Human genome sequencing has transformed our understanding of genomic variation and its relevance to health and disease, and is now starting to enter clinical practice for the diagnosis of rare diseases. The question of whether and how some categories of genomic findings should be shared with individual research participants is currently a topic of international debate, and development of robust analytical workflows to identify and communicate clinically relevant variants is paramount. Methods The Deciphering Developmental Disorders (DDD) study has developed a UK-wide patient recruitment network involving over 180 clinicians across all 24 regional genetics services, and has performed genome-wide microarray and whole exome sequencing on children with undiagnosed developmental disorders and their parents. After data analysis, pertinent genomic variants were returned to individual research participants via their local clinical genetics team. Findings Around 80 000 genomic variants were identified from exome sequencing and microarray analysis in each individual, of which on average 400 were rare and predicted to be protein altering. By focusing only on de novo and segregating variants in known developmental disorder genes, we achieved a diagnostic yield of 27% among 1133 previously investigated yet undiagnosed children with developmental disorders, whilst minimising incidental findings. In families with developmentally normal parents, whole exome sequencing of the child and both parents resulted in a 10-fold reduction in the number of potential causal variants that needed clinical evaluation compared to sequencing only the child. Most diagnostic variants identified in known genes were novel and not present in current databases of known disease variation. Interpretation Implementation of a robust translational genomics workflow is achievable within a large-scale rare disease research study to allow feedback of potentially diagnostic findings to

  14. Creative Activities in Music--A Genome-Wide Linkage Analysis.

    PubMed

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose

  15. GeneCount: genome-wide calculation of absolute tumor DNA copy numbers from array comparative genomic hybridization data

    PubMed Central

    Lyng, Heidi; Lando, Malin; Brøvig, Runar S; Svendsrud, Debbie H; Johansen, Morten; Galteland, Eivind; Brustugun, Odd T; Meza-Zepeda, Leonardo A; Myklebost, Ola; Kristensen, Gunnar B; Hovig, Eivind; Stokke, Trond

    2008-01-01

    Absolute tumor DNA copy numbers can currently be achieved only on a single gene basis by using fluorescence in situ hybridization (FISH). We present GeneCount, a method for genome-wide calculation of absolute copy numbers from clinical array comparative genomic hybridization data. The tumor cell fraction is reliably estimated in the model. Data consistent with FISH results are achieved. We demonstrate significant improvements over existing methods for exploring gene dosages and intratumor copy number heterogeneity in cancers. PMID:18500990

  16. Linkage Disequilibrium And Genome-Wide Association Studies In O. sativa

    USDA-ARS?s Scientific Manuscript database

    There is increasing evidence that genome-wide association studies provide a powerful approach to find the genetic basis of complex phenotypic variation in all kinds of species. For this purpose, we developed the first generation 44K Affymetrix SNP array in rice (see Tung et al. poster). We genotyped...

  17. Novel genetic loci underlying human intracranial volume identified through genome-wide association.

    PubMed

    Adams, Hieab H H; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura M E; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; Braber, Anouk Den; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco J C; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, W T; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J A; Van Duijn, Cornelia M; Van Haren, Neeltje E M; Van T Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton J M; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-12-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρ genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.

  18. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    PubMed Central

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura ME; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher RK; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David CM; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Olde Loohuis, Loes M; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein MJ; Van Eijk, Kristel R; Van Erp, Theo GM; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco JC; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald HH; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, WT; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Valdés Hernández, Maria C; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic JA; Van Duijn, Cornelia M; Van Haren, Neeltje EM; Van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton JM; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth. PMID:27694991

  19. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis

    PubMed Central

    Gianola, Daniel; Fariello, Maria I.; Naya, Hugo; Schön, Chris-Carolin

    2016-01-01

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals (G) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G, provided variance components are unaffected by exclusion of such marker(s) from G. The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G does matter. Removal of eigenvectors from G can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. PMID:27520956

  20. Meta-Analyses of Genome-Wide Association Data Hold New Promise for Addiction Genetics.

    PubMed

    Agrawal, Arpana; Edenberg, Howard J; Gelernter, Joel

    2016-09-01

    Meta-analyses of genome-wide association study data have begun to lead to promising new discoveries for behavioral and psychiatrically relevant phenotypes (e.g., schizophrenia, educational attainment). We outline how this methodology can similarly lead to novel discoveries in genomic studies of substance use disorders, and discuss challenges that will need to be overcome to accomplish this goal. We illustrate our approach with the work of the newly established Substance Use Disorders workgroup of the Psychiatric Genomics Consortium.

  1. Genome-wide association analyses for carcass quality in crossbred beef cattle

    PubMed Central

    2013-01-01

    Background Genetic improvement of beef quality will benefit both producers and consumers, and can be achieved by selecting animals that carry desired quantitative trait nucleotides (QTN), which result from intensive searches using genetic markers. This paper presents a genome-wide association approach utilizing single nucleotide polymorphisms (SNP) in the Illumina BovineSNP50 BeadChip to seek genomic regions that potentially harbor genes or QTN underlying variation in carcass quality of beef cattle. This study used 747 genotyped animals, mainly crossbred, with phenotypes on twelve carcass quality traits, including hot carcass weight (HCW), back fat thickness (BF), Longissimus dorsi muscle area or ribeye area (REA), marbling scores (MRB), lean yield grade by Beef Improvement Federation formulae (BIFYLD), steak tenderness by Warner-Bratzler shear force 7-day post-mortem (LM7D) as well as body composition as determined by partial rib (IMPS 103) dissection presented as a percentage of total rib weight including body cavity fat (BDFR), lean (LNR), bone (BNR), intermuscular fat (INFR), subcutaneous fat (SQFR), and total fat (TLFR). Results At the genome wide level false discovery rate (FDR < 10%), eight SNP were found significantly associated with HCW. Seven of these SNP were located on Bos taurus autosome (BTA) 6. At a less stringent significance level (P < 0.001), 520 SNP were found significantly associated with mostly individual traits (473 SNP), and multiple traits (47 SNP). Of these significant SNP, 48 were located on BTA6, and 22 of them were in association with hot carcass weight. There were 53 SNP associated with percentage of rib bone, and 12 of them were on BTA20. The rest of the significant SNP were scattered over other chromosomes. They accounted for 1.90 - 5.89% of the phenotypic variance of the traits. A region of approximately 4 Mbp long on BTA6 was found to be a potential area to harbor candidate genes influencing growth. One marker on BTA25

  2. Genome-wide association Scan of dental caries in the permanent dentition

    PubMed Central

    2012-01-01

    Background Over 90% of adults aged 20 years or older with permanent teeth have suffered from dental caries leading to pain, infection, or even tooth loss. Although caries prevalence has decreased over the past decade, there are still about 23% of dentate adults who have untreated carious lesions in the US. Dental caries is a complex disorder affected by both individual susceptibility and environmental factors. Approximately 35-55% of caries phenotypic variation in the permanent dentition is attributable to genes, though few specific caries genes have been identified. Therefore, we conducted the first genome-wide association study (GWAS) to identify genes affecting susceptibility to caries in adults. Methods Five independent cohorts were included in this study, totaling more than 7000 participants. For each participant, dental caries was assessed and genetic markers (single nucleotide polymorphisms, SNPs) were genotyped or imputed across the entire genome. Due to the heterogeneity among the five cohorts regarding age, genotyping platform, quality of dental caries assessment, and study design, we first conducted genome-wide association (GWA) analyses on each of the five independent cohorts separately. We then performed three meta-analyses to combine results for: (i) the comparatively younger, Appalachian cohorts (N = 1483) with well-assessed caries phenotype, (ii) the comparatively older, non-Appalachian cohorts (N = 5960) with inferior caries phenotypes, and (iii) all five cohorts (N = 7443). Top ranking genetic loci within and across meta-analyses were scrutinized for biologically plausible roles on caries. Results Different sets of genes were nominated across the three meta-analyses, especially between the younger and older age cohorts. In general, we identified several suggestive loci (P-value ≤ 10E-05) within or near genes with plausible biological roles for dental caries, including RPS6KA2 and PTK2B, involved in p38-depenedent MAPK signaling

  3. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus.

    PubMed

    Müller, Bárbara S F; Neves, Leandro G; de Almeida Filho, Janeo E; Resende, Márcio F R; Muñoz, Patricio R; Dos Santos, Paulo E T; Filho, Estefano Paludzyszyn; Kirst, Matias; Grattapaglia, Dario

    2017-07-11

    The advent of high-throughput genotyping technologies coupled to genomic prediction methods established a new paradigm to integrate genomics and breeding. We carried out whole-genome prediction and contrasted it to a genome-wide association study (GWAS) for growth traits in breeding populations of Eucalyptus benthamii (n =505) and Eucalyptus pellita (n =732). Both species are of increasing commercial interest for the development of germplasm adapted to environmental stresses. Predictive ability reached 0.16 in E. benthamii and 0.44 in E. pellita for diameter growth. Predictive abilities using either Genomic BLUP or different Bayesian methods were similar, suggesting that growth adequately fits the infinitesimal model. Genomic prediction models using ~5000-10,000 SNPs provided predictive abilities equivalent to using all 13,787 and 19,506 SNPs genotyped in the E. benthamii and E. pellita populations, respectively. No difference was detected in predictive ability when different sets of SNPs were utilized, based on position (equidistantly genome-wide, inside genes, linkage disequilibrium pruned or on single chromosomes), as long as the total number of SNPs used was above ~5000. Predictive abilities obtained by removing relatedness between training and validation sets fell near zero for E. benthamii and were halved for E. pellita. These results corroborate the current view that relatedness is the main driver of genomic prediction, although some short-range historical linkage disequilibrium (LD) was likely captured for E. pellita. A GWAS identified only one significant association for volume growth in E. pellita, illustrating the fact that while genome-wide regression is able to account for large proportions of the heritability, very little or none of it is captured into significant associations using GWAS in breeding populations of the size evaluated in this study. This study provides further experimental data supporting positive prospects of using genome-wide data to

  4. Inference of gene regulatory networks from genome-wide knockout fitness data

    PubMed Central

    Wang, Liming; Wang, Xiaodong; Arkin, Adam P.; Samoilov, Michael S.

    2013-01-01

    Motivation: Genome-wide fitness is an emerging type of high-throughput biological data generated for individual organisms by creating libraries of knockouts, subjecting them to broad ranges of environmental conditions, and measuring the resulting clone-specific fitnesses. Since fitness is an organism-scale measure of gene regulatory network behaviour, it may offer certain advantages when insights into such phenotypical and functional features are of primary interest over individual gene expression. Previous works have shown that genome-wide fitness data can be used to uncover novel gene regulatory interactions, when compared with results of more conventional gene expression analysis. Yet, to date, few algorithms have been proposed for systematically using genome-wide mutant fitness data for gene regulatory network inference. Results: In this article, we describe a model and propose an inference algorithm for using fitness data from knockout libraries to identify underlying gene regulatory networks. Unlike most prior methods, the presented approach captures not only structural, but also dynamical and non-linear nature of biomolecular systems involved. A state–space model with non-linear basis is used for dynamically describing gene regulatory networks. Network structure is then elucidated by estimating unknown model parameters. Unscented Kalman filter is used to cope with the non-linearities introduced in the model, which also enables the algorithm to run in on-line mode for practical use. Here, we demonstrate that the algorithm provides satisfying results for both synthetic data as well as empirical measurements of GAL network in yeast Saccharomyces cerevisiae and TyrR–LiuR network in bacteria Shewanella oneidensis. Availability: MATLAB code and datasets are available to download at http://www.duke.edu/∼lw174/Fitness.zip and http://genomics.lbl.gov/supplemental/fitness-bioinf/ Contact: wangx@ee.columbia.edu or mssamoilov@lbl.gov Supplementary information

  5. Genome-wide meta-analyses of stratified depression in Generation Scotland and UK Biobank.

    PubMed

    Hall, Lynsey S; Adams, Mark J; Arnau-Soler, Aleix; Clarke, Toni-Kim; Howard, David M; Zeng, Yanni; Davies, Gail; Hagenaars, Saskia P; Maria Fernandez-Pujals, Ana; Gibson, Jude; Wigmore, Eleanor M; Boutin, Thibaud S; Hayward, Caroline; Scotland, Generation; Porteous, David J; Deary, Ian J; Thomson, Pippa A; Haley, Chris S; McIntosh, Andrew M

    2018-01-10

    Few replicable genetic associations for Major Depressive Disorder (MDD) have been identified. Recent studies of MDD have identified common risk variants by using a broader phenotype definition in very large samples, or by reducing phenotypic and ancestral heterogeneity. We sought to ascertain whether it is more informative to maximize the sample size using data from all available cases and controls, or to use a sex or recurrent stratified subset of affected individuals. To test this, we compared heritability estimates, genetic correlation with other traits, variance explained by MDD polygenic score, and variants identified by genome-wide meta-analysis for broad and narrow MDD classifications in two large British cohorts - Generation Scotland and UK Biobank. Genome-wide meta-analysis of MDD in males yielded one genome-wide significant locus on 3p22.3, with three genes in this region (CRTAP, GLB1, and TMPPE) demonstrating a significant association in gene-based tests. Meta-analyzed MDD, recurrent MDD and female MDD yielded equivalent heritability estimates, showed no detectable difference in association with polygenic scores, and were each genetically correlated with six health-correlated traits (neuroticism, depressive symptoms, subjective well-being, MDD, a cross-disorder phenotype and Bipolar Disorder). Whilst stratified GWAS analysis revealed a genome-wide significant locus for male MDD, the lack of independent replication, and the consistent pattern of results in other MDD classifications suggests that phenotypic stratification using recurrence or sex in currently available sample sizes is currently weakly justified. Based upon existing studies and our findings, the strategy of maximizing sample sizes is likely to provide the greater gain.

  6. Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution.

    PubMed

    Renner, Daniel W; Szpara, Moriah L

    2018-01-01

    Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well. Copyright © 2017 Renner and Szpara.

  7. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  8. Genome-Wide Association Study Meta-Analysis of Long Term Average Blood Pressure in East Asians

    PubMed Central

    Li, Changwei; Kim, Yun Kyoung; Dorajoo, Rajkumar; Li, Huaixing; Lee, I-Te; Cheng, Ching-Yu; He, Meian; Sheu, Wayne H-h; Guo, Xiuqing; Ganesh, Santhi K.; He, Jiang; Lee, Juyoung; Liu, Jianjun; Hu, Yao; Rao, Dabeeru C.; Tsai, Fuu-Jen; Koh, Jia Yu; Hu, Hua; Liang, Kae-Woei; Palmas, Walter; Hixson, James E.; Han, Sohee; Teo, Yik-Ying; Wang, Yiqin; Chen, Jing; Lu, Chieh Hsiang; Zheng, Yingfeng; Gui, Lixuan; Lee, Wen-Jane; Yao, Jie; Gu, Dongfeng; Han, Bok-Ghee; Sim, Xueling; Sun, Liang; Zhao, Jinying; Chen, Chien-Hsiun; Kumari, Neelam; He, Yunfeng; Taylor, Kent D.; Raffel, Leslie J.; Moon, Sanghoon; Rotter, Jerome I.; Ida Chen, Yii-der; Wu, Tangchun; Wong, Tien Yin; Wu, Jer-Yuarn; Lin, Xu; Tai, E-Shyong; Kim, Bong-Jo; Kelly, Tanika N.

    2017-01-01

    Background Genome-wide single marker and gene-based meta-analyses of long term average (LTA) blood pressure (BP) phenotypes may reveal novel findings for BP. Methods and Results We conducted genome-wide analysis among 18,422 East Asian participants (stage-1) followed by replication study of up to 46,629 participants of European ancestry (stage-2). Significant SNPs and genes were determined by a P<5.0×10−8 and 2.5×10−6, respectively, in joint analyses of stage-1 and stage-2 data. We identified one novel ARL3 variant, rs4919669 at 10q24.32, influencing LTA systolic BP (stage-1 P=5.03×10−8, stage-2 P=8.64×10−3, joint P=2.63×10−8) and mean arterial pressure (stage-1 P=3.59×10−9, stage-2 P=2.35×10−2, joint P=2.64×10−8). Three previously reported BP loci (WBP1L, NT5C2, and ATP2B1) were also identified for all BP phenotypes. Gene-based analysis provided the first robust evidence for association of KCNJ11 with LTA SBP (stage-1 P=8.55×10−6, stage-2 P=1.62×10−5, joint P=3.28×10−9) and mean arterial pressure (stage-1 P=9.19×10−7, stage-2 P=9.69×10−5, joint P=2.15×10−9) phenotypes. Fourteen genes (TMEM180, ACTR1A, SUFU, ARL3, SFXN2, WBP1L, CYP17A1, C10orf32, C10orf32-ASMT, AS3MT, CNNM2, and NT5C2 at 10q24.32; ATP2B1 at 12q21.33; and NCR3LG1 at 11p15.1) implicated by previous genome-wide association study meta-analyses were also identified. Among the loci identified by the previous genome-wide association study meta-analysis of LTA BP, we trans-ethnically replicated associations of the KCNK3 marker rs1275988 at 2p23.3 with LTA systolic BP and mean arterial pressure phenotypes (P=1.27×10−4 and 3.30×10−4, respectively). Conclusions We identified 1 novel variant and 1 novel gene, and present the first direct evidence of relevance of the KCNK3 locus for LTA BP among East Asians. PMID:28348047

  9. Genome-wide association study identifies multiple loci associated with bladder cancer risk

    PubMed Central

    Figueroa, Jonine D.; Ye, Yuanqing; Siddiq, Afshan; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Prokunina-Olsson, Ludmila; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Dinney, Colin P.; Malats, Núria; Baris, Dalsu; Purdue, Mark; Jacobs, Eric J.; Albanes, Demetrius; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Tang, Wei; Bas Bueno-de-Mesquita, H.; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Kamat, Ashish M.; Lerner, Seth P.; Barton Grossman, H.; Lin, Jie; Gu, Jian; Pu, Xia; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Kogevinas, Manolis; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Schned, Alan; Armenti, Karla R.; Hosain, G.M.; Andriole, Gerald; Grubb, Robert; Black, Amanda; Ryan Diver, W.; Gapstur, Susan M.; Weinstein, Stephanie J.; Virtamo, Jarmo; Haiman, Chris A.; Landi, Maria T.; Caporaso, Neil; Fraumeni, Joseph F.; Vineis, Paolo; Wu, Xifeng; Silverman, Debra T.; Chanock, Stephen; Rothman, Nathaniel

    2014-01-01

    Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis. PMID:24163127

  10. Genome-wide gene–environment interaction analysis for asbestos exposure in lung cancer susceptibility

    PubMed Central

    Wei, Qingyi Wei

    2012-01-01

    Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene–environment interactions. To determine gene–asbestos interactions in lung cancer risk, we conducted genome-wide gene–environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10–6, which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10–5). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene–asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk. Abbreviations:CIconfidence intervalEenvironmentFDRfalse discovery rateGgeneGSEAgene-set-enrichment analysisGWASgenome-wide association studiesi-GSEAimproved gene-set-enrichment analysis approachORodds ratioSNPsingle nucleotide polymorphism PMID:22637743

  11. Genome-wide mapping of autonomous promoter activity in human cells

    PubMed Central

    van Arensbergen, Joris; FitzPatrick, Vincent D.; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J.; van Steensel, Bas

    2017-01-01

    Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of sequences that could be tested. Here we present Survey of Regulatory Elements (SuRE), a method to assay more than 108 DNA fragments, each 0.2–2kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library is constructed of random genomic fragments upstream of a 20bp barcode and decoded by paired-end sequencing. This library is then transfected into cells and transcribed barcodes are quantified in the RNA by high throughput sequencing. When applied to the human genome, we achieved a 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide. By computational modeling we delineated subregions within promoters that are relevant for their activity. For instance, we show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites. PMID:28024146

  12. Genome-wide association study identifies 74 loci associated with educational attainment

    PubMed Central

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark A.; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans68, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A.L.M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Maël P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C.M.; Loukola, Anu; Madden, Pamela A.; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E.R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Räikkönen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J.A.; Venturini, Cristina; Vinkhuyzen, Anna A.E.; Völker, Uwe; Völzke, Henry; Vonk, Judith M.; Vozzi, Diego; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J.F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G.; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L.R.; Lehtimäki, Terho; Lehrer, Steven F.; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W.J.H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I.A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, André G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tõnu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. PMID:27225129

  13. Genome-wide association study identifies 74 loci associated with educational attainment.

    PubMed

    Okbay, Aysu; Beauchamp, Jonathan P; Fontana, Mark Alan; Lee, James J; Pers, Tune H; Rietveld, Cornelius A; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S Fleur W; Oskarsson, Sven; Pickrell, Joseph K; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H; Pina Concas, Maria; Derringer, Jaime; Furlotte, Nicholas A; Galesloot, Tessel E; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M; Harris, Sarah E; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E; Kaasik, Kadri; Kalafati, Ioanna P; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J; deLeeuw, Christiaan; Lind, Penelope A; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B; van der Most, Peter J; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E; Shi, Jianxin; Smith, Albert V; Poot, Raymond A; St Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A; Campbell, Harry; Cappuccio, Francesco P; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans, David M; Faul, Jessica D; Feitosa, Mary F; Forstner, Andreas J; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V; Harris, Tamara B; Heath, Andrew C; Hocking, Lynne J; Holliday, Elizabeth G; Homuth, Georg; Horan, Michael A; Hottenga, Jouke-Jan; de Jager, Philip L; Joshi, Peter K; Jugessur, Astanand; Kaakinen, Marika A; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A L M; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J; Lebreton, Maël P; Levinson, Douglas F; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C M; Loukola, Anu; Madden, Pamela A; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E; Marques-Vidal, Pedro; Meddens, Gerardus A; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W; Myhre, Ronny; Nelson, Christopher P; Nyholt, Dale R; Ollier, William E R; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L; Petrovic, Katja E; Porteous, David J; Räikkönen, Katri; Ring, Susan M; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J; Smith, Blair H; Smith, Jennifer A; Staessen, Jan A; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J A; Venturini, Cristina; Vinkhuyzen, Anna A E; Völker, Uwe; Völzke, Henry; Vonk, Judith M; Vozzi, Diego; Waage, Johannes; Ware, Erin B; Willemsen, Gonneke; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I; Borecki, Ingrid B; Bültmann, Ute; Chabris, Christopher F; Cucca, Francesco; Cusi, Daniele; Deary, Ian J; Dedoussis, George V; van Duijn, Cornelia M; Eriksson, Johan G; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J F; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Lehtimäki, Terho; Lehrer, Steven F; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W J H; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A; Samani, Nilesh J; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I A; Spector, Tim D; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Tung, Joyce Y; Uitterlinden, André G; Vitart, Veronique; Vollenweider, Peter; Weir, David R; Wilson, James F; Wright, Alan F; Conley, Dalton C; Krueger, Robert F; Davey Smith, George; Hofman, Albert; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Yang, Jian; Johannesson, Magnus; Visscher, Peter M; Esko, Tõnu; Koellinger, Philipp D; Cesarini, David; Benjamin, Daniel J

    2016-05-26

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.

  14. Genome-wide differentiation of various melon horticultural groups for use in genome wide association study for fruit firmness and construction of a high resolution genetic map

    USDA-ARS?s Scientific Manuscript database

    We generated 13,789 single nucleotide plymorphism (SNP) markers from 97 melon accessions using genotyping by sequencing and anchored them to chromosomes to understand genome-wide fixation index between various melon morphotypes and linkage disequilibrium (LD) decay for inodorus and cantalupensis, th...

  15. Genetic link between family socioeconomic status and children's educational achievement estimated from genome-wide SNPs.

    PubMed

    Krapohl, E; Plomin, R

    2016-03-01

    One of the best predictors of children's educational achievement is their family's socioeconomic status (SES), but the degree to which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education accounted for ~3.0% variance in educational achievement and ~2.5% in family SES. This study provides the first molecular evidence for substantial genetic influence on differences in children's educational achievement and its association with family SES.

  16. Genetic link between family socioeconomic status and children's educational achievement estimated from genome-wide SNPs

    PubMed Central

    Krapohl, E; Plomin, R

    2016-01-01

    One of the best predictors of children's educational achievement is their family's socioeconomic status (SES), but the degree to which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education accounted for ~3.0% variance in educational achievement and ~2.5% in family SES. This study provides the first molecular evidence for substantial genetic influence on differences in children's educational achievement and its association with family SES. PMID:25754083

  17. Genome-Wide Microsatellite Characterization and Marker Development in the Sequenced Brassica Crop Species

    PubMed Central

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-01-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species. PMID:24130371

  18. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    PubMed

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  19. Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries

    PubMed Central

    Baurley, James W.; Edlund, Christopher K.; Pardamean, Carissa I.; Conti, David V.; Krasnow, Ruth; Javitz, Harold S.; Hops, Hyman; Swan, Gary E.; Benowitz, Neal L.

    2016-01-01

    Introduction: Metabolic enzyme variation and other patient and environmental characteristics influence smoking behaviors, treatment success, and risk of related disease. Population-specific variation in metabolic genes contributes to challenges in developing and optimizing pharmacogenetic interventions. We applied a custom genome-wide genotyping array for addiction research (Smokescreen), to three laboratory-based studies of nicotine metabolism with oral or venous administration of labeled nicotine and cotinine, to model nicotine metabolism in multiple populations. The trans-3′-hydroxycotinine/cotinine ratio, the nicotine metabolite ratio (NMR), was the nicotine metabolism measure analyzed. Methods: Three hundred twelve individuals of self-identified European, African, and Asian American ancestry were genotyped and included in ancestry-specific genome-wide association scans (GWAS) and a meta-GWAS analysis of the NMR. We modeled natural-log transformed NMR with covariates: principal components of genetic ancestry, age, sex, body mass index, and smoking status. Results: African and Asian American NMRs were statistically significantly (P values ≤ 5E-5) lower than European American NMRs. Meta-GWAS analysis identified 36 genome-wide significant variants over a 43 kilobase pair region at CYP2A6 with minimum P = 2.46E-18 at rs12459249, proximal to CYP2A6. Additional minima were located in intron 4 (rs56113850, P = 6.61E-18) and in the CYP2A6-CYP2A7 intergenic region (rs34226463, P = 1.45E-12). Most (34/36) genome-wide significant variants suggested reduced CYP2A6 activity; functional mechanisms were identified and tested in knowledge-bases. Conditional analysis resulted in intergenic variants of possible interest (P values < 5E-5). Conclusions: This meta-GWAS of the NMR identifies CYP2A6 variants, replicates the top-ranked single nucleotide polymorphism from a recent Finnish meta-GWAS of the NMR, identifies functional mechanisms, and provides pan

  20. Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood.

    PubMed

    Adkins, Daniel E; Clark, Shaunna L; Copeland, William E; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A; Silberg, Judy; Brown, Tyson H; Fergusson, David M; Horwood, L John; Eaves, Lindon; van den Oord, Edwin J C G; Sullivan, Patrick F; Costello, E J

    2015-08-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies.

  1. Genome-wide Association Study Identifies Shared Risk Loci Common to Two Malignancies in Golden Retrievers

    PubMed Central

    Tonomura, Noriko; Elvers, Ingegerd; Thomas, Rachael; Megquier, Kate; Turner-Maier, Jason; Howald, Cedric; Sarver, Aaron L.; Swofford, Ross; Frantz, Aric M.; Ito, Daisuke; Mauceli, Evan; Arendt, Maja; Noh, Hyun Ji; Koltookian, Michele; Biagi, Tara; Fryc, Sarah; Williams, Christina; Avery, Anne C.; Kim, Jong-Hyuk; Barber, Lisa; Burgess, Kristine; Lander, Eric S.; Karlsson, Elinor K.; Azuma, Chieko

    2015-01-01

    Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosarcoma (20%). We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers. PMID:25642983

  2. Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases.

    PubMed

    Witoelar, Aree; Jansen, Iris E; Wang, Yunpeng; Desikan, Rahul S; Gibbs, J Raphael; Blauwendraat, Cornelis; Thompson, Wesley K; Hernandez, Dena G; Djurovic, Srdjan; Schork, Andrew J; Bettella, Francesco; Ellinghaus, David; Franke, Andre; Lie, Benedicte A; McEvoy, Linda K; Karlsen, Tom H; Lesage, Suzanne; Morris, Huw R; Brice, Alexis; Wood, Nicholas W; Heutink, Peter; Hardy, John; Singleton, Andrew B; Dale, Anders M; Gasser, Thomas; Andreassen, Ole A; Sharma, Manu

    2017-07-01

    Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes. To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach. Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017. The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases. Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes. The study findings provide novel mechanistic

  3. A Genome Wide Association Study Identifies Common Variants Associated with Lipid Levels in the Chinese Population

    PubMed Central

    Wu, Chen; Yang, Handong; Yu, Dianke; Yang, Xiaobo; Zhang, Xiaomin; Wang, Yiqin; Sun, Jielin; Gao, Yong; Tan, Aihua; He, Yunfeng; Zhang, Haiying; Qin, Xue; Zhu, Jingwen; Li, Huaixing; Lin, Xu; Zhu, Jiang; Min, Xinwen; Lang, Mingjian; Li, Dongfeng; Zhai, Kan; Chang, Jiang; Tan, Wen; Yuan, Jing; Chen, Weihong; Wang, Youjie; Wei, Sheng; Miao, Xiaoping; Wang, Feng; Fang, Weimin; Liang, Yuan; Deng, Qifei; Dai, Xiayun; Lin, Dafeng; Huang, Suli; Guo, Huan; Lilly Zheng, S.; Xu, Jianfeng; Lin, Dongxin; Hu, Frank B.; Wu, Tangchun

    2013-01-01

    Plasma lipid levels are important risk factors for cardiovascular disease and are influenced by genetic and environmental factors. Recent genome wide association studies (GWAS) have identified several lipid-associated loci, but these loci have been identified primarily in European populations. In order to identify genetic markers for lipid levels in a Chinese population and analyze the heterogeneity between Europeans and Asians, especially Chinese, we performed a meta-analysis of two genome wide association studies on four common lipid traits including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) in a Han Chinese population totaling 3,451 healthy subjects. Replication was performed in an additional 8,830 subjects of Han Chinese ethnicity. We replicated eight loci associated with lipid levels previously reported in a European population. The loci genome wide significantly associated with TC were near DOCK7, HMGCR and ABO; those genome wide significantly associated with TG were near APOA1/C3/A4/A5 and LPL; those genome wide significantly associated with LDL were near HMGCR, ABO and TOMM40; and those genome wide significantly associated with HDL were near LPL, LIPC and CETP. In addition, an additive genotype score of eight SNPs representing the eight loci that were found to be associated with lipid levels was associated with higher TC, TG and LDL levels (P = 5.52×10-16, 1.38×10-6 and 5.59×10-9, respectively). These findings suggest the cumulative effects of multiple genetic loci on plasma lipid levels. Comparisons with previous GWAS of lipids highlight heterogeneity in allele frequency and in effect size for some loci between Chinese and European populations. The results from our GWAS provided comprehensive and convincing evidence of the genetic determinants of plasma lipid levels in a Chinese population. PMID:24386095

  4. Natural CMT2 Variation Is Associated With Genome-Wide Methylation Changes and Temperature Seasonality

    PubMed Central

    Shen, Xia; De Jonge, Jennifer; Forsberg, Simon K. G.; Pettersson, Mats E.; Sheng, Zheya; Hennig, Lars; Carlborg, Örjan

    2014-01-01

    As Arabidopsis thaliana has colonized a wide range of habitats across the world it is an attractive model for studying the genetic mechanisms underlying environmental adaptation. Here, we used public data from two collections of A. thaliana accessions to associate genetic variability at individual loci with differences in climates at the sampling sites. We use a novel method to screen the genome for plastic alleles that tolerate a broader climate range than the major allele. This approach reduces confounding with population structure and increases power compared to standard genome-wide association methods. Sixteen novel loci were found, including an association between Chromomethylase 2 (CMT2) and temperature seasonality where the genome-wide CHH methylation was different for the group of accessions carrying the plastic allele. Cmt2 mutants were shown to be more tolerant to heat-stress, suggesting genetic regulation of epigenetic modifications as a likely mechanism underlying natural adaptation to variable temperatures, potentially through differential allelic plasticity to temperature-stress. PMID:25503602

  5. Genome-wide inference of regulatory networks in Streptomyces coelicolor.

    PubMed

    Castro-Melchor, Marlene; Charaniya, Salim; Karypis, George; Takano, Eriko; Hu, Wei-Shou

    2010-10-18

    The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.

  6. Genetic variability of mutans streptococci revealed by wide whole-genome sequencing

    PubMed Central

    2013-01-01

    Background Mutans streptococci are a group of bacteria significantly contributing to tooth decay. Their genetic variability is however still not well understood. Results Genomes of 6 clinical S. mutans isolates of different origins, one isolate of S. sobrinus (DSM 20742) and one isolate of S. ratti (DSM 20564) were sequenced and comparatively analyzed. Genome alignment revealed a mosaic-like structure of genome arrangement. Genes related to pathogenicity are found to have high variations among the strains, whereas genes for oxidative stress resistance are well conserved, indicating the importance of this trait in the dental biofilm community. Analysis of genome-scale metabolic networks revealed significant differences in 42 pathways. A striking dissimilarity is the unique presence of two lactate oxidases in S. sobrinus DSM 20742, probably indicating an unusual capability of this strain in producing H2O2 and expanding its ecological niche. In addition, lactate oxidases may form with other enzymes a novel energetic pathway in S. sobrinus DSM 20742 that can remedy its deficiency in citrate utilization pathway. Using 67 S. mutans genomes currently available including the strains sequenced in this study, we estimates the theoretical core genome size of S. mutans, and performed modeling of S. mutans pan-genome by applying different fitting models. An “open” pan-genome was inferred. Conclusions The comparative genome analyses revealed diversities in the mutans streptococci group, especially with respect to the virulence related genes and metabolic pathways. The results are helpful for better understanding the evolution and adaptive mechanisms of these oral pathogen microorganisms and for combating them. PMID:23805886

  7. Genome wide association analyses based on a multiple trait approach for modeling feed efficiency

    USDA-ARS?s Scientific Manuscript database

    Genome wide association (GWA) of feed efficiency (FE) could help target important genomic regions influencing FE. Data provided by an international dairy FE research consortium consisted of phenotypic records on dry matter intakes (DMI), milk energy (MILKE), and metabolic body weight (MBW) on 6,937 ...

  8. Genome-Wide Meta-Analyses of Plasma Renin Activity and Concentration Reveal Association with the Kininogen 1 and Prekallikrein Genes

    PubMed Central

    Lieb, Wolfgang; Chen, Ming-Huei; Teumer, Alexander; de Boer, Rudolf A.; Lin, Honghuang; Fox, Ervin R.; Musani, Solomon K.; Wilson, James G.; Wang, Thomas J.; Völzke, Henry; Petersen, Ann-Kristin; Meisinger, Christine; Nauck, Matthias; Schlesinger, Sabrina; Li, Yong; Menard, Jöel; Hercberg, Serge; Wichmann, H.-Erich; Völker, Uwe; Rawal, Rajesh; Bidlingmaier, Martin; Hannemann, Anke; Dörr, Marcus; Rettig, Rainer; van Gilst, Wiek H.; van Veldhuisen, Dirk J.; Bakker, Stephan J.L.; Navis, Gerjan; Wallaschofski, Henri; Meneton, Pierre; van der Harst, Pim; Reincke, Martin; Vasan, Ramachandran S.; Consortium, CKDGen

    2015-01-01

    Background The renin-angiotensin-aldosterone-system (RAAS) is critical for regulation of blood pressure and fluid balance and influences cardiovascular remodeling. Dysregulation of the RAAS contributes to cardiovascular and renal morbidity. The genetic architecture of circulating RAAS components is incompletely understood. Methods and Results We meta-analyzed genome-wide association data for plasma renin activity (n=5,275), plasma renin concentrations (n=8,014) and circulating aldosterone (n=13,289) from up to four population-based cohorts of European and European-American ancestry, and assessed replication of the top results in an independent sample (n=6,487). Single nucleotide polymorphisms (SNPs) in two independent loci displayed associations with plasma renin activity atgenome-wide significance (p<5×10-8). A third locus was close to this threshold (rs4253311 in kallikrein B [KLKB1], p=5.5×10-8). Two of these loci replicated in an independent sample for both plasma renin and aldosterone concentrations (SNP rs5030062 in kininogen 1 [KNG1]: p=0.001 for plasma renin, p=0.024 for plasma aldosterone concentration; rs4253311 with p<0.001 for both plasma renin and aldosterone concentration). SNPs in the NEBL gene reached genome-wide significance for plasma renin concentration in the discovery sample (top SNP rs3915911, p= 8.81×10-9), but did not replicate (p=0.81). No locus reached genome-wide significance for aldosterone. SNPs rs5030062 and rs4253311 were not related to blood pressure or renal traits; in a companion study, variants in the kallikrein B locus were associated with B-type natriuretic peptide concentrations in African-Americans. Conclusions We identified two genetic loci (kininogen 1 and kallikrein B) influencing key components of the RAAS, consistent with the close interrelation between the kallikrein-kinin system and the RAAS. PMID:25477429

  9. Genome-wide association study identifies three novel loci for type 2 diabetes.

    PubMed

    Hara, Kazuo; Fujita, Hayato; Johnson, Todd A; Yamauchi, Toshimasa; Yasuda, Kazuki; Horikoshi, Momoko; Peng, Chen; Hu, Cheng; Ma, Ronald C W; Imamura, Minako; Iwata, Minoru; Tsunoda, Tatsuhiko; Morizono, Takashi; Shojima, Nobuhiro; So, Wing Yee; Leung, Ting Fan; Kwan, Patrick; Zhang, Rong; Wang, Jie; Yu, Weihui; Maegawa, Hiroshi; Hirose, Hiroshi; Kaku, Kohei; Ito, Chikako; Watada, Hirotaka; Tanaka, Yasushi; Tobe, Kazuyuki; Kashiwagi, Atsunori; Kawamori, Ryuzo; Jia, Weiping; Chan, Juliana C N; Teo, Yik Ying; Shyong, Tai E; Kamatani, Naoyuki; Kubo, Michiaki; Maeda, Shiro; Kadowaki, Takashi

    2014-01-01

    Although over 60 loci for type 2 diabetes (T2D) have been identified, there still remains a large genetic component to be clarified. To explore unidentified loci for T2D, we performed a genome-wide association study (GWAS) of 6 209 637 single-nucleotide polymorphisms (SNPs), which were directly genotyped or imputed using East Asian references from the 1000 Genomes Project (June 2011 release) in 5976 Japanese patients with T2D and 20 829 nondiabetic individuals. Nineteen unreported loci were selected and taken forward to follow-up analyses. Combined discovery and follow-up analyses (30 392 cases and 34 814 controls) identified three new loci with genome-wide significance, which were MIR129-LEP [rs791595; risk allele = A; risk allele frequency (RAF) = 0.080; P = 2.55 × 10(-13); odds ratio (OR) = 1.17], GPSM1 [rs11787792; risk allele = A; RAF = 0.874; P = 1.74 × 10(-10); OR = 1.15] and SLC16A13 (rs312457; risk allele = G; RAF = 0.078; P = 7.69 × 10(-13); OR = 1.20). This study demonstrates that GWASs based on the imputation of genotypes using modern reference haplotypes such as that from the 1000 Genomes Project data can assist in identification of new loci for common diseases.

  10. Genome-Wide Association Study Identifies African-Specific Susceptibility Loci in African Americans With Inflammatory Bowel Disease.

    PubMed

    Brant, Steven R; Okou, David T; Simpson, Claire L; Cutler, David J; Haritunians, Talin; Bradfield, Jonathan P; Chopra, Pankaj; Prince, Jarod; Begum, Ferdouse; Kumar, Archana; Huang, Chengrui; Venkateswaran, Suresh; Datta, Lisa W; Wei, Zhi; Thomas, Kelly; Herrinton, Lisa J; Klapproth, Jan-Micheal A; Quiros, Antonio J; Seminerio, Jenifer; Liu, Zhenqiu; Alexander, Jonathan S; Baldassano, Robert N; Dudley-Brown, Sharon; Cross, Raymond K; Dassopoulos, Themistocles; Denson, Lee A; Dhere, Tanvi A; Dryden, Gerald W; Hanson, John S; Hou, Jason K; Hussain, Sunny Z; Hyams, Jeffrey S; Isaacs, Kim L; Kader, Howard; Kappelman, Michael D; Katz, Jeffry; Kellermayer, Richard; Kirschner, Barbara S; Kuemmerle, John F; Kwon, John H; Lazarev, Mark; Li, Ellen; Mack, David; Mannon, Peter; Moulton, Dedrick E; Newberry, Rodney D; Osuntokun, Bankole O; Patel, Ashish S; Saeed, Shehzad A; Targan, Stephan R; Valentine, John F; Wang, Ming-Hsi; Zonca, Martin; Rioux, John D; Duerr, Richard H; Silverberg, Mark S; Cho, Judy H; Hakonarson, Hakon; Zwick, Michael E; McGovern, Dermot P B; Kugathasan, Subra

    2017-01-01

    The inflammatory bowel diseases (IBD) ulcerative colitis (UC) and Crohn's disease (CD) cause significant morbidity and are increasing in prevalence among all populations, including African Americans. More than 200 susceptibility loci have been identified in populations of predominantly European ancestry, but few loci have been associated with IBD in other ethnicities. We performed 2 high-density, genome-wide scans comprising 2345 cases of African Americans with IBD (1646 with CD, 583 with UC, and 116 inflammatory bowel disease unclassified) and 5002 individuals without IBD (controls, identified from the Health Retirement Study and Kaiser Permanente database). Single-nucleotide polymorphisms (SNPs) associated at P < 5.0 × 10 -8 in meta-analysis with a nominal evidence (P < .05) in each scan were considered to have genome-wide significance. We detected SNPs at HLA-DRB1, and African-specific SNPs at ZNF649 and LSAMP, with associations of genome-wide significance for UC. We detected SNPs at USP25 with associations of genome-wide significance for IBD. No associations of genome-wide significance were detected for CD. In addition, 9 genes previously associated with IBD contained SNPs with significant evidence for replication (P < 1.6 × 10 -6 ): ADCY3, CXCR6, HLA-DRB1 to HLA-DQA1 (genome-wide significance on conditioning), IL12B,PTGER4, and TNC for IBD; IL23R, PTGER4, and SNX20 (in strong linkage disequilibrium with NOD2) for CD; and KCNQ2 (near TNFRSF6B) for UC. Several of these genes, such as TNC (near TNFSF15), CXCR6, and genes associated with IBD at the HLA locus, contained SNPs with unique association patterns with African-specific alleles. We performed a genome-wide association study of African Americans with IBD and identified loci associated with UC in only this population; we also replicated IBD, CD, and UC loci identified in European populations. The detection of variants associated with IBD risk in only people of African descent demonstrates the

  11. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut.

    PubMed

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  12. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut

    PubMed Central

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement. PMID:27200012

  13. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    DOE PAGES

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-11-21

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We reportmore » distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.« less

  14. Oncogenomic portals for the visualization and analysis of genome-wide cancer data

    PubMed Central

    Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr

    2016-01-01

    Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice. PMID:26484415

  15. Oncogenomic portals for the visualization and analysis of genome-wide cancer data.

    PubMed

    Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr

    2016-01-05

    Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice.

  16. Genome-wide analyses of LINE–LINE-mediated nonallelic homologous recombination

    PubMed Central

    Startek, Michał; Szafranski, Przemyslaw; Gambin, Tomasz; Campbell, Ian M.; Hixson, Patricia; Shaw, Chad A.; Stankiewicz, Paweł; Gambin, Anna

    2015-01-01

    Nonallelic homologous recombination (NAHR), occurring between low-copy repeats (LCRs) >10 kb in size and sharing >97% DNA sequence identity, is responsible for the majority of recurrent genomic rearrangements in the human genome. Recent studies have shown that transposable elements (TEs) can also mediate recurrent deletions and translocations, indicating the features of substrates that mediate NAHR may be significantly less stringent than previously believed. Using >4 kb length and >95% sequence identity criteria, we analyzed of the genome-wide distribution of long interspersed element (LINE) retrotransposon and their potential to mediate NAHR. We identified 17 005 directly oriented LINE pairs located <10 Mbp from each other as potential NAHR substrates, placing 82.8% of the human genome at risk of LINE–LINE-mediated instability. Cross-referencing these regions with CNVs in the Baylor College of Medicine clinical chromosomal microarray database of 36 285 patients, we identified 516 CNVs potentially mediated by LINEs. Using long-range PCR of five different genomic regions in a total of 44 patients, we confirmed that the CNV breakpoints in each patient map within the LINE elements. To additionally assess the scale of LINE–LINE/NAHR phenomenon in the human genome, we tested DNA samples from six healthy individuals on a custom aCGH microarray targeting LINE elements predicted to mediate CNVs and identified 25 LINE–LINE rearrangements. Our data indicate that LINE–LINE-mediated NAHR is widespread and under-recognized, and is an important mechanism of structural rearrangement contributing to human genomic variability. PMID:25613453

  17. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs

    PubMed Central

    Reddy, Umesh K.; Nimmakayala, Padma; Abburi, Venkata Lakshmi; Reddy, C. V. C. M.; Saminathan, Thangasamy; Percy, Richard G.; Yu, John Z.; Frelichowski, James; Udall, Joshua A.; Page, Justin T.; Zhang, Dong; Shehzad, Tariq; Paterson, Andrew H.

    2017-01-01

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we examined genetic diversity, haplotype distribution and linkage disequilibrium patterns in the G. hirsutum and G. barbadense genomes to clarify population demographic history. Diversity and identity-by-state analyses have revealed little sharing of alleles between the two cultivated allotetraploid genomes, with a few exceptions that indicated sporadic gene flow. We found a high number of new alleles, representing increased nucleotide diversity, on chromosomes 1 and 2 in cultivated G. hirsutum as compared with low nucleotide diversity on these chromosomes in landrace G. hirsutum. In contrast, G. barbadense chromosomes showed negative Tajima’s D on several chromosomes for both cultivated and landrace types, which indicate that speciation of G. barbadense itself, might have occurred with relatively narrow genetic diversity. The presence of conserved linkage disequilibrium (LD) blocks and haplotypes between G. hirsutum and G. barbadense provides strong evidence for comparable patterns of evolution in their domestication processes. Our study illustrates the potential use of population genetic techniques to identify genomic regions for domestication. PMID:28128280

  18. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis.

    PubMed

    Gianola, Daniel; Fariello, Maria I; Naya, Hugo; Schön, Chris-Carolin

    2016-10-13

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals ( G: ) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G,: provided variance components are unaffected by exclusion of such marker(s) from G: The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G: does matter. Removal of eigenvectors from G: can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. Copyright © 2016 Gianola et al.

  19. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further

  20. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer)

    PubMed Central

    Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili

    2017-01-01

    Abstract Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. PMID:28922794

  1. Genome-wide scans of genetic variants for psychophysiological endophenotypes: a methodological overview.

    PubMed

    Iacono, William G; Malone, Stephen M; Vaidyanathan, Uma; Vrieze, Scott I

    2014-12-01

    This article provides an introductory overview of the investigative strategy employed to evaluate the genetic basis of 17 endophenotypes examined as part of a 20-year data collection effort from the Minnesota Center for Twin and Family Research. Included are characterization of the study samples, descriptive statistics for key properties of the psychophysiological measures, and rationale behind the steps taken in the molecular genetic study design. The statistical approach included (a) biometric analysis of twin and family data, (b) heritability analysis using 527,829 single nucleotide polymorphisms (SNPs), (c) genome-wide association analysis of these SNPs and 17,601 autosomal genes, (d) follow-up analyses of candidate SNPs and genes hypothesized to have an association with each endophenotype, (e) rare variant analysis of nonsynonymous SNPs in the exome, and (f) whole genome sequencing association analysis using 27 million genetic variants. These methods were used in the accompanying empirical articles comprising this special issue, Genome-Wide Scans of Genetic Variants for Psychophysiological Endophenotypes. Copyright © 2014 Society for Psychophysiological Research.

  2. Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type.

    PubMed

    Green, Elaine K; Di Florio, Arianna; Forty, Liz; Gordon-Smith, Katherine; Grozeva, Detelina; Fraser, Christine; Richards, Alexander L; Moran, Jennifer L; Purcell, Shaun; Sklar, Pamela; Kirov, George; Owen, Michael J; O'Donovan, Michael C; Craddock, Nick; Jones, Lisa; Jones, Ian R

    2017-12-01

    Studies have suggested that Research Diagnostic Criteria for Schizoaffective Disorder Bipolar type (RDC-SABP) might identify a more genetically homogenous subgroup of bipolar disorder. Aiming to identify loci associated with RDC-SABP, we have performed a replication study using independent RDC-SABP cases (n = 144) and controls (n = 6,559), focusing on the 10 loci that reached a p-value <10 -5 for RDC-SABP in the Wellcome Trust Case Control Consortium (WTCCC) bipolar disorder sample. Combining the WTCCC and replication datasets by meta-analysis (combined RDC-SABP, n = 423, controls, n = 9,494), we observed genome-wide significant association at one SNP, rs2352974, located within the intron of the gene TRAIP on chromosome 3p21.31 (p-value, 4.37 × 10 -8 ). This locus did not reach genome-wide significance in bipolar disorder or schizophrenia large Psychiatric Genomic Consortium datasets, suggesting that it may represent a relatively specific genetic risk for the bipolar subtype of schizoaffective disorder. © 2017 Wiley Periodicals, Inc.

  3. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    PubMed

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A genome-wide survey of transgenerational genetic effects in autism.

    PubMed

    Tsang, Kathryn M; Croen, Lisa A; Torres, Anthony R; Kharrazi, Martin; Delorenze, Gerald N; Windham, Gayle C; Yoshida, Cathleen K; Zerbo, Ousseny; Weiss, Lauren A

    2013-01-01

    Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10(-4)) that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.

  5. Genome-Wide Association Study Identifies Common Genetic Variants Associated with Salivary Gland Carcinoma and its Subtypes

    PubMed Central

    Xu, Li; Tang, Hongwei; Chen, Diane W.; El-Naggar, Adel K.; Wei, Peng; Sturgis, Erich M.

    2015-01-01

    BACKGROUND Salivary gland carcinomas (SGCs) are a rare malignancy with unknown etiology. We aimed to identify genetic variants modifying risk of SGC and its major subtypes, adenoid cystic carcinoma (ACCA) and mucoepidermoid carcinoma (MECA). METHODS We conducted a genome-wide association study in 309 well-defined SGC cases and 535 cancer-free controls. We performed a SNP-level discovery study in non-Hispanic whites followed by a replication study in Hispanics. A logistic regression was applied to calculate odds ratios (ORs) and 95% confidence intervals (95%CIs). A meta-analysis was conducted of the results. RESULTS Genome-wide significant association with SGC in non-Hispanic whites was detected at coding SNPs in CHRNA2 (OR=8.55, 95%CI: 4.53–16.13, P = 3.6 × 10−11), OR4F15 (OR=5.26, 95%CI: 3.13–8.83, P = 3.5 × 10−10), ZNF343 (OR=3.28, 95%CI: 2.12–5.07, P = 9.1 × 10−8), and PARP4 (OR=2.00, 95%CI: 1.54–2.59, P = 1.7 × 10−7). Meta-analysis of the non-Hispanic white and Hispanic cohorts identified another genome-wide significant SNP in ELL2 (meta-OR=1.86, 95%CI: 1.48–2.34, P = 1.3 × 10−7). Risk alleles largely enriched in MECA, where the SNPs in CHRNA2, OR4F15, and ZNF343 had ORs of 15.71 (95%CI: 6.59–37.47, P = 5.2 × 10−10), 15.60 (95%CI: 6.50–37.41, P = 7.5 × 10−10), and 6.49 (95%CI: 3.36–12.52, P = 2.5 × 10−8), respectively. None of these SNPs retained significant association with ACCA. CONCLUSIONS These findings, for the first time, identify a panel of SNPs associated with SGC risk. Confirmation of these findings along with functional analysis of identified SNPs are needed. PMID:25823930

  6. HITS-CLIP yields genome-wide insights into brain alternative RNA processing

    NASA Astrophysics Data System (ADS)

    Licatalosi, Donny D.; Mele, Aldo; Fak, John J.; Ule, Jernej; Kayikci, Melis; Chi, Sung Wook; Clark, Tyson A.; Schweitzer, Anthony C.; Blume, John E.; Wang, Xuning; Darnell, Jennifer C.; Darnell, Robert B.

    2008-11-01

    Protein-RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.

  7. The application of genome-wide 5-hydroxymethylcytosine studies in cancer research.

    PubMed

    Thomson, John P; Meehan, Richard R

    2017-01-01

    Early detection and characterization of molecular events associated with tumorgenesis remain high priorities. Genome-wide epigenetic assays are promising diagnostic tools, as aberrant epigenetic events are frequent and often cancer specific. The deposition and analysis of multiple patient-derived cancer epigenomic profiles contributes to our appreciation of the underlying biology; aiding the detection of novel identifiers for cancer subtypes. Modifying enzymes and co-factors regulating these epigenetic marks are frequently mutated in cancers, and as epigenetic modifications themselves are reversible, this makes their study very attractive with respect to pharmaceutical intervention. Here we focus on the novel modified base, 5-hydoxymethylcytosine, and discuss how genome-wide 5-hydoxymethylcytosine profiling expedites our molecular understanding of cancer, serves as a lineage tracer, classifies the mode of action of potentially carcinogenic agents and clarifies the roles of potential novel cancer drug targets; thus assisting the development of new diagnostic/prognostic tools.

  8. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma

    PubMed Central

    Yucesoy, Berran; Kaufman, Kenneth M.; Lummus, Zana L.; Weirauch, Matthew T.; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M.; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B.; Bernstein, David I.

    2015-01-01

    Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10−14). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10−9 and rs2514805, p = 1.22 × 10−8, respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10−6). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies. PMID:25918132

  9. Signatures of positive selection in East African Shorthorn Zebu: a genome-wide SNP analysis

    USDA-ARS?s Scientific Manuscript database

    The small East African Shorthorn Zebu is the main indigenous cattle across East Africa. A recent genome wide SNPs analysis has revealed their ancient stable African taurine x Asian zebu admixture. Here, we assess the presence of candidate signature of positive selection in their genome, with the aim...

  10. Genome-wide association analysis of age-at-onset in Alzheimer’s disease

    PubMed Central

    Kamboh, M. Ilyas; Barmada, M. Michael; Demirci, F. Yesim; Minster, Ryan L.; Carrasquillo, Minerva M.; Pankratz, V. Shane; Younkin, Steven G.; Saykin, Andrew J.; Sweet, Robert A.; Feingold, Eleanor; DeKosky, Steven T.; Lopez, Oscar L.

    2011-01-01

    The risk of Alzheimer’s disease (AD) is strongly determined by genetic factors and recent genome-wide association studies (GWAS) have identified several genes for the disease risk. In addition to the disease risk, age-at-onset (AAO) of AD has also strong genetic component with an estimated heritability of 42%. Identification of AAO genes may help to understand the biological mechanisms that regulate the onset of the disease. Here we report the first GWAS focused on identifying genes for the AAO of AD. We performed a genome-wide meta analysis on 3 samples comprising a total of 2,222 AD cases. A total of ~2.5 million directly genotyped or imputed SNPs were analyzed in relation to AAO of AD. As expected, the most significant associations were observed in the APOE region on chromosome 19 where several SNPs surpassed the conservative genome-wide significant threshold (P<5E-08). The most significant SNP outside the APOE region was located in the DCHS2 gene on chromosome 4q31.3 (rs1466662; P=4.95E-07). There were 19 additional significant SNPs in this region at P<1E-04 and the DCHS2 gene is expressed in the cerebral cortex and thus is a potential candidate for affecting AAO in AD. These findings need to be confirmed in additional well-powered samples. PMID:22005931

  11. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability

    PubMed Central

    Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-01-01

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865

  12. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.

    PubMed

    Chen, Huan; Gu, Xiao-Hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-02-03

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10 -10 , maximum β -2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.

  13. No genome-wide protein sequence convergence for echolocation.

    PubMed

    Zou, Zhengting; Zhang, Jianzhi

    2015-05-01

    Toothed whales and two groups of bats independently acquired echolocation, the ability to locate and identify objects by reflected sound. Echolocation requires physiologically complex and coordinated vocal, auditory, and neural functions, but the molecular basis of the capacity for echolocation is not well understood. A recent study suggested that convergent amino acid substitutions widespread in the proteins of echolocators underlay the convergent origins of mammalian echolocation. Here, we show that genomic signatures of molecular convergence between echolocating lineages are generally no stronger than those between echolocating and comparable nonecholocating lineages. The same is true for the group of 29 hearing-related proteins claimed to be enriched with molecular convergence. Reexamining the previous selection test reveals several flaws and invalidates the asserted evidence for adaptive convergence. Together, these findings indicate that the reported genomic signatures of convergence largely reflect the background level of sequence convergence unrelated to the origins of echolocation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. From conservation genetics to conservation genomics: a genome-wide assessment of blue whales (Balaenoptera musculus) in Australian feeding aggregations

    PubMed Central

    Sandoval-Castillo, Jonathan; Jenner, K. Curt S.; Gill, Peter C.; Jenner, Micheline-Nicole M.; Morrice, Margaret G.

    2018-01-01

    Genetic datasets of tens of markers have been superseded through next-generation sequencing technology with genome-wide datasets of thousands of markers. Genomic datasets improve our power to detect low population structure and identify adaptive divergence. The increased population-level knowledge can inform the conservation management of endangered species, such as the blue whale (Balaenoptera musculus). In Australia, there are two known feeding aggregations of the pygmy blue whale (B. m. brevicauda) which have shown no evidence of genetic structure based on a small dataset of 10 microsatellites and mtDNA. Here, we develop and implement a high-resolution dataset of 8294 genome-wide filtered single nucleotide polymorphisms, the first of its kind for blue whales. We use these data to assess whether the Australian feeding aggregations constitute one population and to test for the first time whether there is adaptive divergence between the feeding aggregations. We found no evidence of neutral population structure and negligible evidence of adaptive divergence. We propose that individuals likely travel widely between feeding areas and to breeding areas, which would require them to be adapted to a wide range of environmental conditions. This has important implications for their conservation as this blue whale population is likely vulnerable to a range of anthropogenic threats both off Australia and elsewhere. PMID:29410806

  15. Genome-wide variation within and between wild and domestic yak.

    PubMed

    Wang, Kun; Hu, Quanjun; Ma, Hui; Wang, Lizhong; Yang, Yongzhi; Luo, Wenchun; Qiu, Qiang

    2014-07-01

    The yak is one of the few animals that can thrive in the harsh environment of the Qinghai-Tibetan Plateau and adjacent Alpine regions. Yak provides essential resources allowing Tibetans to live at high altitudes. However, genetic variation within and between wild and domestic yak remain unknown. Here, we present a genome-wide study of the genetic variation within and between wild and domestic yak. Using next-generation sequencing technology, we resequenced three wild and three domestic yak with a mean of fivefold coverage using our published domestic yak genome as a reference. We identified a total of 8.38 million SNPs (7.14 million novel), 383,241 InDels and 126,352 structural variants between the six yak. We observed higher linkage disequilibrium in domestic yak than in wild yak and a modest but distinct genetic divergence between these two groups. We further identified more than a thousand of potential selected regions (PSRs) for the three domestic yak by scanning the whole genome. These genomic resources can be further used to study genetic diversity and select superior breeds of yak and other bovid species. © 2014 John Wiley & Sons Ltd.

  16. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria

    PubMed Central

    2012-01-01

    Background Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Results Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. Conclusions The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All

  17. Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries.

    PubMed

    Baurley, James W; Edlund, Christopher K; Pardamean, Carissa I; Conti, David V; Krasnow, Ruth; Javitz, Harold S; Hops, Hyman; Swan, Gary E; Benowitz, Neal L; Bergen, Andrew W

    2016-09-01

    Metabolic enzyme variation and other patient and environmental characteristics influence smoking behaviors, treatment success, and risk of related disease. Population-specific variation in metabolic genes contributes to challenges in developing and optimizing pharmacogenetic interventions. We applied a custom genome-wide genotyping array for addiction research (Smokescreen), to three laboratory-based studies of nicotine metabolism with oral or venous administration of labeled nicotine and cotinine, to model nicotine metabolism in multiple populations. The trans-3'-hydroxycotinine/cotinine ratio, the nicotine metabolite ratio (NMR), was the nicotine metabolism measure analyzed. Three hundred twelve individuals of self-identified European, African, and Asian American ancestry were genotyped and included in ancestry-specific genome-wide association scans (GWAS) and a meta-GWAS analysis of the NMR. We modeled natural-log transformed NMR with covariates: principal components of genetic ancestry, age, sex, body mass index, and smoking status. African and Asian American NMRs were statistically significantly (P values ≤ 5E-5) lower than European American NMRs. Meta-GWAS analysis identified 36 genome-wide significant variants over a 43 kilobase pair region at CYP2A6 with minimum P = 2.46E-18 at rs12459249, proximal to CYP2A6. Additional minima were located in intron 4 (rs56113850, P = 6.61E-18) and in the CYP2A6-CYP2A7 intergenic region (rs34226463, P = 1.45E-12). Most (34/36) genome-wide significant variants suggested reduced CYP2A6 activity; functional mechanisms were identified and tested in knowledge-bases. Conditional analysis resulted in intergenic variants of possible interest (P values < 5E-5). This meta-GWAS of the NMR identifies CYP2A6 variants, replicates the top-ranked single nucleotide polymorphism from a recent Finnish meta-GWAS of the NMR, identifies functional mechanisms, and provides pan-continental population biomarkers for nicotine metabolism. This

  18. A mega-analysis of genome-wide association studies for major depressive disorder.

    PubMed

    Ripke, Stephan; Wray, Naomi R; Lewis, Cathryn M; Hamilton, Steven P; Weissman, Myrna M; Breen, Gerome; Byrne, Enda M; Blackwood, Douglas H R; Boomsma, Dorret I; Cichon, Sven; Heath, Andrew C; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A F; Martin, Nicholas G; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M; Penninx, Brenda P; Pergadia, Michele L; Potash, James B; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H; Preisig, Martin; Smoller, Jordan W; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R; Bettecken, Thomas; Binder, Elisabeth B; Breuer, René; Castro, Victor M; Churchill, Susanne E; Coryell, William H; Craddock, Nick; Craig, Ian W; Czamara, Darina; De Geus, Eco J; Degenhardt, Franziska; Farmer, Anne E; Fava, Maurizio; Frank, Josef; Gainer, Vivian S; Gallagher, Patience J; Gordon, Scott D; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A; Kohane, Isaac S; Kohli, Martin A; Korszun, Ania; Landen, Mikael; Lawson, William B; Lewis, Glyn; Macintyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M; Middleton, Lefkos; Montgomery, Grant M; Murphy, Shawn N; Nauck, Matthias; Nolen, Willem A; Nyholt, Dale R; O'Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A; Schulz, Andrea; Schulze, Thomas G; Shyn, Stanley I; Sigurdsson, Engilbert; Slager, Susan L; Smit, Johannes H; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B; Willemsen, Gonneke; Zitman, Frans G; Neale, Benjamin; Daly, Mark; Levinson, Douglas F; Sullivan, Patrick F

    2013-04-01

    Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.

  19. Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Kim, Deog Kyeom; Cho, Michael H.; Hersh, Craig P.; Lomas, David A.; Miller, Bruce E.; Kong, Xiangyang; Bakke, Per; Gulsvik, Amund; Agustí, Alvar; Wouters, Emiel; Celli, Bartolome; Coxson, Harvey; Vestbo, Jørgen; MacNee, William; Yates, Julie C.; Rennard, Stephen; Litonjua, Augusto; Qiu, Weiliang; Beaty, Terri H.; Crapo, James D.; Riley, John H.; Tal-Singer, Ruth

    2012-01-01

    Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility. Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD. Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated. Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts. Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility. Clinical trial registered with www.clinicaltrials.gov (NCT 00292552). PMID

  20. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    The composition of genomes with respect to short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. The underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, which we detect in all species across domains of life. We hypothesize that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Alternative contributions may come from interference of protein-DNA binding with replication and mutational repair processes, which operates with similar rates. We conclude that genome-wide word compositions have been molded by DNA binding proteins through tiny evolutionary steps over timescales spanning millions of generations.

  1. Genome-wide association study of interferon-related cytopenia in chronic hepatitis C patients

    PubMed Central

    Thompson, Alexander J.; Clark, Paul J.; Singh, Abanish; Ge, Dongliang; Fellay, Jacques; Zhu, Mingfu; Zhu, Qianqian; Urban, Thomas J.; Patel, Keyur; Tillmann, Hans L.; Naggie, Susanna; Afdhal, Nezam H.; Jacobson, Ira M.; Esteban, Rafael; Poordad, Fred; Lawitz, Eric J.; McCone, Jonathan; Shiffman, Mitchell L.; Galler, Greg W.; King, John W.; Kwo, Paul Y.; Shianna, Kevin V.; Noviello, Stephanie; Pedicone, Lisa D.; Brass, Clifford A.; Albrecht, Janice K.; Sulkowski, Mark S.; Goldstein, David B.; McHutchison, John G.; Muir, Andrew J.

    2012-01-01

    Background & Aims Interferon-alfa (IFN)-related cytopenias are common and may be dose-limiting. We performed a genome wide association study on a well-characterized genotype 1 HCV cohort to identify genetic determinants of peginterferon-α (peg-IFN)-related thrombocytopenia, neutropenia, and leukopenia. Methods 1604/3070 patients in the IDEAL study consented to genetic testing. Trial inclusion criteria included a platelet (Pl) count ≥80 × 109/L and an absolute neutrophil count (ANC) ≥ 1500/mm3. Samples were genotyped using the Illumina Human610-quad BeadChip. The primary analyses focused on the genetic determinants of quantitative change in cell counts (Pl, ANC, lymphocytes, monocytes, eosinophils, and basophils) at week 4 in patients >80% adherent to therapy (n = 1294). Results 6 SNPs on chromosome 20 were positively associated with Pl reduction (top SNP rs965469, p = 10−10). These tag SNPs are in high linkage disequilibrium with 2 functional variants in the ITPA gene, rs1127354 and rs7270101, that cause ITPase deficiency and protect against ribavirin (RBV)-induced hemolytic anemia (HA). rs1127354 and rs7270101 showed strong independent associations with Pl reduction (p = 10−12, p = 10−7) and entirely explained the genome-wide significant associations. We believe this is an example of an indirect genetic association due to a reactive thrombocytosis to RBV-induced anemia: Hb decline was inversely correlated with Pl reduction (r = −0.28, p = 10−17) and Hb change largely attenuated the association between the ITPA variants and Pl reduction in regression models. No common genetic variants were associated with pegIFN-induced neutropenia or leucopenia. Conclusions Two ITPA variants were associated with thrombocytopenia; this was largely explained by a thrombocytotic response to RBV-induced HA attenuating IFN-related thrombocytopenia. No genetic determinants of pegIFN-induced neutropenia were identified. PMID:21703177

  2. Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri.

    PubMed

    Gao, Yangchun; Li, Shiguo; Zhan, Aibin

    2018-04-01

    Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.

  3. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows

    PubMed Central

    2011-01-01

    Background Genome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. Results Genome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13's GNAS region for milk, fat and protein yields; BTA7's INSR region and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate, somatic cell score and productive life; BTA2's LRP1B for somatic cell score; BTA14's DGAT1-NIBP region for fat percentage; BTA1's FKBP2 for protein yields and percentage, BTA26's MGMT and BTA6's PDGFRA for protein percentage; BTA18's 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18's PGLYRP1-IGFL1 region for a large number of traits; BTA18's LOC787057 for service-sire stillbirth and daughter calving ease; BTA15's CD82, BTA23's DST and the MOCS1-LRFN2 region for daughter stillbirth; and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and PHKA2 of BTAX and REN of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26. Conclusions Genome-wide association analysis identified a number of genes and chromosome regions

  4. Genome-wide association analysis of symbiotic nitrogen fixation in common bean

    USDA-ARS?s Scientific Manuscript database

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean diversity panel (ADP) comprised of 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in...

  5. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    PubMed Central

    Lo, Min-Tzu; Hinds, David A.; Tung, Joyce Y.; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B.; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J.; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E.; Stefansson, Kari; McEvoy, Linda K.; Dale, Anders M.; Andreassen, Ole A.; Chen, Chi-Hua

    2017-01-01

    Summary Personality is influenced by genetic and environmental factors1, and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N=123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N=5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit/hyperactivity disorder (ADHD), and between openness and schizophrenia/bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression/anxiety). PMID:27918536

  6. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders.

    PubMed

    Lo, Min-Tzu; Hinds, David A; Tung, Joyce Y; Franz, Carol; Fan, Chun-Chieh; Wang, Yunpeng; Smeland, Olav B; Schork, Andrew; Holland, Dominic; Kauppi, Karolina; Sanyal, Nilotpal; Escott-Price, Valentina; Smith, Daniel J; O'Donovan, Michael; Stefansson, Hreinn; Bjornsdottir, Gyda; Thorgeirsson, Thorgeir E; Stefansson, Kari; McEvoy, Linda K; Dale, Anders M; Andreassen, Ole A; Chen, Chi-Hua

    2017-01-01

    Personality is influenced by genetic and environmental factors and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132-260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422-18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit-hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion-introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).

  7. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    PubMed

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  8. Genomic Predictions and Genome-Wide Association Study of Resistance Against Piscirickettsia salmonis in Coho Salmon (Oncorhynchus kisutch) Using ddRAD Sequencing

    PubMed Central

    Barría, Agustín; Christensen, Kris A.; Yoshida, Grazyella M.; Correa, Katharina; Jedlicki, Ana; Lhorente, Jean P.; Davidson, William S.; Yáñez, José M.

    2018-01-01

    Piscirickettsia salmonis is one of the main infectious diseases affecting coho salmon (Oncorhynchus kisutch) farming, and current treatments have been ineffective for the control of this disease. Genetic improvement for P. salmonis resistance has been proposed as a feasible alternative for the control of this infectious disease in farmed fish. Genotyping by sequencing (GBS) strategies allow genotyping of hundreds of individuals with thousands of single nucleotide polymorphisms (SNPs), which can be used to perform genome wide association studies (GWAS) and predict genetic values using genome-wide information. We used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic architecture of resistance against P. salmonis in a farmed coho salmon population and to identify molecular markers associated with the trait. We also evaluated genomic selection (GS) models in order to determine the potential to accelerate the genetic improvement of this trait by means of using genome-wide molecular information. A total of 764 individuals from 33 full-sib families (17 highly resistant and 16 highly susceptible) were experimentally challenged against P. salmonis and their genotypes were assayed using ddRAD sequencing. A total of 9,389 SNPs markers were identified in the population. These markers were used to test genomic selection models and compare different GWAS methodologies for resistance measured as day of death (DD) and binary survival (BIN). Genomic selection models showed higher accuracies than the traditional pedigree-based best linear unbiased prediction (PBLUP) method, for both DD and BIN. The models showed an improvement of up to 95% and 155% respectively over PBLUP. One SNP related with B-cell development was identified as a potential functional candidate associated with resistance to P. salmonis defined as DD. PMID:29440129

  9. Genome-wide investigation of genetic changes during modern breeding of Brassica napus.

    PubMed

    Wang, Nian; Li, Feng; Chen, Biyun; Xu, Kun; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Gao, Guizhen; Bancroft, Ian; Meng, Jingling; King, Graham J; Wu, Xiaoming

    2014-08-01

    Considerable genome variation had been incorporated within rapeseed breeding programs over past decades. In past decades, there have been substantial changes in phenotypic properties of rapeseed as a result of extensive breeding effort. Uncovering the underlying patterns of allelic variation in the context of genome organisation would provide knowledge to guide future genetic improvement. We assessed genome-wide genetic changes, including population structure, genetic relatedness, the extent of linkage disequilibrium, nucleotide diversity and genetic differentiation based on F ST outlier detection, for a panel of 472 Brassica napus inbred accessions using a 60 k Brassica Infinium® SNP array. We found genetic diversity varied in different sub-groups. Moreover, the genetic diversity increased from 1950 to 1980 and then remained at a similar level in China and Europe. We also found ~6-10 % genomic regions revealed high F ST values. Some QTLs previously associated with important agronomic traits overlapped with these regions. Overall, the B. napus C genome was found to have more high F ST signals than the A genome, and we concluded that the C genome may contribute more valuable alleles to generate elite traits. The results of this study indicate that considerable genome variation had been incorporated within rapeseed breeding programs over past decades. These results also contribute to understanding the impact of rapeseed improvement on available genome variation and the potential for dissecting complex agronomic traits.

  10. Extensive genome-wide autozygosity in the population isolates of Daghestan.

    PubMed

    Karafet, Tatiana M; Bulayeva, Kazima B; Bulayev, Oleg A; Gurgenova, Farida; Omarova, Jamilia; Yepiskoposyan, Levon; Savina, Olga V; Veeramah, Krishna R; Hammer, Michael F

    2015-10-01

    Isolated populations are valuable resources for mapping disease genes, as inbreeding increases genome-wide homozygosity and enhances the ability to map disease alleles on a genetically uniform background within a relatively homogenous environment. The populations of Daghestan are thought to have resided in the Caucasus Mountains for hundreds of generations and are characterized by a high prevalence of certain complex diseases. To explore the extent to which their unique population history led to increased levels of inbreeding, we genotyped >550 000 autosomal single-nucleotide polymorphisms (SNPs) in a set of 14 population isolates speaking Nakh-Daghestanian (ND) languages. The ND-speaking populations showed greatly elevated coefficients of inbreeding, very high numbers and long lengths of Runs of Homozygosity, and elevated linkage disequilibrium compared with surrounding groups from the Caucasus, the Near East, Europe, Central and South Asia. These results are consistent with the hypothesis that most ND-speaking groups descend from a common ancestral population that fragmented into a series of genetic isolates in the Daghestanian highlands. They have subsequently maintained a long-term small effective population size as a result of constant inbreeding and very low levels of gene flow. Given these findings, Daghestanian population isolates are likely to be useful for mapping genes associated with complex diseases.

  11. Genome-wide Association Study Identifies Loci for the Polled Phenotype in Yak

    PubMed Central

    Wu, Xiaoyun; Wang, Kun; Ding, Xuezhi; Wang, Mingcheng; Chu, Min; Xie, Xiuyue; Qiu, Qiang; Yan, Ping

    2016-01-01

    The absence of horns, known as the polled phenotype, is an economically important trait in modern yak husbandry, but the genomic structure and genetic basis of this phenotype have yet to be discovered. Here, we conducted a genome-wide association study with a panel of 10 horned and 10 polled yaks using whole genome sequencing. We mapped the POLLED locus to a 200-kb interval, which comprises three protein-coding genes. Further characterization of the candidate region showed recent artificial selection signals resulting from the breeding process. We suggest that expressional variations rather than structural variations in protein probably contribute to the polled phenotype. Our results not only represent the first and important step in establishing the genomic structure of the polled region in yak, but also add to our understanding of the polled trait in bovid species. PMID:27389700

  12. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer).

    PubMed

    Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili; Liu, Bao; Li, Lin-Feng

    2017-09-01

    Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    PubMed

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  14. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods

    PubMed Central

    Grzesik, Peter; Voorhies, Alexander A.; Alperovich, Nina; MacMath, Derek; Najera, Claudia D.; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N.; Montague, Michael G.; Friedman, Robert M.; Desai, Prashant J.

    2017-01-01

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats. PMID:28928148

  15. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.

    PubMed

    Law, Matthew H; Bishop, D Timothy; Lee, Jeffrey E; Brossard, Myriam; Martin, Nicholas G; Moses, Eric K; Song, Fengju; Barrett, Jennifer H; Kumar, Rajiv; Easton, Douglas F; Pharoah, Paul D P; Swerdlow, Anthony J; Kypreou, Katerina P; Taylor, John C; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A; Andresen, Per A; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M; Dębniak, Tadeusz; Duffy, David L; Elder, David E; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M; Goldstein, Alisa M; Gruis, Nelleke A; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A; Chen, Wei V; Landi, Maria Teresa; Lang, Julie; Lathrop, G Mark; Lubiński, Jan; Mackie, Rona M; Mann, Graham J; Molven, Anders; Montgomery, Grant W; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A; Radford-Smith, Graham L; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C; Craig, Jamie E; Schadendorf, Dirk; Simms, Lisa A; Burdon, Kathryn P; Nyholt, Dale R; Pooley, Karen A; Orr, Nick; Stratigos, Alexander J; Cust, Anne E; Ward, Sarah V; Hayward, Nicholas K; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M; Bishop, Julia A Newton; Demenais, Florence; Amos, Christopher I; MacGregor, Stuart; Iles, Mark M

    2015-09-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.

  16. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

    PubMed Central

    Law, Matthew H.; Bishop, D. Timothy; Martin, Nicholas G.; Moses, Eric K.; Song, Fengju; Barrett, Jennifer H.; Kumar, Rajiv; Easton, Douglas F.; Pharoah, Paul D. P.; Swerdlow, Anthony J.; Kypreou, Katerina P.; Taylor, John C.; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A.; Andresen, Per A.; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M.; Dębniak, Tadeusz; Duffy, David L.; Elder, David E.; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M.; Goldstein, Alisa M.; Gruis, Nelleke A.; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A.; Chen, Wei V.; Landi, Maria Teresa; Lang, Julie; Lathrop, G. Mark; Lubiński, Jan; Mackie, Rona M.; Mann, Graham J.; Molven, Anders; Montgomery, Grant W.; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A.; Radford-Smith, Graham L.; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C.; Craig, Jamie E.; Schadendorf, Dirk; Simms, Lisa A.; Burdon, Kathryn P.; Nyholt, Dale R.; Pooley, Karen A.; Orr, Nick; Stratigos, Alexander J.; Cust, Anne E.; Ward, Sarah V.; Hayward, Nicholas K.; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M.; Bishop, Julia A. Newton; MacGregor, Stuart; Iles, Mark M.

    2015-01-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5×10–8), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology. PMID:26237428

  17. Genome-wide prediction of childhood asthma and related phenotypes in a longitudinal birth cohort

    PubMed Central

    Spycher, Ben D.; Henderson, John; Granell, Raquel; Evans, David M.; Smith, George Davey; Timpson, Nicholas J.; Sterne, Jonathan A. C.

    2016-01-01

    Background Childhood wheezing and asthma vary greatly in clinical presentation and time course. The extent to which phenotypic variation reflects heterogeneity in disease pathways is unclear. Objective To assess the extent to which single nucleotide polymorphisms (SNPs) associated with childhood asthma in a genome-wide association study are predictive of asthma-related phenotypes. Methods In 8365 children from a population based birth cohort, the Avon Longitudinal Study of Parents and Children, allelic scores were derived based on between 10 and 215,443 SNPs ranked according to inverse of the p-value for their association with physician diagnosed asthma in an independent genome-wide association study (6176 cases and 7111 controls). We assessed the predictive value of allelic scores for asthma-related outcomes at age 7-9 years (physician’s diagnosis, longitudinal wheezing phenotypes, and measurements of pulmonary function, bronchial responsiveness and atopy). Results Scores based on the 46 highest-ranked SNPs were associated with the symptom-based phenotypes persistent (P<10-11, area under ROC curve (AUC)=0.59) and intermediate onset (P<10-3, AUC=0.58) wheeze. Among lower-ranked SNPs (ranks 21,545-46,416), there was evidence for associations with diagnosed asthma (P<10-4, AUC=0.54) and atopy (P<10-5, AUC=0.55). We found little evidence of associations with transient early wheezing, reduced pulmonary function or non-asthma phenotypes. Conclusion The genetic origins of asthma are diverse and: some pathways are specific to wheezing syndromes while others are shared with atopy and bronchial hyper-responsiveness. Out study also provides evidence of aetiological differences among wheezing syndromes. PMID:22846752

  18. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  19. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    USDA-ARS?s Scientific Manuscript database

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  20. Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions

    PubMed Central

    Amin, Najaf; Hottenga, Jouke-Jan; Hansell, Narelle K; Janssens, A Cecile JW; de Moor, Marleen HM; Madden, Pamela AF; Zorkoltseva, Irina V; Penninx, Brenda W; Terracciano, Antonio; Uda, Manuela; Tanaka, Toshiko; Esko, Tonu; Realo, Anu; Ferrucci, Luigi; Luciano, Michelle; Davies, Gail; Metspalu, Andres; Abecasis, Goncalo R; Deary, Ian J; Raikkonen, Katri; Bierut, Laura J; Costa, Paul T; Saviouk, Viatcheslav; Zhu, Gu; Kirichenko, Anatoly V; Isaacs, Aaron; Aulchenko, Yurii S; Willemsen, Gonneke; Heath, Andrew C; Pergadia, Michele L; Medland, Sarah E; Axenovich, Tatiana I; de Geus, Eco; Montgomery, Grant W; Wright, Margaret J; Oostra, Ben A; Martin, Nicholas G; Boomsma, Dorret I; van Duijn, Cornelia M

    2013-01-01

    Personality traits are complex phenotypes related to psychosomatic health. Individually, various gene finding methods have not achieved much success in finding genetic variants associated with personality traits. We performed a meta-analysis of four genome-wide linkage scans (N=6149 subjects) of five basic personality traits assessed with the NEO Five-Factor Inventory. We compared the significant regions from the meta-analysis of linkage scans with the results of a meta-analysis of genome-wide association studies (GWAS) (N∼17 000). We found significant evidence of linkage of neuroticism to chromosome 3p14 (rs1490265, LOD=4.67) and to chromosome 19q13 (rs628604, LOD=3.55); of extraversion to 14q32 (ATGG002, LOD=3.3); and of agreeableness to 3p25 (rs709160, LOD=3.67) and to two adjacent regions on chromosome 15, including 15q13 (rs970408, LOD=4.07) and 15q14 (rs1055356, LOD=3.52) in the individual scans. In the meta-analysis, we found strong evidence of linkage of extraversion to 4q34, 9q34, 10q24 and 11q22, openness to 2p25, 3q26, 9p21, 11q24, 15q26 and 19q13 and agreeableness to 4q34 and 19p13. Significant evidence of association in the GWAS was detected between openness and rs677035 at 11q24 (P-value=2.6 × 10−06, KCNJ1). The findings of our linkage meta-analysis and those of the GWAS suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene. PMID:23211697

  1. Genome-wide population structure and evolutionary history of the Frizarta dairy sheep.

    PubMed

    Kominakis, A; Hager-Theodorides, A L; Saridaki, A; Antonakos, G; Tsiamis, G

    2017-10-01

    In the present study, we used genomic data, generated with a medium density single nucleotide polymorphisms (SNP) array, to acquire more information on the population structure and evolutionary history of the synthetic Frizarta dairy sheep. First, two typical measures of linkage disequilibrium (LD) were estimated at various physical distances that were then used to make inferences on the effective population size at key past time points. Population structure was also assessed by both multidimensional scaling analysis and k-means clustering on the distance matrix obtained from the animals' genomic relationships. The Wright's fixation F ST index was also employed to assess herds' genetic homogeneity and to indirectly estimate past migration rates. The Wright's fixation F IS index and genomic inbreeding coefficients based on the genomic relationship matrix as well as on runs of homozygosity were also estimated. The Frizarta breed displays relatively low LD levels with r 2 and |D'| equal to 0.18 and 0.50, respectively, at an average inter-marker distance of 31 kb. Linkage disequilibrium decayed rapidly by distance and persisted over just a few thousand base pairs. Rate of LD decay (β) varied widely among the 26 autosomes with larger values estimated for shorter chromosomes (e.g. β=0.057, for OAR6) and smaller values for longer ones (e.g. β=0.022, for OAR2). The inferred effective population size at the beginning of the breed's formation was as high as 549, was then reduced to 463 in 1981 (end of the breed's formation) and further declined to 187, one generation ago. Multidimensional scaling analysis and k-means clustering suggested a genetically homogenous population, F ST estimates indicated relatively low genetic differentiation between herds, whereas a heat map of the animals' genomic kinship relationships revealed a stratified population, at a herd level. Estimates of genomic inbreeding coefficients suggested that most recent parental relatedness may have been a

  2. Genome-wide association study of sporadic brain arteriovenous malformations.

    PubMed

    Weinsheimer, Shantel; Bendjilali, Nasrine; Nelson, Jeffrey; Guo, Diana E; Zaroff, Jonathan G; Sidney, Stephen; McCulloch, Charles E; Al-Shahi Salman, Rustam; Berg, Jonathan N; Koeleman, Bobby P C; Simon, Matthias; Bostroem, Azize; Fontanella, Marco; Sturiale, Carmelo L; Pola, Roberto; Puca, Alfredo; Lawton, Michael T; Young, William L; Pawlikowska, Ludmila; Klijn, Catharina J M; Kim, Helen

    2016-09-01

    The pathogenesis of sporadic brain arteriovenous malformations (BAVMs) remains unknown, but studies suggest a genetic component. We estimated the heritability of sporadic BAVM and performed a genome-wide association study (GWAS) to investigate association of common single nucleotide polymorphisms (SNPs) with risk of sporadic BAVM in the international, multicentre Genetics of Arteriovenous Malformation (GEN-AVM) consortium. The Caucasian discovery cohort included 515 BAVM cases and 1191 controls genotyped using Affymetrix genome-wide SNP arrays. Genotype data were imputed to 1000 Genomes Project data, and well-imputed SNPs (>0.01 minor allele frequency) were analysed for association with BAVM. 57 top BAVM-associated SNPs (51 SNPs with p<10(-05) or p<10(-04) in candidate pathway genes, and 6 candidate BAVM SNPs) were tested in a replication cohort including 608 BAVM cases and 744 controls. The estimated heritability of BAVM was 17.6% (SE 8.9%, age and sex-adjusted p=0.015). None of the SNPs were significantly associated with BAVM in the replication cohort after correction for multiple testing. 6 SNPs had a nominal p<0.1 in the replication cohort and map to introns in EGFEM1P, SP4 and CDKAL1 or near JAG1 and BNC2. Of the 6 candidate SNPs, 2 in ACVRL1 and MMP3 had a nominal p<0.05 in the replication cohort. We performed the first GWAS of sporadic BAVM in the largest BAVM cohort assembled to date. No GWAS SNPs were replicated, suggesting that common SNPs do not contribute strongly to BAVM susceptibility. However, heritability estimates suggest a modest but significant genetic contribution. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects.

    PubMed

    Rochtus, Anne; Martin-Trujillo, Alejandro; Izzi, Benedetta; Elli, Francesca; Garin, Intza; Linglart, Agnes; Mantovani, Giovanna; Perez de Nanclares, Guiomar; Thiele, Suzanne; Decallonne, Brigitte; Van Geet, Chris; Monk, David; Freson, Kathleen

    2016-01-01

    Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.

  4. Unraveling the Genetic Etiology of Adult Antisocial Behavior: A Genome-Wide Association Study

    PubMed Central

    Tielbeek, Jorim J.; Medland, Sarah E.; Benyamin, Beben; Byrne, Enda M.; Heath, Andrew C.; Madden, Pamela A. F.; Martin, Nicholas G.; Wray, Naomi R.; Verweij, Karin J. H.

    2012-01-01

    Crime poses a major burden for society. The heterogeneous nature of criminal behavior makes it difficult to unravel its causes. Relatively little research has been conducted on the genetic influences of criminal behavior. The few twin and adoption studies that have been undertaken suggest that about half of the variance in antisocial behavior can be explained by genetic factors. In order to identify the specific common genetic variants underlying this behavior, we conduct the first genome-wide association study (GWAS) on adult antisocial behavior. Our sample comprised a community sample of 4816 individuals who had completed a self-report questionnaire. No genetic polymorphisms reached genome-wide significance for association with adult antisocial behavior. In addition, none of the traditional candidate genes can be confirmed in our study. While not genome-wide significant, the gene with the strongest association (p-value = 8.7×10−5) was DYRK1A, a gene previously related to abnormal brain development and mental retardation. Future studies should use larger, more homogeneous samples to disentangle the etiology of antisocial behavior. Biosocial criminological research allows a more empirically grounded understanding of criminal behavior, which could ultimately inform and improve current treatment strategies. PMID:23077488

  5. Multi-instance multi-label distance metric learning for genome-wide protein function prediction.

    PubMed

    Xu, Yonghui; Min, Huaqing; Song, Hengjie; Wu, Qingyao

    2016-08-01

    Multi-instance multi-label (MIML) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with not only multiple instances but also multiple class labels. To find an appropriate MIML learning method for genome-wide protein function prediction, many studies in the literature attempted to optimize objective functions in which dissimilarity between instances is measured using the Euclidean distance. But in many real applications, Euclidean distance may be unable to capture the intrinsic similarity/dissimilarity in feature space and label space. Unlike other previous approaches, in this paper, we propose to learn a multi-instance multi-label distance metric learning framework (MIMLDML) for genome-wide protein function prediction. Specifically, we learn a Mahalanobis distance to preserve and utilize the intrinsic geometric information of both feature space and label space for MIML learning. In addition, we try to deal with the sparsely labeled data by giving weight to the labeled data. Extensive experiments on seven real-world organisms covering the biological three-domain system (i.e., archaea, bacteria, and eukaryote; Woese et al., 1990) show that the MIMLDML algorithm is superior to most state-of-the-art MIML learning algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Genome-Wide Linkage and Association Analysis Identifies Major Gene Loci for Guttural Pouch Tympany in Arabian and German Warmblood Horses

    PubMed Central

    Metzger, Julia; Ohnesorge, Bernhard; Distl, Ottmar

    2012-01-01

    Equine guttural pouch tympany (GPT) is a hereditary condition affecting foals in their first months of life. Complex segregation analyses in Arabian and German warmblood horses showed the involvement of a major gene as very likely. Genome-wide linkage and association analyses including a high density marker set of single nucleotide polymorphisms (SNPs) were performed to map the genomic region harbouring the potential major gene for GPT. A total of 85 Arabian and 373 German warmblood horses were genotyped on the Illumina equine SNP50 beadchip. Non-parametric multipoint linkage analyses showed genome-wide significance on horse chromosomes (ECA) 3 for German warmblood at 16–26 Mb and 34–55 Mb and for Arabian on ECA15 at 64–65 Mb. Genome-wide association analyses confirmed the linked regions for both breeds. In Arabian, genome-wide association was detected at 64 Mb within the region with the highest linkage peak on ECA15. For German warmblood, signals for genome-wide association were close to the peak region of linkage at 52 Mb on ECA3. The odds ratio for the SNP with the highest genome-wide association was 0.12 for the Arabian. In conclusion, the refinement of the regions with the Illumina equine SNP50 beadchip is an important step to unravel the responsible mutations for GPT. PMID:22848553

  7. Creative Activities in Music – A Genome-Wide Linkage Analysis

    PubMed Central

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose

  8. Genome-Wide Association Study for Susceptibility to and Recoverability From Mastitis in Danish Holstein Cows.

    PubMed

    Welderufael, B G; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L G; Fikse, W F

    2018-01-01

    Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to - but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t -test and a genome-wide significance level of P -value < 10 -4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to - or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2 ) and genes involved in macrophage recruitment and regulation of inflammations ( PDGFD and PTX3 ) were suggested as possible causal genes for susceptibility to - and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to - and recoverability from mastitis.

  9. Genome-wide association studies in Alzheimer's disease.

    PubMed

    Bertram, Lars; Tanzi, Rudolph E

    2009-10-15

    Genome-wide association studies (GWAS) have gained considerable momentum over the last couple of years for the identification of novel complex disease genes. In the field of Alzheimer's disease (AD), there are currently eight published and two provisionally reported GWAS, highlighting over two dozen novel potential susceptibility loci beyond the well-established APOE association. On the basis of the data available at the time of this writing, the most compelling novel GWAS signal has been observed in GAB2 (GRB2-associated binding protein 2), followed by less consistently replicated signals in galanin-like peptide (GALP), piggyBac transposable element derived 1 (PGBD1), tyrosine kinase, non-receptor 1 (TNK1). Furthermore, consistent replication has been recently announced for CLU (clusterin, also known as apolipoprotein J). Finally, there are at least three replicated loci in hitherto uncharacterized genomic intervals on chromosomes 14q32.13, 14q31.2 and 6q24.1 likely implicating the existence of novel AD genes in these regions. In this review, we will discuss the characteristics and potential relevance to pathogenesis of the outcomes of all currently available GWAS in AD. A particular emphasis will be laid on findings with independent data in favor of the original association.

  10. Mycobacterium tuberculosis genome-wide screen exposes multiple CD8+ T cell epitopes

    PubMed Central

    Hammond, A S; Klein, M R; Corrah, T; Fox, A; Jaye, A; McAdam, K P; Brookes, R H

    2005-01-01

    Mounting evidence suggests human leucocyte antigen (HLA) class I-restricted CD8+ T cells play a role in protective immunity against tuberculosis yet relatively few epitopes specific for the causative organism, Mycobacterium tuberculosis, are reported. Here a total genome-wide screen of M. tuberculosis was used to identify putative HLA-B*3501 T cell epitopes. Of 479 predicted epitopes, 13 with the highest score were synthesized and used to restimulate lymphocytes from naturally exposed HLA-B*3501 healthy individuals in cultured and ex vivo enzyme-linked immunospot (ELISPOT) assays for interferon (IFN)-γ. All 13 peptides elicited a response that varied considerably between individuals. For three peptides CD8+ T cell lines were expanded and four of the 13 were recognized permissively through the HLA-B7 supertype family. Although further testing is required we show the genome-wide screen to be feasible for the identification of unknown mycobacterial antigens involved in immunity against natural infection. While the mechanisms of protective immunity against M. tuberculosis infection remain unclear, conventional class I-restricted CD8+ T cell responses appear to be widespread throughout the genome. PMID:15762882

  11. Genomic diversity and population structure of three autochthonous Greek sheep breeds assessed with genome-wide DNA arrays.

    PubMed

    Michailidou, S; Tsangaris, G; Fthenakis, G C; Tzora, A; Skoufos, I; Karkabounas, S C; Banos, G; Argiriou, A; Arsenos, G

    2018-06-01

    In the present study, genome-wide genotyping was applied to characterize the genetic diversity and population structure of three autochthonous Greek breeds: Boutsko, Karagouniko and Chios. Dairy sheep are among the most significant livestock species in Greece numbering approximately 9 million animals which are characterized by large phenotypic variation and reared under various farming systems. A total of 96 animals were genotyped with the Illumina's OvineSNP50K microarray beadchip, to study the population structure of the breeds and develop a specialized panel of single-nucleotide polymorphisms (SNPs), which could distinguish one breed from the others. Quality control on the dataset resulted in 46,125 SNPs, which were used to evaluate the genetic structure of the breeds. Population structure was assessed through principal component analysis (PCA) and admixture analysis, whereas inbreeding was estimated based on runs of homozygosity (ROHs) coefficients, genomic relationship matrix inbreeding coefficients (F GRM ) and patterns of linkage disequilibrium (LD). Associations between SNPs and breeds were analyzed with different inheritance models, to identify SNPs that distinguish among the breeds. Results showed high levels of genetic heterogeneity in the three breeds. Genetic distances among breeds were modest, despite their different ancestries. Chios and Karagouniko breeds were more genetically related to each other compared to Boutsko. Analysis revealed 3802 candidate SNPs that can be used to identify two-breed crosses and purebred animals. The present study provides, for the first time, data on the genetic background of three Greek indigenous dairy sheep breeds as well as a specialized marker panel that can be applied for traceability purposes as well as targeted genetic improvement schemes and conservation programs.

  12. From Genome-Wide Association Study to Phenome-Wide Association Study: New Paradigms in Obesity Research.

    PubMed

    Zhang, Y-P; Zhang, Y-Y; Duan, D D

    2016-01-01

    Obesity is a condition in which excess body fat has accumulated over an extent that increases the risk of many chronic diseases. The current clinical classification of obesity is based on measurement of body mass index (BMI), waist-hip ratio, and body fat percentage. However, these measurements do not account for the wide individual variations in fat distribution, degree of fatness or health risks, and genetic variants identified in the genome-wide association studies (GWAS). In this review, we will address this important issue with the introduction of phenome, phenomics, and phenome-wide association study (PheWAS). We will discuss the new paradigm shift from GWAS to PheWAS in obesity research. In the era of precision medicine, phenomics and PheWAS provide the required approaches to better definition and classification of obesity according to the association of obese phenome with their unique molecular makeup, lifestyle, and environmental impact. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Genome-Wide Association Study of Erosive Tooth Wear in a Finnish Cohort.

    PubMed

    Alaraudanjoki, Viivi Karoliina; Koivisto, Salla; Pesonen, Paula; Männikkö, Minna; Leinonen, Jukka; Tjäderhane, Leo; Laitala, Marja-Liisa; Lussi, Adrian; Anttonen, Vuokko Anna-Marketta

    2018-06-13

    Erosive tooth wear is defined as irreversible loss of dental tissues due to intrinsic or extrinsic acids, exacerbated by mechanical forces. Recent studies have suggested a higher prevalence of erosive tooth wear in males, as well as a genetic contribution to susceptibility to erosive tooth wear. Our aim was to examine erosive tooth wear by performing a genome-wide association study (GWAS) in a sample of the Northern Finland Birth Cohort 1966 (n = 1,962). Erosive tooth wear was assessed clinically using the basic erosive wear examination. A GWAS was performed for the whole sample as well as separately for males and females. We identified one genome-wide significant signal (rs11681214) in the GWAS of the whole sample near the genes PXDN and MYT1L. When the sample was stratified by sex, the strongest genome-wide significant signals were observed in or near the genes FGFR1, C8orf86, CDH4, SCD5, F2R, and ING1. Additionally, multiple suggestive association signals were detected in all GWASs performed. Many of the signals were in or near the genes putatively related to oral environment or tooth development, and some were near the regions considered to be associated with dental caries, such as 2p24, 4q21, and 13q33. Replications of these associations in other samples, as well as experimental studies to determine the biological functions of associated genetic variants, are needed. © 2018 S. Karger AG, Basel.

  14. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    PubMed

    Navarro, Fábio C P; Galante, Pedro A F

    2015-07-29

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. CisMiner: Genome-Wide In-Silico Cis-Regulatory Module Prediction by Fuzzy Itemset Mining

    PubMed Central

    Navarro, Carmen; Lopez, Francisco J.; Cano, Carlos; Garcia-Alcalde, Fernando; Blanco, Armando

    2014-01-01

    Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by

  16. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa.

    PubMed

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M

    2017-09-01

    The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h 2 SNP ]), partitioned heritability, and genetic correlations (r g ) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h 2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.

  17. Ab Initio structure prediction for Escherichia coli: towards genome-wide protein structure modeling and fold assignment

    PubMed Central

    Xu, Dong; Zhang, Yang

    2013-01-01

    Genome-wide protein structure prediction and structure-based function annotation have been a long-term goal in molecular biology but not yet become possible due to difficulties in modeling distant-homology targets. We developed a hybrid pipeline combining ab initio folding and template-based modeling for genome-wide structure prediction applied to the Escherichia coli genome. The pipeline was tested on 43 known sequences, where QUARK-based ab initio folding simulation generated models with TM-score 17% higher than that by traditional comparative modeling methods. For 495 unknown hard sequences, 72 are predicted to have a correct fold (TM-score > 0.5) and 321 have a substantial portion of structure correctly modeled (TM-score > 0.35). 317 sequences can be reliably assigned to a SCOP fold family based on structural analogy to existing proteins in PDB. The presented results, as a case study of E. coli, represent promising progress towards genome-wide structure modeling and fold family assignment using state-of-the-art ab initio folding algorithms. PMID:23719418

  18. Genome-wide association study of handedness excludes simple genetic models

    PubMed Central

    Armour, J AL; Davison, A; McManus, I C

    2014-01-01

    Handedness is a human behavioural phenotype that appears to be congenital, and is often assumed to be inherited, but for which the developmental origin and underlying causation(s) have been elusive. Models of the genetic basis of variation in handedness have been proposed that fit different features of the observed resemblance between relatives, but none has been decisively tested or a corresponding causative locus identified. In this study, we applied data from well-characterised individuals studied at the London Twin Research Unit. Analysis of genome-wide SNP data from 3940 twins failed to identify any locus associated with handedness at a genome-wide level of significance. The most straightforward interpretation of our analyses is that they exclude the simplest formulations of the ‘right-shift' model of Annett and the ‘dextral/chance' model of McManus, although more complex modifications of those models are still compatible with our observations. For polygenic effects, our study is inadequately powered to reliably detect alleles with effect sizes corresponding to an odds ratio of 1.2, but should have good power to detect effects at an odds ratio of 2 or more. PMID:24065183

  19. Exploiting the Proteome to Improve the Genome-Wide Genetic Analysis of Epistasis in Common Human Diseases

    PubMed Central

    Pattin, Kristine A.; Moore, Jason H.

    2009-01-01

    One of the central goals of human genetics is the identification of loci with alleles or genotypes that confer increased susceptibility. The availability of dense maps of single-nucleotide polymorphisms (SNPs) along with high-throughput genotyping technologies has set the stage for routine genome-wide association studies that are expected to significantly improve our ability to identify susceptibility loci. Before this promise can be realized, there are some significant challenges that need to be addressed. We address here the challenge of detecting epistasis or gene-gene interactions in genome-wide association studies. Discovering epistatic interactions in high dimensional datasets remains a challenge due to the computational complexity resulting from the analysis of all possible combinations of SNPs. One potential way to overcome the computational burden of a genome-wide epistasis analysis would be to devise a logical way to prioritize the many SNPs in a dataset so that the data may be analyzed more efficiently and yet still retain important biological information. One of the strongest demonstrations of the functional relationship between genes is protein-protein interaction. Thus, it is plausible that the expert knowledge extracted from protein interaction databases may allow for a more efficient analysis of genome-wide studies as well as facilitate the biological interpretation of the data. In this review we will discuss the challenges of detecting epistasis in genome-wide genetic studies and the means by which we propose to apply expert knowledge extracted from protein interaction databases to facilitate this process. We explore some of the fundamentals of protein interactions and the databases that are publicly available. PMID:18551320

  20. Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium.

    PubMed

    Power, Robert A; Tansey, Katherine E; Buttenschøn, Henriette Nørmølle; Cohen-Woods, Sarah; Bigdeli, Tim; Hall, Lynsey S; Kutalik, Zoltán; Lee, S Hong; Ripke, Stephan; Steinberg, Stacy; Teumer, Alexander; Viktorin, Alexander; Wray, Naomi R; Arolt, Volker; Baune, Bernard T; Boomsma, Dorret I; Børglum, Anders D; Byrne, Enda M; Castelao, Enrique; Craddock, Nick; Craig, Ian W; Dannlowski, Udo; Deary, Ian J; Degenhardt, Franziska; Forstner, Andreas J; Gordon, Scott D; Grabe, Hans J; Grove, Jakob; Hamilton, Steven P; Hayward, Caroline; Heath, Andrew C; Hocking, Lynne J; Homuth, Georg; Hottenga, Jouke J; Kloiber, Stefan; Krogh, Jesper; Landén, Mikael; Lang, Maren; Levinson, Douglas F; Lichtenstein, Paul; Lucae, Susanne; MacIntyre, Donald J; Madden, Pamela; Magnusson, Patrik K E; Martin, Nicholas G; McIntosh, Andrew M; Middeldorp, Christel M; Milaneschi, Yuri; Montgomery, Grant W; Mors, Ole; Müller-Myhsok, Bertram; Nyholt, Dale R; Oskarsson, Hogni; Owen, Michael J; Padmanabhan, Sandosh; Penninx, Brenda W J H; Pergadia, Michele L; Porteous, David J; Potash, James B; Preisig, Martin; Rivera, Margarita; Shi, Jianxin; Shyn, Stanley I; Sigurdsson, Engilbert; Smit, Johannes H; Smith, Blair H; Stefansson, Hreinn; Stefansson, Kari; Strohmaier, Jana; Sullivan, Patrick F; Thomson, Pippa; Thorgeirsson, Thorgeir E; Van der Auwera, Sandra; Weissman, Myrna M; Breen, Gerome; Lewis, Cathryn M

    2017-02-15

    Major depressive disorder (MDD) is a disabling mood disorder, and despite a known heritable component, a large meta-analysis of genome-wide association studies revealed no replicable genetic risk variants. Given prior evidence of heterogeneity by age at onset in MDD, we tested whether genome-wide significant risk variants for MDD could be identified in cases subdivided by age at onset. Discovery case-control genome-wide association studies were performed where cases were stratified using increasing/decreasing age-at-onset cutoffs; significant single nucleotide polymorphisms were tested in nine independent replication samples, giving a total sample of 22,158 cases and 133,749 control subjects for subsetting. Polygenic score analysis was used to examine whether differences in shared genetic risk exists between earlier and adult-onset MDD with commonly comorbid disorders of schizophrenia, bipolar disorder, Alzheimer's disease, and coronary artery disease. We identified one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD (rs7647854, odds ratio: 1.16, 95% confidence interval: 1.11-1.21, p = 5.2 × 10 -11 ). Using polygenic score analyses, we show that earlier-onset MDD is genetically more similar to schizophrenia and bipolar disorder than adult-onset MDD. We demonstrate that using additional phenotype data previously collected by genetic studies to tackle phenotypic heterogeneity in MDD can successfully lead to the discovery of genetic risk factor despite reduced sample size. Furthermore, our results suggest that the genetic susceptibility to MDD differs between adult- and earlier-onset MDD, with earlier-onset cases having a greater genetic overlap with schizophrenia and bipolar disorder. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Challenges and Opportunities in Genome-Wide Environmental Interaction (GWEI) studies

    PubMed Central

    Aschard, Hugues; Lutz, Sharon; Maus, Bärbel; Duell, Eric J.; Fingerlin, Tasha; Chatterjee, Nilanjan; Kraft, Peter; Van Steen, Kristel

    2012-01-01

    The interest in performing gene-environment interaction studies has seen a significant increase with the increase of advanced molecular genetics techniques. Practically, it became possible to investigate the role of environmental factors in disease risk and hence to investigate their role as genetic effect modifiers. The understanding that genetics is important in the uptake and metabolism of toxic substances is an example of how genetic profiles can modify important environmental risk factors to disease. Several rationales exist to set up gene-environment interaction studies and the technical challenges related to these studies – when the number of environmental or genetic risk factors is relatively small – has been described before. In the post-genomic era, it is now possible to study thousands of genes and their interaction with the environment. This brings along a whole range of new challenges and opportunities. Despite a continuing effort in developing efficient methods and optimal bioinformatics infrastructures to deal with the available wealth of data, the challenge remains how to best present and analyze Genome-Wide Environmental Interaction (GWEI) studies involving multiple genetic and environmental factors. Since GWEIs are performed at the intersection of statistical genetics, bioinformatics and epidemiology, usually similar problems need to be dealt with as for Genome-Wide Association gene-gene Interaction (GWAI) studies. However, additional complexities need to be considered which are typical for large-scale epidemiological studies, but are also related to “joining” two heterogeneous types of data in explaining complex disease trait variation or for prediction purposes. PMID:22760307

  2. Genome-wide association of meat quality traits and tenderness in swine

    USDA-ARS?s Scientific Manuscript database

    Pork quality has a large impact on consumer preference and perception of eating quality. A genome-wide association was performed for pork quality traits [intramuscular fat (IMF)], slice shear force (SSF), color attributes, purge, cooking loss, and pH] from 531 to 1,237 records on barrows and gilts o...

  3. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    PubMed Central

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  4. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.

    PubMed

    Amyotte, Beatrice; Bowen, Amy J; Banks, Travis; Rajcan, Istvan; Somers, Daryl J

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.

  5. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    PubMed

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

  6. [Genome-wide association study for adolescent idiopathic scoliosis].

    PubMed

    Ogura, Yoji; Kou, Ikuyo; Scoliosis, Japan; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2016-04-01

    Adolescent idiopathic scoliosis(AIS)is a polygenic disease. Genome-wide association studies(GWASs)have been performed for a lot of polygenic diseases. For AIS, we conducted GWAS and identified the first AIS locus near LBX1. After the discovery, we have extended our study by increasing the numbers of subjects and SNPs. In total, our Japanese GWAS has identified four susceptibility genes. GWASs for AIS have also been performed in the USA and China, which identified one and three susceptibility genes, respectively. Here we review GWASs in Japan and abroad and functional analysis to clarify the pathomechanism of AIS.

  7. Placental genome and maternal-placental genetic interactions: a genome-wide and candidate gene association study of placental abruption.

    PubMed

    Denis, Marie; Enquobahrie, Daniel A; Tadesse, Mahlet G; Gelaye, Bizu; Sanchez, Sixto E; Salazar, Manuel; Ananth, Cande V; Williams, Michelle A

    2014-01-01

    While available evidence supports the role of genetics in the pathogenesis of placental abruption (PA), PA-related placental genome variations and maternal-placental genetic interactions have not been investigated. Maternal blood and placental samples collected from participants in the Peruvian Abruptio Placentae Epidemiology study were genotyped using Illumina's Cardio-Metabochip platform. We examined 118,782 genome-wide SNPs and 333 SNPs in 32 candidate genes from mitochondrial biogenesis and oxidative phosphorylation pathways in placental DNA from 280 PA cases and 244 controls. We assessed maternal-placental interactions in the candidate gene SNPS and two imprinted regions (IGF2/H19 and C19MC). Univariate and penalized logistic regression models were fit to estimate odds ratios. We examined the combined effect of multiple SNPs on PA risk using weighted genetic risk scores (WGRS) with repeated ten-fold cross-validations. A multinomial model was used to investigate maternal-placental genetic interactions. In placental genome-wide and candidate gene analyses, no SNP was significant after false discovery rate correction. The top genome-wide association study (GWAS) hits were rs544201, rs1484464 (CTNNA2), rs4149570 (TNFRSF1A) and rs13055470 (ZNRF3) (p-values: 1.11e-05 to 3.54e-05). The top 200 SNPs of the GWAS overrepresented genes involved in cell cycle, growth and proliferation. The top candidate gene hits were rs16949118 (COX10) and rs7609948 (THRB) (p-values: 6.00e-03 and 8.19e-03). Participants in the highest quartile of WGRS based on cross-validations using SNPs selected from the GWAS and candidate gene analyses had a 8.40-fold (95% CI: 5.8-12.56) and a 4.46-fold (95% CI: 2.94-6.72) higher odds of PA compared to participants in the lowest quartile. We found maternal-placental genetic interactions on PA risk for two SNPs in PPARG (chr3:12313450 and chr3:12412978) and maternal imprinting effects for multiple SNPs in the C19MC and IGF2/H19 regions. Variations in

  8. Genome-wide diversity and selective pressure in the human rhinovirus

    PubMed Central

    Kistler, Amy L; Webster, Dale R; Rouskin, Silvi; Magrini, Vince; Credle, Joel J; Schnurr, David P; Boushey, Homer A; Mardis, Elaine R; Li, Hao; DeRisi, Joseph L

    2007-01-01

    Background The human rhinoviruses (HRV) are one of the most common and diverse respiratory pathogens of humans. Over 100 distinct HRV serotypes are known, yet only 6 genomes are available. Due to the paucity of HRV genome sequence, little is known about the genetic diversity within HRV or the forces driving this diversity. Previous comparative genome sequence analyses indicate that recombination drives diversification in multiple genera of the picornavirus family, yet it remains unclear if this holds for HRV. Results To resolve this and gain insight into the forces driving diversification in HRV, we generated a representative set of 34 fully sequenced HRVs. Analysis of these genomes shows consistent phylogenies across the genome, conserved non-coding elements, and only limited recombination. However, spikes of genetic diversity at both the nucleotide and amino acid level are detectable within every locus of the genome. Despite this, the HRV genome as a whole is under purifying selective pressure, with islands of diversifying pressure in the VP1, VP2, and VP3 structural genes and two non-structural genes, the 3C protease and 3D polymerase. Mapping diversifying residues in these factors onto available 3-dimensional structures revealed the diversifying capsid residues partition to the external surface of the viral particle in statistically significant proximity to antigenic sites. Diversifying pressure in the pleconaril binding site is confined to a single residue known to confer drug resistance (VP1 191). In contrast, diversifying pressure in the non-structural genes is less clear, mapping both nearby and beyond characterized functional domains of these factors. Conclusion This work provides a foundation for understanding HRV genetic diversity and insight into the underlying biology driving evolution in HRV. It expands our knowledge of the genome sequence space that HRV reference serotypes occupy and how the pattern of genetic diversity across HRV genomes differs

  9. GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes.

    PubMed

    Arakawa, Kazuharu; Yamada, Yohei; Shinoda, Kosaku; Nakayama, Yoichi; Tomita, Masaru

    2006-03-23

    Successful realization of a "systems biology" approach to analyzing cells is a grand challenge for our understanding of life. However, current modeling approaches to cell simulation are labor-intensive, manual affairs, and therefore constitute a major bottleneck in the evolution of computational cell biology. We developed the Genome-based Modeling (GEM) System for the purpose of automatically prototyping simulation models of cell-wide metabolic pathways from genome sequences and other public biological information. Models generated by the GEM System include an entire Escherichia coli metabolism model comprising 968 reactions of 1195 metabolites, achieving 100% coverage when compared with the KEGG database, 92.38% with the EcoCyc database, and 95.06% with iJR904 genome-scale model. The GEM System prototypes qualitative models to reduce the labor-intensive tasks required for systems biology research. Models of over 90 bacterial genomes are available at our web site.

  10. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits

    PubMed Central

    Pecetti, Luciano; Brummer, E. Charles; Palmonari, Alberto; Tava, Aldo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3–0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  11. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits.

    PubMed

    Biazzi, Elisa; Nazzicari, Nelson; Pecetti, Luciano; Brummer, E Charles; Palmonari, Alberto; Tava, Aldo; Annicchiarico, Paolo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3-0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  12. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines

    PubMed Central

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes. PMID:29263807

  13. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    PubMed

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  14. Genome-wide detection of intervals of genetic heterogeneity associated with complex traits

    PubMed Central

    Llinares-López, Felipe; Grimm, Dominik G.; Bodenham, Dean A.; Gieraths, Udo; Sugiyama, Mahito; Rowan, Beth; Borgwardt, Karsten

    2015-01-01

    Motivation: Genetic heterogeneity, the fact that several sequence variants give rise to the same phenotype, is a phenomenon that is of the utmost interest in the analysis of complex phenotypes. Current approaches for finding regions in the genome that exhibit genetic heterogeneity suffer from at least one of two shortcomings: (i) they require the definition of an exact interval in the genome that is to be tested for genetic heterogeneity, potentially missing intervals of high relevance, or (ii) they suffer from an enormous multiple hypothesis testing problem due to the large number of potential candidate intervals being tested, which results in either many false positives or a lack of power to detect true intervals. Results: Here, we present an approach that overcomes both problems: it allows one to automatically find all contiguous sequences of single nucleotide polymorphisms in the genome that are jointly associated with the phenotype. It also solves both the inherent computational efficiency problem and the statistical problem of multiple hypothesis testing, which are both caused by the huge number of candidate intervals. We demonstrate on Arabidopsis thaliana genome-wide association study data that our approach can discover regions that exhibit genetic heterogeneity and would be missed by single-locus mapping. Conclusions: Our novel approach can contribute to the genome-wide discovery of intervals that are involved in the genetic heterogeneity underlying complex phenotypes. Availability and implementation: The code can be obtained at: http://www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/sis.html. Contact: felipe.llinares@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072488

  15. Genome-wide association analysis for feed efficiency in Angus cattle.

    PubMed

    Rolf, M M; Taylor, J F; Schnabel, R D; McKay, S D; McClure, M C; Northcutt, S L; Kerley, M S; Weaber, R L

    2012-08-01

    Estimated breeding values for average daily feed intake (AFI; kg/day), residual feed intake (RFI; kg/day) and average daily gain (ADG; kg/day) were generated using a mixed linear model incorporating genomic relationships for 698 Angus steers genotyped with the Illumina BovineSNP50 assay. Association analyses of estimated breeding values (EBVs) were performed for 41,028 single nucleotide polymorphisms (SNPs), and permutation analysis was used to empirically establish the genome-wide significance threshold (P < 0.05) for each trait. SNPs significantly associated with each trait were used in a forward selection algorithm to identify genomic regions putatively harbouring genes with effects on each trait. A total of 53, 66 and 68 SNPs explained 54.12% (24.10%), 62.69% (29.85%) and 55.13% (26.54%) of the additive genetic variation (when accounting for the genomic relationships) in steer breeding values for AFI, RFI and ADG, respectively, within this population. Evaluation by pathway analysis revealed that many of these SNPs are in genomic regions that harbour genes with metabolic functions. The presence of genetic correlations between traits resulted in 13.2% of SNPs selected for AFI and 4.5% of SNPs selected for RFI also being selected for ADG in the analysis of breeding values. While our study identifies panels of SNPs significant for efficiency traits in our population, validation of all SNPs in independent populations will be necessary before commercialization. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  16. Genetics of Genome-Wide Recombination Rate Evolution in Mice from an Isolated Island.

    PubMed

    Wang, Richard J; Payseur, Bret A

    2017-08-01

    Recombination rate is a heritable quantitative trait that evolves despite the fundamentally conserved role that recombination plays in meiosis. Differences in recombination rate can alter the landscape of the genome and the genetic diversity of populations. Yet our understanding of the genetic basis of recombination rate evolution in nature remains limited. We used wild house mice ( Mus musculus domesticus ) from Gough Island (GI), which diverged recently from their mainland counterparts, to characterize the genetics of recombination rate evolution. We quantified genome-wide autosomal recombination rates by immunofluorescence cytology in spermatocytes from 240 F 2 males generated from intercrosses between GI-derived mice and the wild-derived inbred strain WSB/EiJ. We identified four quantitative trait loci (QTL) responsible for inter-F 2 variation in this trait, the strongest of which had effects that opposed the direction of the parental trait differences. Candidate genes and mutations for these QTL were identified by overlapping the detected intervals with whole-genome sequencing data and publicly available transcriptomic profiles from spermatocytes. Combined with existing studies, our findings suggest that genome-wide recombination rate divergence is not directional and its evolution within and between subspecies proceeds from distinct genetic loci. Copyright © 2017 by the Genetics Society of America.

  17. Genome-wide methylation study of diploid and triploid brown trout (Salmo trutta L.).

    PubMed

    Covelo-Soto, L; Leunda, P M; Pérez-Figueroa, A; Morán, P

    2015-06-01

    The induction of triploidization in fish is a very common practice in aquaculture. Although triploidization has been applied successfully in many salmonid species, little is known about the epigenetic mechanisms implicated in the maintenance of the normal functions of the new polyploid genome. By means of methylation-sensitive amplified polymorphism (MSAP) techniques, genome-wide methylation changes associated with triploidization were assessed in DNA samples obtained from diploid and triploid siblings of brown trout (Salmo trutta). Simple comparative body measurements showed that the triploid trout used in the study were statistically bigger, however, not heavier than their diploid counterparts. The statistical analysis of the MSAP data showed no significant differences between diploid and triploid brown trout in respect to brain, gill, heart, liver, kidney or muscle samples. Nonetheless, local analysis pointed to the possibility of differences in connection with concrete loci. This is the first study that has investigated DNA methylation alterations associated with triploidization in brown trout. Our results set the basis for new studies to be undertaken and provide a new approach concerning triploidization effects of the salmonid genome while also contributing to the better understanding of the genome-wide methylation processes. © 2015 Stichting International Foundation for Animal Genetics.

  18. Genome-Wide Networks of Amino Acid Covariances Are Common among Viruses

    PubMed Central

    Donlin, Maureen J.; Szeto, Brandon; Gohara, David W.; Aurora, Rajeev

    2012-01-01

    Coordinated variation among positions in amino acid sequence alignments can reveal genetic dependencies at noncontiguous positions, but methods to assess these interactions are incompletely developed. Previously, we found genome-wide networks of covarying residue positions in the hepatitis C virus genome (R. Aurora, M. J. Donlin, N. A. Cannon, and J. E. Tavis, J. Clin. Invest. 119:225–236, 2009). Here, we asked whether such networks are present in a diverse set of viruses and, if so, what they may imply about viral biology. Viral sequences were obtained for 16 viruses in 13 species from 9 families. The entire viral coding potential for each virus was aligned, all possible amino acid covariances were identified using the observed-minus-expected-squared algorithm at a false-discovery rate of ≤1%, and networks of covariances were assessed using standard methods. Covariances that spanned the viral coding potential were common in all viruses. In all cases, the covariances formed a single network that contained essentially all of the covariances. The hepatitis C virus networks had hub-and-spoke topologies, but all other networks had random topologies with an unusually large number of highly connected nodes. These results indicate that genome-wide networks of genetic associations and the coordinated evolution they imply are very common in viral genomes, that the networks rarely have the hub-and-spoke topology that dominates other biological networks, and that network topologies can vary substantially even within a given viral group. Five examples with hepatitis B virus and poliovirus are presented to illustrate how covariance network analysis can lead to inferences about viral biology. PMID:22238298

  19. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass.

    PubMed

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang; Yerges-Armstrong, Laura M; Chou, Wen-Chi; Stolk, Lisette; Livshits, Gregory; Broer, Linda; Johnson, Toby; Koller, Daniel L; Kutalik, Zoltán; Luan, Jian'an; Malkin, Ida; Ried, Janina S; Smith, Albert V; Thorleifsson, Gudmar; Vandenput, Liesbeth; Hua Zhao, Jing; Zhang, Weihua; Aghdassi, Ali; Åkesson, Kristina; Amin, Najaf; Baier, Leslie J; Barroso, Inês; Bennett, David A; Bertram, Lars; Biffar, Rainer; Bochud, Murielle; Boehnke, Michael; Borecki, Ingrid B; Buchman, Aron S; Byberg, Liisa; Campbell, Harry; Campos Obanda, Natalia; Cauley, Jane A; Cawthon, Peggy M; Cederberg, Henna; Chen, Zhao; Cho, Nam H; Jin Choi, Hyung; Claussnitzer, Melina; Collins, Francis; Cummings, Steven R; De Jager, Philip L; Demuth, Ilja; Dhonukshe-Rutten, Rosalie A M; Diatchenko, Luda; Eiriksdottir, Gudny; Enneman, Anke W; Erdos, Mike; Eriksson, Johan G; Eriksson, Joel; Estrada, Karol; Evans, Daniel S; Feitosa, Mary F; Fu, Mao; Garcia, Melissa; Gieger, Christian; Girke, Thomas; Glazer, Nicole L; Grallert, Harald; Grewal, Jagvir; Han, Bok-Ghee; Hanson, Robert L; Hayward, Caroline; Hofman, Albert; Hoffman, Eric P; Homuth, Georg; Hsueh, Wen-Chi; Hubal, Monica J; Hubbard, Alan; Huffman, Kim M; Husted, Lise B; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Jordan, Joanne M; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O; Klopp, Norman; Kloth, Jacqueline S L; Koistinen, Heikki A; Kraus, William E; Kritchevsky, Stephen; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L; Launer, Lenore J; Lee, Jong-Young; Lerch, Markus M; Lewis, Joshua R; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Liu, Tian; Liu, Youfang; Ljunggren, Östen; Lorentzon, Mattias; Luben, Robert N; Maixner, William; McGuigan, Fiona E; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Melov, Simon; Michaëlsson, Karl; Mitchell, Braxton D; Morris, Andrew P; Mosekilde, Leif; Newman, Anne; Nielson, Carrie M; O'Connell, Jeffrey R; Oostra, Ben A; Orwoll, Eric S; Palotie, Aarno; Parker, Stephen C J; Peacock, Munro; Perola, Markus; Peters, Annette; Polasek, Ozren; Prince, Richard L; Räikkönen, Katri; Ralston, Stuart H; Ripatti, Samuli; Robbins, John A; Rotter, Jerome I; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schadt, Eric E; Schipf, Sabine; Scott, Laura; Sehmi, Joban; Shen, Jian; Soo Shin, Chan; Sigurdsson, Gunnar; Smith, Shad; Soranzo, Nicole; Stančáková, Alena; Steinhagen-Thiessen, Elisabeth; Streeten, Elizabeth A; Styrkarsdottir, Unnur; Swart, Karin M A; Tan, Sian-Tsung; Tarnopolsky, Mark A; Thompson, Patricia; Thomson, Cynthia A; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J; Tuomilehto, Jaakko; van Schoor, Natasja M; Verma, Arjun; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Weedon, Michael N; Welch, Ryan; Wichmann, H-Erich; Widen, Elisabeth; Williams, Frances M K; Wilson, James F; Wright, Nicole C; Xie, Weijia; Yu, Lei; Zhou, Yanhua; Chambers, John C; Döring, Angela; van Duijn, Cornelia M; Econs, Michael J; Gudnason, Vilmundur; Kooner, Jaspal S; Psaty, Bruce M; Spector, Timothy D; Stefansson, Kari; Rivadeneira, Fernando; Uitterlinden, André G; Wareham, Nicholas J; Ossowski, Vicky; Waterworth, Dawn; Loos, Ruth J F; Karasik, David; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P

    2017-07-19

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10 -8 ) or suggestively genome wide (p < 2.3 × 10 -6 ). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.

  20. Ensembl Genomes 2013: scaling up access to genome-wide data

    USDA-ARS?s Scientific Manuscript database

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provi...

  1. Anonymization of electronic medical records for validating genome-wide association studies

    PubMed Central

    Loukides, Grigorios; Gkoulalas-Divanis, Aris; Malin, Bradley

    2010-01-01

    Genome-wide association studies (GWAS) facilitate the discovery of genotype–phenotype relations from population-based sequence databases, which is an integral facet of personalized medicine. The increasing adoption of electronic medical records allows large amounts of patients’ standardized clinical features to be combined with the genomic sequences of these patients and shared to support validation of GWAS findings and to enable novel discoveries. However, disseminating these data “as is” may lead to patient reidentification when genomic sequences are linked to resources that contain the corresponding patients’ identity information based on standardized clinical features. This work proposes an approach that provably prevents this type of data linkage and furnishes a result that helps support GWAS. Our approach automatically extracts potentially linkable clinical features and modifies them in a way that they can no longer be used to link a genomic sequence to a small number of patients, while preserving the associations between genomic sequences and specific sets of clinical features corresponding to GWAS-related diseases. Extensive experiments with real patient data derived from the Vanderbilt's University Medical Center verify that our approach generates data that eliminate the threat of individual reidentification, while supporting GWAS validation and clinical case analysis tasks. PMID:20385806

  2. Genome wide selection in Citrus breeding.

    PubMed

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq TM (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  3. A Genome-Wide Association Study to Identify Genomic Modulators of Rate Control Therapy in Patients with Atrial Fibrillation

    PubMed Central

    Kolek, Matthew J.; Edwards, Todd L.; Muhammad, Raafia; Balouch, Adnan; Shoemaker, M. Benjamin; Blair, Marcia A.; Kor, Kaylen C.; Takahashi, Atsushi; Kubo, Michiaki; Roden, Dan M.; Tanaka, Toshihiro; Darbar, Dawood

    2014-01-01

    For many patients with atrial fibrillation (AF), ventricular rate control with atrioventricular (AV) nodal blockers is considered first-line therapy, though response to treatment is highly variable. Using an extreme phenotype of failure of rate control necessitating AV nodal ablation and pacemaker implantation, we conducted a genome wide association study (GWAS) to identify genomic modulators of rate control therapy. Cases included 95 patients who failed rate control therapy. Controls (N=190) achieved adequate rate control therapy with ≤2 AV nodal blockers using a conventional clinical definition. Genotyping was performed on the Illumina 610-Quad platform, and results were imputed to the 1000 Genomes reference haplotypes. 554,041 single nucleotide polymorphisms (SNPs) met criteria for minor allele frequency (>0.01), call rate (>95%), and quality control, and 6,055,224 SNPs were available after imputation. No SNP reached the canonical threshold for significance for GWAS of P<5 × 10−8. Sixty-three SNPs with P<10−5 at 6 genomic loci were genotyped in a validation cohort of 130 cases and 157 controls. These included 6q24.3 (near SAMD5/SASH1, P=9.36 × 10−8), 4q12 (IGFBP7, P=1.75 × 10−7), 6q22.33 (C6orf174, P=4.86 × 10−7), 3p21.31 (CDCP1, P=1.18 × 10−6), 12p12.1 (SOX5, P=1.62 × 10−6), and 7p11 (LANCL2, P=6.51 × 10−6). However, none of these were significant in the replication cohort or in a meta-analysis of both cohorts. In conclusion, we identified several potentially important genomic modulators of rate control therapy in AF, particularly SOX5, which was previously associated with resting heart rate and PR interval. However these failed to reach genome-wide significance. PMID:25015694

  4. A genome-wide association study to identify genomic modulators of rate control therapy in patients with atrial fibrillation.

    PubMed

    Kolek, Matthew J; Edwards, Todd L; Muhammad, Raafia; Balouch, Adnan; Shoemaker, M Benjamin; Blair, Marcia A; Kor, Kaylen C; Takahashi, Atsushi; Kubo, Michiaki; Roden, Dan M; Tanaka, Toshihiro; Darbar, Dawood

    2014-08-15

    For many patients with atrial fibrillation, ventricular rate control with atrioventricular (AV) nodal blockers is considered first-line therapy, although response to treatment is highly variable. Using an extreme phenotype of failure of rate control necessitating AV nodal ablation and pacemaker implantation, we conducted a genome-wide association study (GWAS) to identify genomic modulators of rate control therapy. Cases included 95 patients who failed rate control therapy. Controls (n = 190) achieved adequate rate control therapy with ≤2 AV nodal blockers using a conventional clinical definition. Genotyping was performed on the Illumina 610-Quad platform, and results were imputed to the 1000 Genomes reference haplotypes. A total of 554,041 single-nucleotide polymorphisms (SNPs) met criteria for minor allele frequency (>0.01), call rate (>95%), and quality control, and 6,055,224 SNPs were available after imputation. No SNP reached the canonical threshold for significance for GWAS of p <5 × 10(-8). Sixty-three SNPs with p <10(-5) at 6 genomic loci were genotyped in a validation cohort of 130 cases and 157 controls. These included 6q24.3 (near SAMD5/SASH1, p = 9.36 × 10(-8)), 4q12 (IGFBP7, p = 1.75 × 10(-7)), 6q22.33 (C6orf174, p = 4.86 × 10(-7)), 3p21.31 (CDCP1, p = 1.18 × 10(-6)), 12p12.1 (SOX5, p = 1.62 × 10(-6)), and 7p11 (LANCL2, p = 6.51 × 10(-6)). However, none of these were significant in the replication cohort or in a meta-analysis of both cohorts. In conclusion, we identified several potentially important genomic modulators of rate control therapy in atrial fibrillation, particularly SOX5, which was previously associated with heart rate at rest and PR interval. However, these failed to reach genome-wide significance. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Genome-wide analysis of the GH3 family in apple (Malus × domestica)

    PubMed Central

    2013-01-01

    Background Auxin plays important roles in hormone crosstalk and the plant’s stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses. Results Malus sieversii Roem., an apple rootstock with strong drought tolerance and the ancestral species of cultivated apple species, was used as the experimental material. Following genome-wide computational and experimental identification of MdGH3 genes, we showed that MdGH3s were differentially expressed in the leaves and roots of M. sieversii and that some of these genes were significantly induced after various phytohormone and abiotic stress treatments. Given the role of GH3 in the negative feedback regulation of free IAA concentration, we examined whether phytohormones and abiotic stresses could alter the endogenous auxin level. By analyzing the GUS activity of DR5::GUS-transformed Arabidopsis seedlings, we showed that ABA, SA, salt, and cold treatments suppressed the auxin response. These findings suggest that other phytohormones and abiotic stress factors might alter endogenous auxin levels. Conclusion Previous studies showed that GH3 genes regulate hormonal homeostasis. Our study indicated that some GH3 genes were significantly induced in M. sieversii after various phytohormone and abiotic stress treatments, and that ABA, SA, salt, and cold treatments reduce the endogenous level of axuin. Taken together, this study provides evidence that GH3 genes play important roles in the crosstalk between auxin, other phytohormones, and the abiotic stress response by maintaining auxin homeostasis. PMID:23638690

  6. Human Genomic Loci Important in Common Infectious Diseases: Role of High-Throughput Sequencing and Genome-Wide Association Studies

    PubMed Central

    Sserwadda, Ivan; Amujal, Marion; Namatovu, Norah

    2018-01-01

    HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers. PMID:29755620

  7. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    PubMed Central

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  8. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity.

    PubMed

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P; Nir, Talia M; Toga, Arthur W; Jack, Clifford R; Saykin, Andrew J; Green, Robert C; Weiner, Michael W; Medland, Sarah E; Montgomery, Grant W; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

    2013-03-19

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.

  9. Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea

    PubMed Central

    Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    The genome-wide discovery and high-throughput genotyping of SNPs in chickpea natural germplasm lines is indispensable to extrapolate their natural allelic diversity, domestication, and linkage disequilibrium (LD) patterns leading to the genetic enhancement of this vital legume crop. We discovered 44,844 high-quality SNPs by sequencing of 93 diverse cultivated desi, kabuli, and wild chickpea accessions using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays that were physically mapped across eight chromosomes of desi and kabuli. Of these, 22,542 SNPs were structurally annotated in different coding and non-coding sequence components of genes. Genes with 3296 non-synonymous and 269 regulatory SNPs could functionally differentiate accessions based on their contrasting agronomic traits. A high experimental validation success rate (92%) and reproducibility (100%) along with strong sensitivity (93–96%) and specificity (99%) of GBS-based SNPs was observed. This infers the robustness of GBS as a high-throughput assay for rapid large-scale mining and genotyping of genome-wide SNPs in chickpea with sub-optimal use of resources. With 23,798 genome-wide SNPs, a relatively high intra-specific polymorphic potential (49.5%) and broader molecular diversity (13–89%)/functional allelic diversity (18–77%) was apparent among 93 chickpea accessions, suggesting their tremendous applicability in rapid selection of desirable diverse accessions/inter-specific hybrids in chickpea crossbred varietal improvement program. The genome-wide SNPs revealed complex admixed domestication pattern, extensive LD estimates (0.54–0.68) and extended LD decay (400–500 kb) in a structured population inclusive of 93 accessions. These findings reflect the utility of our identified SNPs for subsequent genome-wide association study (GWAS) and selective sweep-based domestication trait dissection analysis to identify potential genomic loci (gene-associated targets) specifically

  10. Genome-wide association studies in preterm birth: implications for the practicing obstetrician-gynaecologist

    PubMed Central

    2013-01-01

    Preterm birth has the highest mortality and morbidity of all pregnancy complications. The burden of preterm birth on public health worldwide is enormous, yet there are few effective means to prevent a preterm delivery. To date, much of its etiology is unexplained, but genetic predisposition is thought to play a major role. In the upcoming year, the international Preterm Birth Genome Project (PGP) consortium plans to publish a large genome wide association study in early preterm birth. Genome-wide association studies (GWAS) are designed to identify common genetic variants that influence health and disease. Despite the many challenges that are involved, GWAS can be an important discovery tool, revealing genetic variations that are associated with preterm birth. It is highly unlikely that findings of a GWAS can be directly translated into clinical practice in the short run. Nonetheless, it will help us to better understand the etiology of preterm birth and the GWAS results will generate new hypotheses for further research, thus enhancing our understanding of preterm birth and informing prevention efforts in the long run. PMID:23445776

  11. Genome-wide association studies in preterm birth: implications for the practicing obstetrician-gynaecologist.

    PubMed

    Dolan, Siobhan M; Christiaens, Inge

    2013-01-01

    Preterm birth has the highest mortality and morbidity of all pregnancy complications. The burden of preterm birth on public health worldwide is enormous, yet there are few effective means to prevent a preterm delivery. To date, much of its etiology is unexplained, but genetic predisposition is thought to play a major role. In the upcoming year, the international Preterm Birth Genome Project (PGP) consortium plans to publish a large genome wide association study in early preterm birth. Genome-wide association studies (GWAS) are designed to identify common genetic variants that influence health and disease. Despite the many challenges that are involved, GWAS can be an important discovery tool, revealing genetic variations that are associated with preterm birth. It is highly unlikely that findings of a GWAS can be directly translated into clinical practice in the short run. Nonetheless, it will help us to better understand the etiology of preterm birth and the GWAS results will generate new hypotheses for further research, thus enhancing our understanding of preterm birth and informing prevention efforts in the long run.

  12. genipe: an automated genome-wide imputation pipeline with automatic reporting and statistical tools.

    PubMed

    Lemieux Perreault, Louis-Philippe; Legault, Marc-André; Asselin, Géraldine; Dubé, Marie-Pierre

    2016-12-01

    Genotype imputation is now commonly performed following genome-wide genotyping experiments. Imputation increases the density of analyzed genotypes in the dataset, enabling fine-mapping across the genome. However, the process of imputation using the most recent publicly available reference datasets can require considerable computation power and the management of hundreds of large intermediate files. We have developed genipe, a complete genome-wide imputation pipeline which includes automatic reporting, imputed data indexing and management, and a suite of statistical tests for imputed data commonly used in genetic epidemiology (Sequence Kernel Association Test, Cox proportional hazards for survival analysis, and linear mixed models for repeated measurements in longitudinal studies). The genipe package is an open source Python software and is freely available for non-commercial use (CC BY-NC 4.0) at https://github.com/pgxcentre/genipe Documentation and tutorials are available at http://pgxcentre.github.io/genipe CONTACT: louis-philippe.lemieux.perreault@statgen.org or marie-pierre.dube@statgen.orgSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  13. Harnessing the sorghum genome sequence:development of a genome-wide microsattelite (SSR) resource for swift genetic mapping and map based cloning in sorghum

    USDA-ARS?s Scientific Manuscript database

    Sorghum is the second cereal crop to have a full genome completely sequenced (Nature (2009), 457:551). This achievement is widely recognized as a scientific milestone for grass genetics and genomics in general. However, the true worth of genetic information lies in translating the sequence informa...

  14. Phylogenomics of plant genomes: a methodology for genome-wide searches for orthologs in plants

    PubMed Central

    Conte, Matthieu G; Gaillard, Sylvain; Droc, Gaetan; Perin, Christophe

    2008-01-01

    Background Gene ortholog identification is now a major objective for mining the increasing amount of sequence data generated by complete or partial genome sequencing projects. Comparative and functional genomics urgently need a method for ortholog detection to reduce gene function inference and to aid in the identification of conserved or divergent genetic pathways between several species. As gene functions change during evolution, reconstructing the evolutionary history of genes should be a more accurate way to differentiate orthologs from paralogs. Phylogenomics takes into account phylogenetic information from high-throughput genome annotation and is the most straightforward way to infer orthologs. However, procedures for automatic detection of orthologs are still scarce and suffer from several limitations. Results We developed a procedure for ortholog prediction between Oryza sativa and Arabidopsis thaliana. Firstly, we established an efficient method to cluster A. thaliana and O. sativa full proteomes into gene families. Then, we developed an optimized phylogenomics pipeline for ortholog inference. We validated the full procedure using test sets of orthologs and paralogs to demonstrate that our method outperforms pairwise methods for ortholog predictions. Conclusion Our procedure achieved a high level of accuracy in predicting ortholog and paralog relationships. Phylogenomic predictions for all validated gene families in both species were easily achieved and we can conclude that our methodology outperforms similarly based methods. PMID:18426584

  15. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes.

    PubMed

    Behura, Susanta K; Severson, David W

    2013-02-01

    Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole-genome sequencing of numerous species, both prokaryotes and eukaryotes, genome-wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole-genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome-sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome-sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  16. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    PubMed Central

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-01-01

    Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription

  17. A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence.

    PubMed

    Grattapaglia, Dario; Mamani, Eva M C; Silva-Junior, Orzenil B; Faria, Danielle A

    2015-03-01

    Keystone species in their native ranges, eucalypts, are ecologically and genetically very diverse, growing naturally along extensive latitudinal and altitudinal ranges and variable environments. Besides their ecological importance, eucalypts are also the most widely planted trees for sustainable forestry in the world. We report the development of a novel collection of 535 microsatellites for species of Eucalyptus, 494 designed from ESTs and 41 from genomic libraries. A selected subset of 223 was evaluated for individual identification, parentage testing, and ancestral information content in the two most extensively studied species, Eucalyptus grandis and Eucalyptus globulus. Microsatellites showed high transferability and overlapping allele size range, suggesting they have arisen still in their common ancestor and confirming the extensive genome conservation between these two species. A consensus linkage map with 437 microsatellites, the most comprehensive microsatellite-only genetic map for Eucalyptus, was built by assembling segregation data from three mapping populations and anchored to the Eucalyptus genome. An overall colinearity between recombination-based and physical positioning of 84% of the mapped microsatellites was observed, with some ordering discrepancies and sporadic locus duplications, consistent with the recently described whole genome duplication events in Eucalyptus. The linkage map covered 95.2% of the 605.8-Mbp assembled genome sequence, placing one microsatellite every 1.55 Mbp on average, and an overall estimate of physical to recombination distance of 618 kbp/cM. The genetic parameters estimates together with linkage and physical position data for this large set of microsatellites should assist marker choice for genome-wide population genetics and comparative mapping in Eucalyptus. © 2014 John Wiley & Sons Ltd.

  18. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa

    PubMed Central

    Doddapaneni, Harshavardhan; Yao, Jiqiang; Lin, Hong; Walker, M Andrew; Civerolo, Edwin L

    2006-01-01

    Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c), 54 (Dixon), 83 (Ann1) and 9 (Temecula-1). A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes have been identified as the

  19. Development and application of a novel genome-wide SNP array reveals domestication history in soybean

    PubMed Central

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-01-01

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean. PMID:26856884

  20. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    PubMed

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  1. Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array.

    PubMed

    Zhu, Bo; Niu, Hong; Zhang, Wengang; Wang, Zezhao; Liang, Yonghu; Guan, Long; Guo, Peng; Chen, Yan; Zhang, Lupei; Guo, Yong; Ni, Heming; Gao, Xue; Gao, Huijiang; Xu, Lingyang; Li, Junya

    2017-06-14

    Fatty acid composition of muscle is an important trait contributing to meat quality. Recently, genome-wide association study (GWAS) has been extensively used to explore the molecular mechanism underlying important traits in cattle. In this study, we performed GWAS using high density SNP array to analyze the association between SNPs and fatty acids and evaluated the accuracy of genomic prediction for fatty acids in Chinese Simmental cattle. Using the BayesB method, we identified 35 and 7 regions in Chinese Simmental cattle that displayed significant associations with individual fatty acids and fatty acid groups, respectively. We further obtained several candidate genes which may be involved in fatty acid biosynthesis including elongation of very long chain fatty acids protein 5 (ELOVL5), fatty acid synthase (FASN), caspase 2 (CASP2) and thyroglobulin (TG). Specifically, we obtained strong evidence of association signals for one SNP located at 51.3 Mb for FASN using Genome-wide Rapid Association Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approaches. Also, region-based association test identified multiple SNPs within FASN and ELOVL5 for C14:0. In addition, our result revealed that the effectiveness of genomic prediction for fatty acid composition using BayesB was slightly superior over GBLUP in Chinese Simmental cattle. We identified several significantly associated regions and loci which can be considered as potential candidate markers for genomics-assisted breeding programs. Using multiple methods, our results revealed that FASN and ELOVL5 are associated with fatty acids with strong evidence. Our finding also suggested that it is feasible to perform genomic selection for fatty acids in Chinese Simmental cattle.

  2. Alzheimer Disease Pathology in Cognitively Healthy Elderly:A Genome-wide Study

    PubMed Central

    Kramer, Patricia L; Xu, Haiyan; Woltjer, Randall L; Westaway, Shawn K; Clark, David; Erten-Lyons, Deniz; Kaye, Jeffrey A; Welsh-Bohmer, Kathleen A; Troncoso, Juan C; Markesbery, William R; Petersen, Ronald C; Turner, R Scott; Kukull, Walter A; Bennett, David A; DouglasGalasko; Morris, John C; Ott, Jurg

    2010-01-01

    Many elderly individuals remain dementia-free throughout their life. However, some of these individuals exhibit Alzheimer disease neuropathology on autopsy, evidenced by neurofibrillary tangles (NFTs) in AD-specific brain regions. We conducted a genome-wide association study to identify genetic mechanisms that distinguish non-demented elderly with a heavy NFT burden from those with a low NFT burden. The study included 344 non-demented subjects with autopsy (201 subjects with low and 143 with high NFT levels). Both a genotype test, using logistic regression, and an allele test provided genome-wide significant evidence that variants in the RELNgene are associated with neuropathology in the context of cognitive health. Immunohistochemical data for reelin expression in AD-related brain regions added support for these findings. Reelin signaling pathways modulate phosphorylation of tau, the major component of NFTs, either directly or through β-amyloid pathways that influence tau phosphorylation. Our findings suggest that up-regulation of reelin may be a compensatory response to tau-related or beta-amyloid stress associated with AD even prior to the onset of dementia. PMID:20452100

  3. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses

    PubMed Central

    Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.

    2014-01-01

    Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie

  4. Implications of genome-wide association studies in cancer therapeutics.

    PubMed

    Patel, Jai N; McLeod, Howard L; Innocenti, Federico

    2013-09-01

    Genome wide association studies (GWAS) provide an agnostic approach to identifying potential genetic variants associated with disease susceptibility, prognosis of survival and/or predictive of drug response. Although these techniques are costly and interpretation of study results is challenging, they do allow for a more unbiased interrogation of the entire genome, resulting in the discovery of novel genes and understanding of novel biological associations. This review will focus on the implications of GWAS in cancer therapy, in particular germ-line mutations, including findings from major GWAS which have identified predictive genetic loci for clinical outcome and/or toxicity. Lessons and challenges in cancer GWAS are also discussed, including the need for functional analysis and replication, as well as future perspectives for biological and clinical utility. Given the large heterogeneity in response to cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response and ultimately treatment individualization will be indispensable. © 2013 The British Pharmacological Society.

  5. A GENOME WIDE ASSOCIATION STUDY FOR DIABETIC NEPHROPATHY GENES IN AFRICAN AMERICANS

    PubMed Central

    McDonough, Caitrin W.; Palmer, Nicholette D.; Hicks, Pamela J.; Roh, Bong H.; An, S. Sandy; Cooke, Jessica N.; Hester, Jessica M.; Wing, Maria R.; Bostrom, Meredith A.; Rudock, Megan E.; Lewis, Joshua P.; Talbert, Matthew E.; Blevins, Rebecca A.; Lu, Lingyi; Ng, Maggie C.Y.; Sale, Michele M.; Divers, Jasmin; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.

    2011-01-01

    A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD. PMID:21150874

  6. A genome-wide association study for diabetic nephropathy genes in African Americans.

    PubMed

    McDonough, Caitrin W; Palmer, Nicholette D; Hicks, Pamela J; Roh, Bong H; An, S Sandy; Cooke, Jessica N; Hester, Jessica M; Wing, Maria R; Bostrom, Meredith A; Rudock, Megan E; Lewis, Joshua P; Talbert, Matthew E; Blevins, Rebecca A; Lu, Lingyi; Ng, Maggie C Y; Sale, Michele M; Divers, Jasmin; Langefeld, Carl D; Freedman, Barry I; Bowden, Donald W

    2011-03-01

    A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD.

  7. A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds

    PubMed Central

    2014-01-01

    Background Modern breeding and artificial selection play critical roles in pig domestication and shape the genetic variation of different breeds. China has many indigenous pig breeds with various characteristics in morphology and production performance that differ from those of foreign commercial pig breeds. However, the signatures of selection on genes implying for economic traits between Chinese indigenous and commercial pigs have been poorly understood. Results We identified footprints of positive selection at the whole genome level, comprising 44,652 SNPs genotyped in six Chinese indigenous pig breeds, one developed breed and two commercial breeds. An empirical genome-wide distribution of Fst (F-statistics) was constructed based on estimations of Fst for each SNP across these nine breeds. We detected selection at the genome level using the High-Fst outlier method and found that 81 candidate genes show high evidence of positive selection. Furthermore, the results of network analyses showed that the genes that displayed evidence of positive selection were mainly involved in the development of tissues and organs, and the immune response. In addition, we calculated the pairwise Fst between Chinese indigenous and commercial breeds (CHN VS EURO) and between Northern and Southern Chinese indigenous breeds (Northern VS Southern). The IGF1R and ESR1 genes showed evidence of positive selection in the CHN VS EURO and Northern VS Southern groups, respectively. Conclusions In this study, we first identified the genomic regions that showed evidences of selection between Chinese indigenous and commercial pig breeds using the High-Fst outlier method. These regions were found to be involved in the development of tissues and organs, the immune response, growth and litter size. The results of this study provide new insights into understanding the genetic variation and domestication in pigs. PMID:24422716

  8. Ensembl Genomes 2013: scaling up access to genome-wide data.

    PubMed

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  9. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    PubMed Central

    Felix, Janine F.; Bradfield, Jonathan P.; Monnereau, Claire; van der Valk, Ralf J.P.; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M.; Cousminer, Diana L.; Marsh, Julie A.; Lehtimäki, Terho; Curtin, John A.; Vioque, Jesus; Ahluwalia, Tarunveer S.; Myhre, Ronny; Price, Thomas S.; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I.; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M.A.; Hirschhorn, Joel N.; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N.; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A.; Lewin, Alexandra M.; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E.; McMahon, George; Mentch, Frank D.; Middeldorp, Christel M.; Murray, Clare S.; Pahkala, Katja; Pers, Tune H.; Pfäffle, Roland; Postma, Dirkje S.; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M. T.; Torrent, Maties; Uitterlinden, André G.; van Meurs, Joyce B.; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S.; Dedoussis, George V.; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R.; Custovic, Adnan; Raitakari, Olli T.; Pennell, Craig E.; Widén, Elisabeth; Boomsma, Dorret I.; Koppelman, Gerard H.; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I.; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M.; Smith, George Davey; Sørensen, Thorkild I.A.; Timpson, Nicholas J.; Grant, Struan F.A.; Jaddoe, Vincent W.V.

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. PMID:26604143

  10. Realizing privacy preserving genome-wide association studies.

    PubMed

    Simmons, Sean; Berger, Bonnie

    2016-05-01

    As genomics moves into the clinic, there has been much interest in using this medical data for research. At the same time the use of such data raises many privacy concerns. These circumstances have led to the development of various methods to perform genome-wide association studies (GWAS) on patient records while ensuring privacy. In particular, there has been growing interest in applying differentially private techniques to this challenge. Unfortunately, up until now all methods for finding high scoring SNPs in a differentially private manner have had major drawbacks in terms of either accuracy or computational efficiency. Here we overcome these limitations with a substantially modified version of the neighbor distance method for performing differentially private GWAS, and thus are able to produce a more viable mechanism. Specifically, we use input perturbation and an adaptive boundary method to overcome accuracy issues. We also design and implement a convex analysis based algorithm to calculate the neighbor distance for each SNP in constant time, overcoming the major computational bottleneck in the neighbor distance method. It is our hope that methods such as ours will pave the way for more widespread use of patient data in biomedical research. A python implementation is available at http://groups.csail.mit.edu/cb/DiffPriv/ bab@csail.mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  11. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association mapping has recently emerged as a valuable approach to refine genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil borne pathogen of pea and other legumes wor...

  12. A genome-wide association study identifies multiple loci for variation in human ear morphology.

    PubMed

    Adhikari, Kaustubh; Reales, Guillermo; Smith, Andrew J P; Konka, Esra; Palmen, Jutta; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Fuentes, Macarena; Pizarro, María; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Calderón, Rosario; Rosique, Javier; Cheeseman, Michael; Bhutta, Mahmood F; Humphries, Steve E; Gonzalez-José, Rolando; Headon, Denis; Balding, David; Ruiz-Linares, Andrés

    2015-06-24

    Here we report a genome-wide association study for non-pathological pinna morphology in over 5,000 Latin Americans. We find genome-wide significant association at seven genomic regions affecting: lobe size and attachment, folding of antihelix, helix rolling, ear protrusion and antitragus size (linear regression P values 2 × 10(-8) to 3 × 10(-14)). Four traits are associated with a functional variant in the Ectodysplasin A receptor (EDAR) gene, a key regulator of embryonic skin appendage development. We confirm expression of Edar in the developing mouse ear and that Edar-deficient mice have an abnormally shaped pinna. Two traits are associated with SNPs in a region overlapping the T-Box Protein 15 (TBX15) gene, a major determinant of mouse skeletal development. Strongest association in this region is observed for SNP rs17023457 located in an evolutionarily conserved binding site for the transcription factor Cartilage paired-class homeoprotein 1 (CART1), and we confirm that rs17023457 alters in vitro binding of CART1.

  13. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    2016-10-01

    The composition of a genome with respect to all possible short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional DNA binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. We demonstrate that the underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, a signal that we detect in all species across domains of life. We consider the possibility that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Likewise, we show that evolutionary mechanisms based on interference of protein-DNA binding with replication and mutational repair processes could yield similar results and operate with similar rates. On the basis of these modeling and bioinformatic results, we conclude that genome-wide word compositions have been molded by DNA binding proteins acting through tiny evolutionary steps over time scales spanning millions of generations.

  14. Genome-wide study of resistant hypertension identified from electronic health records.

    PubMed

    Dumitrescu, Logan; Ritchie, Marylyn D; Denny, Joshua C; El Rouby, Nihal M; McDonough, Caitrin W; Bradford, Yuki; Ramirez, Andrea H; Bielinski, Suzette J; Basford, Melissa A; Chai, High Seng; Peissig, Peggy; Carrell, David; Pathak, Jyotishman; Rasmussen, Luke V; Wang, Xiaoming; Pacheco, Jennifer A; Kho, Abel N; Hayes, M Geoffrey; Matsumoto, Martha; Smith, Maureen E; Li, Rongling; Cooper-DeHoff, Rhonda M; Kullo, Iftikhar J; Chute, Christopher G; Chisholm, Rex L; Jarvik, Gail P; Larson, Eric B; Carey, David; McCarty, Catherine A; Williams, Marc S; Roden, Dan M; Bottinger, Erwin; Johnson, Julie A; de Andrade, Mariza; Crawford, Dana C

    2017-01-01

    Resistant hypertension is defined as high blood pressure that remains above treatment goals in spite of the concurrent use of three antihypertensive agents from different classes. Despite the important health consequences of resistant hypertension, few studies of resistant hypertension have been conducted. To perform a genome-wide association study for resistant hypertension, we defined and identified cases of resistant hypertension and hypertensives with treated, controlled hypertension among >47,500 adults residing in the US linked to electronic health records (EHRs) and genotyped as part of the electronic MEdical Records & GEnomics (eMERGE) Network. Electronic selection logic using billing codes, laboratory values, text queries, and medication records was used to identify resistant hypertension cases and controls at each site, and a total of 3,006 cases of resistant hypertension and 876 controlled hypertensives were identified among eMERGE Phase I and II sites. After imputation and quality control, a total of 2,530,150 SNPs were tested for an association among 2,830 multi-ethnic cases of resistant hypertension and 876 controlled hypertensives. No test of association was genome-wide significant in the full dataset or in the dataset limited to European American cases (n = 1,719) and controls (n = 708). The most significant finding was CLNK rs13144136 at p = 1.00x10-6 (odds ratio = 0.68; 95% CI = 0.58-0.80) in the full dataset with similar results in the European American only dataset. We also examined whether SNPs known to influence blood pressure or hypertension also influenced resistant hypertension. None was significant after correction for multiple testing. These data highlight both the difficulties and the potential utility of EHR-linked genomic data to study clinically-relevant traits such as resistant hypertension.

  15. Genome-wide association study of Alzheimer's disease.

    PubMed

    Kamboh, M I; Demirci, F Y; Wang, X; Minster, R L; Carrasquillo, M M; Pankratz, V S; Younkin, S G; Saykin, A J; Jun, G; Baldwin, C; Logue, M W; Buros, J; Farrer, L; Pericak-Vance, M A; Haines, J L; Sweet, R A; Ganguli, M; Feingold, E; Dekosky, S T; Lopez, O L; Barmada, M M

    2012-05-15

    In addition to apolipoprotein E (APOE), recent large genome-wide association studies (GWASs) have identified nine other genes/loci (CR1, BIN1, CLU, PICALM, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 and ABCA7) for late-onset Alzheimer's disease (LOAD). However, the genetic effect attributable to known loci is about 50%, indicating that additional risk genes for LOAD remain to be identified. In this study, we have used a new GWAS data set from the University of Pittsburgh (1291 cases and 938 controls) to examine in detail the recently implicated nine new regions with Alzheimer's disease (AD) risk, and also performed a meta-analysis utilizing the top 1% GWAS single-nucleotide polymorphisms (SNPs) with P<0.01 along with four independent data sets (2727 cases and 3336 controls) for these SNPs in an effort to identify new AD loci. The new GWAS data were generated on the Illumina Omni1-Quad chip and imputed at ~2.5 million markers. As expected, several markers in the APOE regions showed genome-wide significant associations in the Pittsburg sample. While we observed nominal significant associations (P<0.05) either within or adjacent to five genes (PICALM, BIN1, ABCA7, MS4A4/MS4A6E and EPHA1), significant signals were observed 69-180 kb outside of the remaining four genes (CD33, CLU, CD2AP and CR1). Meta-analysis on the top 1% SNPs revealed a suggestive novel association in the PPP1R3B gene (top SNP rs3848140 with P = 3.05E-07). The association of this SNP with AD risk was consistent in all five samples with a meta-analysis odds ratio of 2.43. This is a potential candidate gene for AD as this is expressed in the brain and is involved in lipid metabolism. These findings need to be confirmed in additional samples.

  16. Genome-wide association study of Alzheimer's disease

    PubMed Central

    Kamboh, M I; Demirci, F Y; Wang, X; Minster, R L; Carrasquillo, M M; Pankratz, V S; Younkin, S G; Saykin, A J; Jun, G; Baldwin, C; Logue, M W; Buros, J; Farrer, L; Pericak-Vance, M A; Haines, J L; Sweet, R A; Ganguli, M; Feingold, E; DeKosky, S T; Lopez, O L; Barmada, M M

    2012-01-01

    In addition to apolipoprotein E (APOE), recent large genome-wide association studies (GWASs) have identified nine other genes/loci (CR1, BIN1, CLU, PICALM, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 and ABCA7) for late-onset Alzheimer's disease (LOAD). However, the genetic effect attributable to known loci is about 50%, indicating that additional risk genes for LOAD remain to be identified. In this study, we have used a new GWAS data set from the University of Pittsburgh (1291 cases and 938 controls) to examine in detail the recently implicated nine new regions with Alzheimer's disease (AD) risk, and also performed a meta-analysis utilizing the top 1% GWAS single-nucleotide polymorphisms (SNPs) with P<0.01 along with four independent data sets (2727 cases and 3336 controls) for these SNPs in an effort to identify new AD loci. The new GWAS data were generated on the Illumina Omni1-Quad chip and imputed at ∼2.5 million markers. As expected, several markers in the APOE regions showed genome-wide significant associations in the Pittsburg sample. While we observed nominal significant associations (P<0.05) either within or adjacent to five genes (PICALM, BIN1, ABCA7, MS4A4/MS4A6E and EPHA1), significant signals were observed 69–180 kb outside of the remaining four genes (CD33, CLU, CD2AP and CR1). Meta-analysis on the top 1% SNPs revealed a suggestive novel association in the PPP1R3B gene (top SNP rs3848140 with P=3.05E–07). The association of this SNP with AD risk was consistent in all five samples with a meta-analysis odds ratio of 2.43. This is a potential candidate gene for AD as this is expressed in the brain and is involved in lipid metabolism. These findings need to be confirmed in additional samples. PMID:22832961

  17. A Novel Genome-Information Content-Based Statistic for Genome-Wide Association Analysis Designed for Next-Generation Sequencing Data

    PubMed Central

    Luo, Li; Zhu, Yun

    2012-01-01

    Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812

  18. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.

    PubMed

    Luo, Li; Zhu, Yun; Xiong, Momiao

    2012-06-01

    The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.

  19. Genome-Wide Association Study Identifies Candidate Genes That Affect Plant Height in Chinese Elite Maize (Zea mays L.) Inbred Lines

    PubMed Central

    Wang, Jianjun; Liu, Changlin; Li, Mingshun; Zhang, Degui; Bai, Li; Zhang, Shihuang; Li, Xinhai

    2011-01-01

    Background The harvest index for many crops can be improved through introduction of dwarf stature to increase lodging resistance, combined with early maturity. The inbred line Shen5003 has been widely used in maize breeding in China as a key donor line for the dwarf trait. Also, one major quantitative trait locus (QTL) controlling plant height has been identified in bin 5.05–5.06, across several maize bi-parental populations. With the progress of publicly available maize genome sequence, the objective of this work was to identify the candidate genes that affect plant height among Chinese maize inbred lines with genome wide association studies (GWAS). Methods and Findings A total of 284 maize inbred lines were genotyped using over 55,000 evenly spaced SNPs, from which a set of 41,101 SNPs were filtered with stringent quality control for further data analysis. With the population structure controlled in a mixed linear model (MLM) implemented with the software TASSEL, we carried out a genome-wide association study (GWAS) for plant height. A total of 204 SNPs (P≤0.0001) and 105 genomic loci harboring coding regions were identified. Four loci containing genes associated with gibberellin (GA), auxin, and epigenetic pathways may be involved in natural variation that led to a dwarf phenotype in elite maize inbred lines. Among them, a favorable allele for dwarfing on chromosome 5 (SNP PZE-105115518) was also identified in six Shen5003 derivatives. Conclusions The fact that a large number of previously identified dwarf genes are missing from our study highlights the discovery of the consistently significant association of the gene harboring the SNP PZE-105115518 with plant height (P = 8.91e-10) and its confirmation in the Shen5003 introgression lines. Results from this study suggest that, in the maize breeding schema in China, specific alleles were selected, that have played important roles in maize production. PMID:22216221

  20. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) are large insertions, deletions or duplications in the genome that vary between members of a species and are known to affect a wide variety of phenotypic traits. In this study, we identified CNVs in a population of bulls using low coverage next-generation sequence data....

  1. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis

    PubMed Central

    Zhou, Kaixin; Donnelly, Louise; Yang, Jian; Li, Miaoxin; Deshmukh, Harshal; Van Zuydam, Natalie; Ahlqvist, Emma; Spencer, Chris C; Groop, Leif; Morris, Andrew D; Colhoun, Helen M; Sham, Pak C; McCarthy, Mark I; Palmer, Colin N A; Pearson, Ewan R

    2014-01-01

    Summary Background Metformin is a first-line oral agent used in the treatment of type 2 diabetes, but glycaemic response to this drug is highly variable. Understanding the genetic contribution to metformin response might increase the possibility of personalising metformin treatment. We aimed to establish the heritability of glycaemic response to metformin using the genome-wide complex trait analysis (GCTA) method. Methods In this GCTA study, we obtained data about HbA1c concentrations before and during metformin treatment from patients in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) study, which includes a cohort of patients with type 2 diabetes and is linked to comprehensive clinical databases and genome-wide association study data. We applied the GCTA method to estimate heritability for four definitions of glycaemic response to metformin: absolute reduction in HbA1c; proportional reduction in HbA1c; adjusted reduction in HbA1c; and whether or not the target on-treatment HbA1c of less than 7% (53 mmol/mol) was achieved, with adjustment for baseline HbA1c and known clinical covariates. Chromosome-wise heritability estimation was used to obtain further information about the genetic architecture. Findings 5386 individuals were included in the final dataset, of whom 2085 had enough clinical data to define glycaemic response to metformin. The heritability of glycaemic response to metformin varied by response phenotype, with a heritability of 34% (95% CI 1–68; p=0·022) for the absolute reduction in HbA1c, adjusted for pretreatment HbA1c. Chromosome-wise heritability estimates suggest that the genetic contribution is probably from individual variants scattered across the genome, which each have a small to moderate effect, rather than from a few loci that each have a large effect. Interpretation Glycaemic response to metformin is heritable, thus glycaemic response to metformin is, in part, intrinsic to individual biological variation

  2. Genome-wide compendium and functional assessment of in vivo heart enhancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of > 35 epigenomic data sets from mouse and human pre-and postnatal hearts we created a comprehensive reference of > 80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs ofmore » two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function.« less

  3. Genome-wide compendium and functional assessment of in vivo heart enhancers

    DOE PAGES

    Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen; ...

    2016-10-05

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of > 35 epigenomic data sets from mouse and human pre-and postnatal hearts we created a comprehensive reference of > 80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs ofmore » two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function.« less

  4. Genome-wide compendium and functional assessment of in vivo heart enhancers

    PubMed Central

    Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen; Fukuda-Yuzawa, Yoko; Osterwalder, Marco; Mannion, Brandon J.; May, Dalit; Spurrell, Cailyn H.; Plajzer-Frick, Ingrid; Pickle, Catherine S.; Lee, Elizabeth; Garvin, Tyler H.; Kato, Momoe; Akiyama, Jennifer A.; Afzal, Veena; Lee, Ah Young; Gorkin, David U.; Ren, Bing; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.

    2016-01-01

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function. PMID:27703156

  5. Genome-wide association studies to identify rice salt-tolerance markers.

    PubMed

    Patishtan, Juan; Hartley, Tom N; Fonseca de Carvalho, Raquel; Maathuis, Frans J M

    2018-05-01

    Salinity is an ever increasing menace that affects agriculture worldwide. Crops such as rice are salt sensitive, but its degree of susceptibility varies widely between cultivars pointing to extensive genetic diversity that can be exploited to identify genes and proteins that are relevant in the response of rice to salt stress. We used a diversity panel of 306 rice accessions and collected phenotypic data after short (6 h), medium (7 d) and long (30 d) salinity treatment (50 mm NaCl). A genome-wide association study (GWAS) was subsequently performed, which identified around 1200 candidate genes from many functional categories, but this was treatment period dependent. Further analysis showed the presence of cation transporters and transcription factors with a known role in salinity tolerance and those that hitherto were not known to be involved in salt stress. Localization analysis of single nucleotide polymorphisms (SNPs) showed the presence of several hundred non-synonymous SNPs (nsSNPs) in coding regions and earmarked specific genomic regions with increased numbers of nsSNPs. It points to components of the ubiquitination pathway as important sources of genetic diversity that could underpin phenotypic variation in stress tolerance. © 2017 John Wiley & Sons Ltd.

  6. Genome-wide association analysis of ischemic stroke in young adults.

    PubMed

    Cheng, Yu-Ching; O'Connell, Jeffrey R; Cole, John W; Stine, O Colin; Dueker, Nicole; McArdle, Patrick F; Sparks, Mary J; Shen, Jess; Laurie, Cathy C; Nelson, Sarah; Doheny, Kimberly F; Ling, Hua; Pugh, Elizabeth W; Brott, Thomas G; Brown, Robert D; Meschia, James F; Nalls, Michael; Rich, Stephen S; Worrall, Bradford; Anderson, Christopher D; Biffi, Alessandro; Cortellini, Lynelle; Furie, Karen L; Rost, Natalia S; Rosand, Jonathan; Manolio, Teri A; Kittner, Steven J; Mitchell, Braxton D

    2011-11-01

    Ischemic stroke (IS) is among the leading causes of death in Western countries. There is a significant genetic component to IS susceptibility, especially among young adults. To date, research to identify genetic loci predisposing to stroke has met only with limited success. We performed a genome-wide association (GWA) analysis of early-onset IS to identify potential stroke susceptibility loci. The GWA analysis was conducted by genotyping 1 million SNPs in a biracial population of 889 IS cases and 927 controls, ages 15-49 years. Genotypes were imputed using the HapMap3 reference panel to provide 1.4 million SNPs for analysis. Logistic regression models adjusting for age, recruitment stages, and population structure were used to determine the association of IS with individual SNPs. Although no single SNP reached genome-wide significance (P < 5 × 10(-8)), we identified two SNPs in chromosome 2q23.3, rs2304556 (in FMNL2; P = 1.2 × 10(-7)) and rs1986743 (in ARL6IP6; P = 2.7 × 10(-7)), strongly associated with early-onset stroke. These data suggest that a novel locus on human chromosome 2q23.3 may be associated with IS susceptibility among young adults.

  7. Genome-Wide Association Study for Susceptibility to and Recoverability From Mastitis in Danish Holstein Cows

    PubMed Central

    Welderufael, B. G.; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L. G.; Fikse, W. F.

    2018-01-01

    Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to – but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t-test and a genome-wide significance level of P-value < 10-4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to – or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2) and genes involved in macrophage recruitment and regulation of inflammations (PDGFD and PTX3) were suggested as possible causal genes for susceptibility to – and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to – and recoverability from mastitis. PMID:29755506

  8. A Genome-Wide Association Study of Circulating Galectin-3

    PubMed Central

    van Veldhuisen, Dirk J.; Westra, Harm-Jan; Bakker, Stephan J. L.; Gansevoort, Ron T.; Muller Kobold, Anneke C.; van Gilst, Wiek H.; Franke, Lude

    2012-01-01

    Galectin-3 is a lectin involved in fibrosis, inflammation and proliferation. Increased circulating levels of galectin-3 have been associated with various diseases, including cancer, immunological disorders, and cardiovascular disease. To enhance our knowledge on galectin-3 biology we performed the first genome-wide association study (GWAS) using the Illumina HumanCytoSNP-12 array imputed with the HapMap 2 CEU panel on plasma galectin-3 levels in 3,776 subjects and follow-up genotyping in an additional 3,516 subjects. We identified 2 genome wide significant loci associated with plasma galectin-3 levels. One locus harbours the LGALS3 gene (rs2274273; P = 2.35×10−188) and the other locus the ABO gene (rs644234; P = 3.65×10−47). The variance explained by the LGALS3 locus was 25.6% and by the ABO locus 3.8% and jointly they explained 29.2%. Rs2274273 lies in high linkage disequilibrium with two non-synonymous SNPs (rs4644; r2 = 1.0, and rs4652; r2 = 0.91) and wet lab follow-up genotyping revealed that both are strongly associated with galectin-3 levels (rs4644; P = 4.97×10−465 and rs4652 P = 1.50×10−421) and were also associated with LGALS3 gene-expression. The origins of our associations should be further validated by means of functional experiments. PMID:23056639

  9. Nencki Genomics Database—Ensembl funcgen enhanced with intersections, user data and genome-wide TFBS motifs

    PubMed Central

    Krystkowiak, Izabella; Lenart, Jakub; Debski, Konrad; Kuterba, Piotr; Petas, Michal; Kaminska, Bozena; Dabrowski, Michal

    2013-01-01

    We present the Nencki Genomics Database, which extends the functionality of Ensembl Regulatory Build (funcgen) for the three species: human, mouse and rat. The key enhancements over Ensembl funcgen include the following: (i) a user can add private data, analyze them alongside the public data and manage access rights; (ii) inside the database, we provide efficient procedures for computing intersections between regulatory features and for mapping them to the genes. To Ensembl funcgen-derived data, which include data from ENCODE, we add information on conserved non-coding (putative regulatory) sequences, and on genome-wide occurrence of transcription factor binding site motifs from the current versions of two major motif libraries, namely, Jaspar and Transfac. The intersections and mapping to the genes are pre-computed for the public data, and the result of any procedure run on the data added by the users is stored back into the database, thus incrementally increasing the body of pre-computed data. As the Ensembl funcgen schema for the rat is currently not populated, our database is the first database of regulatory features for this frequently used laboratory animal. The database is accessible without registration using the mysql client: mysql –h database.nencki-genomics.org –u public. Registration is required only to add or access private data. A WSDL webservice provides access to the database from any SOAP client, including the Taverna Workbench with a graphical user interface. Database URL: http://www.nencki-genomics.org. PMID:24089456

  10. Optimization and quality control of genome-wide Hi-C library preparation.

    PubMed

    Zhang, Xiang-Yuan; He, Chao; Ye, Bing-Yu; Xie, De-Jian; Shi, Ming-Lei; Zhang, Yan; Shen, Wen-Long; Li, Ping; Zhao, Zhi-Hu

    2017-09-20

    Highest-throughput chromosome conformation capture (Hi-C) is one of the key assays for genome- wide chromatin interaction studies. It is a time-consuming process that involves many steps and many different kinds of reagents, consumables, and equipments. At present, the reproducibility is unsatisfactory. By optimizing the key steps of the Hi-C experiment, such as crosslinking, pretreatment of digestion, inactivation of restriction enzyme, and in situ ligation etc., we established a robust Hi-C procedure and prepared two biological replicates of Hi-C libraries from the GM12878 cells. After preliminary quality control by Sanger sequencing, the two replicates were high-throughput sequenced. The bioinformatics analysis of the raw sequencing data revealed the mapping-ability and pair-mate rate of the raw data were around 90% and 72%, respectively. Additionally, after removal of self-circular ligations and dangling-end products, more than 96% of the valid pairs were reached. Genome-wide interactome profiling shows clear topological associated domains (TADs), which is consistent with previous reports. Further correlation analysis showed that the two biological replicates strongly correlate with each other in terms of both bin coverage and all bin pairs. All these results indicated that the optimized Hi-C procedure is robust and stable, which will be very helpful for the wide applications of the Hi-C assay.

  11. Genome-Wide Analysis of the Arabidopsis Replication Timing Program1[OPEN

    PubMed Central

    Brooks, Ashley M.; Wheeler, Emily; LeBlanc, Chantal; Lee, Tae-Jin; Martienssen, Robert A.; Thompson, William F.

    2018-01-01

    Eukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure. We used the thymidine analog, 5-ethynyl-2′-deoxyuridine, in combination with flow sorting and Repli-Seq to describe, at high-resolution, the genome-wide replication timing program for Arabidopsis (Arabidopsis thaliana) Col-0 suspension cells. We identified genomic regions that replicate predominantly during early, mid, and late S phase, and correlated these regions with genomic features and with data for chromatin state, accessibility, and long-distance interaction. Arabidopsis chromosome arms tend to replicate early while pericentromeric regions replicate late. Early and mid-replicating regions are gene-rich and predominantly euchromatic, while late regions are rich in transposable elements and primarily heterochromatic. However, the distribution of chromatin states across the different times is complex, with each replication time corresponding to a mixture of states. Early and mid-replicating sequences interact with each other and not with late sequences, but early regions are more accessible than mid regions. The replication timing program in Arabidopsis reflects a bipartite genomic organization with early/mid-replicating regions and late regions forming separate, noninteracting compartments. The temporal order of DNA replication within the early/mid compartment may be modulated largely by chromatin accessibility. PMID:29301956

  12. Genome-wide Analysis of Genetic Loci Associated with Alzheimer’s Disease

    PubMed Central

    Seshadri, Sudha; Fitzpatrick, Annette L.; Arfan Ikram, M; DeStefano, Anita L.; Gudnason, Vilmundur; Boada, Merce; Bis, Joshua C.; Smith, Albert V.; Carassquillo, Minerva M.; Charles Lambert, Jean; Harold, Denise; Schrijvers, Elisabeth M. C.; Ramirez-Lorca, Reposo; Debette, Stephanie; Longstreth, W.T.; Janssens, A. Cecile J.W.; Shane Pankratz, V.; Dartigues, Jean François; Hollingworth, Paul; Aspelund, Thor; Hernandez, Isabel; Beiser, Alexa; Kuller, Lewis H.; Koudstaal, Peter J.; Dickson, Dennis W.; Tzourio, Christophe; Abraham, Richard; Antunez, Carmen; Du, Yangchun; Rotter, Jerome I.; Aulchenko, Yurii S.; Harris, Tamara B.; Petersen, Ronald C.; Berr, Claudine; Owen, Michael J.; Lopez-Arrieta, Jesus; Varadarajan, Badri N.; Becker, James T.; Rivadeneira, Fernando; Nalls, Michael A.; Graff-Radford, Neill R.; Campion, Dominique; Auerbach, Sanford; Rice, Kenneth; Hofman, Albert; Jonsson, Palmi V.; Schmidt, Helena; Lathrop, Mark; Mosley, Thomas H.; Au, Rhoda; Psaty, Bruce M.; Uitterlinden, Andre G.; Farrer, Lindsay A.; Lumley, Thomas; Ruiz, Agustin; Williams, Julie; Amouyel, Philippe; Younkin, Steve G.; Wolf, Philip A.; Launer, Lenore J.; Lopez, Oscar L.; van Duijn, Cornelia M.; Breteler, Monique M. B.

    2010-01-01

    Context Genome wide association studies (GWAS) have recently identified CLU, PICALM and CR1 as novel genes for late-onset Alzheimer’s disease (AD). Objective In a three-stage analysis of new and previously published GWAS on over 35000 persons (8371 AD cases), we sought to identify and strengthen additional loci associated with AD and confirm these in an independent sample. We also examined the contribution of recently identified genes to AD risk prediction. Design, Setting, and Participants We identified strong genetic associations (p<10−3) in a Stage 1 sample of 3006 AD cases and 14642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium (1367 AD cases (973 incident)) with previously reported results from the Translational Genomics Research Institute (TGEN) and Mayo AD GWAS. We identified 2708 single nucleotide polymorphisms (SNPs) with p-values<10−3, and in Stage 2 pooled results for these SNPs with the European AD Initiative (2032 cases, 5328 controls) to identify ten loci with p-values<10−5. In Stage 3, we combined data for these ten loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases, 6995 controls) to identify four SNPs with a p-value<1.7×10−8. These four SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Main outcome measure Alzheimer’s Disease. Results We showed genome-wide significance for two new loci: rs744373 near BIN1 (OR:1.13; 95%CI:1.06–1.21 per copy of the minor allele; p=1.6×10−11) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR:1.18; 95%CI1.07–1.29; p=6.5×10−9). Associations of CLU, PICALM, BIN1 and EXOC3L2 with AD were confirmed in the Spanish sample (p<0.05). However, CLU and PICALM did not improve incident AD prediction beyond age, sex, and APOE (improvement in area under receiver-operating-characteristic curve <0.003). Conclusions Two novel genetic loci for AD are reported

  13. SUSCEPTIBILITY LOCI FOR UMBILICAL HERNIA IN SWINE DETECTED BY GENOME-WIDE ASSOCIATION.

    PubMed

    Liao, X J; Lia, L; Zhang, Z Y; Long, Y; Yang, B; Ruan, G R; Su, Y; Ai, H S; Zhang, W C; Deng, W Y; Xiao, S J; Ren, J; Ding, N S; Huang, L S

    2015-10-01

    Umbilical hernia (UH) is a complex disorder caused by both genetic and environmental factors. UH brings animal welfare problems and severe economic loss to the pig industry. Until now, the genetic basis of UH is poorly understood. The high-density 60K porcine SNP array enables the rapid application of genome-wide association study (GWAS) to identify genetic loci for phenotypic traits at genome wide scale in pigs. The objective of this research was to identify susceptibility loci for swine umbilical hernia using the GWAS approach. We genotyped 478 piglets from 142 families representing three Western commercial breeds with the Illumina PorcineSNP60 BeadChip. Then significant SNPs were detected by GWAS using ROADTRIPS (Robust Association-Detection Test for Related Individuals with Population Substructure) software base on a Bonferroni corrected threshold (P = 1.67E-06) or suggestive threshold (P = 3.34E-05) and false discovery rate (FDR = 0.05). After quality control, 29,924 qualified SNPs and 472 piglets were used for GWAS. Two suggestive loci predisposing to pig UH were identified at 44.25MB on SSC2 (rs81358018, P = 3.34E-06, FDR = 0.049933) and at 45.90MB on SSC17 (rs81479278, P = 3.30E-06, FDR = 0.049933) in Duroc population, respectively. And no SNP was detected to be associated with pig UH at significant level in neither Landrace nor Large White population. Furthermore, we carried out a meta-analysis in the combined pure-breed population containing all the 472 piglets. rs81479278 (P = 1.16E-06, FDR = 0.022475) was identified to associate with pig UH at genome-wide significant level. SRC was characterized as plausible candidate gene for susceptibility to pig UH according to its genomic position and biological functions. To our knowledge, this study gives the first description of GWAS identifying susceptibility loci for umbilical hernia in pigs. Our findings provide deeper insights to the genetic architecture of umbilical hernia in pigs.

  14. Genome-Wide Identification and Transferability of Microsatellite Markers between Palmae Species

    PubMed Central

    Xiao, Yong; Xia, Wei; Ma, Jianwei; Mason, Annaliese S.; Fan, Haikuo; Shi, Peng; Lei, Xintao; Ma, Zilong; Peng, Ming

    2016-01-01

    The Palmae family contains 202 genera and approximately 2800 species. Except for Elaeis guineensis and Phoenix dactylifera, almost no genetic and genomic information is available for Palmae species. Therefore, this is an obstacle to the conservation and genetic assessment of Palmae species, especially those that are currently endangered. The study was performed to develop a large number of microsatellite markers which can be used for genetic analysis in different Palmae species. Based on the assembled genome of E. guineensis and P. dactylifera, a total of 814 383 and 371 629 microsatellites were identified. Among these microsatellites identified in E. guineensis, 734 509 primer pairs could be designed from the flanking sequences of these microsatellites. The majority (618 762) of these designed primer pairs had in silico products in the genome of E. guineensis. These 618 762 primer pairs were subsequently used to in silico amplify the genome of P. dactylifera. A total of 7 265 conserved microsatellites were identified between E. guineensis and P. dactylifera. One hundred and thirty-five primer pairs flanking the conserved SSRs were stochastically selected and validated to have high cross-genera transferability, varying from 16.7 to 93.3% with an average of 73.7%. These genome-wide conserved microsatellite markers will provide a useful tool for genetic assessment and conservation of different Palmae species in the future. PMID:27826307

  15. A genome-wide association study platform built on iPlant cyber-infrastructure

    USDA-ARS?s Scientific Manuscript database

    We demonstrated a flexible Genome-Wide Association (GWA) Study (GWAS) platform built upon the iPlant Collaborative Cyber-infrastructure. The platform supports big data management, sharing, and large scale study of both genotype and phenotype data on clusters. End users can add their own analysis too...

  16. Genome-Wide Analysis of A-to-I RNA Editing.

    PubMed

    Savva, Yiannis A; Laurent, Georges St; Reenan, Robert A

    2016-01-01

    Adenosine (A)-to-inosine (I) RNA editing is a fundamental posttranscriptional modification that ensures the deamination of A-to-I in double-stranded (ds) RNA molecules. Intriguingly, the A-to-I RNA editing system is particularly active in the nervous system of higher eukaryotes, altering a plethora of noncoding and coding sequences. Abnormal RNA editing is highly associated with many neurological phenotypes and neurodevelopmental disorders. However, the molecular mechanisms underlying RNA editing-mediated pathogenesis still remain enigmatic and have attracted increasing attention from researchers. Over the last decade, methods available to perform genome-wide transcriptome analysis, have evolved rapidly. Within the RNA editing field researchers have adopted next-generation sequencing technologies to identify RNA-editing sites within genomes and to elucidate the underlying process. However, technical challenges associated with editing site discovery have hindered efforts to uncover comprehensive editing site datasets, resulting in the general perception that the collections of annotated editing sites represent only a small minority of the total number of sites in a given organism, tissue, or cell type of interest. Additionally to doubts about sensitivity, existing RNA-editing site lists often contain high percentages of false positives, leading to uncertainty about their validity and usefulness in downstream studies. An accurate investigation of A-to-I editing requires properly validated datasets of editing sites with demonstrated and transparent levels of sensitivity and specificity. Here, we describe a high signal-to-noise method for RNA-editing site detection using single-molecule sequencing (SMS). With this method, authentic RNA-editing sites may be differentiated from artifacts. Machine learning approaches provide a procedure to improve upon and experimentally validate sequencing outcomes through use of computationally predicted, iterative feedback loops

  17. Efficiently Identifying Significant Associations in Genome-wide Association Studies

    PubMed Central

    Eskin, Eleazar

    2013-01-01

    Abstract Over the past several years, genome-wide association studies (GWAS) have implicated hundreds of genes in common disease. More recently, the GWAS approach has been utilized to identify regions of the genome that harbor variation affecting gene expression or expression quantitative trait loci (eQTLs). Unlike GWAS applied to clinical traits, where only a handful of phenotypes are analyzed per study, in eQTL studies, tens of thousands of gene expression levels are measured, and the GWAS approach is applied to each gene expression level. This leads to computing billions of statistical tests and requires substantial computational resources, particularly when applying novel statistical methods such as mixed models. We introduce a novel two-stage testing procedure that identifies all of the significant associations more efficiently than testing all the single nucleotide polymorphisms (SNPs). In the first stage, a small number of informative SNPs, or proxies, across the genome are tested. Based on their observed associations, our approach locates the regions that may contain significant SNPs and only tests additional SNPs from those regions. We show through simulations and analysis of real GWAS datasets that the proposed two-stage procedure increases the computational speed by a factor of 10. Additionally, efficient implementation of our software increases the computational speed relative to the state-of-the-art testing approaches by a factor of 75. PMID:24033261

  18. Pernicious plans revealed: Plasmodium falciparum genome wide expression analysis.

    PubMed

    Llinás, Manuel; DeRisi, Joseph L

    2004-08-01

    The asexual intraerythrocytic developmental cycle (IDC) of Plasmodium falciparum is responsible for the majority of the clinical manifestations of malaria in humans. Although malaria has been studied for over a century, the elucidation of the full genome sequence of P. falciparum has now allowed for in-depth studies of gene expression throughout the entire intraerythrocytic stage. As the mainstays of anti-malarial chemotherapy become increasingly ineffective, we need a deeper understanding of fundamental plasmodial bioregulatory mechanisms to successfully subvert them. Recent gene expression studies have begun to examine different aspects of the IDC and are providing key insights into the basic mechanisms of Plasmodium gene regulation and are helping to define gene functions. However, to date, no transcription factor has been fully characterized from Plasmodium and the definitive identification of cis-acting regulatory elements along with their corresponding trans-acting partners is still lacking. The characterization of the transcriptome of P. falciparum is the first major step towards the understanding of the genome wide regulation of gene expression in this parasite. IDC expression data for almost every gene in the P. falciparum genome can now be publicly queried at and. The results of these studies suggest promising leads for identifying novel targets for anti-malarial therapeutics and vaccines in addition to providing a solid foundation for the ongoing elucidation of plasmodial gene expression.

  19. Genome-Wide Association Study of Seed Dormancy and the Genomic Consequences of Improvement Footprints in Rice (Oryza sativa L.)

    PubMed Central

    Lu, Qing; Niu, Xiaojun; Zhang, Mengchen; Wang, Caihong; Xu, Qun; Feng, Yue; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Chen, Xiaoping; Liang, Xuanqiang; Wei, Xinghua

    2018-01-01

    Seed dormancy is an important agronomic trait affecting grain yield and quality because of pre-harvest germination and is influenced by both environmental and genetic factors. However, our knowledge of the factors controlling seed dormancy remains limited. To better reveal the molecular mechanism underlying this trait, a genome-wide association study was conducted in an indica-only population consisting of 453 accessions genotyped using 5,291 SNPs. Nine known and new significant SNPs were identified on eight chromosomes. These lead SNPs explained 34.9% of the phenotypic variation, and four of them were designed as dCAPS markers in the hope of accelerating molecular breeding. Moreover, a total of 212 candidate genes was predicted and eight candidate genes showed plant tissue-specific expression in expression profile data from different public bioinformatics databases. In particular, LOC_Os03g10110, which had a maize homolog involved in embryo development, was identified as a candidate regulator for further biological function investigations. Additionally, a polymorphism information content ratio method was used to screen improvement footprints and 27 selective sweeps were identified, most of which harbored domestication-related genes. Further studies suggested that three significant SNPs were adjacent to the candidate selection signals, supporting the accuracy of our genome-wide association study (GWAS) results. These findings show that genome-wide screening for selective sweeps can be used to identify new improvement-related DNA regions, although the phenotypes are unknown. This study enhances our knowledge of the genetic variation in seed dormancy, and the new dormancy-associated SNPs will provide real benefits in molecular breeding. PMID:29354150

  20. Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays.

    PubMed

    Mak, Angel C Y; Lai, Yvonne Y Y; Lam, Ernest T; Kwok, Tsz-Piu; Leung, Alden K Y; Poon, Annie; Mostovoy, Yulia; Hastie, Alex R; Stedman, William; Anantharaman, Thomas; Andrews, Warren; Zhou, Xiang; Pang, Andy W C; Dai, Heng; Chu, Catherine; Lin, Chin; Wu, Jacob J K; Li, Catherine M L; Li, Jing-Woei; Yim, Aldrin K Y; Chan, Saki; Sibert, Justin; Džakula, Željko; Cao, Han; Yiu, Siu-Ming; Chan, Ting-Fung; Yip, Kevin Y; Xiao, Ming; Kwok, Pui-Yan

    2016-01-01

    Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation. Copyright © 2016 by the Genetics Society of America.

  1. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    ERIC Educational Resources Information Center

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose: Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a "genome-wide association" approach. Method: The…

  2. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway

    USDA-ARS?s Scientific Manuscript database

    Low plasma B-vitamin levels and elevated homocysteine have been associated with cancer, cardiovascular disease, and neurodegenerative disorders. Common variants in FUT2 on chromosome 19q13 were associated with plasma vitamin B12 levels among women in a genome-wide association study (GWAS) in the Nur...

  3. Genome-Wide Polygenic Scores Predict Reading Performance throughout the School Years

    ERIC Educational Resources Information Center

    Selzam, Saskia; Dale, Philip S.; Wagner, Richard K.; DeFries, John C.; Cederlöf, Martin; O'Reilly, Paul F.; Krapohl, Eva; Plomin, Robert

    2017-01-01

    It is now possible to create individual-specific genetic scores, called genome-wide polygenic scores (GPS). We used a GPS for years of education ("EduYears") to predict reading performance assessed at UK National Curriculum Key Stages 1 (age 7), 2 (age 12) and 3 (age 14) and on reading tests administered at ages 7 and 12 in a UK sample…

  4. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.

    PubMed

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn G A; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John R B

    2016-02-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10(-8)), with minor allele frequencies of 1.3-23.9%. Novel signals included variants for progesterone (P=7.68 × 10(-12)), oestradiol (P=1.63 × 10(-8)) and FAI (P=1.50 × 10(-8)). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10(-8)) and LH (P=3.94 × 10(-9)) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10(-14)) and progesterone (P=6.09 × 10(-14)). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.

  5. Genome-Wide Mutagenesis in Borrelia burgdorferi.

    PubMed

    Lin, Tao; Gao, Lihui

    2018-01-01

    population of mutants with different tags, after recovered from different tissues of infected mice and ticks, mutants from output pool and input pool are detected using high-throughput, semi-quantitative Luminex ® FLEXMAP™ or next-generation sequencing (Tn-seq) technologies. Thus far, we have created a high-density, sequence-defined transposon library of over 6600 STM mutants for the efficient genome-wide investigation of genes and gene products required for wild-type pathogenesis, host-pathogen interactions, in vitro growth, in vivo survival, physiology, morphology, chemotaxis, motility, structure, metabolism, gene regulation, plasmid maintenance and replication, etc. The insertion sites of 4480 transposon mutants have been determined. About 800 predicted protein-encoding genes in the genome were disrupted in the STM transposon library. The infectivity and some functions of 800 mutants in 500 genes have been determined. Analysis of these transposon mutants has yielded valuable information regarding the genes and gene products important in the pathogenesis and biology of B. burgdorferi and its tick vectors.

  6. Fluorescence Reporter-Based Genome-Wide RNA Interference Screening to Identify Alternative Splicing Regulators.

    PubMed

    Misra, Ashish; Green, Michael R

    2017-01-01

    Alternative splicing is a regulated process that leads to inclusion or exclusion of particular exons in a pre-mRNA transcript, resulting in multiple protein isoforms being encoded by a single gene. With more than 90 % of human genes known to undergo alternative splicing, it represents a major source for biological diversity inside cells. Although in vitro splicing assays have revealed insights into the mechanisms regulating individual alternative splicing events, our global understanding of alternative splicing regulation is still evolving. In recent years, genome-wide RNA interference (RNAi) screening has transformed biological research by enabling genome-scale loss-of-function screens in cultured cells and model organisms. In addition to resulting in the identification of new cellular pathways and potential drug targets, these screens have also uncovered many previously unknown mechanisms regulating alternative splicing. Here, we describe a method for the identification of alternative splicing regulators using genome-wide RNAi screening, as well as assays for further validation of the identified candidates. With modifications, this method can also be adapted to study the splicing regulation of pre-mRNAs that contain two or more splice isoforms.

  7. Quality control and quality assurance in genotypic data for genome-wide association studies

    PubMed Central

    Laurie, Cathy C.; Doheny, Kimberly F.; Mirel, Daniel B.; Pugh, Elizabeth W.; Bierut, Laura J.; Bhangale, Tushar; Boehm, Frederick; Caporaso, Neil E.; Cornelis, Marilyn C.; Edenberg, Howard J.; Gabriel, Stacy B.; Harris, Emily L.; Hu, Frank B.; Jacobs, Kevin; Kraft, Peter; Landi, Maria Teresa; Lumley, Thomas; Manolio, Teri A.; McHugh, Caitlin; Painter, Ian; Paschall, Justin; Rice, John P.; Rice, Kenneth M.; Zheng, Xiuwen; Weir, Bruce S.

    2011-01-01

    Genome-wide scans of nucleotide variation in human subjects are providing an increasing number of replicated associations with complex disease traits. Most of the variants detected have small effects and, collectively, they account for a small fraction of the total genetic variance. Very large sample sizes are required to identify and validate findings. In this situation, even small sources of systematic or random error can cause spurious results or obscure real effects. The need for careful attention to data quality has been appreciated for some time in this field, and a number of strategies for quality control and quality assurance (QC/QA) have been developed. Here we extend these methods and describe a system of QC/QA for genotypic data in genome-wide association studies. This system includes some new approaches that (1) combine analysis of allelic probe intensities and called genotypes to distinguish gender misidentification from sex chromosome aberrations, (2) detect autosomal chromosome aberrations that may affect genotype calling accuracy, (3) infer DNA sample quality from relatedness and allelic intensities, (4) use duplicate concordance to infer SNP quality, (5) detect genotyping artifacts from dependence of Hardy-Weinberg equilibrium (HWE) test p-values on allelic frequency, and (6) demonstrate sensitivity of principal components analysis (PCA) to SNP selection. The methods are illustrated with examples from the ‘Gene Environment Association Studies’ (GENEVA) program. The results suggest several recommendations for QC/QA in the design and execution of genome-wide association studies. PMID:20718045

  8. A 2cM genome-wide scan of European Holstein cattle affected by classical BSE

    PubMed Central

    2010-01-01

    Background Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Polymorphisms that alter the prion protein of sheep or humans have been associated with variations in transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that non-synonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE disease susceptibility. However, two bovine PRNP insertion/deletion polymorphisms, one within the promoter region and the other in intron 1, have been associated with susceptibility to classical BSE. These associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. To test for associations with BSE susceptibility, we conducted a genome wide scan using a panel of 3,072 single nucleotide polymorphism (SNP) markers on 814 animals representing cases and control Holstein cattle from the United Kingdom BSE epidemic. Results Two sets of BSE affected Holstein cattle were analyzed in this study, one set with known family relationships and the second set of paired cases with controls. The family set comprises half-sibling progeny from six sires. The progeny from four of these sires had previously been scanned with microsatellite markers. The results obtained from the current analysis of the family set yielded both some supporting and new results compared with those obtained in the earlier study. The results revealed 27 SNPs representing 18 chromosomes associated with incidence of BSE disease. These results confirm a region previously reported on chromosome 20, and identify additional regions on chromosomes 2, 14, 16, 21 and 28. This study did not identify a significant association near the PRNP in the family sample set. The only association found in the PRNP region was in the case

  9. Haplotype-Based Genome-Wide Prediction Models Exploit Local Epistatic Interactions Among Markers

    PubMed Central

    Jiang, Yong; Schmidt, Renate H.; Reif, Jochen C.

    2018-01-01

    Genome-wide prediction approaches represent versatile tools for the analysis and prediction of complex traits. Mostly they rely on marker-based information, but scenarios have been reported in which models capitalizing on closely-linked markers that were combined into haplotypes outperformed marker-based models. Detailed comparisons were undertaken to reveal under which circumstances haplotype-based genome-wide prediction models are superior to marker-based models. Specifically, it was of interest to analyze whether and how haplotype-based models may take local epistatic effects between markers into account. Assuming that populations consisted of fully homozygous individuals, a marker-based model in which local epistatic effects inside haplotype blocks were exploited (LEGBLUP) was linearly transformable into a haplotype-based model (HGBLUP). This theoretical derivation formally revealed that haplotype-based genome-wide prediction models capitalize on local epistatic effects among markers. Simulation studies corroborated this finding. Due to its computational efficiency the HGBLUP model promises to be an interesting tool for studies in which ultra-high-density SNP data sets are studied. Applying the HGBLUP model to empirical data sets revealed higher prediction accuracies than for marker-based models for both traits studied using a mouse panel. In contrast, only a small subset of the traits analyzed in crop populations showed such a benefit. Cases in which higher prediction accuracies are observed for HGBLUP than for marker-based models are expected to be of immediate relevance for breeders, due to the tight linkage a beneficial haplotype will be preserved for many generations. In this respect the inheritance of local epistatic effects very much resembles the one of additive effects. PMID:29549092

  10. Genome-wide survey and expression analysis of F-box genes in chickpea.

    PubMed

    Gupta, Shefali; Garg, Vanika; Kant, Chandra; Bhatia, Sabhyata

    2015-02-13

    The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.

  11. Haplotype-Based Genome-Wide Prediction Models Exploit Local Epistatic Interactions Among Markers.

    PubMed

    Jiang, Yong; Schmidt, Renate H; Reif, Jochen C

    2018-05-04

    Genome-wide prediction approaches represent versatile tools for the analysis and prediction of complex traits. Mostly they rely on marker-based information, but scenarios have been reported in which models capitalizing on closely-linked markers that were combined into haplotypes outperformed marker-based models. Detailed comparisons were undertaken to reveal under which circumstances haplotype-based genome-wide prediction models are superior to marker-based models. Specifically, it was of interest to analyze whether and how haplotype-based models may take local epistatic effects between markers into account. Assuming that populations consisted of fully homozygous individuals, a marker-based model in which local epistatic effects inside haplotype blocks were exploited (LEGBLUP) was linearly transformable into a haplotype-based model (HGBLUP). This theoretical derivation formally revealed that haplotype-based genome-wide prediction models capitalize on local epistatic effects among markers. Simulation studies corroborated this finding. Due to its computational efficiency the HGBLUP model promises to be an interesting tool for studies in which ultra-high-density SNP data sets are studied. Applying the HGBLUP model to empirical data sets revealed higher prediction accuracies than for marker-based models for both traits studied using a mouse panel. In contrast, only a small subset of the traits analyzed in crop populations showed such a benefit. Cases in which higher prediction accuracies are observed for HGBLUP than for marker-based models are expected to be of immediate relevance for breeders, due to the tight linkage a beneficial haplotype will be preserved for many generations. In this respect the inheritance of local epistatic effects very much resembles the one of additive effects. Copyright © 2018 Jiang et al.

  12. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks.

    PubMed

    Yan, Winston X; Mirzazadeh, Reza; Garnerone, Silvano; Scott, David; Schneider, Martin W; Kallas, Tomasz; Custodio, Joaquin; Wernersson, Erik; Li, Yinqing; Gao, Linyi; Federova, Yana; Zetsche, Bernd; Zhang, Feng; Bienko, Magda; Crosetto, Nicola

    2017-05-12

    Precisely measuring the location and frequency of DNA double-strand breaks (DSBs) along the genome is instrumental to understanding genomic fragility, but current methods are limited in versatility, sensitivity or practicality. Here we present Breaks Labeling In Situ and Sequencing (BLISS), featuring the following: (1) direct labelling of DSBs in fixed cells or tissue sections on a solid surface; (2) low-input requirement by linear amplification of tagged DSBs by in vitro transcription; (3) quantification of DSBs through unique molecular identifiers; and (4) easy scalability and multiplexing. We apply BLISS to profile endogenous and exogenous DSBs in low-input samples of cancer cells, embryonic stem cells and liver tissue. We demonstrate the sensitivity of BLISS by assessing the genome-wide off-target activity of two CRISPR-associated RNA-guided endonucleases, Cas9 and Cpf1, observing that Cpf1 has higher specificity than Cas9. Our results establish BLISS as a versatile, sensitive and efficient method for genome-wide DSB mapping in many applications.

  13. A genome-wide association study of anorexia nervosa.

    PubMed

    Boraska, V; Franklin, C S; Floyd, J A B; Thornton, L M; Huckins, L M; Southam, L; Rayner, N W; Tachmazidou, I; Klump, K L; Treasure, J; Lewis, C M; Schmidt, U; Tozzi, F; Kiezebrink, K; Hebebrand, J; Gorwood, P; Adan, R A H; Kas, M J H; Favaro, A; Santonastaso, P; Fernández-Aranda, F; Gratacos, M; Rybakowski, F; Dmitrzak-Weglarz, M; Kaprio, J; Keski-Rahkonen, A; Raevuori, A; Van Furth, E F; Slof-Op 't Landt, M C T; Hudson, J I; Reichborn-Kjennerud, T; Knudsen, G P S; Monteleone, P; Kaplan, A S; Karwautz, A; Hakonarson, H; Berrettini, W H; Guo, Y; Li, D; Schork, N J; Komaki, G; Ando, T; Inoko, H; Esko, T; Fischer, K; Männik, K; Metspalu, A; Baker, J H; Cone, R D; Dackor, J; DeSocio, J E; Hilliard, C E; O'Toole, J K; Pantel, J; Szatkiewicz, J P; Taico, C; Zerwas, S; Trace, S E; Davis, O S P; Helder, S; Bühren, K; Burghardt, R; de Zwaan, M; Egberts, K; Ehrlich, S; Herpertz-Dahlmann, B; Herzog, W; Imgart, H; Scherag, A; Scherag, S; Zipfel, S; Boni, C; Ramoz, N; Versini, A; Brandys, M K; Danner, U N; de Kovel, C; Hendriks, J; Koeleman, B P C; Ophoff, R A; Strengman, E; van Elburg, A A; Bruson, A; Clementi, M; Degortes, D; Forzan, M; Tenconi, E; Docampo, E; Escaramís, G; Jiménez-Murcia, S; Lissowska, J; Rajewski, A; Szeszenia-Dabrowska, N; Slopien, A; Hauser, J; Karhunen, L; Meulenbelt, I; Slagboom, P E; Tortorella, A; Maj, M; Dedoussis, G; Dikeos, D; Gonidakis, F; Tziouvas, K; Tsitsika, A; Papezova, H; Slachtova, L; Martaskova, D; Kennedy, J L; Levitan, R D; Yilmaz, Z; Huemer, J; Koubek, D; Merl, E; Wagner, G; Lichtenstein, P; Breen, G; Cohen-Woods, S; Farmer, A; McGuffin, P; Cichon, S; Giegling, I; Herms, S; Rujescu, D; Schreiber, S; Wichmann, H-E; Dina, C; Sladek, R; Gambaro, G; Soranzo, N; Julia, A; Marsal, S; Rabionet, R; Gaborieau, V; Dick, D M; Palotie, A; Ripatti, S; Widén, E; Andreassen, O A; Espeseth, T; Lundervold, A; Reinvang, I; Steen, V M; Le Hellard, S; Mattingsdal, M; Ntalla, I; Bencko, V; Foretova, L; Janout, V; Navratilova, M; Gallinger, S; Pinto, D; Scherer, S W; Aschauer, H; Carlberg, L; Schosser, A; Alfredsson, L; Ding, B; Klareskog, L; Padyukov, L; Courtet, P; Guillaume, S; Jaussent, I; Finan, C; Kalsi, G; Roberts, M; Logan, D W; Peltonen, L; Ritchie, G R S; Barrett, J C; Estivill, X; Hinney, A; Sullivan, P F; Collier, D A; Zeggini, E; Bulik, C M

    2014-10-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.

  14. A genome-wide association study of anorexia nervosa

    PubMed Central

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Landt, Margarita CT Slof-Op t; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O'Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2015-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10-7) in SOX2OT and rs17030795 (P=5.84×10-6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10-6) between CUL3 and FAM124B and rs1886797 (P=8.05×10-6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4×10-6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:24514567

  15. Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder.

    PubMed

    de Moor, Marleen H M; van den Berg, Stéphanie M; Verweij, Karin J H; Krueger, Robert F; Luciano, Michelle; Arias Vasquez, Alejandro; Matteson, Lindsay K; Derringer, Jaime; Esko, Tõnu; Amin, Najaf; Gordon, Scott D; Hansell, Narelle K; Hart, Amy B; Seppälä, Ilkka; Huffman, Jennifer E; Konte, Bettina; Lahti, Jari; Lee, Minyoung; Miller, Mike; Nutile, Teresa; Tanaka, Toshiko; Teumer, Alexander; Viktorin, Alexander; Wedenoja, Juho; Abecasis, Goncalo R; Adkins, Daniel E; Agrawal, Arpana; Allik, Jüri; Appel, Katja; Bigdeli, Timothy B; Busonero, Fabio; Campbell, Harry; Costa, Paul T; Davey Smith, George; Davies, Gail; de Wit, Harriet; Ding, Jun; Engelhardt, Barbara E; Eriksson, Johan G; Fedko, Iryna O; Ferrucci, Luigi; Franke, Barbara; Giegling, Ina; Grucza, Richard; Hartmann, Annette M; Heath, Andrew C; Heinonen, Kati; Henders, Anjali K; Homuth, Georg; Hottenga, Jouke-Jan; Iacono, William G; Janzing, Joost; Jokela, Markus; Karlsson, Robert; Kemp, John P; Kirkpatrick, Matthew G; Latvala, Antti; Lehtimäki, Terho; Liewald, David C; Madden, Pamela A F; Magri, Chiara; Magnusson, Patrik K E; Marten, Jonathan; Maschio, Andrea; Medland, Sarah E; Mihailov, Evelin; Milaneschi, Yuri; Montgomery, Grant W; Nauck, Matthias; Ouwens, Klaasjan G; Palotie, Aarno; Pettersson, Erik; Polasek, Ozren; Qian, Yong; Pulkki-Råback, Laura; Raitakari, Olli T; Realo, Anu; Rose, Richard J; Ruggiero, Daniela; Schmidt, Carsten O; Slutske, Wendy S; Sorice, Rossella; Starr, John M; St Pourcain, Beate; Sutin, Angelina R; Timpson, Nicholas J; Trochet, Holly; Vermeulen, Sita; Vuoksimaa, Eero; Widen, Elisabeth; Wouda, Jasper; Wright, Margaret J; Zgaga, Lina; Porteous, David; Minelli, Alessandra; Palmer, Abraham A; Rujescu, Dan; Ciullo, Marina; Hayward, Caroline; Rudan, Igor; Metspalu, Andres; Kaprio, Jaakko; Deary, Ian J; Räikkönen, Katri; Wilson, James F; Keltikangas-Järvinen, Liisa; Bierut, Laura J; Hettema, John M; Grabe, Hans J; van Duijn, Cornelia M; Evans, David M; Schlessinger, David; Pedersen, Nancy L; Terracciano, Antonio; McGue, Matt; Penninx, Brenda W J H; Martin, Nicholas G; Boomsma, Dorret I

    2015-07-01

    Neuroticism is a pervasive risk factor for psychiatric conditions. It genetically overlaps with major depressive disorder (MDD) and is therefore an important phenotype for psychiatric genetics. The Genetics of Personality Consortium has created a resource for genome-wide association analyses of personality traits in more than 63,000 participants (including MDD cases). To identify genetic variants associated with neuroticism by performing a meta-analysis of genome-wide association results based on 1000 Genomes imputation; to evaluate whether common genetic variants as assessed by single-nucleotide polymorphisms (SNPs) explain variation in neuroticism by estimating SNP-based heritability; and to examine whether SNPs that predict neuroticism also predict MDD. Genome-wide association meta-analysis of 30 cohorts with genome-wide genotype, personality, and MDD data from the Genetics of Personality Consortium. The study included 63,661 participants from 29 discovery cohorts and 9786 participants from a replication cohort. Participants came from Europe, the United States, or Australia. Analyses were conducted between 2012 and 2014. Neuroticism scores harmonized across all 29 discovery cohorts by item response theory analysis, and clinical MDD case-control status in 2 of the cohorts. A genome-wide significant SNP was found on 3p14 in MAGI1 (rs35855737; P = 9.26 × 10-9 in the discovery meta-analysis). This association was not replicated (P = .32), but the SNP was still genome-wide significant in the meta-analysis of all 30 cohorts (P = 2.38 × 10-8). Common genetic variants explain 15% of the variance in neuroticism. Polygenic scores based on the meta-analysis of neuroticism in 27 cohorts significantly predicted neuroticism (1.09 × 10-12 < P < .05) and MDD (4.02 × 10-9 < P < .05) in the 2 other cohorts. This study identifies a novel locus for neuroticism. The variant is located in a known gene that has been associated with

  16. Genome-Wide Convergence during Evolution of Mangroves from Woody Plants.

    PubMed

    Xu, Shaohua; He, Ziwen; Guo, Zixiao; Zhang, Zhang; Wyckoff, Gerald J; Greenberg, Anthony; Wu, Chung-I; Shi, Suhua

    2017-04-01

    When living organisms independently invade a new environment, the evolution of similar phenotypic traits is often observed. An interesting but contentious issue is whether the underlying molecular biology also converges in the new habitat. Independent invasions of tropical intertidal zones by woody plants, collectively referred to as mangrove trees, represent some dramatic examples. The high salinity, hypoxia, and other stressors in the new habitat might have affected both genomic features and protein structures. Here, we developed a new method for detecting convergence at conservative Sites (CCS) and applied it to the genomic sequences of mangroves. In simulations, the CCS method drastically reduces random convergence at rapidly evolving sites as well as falsely inferred convergence caused by the misinferences of the ancestral character. In mangrove genomes, we estimated ∼400 genes that have experienced convergence over the background level of convergence in the nonmangrove relatives. The convergent genes are enriched in pathways related to stress response and embryo development, which could be important for mangroves' adaptation to the new habitat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Genome-wide analyses of four major histone modifications in Arabidopsis hybrids at the germinating seed stage.

    PubMed

    Zhu, Anyu; Greaves, Ian K; Dennis, Elizabeth S; Peacock, W James

    2017-02-07

    Hybrid vigour (heterosis) has been used for decades in cropping agriculture, especially in the production of maize and rice, because hybrid varieties exceed their parents in plant biomass and seed yield. The molecular basis of hybrid vigour is not fully understood. Previous studies have suggested that epigenetic systems could play a role in heterosis. In this project, we investigated genome-wide patterns of four histone modifications in Arabidopsis hybrids in germinating seeds. We found that although hybrids have similar histone modification patterns to the parents in most regions of the genome, they have altered patterns at specific loci. A small subset of genes show changes in histone modifications in the hybrids that correlate with changes in gene expression. Our results also show that genome-wide patterns of histone modifications in geminating seeds parallel those at later developmental stages of seedlings. Ler/C24 hybrids showed similar genome-wide patterns of histone modifications as the parents at an early germination stage. However, a small subset of genes, such as FLC, showed correlated changes in histone modification and in gene expression in the hybrids. The altered patterns of histone modifications for those genes in hybrids could be related to some heterotic traits in Arabidopsis, such as flowering time, and could play a role in hybrid vigour establishment.

  18. Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in Vibrio cholerae and Vibrio fischeri.

    PubMed

    Dillon, Marcus M; Sung, Way; Sebra, Robert; Lynch, Michael; Cooper, Vaughn S

    2017-01-01

    The vast diversity in nucleotide composition and architecture among bacterial genomes may be partly explained by inherent biases in the rates and spectra of spontaneous mutations. Bacterial genomes with multiple chromosomes are relatively unusual but some are relevant to human health, none more so than the causative agent of cholera, Vibrio cholerae Here, we present the genome-wide mutation spectra in wild-type and mismatch repair (MMR) defective backgrounds of two Vibrio species, the low-%GC squid symbiont V. fischeri and the pathogen V. cholerae, collected under conditions that greatly minimize the efficiency of natural selection. In apparent contrast to their high diversity in nature, both wild-type V. fischeri and V. cholerae have among the lowest rates for base-substitution mutations (bpsms) and insertion-deletion mutations (indels) that have been measured, below 10 - 3 /genome/generation. Vibrio fischeri and V. cholerae have distinct mutation spectra, but both are AT-biased and produce a surprising number of multi-nucleotide indels. Furthermore, the loss of a functional MMR system caused the mutation spectra of these species to converge, implying that the MMR system itself contributes to species-specific mutation patterns. Bpsm and indel rates varied among genome regions, but do not explain the more rapid evolutionary rates of genes on chromosome 2, which likely result from weaker purifying selection. More generally, the very low mutation rates of Vibrio species correlate inversely with their immense population sizes and suggest that selection may not only have maximized replication fidelity but also optimized other polygenic traits relative to the constraints of genetic drift. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Exploring Relationships between Host Genome and Microbiome: New Insights from Genome-Wide Association Studies

    PubMed Central

    Abdul-Aziz, Muslihudeen A.; Cooper, Alan; Weyrich, Laura S.

    2016-01-01

    As our understanding of the human microbiome expands, impacts on health and disease continue to be revealed. Alterations in the microbiome can result in dysbiosis, which has now been linked to subsequent autoimmune and metabolic diseases, highlighting the need to identify factors that shape the microbiome. Research has identified that the composition and functions of the human microbiome can be influenced by diet, age, sex, and environment. More recently, studies have explored how human genetic variation may also influence the microbiome. Here, we review several recent analytical advances in this new research area, including those that use genome-wide association studies to examine host genome–microbiome interactions, while controlling for the influence of other factors. We find that current research is limited by small sample sizes, lack of cohort replication, and insufficient confirmatory mechanistic studies. In addition, we discuss the importance of understanding long-term interactions between the host genome and microbiome, as well as the potential impacts of disrupting this relationship, and explore new research avenues that may provide information about the co-evolutionary history of humans and their microorganisms. PMID:27785127

  20. Genome-wide association studies for the identification of biomarkers in metabolic diseases.

    PubMed

    Pattin, Kristine A; Moore, Jason H

    2010-01-01

    The field of genetics as it relates to metabolic disorders such as obesity and type II diabetes is complicated, and along with the medical research community, great strides are being taken to begin to understand the biological and genetic underpinnings of these diseases, with the hope of improving therapeutic, diagnostic and preventive strategies. Although research on metabolic disorders has been continuing for decades, the completion of the Human Genome Project in 2003 and the International HapMap Project in 2005 gave rise to an abundance of research tools, such as genome-wide genotyping, which allow researchers to conduct genome-wide association studies (GWAS) for detecting genetic variants that confer increased or decreased susceptibility to such complex diseases. In this review, the complex nature of metabolic disorders is discussed, specifically obesity and type II diabetes, as well as the limitations of the GWAS as applied to these disorders. While acknowledging limitations of GWAS, it is hoped to provide an insight about how GWAS can be adapted and advantageous in the clinical setting, enhancing prevention, diagnosis and treatment of these diseases. To be able to use the GWAS in a clinical setting is a complex challenge, yet it is hoped that in the future this tool will ultimately allow the development of pharmaceutical options that are capable of targeting the cause of metabolic disorders, not just the symptoms themselves.

  1. Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data

    PubMed Central

    Petersen, Jessica L.; Mickelson, James R.; Cothran, E. Gus; Andersson, Lisa S.; Axelsson, Jeanette; Bailey, Ernie; Bannasch, Danika; Binns, Matthew M.; Borges, Alexandre S.; Brama, Pieter; da Câmara Machado, Artur; Distl, Ottmar; Felicetti, Michela; Fox-Clipsham, Laura; Graves, Kathryn T.; Guérin, Gérard; Haase, Bianca; Hasegawa, Telhisa; Hemmann, Karin; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Lohi, Hannes; Lopes, Maria Susana; McGivney, Beatrice A.; Mikko, Sofia; Orr, Nicholas; Penedo, M. Cecilia T; Piercy, Richard J.; Raekallio, Marja; Rieder, Stefan; Røed, Knut H.; Silvestrelli, Maurizio; Swinburne, June; Tozaki, Teruaki; Vaudin, Mark; M. Wade, Claire; McCue, Molly E.

    2013-01-01

    Horses were domesticated from the Eurasian steppes 5,000–6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection. PMID:23383025

  2. Genome-Wide Prediction of the Performance of Three-Way Hybrids in Barley.

    PubMed

    Li, Zuo; Philipp, Norman; Spiller, Monika; Stiewe, Gunther; Reif, Jochen C; Zhao, Yusheng

    2017-03-01

    Predicting the grain yield performance of three-way hybrids is challenging. Three-way crosses are relevant for hybrid breeding in barley ( L.) and maize ( L.) adapted to East Africa. The main goal of our study was to implement and evaluate genome-wide prediction approaches of the performance of three-way hybrids using data of single-cross hybrids for a scenario in which parental lines of the three-way hybrids originate from three genetically distinct subpopulations. We extended the ridge regression best linear unbiased prediction (RRBLUP) and devised a genomic selection model allowing for subpopulation-specific marker effects (GSA-RRBLUP: general and subpopulation-specific additive RRBLUP). Using an empirical barley data set, we showed that applying GSA-RRBLUP tripled the prediction ability of three-way hybrids from 0.095 to 0.308 compared with RRBLUP, modeling one additive effect for all three subpopulations. The experimental findings were further substantiated with computer simulations. Our results emphasize the potential of GSA-RRBLUP to improve genome-wide hybrid prediction of three-way hybrids for scenarios of genetically diverse parental populations. Because of the advantages of the GSA-RRBLUP model in dealing with hybrids from different parental populations, it may also be a promising approach to boost the prediction ability for hybrid breeding programs based on genetically diverse heterotic groups. Copyright © 2017 Crop Science Society of America.

  3. A genome-wide resource of cell cycle and cell shape genes of fission yeast

    PubMed Central

    Hayles, Jacqueline; Wood, Valerie; Jeffery, Linda; Hoe, Kwang-Lae; Kim, Dong-Uk; Park, Han-Oh; Salas-Pino, Silvia; Heichinger, Christian; Nurse, Paul

    2013-01-01

    To identify near complete sets of genes required for the cell cycle and cell shape, we have visually screened a genome-wide gene deletion library of 4843 fission yeast deletion mutants (95.7% of total protein encoding genes) for their effects on these processes. A total of 513 genes have been identified as being required for cell cycle progression, 276 of which have not been previously described as cell cycle genes. Deletions of a further 333 genes lead to specific alterations in cell shape and another 524 genes result in generally misshapen cells. Here, we provide the first eukaryotic resource of gene deletions, which describes a near genome-wide set of genes required for the cell cycle and cell shape. PMID:23697806

  4. Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer.

    PubMed

    McInnes, Tyler; Zou, Donghui; Rao, Dasari S; Munro, Francesca M; Phillips, Vicky L; McCall, John L; Black, Michael A; Reeve, Anthony E; Guilford, Parry J

    2017-03-28

    Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). Our genome-wide characterization of DNA

  5. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax

    PubMed Central

    de Oliveira, Thais C.; Rodrigues, Priscila T.; Menezes, Maria José; Gonçalves-Lopes, Raquel M.; Bastos, Melissa S.; Lima, Nathália F.; Barbosa, Susana; Gerber, Alexandra L.; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R.

    2017-01-01

    Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between

  6. Integrated data analysis for genome-wide research.

    PubMed

    Steinfath, Matthias; Repsilber, Dirk; Scholz, Matthias; Walther, Dirk; Selbig, Joachim

    2007-01-01

    Integrated data analysis is introduced as the intermediate level of a systems biology approach to analyse different 'omics' datasets, i.e., genome-wide measurements of transcripts, protein levels or protein-protein interactions, and metabolite levels aiming at generating a coherent understanding of biological function. In this chapter we focus on different methods of correlation analyses ranging from simple pairwise correlation to kernel canonical correlation which were recently applied in molecular biology. Several examples are presented to illustrate their application. The input data for this analysis frequently originate from different experimental platforms. Therefore, preprocessing steps such as data normalisation and missing value estimation are inherent to this approach. The corresponding procedures, potential pitfalls and biases, and available software solutions are reviewed. The multiplicity of observations obtained in omics-profiling experiments necessitates the application of multiple testing correction techniques.

  7. Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association.

    PubMed

    Debibakas, S; Rocher, S; Garsmeur, O; Toubi, L; Roques, D; D'Hont, A; Hoarau, J-Y; Daugrois, J H

    2014-08-01

    Using GWAS approaches, we detected independent resistant markers in sugarcane towards a vectored virus disease. Based on comparative genomics, several candidate genes potentially involved in virus/aphid/plant interactions were pinpointed. Yellow leaf of sugarcane is an emerging viral disease whose causal agent is a Polerovirus, the Sugarcane yellow leaf virus (SCYLV) transmitted by aphids. To identify quantitative trait loci controlling resistance to yellow leaf which are of direct relevance for breeding, we undertook a genome-wide association study (GWAS) on a sugarcane cultivar panel (n = 189) representative of current breeding germplasm. This panel was fingerprinted with 3,949 polymorphic markers (DArT and AFLP). The panel was phenotyped for SCYLV infection in leaves and stalks in two trials for two crop cycles, under natural disease pressure prevalent in Guadeloupe. Mixed linear models including co-factors representing population structure fixed effects and pairwise kinship random effects provided an efficient control of the risk of inflated type-I error at a genome-wide level. Six independent markers were significantly detected in association with SCYLV resistance phenotype. These markers explained individually between 9 and 14 % of the disease variation of the cultivar panel. Their frequency in the panel was relatively low (8-20 %). Among them, two markers were detected repeatedly across the GWAS exercises based on the different disease resistance parameters. These two markers could be blasted on Sorghum bicolor genome and candidate genes potentially involved in plant-aphid or plant-virus interactions were localized in the vicinity of sorghum homologs of sugarcane markers. Our results illustrate the potential of GWAS approaches to prospect among sugarcane germplasm for accessions likely bearing resistance alleles of significant effect useful in breeding programs.

  8. A Novel Test for Gene-Ancestry Interactions in Genome-Wide Association Data

    PubMed Central

    Dunlop, Malcolm G.; Houlston, Richard S.; Tomlinson, Ian P.; Holmes, Chris C.

    2012-01-01

    Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into “ancestry groups” and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions. PMID:23236349

  9. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.

    PubMed

    Nikpay, Majid; Goel, Anuj; Won, Hong-Hee; Hall, Leanne M; Willenborg, Christina; Kanoni, Stavroula; Saleheen, Danish; Kyriakou, Theodosios; Nelson, Christopher P; Hopewell, Jemma C; Webb, Thomas R; Zeng, Lingyao; Dehghan, Abbas; Alver, Maris; Armasu, Sebastian M; Auro, Kirsi; Bjonnes, Andrew; Chasman, Daniel I; Chen, Shufeng; Ford, Ian; Franceschini, Nora; Gieger, Christian; Grace, Christopher; Gustafsson, Stefan; Huang, Jie; Hwang, Shih-Jen; Kim, Yun Kyoung; Kleber, Marcus E; Lau, King Wai; Lu, Xiangfeng; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Mihailov, Evelin; Morrison, Alanna C; Pervjakova, Natalia; Qu, Liming; Rose, Lynda M; Salfati, Elias; Saxena, Richa; Scholz, Markus; Smith, Albert V; Tikkanen, Emmi; Uitterlinden, Andre; Yang, Xueli; Zhang, Weihua; Zhao, Wei; de Andrade, Mariza; de Vries, Paul S; van Zuydam, Natalie R; Anand, Sonia S; Bertram, Lars; Beutner, Frank; Dedoussis, George; Frossard, Philippe; Gauguier, Dominique; Goodall, Alison H; Gottesman, Omri; Haber, Marc; Han, Bok-Ghee; Huang, Jianfeng; Jalilzadeh, Shapour; Kessler, Thorsten; König, Inke R; Lannfelt, Lars; Lieb, Wolfgang; Lind, Lars; Lindgren, Cecilia M; Lokki, Marja-Liisa; Magnusson, Patrik K; Mallick, Nadeem H; Mehra, Narinder; Meitinger, Thomas; Memon, Fazal-Ur-Rehman; Morris, Andrew P; Nieminen, Markku S; Pedersen, Nancy L; Peters, Annette; Rallidis, Loukianos S; Rasheed, Asif; Samuel, Maria; Shah, Svati H; Sinisalo, Juha; Stirrups, Kathleen E; Trompet, Stella; Wang, Laiyuan; Zaman, Khan S; Ardissino, Diego; Boerwinkle, Eric; Borecki, Ingrid B; Bottinger, Erwin P; Buring, Julie E; Chambers, John C; Collins, Rory; Cupples, L Adrienne; Danesh, John; Demuth, Ilja; Elosua, Roberto; Epstein, Stephen E; Esko, Tõnu; Feitosa, Mary F; Franco, Oscar H; Franzosi, Maria Grazia; Granger, Christopher B; Gu, Dongfeng; Gudnason, Vilmundur; Hall, Alistair S; Hamsten, Anders; Harris, Tamara B; Hazen, Stanley L; Hengstenberg, Christian; Hofman, Albert; Ingelsson, Erik; Iribarren, Carlos; Jukema, J Wouter; Karhunen, Pekka J; Kim, Bong-Jo; Kooner, Jaspal S; Kullo, Iftikhar J; Lehtimäki, Terho; Loos, Ruth J F; Melander, Olle; Metspalu, Andres; März, Winfried; Palmer, Colin N; Perola, Markus; Quertermous, Thomas; Rader, Daniel J; Ridker, Paul M; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Sanghera, Dharambir K; Schwartz, Stephen M; Seedorf, Udo; Stewart, Alexandre F; Stott, David J; Thiery, Joachim; Zalloua, Pierre A; O'Donnell, Christopher J; Reilly, Muredach P; Assimes, Themistocles L; Thompson, John R; Erdmann, Jeanette; Clarke, Robert; Watkins, Hugh; Kathiresan, Sekar; McPherson, Ruth; Deloukas, Panos; Schunkert, Heribert; Samani, Nilesh J; Farrall, Martin

    2015-10-01

    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of ∼185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.

  10. Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    PubMed Central

    Langat, Pinky; Bowden, Thomas A.; Edwards, Stephanie; Gall, Astrid; Rambaut, Andrew; Daniels, Rodney S.; Russell, Colin A.; Pybus, Oliver G.; McCauley, John

    2017-01-01

    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally. PMID:29284042

  11. Genome-wide analysis of alternative splicing during human heart development

    NASA Astrophysics Data System (ADS)

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-10-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development.

  12. Genome-wide Association Study of a Quantitative Disordered Gambling Trait

    PubMed Central

    Lind, Penelope A.; Zhu, Gu; Montgomery, Grant W; Madden, Pamela A.F.; Heath, Andrew C.; Martin, Nicholas G.; Slutske, Wendy S.

    2012-01-01

    Disordered gambling is a moderately heritable trait, but the underlying genetic basis is largely unknown. We performed a genome-wide association study (GWAS) for disordered gambling using a quantitative factor score in 1,312 twins from 894 Australian families. Association was conducted for 2,381,914 single nucleotide polymorphisms (SNPs) using the family-based association test in Merlin followed by gene and pathway enrichment analyses. Although no SNP reached genome-wide significance, six achieved P-values < 1 × 10−5 with variants in three genes (MT1X, ATXN1 and VLDLR) implicated in disordered gambling. Secondary case-control analyses found two SNPs on chromosome 9 (rs1106076 and rs12305135 near VLDLR) and rs10812227 near FZD10 on chromosome 12 to be significantly associated with lifetime DSM-IV pathological gambling and SOGS classified probable pathological gambling status. Furthermore, several addiction-related pathways were enriched for SNPs associated with disordered gambling. Finally, gene-based analysis of 24 candidate genes for dopamine agonist induced gambling in individuals with Parkinson’s disease suggested an enrichment of SNPs associated with disordered gambling. We report the first GWAS of disordered gambling. While further replication is required, the identification of susceptibility loci and biological pathways will be important in characterizing the biological mechanisms that underpin disordered gambling. PMID:22780124

  13. Genome-wide association mapping of crown rust resistance in oat elite germplasm

    USDA-ARS?s Scientific Manuscript database

    Oat crown rust, caused by Puccinia coronata f. sp. avenae, is a major constraint to oat production in many parts of the world. In this first comprehensive multi-environment genome-wide association map of oat crown rust, we used 2,972 SNPs genotyped on 631 oat lines for association mapping of quantit...

  14. Genome-wide association studies in pharmacogenetics research debate

    PubMed Central

    Bailey, Kent R; Cheng, Cheng

    2016-01-01

    Will genome-wide association studies (GWAS) ‘work’ for pharmacogenetics research? This question was the topic of a staged debate, with pro and con sides, aimed to bring out the strengths and weaknesses of GWAS for pharmacogenetics studies. After a full day of seminars at the Fifth Statistical Analysis Workshop of the Pharmacogenetics Research Network, the lively debate was held – appropriately – at Goonies Comedy Club in Rochester (MN, USA). The pro side emphasized that the many GWAS successes for identifying genetic variants associated with disease risk show that it works; that the current genotyping platforms are efficient, with good imputation methods to fill in missing data; that its global assessment is always a success even if no significant associations are detected; and that genetic effects are likely to be large because humans have not evolved in a drug-therapy environment. By contrast, the con side emphasized that we have limited knowledge of the complexity of the genome; limited clinical phenotypes compromise studies; the likely multifactorial nature of drug response clouding the small genetic effects; and limitations of sample size and replication studies in pharmacogenetic studies. Lively and insightful discussions emphasized further research efforts that might benefit GWAS in pharmacogenetics. PMID:20235786

  15. Stroke Genetics Network (SiGN) Study: Design and rationale for a genome-wide association study of ischemic stroke subtypes

    PubMed Central

    Meschia, James F.; Arnett, Donna K.; Ay, Hakan; Brown, Robert D.; Benavente, Oscar; Cole, John W.; de Bakker, Paul I.W.; Dichgans, Martin; Doheny, Kimberly F.; Fornage, Myriam; Grewal, Raji; Gwinn, Katrina; Jern, Christina; Conde, Jordi Jimenez; Johnson, Julie A.; Jood, Katarina; Laurie, Cathy C.; Lee, Jin-Moo; Lindgren, Arne; Markus, Hugh S.; McArdle, Patrick F.; McClure, Leslie A.; Mitchell, Braxton D.; Schmidt, Reinhold; Rexrode, Kathryn M.; Rich, Stephen S.; Rosand, Jonathan; Rothwell, Peter M.; Rundek, Tatjana; Sacco, Ralph L.; Sharma, Pankaj; Shuldiner, Alan R.; Slowik, Agnieszka; Wassertheil-Smoller, Sylvia; Sudlow, Cathie; Thijs, Vincent; Woo, Daniel; Worrall, Bradford B.; Wu, Ona; Kittner, Steven J.

    2014-01-01

    Background and Purpose Meta-analyses of extant genome-wide data illustrate the need to focus on subtypes of ischemic stroke for gene discovery. The NINDS Stroke Genetics Network (SiGN) contributes substantially to meta-analyses that focus on specific subtypes of stroke. Methods The NINDS Stroke Genetics Network (SiGN) includes ischemic stroke cases from 24 Genetic Research Centers (GRCs), 13 from the US and 11 from Europe. Investigators harmonize ischemic stroke phenotyping using the web-based Causative Classification of Stroke (CCS) system, with data entered by trained and certified adjudicators at participating GRCs. Through the Center for Inherited Diseases Research (CIDR), SiGN plans to genotype 10,296 carefully phenotyped stroke cases using genome-wide SNP arrays, and add to these another 4,253 previously genotyped cases for a total of 14,549 cases. To maximize power for subtype analyses, the study allocates genotyping resources almost exclusively to cases. Publicly available studies provide most of the control genotypes. CIDR-generated genotypes and corresponding phenotypic data will be shared with the scientific community through dbGaP, and brain MRI studies will be centrally archived. Conclusions The SiGN consortium, with its emphasis on careful and standardized phenotyping of ischemic stroke and stroke subtypes, provides an unprecedented opportunity to uncover genetic determinants of ischemic stroke. PMID:24021684

  16. Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo

    PubMed Central

    Ritchey, Laura E.; Su, Zhao; Tang, Yin; Tack, David C.

    2017-01-01

    Abstract RNA serves many functions in biology such as splicing, temperature sensing, and innate immunity. These functions are often determined by the structure of RNA. There is thus a pressing need to understand RNA structure and how it changes during diverse biological processes both in vivo and genome-wide. Here, we present Structure-seq2, which provides nucleotide-resolution RNA structural information in vivo and genome-wide. This optimized version of our original Structure-seq method increases sensitivity by at least 4-fold and improves data quality by minimizing formation of a deleterious by-product, reducing ligation bias, and improving read coverage. We also present a variation of Structure-seq2 in which a biotinylated nucleotide is incorporated during reverse transcription, which greatly facilitates the protocol by eliminating two PAGE purification steps. We benchmark Structure-seq2 on both mRNA and rRNA structure in rice (Oryza sativa). We demonstrate that Structure-seq2 can lead to new biological insights. Our Structure-seq2 datasets uncover hidden breaks in chloroplast rRNA and identify a previously unreported N1-methyladenosine (m1A) in a nuclear-encoded Oryza sativa rRNA. Overall, Structure-seq2 is a rapid, sensitive, and unbiased method to probe RNA in vivo and genome-wide that facilitates new insights into RNA biology. PMID:28637286

  17. Toward a Genome-Wide Systems Biology Analysis of Host-Pathogen Interactions in Group A Streptococcus

    PubMed Central

    Musser, James M.; DeLeo, Frank R.

    2005-01-01

    Genome-wide analysis of microbial pathogens and molecular pathogenesis processes has become an area of considerable activity in the last 5 years. These studies have been made possible by several advances, including completion of the human genome sequence, publication of genome sequences for many human pathogens, development of microarray technology and high-throughput proteomics, and maturation of bioinformatics. Despite these advances, relatively little effort has been expended in the bacterial pathogenesis arena to develop and use integrated research platforms in a systems biology approach to enhance our understanding of disease processes. This review discusses progress made in exploiting an integrated genome-wide research platform to gain new knowledge about how the human bacterial pathogen group A Streptococcus causes disease. Results of these studies have provided many new avenues for basic pathogenesis research and translational research focused on development of an efficacious human vaccine and novel therapeutics. One goal in summarizing this line of study is to bring exciting new findings to the attention of the investigative pathology community. In addition, we hope the review will stimulate investigators to consider using analogous approaches for analysis of the molecular pathogenesis of other microbes. PMID:16314461

  18. Genome-wide signatures of convergent evolution in echolocating mammals

    PubMed Central

    Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.

    2013-01-01

    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325

  19. A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries).

    PubMed

    Ren, Xue; Yang, Guang-Li; Peng, Wei-Feng; Zhao, Yong-Xin; Zhang, Min; Chen, Ze-Hui; Wu, Fu-An; Kantanen, Juha; Shen, Min; Li, Meng-Hua

    2016-02-17

    Horns are a cranial appendage found exclusively in Bovidae, and play important roles in accessing resources and mates. In sheep (Ovies aries), horns vary from polled to six-horned, and human have been selecting polled animals in farming and breeding. Here, we conducted a genome-wide association study on 24 two-horned versus 22 four-horned phenotypes in a native Chinese breed of Sishui Fur sheep. Together with linkage disequilibrium (LD) analyses and haplotype-based association tests, we identified a genomic region comprising 132.0-133.1 Mb on chromosome 2 that contained the top 10 SNPs (including 4 significant SNPs) and 5 most significant haplotypes associated with the polycerate phenotype. In humans and mice, this genomic region contains the HOXD gene cluster and adjacent functional genes EVX2 and KIAA1715, which have a close association with the formation of limbs and genital buds. Our results provide new insights into the genetic basis underlying variable numbers of horns and represent a new resource for use in sheep genetics and breeding.

  20. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    PubMed Central

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  1. Genome-wide association analysis identifies six new loci associated with forced vital capacity.

    PubMed

    Loth, Daan W; Soler Artigas, María; Gharib, Sina A; Wain, Louise V; Franceschini, Nora; Koch, Beate; Pottinger, Tess D; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P; James, Alan L; Huffman, Jennifer E; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K; Fall, Tove; Viñuela, Ana; Launer, Lenore J; Loehr, Laura R; Fornage, Myriam; Li, Guo; Wilk, Jemma B; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B; North, Kari E; Rudnicka, Alicja R; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F; Hastie, Nicholas D; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A; Pietiläinen, Kirsi H; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M; Wojczynski, Mary; Pouta, Anneli; Johansson, Asa; Wild, Sarah H; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G; Eiriksdottir, Gudny; Morrison, Alanna C; Rotter, Jerome I; Gao, Wei; Postma, Dirkje S; White, Wendy B; Rich, Stephen S; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J; Psaty, Bruce M; Lohman, Kurt; Burchard, Esteban G; Uitterlinden, André G; Garcia, Melissa; Joubert, Bonnie R; McArdle, Wendy L; Musk, A Bill; Hansel, Nadia; Heckbert, Susan R; Zgaga, Lina; van Meurs, Joyce B J; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah L; Zhao, Jing Hua; Rantanen, Taina; O'Connor, George T; Ripatti, Samuli; Scott, Rodney J; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C; Starr, John M; Wijmenga, Cisca; Minster, Ryan L; Lederer, David J; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P; Gläser, Sven; Hammond, Christopher J; Burkart, Kristin M; Beilby, John; Kritchevsky, Stephen B; Gudnason, Vilmundur; Hancock, Dana B; Williams, O Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F; Wjst, Matthias; Kim, Woo Jin; Porteous, David J; Scotland, Generation; Smith, Blair H; Viljanen, Anne; Heliövaara, Markku; Attia, John R; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J; Boezen, H Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F; Lind, Lars; Stricker, Bruno H; Teumer, Alexander; Spector, Timothy D; Melén, Erik; Peters, Marjolein J; Lange, Leslie A; Barr, R Graham; Bracke, Ken R; Verhamme, Fien M; Sung, Joohon; Hiemstra, Pieter S; Cassano, Patricia A; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P; Brusselle, Guy G; Tobin, Martin D; London, Stephanie J

    2014-07-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.

  2. A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes

    PubMed Central

    Sharma, Sunita; Zhou, Xiaobo; Thibault, Derek M.; Himes, Blanca E.; Liu, Andy; Szefler, Stanley J.; Strunk, Robert; Castro, Mario; Hansel, Nadia N.; Diette, Gregory B.; Vonakis, Becky M.; Adkinson, N. Franklin; Avila, Lydiana; Soto-Quiros, Manuel; Barraza-Villareal, Albino; Lemanske, Robert F.; Solway, Julian; Krishnan, Jerry; White, Steven R.; Cheadle, Chris; Berger, Alan E.; Fan, Jinshui; Boorgula, Meher Preethi; Nicolae, Dan; Gilliland, Frank; Barnes, Kathleen; London, Stephanie J.; Martinez, Fernando; Ober, Carole; Celedón, Juan C.; Carey, Vincent J.; Weiss, Scott T.; Raby, Benjamin A.

    2014-01-01

    Background Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. Objective We evaluated 6,706 cis-acting expression-associated variants (eSNP) identified through a genome-wide eQTL survey of CD4+ lymphocytes for association with asthma. Methods eSNP were tested for association with asthma in 359 asthma cases and 846 controls from the Childhood Asthma Management Program, with verification using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE)-qPCR and Chromatin-Immunoprecipitation (ChIP)-PCR in lung derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. Results Cis-acting eSNP demonstrated associations with asthma in both cohorts. We confirmed the previously-reported association of ORMDL3/GSDMB variants with asthma (combined p=2.9 × 108). Reproducible associations were also observed for eSNP in three additional genes: FADS2 (p=0.002), NAGA (p=0.0002), and F13A1 (p=0.0001). We subsequently demonstrated that FADS2 mRNA is increased in CD4+ lymphocytes in asthmatics, and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. Conclusions Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes, and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma. PMID:24934276

  3. A Genome-Wide Association Study for the Incidence of Persistent Bovine Viral Diarrhea Virus Infection in Cattle.

    USDA-ARS?s Scientific Manuscript database

    Bovine Viral Diarrhea Virus (BVDV) is a diverse group of viruses causing disease in ruminants. The objective was to determine genomic regions harboring single nucleotide polymorphisms (SNP) associated with presence or absence of persistent BVDV infections. A genome wide association approach based on...

  4. Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway

    PubMed Central

    2012-01-01

    Background Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated. Results Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols. Conclusions Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens. PMID:23006893

  5. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Genetic Structure of the Han Chinese Population Revealed by Genome-wide SNP Variation

    PubMed Central

    Chen, Jieming; Zheng, Houfeng; Bei, Jin-Xin; Sun, Liangdan; Jia, Wei-hua; Li, Tao; Zhang, Furen; Seielstad, Mark; Zeng, Yi-Xin; Zhang, Xuejun; Liu, Jianjun

    2009-01-01

    Population stratification is a potential problem for genome-wide association studies (GWAS), confounding results and causing spurious associations. Hence, understanding how allele frequencies vary across geographic regions or among subpopulations is an important prelude to analyzing GWAS data. Using over 350,000 genome-wide autosomal SNPs in over 6000 Han Chinese samples from ten provinces of China, our study revealed a one-dimensional “north-south” population structure and a close correlation between geography and the genetic structure of the Han Chinese. The north-south population structure is consistent with the historical migration pattern of the Han Chinese population. Metropolitan cities in China were, however, more diffused “outliers,” probably because of the impact of modern migration of peoples. At a very local scale within the Guangdong province, we observed evidence of population structure among dialect groups, probably on account of endogamy within these dialects. Via simulation, we show that empirical levels of population structure observed across modern China can cause spurious associations in GWAS if not properly handled. In the Han Chinese, geographic matching is a good proxy for genetic matching, particularly in validation and candidate-gene studies in which population stratification cannot be directly accessed and accounted for because of the lack of genome-wide data, with the exception of the metropolitan cities, where geographical location is no longer a good indicator of ancestral origin. Our findings are important for designing GWAS in the Chinese population, an activity that is expected to intensify greatly in the near future. PMID:19944401

  7. Genome-Wide Association Study of Personality Traits in the Long Life Family Study

    PubMed Central

    Bae, Harold T.; Sebastiani, Paola; Sun, Jenny X.; Andersen, Stacy L.; Daw, E. Warwick; Terracciano, Antonio; Ferrucci, Luigi; Perls, Thomas T.

    2013-01-01

    Personality traits have been shown to be associated with longevity and healthy aging. In order to discover novel genetic modifiers associated with personality traits as related with longevity, we performed a genome-wide association study (GWAS) on personality factors assessed by NEO-five-factor inventory in individuals enrolled in the Long Life Family Study (LLFS), a study of 583 families (N up to 4595) with clustering for longevity in the United States and Denmark. Three SNPs, in almost perfect LD, associated with agreeableness reached genome-wide significance (p < 10−8) and replicated in an additional sample of 1279 LLFS subjects, although one (rs9650241) failed to replicate and the other two were not available in two independent replication cohorts, the Baltimore Longitudinal Study of Aging and the New England Centenarian Study. Based on 10,000,000 permutations, the empirical p-value of 2 × 10−7 was observed for the genome-wide significant SNPs. Seventeen SNPs that reached marginal statistical significance in the two previous GWASs (p-value <10−4 and 10−5), were also marginally significantly associated in this study (p-value <0.05), although none of the associations passed the Bonferroni correction. In addition, we tested age-by-SNP interactions and found some significant associations. Since scores of personality traits in LLFS subjects change in the oldest ages, and genetic factors outweigh environmental factors to achieve extreme ages, these age-by-SNP interactions could be a proxy for complex gene–gene interactions affecting personality traits and longevity. PMID:23658558

  8. Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus)

    PubMed Central

    2010-01-01

    Background In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) × Holstein (Bos taurus) cross. Results Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. Conclusions The experimental F2 population derived from Gyr × Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle. PMID:20433753

  9. Range-wide parallel climate-associated genomic clines in Atlantic salmon

    PubMed Central

    Stanley, Ryan R. E.; Wringe, Brendan F.; Guijarro-Sabaniel, Javier; Bourret, Vincent; Bernatchez, Louis; Bentzen, Paul; Beiko, Robert G.; Gilbey, John; Clément, Marie; Bradbury, Ian R.

    2017-01-01

    Clinal variation across replicated environmental gradients can reveal evidence of local adaptation, providing insight into the demographic and evolutionary processes that shape intraspecific diversity. Using 1773 genome-wide single nucleotide polymorphisms we evaluated latitudinal variation in allele frequency for 134 populations of North American and European Atlantic salmon (Salmo salar). We detected 84 (4.74%) and 195 (11%) loci showing clinal patterns in North America and Europe, respectively, with 12 clinal loci in common between continents. Clinal single nucleotide polymorphisms were evenly distributed across the salmon genome and logistic regression revealed significant associations with latitude and seasonal temperatures, particularly average spring temperature in both continents. Loci displaying parallel clines were associated with several metabolic and immune functions, suggesting a potential basis for climate-associated adaptive differentiation. These climate-based clines collectively suggest evidence of large-scale environmental associated differences on either side of the North Atlantic. Our results support patterns of parallel evolution on both sides of the North Atlantic, with evidence of both similar and divergent underlying genetic architecture. The identification of climate-associated genomic clines illuminates the role of selection and demographic processes on intraspecific diversity in this species and provides a context in which to evaluate the impacts of climate change. PMID:29291123

  10. NordicDB: a Nordic pool and portal for genome-wide control data.

    PubMed

    Leu, Monica; Humphreys, Keith; Surakka, Ida; Rehnberg, Emil; Muilu, Juha; Rosenström, Päivi; Almgren, Peter; Jääskeläinen, Juha; Lifton, Richard P; Kyvik, Kirsten Ohm; Kaprio, Jaakko; Pedersen, Nancy L; Palotie, Aarno; Hall, Per; Grönberg, Henrik; Groop, Leif; Peltonen, Leena; Palmgren, Juni; Ripatti, Samuli

    2010-12-01

    A cost-efficient way to increase power in a genetic association study is to pool controls from different sources. The genotyping effort can then be directed to large case series. The Nordic Control database, NordicDB, has been set up as a unique resource in the Nordic area and the data are available for authorized users through the web portal (http://www.nordicdb.org). The current version of NordicDB pools together high-density genome-wide SNP information from ∼5000 controls originating from Finnish, Swedish and Danish studies and shows country-specific allele frequencies for SNP markers. The genetic homogeneity of the samples was investigated using multidimensional scaling (MDS) analysis and pairwise allele frequency differences between the studies. The plot of the first two MDS components showed excellent resemblance to the geographical placement of the samples, with a clear NW-SE gradient. We advise researchers to assess the impact of population structure when incorporating NordicDB controls in association studies. This harmonized Nordic database presents a unique genome-wide resource for future genetic association studies in the Nordic countries.

  11. Genome-wide association study identifies a locus associated with rotator cuff injury

    PubMed Central

    Roos, Thomas R.; Roos, Andrew K.; Avins, Andrew L.; Ahmed, Marwa A.; Kleimeyer, John P.; Fredericson, Michael; Ioannidis, John P. A.; Dragoo, Jason L.

    2017-01-01

    Rotator cuff tears are common, especially in the fifth and sixth decades of life, but can also occur in the competitive athlete. Genetic differences may contribute to overall injury risk. Identifying genetic loci associated with rotator cuff injury could shed light on the etiology of this injury. We performed a genome-wide association screen using publically available data from the Research Program in Genes, Environment and Health including 8,357 cases of rotator cuff injury and 94,622 controls. We found rs71404070 to show a genome-wide significant association with rotator cuff injury with p = 2.31x10-8 and an odds ratio of 1.25 per allele. This SNP is located next to cadherin8, which encodes a protein involved in cell adhesion. We also attempted to validate previous gene association studies that had reported a total of 18 SNPs showing a significant association with rotator cuff injury. However, none of the 18 SNPs were validated in our dataset. rs71404070 may be informative in explaining why some individuals are more susceptible to rotator cuff injury than others. PMID:29228018

  12. NordicDB: a Nordic pool and portal for genome-wide control data

    PubMed Central

    Leu, Monica; Humphreys, Keith; Surakka, Ida; Rehnberg, Emil; Muilu, Juha; Rosenström, Päivi; Almgren, Peter; Jääskeläinen, Juha; Lifton, Richard P; Kyvik, Kirsten Ohm; Kaprio, Jaakko; Pedersen, Nancy L; Palotie, Aarno; Hall, Per; Grönberg, Henrik; Groop, Leif; Peltonen, Leena; Palmgren, Juni; Ripatti, Samuli

    2010-01-01

    A cost-efficient way to increase power in a genetic association study is to pool controls from different sources. The genotyping effort can then be directed to large case series. The Nordic Control database, NordicDB, has been set up as a unique resource in the Nordic area and the data are available for authorized users through the web portal (http://www.nordicdb.org). The current version of NordicDB pools together high-density genome-wide SNP information from ∼5000 controls originating from Finnish, Swedish and Danish studies and shows country-specific allele frequencies for SNP markers. The genetic homogeneity of the samples was investigated using multidimensional scaling (MDS) analysis and pairwise allele frequency differences between the studies. The plot of the first two MDS components showed excellent resemblance to the geographical placement of the samples, with a clear NW–SE gradient. We advise researchers to assess the impact of population structure when incorporating NordicDB controls in association studies. This harmonized Nordic database presents a unique genome-wide resource for future genetic association studies in the Nordic countries. PMID:20664631

  13. A genome-wide association study of seed protein and oil content in soybean.

    PubMed

    Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B

    2014-01-02

    Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise

  14. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology.

    PubMed

    Levy, Daniel; Neuhausen, Susan L; Hunt, Steven C; Kimura, Masayuki; Hwang, Shih-Jen; Chen, Wei; Bis, Joshua C; Fitzpatrick, Annette L; Smith, Erin; Johnson, Andrew D; Gardner, Jeffrey P; Srinivasan, Sathanur R; Schork, Nicholas; Rotter, Jerome I; Herbig, Utz; Psaty, Bruce M; Sastrasinh, Malinee; Murray, Sarah S; Vasan, Ramachandran S; Province, Michael A; Glazer, Nicole L; Lu, Xiaobin; Cao, Xiaojian; Kronmal, Richard; Mangino, Massimo; Soranzo, Nicole; Spector, Tim D; Berenson, Gerald S; Aviv, Abraham

    2010-05-18

    Telomeres are engaged in a host of cellular functions, and their length is regulated by multiple genes. Telomere shortening, in the course of somatic cell replication, ultimately leads to replicative senescence. In humans, rare mutations in genes that regulate telomere length have been identified in monogenic diseases such as dyskeratosis congenita and idiopathic pulmonary fibrosis, which are associated with shortened leukocyte telomere length (LTL) and increased risk for aplastic anemia. Shortened LTL is observed in a host of aging-related complex genetic diseases and is associated with diminished survival in the elderly. We report results of a genome-wide association study of LTL in a consortium of four observational studies (n = 3,417 participants with LTL and genome-wide genotyping). SNPs in the regions of the oligonucleotide/oligosaccharide-binding folds containing one gene (OBFC1; rs4387287; P = 3.9 x 10(-9)) and chemokine (C-X-C motif) receptor 4 gene (CXCR4; rs4452212; P = 2.9 x 10(-8)) were associated with LTL at a genome-wide significance level (P < 5 x 10(-8)). We attempted replication of the top SNPs at these loci through de novo genotyping of 1,893 additional individuals and in silico lookup in another observational study (n = 2,876), and we confirmed the association findings for OBFC1 but not CXCR4. In addition, we confirmed the telomerase RNA component (TERC) as a gene associated with LTL (P = 1.1 x 10(-5)). The identification of OBFC1 through genome-wide association as a locus for interindividual variation in LTL in the general population advances the understanding of telomere biology in humans and may provide insights into aging-related disorders linked to altered LTL dynamics.

  15. Genome-wide minor histocompatibility matching as related to the risk of graft-versus-host disease.

    PubMed

    Martin, Paul J; Levine, David M; Storer, Barry E; Warren, Edus H; Zheng, Xiuwen; Nelson, Sarah C; Smith, Anajane G; Mortensen, Bo K; Hansen, John A

    2017-02-09

    The risk of acute graft-versus-host disease (GVHD) is higher after allogeneic hematopoietic cell transplantation (HCT) from unrelated donors as compared with related donors. This difference has been explained by increased recipient mismatching for major histocompatibility antigens or minor histocompatibility antigens. In the current study, we used genome-wide arrays to enumerate single nucleotide polymorphisms (SNPs) that produce graft-versus-host (GVH) amino acid coding differences between recipients and donors. We then tested the hypothesis that higher degrees of genome-wide recipient GVH mismatching correlate with higher risks of GVHD after allogeneic HCT. In HLA-genotypically matched sibling recipients, the average recipient mismatching of coding SNPs was 9.35%. Each 1% increase in genome-wide recipient mismatching was associated with an estimated 20% increase in the hazard of grades III-IV GVHD (hazard ratio [HR], 1.20; 95% confidence interval [CI], 1.05-1.37; P = .007) and an estimated 22% increase in the hazard of stage 2-4 acute gut GVHD (HR, 1.22; 95% CI, 1.02-1.45; P = .03). In HLA-A, B, C, DRB1, DQA1, DQB1, DPA1, DPB1-phenotypically matched unrelated recipients, the average recipient mismatching of coding SNPs was 17.3%. The estimated risks of GVHD-related outcomes in HLA-phenotypically matched unrelated recipients were low, relative to the large difference in genome-wide mismatching between the 2 groups. In contrast, the risks of GVHD-related outcomes were higher in HLA-DP GVH-mismatched unrelated recipients than in HLA-matched sibling recipients. Taken together, these results suggest that the increased GVHD risk after unrelated HCT is predominantly an effect of HLA-mismatching. © 2017 by The American Society of Hematology.

  16. Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension.

    PubMed

    Azam, Afifah Binti; Azizan, Elena Aisha Binti

    2018-01-01

    Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.

  17. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie

    2014-06-18

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealedmore » substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously observed in natural populations.« less

  18. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie

    2014-05-12

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealedmore » substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ecotype model? of diversification, but not previously observed in natural populations.« less

  19. Software engineering the mixed model for genome-wide association studies on large samples

    USDA-ARS?s Scientific Manuscript database

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample siz...

  20. Genome-wide association study for carcass traits in a composite beef cattle breed

    USDA-ARS?s Scientific Manuscript database

    Improvement of carcass traits is highly emphasized in beef cattle production in order to meet consumer demands. Discovering and understanding genes and genetic variants that control these traits is of paramount importance. In this study, different genome wide association approaches (ssGWAS, Bayes A...