Sample records for background geothermal gradient

  1. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  2. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells

  3. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    USGS Publications Warehouse

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  4. Compensated geothermal gradient: new map of old data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, M.W.

    1986-05-01

    Bottom-hole temperature measurement is one of the oldest forms of downhole information acquired by the oil industry. Old and new geothermal maps that are based on these measurements have invariably been drawn with an assumed constant or average ground surface temperature over the mapped areas. However, near ground-surface equilibrium temperature is a variable rather than a constant over any region; therefore, old and current geothermal gradient mapping methods give a false impression of the true thermal level of subsurface strata, and may lead to erroneous results of temperature-based calculations, such as the TTI. In this paper, a geothermal mapping methodmore » is presented in which extrapolated surface temperature is coupled with the corresponding geothermal gradient over the mapped area. The method was tested on areas in the Middle East and Africa. Results indicate that it is especially effective in delineating loci of vertical geothermal heat flux carried upwards by ascending subsurface fluids; such areas are preferential sites for hydrocarbon entrapment, especially in young sedimentary basins where migration is still in progress.« less

  5. The geothermal gradient map of Central Tunisia: Comparison with structural, gravimetric and petroleum data

    NASA Astrophysics Data System (ADS)

    Dhia, Hamed Ben

    1987-10-01

    Five hundred and fifty temperature values, initially measured as either bottom-hole temperatures (BHT) or drill-stem tests (DST), from 98 selected petroleum exploration wells form the basis of a geothermal gradient map of central Tunisia. A "global-statistical" method was employed to correct the BHT measurements, using the DST as references. The geothermal gradient ranges from 23° to 49°C/km. Comparison of the geothermal gradient with structural, gravimetric and petroleum data indicates that: (1) the general trend of the geothermal gradient curves reflects the main structural directions of the region, (2) zones of low and high geothermal gradient are correlated with zones of negative and positive Bouguer anomalies and (3) the five most important oil fields of central Tunisia are located near the geothermal gradient curve of 40° C/km. Such associations could have practical importance in petroleum exploration, but their significance must first be established through further investigation and additional data.

  6. Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results

    USGS Publications Warehouse

    Goff, S.J.; Goff, F.; Janik, C.J.

    1992-01-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.

  7. SW New Mexico BHT geothermal gradient calculations

    DOE Data Explorer

    Shari Kelley

    2015-07-24

    This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.

  8. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire

    2018-04-01

    Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.

  9. Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013

    USGS Publications Warehouse

    Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland

    2014-01-01

    Maximum groundwater temperatures at the bottom of the logs ranged from 11.2 to 15.4 degrees Celsius. Geothermal gradients were generally higher than those typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 4 of the 10 wells studied but only obscured the part of the geothermal gradient signal where groundwater actually flowed into, out of, or through the well. Temperature gradients varied by mapped bedrock type but can also vary by localized differences in mineralogy or rock type within the wells.

  10. Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico

    NASA Astrophysics Data System (ADS)

    Pfeiffer, K.; Ge, S.

    2017-12-01

    Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.

  11. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    USGS Publications Warehouse

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.

  12. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less

  13. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Blackwell; K. W. Wisian; M. C. Richards

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships betweenmore » structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.« less

  14. Prokaryotic communities differ along a geothermal soil photic gradient.

    PubMed

    Meadow, James F; Zabinski, Catherine A

    2013-01-01

    Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.

  15. Present heat flow and paleo-geothermal regime in the Canadian Arctic margin: analysis of industrial thermal data and coalification gradients

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Embry, Ashton F.

    1998-06-01

    Calculations of the present geothermal gradient and terrestrial heat flow were made on 156 deep wells of the Canadian Arctic Archipelago. Corrected bottom hole temperature (BHT) data and drill stem test (DST) temperatures were used to determine the thermal gradients for sites for which the quality of data was sufficient. Thermal gradients evaluated for depths below the base of permafrost for the onshore wells and below sea bottom for the offshore wells were combined with the estimates of effective thermal conductivity to approximate heat flow for these sites. The present geothermal gradient is in the 15-50 mK/m range (mean = 31 ± 7 mK/m). Present heat flow is mainly in the 35-90 mW/m 2 range (mean = 53 ± 12 mW/m 2). Maps of the present geothermal gradient and present heat flow have been constructed for the basin. The analysis of vitrinite reflectance profiles and the calculation of logarithmic coalification gradients for 101 boreholes in the Sverdrup Basin showed large variations related in many cases to regional variations of present terrestrial heat flow. Paleo-geothermal gradients estimated from these data are mostly in the range of 15-50 mK/m (mean = 28 ± 9 mK/m) and paleo-heat flow is in the 40-90 mW/m 2 range (mean = 57 ± 18 mW/m 2) related to the time of maximum burial in the Early Tertiary. Mean values of the present heat flow and paleo-heat flow for the Sverdrup Basin are almost identical considering the uncertainties of the methods used (53 ± 12 versus 57 ± 18 mW/m 2, respectively). Present geothermal gradients and paleo-geothermal gradients are also close when means are compared (31 ± 7 versus 28 ± 9 mK/m respectively). A zone of high present heat flow and a paleo-heat flow zone coincide in places with the northeastern-southwestern incipient rift landward of the Arctic margin first described by Balkwill and Fox (1982). Correlation between present heat flow and paleo-heat flow for the time of maximum burial in the earliest Tertiary suggests that

  16. Correlation of Aerogravity and BHT Data to Develop a Geothermal Gradient Map of the Northern Western Desert of Egypt using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek

    2015-06-01

    The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.

  17. Soil Microbial Community Structure across a Thermal Gradient following a Geothermal Heating Event

    PubMed Central

    Norris, Tracy B.; Wraith, Jon M.; Castenholz, Richard W.; McDermott, Timothy R.

    2002-01-01

    In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65°C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbed soils were visually apparent by the occurrence of dead or dying lodgepole pine trees. Changes in soil microbial diversity across the temperature gradient were qualitatively assessed based on 16S rRNA sequence variation as detected by denaturing gradient gel electrophoresis (DGGE) using both ribosomal DNA (rDNA) and rRNA as PCR templates and primers specific for the Bacteria or Archaea domain. The impact of the major heating disturbance was apparent in that DGGE profiles from heated soils appeared less complex than those from the unaffected soils. Phylogenetic analysis of a bacterial 16S rDNA PCR clone library from a recently heated soil showed that a majority of the clones belonged to the Acidobacterium (51%) and Planctomyces (18%) divisions. Agar plate counts of soil suspensions cultured on dilute yeast extract and R2A agar media incubated at 25 or 50°C revealed that thermophile populations were two to three orders of magnitude greater in the recently heated soil. A soil microcosm laboratory experiment simulated the geothermal heating event. As determined by both RNA- and DNA-based PCR coupled with DGGE, changes in community structure (marked change in the DGGE profile) of soils incubated at 50°C occurred within 1 week and appeared to stabilize after 3 weeks. The results of our molecular and culture data suggest that thermophiles or thermotolerant species are randomly distributed in this area within Yellowstone National Park and that localized thermal activity selects for them. PMID:12450855

  18. Soil microbial community structure across a thermal gradient following a geothermal heating event.

    PubMed

    Norris, Tracy B; Wraith, Jon M; Castenholz, Richard W; McDermott, Timothy R

    2002-12-01

    In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65 degrees C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbed soils were visually apparent by the occurrence of dead or dying lodgepole pine trees. Changes in soil microbial diversity across the temperature gradient were qualitatively assessed based on 16S rRNA sequence variation as detected by denaturing gradient gel electrophoresis (DGGE) using both ribosomal DNA (rDNA) and rRNA as PCR templates and primers specific for the Bacteria or Archaea domain. The impact of the major heating disturbance was apparent in that DGGE profiles from heated soils appeared less complex than those from the unaffected soils. Phylogenetic analysis of a bacterial 16S rDNA PCR clone library from a recently heated soil showed that a majority of the clones belonged to the Acidobacterium (51%) and Planctomyces (18%) divisions. Agar plate counts of soil suspensions cultured on dilute yeast extract and R2A agar media incubated at 25 or 50 degrees C revealed that thermophile populations were two to three orders of magnitude greater in the recently heated soil. A soil microcosm laboratory experiment simulated the geothermal heating event. As determined by both RNA- and DNA-based PCR coupled with DGGE, changes in community structure (marked change in the DGGE profile) of soils incubated at 50 degrees C occurred within 1 week and appeared to stabilize after 3 weeks. The results of our molecular and culture data suggest that thermophiles or thermotolerant species are randomly distributed in this area within Yellowstone National Park and that localized thermal activity selects for them.

  19. Analysis of gravity data beneath Endut geothermal prospect using horizontal gradient and Euler deconvolution

    NASA Astrophysics Data System (ADS)

    Supriyanto, Noor, T.; Suhanto, E.

    2017-07-01

    The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.

  20. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  1. The role of the geothermal gradient in the emplacement and replenishment of ground ice on Mars

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1993-01-01

    Knowledge of the mechanisms by which ground ice is emplaced, removed, and potentially replenished, are critical to understanding the climatic and hydrologic behavior of water on Mars, as well as the morphologic evolution of its surface. Because of the strong temperature dependence of the saturated vapor pressure of H2O, the atmospheric emplacement or replenishment of ground ice is prohibited below the depth at which crustal temperatures begin to monotonically increase due to geothermal heating. In contrast, the emplacement and replenishment of ground ice from reservoirs of H2O residing deep within the crust can occur by at least three different thermally-driven processes, involving all three phases of water. In this regard, Clifford has discussed how the presence of a geothermal gradient as small as 15 K/km can give rise to a corresponding vapor pressure gradient sufficient to drive the vertical transport of 1 km of water from a reservoir of ground water at depth to the base of the cryosphere every 10(exp 6) - 10(exp 7) years. This abstract expands on this earlier treatment by considering the influence of thermal gradients on the transport of H2O at temperatures below the freezing point.

  2. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  3. Geothermal energy for greenhouses

    Treesearch

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  4. Thermal Investigation in the Cappadocia Region, Central Anatolia-Turkey, Analyzing Curie Point Depth, Geothermal Gradient, and Heat-Flow Maps from the Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Bilim, Funda; Kosaroglu, Sinan; Aydemir, Attila; Buyuksarac, Aydin

    2017-12-01

    In this study, curie point depth (CPD), heat flow, geothermal gradient, and radiogenic heat production maps of the Cappadocian region in central Anatolia are presented to reveal the thermal structure from the aeromagnetic data. The large, circular pattern in these maps matches with previously determined shallow (2 km in average) depression. Estimated CPDs in this depression filled with loose volcano-clastics and ignimbrite sheets of continental Neogene units vary from 7 to 12 km, while the geothermal gradient increases from 50 to 68 °C/km. Heat flows were calculated using two different conductivity coefficients of 2.3 and 2.7 Wm-1 K-1. The radiogenic heat production was also obtained between 0.45 and 0.70 μW m-3 in this area. Heat-flow maps were compared with the previous, regional heat-flow map of Turkey and significant differences were observed. In contrast to linear heat-flow increment through the northeast in the previous map in the literature, produced maps in this study include a large, caldera-like circular depression between Nevsehir, Aksaray, Nigde, and Yesilhisar cities indicating high geothermal gradient and higher heat-flow values. In addition, active deformation is evident with young magmatism in the Neogene and Quaternary times and a large volcanic cover on the surface. Boundaries of volcanic eruption centers and buried large intrusions are surrounded with the maxspots of the horizontal gradients of magnetic anomalies. Analytic signal (AS) map pointing-out exact locations of causative bodies is also presented in this study. Circular region in the combined map of AS and maxspots apparently indicates a possible caldera.

  5. Temperature gradients in a portion of Michigan: a review of the usefulness of data from the AAPG geothermal survey of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaught, T.L.

    1980-08-01

    Temperature gradient data derived from drill holes in an east-west zone through the center of the southern peninsula of Michigan are analyzed. The purpose of this work is to investigate possible problems in utilizing the American Association of Petroleum Geologists data base. Michigan was chosen because a review of that State's geothermal potential shows inconsistencies between gradients from shallow wells and nearby deeper wells and because the geology of the State is relativey simple. The structure and stratigraphy are discussed because an understanding of Michigan basin geology makes it easier to predict the influence of lithology on the basin's geothermalmore » gradients. Explanations for elevated gradients are reviewed. (MHR)« less

  6. Geothermal Data Collection and Interpretation in the State of Alabama: Early Results from the ARRA Geothermal Energy Initiative

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Osborne, T. E.; McIntyre, M. R.; Pashin, J. C.

    2011-12-01

    The Geological Survey of Alabama (GSA) is expanding its efforts to collect, develop, maintain, and analyze statewide geothermal data and to make this information widely and easily accessible to the public through the National Geothermal Data System. The online availability of this data will aid in the effective development of geothermal energy applications and reduce the risks associated with the initial stages of geothermal project development. To this end, the GSA is participating in a collaborative project that the Arizona Geological Survey is coordinating in cooperation with the Association of American State Geologists and with the support of the U.S. Department of Energy as part of the American Reinvestment and Recovery Act. Wells drilled for the exploration and production of hydrocarbons are the primary sources of geothermal data in Alabama. To date, more than 1,200 wells in coalbed methane (CBM) fields in the Black Warrior Basin (BWB) have been examined, in addition to over 500 conventional wells in the basin. Pottsville Formation (Pennsylvanian) bottom-hole temperatures (BHTs) range from less than 80°F to more than 140°F in wells reaching total depth between 1,000 and 6,000 feet (ft). Temperature and depth correlate with a coefficient of determination (r2) of 0.72, reflecting significant variation of the modern geothermal gradient. Mapping and statistical analysis confirm that geothermal gradient in the CBM fairway is typically between 6 and 12°F/1,000 ft. BHTs in the conventional wells penetrating the BWB show even greater variation, with temperature and depth correlating with an r2 of only 0.27. This variability owes to numerous factors, including stratigraphy, lithology, thermal conductivity, and geothermal gradient. Indeed, these wells reach total depth between 500 and 12,000 ft in carbonate and siliciclastic formations ranging in age from Cambrian to Mississippian. The Cambrian section is dominated by low conductivity shale, whereas the Ordovician

  7. Separation of foreground and background from light field using gradient information.

    PubMed

    Lee, Jae Young; Park, Rae-Hong

    2017-02-01

    Studies of computer vision or machine vision applications using a light field camera have been increasing in recent years. However, the abilities that the light field camera has are not fully used in these applications. In this paper, we propose a method for direct separation of foreground and background that uses the gradient information and can be used in various applications such as pre-processing. From an optical phenomenon whereby the bundles of rays from the background are flipped, we derive that the disparity sign of the background in the captured three-dimensional scene has the opposite disparity sign of the foreground. Using the majority-weighted voting algorithm based on the gradient information with the Lambertian assumption and the gradient constraint, the foreground and background can be separated at each pixel. In regard to pre-processing, the proposed method can be used for various applications such as occlusion and saliency detection, disparity estimation, and so on. Experimental results with the EPFL light field dataset and Stanford Lytro light field dataset show that the proposed method achieves better performance in terms of the occlusion detection, and thus can be effectively used in pre-processing for saliency detection and disparity estimation.

  8. Experiments on Electron-Plasma Vortex Motion Driven by a Background Vorticity Gradient.

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Driscoll, C. F.

    2000-10-01

    The interaction of self-trapped vortices with a background vorticity gradient plays an important role in 2D hydrodynamics, including various aspects of relaxation and self-organization of 2D turbulence. In the present experiments, electron plasma columns with monotonically decreasing density profiles provide a vorticity background with (negative) shear in the rotational flow. Clumps of extra electrons are then retrograde vortices, rotating against the background shear; and regions with a deficit of electrons (holes) are prograde vortices. Theory predicts that clumps move up the background gradient, and holes move down the gradient, with velocities which depend differently on the ratio of the vortex trapping length to vortex radius, l / r_v. The present experiments show quantitative agreement with recent theory and simulations,(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). for the accessible regime of 0.2 < l/rv < 2. The experiments also show that moving clumps leave a spiral density wake, and that instability of these wakes results in a large number of long-lived holes.

  9. Universal field matching in craniospinal irradiation by a background-dose gradient-optimized method.

    PubMed

    Traneus, Erik; Bizzocchi, Nicola; Fellin, Francesco; Rombi, Barbara; Farace, Paolo

    2018-01-01

    The gradient-optimized methods are overcoming the traditional feathering methods to plan field junctions in craniospinal irradiation. In this note, a new gradient-optimized technique, based on the use of a background dose, is described. Treatment planning was performed by RayStation (RaySearch Laboratories, Stockholm, Sweden) on the CT scans of a pediatric patient. Both proton (by pencil beam scanning) and photon (by volumetric modulated arc therapy) treatments were planned with three isocenters. An 'in silico' ideal background dose was created first to cover the upper-spinal target and to produce a perfect dose gradient along the upper and lower junction regions. Using it as background, the cranial and the lower-spinal beams were planned by inverse optimization to obtain dose coverage of their relevant targets and of the junction volumes. Finally, the upper-spinal beam was inversely planned after removal of the background dose and with the previously optimized beams switched on. In both proton and photon plans, the optimized cranial and the lower-spinal beams produced a perfect linear gradient in the junction regions, complementary to that produced by the optimized upper-spinal beam. The final dose distributions showed a homogeneous coverage of the targets. Our simple technique allowed to obtain high-quality gradients in the junction region. Such technique universally works for photons as well as protons and could be applicable to the TPSs that allow to manage a background dose. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. Regional geothermal exploration in Egypt

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Boulos, F. K.; Swanberg, C. A.

    1983-01-01

    A study is presented of the evaluation of the potential geothermal resources of Egypt using a thermal gradient/heat flow technique and a groundwater temperature/chemistry technique. Existing oil well bottom-hole temperature data, as well as subsurface temperature measurements in existing boreholes, were employed for the thermal gradient/heat flow investigation before special thermal gradient holes were drilled. The geographic range of the direct subsurface thermal measurements was extended by employing groundwater temperature and chemistry data. Results show the presence of a regional thermal high along the eastern margin of Egypt with a local thermal anomaly in this zone. It is suggested that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. These findings indicate that temperatures of 150 C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zones where it lies at a depth of 4 km and deeper.

  11. A groundwater convection model for Rio Grande rift geothermal resources

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Harder, V.; Daggett, P. H.; Swanberg, C. A.

    1981-01-01

    It has been proposed that forced convection, driven by normal groundwater flow through the interconnected basins of the Rio Grande rift is the primary source mechanism for the numerous geothermal anomalies along the rift. A test of this concept using an analytical model indicates that significant forced convection must occur in the basins even if permeabilities are as low as 50-200 millidarcies at a depth of 2 km. Where groundwater flow is constricted at the discharge areas of the basins forced convection can locally increase the gradient to a level where free convection also occurs, generating surface heat flow anomalies 5-15 times background. A compilation of groundwater data for the rift basins shows a strong correlation between constrictions in groundwater flow and hot springs and geothermal anomalies, giving strong circumstantial support to the convection model.

  12. Prioritizing High-Temperature Geothermal Resources in Utah

    USGS Publications Warehouse

    Blackett, R.E.; Brill, T.C.; Sowards, G.M.

    2002-01-01

    The Utah Geological Survey and the Utah Energy Office recently released geothermal resource information for Utah as a "digital atlas." We are now expanding this project to include economic analyses of selected geothermal sites and previously unavailable resource information. The enhancements to the digital atlas will include new resource, demographic, regulatory, economic, and other information to allow analyses of economic factors for comparing and ranking geothermal resource sites in Utah for potential electric power development. New resource information includes temperature gradient and fluid chemistry data, which was previously proprietary. Economic analyses are based upon a project evaluation model to assess capital and operating expenses for a variety of geothermal powerplant configuration scenarios. A review of legal and institutional issues regarding geothermal development coupled with water development will also be included.

  13. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  14. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  15. Geothermal resources assessed in Honduras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    The investigation of the Platanares geothermal site is part of a joint Honduras (Empresa Nacional de Energia Electrica)/US (Los Alamos National Laboratory and US Geological Survey) assessment of the nationwide geothermal resource potential of Honduras. Platanares was selected as one of the initial sites for detailed study on the basis of previous geothermal reconnaissance work. The results of the geologic studies indicate that Platarnares' potential for development as an electrical power source is extremely good. This preliminary conclusion must be substantiated and refined through additional studies. Geophysical investigations are needed to further define the subsurface geology and fracture system. Severalmore » wells should be drilled to a depth of several hundred meters to measure thermal gradients. This will allow the calculation of the geothermal potential of the Platanares site and will indicate whether further development of the site is warranted.« less

  16. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  17. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    NASA Astrophysics Data System (ADS)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  18. Geothermal Gradients in Oregon, 1985-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, D.D.

    1995-01-01

    This data set is comprised of three groups of temperature-depth data. All the sites are located in southeastern Oregon. The first is a set of 7 wells logged during 1993 in south central Oregon in the Basin and Range province. All these wells, with the exception of the Blue Mountain Oil well, are water wells. These wells were part of a geothermal reconnaissance of this area. The Blue Mountain oil well of this set has been described by Sass et al. (1971) as well. Gannet in the vicinity of the Vale, Oregon (Bowen and Blackwell, 1972; Blackwell et al., 1978)more » geothermal system in Malheur County. These wells were logged in 1986 during a study of the area described by Gannett (1988). There are 17 wells (plus one relog) in this data set. All these wells are in a small area just east of the town of Vale in Malheur County. The second set of data consists of a group of wells that were logged by Marshall The third set of data represents the results of an exploration project in the general area of the Lake Owyhee thermal area in Malheur County. This data set is comprised of 16 wells. This data set was collected by Hunt Energy Corporation and made available though the efforts of Roger Bowers. A small scale map of the locations of the wells is shown in Figure 1. The well location and some pertinent information about the wells is shown in Table 1. The detailed lists of temperature-depth data and plots for each well, either individually or with a group, follow the list of references cited.« less

  19. Geothermal studies in China

    NASA Astrophysics Data System (ADS)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  20. Exploring geothermal structures in the Ilan Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Ying; Shih, Ruey-Chan; Chung, Chen-Tung; Huang, Ming-Zi; Kuo, Hsuan-Yu

    2017-04-01

    The Ilan Plain in northeast Taiwan is located at the southwestern tip of the Okinawa Trough, which extends westward into the Taiwan orogeny. The Ilan Plain covered by thick sediments is clipped by the Hsuehshan Range in the northern side and the Central Range in the southern side. High geothermal gradients with plenteous hot springs of this area may result from igneous intrusion associated with the back-arc spreading of the Okinawa Trough. In this study, we use reflection seismic survey to explore underground structures in the whole Ilan Plain, especially in SanShin, Wujie, and Lize area. We aim to find the relationship between underground structures and geothermal forming mechanism. The research uses reflection seismic survey to investigate the high geothermal gradient area with two mini-vibrators and 240-channel system. The total length of seismic lines is more than 30 kilometers. The results show that alluvial sediments covering the area about 400 600 meters thick and then thin out to the west in SanShin area. In SanShin , the Taiyaqiao anticline in Hsuehshan Range has entered the plain area and is bounded by the Zhuoshui fault (south) and the Zailian fault (north). In Wujie and Lize , Zhuoshui fault cut through a strong reflector which is the top of the gravel layer near the bottom of the alluvial layer, while the SanShin fault seems to cut near very shallow strata. These two faults are a strike-slip fault with a bit of normal fault component distributing over a range of 600 meters. In Ilan Plain, the geothermal forming mechanism is controlled by anticlines and faults. The hydrothermal solution which migrates upward along these anticline or fault zones to the shallow part causing high geothermal gradients in these areas.

  1. Integrated exploration for low-temperature geothermal resources in the Honey Lake Basin, California

    USGS Publications Warehouse

    Schimschal, U.

    1991-01-01

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters. -Author

  2. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  3. A color gradient in the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Schmitt, J. H. M. M.; Edwards, B. C.

    1990-01-01

    It is shown that the deviations of the soft X-ray diffuse background B band to C band intensity ratio from a constant value can be described as a simple dipole-like variation across the sky. In terms of the observed Wisconsin B/C band intensity ratio, the mean value is 0.355, the dipole magnitude is 0.106, and the positive dipole axis points toward l = 168.7 deg, b = 11.2 deg, almost in the galactic anticenter direction. This gradient in the spectral hardness can be due to several causes; the simplest is a temperature gradient in the X-ray emitting plasma of the local cavity from about 10 exp 6.2 K toward the galactic center to about 10 exp 5.9 K in the anticenter direction. While the physical origin of such a temperature gradient is uncertain, the alignment of the dipole with the higher temperature (and absorbed) Loop I region may be significant.

  4. The Radiator-Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Marsh, B. D.; Geiser, P.

    2015-12-01

    Standard Enhanced Geothermal Systems (EGS) have repeatedly been hobbled by the inability of rock to conductively transfer heat at rates sufficient to re-supply heat extracted convectively via artificially made fracture systems. At the root of this imbalance is the basic magnitude of thermal diffusivity for most rocks, which severely hampers heat flow once the cooled halos about fractures reach ~0.1 m or greater. This inefficiency is exacerbated by the standard EGS design of mainly horizontally constructed fracture systems with inflow and outflow access at the margins of the fracture network. We introduced an alternative system whereby the heat exchanger mimics a conventional radiator in an internal combustion engine, which we call a Radiator-EGS (i.e., RAD-EGS). The heat exchanger is built vertically with cool water entering the base and hot water extracted at the top. The RAD-EGS itself consists of a family of vertical vanes produced through sequential horizontal drilling and permeability stimulation through propellant fracking. The manufactured fracture zones share the orientation of the natural transmissive fracture system. As below about 700 m, S1 is vertical and the average strike of transmissive fractures parallels SHmax, creating vertical fractures that include S1 and SHmax requires drilling stacked laterals parallel to SHmax. The RAD-EGS is also based on the observation that the longevity of natural hydrothermal systems depends on thermal recharge through heat convection but not heat conduction. In this paper, we present numerical simulations that examine the effects of the depths of the injector and extraction wells, vane size, coolant flow rate, the natural crustal geothermal gradient, and natural regional background flow on geothermal energy extraction.

  5. Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimschal, U.

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulatingmore » heated meteoric waters.« less

  6. Geothermal surveys in the oceanic volcanic island of Mauritius

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio

    2017-04-01

    Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked

  7. Geothermal studies at Kirtland Air Force Base, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, L.; Grant, B.

    Due to an effort by government installations to discontinue use of natural gas, alternative energy sources are being investigated at Kirtland Air Force Base, Albuquerque, New Mexico. New Mexico has geologic characteristics favorable for geothermal energy utilization. Local heat flow and geochemical studies indicate a normal subsurface temperature regime. The alluvial deposits, however, extend to great depths where hot fluids, heated by the normal geothermal gradient, could be encountered. Two potential models for tapping geothermal energy are presented: the basin model and the fault model.

  8. Ecological Divergence of a Novel Group of Chloroflexus Strains along a Geothermal Gradient

    PubMed Central

    Weltzer, Michael L.

    2013-01-01

    Environmental gradients are expected to promote the diversification and coexistence of ecological specialists adapted to local conditions. Consistent with this view, genera of phototrophic microorganisms in alkaline geothermal systems generally appear to consist of anciently divergent populations which have specialized on different temperature habitats. At White Creek (Lower Geyser Basin, Yellowstone National Park), however, a novel, 16S rRNA-defined lineage of the filamentous anoxygenic phototroph Chloroflexus (OTU 10, phylum Chloroflexi) occupies a much wider thermal niche than other 16S rRNA-defined groups of phototrophic bacteria. This suggests that Chloroflexus OTU 10 is either an ecological generalist or, alternatively, a group of cryptic thermal specialists which have recently diverged. To distinguish between these alternatives, we first isolated laboratory strains of Chloroflexus OTU 10 from along the White Creek temperature gradient. These strains are identical for partial gene sequences encoding the 16S rRNA and malonyl coenzyme A (CoA) reductase. However, strains isolated from upstream and downstream samples could be distinguished based on sequence variation at pcs, which encodes the propionyl-CoA synthase of the 3-hydroxypropionate pathway of carbon fixation used by the genus Chloroflexus. We next demonstrated that strains have diverged in temperature range for growth. Specifically, we obtained evidence for a positive correlation between thermal niche breadth and temperature optimum, with strains isolated from lower temperatures exhibiting greater thermal specialization than the most thermotolerant strain. The study has implications for our understanding of both the process of niche diversification of microorganisms and how diversity is organized in these hot spring communities. PMID:23263946

  9. Ecological divergence of a novel group of Chloroflexus strains along a geothermal gradient.

    PubMed

    Weltzer, Michael L; Miller, Scott R

    2013-02-01

    Environmental gradients are expected to promote the diversification and coexistence of ecological specialists adapted to local conditions. Consistent with this view, genera of phototrophic microorganisms in alkaline geothermal systems generally appear to consist of anciently divergent populations which have specialized on different temperature habitats. At White Creek (Lower Geyser Basin, Yellowstone National Park), however, a novel, 16S rRNA-defined lineage of the filamentous anoxygenic phototroph Chloroflexus (OTU 10, phylum Chloroflexi) occupies a much wider thermal niche than other 16S rRNA-defined groups of phototrophic bacteria. This suggests that Chloroflexus OTU 10 is either an ecological generalist or, alternatively, a group of cryptic thermal specialists which have recently diverged. To distinguish between these alternatives, we first isolated laboratory strains of Chloroflexus OTU 10 from along the White Creek temperature gradient. These strains are identical for partial gene sequences encoding the 16S rRNA and malonyl coenzyme A (CoA) reductase. However, strains isolated from upstream and downstream samples could be distinguished based on sequence variation at pcs, which encodes the propionyl-CoA synthase of the 3-hydroxypropionate pathway of carbon fixation used by the genus Chloroflexus. We next demonstrated that strains have diverged in temperature range for growth. Specifically, we obtained evidence for a positive correlation between thermal niche breadth and temperature optimum, with strains isolated from lower temperatures exhibiting greater thermal specialization than the most thermotolerant strain. The study has implications for our understanding of both the process of niche diversification of microorganisms and how diversity is organized in these hot spring communities.

  10. Geothermal studies in oil field districts of North China

    NASA Astrophysics Data System (ADS)

    Wang, Ji-An; Wang, Ji-Yang; Yan, Shu-Zhen; Lu, Xiu-Wen

    In North China, Tertiary sediments give the main oil-genetic series. The mean value of terrestrial heat flow density has been considered to be 60 - 65 mW/m2, and the geothermal gradient in Tertiary sediments usually ranges from 30 to 40° C/km in the region studied. Supposing that the onset of oil generation lies at about 90° C, the upper limit of the depth of oil-generation is at about 2000 to 2500 m depth. Recent paleogeothermal studies using vitrinite reflectance, clay and authigenic minerals, as well as other methods showed that in Eocene the geothermal gradient has been higher than at present. Some results were obtained and discussed.

  11. Washington Play Fairway Analysis Geothermal GIS Data

    DOE Data Explorer

    Corina Forson

    2015-12-15

    This file contains file geodatabases of the Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV) and Mount Baker (MB) geothermal play-fairway sites in the Washington Cascades. The geodatabases include input data (feature classes) and output rasters (generated from modeling and interpolation) from the geothermal play-fairway in Washington State, USA. These data were gathered and modeled to provide an estimate of the heat and permeability potential within the play-fairways based on: mapped volcanic vents, hot springs and fumaroles, geothermometry, intrusive rocks, temperature-gradient wells, slip tendency, dilation tendency, displacement, displacement gradient, max coulomb shear stress, sigma 3, maximum shear strain rate, and dilational strain rate at 200m and 3 km depth. In addition this file contains layer files for each of the output rasters. For details on the areas of interest please see the 'WA_State_Play_Fairway_Phase_1_Technical_Report' in the download package. This submission also includes a file with the geothermal favorability of the Washington Cascade Range based off of an earlier statewide assessment. Additionally, within this file there are the maximum shear and dilational strain rate rasters for all of Washington State.

  12. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  13. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal

  14. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of

  15. Community phylogenetic diversity of cyanobacterial mats associated with geothermal springs along a tropical intertidal gradient.

    PubMed

    Jing, Hongmei; Lacap, Donnabella C; Lau, Chui Yim; Pointing, Stephen B

    2006-04-01

    The 16S rRNA gene-defined bacterial diversity of tropical intertidal geothermal vents subject to varying degrees of seawater inundation was investigated. Shannon-Weaver diversity estimates of clone library-derived sequences revealed that the hottest pools located above the mean high-water mark that did not experience seawater inundation were most diverse, followed by those that were permanently submerged below the mean low-water mark. Pools located in the intertidal were the least biodiverse, and this is attributed to the fluctuating conditions caused by periodic seawater inundation rather than physicochemical conditions per se. Phylogenetic analysis revealed that a ubiquitous Oscillatoria-like phylotype accounted for 83% of clones. Synechococcus-like phylotypes were also encountered at each location, whilst others belonging to the Chroococcales, Oscillatoriales, and other non-phototrophic bacteria occurred only at specific locations along the gradient. All cyanobacterial phylotypes displayed highest phylogenetic affinity to terrestrial thermophilic counterparts rather than marine taxa.

  16. Geothermal resources of the northern gulf of Mexico basin

    USGS Publications Warehouse

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  17. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped. This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density.

  18. Improvements in Technique of NMR Imaging and NMR Diffusion Measurements in the Presence of Background Gradients.

    NASA Astrophysics Data System (ADS)

    Lian, Jianyu

    In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring

  19. Numerical and experimental design of coaxial shallow geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Raghavan, Niranjan

    Geothermal Energy has emerged as one of the front runners in the energy race because of its performance efficiency, abundance and production competitiveness. Today, geothermal energy is used in many regions of the world as a sustainable solution for decreasing dependence on fossil fuels and reducing health hazards. However, projects related to geothermal energy have not received their deserved recognition due to lack of computational tools associated with them and economic misconceptions related to their installation and functioning. This research focuses on numerical and experimental system design analysis of vertical shallow geothermal energy systems. The driving force is the temperature difference between a finite depth beneath the earth and its surface stimulates continuous exchange of thermal energy from sub-surface to the surface (a geothermal gradient is set up). This heat gradient is captured by the circulating refrigerant and thus, tapping the geothermal energy from shallow depths. Traditionally, U-bend systems, which consist of two one-inch pipes with a U-bend connector at the bottom, have been widely used in geothermal applications. Alternative systems include coaxial pipes (pipe-in-pipe) that are the main focus of this research. It has been studied that coaxial pipes have significantly higher thermal performance characteristics than U-bend pipes, with comparative production and installation costs. This makes them a viable design upgrade to the traditional piping systems. Analytical and numerical heat transfer analysis of the coaxial system is carried out with the help of ABAQUS software. It is tested by varying independent parameters such as materials, soil conditions and effect of thermal contact conductance on heat transfer characteristics. With the above information, this research aims at formulating a preliminary theoretical design setup for an experimental study to quantify and compare the heat transfer characteristics of U-bend and coaxial

  20. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  1. Geothermal Project Consulting | Geothermal Technologies | NREL

    Science.gov Websites

    Geothermal Project Consulting Geothermal Project Consulting When consulting on projects, NREL focuses on identifying specific barriers or challenges that are likely to impact geothermal project , validation, and deployment of geothermal technologies Assess and evaluate geothermal R&D projects

  2. Detection of geothermal anomalies in Tengchong, Yunnan Province, China from MODIS multi-temporal night LST imagery

    NASA Astrophysics Data System (ADS)

    Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.

    2012-12-01

    Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.

  3. Geophysical, geochemical, and geological investigations of the Dunes geothermal system, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.

    1974-01-01

    The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.

  4. Recent Climate Changes in Northwestern Qaidam Basin Inferred from Geothermal Gradients

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, T.

    2014-12-01

    Temperature perturbations under the ground surface are direct thermal response to ground surface temperature changes. Thus ground surface temperature history can be reconstructed from borehole temperature measurements using borehole paleothermometry inversion method. In this study, we use seven borehole temperature profiles to reconstruct the ground surface temperature variation of the past 500 years of the Qaidam basin, northwestern China. Borehole transient temperature measurement from seven sites in northwestern Qaidam basin were separated from geothermal gradients and analyzed by functional space inversion method to determine past ground surface temperature variations in this region. All temperature profiles show the effects of recent climatic disturbances. Inversion shows an overall increase in ground surface temperature by an averaged 1.2℃ (-0.11~2.21℃) during the last 500 years. Clear signs of a cold period between 1500 and 1900 A.D., corresponding to the Little Ice Age, have been found. Its coldest period was between 1780~1790 A.D. with the ground surface temperature of 5.4℃. During the 19th and the 20th century, reconstructed ground surface temperature shows a rising trend, and in the late 20th century, the temperature started to decrease. However, the highest temperature in 1990s broke the record of the past 500 years. This reconstructed past ground surface temperature variation is verified by the simulated annual surface air temperature computed by EdGCM and the cooling trend is also confirmed by other reconstruction of winter half year minimum temperatures using tree rings on the northeastern Tibetan Plateau.

  5. New Mexico Geothermal Play Fairway Analysis from LANL

    DOE Data Explorer

    Rick Kelley

    2015-10-27

    This submission contains geospatial (GIS) data on water table gradient and depth, subcrop gravity and magnetic, propsectivity, heat flow, physiographic, boron and BHT for the Southwest New Mexico Geothermal Play Fairway Analysis by LANL Earth & Environmental Sciences. GIS data is in ArcGIS map package format.

  6. Geothermal Power Potential in the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Song, S.

    2013-12-01

    Recent energy issues have concentrated the attention on finding alternative ones. National demands for renewable and sustainable energy increase rapidly, especially the geothermal power production, which is viewed as the most potential opportunity. This study attempts to estimate the geothermal powers in the Tatung Volcano Group (TVG), Taiwan and evaluate the possibility to develop the Enhanced Geothermal System. Tatung Volcano Group is located at the northwest part of Taiwan. It has violent volcanism during 0.8-0.20Ma, and is still active with many thermal manifestations. The young volcanic activity provides the TVG with high geothermal gradient and is well suitable for exploiting geothermal resources. Many explorations on geothermal energy have been accomplished in this area during1966-1973. They included resistivity survey, magnetic prospecting, gravity method, seismic prospecting and etc. In this study, we base on previous data and apply the probabilistic volumetric method proposed by Geotherm EX Inc., modified from the approach introduced by the USGS to evaluate the geothermal power potential in TVG. Meanwhile, use a Monte Carlo simulation technique to calculate the probability distribution of potentially recoverable energy reserves. The results show that the mean value is 270Mw, and P50 is 254Mw for 30 years, separately. Furthermore, the power potential of enhanced geothermal system in TVG is also estimated by the quantitative model proposed by Massachusetts Institute of Technology (MIT 2006). The results suggest that the mean value is 3,000 MW and P50 is 2,780 MW for 30 years, separately.

  7. A geothermal AMTEC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuller, M.J.; LeMire, R.A.; Horner-Richardson, K.

    1995-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), with the support of ORION International Technologies, is investigating new methods of advanced thermal to electric power conversion for space and terrestrial applications. The alkali metal thermal-to-electric converter (AMTEC), manufactured primarily by Advanced Modular Power Systems (AMPS) of Ann Arbor, MI, has reached a level of technological maturity which would allow its use in a constant, unattended thermal source, such as a geothermal field. Approximately 95,000 square miles in the western United States has hot dry rock with thermal gradients of 60 C/km and higher. Several places in the United Statesmore » and the world have thermal gradients of 500 C/km. Such heat sources represent an excellent thermal source for a system of modular power units using AMTEC devices to convert the heat to electricity. AMTEC cells using sodium as a working fluid require heat input at temperatures between 500 and 1,000 C to generate power. The present state of the art is capable of 15% efficiency with 800 C heat input and has demonstrated 18% efficiency for single cells. This paper discusses the basics of AMTEC operation, current drilling technology as a cost driver, design of modular AMTEC power units, heat rejection technologies, materials considerations, and estimates of power production from a geothermal AMTEC concept.« less

  8. Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel

  9. Sedimentary and Enhanced Geothermal Systems | Geothermal Technologies |

    Science.gov Websites

    NREL Sedimentary and Enhanced Geothermal Systems Sedimentary and Enhanced Geothermal Systems To innovative technologies, such as sedimentary and enhanced geothermal systems (EGS). Photo of a geothermal power plant in Imperial California. Capabilities To advance EGS and sedimentary geothermal systems, NREL

  10. Eastgate Geothermal Borehole Project: Predicting Fracture Geometry at Depth

    NASA Astrophysics Data System (ADS)

    Beattie, Stewart; Shipton, Zoe K.; Johnson, Gareth; Younger, Paul L.

    2013-04-01

    In 2004 an exploratory borehole at the Eastgate Geothermal Project encountered part of a vein system within the Weardale granite. At 995m depth brine was at a temperature of around 46°C. The geothermal source is likely related to the Slitt vein system that cuts through c.270m of carboniferous sedimentary strata overlying the Weardale granite pluton. The economic success of the Eastgate geothermal project is dependent on exploiting this vein system in an otherwise low permeability and low geothermal gradient setting. The Slitt vein system has been extensively mined. Mining records show the attitude of the vein through the sedimentary strata, however, the trajectory and magnitude of the vein within the pluton itself is unknown. Using mine records, geological maps and published literature, models of the vein system up to the depth of the pluton were created. To extend this model into the pluton itself requires some knowledge regarding the geometry and evolution of the pluton and subsequently properties of vein systems and other fracture populations at depth. The properties of fracture and vein populations within the granite will depend on forming processes including; cooling and contraction of the pluton, deformation of host rocks during pluton emplacement, and post emplacement deformation. Using published literature and gravity data a 3D model of the geometry of the pluton was constructed. Shape analysis of the pluton allows an estimation of the orientation of fractures within the pluton. Further modelling of the structural evolution of the pluton will enable kinematic or geomechanical strain associated with the structural evolution to be captured and subsequently used as a proxy for modelling both intensity and orientation of fracturing within the pluton. The successful prediction of areas of high fracture intensity and thus increased permeability is critical to the development of potential geothermal resources in low geothermal gradient and low permeability

  11. The characteristics of geothermal field of Qiabuqia town in Gonghe basin, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shi, Y.; Jiang, G.

    2017-12-01

    Located in the northeastern margin of Gonghe basin, Qiabuqia town displays the most potential of hot dry rock geothermal resources exploration and development in China so far. Although large quantities of geophysical exploration work have been down since 2013, the study of present geothermal field is almost empty, which is seriously restricting the evaluation and utilization of geothermal resources in Qiabuqia town. This study is to revel the geothermal characteristics of four hot dry rock boreholes (DR4, DR3, GR1 and GR2) though continuous steady temperature logging and thermal conductivity measurements of core samples. The main stratum of study area are Indosinian granitic rocks (below 1400 m) which is overlain by thick Paleogene, Neogene and Quaternary lacustrine strata (0 1400 m). Continuous temperature logs display that the bottom hole temperature of DR3 borehole is up to 180 oC at the depth of 3000 m and it is the first successfully verification of the existence of hot dry rock geothermal resources in China. The temperature gradients of these for boreholes are obtained by the linear least squares regression method and it turns out that the temperature gradient varies from 38 to 45.2 oC • km-1 with an average of 40.4 oC • km-1. Average thermal conductivity of bedrocks ranges from 2.07 to 3.10 W/(m • K) with an mean of 2.52 W/(m • K). Heat flow values are calculated as the product of least-square thermal gradients and corresponding thermal conductivity. By the result of the calculation, the heat flow are 98.9 mW • m-2, 114.7 mW • m-2, 96.2 mW • m-2, 97.8 mW • m-2 for DR4, DR3, GR1 and GR2 borehole, respectively. Compared to the adjacent Qaidam basin, Sichuan basin and Ordos basin, the study area appear to be a thermal abnormal area with high temperature gradient and high heat flow.

  12. Influence of the iron spin crossover in ferropericlase on the lower mantle geotherm

    NASA Astrophysics Data System (ADS)

    Valencia-Cardona, Juan J.; Shukla, Gaurav; Wu, Zhongqing; Houser, Christine; Yuen, David A.; Wentzcovitch, Renata M.

    2017-05-01

    The iron spin crossover in ferropericlase introduces anomalies in its thermodynamics and thermoelastic properties. Here we investigate how these anomalies can affect the lower mantle geotherm using thermodynamics properties from ab initio calculations. The anomalous effect is examined in mantle aggregates consisting of mixtures of bridgmanite, ferropericlase, and CaSiO3 perovskite, with different Mg/Si ratios varying from harzburgitic to perovskitic (Mg/Si ˜ 1.5 to 0.8). We find that the anomalies introduced by the spin crossover increase the isentropic gradient and thus the geotherm proportionally to the amount of ferropericlase. The geotherms can be as much as ˜200 K hotter than the conventional adiabatic geotherm at deep lower mantle conditions. Aggregate elastic moduli and seismic velocities are also sensitive to the spin crossover and the geotherm, which impacts analyses of lower mantle velocities and composition.

  13. Corrosion engineering in the utilization of the Raft River geothermal resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.L.

    1976-08-01

    The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

  14. Heat flow and geothermal potential of the East Mesa KGRA, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Swanberg, C. A.

    1974-01-01

    The East Mesa KGRA (Known Geothermal Resource Area) is located in the southeast part of the Imperial Valley, California, and is roughly 150 kilometers square in areal extent. A new heat flow technique which utilizes temperature gradient measurements across best clays is presented and shown to be as accurate as conventional methods for the present study area. Utilizing the best clay gradient technique, over 70 heat flow determinations have been completed within and around the East Mesa KGRA. Background heat flow values range from 1.4 to 2.4 hfu (1 hfu = .000001 cal. per square centimeter-second) and are typical of those throughout the Basin and Range province. Heat flow values for the northwest lobe of the KGRA (Mesa anomaly) are as high as 7.9 hfu, with the highest values located near gravity and seismic noise maxima and electrical resistivity minima. An excellent correlation exists between heat flow contours and faults defined by remote sensing and microearthquake monitoring.

  15. Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Berglund, Judith

    2000-01-01

    The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.

  16. Geothermal Exploration of the Winston Graben, Central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Sophy, M. J.; Kelley, S. A.

    2011-12-01

    We are assessing the geothermal potential of the Winston Graben of central New Mexico using borehole temperature logs and geophysical data. The Winston Graben is a late Cenozoic rift basin, part of the larger Rio Grande rift, which is 5 to 10 km wide and 56 km long with northern and southern termini occurring at accommodation zones that coincide with late Cenozoic volcanic lineaments. The graben is interpreted to be symmetric based on geologic mapping, with 2 km of stratigraphic offset on both the western and eastern margins. The graben is bordered by the Black Range to the west and is separated from the Rio Grande valley by the Sierra Cuchillo, a horst block made of Paleozoic rocks intruded by a laccolith. Geothermal and geophysical data, including water table measurements, well temperature logs, thermal conductivity samples, bottom hole temperatures, water chemistry, and gravity data have been extracted from the New Mexico Geothermal Database, part of the National Geothermal Database, and the Geonet Gravity and Magnetic Dataset Repository. Combined with existing geologic maps of the Winston Graben and surroundings, these data help to identify spatial relationships between geologic structures and groundwater parameters and distribution. Geothermal gradients from industry temperature-depth well profiles range from 20°C/km to 60°C/km with a spatial distribution of higher gradients located on the eastern side of the Sierra Cuchillo horst, which is where a mapped warm spring is located. Lower thermal gradients were observed to the west in the groundwater recharge area of the basin. Analysis of Bouguer gravity data indicate a gravity low coinciding with the center of the Winston Graben, which is attributed to be the deepest part of the basin, symetrically surrounded by gravity highs. Gravity highs coincide with the middle Cenozoic Morenci and Chise volcanic lineaments along the northern and southern ends of the graben. The mapped warm spring occurs at the

  17. Geothermal Research | Geothermal Technologies | NREL

    Science.gov Websites

    . Impact Analysis Conducting analyses to determine the viability of geothermal energy production and Hybrid Systems Exploring the potential benefits of combining geothermal with other renewable energy Designing new models and studying new techniques to increase the production of geothermal energy.

  18. Geophysical Analysis of Major Geothermal Anomalies in Romania

    NASA Astrophysics Data System (ADS)

    Panea, Ionelia; Mocanu, Victor

    2017-11-01

    The Romanian segment of the Eastern Pannonian Basin and the Moesian Platform are known for their geothermal and hydrocarbon-bearing structures. We used seismic, gravity, and geothermal data to analyze the geothermal behavior in the Oradea and Timisoara areas, from the Romanian segment of Eastern Pannonian Basin, and the Craiova-Bals-Optasi area, from the Moesian Platform. We processed 22 seismic reflection data sets recorded in the Oradea and Timisoara areas to obtain P-wave velocity distributions and time seismic sections. The P-wave velocity distributions correlate well with the structural trends observed along the seismic lines. We observed a good correlation between the high areas of crystalline basement seen on the time seismic sections and the high heat flow and gravity-anomaly values. For the Craiova-Bals-Optasi area, we computed a three-dimensional (3D) temperature model using calculated and measured temperature and geothermal gradient values in wells with an irregular distribution on the territory. The high temperatures from the Craiova-Bals-Optasi area correlate very well with the uplifted basement blocks seen on the time seismic sections and high gravity-anomaly values.

  19. Effects of the Karacadag Volcanic Complex on the thermal structure and geothermal potential of southeast Anatolia

    NASA Astrophysics Data System (ADS)

    Bilim, Funda; Aydemir, Attila; Kosaroglu, Sinan; Bektas, Ozcan

    2018-06-01

    The Karacadag Volcanic Complex (KVC) is the largest volcanic unit in SE Turkey. It is also defined as a shield volcano on the northernmost part of the Arabian Plate. The main goal of this study is to investigate the geothermal potential of this region associated with the magnetic signature of this volcanic complex and surrounding area. Besides this primary objective, the possibility of there being volcanic intrusion into the buried fault zones under the volcanic cover are also investigated to determine the interrelations between the active tectonics and heat flow in the area. A spectral analysis method is applied to the magnetic anomalies of the volcanic rocks to identify the Curie point depth (CPD) and geothermal gradient, as well as to estimate heat flow and radiogenic heat production of radioactive minerals in the complex. A tilt angle map is also presented, in correlation with instrumentally recorded earthquake magnitudes, to indicate tectonic trends that are consistent with the maps of the thermal parameters in this study. In contrast with expectations for the KVC area, the region around Akcakale and Suruc Grabens is the most prolific zone for geothermal potential, despite them not showing strong magnetic anomalies. Curie point depths are shallow, down to 18 km, around the Akcakale Graben, and deeper, down to 22 km, around the Bitlis-Zagros Suture Zone where the geothermal gradients increase from 26 to 32 °C km-1 through the graben area. Heat flows in this zone are in the range from 75 to 90 mW m-2 depending on the thermal conductivity coefficient (2.3, 2.5, 2.7, and 3.0 W m-1 K-1) used. Radiogenic heat production values also indicate slightly changing spectra in the range 0.19 to 0.25 μW m-3). None of these parameters are focused around Mt. Karacadag. However, the earthquake epicenters (generally M ≤ 4) are aligned with the boundary faults of the Akcakale Graben where the CPD, geothermal gradient, and heat flow maps indicate relatively high potential. We

  20. Hotspot: the Snake River Geothermal Drilling Project--initial report

    USGS Publications Warehouse

    Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.

    2012-01-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.

  1. Geothermal Play-Fairway Analysis of the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Ru; Song, Sheng-Rong

    2017-04-01

    Geothermal energy is a sustainable and low-emission energy resource. It has the advantage of low-cost and withstanding nature hazards. Taiwan is located on the western Ring of Fire and characteristic of widespread hot spring and high surface heat flows, especially on the north of Taiwan. Many previous studies reveal that the Tatun Volcano Group (TVG) has great potential to develop the geothermal energy. However, investment in geothermal development has inherent risk and how to reduce the exploration risk is the most important. The exploration risk can be lowered by using the play-fairway analysis (PFA) that integrates existing data representing the composite risk segments in the region in order to define the exploration strategy. As a result, this study has adapted this logic for geothermal exploration in TVG. There are two necessary factors in geothermal energy, heat and permeability. They are the composite risk segments for geothermal play-fairway analysis. This study analyzes existing geologic, geophysical and geochemical data to construct the heat and permeability potential models. Heat potential model is based on temperature gradient, temperature of hot spring, proximity to hot spring, hydrothermal alteration zones, helium isotope ratios, and magnetics. Permeability potential model is based on fault zone, minor fault, and micro-earthquake activities. Then, these two potential models are weighted by using the Analytical Hierarchy Process (AHP) and combined to rank geothermal favorability. Uncertainty model is occurred by the quality of data and spatial accuracy of data. The goal is to combine the potential model with the uncertainty model as a risk map to find the best drilling site for geothermal exploration in TVG. Integrated results indicate where geothermal potential is the highest and provide the best information for those who want to develop the geothermal exploration in TVG.

  2. Spatial Analysis of Geothermal Resource Potential in New York and Pennsylvania: A Stratified Kriging Approach

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C. A.; Stedinger, J. R.

    2014-12-01

    Resource assessments for low-grade geothermal applications employ available well temperature measurements to determine if the resource potential is sufficient for supporting district heating opportunities. This study used a compilation of bottomhole temperature (BHT) data from recent unconventional shale oil and gas wells, along with legacy oil, gas, and storage wells, in Pennsylvania (PA) and New York (NY). Our study's goal was to predict the geothermal resource potential and associated uncertainty for the NY-PA region using kriging interpolation. The dataset was scanned for outliers, and some observations were removed. Because these wells were drilled for reasons other than geothermal resource assessment, their spatial density varied widely. An exploratory spatial statistical analysis revealed differences in the spatial structure of the geothermal gradient data (the kriging semi-variogram and its nugget variance, shape, sill, and the degree of anisotropy). As a result, a stratified kriging procedure was adopted to better capture the statistical structure of the data, to generate an interpolated surface, and to quantify the uncertainty of the computed surface. The area was stratified reflecting different physiographic provinces in NY and PA that have geologic properties likely related to variations in the value of the geothermal gradient. The kriging prediction and the variance-of-prediction were determined for each province by the generation of a semi-variogram using only the wells that were located within that province. A leave-one-out cross validation (LOOCV) was conducted as a diagnostic tool. The results of stratified kriging were compared to kriging using the whole region to determine the impact of stratification. The two approaches provided similar predictions of the geothermal gradient. However, the variance-of-prediction was different. The stratified approach is recommended because it gave a more appropriate site-specific characterization of uncertainty

  3. Spatial data analysis for exploration of regional scale geothermal resources

    NASA Astrophysics Data System (ADS)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  4. Analysis of Geothermal Pathway in the Metamorphic Area, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wu, M. Y.; Song, S. R.; Lo, W.

    2016-12-01

    A quantitative measure by play fairway analysis in geothermal energy development is an important tool that can present the probability map of potential resources through the uncertainty studies in geology for early phase decision making purpose in the related industries. While source, pathway, and fluid are the three main geologic factors in traditional geothermal systems, identifying the heat paths is critical to reduce drilling cost. Taiwan is in East Asia and the western edge of Pacific Ocean, locating on the convergent boundary of Eurasian Plate and Philippine Sea Plate with many earthquake activities. This study chooses a metamorphic area in the western corner of Yi-Lan plain in northeastern Taiwan with high geothermal potential and several existing exploration sites. Having high subsurface temperature gradient from the mountain belts, and plenty hydrologic systems through thousands of millimeters annual precipitation that would bring up heats closer to the surface, current geothermal conceptual model indicates the importance of pathway distribution which affects the possible concentration of extractable heat location. The study conducts surface lineation analysis using analytic hierarchy process to determine weights among various fracture types for their roles in geothermal pathways, based on the information of remote sensing data, published geologic maps and field work measurements, to produce regional fracture distribution probability map. The results display how the spatial distribution of pathways through various fractures could affect geothermal systems, identify the geothermal plays using statistical data analysis, and compare against the existing drilling data.

  5. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    NASA Astrophysics Data System (ADS)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying

  6. Development and Exploitation of Low Enthalpy Geothermal Systems, Example of "The Dogger" in the Paris Basin, France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, J.; Menjoz, A.; Martin, J.C.

    1987-01-20

    A feature of French geothermal engineering is the development of industrial projects in normal gradient, non-convective areas. The economic feasibility of exploiting wells producing between 150 and 350 m{sup 3}/h at temperatures from 55° to 85° from depths of 1,500 to 2,000 meters, in sedimentary basins with normal gradient, for direct heat production has been proved by 50 plants providing heating for over 500,000 people during the last few years. This opens new possibilities for geothermal energy development the world over, in particular for areas where heat consumption is higher than 2,500 Tons oil equivalent (Toe)/year over several square kilometers.more » The recent and rapid development of geothermal projects in France, in particular in the Paris Basin has provided much more information on the characteristics of the Jurassic Dogger, which is the unit tapped by geothermal doublets (one production and one injection well). Detailed study of the Dogger reservoir in the Paris Basin is one of the main objectives of the IMRG research and development program drawn up in 1983. The preliminary results presented here are oriented towards (1) improved knowledge of the potential geothermal resources, and (2) analysis of optimum development conditions. 1 tab., 7 refs., 9 figs.« less

  7. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  8. Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients.

    PubMed

    Radujkovic, Dajana; Verbruggen, Erik; Sigurdsson, Bjarni D; Leblans, Niki I W; Janssens, Ivan A; Vicca, Sara; Weedon, James T

    2018-02-01

    Global change is expected to affect soil microbial communities through their responsiveness to temperature. It has been proposed that prolonged exposure to elevated temperatures may lead to progressively larger effects on soil microbial community composition. However, due to the relatively short-term nature of most warming experiments, this idea has been challenging to evaluate. The present study took the advantage of natural geothermal gradients (from +1°C to +19°C above ambient) in two subarctic grasslands to test the hypothesis that long-term exposure (>50 years) intensifies the effect of warming on microbial community composition compared to short-term exposure (5-7 years). Community profiles from amplicon sequencing of bacterial and fungal rRNA genes did not support this hypothesis: significant changes relative to ambient were observed only starting from the warming intensity of +9°C in the long term and +7°C/+3°C in the short term, for bacteria and fungi, respectively. Our results suggest that microbial communities in high-latitude grasslands will not undergo lasting shifts in community composition under the warming predicted for the coming 100 years (+2.2°C to +8.3°C). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  10. The ecology and diversity of microbial eukaryotes in geothermal springs.

    PubMed

    Oliverio, Angela M; Power, Jean F; Washburne, Alex; Cary, S Craig; Stott, Matthew B; Fierer, Noah

    2018-04-16

    Decades of research into the Bacteria and Archaea living in geothermal spring ecosystems have yielded great insight into the diversity of life and organismal adaptations to extreme environmental conditions. Surprisingly, while microbial eukaryotes (protists) are also ubiquitous in many environments, their diversity across geothermal springs has mostly been ignored. We used high-throughput sequencing to illuminate the diversity and structure of microbial eukaryotic communities found in 160 geothermal springs with broad ranges in temperature and pH across the Taupō Volcanic Zone in New Zealand. Protistan communities were moderately predictable in composition and varied most strongly across gradients in pH and temperature. Moreover, this variation mirrored patterns observed for bacterial and archaeal communities across the same spring samples, highlighting that there are similar ecological constraints across the tree of life. While extreme pH values were associated with declining protist diversity, high temperature springs harbored substantial amounts of protist diversity. Although protists are often overlooked in geothermal springs and other extreme environments, our results indicate that such environments can host distinct and diverse protistan communities.

  11. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    NASA Astrophysics Data System (ADS)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  12. Method and apparatus for determining vertical heat flux of geothermal field

    DOEpatents

    Poppendiek, Heinz F.

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  13. Assessment of the geothermal resources of Illinois based on existing geologic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaught, T.L.

    1980-12-01

    Geothermal resources are not known to exist in Illinois. However, from the data presented on heat flow, thermal gradients, depth to basement, seismic activity, and low-conductivity sediments, inferences are drawn about the possible presence of resources in the state. (MHR)

  14. Geochemical exploration of a promissory Enhanced Geothermal System (EGS): the Acoculco caldera, Mexico.

    NASA Astrophysics Data System (ADS)

    Peiffer, Loic; Romero, Ruben Bernard; Pérez-Zarate, Daniel; Guevara, Mirna; Santoyo Gutiérrez, Edgar

    2014-05-01

    The Acoculco caldera (Puebla, Mexico) has been identified by the Mexican Federal Electricity Company (in Spanish 'Comisión Federal de Electricidad', CFE) as a potential Enhanced Geothermal System (EGS) candidate. Two exploration wells were drilled and promising temperatures of ~300° C have been measured at a depth of 2000 m with a geothermal gradient of 11oC/100m, which is three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt. As usually observed in Hot Dry Rock systems, thermal manifestations in surface are scarce and consist in low-temperature bubbling springs and soil degassing. The goals of this study were to identify the origin of these fluids, to estimate the soil degassing rate and to explore new areas for a future detailed exploration and drilling activities. Water and gas samples were collected for chemical and isotopic analysis (δ18O, δD, 3He/4He, 13C, 15N) and a multi-gas (CO2, CH4, H2S) soil survey was carried out using the accumulation chamber method. Springs' compositions indicate a meteoric origin and the dissolution of CO2 and H2S-rich gases, while gas compositions reveal a MORB-type origin mixed with some arc-type contribution. Gas geothermometry results are similar to temperatures measured during well drilling (260° C-300° C). Amongst all measured CO2 fluxes, only 5% (mean: 5543 g m-2 day-1) show typical geothermal values, while the remaining fluxes are low and correspond to biogenic degassing (mean: 18 g m-2 day-1). The low degassing rate of the geothermal system is a consequence of the intense hydrothermal alteration observed in the upper 800 m of the system which acts as an impermeable caprock. Highest measured CO2 fluxes (above > 600 g m-2 day-1) have corresponding CH4/CO2 flux ratios similar to mass ratios of sampled gases, which suggest an advective fluid transport. To represent field conditions, a numerical model was also applied to simulate the migration of CO2 towards the surface through a

  15. Relationship of geological and geothermal field properties: Midcontinent area, USA, an example

    USGS Publications Warehouse

    Forster, A.; Merriam, D.F.; Brower, J.C.

    1993-01-01

    Quantitative approaches to data analysis in the last decade have become important in basin modeling and mineral-resource estimation. The interrelation of geological, geophysical, geochemical, and geohydrological variables is important in adjusting a model to a real-world situation. Revealing the interdependences of variables can contribute in understanding the processes interacting in sedimentary basins. It is reasonably simple to compare spatial data of the same type but more difficult if different properties are involved. Statistical techniques, such as cluster analysis or principal components analysis, or some algebraic approaches can be used to ascertain the relations of standardized spatial data. In this example, structural configuration on five different stratigraphic horizons, one total sediment thickness map, and four maps of geothermal data were copared. As expected, the structural maps are highly related because all had undergone about the same deformation with differing degrees of intensity. The temperature gradients derived (1) from shallow borehole logging measurements under equilibrium conditions with the surrounding rock, and (2) from non-equilibrium bottom-hole temperatures (BHT) from deeper depths are mainly independent of each other. This was expected and confirmed also for the two temperature maps at 1000 ft which were constructed using both types of gradient values. Thus, it is evident that the use of a 2-point (BHT and surface temperature) straightline calculation of a mean temperature gradient gives different information about the geothermal regime than using gradients from temperatures logged under equilibrium conditions. Nevertheless, it is useful to determine to what a degree the larger dataset of nonequilibrium temperatures could reflect quantitative relationships to geologic conditions. Comparing all maps of geothermal information vs. the structural and the sediment thickness maps, it was determined that all correlations are moderately

  16. Geothermal regime of Tarim basin, NW China: insights from borehole temperature logging

    NASA Astrophysics Data System (ADS)

    Liu, S.; Lei, X.

    2013-12-01

    Geothermal regime of sedimentary basin is vital for understanding basin (de)formation process, hydrocarbon generation status and assessing the resource potential. Located at the Precambrian craton block, the Tarim basin is the largest intermountain basin in China, which is also the ongoing target of oil and gas exploration. Previous knowledge of thermal regime of this basin is from limited oil exploration borehole testing temperature, the inherent deficiency of data of this type makes accurate understanding of its thermal regime impossible. Here we reported our latest steady temperature logging results in this basin and analyze its thermal regime as well. In this study, 10 temperature loggings are conducted in the northern Tarim basin where the major oil and gas fields are discovered. All the boreholes for temperature logging are non-production wells and are shut in at least more than 2~3 years, ensuring the temperature equilibrium after drilling. The derived geothermal gradient varies from 20.2 to 26.1 degree/km, with a mean of 22.0 degree/km. However, some previous reported gradients in this area are obviously lower than our results; for example, the previous gradient of THN2 well is 13.2 degree/km but 23.2 degree/km in this study, and not enough equilibrium time in previous logging accounts for this discrepancy. More important, it is found that high gradients usually occur in the gas field and the gradients of the gas fields are larger than those in other oil fields, indicating higher thermal regime in gas field. The cause of this phenomenon is unclear, and the upward migration of hot fluid along fault conduit is speculated as the possible mechanism for this high geothermal anomaly in the oil and gas fields. Combined with measured thermal conductivity data, 10 new heat flow values are also achieved, and the heat flow of the Tarim basin is between 38mW/m2 and 52mW/m2, with a mean of 43 mW/m2. This relatively low heat flow is coincident with that of typical

  17. Geothermal Technologies News | Geothermal Technologies | NREL

    Science.gov Websites

    for this avid biker. The reason though is unusual. Passionate about geothermal energy research, he Geothermal Energy Program In her new role, Young will work closely with NREL management to establish the lab's geothermal energy portfolio, including research and development geared toward advancing the use of

  18. Assessment of New Approaches in Geothermal Exploration Decision Making: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, S.; Young, K. R.

    Geothermal exploration projects have significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Understanding when and how to proceed in an exploration program, and when to walk away from a site, are two of the largest challenges for increased geothermal deployment. Current methodologies for exploration decision making is left to subjective by subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a givenmore » location, including go-no-go decision points to help developers and investors decide when to give up on a location. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of a particular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basic geothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This second approach

  19. Evaluation of geothermal energy as a heat source for the oilsands industry in Northern Alberta (Canada)

    NASA Astrophysics Data System (ADS)

    Majorowicz, J. A.; Unsworth, M.; Gray, A.; Nieuwenhuis, G.; Babadagli, T.; Walsh, N.; Weides, S.; Verveda, R.

    2012-12-01

    The extraction and processing of bitumen from the oilsands of Northern Alberta requires very large amounts of heat that is obtained by burning natural gas. At current levels, the gas used represents 6% of Canada's natural gas production. Geothermal energy could potentially provide this heat, thereby reducing both the financial costs and environmental impact of the oilsands industry. The Helmholtz Alberta Initiative is evaluating this application of geothermal energy through an integrated program of geology, geophysics, reservoir simulation and calculations of the cost benefit. A first stage in this evaluation is refining estimates of subsurface temperature beneath Northern Alberta. This has involved three stages: (1) Corrected industrial thermal data have been used to revise estimates of the upper crustal temperatures beneath the oilsands regions in Alberta. The geothermal gradient map produced using heat flow and thermal conductivity for the entire Phanerozoic column suggests that the overall gradient of the entire column is less than the gradients calculated directly from industry measurements. (2) Paleoclimatic corrections must be applied , since this region has experienced a significant increase in surface temperatures since the end of the last ice age causing a perturbation of shallow heat flow. For this reason, estimates of geothermal gradient based on shallow data are not necessarily characteristic of the whole sedimentary column and can lead to errors in temperature prediction at depth. (3) Improved measurements have been made of the thermal conductivity of the crystalline basement rocks (average = 2.9±0.8 W/m K). Thermal conductivity exhibits significant spatial variability and to a large degree controls the temperature conditions in the Precambrian crystalline basement rocks and its heat content at given heat flow-heat generation. When these steps are used to calculate subsurface temperatures, it can be shown that the temperatures required for geothermal

  20. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    NASA Astrophysics Data System (ADS)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare

  1. Geothermal Exploration and Resource Assessment | Geothermal Technologies |

    Science.gov Websites

    , drilling, and resource assessments and the widespread adoption of under-utilized low-temperature resources -temperature geothermal resource technologies. Drilling The drilling of wells to find and develop geothermal low-temperature, sedimentary, co-produced, and enhanced geothermal system resources. We also work to

  2. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  3. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  4. La prospection geothermique de surface au Maroc: hydrodynamisme, anomalies thermiques et indices de surfaceGeothermal prospecting in Morocco: hydrodynamics, thermal anomalies and surface indices

    NASA Astrophysics Data System (ADS)

    Zarhloule, Y.; Lahrache, A.; Ben Abidate, L.; Khattach, D.; Bouri, S.; Boukdir, A.; Ben Dhia, H.

    2001-05-01

    Shallow geothermal prospecting ( < 700 m) has been performed in four zones in Morocco for which few deep data are available: northwestern basin, northeastern basin, Tadla Basin and Agadir Basin. These areas are different geologically and hydrogeologically. The temperature data from 250 wells at depths between 15 and 500 m have been analysed in order to estimate the natural geothermal gradient in these areas, to determine the principal thermal anomalies, to identify the main thermal indices and to characterise the recharge, discharge and potential mixing limits of the aquifers. The hydrostratigraphical study of each basin revealed several potential reservoir layers in which the Turonian carbonate aquifer (Tadal and Agadir Basins) and Liassic acquifer (Moroccan northwestern and northeastern basins) are the most important hot water reservoirs in Morocco. The recharge zones of each aquifer are characterised by high topography, high water potential, shallow cold water, low geothermal gradient and negative anomalies. The discharge zones are characterized by low topography, low piezometric level, high geothermal gradient, high temperature with hot springs and positive anomalies. The main thermal indices and the principal thermal anomalies that coincide with the artesian zones of the Turonian and Liassic aquifers have been identified.

  5. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    USGS Publications Warehouse

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  6. Shallow geothermal investigations into the existence of the Valles Caldera outflow plume near Ponderosa and Jemez Pueblo, north-central, New Mexico

    NASA Astrophysics Data System (ADS)

    Salaz, Robert Ezekiel

    shallow meteoric waters within the Jemez Mountains. The geochemical complexity of the data point towards separate systems with distinct geochemical characteristics, i.e. confined aquifers, but the complexity and sparseness of data make further interpretations difficult. No evidence of geothermal mixing was observed in any of the samples. Temperature data taken from shallow water wells that penetrate Tertiary Zia Sandstone and Triassic Chinle Group sediments (less than 200 m) show higher than expected geothermal gradients, up to 93 °C/km. Transient temperature models of an aquifer with warm water flowing laterally may explain how an expected background temperature gradient in the Rio Grande rift of 30 °C/km could be heated to 80 °C/km. The aquifer is the Madera Limestone, with a projected depth of 900 meters, which lies below the Abo Formation and the Chinle Group aquitards. The models point toward a period of advective heat transport of a deep stratigraphically-bound, laterally flowing geothermal aquifer and subsequent conductive heating of the strata above the aquifer. Travertine data show elevated delta13C values from 1.31‰ -- 5.18‰ PDB, indicating a possible magmatic source. delta18O paleotemperature results indicate spring temperatures of approximately 33 °C. U-series dates yield an age for one travertine mound, ~150 meters above the active stream channel, of approximately 450 ka +/-17 ka. These data are also consistent with published data from Soda Dam. Although the data show mixed indications of a potential geothermal resource at depth, it is evident that there is no leakage of this resource into the shallow groundwater within the study area. However, higher-than-normal geothermal gradients may indicate a thermal source at depth. Travertine data are sparse, but support the existence of thermal activity related to geothermal events from the Valles caldera in the past. (Abstract shortened by ProQuest.).

  7. Geothermal Development and the Use of Categorical Exclusions (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In thismore » paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing

  8. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerashchenko, Sergiy; Livescu, Daniel

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  9. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerashchenko, S.; Livescu, D., E-mail: livescu@lanl.gov

    The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analyticalmore » solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ < 0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  10. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE PAGES

    Gerashchenko, Sergiy; Livescu, Daniel

    2016-07-28

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  11. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by allmore » geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.« less

  12. Inverse geothermal modelling applied to Danish sedimentary basins

    NASA Astrophysics Data System (ADS)

    Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.

    2017-10-01

    This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures

  13. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for themore » possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.« less

  14. Geophysical investigations of a geothermal anomaly at Wadi Ghadir, eastern Egypt

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Boulos, F. K.; Hennin, S. F.; El-Sherif, A. A.; El-Sayed, A. A.; Basta, N. Z.; Melek, Y. S.

    1984-01-01

    During regional heat flow studies a geothermal anomaly was discovered approximately 2 km from the Red Sea coast at Wadi Ghadir, in the Red Sea Hills of Eastern Egypt. A temperature gradient of 55 C/km was measured in a 150 m drillhole at this location, indicating a heat flow of approximately 175 mw/sqm, approximately four times the regional background heat flow for Egypt. Gravity and magnetic data were collected along Wadi Ghadir, and combined with offshore gravity data, to investigate the source of the thermal anomaly. Magnetic anomalies in the profile do not coincide with the thermal anomaly, but were observed to correlate with outcrops of basic rocks. Other regional heat flow and gravity data indicate that the transition from continental to oceanic type lithosphere occurs close to the Red Sea margin, and that the regional thermal anomaly is possibly related to the formation of the Red Sea.

  15. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  16. Geothermal Money Book [Geothermal Outreach and Project Financing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This ismore » where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  17. Geothermal Coproduction and Hybrid Systems | Geothermal Technologies | NREL

    Science.gov Websites

    systems. Geothermal and Oil and Gas NREL experts are working to find ways to effectively use renewable resources in combination with fossil energy. Geothermal and oil and gas hybrid systems make use of wells already drilled by oil and gas developers. Using coproduced geothermal fluids for power production from

  18. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  19. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  20. High-potential geothermal energy resource areas of Nigeria and their geologic and geophysical assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babalola, O.O.

    1984-04-01

    The widespread occurrence of geothermal manifestations in Nigeria is significant because the wide applicability and relative ease of exploitation of geothermal energy is of vital importance to an industrializing nation like Nigeria. There are two known geothermal resource areas (KGRAs) in Nigeria: the Ikogosi Warm Springs of Ondo State and the Wikki Warm Springs of Bauchi State. These surficial effusions result from the circulation of water to great depths through faults in the basement complex rocks of the area. Within sedimentary areas, high geothermal gradient trends are identified in the Lagos subbasin, the Okitipupa ridge, the Auchi-Agbede are of themore » Benin flank/hinge line, and the Abakaliki anticlinorium. The deeper Cretaceous and Tertiary sequences of the Niger delta are geopressured geothermal horizons. In the Benue foldbelt, extending from the Abalaliki anticlinorium to the Keana anticline and the Zambuk ridge, several magmatic intrusions emplaced during the Late Cretaceous line the axis of the Benue trough. Positive Bouguer gravity anomalies also parallel this trough and are interpreted to indicate shallow mantle. Parts of this belt and the Ikom, the Jos plateau, Bauchi plateau, and the Adamawa areas, experienced Cenozoic volcanism and magmatism.« less

  1. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    USGS Publications Warehouse

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  2. Deep Geothermal Energy for Lower Saxony (North Germany) - Combined Investigations of Geothermal Reservoir Characteristics

    NASA Astrophysics Data System (ADS)

    Hahne, Barbara; Thomas, Rüdiger

    2014-05-01

    In Germany, successful deep geothermal projects are mainly situated in Southern Germany in the Molassebecken, furthermore in the Upper Rhine Graben and, to a minor extend, in the North German Basin. Mostly they are hydrothermal projects with the aim of heat production. In a few cases, they are also constructed for the generation of electricity. In the North German Basin temperature gradients are moderate. Therefore, deep drilling of several thousand meters is necessary to reach temperatures high enough for electricity production. However, the porosity of the sedimentary rocks is not sufficient for hydrothermal projects, so that natural fracture zones have to be used or the rocks must be hydraulically stimulated. In order to make deep geothermal projects in Lower Saxony (Northern Germany) economically more attractive, the interdisciplinary research program "Geothermal Energy and High-Performance Drilling" (gebo) was initiated in 2009. It comprises four focus areas: Geosystem, Drilling Technology, Materials and Technical System and aims at improving exploration of the geothermal reservoir, reducing costs of drilling and optimizing exploitation. Here we want to give an overview of results of the focus area "Geosystem" which investigates geological, geophysical, geochemical and modeling aspects of the geothermal reservoir. Geological and rock mechanical investigations in quarrys and core samples give a comprehensive overview on rock properties and fracture zone characteristics in sandstones and carbonates. We also show that it is possible to transfer results of rock property measurements from quarry samples to core samples or to in situ conditions by use of empirical relations. Geophysical prospecting methods were tested near the surface in a North German Graben system. We aim at transferring the results to the prospection of deep situated fracture zones. The comparison of P- and S-wave measurements shows that we can get hints on a possible fluid content of the

  3. Geothermal Impact Analysis | Geothermal Technologies | NREL

    Science.gov Websites

    on potential geothermal growth scenarios, jobs and economic impacts, clean energy manufacturing geothermal resources. We: Perform resource analysis Develop techno-economic models Quantify environmental growth scenarios across multiple market sectors. Learn more about the GeoVision Study. Jobs and Economic

  4. Geothermal Resource Reporting Metric (GRRM) Developed for the U.S. Department of Energy's Geothermal Technologies Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.

    This paper reviews a methodology being developed for reporting geothermal resources and project progress. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. This framework will allow the GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress and the public. Standards and reporting codes used in other countries and energy sectors provide guidance to develop the relevant geothermal methodology, but industry feedback andmore » our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by the GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for evaluating and reporting on GTO funding according to resource grade (geological, technical and socio-economic) and project progress. This methodology would allow GTO to target funding, measure impact by monitoring the progression of projects, or assess geological potential of targeted areas for development.« less

  5. Assessment of the origin and geothermal potential of the thermal waters by hydro-isotope geochemistry: Eskisehir province, Turkey.

    PubMed

    Yuce, Galip; Italiano, Francesco; Yasin, Didem; Taskiran, Lutfi; Gulbay, Ahmet Hilmi

    2017-05-01

    The thermal fluids vented over Eskisehir province have been investigated for their origin and to estimate the geothermal potential of the area. Thermal waters as well as bubbling and dissolved gases were collected and analysed for their chemical and isotopic features. Their isotopic composition varies in the range from -11.5 to -7.7 ‰ for δ 18 O, -84 and -57 ‰ for δ 2 H, and 0-7.2 TU for tritium. The gases (bubbling and dissolved) are mostly N 2 -dominated with a significant amount of CO 2 . The helium isotopic ratios are in the range of 0.2-0.66 R/Rac, indicate remarkable mantle-He contribution ranging between 2 and 10 % in the whole study area. Considering the estimated geothermal gradient about three times higher than the normal gradient, and the reservoir temperatures estimated to be between 50 and 100 °C using quartz and chalcedony geothermometers, a circulation model was built where possible mixing with shallow waters cool down the uprising geothermal fluids.

  6. Simulation of Mach Probes in Non-Uniform Magnetized Plasmas: the Influence of a Background Density Gradient

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Hutchinson, Ian H.

    2013-10-01

    Mach probes can be used to measure transverse flow in magnetized plasmas, but what they actually measure in strongly non-uniform plasmas has not been definitively established. A fluid treatment in previous work has suggested that the diamagnetic drifts associated with background density and temperature gradients affect transverse flow measurements, but detailed computational study is required to validate and elaborate on those results; it is really a kinetic problem, since the probe deforms and introduces voids in the ion and electron distribution functions. A new code, the Plasma-Object Simulator with Iterated Trajectories (POSIT) has been developed to self-consistently compute the steady-state six-dimensional ion and electron distribution functions in the perturbed plasma. Particle trajectories are integrated backwards in time to the domain boundary, where arbitrary background distribution functions can be specified. This allows POSIT to compute the ion and electron density at each node of its unstructured mesh, update the potential based on those densities, and then iterate until convergence. POSIT is used to study the impact of a background density gradient on transverse Mach probe measurements, and the results compared to the previous fluid theory. C.B. Haakonsen was supported in part by NSF/DOE Grant No. DE-FG02-06ER54512, and in part by an SCGF award administered by ORISE under DOE Contract No. DE-AC05-06OR23100.

  7. Geothermal pilot study final report: creating an international geothermal energy community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E.

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable communitymore » of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)« less

  8. Geothermal tomorrow 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  9. Geothermal probabilistic cost study

    NASA Technical Reports Server (NTRS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-01-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  10. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  11. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential

    DOE PAGES

    McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; ...

    2016-04-10

    A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer,more » corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.« less

  12. Basics of applied geothermal engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlage, E.F.

    1976-01-01

    The following chapters are included: (1) born of fire, (2) milestones with tectonics, (3) a world in geothermal review, (4) simple mechanical and electrical facts for geothermal, (5) elementary hydraulics and pumping, (6) elementary heat, (7) application of steam, (8) geothermal hydroponics, (9) designing for a geothermal diary, (10) review of geothermal prime movers for power production, (11) design procedures-geothermal house heating, (12) cooling with geothermal refrigeration, and (13) geothermal synthesis-new heat for the world. (MOW)

  13. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction

  14. Guidebook to Geothermal Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J. P.; Meurice, J.; Wobus, N.

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  15. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall,more » the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.« less

  16. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  17. Direct application of geothermal energy at the L'eggs Product Plant, Las Cruces, New Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-02-01

    The study program to determine the feasibility of interfacing a potential geothermal resource of Dona Ana County, New Mexico L'eggs Product industrial process is discussed in this final report. Five separate sites were evaluated initially as to geothermal potential and technical feasibility. Preliminary analysis revealed that three sites were considered normal, but that two sites (about three miles from the L'eggs Plant) had very high shallow subsurface temperature gradients (up to 14.85/sup 0/F/100 ft). An initial engineering analysis showed that to meet the L'eggs plant temperature and energy requirements a geothermal fluid temperature of about 250/sup 0/F and 200 gpmmore » flow rate would be necessary. A brief economic comparison indicated that the L'eggs plant site and a geothermal site approximately four miles from the plant did merit further investigation. Detailed engineering and economic design and analysis of these two sites (including the drilling of an 1873 feet deep temperature gradient test hole at the L'eggs Plant) showed that development of the four mile distant site was technically feasible and was the more economic option. It was determined that a single-stage flash system interface design would be most appropriate for the L'eggs Plant. Approximately 39 billion Btu/yr of fossil fuel could be replaced with geothermal energy at the L'eggs facility for a total installed system cost of slightly over $2 million. The projected economic payback period was calculated to be 9.2 years before taxes. This payback was not considered acceptable by L'eggs Products, Inc., to merit additional design or construction work at this time.« less

  18. High geothermal heat flux measured below the West Antarctic Ice Sheet

    PubMed Central

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  19. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    PubMed

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  20. Geothermal characteristics of deep wells using geophysical logs in Pohang area, Korea

    NASA Astrophysics Data System (ADS)

    LIM, W.; Hamm, S. Y.; Lee, C.; Song, Y.; Kim, H.

    2016-12-01

    Pohang area displays a larger potential of geothermal energy with the highest heat flow of 83 mWm-2 in South Korea. A geothermal binary power plant with a generation capacity of 1.5MW using enhanced geothermal system (EGS) is under construction in Pohang area and will be completed until 2017. This study aims to reveal geothermal characteristics of four wells (BH-1 to BH-4 wells) of 2,383 m in depth in Pohang area, using geophysical logs. The geology of the study area is composed of tertiary mudstone of 200 - 359.1 m, tuff of 73 - 240 m, sandstone/mudstone of 46 - 907 m, rhyolite of 259 - 375 m, and andesitic volcanic breccia of 834 m in thicknesses from the surface, with granodiorite at bottom. By the result of the study, temperature and maximum electrical conductivity (EC) are 69.5°C at 1,502.6 m and 1,162 μS/cm at BH-2 well, 44.4°C at 912.3 m and 1,105 μS/cm at BH-3 well, and 82.5°C at 1,981.3 m and 3,412 μS/cm at BH-4 well. Thermal conductivity values at saturated state are 2.14 - 3.95 W/m-K (average 3.47 W/m-K) at BH-1 well and 2.36 - 3.61 W/m-K (average 2.85 W/m-K) at BH-4 well. ß (determining heat flow rate and up/down direction) values were estimated by using 1-D steady-state heat transfer equation and were determined as -0.77 - 0.99 with the geothermal gradients (Ks) of 42.5 - 46.3°C/km at BH-1 well, -3.15 - 3.05 with the Ks of 25.0 - 29.1°C/km at BH-2, -1.80 - 2.09 with the Ks of 20.0 - 23.0°C/km at BH-3 well, and -4.10 - 5.18 with the Ks of 30.2 - 39.0°C/km at BH-4 well. Most depths of all the wells showed upward heat transfer. Based on the geophysical logs, the main aquifer is located between 200 and 300 meters. KEY WORDS: Geothermal gradient, thermal conductivity, geophysical logs, ß value, heat transfer equation, Pohang area Acknowledgement This work was supported by grants from the Principal Research Fund of Korea Institute of the Geoscience and Mineral Resources (KIGAM 16-3411).

  1. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing

    2014-02-01

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer.more » We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.« less

  2. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  3. Advanced Geothermal Turbodrill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of largemore » diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.« less

  4. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-03-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  5. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-07-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  6. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    USGS Publications Warehouse

    Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.

    1999-01-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.

  7. Geothermal Energy Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followedmore » by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in

  8. Geothermal System Extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnerson, Jon; Pardy, James J.

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected backmore » into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.« less

  9. Publications | Geothermal Technologies | NREL

    Science.gov Websites

    Publications Publications NREL publishes a variety of publications related to geothermal energy geothermal energy research. Featured Publications Mexico's Geothermal Market Assessment Report NREL Technical investment in the country's geothermal energy sector. Since 2013, Mexico has enacted comprehensive reforms to

  10. Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  11. Geothermal fields of China

    NASA Astrophysics Data System (ADS)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  12. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig Turchi; Guangdong Zhu; Michael Wagner

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant usingmore » the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.« less

  13. Geothermal systems: Principles and case histories

    NASA Astrophysics Data System (ADS)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  14. Measuring Impact of U.S. DOE Geothermal Technologies Office Funding: Considerations for Development of a Geothermal Resource Reporting Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.

    This paper reviews existing methodologies and reporting codes used to describe extracted energy resources such as coal and oil and describes a comparable proposed methodology to describe geothermal resources. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of assessing the impacts of its funding programs. This framework will allow for GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress. Standards and reporting codes used in other countries and energy sectorsmore » provide guidance to inform development of a geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and we sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for assessing and reporting on GTO funding according to resource knowledge and resource grade (or quality). This methodology would allow GTO to target funding or measure impact by progression of projects or geological potential for development.« less

  15. Geothermal Maps | Geospatial Data Science | NREL

    Science.gov Websites

    presented in these maps was aggregated from the Geothermal Energy Association 2014 Annual U.S. and Global Geothermal Maps Geothermal Maps Our geothermal map collection covers U.S. geothermal power plants , geothermal resource potential, and geothermal power generation. If you have difficulty accessing these maps

  16. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1981-01-01

    Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predictingmore » reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.« less

  17. Geothermal Energy Basics | NREL

    Science.gov Websites

    Geothermal Energy Basics Geothermal Energy Basics Many technologies have been developed to take advantage of geothermal energy-the heat from the earth. This heat can be drawn from several sources: hot hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada

  18. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  19. New Zealand geothermal: Wairakei -- 40 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  20. "Assistance to States on Geothermal Energy"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreachmore » to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  1. GEOTHERM user guide

    USGS Publications Warehouse

    Swanson, James R.

    1977-01-01

    GEOTHERM is a computerized geothermal resources file developed by the U.S. Geological Survey. The file contains data on geothermal fields, wells, and chemical analyses from the United states and international sources. The General Information Processing System (GIPSY) in the IBM 370/155 computer is used to store and retrieve data. The GIPSY retrieval program contains simple commands which can be used to search the file, select a narrowly defined subset, sort the records, and output the data in a variety of forms. Eight commands are listed and explained so that the GEOTHERM file can be accessed directly by geologists. No programming experience is necessary to retrieve data from the file.

  2. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  3. Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan

    NASA Astrophysics Data System (ADS)

    Saibi, H.; Aboud, E.; Gottsmann, J.

    2015-11-01

    The geologic setting of Afghanistan has the potential to contain significant mineral, petroleum and geothermal resources. However, much of the country's potential remains unknown due to limited exploration surveys. Here, we present countrywide aeromagnetic data to estimate the Curie point depth (CPD) and to evaluate the geothermal exploration potential. CPD is an isothermal surface at which magnetic minerals lose their magnetization and as such outlines an isotherm of about 580 °C. We use spectral analysis on the aeromagnetic data to estimate the CPD spatial distribution and compare our findings with known geothermal fields in the western part of Afghanistan. The results outline four regions with geothermal potential: 1) regions of shallow Curie point depths (∼16-21 km) are located in the Helmand basin. 2) regions of intermediate depths (∼21-27 km) are located in the southern Helmand basin and the Baluchistan area. 3) Regions of great depths (∼25-35 km) are located in the Farad block. 4) Regions of greatest depths (∼35-40 km) are located in the western part of the northern Afghanistan platform. The deduced thermal structure in western Afghanistan relates to the collision of the Eurasian and Indian plates, while the shallow CPDs are related to crustal thinning. This study also shows that the geothermal systems are associated with complex magmatic and tectonic association of major intrusions and fault systems. Our results imply geothermal gradients ranging from 14 °C/km to 36 °C/km and heat-flow values ranging from 36 to 90 mW/m2 for the study area.

  4. Characterization of geothermal paleosystem in the Lesser Antilles volcanic arc: structural, petrographic, thermodynamic and petrophysics analysis of Terre-de-Haut (Les Saintes archipelago, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Favier, Alexiane; Navelot, Vivien; Verati, Chrystèle; Lardeaux, Jean-Marc; Corsini, Michel; Diraison, Marc; Géraud, Yves; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    This survey takes part in the GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program "Investments for the future". The program focuses on the exploration of geothermal resource in the Lesser Antilles volcanic arc. An exclusive license has been issued in the Vieux-Habitants area (Basse-Terre, Guadeloupe) to carry on the development of high-temperature geothermal energy in this active volcanic region. The deep geothermal reservoir on the Basse-Terre island could be characterized in exhumed paleosystems. The reference paleosystem in the Guadeloupe archipelago is located in Terre-de-Haut. Four major fault directions have been highlighted N000-N020, N050-N070, N090-N110 and N130-N140. Field observations emphasize three major cleavage directions overlaying the fault systems: N035-N060, N080-N110, N145-N165. Volcanic rocks affected by cleavage display several metamorphic transformation grades. The more transformed calc-alkaline rocks are located at the intersection of several cleavage directions. Mineralogical transformations due to metamorphism and surimposed fractures are also responsible for strong changes of petrophysical properties. In comparison with the reference protolith of andesitic lava flows outcropping in Vieux-Habitants, which have porosity and permeability lower than 5 % and 10-15 m2, andesites of Terre-de-Haut have better reservoir properties with connected porosity and permeability higher than 15 % and 10-14-10-15 m2 respectively. Thermodynamic modelling based on petrography and chemical composition of the most transformed rocks highlights a steady state mineral assemblage between 0.25 - 1.5 kbar and 350 - 450 ˚ C. It corresponds to a geothermal gradient higher than 120 to 150˚ C/km. This is consistent with temperatures measured in Bouillante wells. However, this geothermal gradient is notably higher to a usual volcanic arc conductive gradient estimated to 70-100˚ C/km. It can be explained

  5. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  6. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Mines, Greg; Turchi, Craig

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods ofmore » high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal

  7. Characterization of deep geothermal energy resources using Electro-Magnetic methods, Belgium

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Harcout-Menou, Virginie; De Ridder, Fjo; Claessens, Bert; Laenen, Ben

    2014-05-01

    Sedimentary basins in Northwest Europe have significant potential for low to medium enthalpy, deep geothermal energy resources. These resources are currently assessed using standard exploration techniques (seismic investigations followed by drilling of a borehole). This has enabled identification of geothermal resources but such techniques are extremely costly. The high cost of exploration remains one of the main barriers to geothermal project development due to the lack of capital in the geothermal industry. We will test the possibility of using the Electro-Magnetic (EM) methods to aid identification of geothermal resources in conjunction with more traditional exploration methods. An EM campaign could cost a third of a seismic campaign and is also often a passive technology, resulting in smaller environmental impacts than seismic surveys or drilling. EM methods image changes in the resistivity of the earth's sub-surface using natural or induced frequency dependant variations of electric and magnetic fields. Changes in resistivity can be interpreted as representing different subsurface properties including changes in rock type, chemistry, temperature and/or hydraulic transmissivity. While EM techniques have proven to be useful in geothermal exploration in high enthalpy areas in the last 2-3 years only a handful of studies assess their applicability in low enthalpy sedimentary basins. Challenges include identifying which sub-surface features cause changes in electrical resistivity as low enthalpy reservoirs are unlikely to exhibit the hydrothermally altered clay layer above the geothermal aquifer that is typical for high enthalpy reservoirs. Yet a principal challenge is likely to be the high levels of industrialisation in the areas of interest. Infrastructure such as train tracks and power cables can create a high level of background noise that can obfuscate the relevant signal. We present our plans for an EM campaign in the Flemish region of Belgium. Field

  8. Geothermal energy - Ready for use

    NASA Astrophysics Data System (ADS)

    Miskell, J. T.

    1980-11-01

    The use of geothermal energy in the United States for heating applications is discussed. The three major forms of geothermal energy, hydrothermal, pertrothermal and geopressured, are briefly reviewed, with attention given to the types of energy available from each. Federally supported projects demonstrating the use of geothermal hot water to heat homes in Boise, Idaho, and hot dry rocks in Fenton Hill, New Mexico to produce electricity are presented. Data available from existing geothermal energy applications are presented which show that geothermal is cost competitive with conventional energy sources using existing technology, and government economic incentives to the producers and users of geothermal energy are indicated. Finally, advanced equipment currently under development for the generation of electricity from geothermal resources at reduced costs is presented.

  9. Geothermal Data | Geospatial Data Science | NREL

    Science.gov Websites

    Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana provides additional information on Geothermal Data Geothermal Data These datasets detail the geothermal resource available in the Metadata Geothermal Zip 5.4 MB 03/05/2009 geothermal.xml This dataset is a qualitative assessment of

  10. Classification of public lands valuable for geothermal steam and associated geothermal resources

    USGS Publications Warehouse

    Godwin, Larry H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.; Wayland, R.G.

    1971-01-01

    The Organic Act of 1879 (43 U.S.C. 31) that established the U.S. Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral sources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the U.S. Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Star. 1566). The concept of a geothermal resources province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a reasonable possibility of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a 'known geothermal resources area' is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  11. Classification of public lands valuable for geothermal steam and associated geothermal resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands undermore » the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.« less

  12. Geothermal exploration in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radja, V.T.

    1984-03-01

    Indonesia is blessed with geothermal resources. This fortunate aspect is directly related to the fact that the archipelago is an island arc created by a subduction zone. Evidence of geothermal activity is common throughout the Islands. Among the islands' many active volcanos are numerous geothermal phenomena. Almost half of the volcanic centers in Indonesia (88 out of 177 centers) contain fumarole and sulfatare features. A brief history of the exploration for geothermal energy in Indonesia is presented.

  13. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trexler, D.T.; Flynn, T.; Koenig, B.A.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, andmore » temperature gradient drilling.« less

  14. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    DOE Data Explorer

    Richard Zehner

    2012-02-01

    These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable "plumbing system" that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Credits: These lineament

  15. Geothermal areas in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuja, T.A.

    1986-01-01

    In this paper an attempt has been made to correlate the tectonic and geologic features with surface manifestations of geothermal activity in Pakistan to delineate prospective areas for exploration and development of geothermal energy. Underthrusting of the Arabian plate beneath the Eurasian plate has resulted in the formation of Chagai volcanic arc which extends into Iran. Quaternary volcanics in this environment, along with the presence of thermal springs, is an important geotectonic feature revealing the possible existence of geothermal fields. Geothermal activity in the northern areas of Pakistan, as evidenced by thermal springs, is the likely result of collision andmore » underthrusting of the Indian plate beneath the Eurasian plate. Numerous hot springs are found along the Main Mantle thrust and the Main Karakorum thrust in Chilas and Hunza areas respectively. The concentration of hot springs in Sind Province is also indicative of geothermal activity. A string of thermal seepages and springs following the alignment of the Syntaxial Bend in Punjab Province is also noteworthy from the geothermal viewpoint. In Baluchistan Province (southwest Pakistan), Hamun-e-Mushkel, a graben structure, also shows geothermal prospects on the basis of aeromagnetic studies.« less

  16. GeothermalLCOE_NoExclusionsforAtlas

    Science.gov Websites

    a qualitative assessment of geothermal potential (Enhanced Geothermal System EGS) for the US based from 3 to 10 km provided by Southern Methodist University Geothermal Laboratory (Blackwell & ;http://www.nrel.gov/gis/cfm/data/GIS_Data_Technology_Specific/United_States/Geothermal

  17. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservationmore » planning efforts, particularly at the Salton Sea.« less

  18. Reducing Subjectivity in Geothermal Exploration Decision Making (Presentation); NREL(National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, S.; Young, K.

    Geothermal exploration projects have a significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Two of the largest challenges for increased geothermal deployment are 1) understanding when and how to proceed in an exploration program, and 2) when to walk away from a site. Current methodologies for exploration decision-making are formulatedby subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a given location,more » including go/no-go decision points to help developers and investors decide when to give up on alocation. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of aparticular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basicgeothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This secondapproach was

  19. Applicability of `GREATEM' system in mapping geothermal regions in volcanic areas

    NASA Astrophysics Data System (ADS)

    Verma, S. K.; Mogi, T.; Abd Allah, S.

    2010-12-01

    The ‘GREATEM’ helicopter borne TEM system employs a long grounded cable as transmitter while a light weight receiver coil is flown below a helicopter. This arrangement greatly simplifies the flying logistics and speed of the survey. Also there is very little reduction in the anomaly amplitude when the survey altitude is increased. This is a great advantage particularly in volcanic regions usually having rough topography, as the ‘GREATEM’ survey can be done with helicopter flying at a safe height. Many volcanic areas have anomalous geothermal regions containing hydrothermal fluids. Eruption of volcanoes may cause changes in the thermal character and spatial distribution of these regions. Mapping of these regions is important as they may be associated with hazards. Sometimes, if the temperature is high and volume of the geothermal region is large, they can provide a good source of geothermal energy. Applicability of ‘GREATEM’ system in mapping geothermal regions in volcanic areas is studied by numerical modeling. We have considered a 3D conductor at a shallow depth (50 t0 100m), representing the anomalous geothermal region with dimensions of 500m X 500m X 500m. Different types of geological host environment are considered by varying their resistivities from 10 Ohm.m to 2000 Ohm.m. The ‘GREATEM’ response is analyzed as ‘Percentage Difference (PD)’ over the response produced by the host environment. It is found that the “GREATEM’ system can delineate the geothermal region well. Many geothermal regions are associated with a deeper (> 1 km) reservoir of much larger dimensions. In this situation also it is found that the ‘GREATEM’ system can pick up the response of the shallower geothermal region against the background response of different types of geological host environment containing the deeper reservoir (Figure 1).

  20. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  1. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  2. Geothermal Heat Pump Basics | NREL

    Science.gov Websites

    a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly

  3. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  4. Radar and infrared remote sensing of geothermal features at Pilgrim Springs, Alaska

    NASA Technical Reports Server (NTRS)

    Dean, K. G.; Forbes, R. B.; Turner, D. L.; Eaton, F. D.; Sullivan, K. D.

    1982-01-01

    High-altitude radar and thermal imagery collected by the NASA research aircraft WB57F were used to examine the structural setting and distribution of radiant temperatures of geothermal anomalies in the Pilgrim Springs, Alaska area. Like-polarized radar imagery with perpendicular look directions provides the best structural data for lineament analysis, although more than half the mapped lineaments are easily detectable on conventional aerial photography. Radiometer data and imagery from a thermal scanner were used to evaluate radiant surface temperatures, which ranged from 3 to 17 C. The evening imagery, which utilized density-slicing techniques, detected thermal anomalies associated with geothermal heat sources. The study indicates that high-altitude predawn thermal imagery may be able to locate relatively large areas of hot ground in site-specific studies in the vegetated Alaskan terrain. This imagery will probably not detect gentle lateral gradients.

  5. Online, interactive assessment of geothermal energy potential in the U.S

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Clark, R.; Coleman, C.; Love, D.; Pape, E.; Musil, L.

    2011-12-01

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online 'mashups,' data integration, and applications. Emphasis is first to make as much information as possible accessible, with a long range goal to make data interoperable through standardized services and interchange formats. Resources may be made available as documents (files) in whatever format they are currently in, converted to tabular files using standard content models, or published as Open Geospatial Consortium or ESRI Web services using the standard xml schema. An initial set of thirty geoscience data content models are in use or under development to define standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps (depth to bedrock), aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from NGDS participating institutions (USGS, Southern Methodist University, Boise State

  6. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    NASA Technical Reports Server (NTRS)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  7. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    NASA Astrophysics Data System (ADS)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    more or less in agreement with low resisitivity boundary derived from MT and DC resistivity survey. The area defined as part of geothermal area from this method is also validate with drilling data that give high temperature gradient. It suggests that the method use in this study is applicable and reliable.

  8. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  9. Apatite (U-Th)/He Thermochronometry as an innovative Geothermal Exploration Tool - A case study from the Wassuk Range, Hawthorne, Nevada

    NASA Astrophysics Data System (ADS)

    Gorynski, K. E.; Stockli, D. F.; Walker, J. D.

    2010-12-01

    A utility-grade geothermal system requires increased, near-surface temperatures (>120°C), water to transfer heat, and structural or sedimentological fluid conduits. In extensional tectonic settings, geothermal anomalies often occur in areas with recent, high strain accumulation and complex faulting (i.e., cross-faults, accommodation zones) where exhumation and uplift of footwall rocks transfer heat, via advection, to the near-surface which is further carried by water through structural fluid conduits. Apatite helium (AHe) thermochronometric footwall age mapping can be used in conjunction with these genetic occurrence models to further focus regional-scale geothermal exploration efforts to areas of probabilistic increased fracture permeability and most recent, rapid footwall exhumation. Furthermore, partially reset apatites resulting from interaction with hydrothermal fluids (>40°C) will show which areas have been hottest most recently. This case study in the Wassuk Range, Hawthrone, NV confirms the utility of AHe thermochronometry as a geothermal exploration tool. A dense grid of footwall samples were collected adjacent to the Hawthorne geothermal anomaly (>85°C BHT) located in the hanging wall of the Wassuk Range block. Our data show that the location of the present-day geothermal anomaly correlates with the location of 1) the most recent episode of rapid footwall exhumation at 3.5-4 Ma, 2) km scale accommodation zones between differentially tilted Wassuk Range blocks, and 3) an elevated Miocene geothermal gradient. Furthermore, anomalously young AHe ages (<3.5 Ma) mimic the lateral extent of the Hawthorne geothermal anomaly and likely resulted from interaction with a deep-seated geothermal cell or hot hydrothermal fluids.

  10. Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field

    NASA Astrophysics Data System (ADS)

    Syarifudin, M.; Octavius, F.; Maurice, K.

    2016-09-01

    The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.

  11. A comparison of long-term changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel T.; Shearer, Peter M.; Borsa, Adrian A.; Fialko, Yuri

    2016-01-01

    Geothermal energy is an important source of renewable energy, yet its production is known to induce seismicity. Here we analyze seismicity at the three largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We focus on resolving the temporal evolution of seismicity rates, which provides important observational constraints on how geothermal fields respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two components: (1) the interaction rate due to earthquake-earthquake triggering and (2) the smoothly varying background rate controlled by other time-dependent stresses, including anthropogenic forcing. We apply our methodology to compare long-term changes in seismicity to monthly records of fluid injection and withdrawal. At The Geysers, we find that the background seismicity rate is highly correlated with fluid injection, with the mean rate increasing by approximately 50% and exhibiting strong seasonal fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast, at both Salton Sea and Coso, the background seismicity rate has remained relatively stable since 1990, though both experience short-term rate fluctuations that are not obviously modulated by geothermal plant operation. We also observe significant temporal variations in Gutenberg-Richter b value, earthquake magnitude distribution, and earthquake depth distribution, providing further evidence for the dynamic evolution of stresses within these fields. The differing field-wide responses to fluid injection and withdrawal may reflect differences in in situ reservoir conditions and local tectonics, suggesting that a complex interplay of natural and anthropogenic stressing controls seismicity within California's geothermal fields.

  12. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    PubMed

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  13. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  14. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  15. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    USGS Publications Warehouse

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  16. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    USGS Publications Warehouse

    Nimz, Gregory; Janik, Cathy; Goff, Fraser; Dunlap, Charles; Huebner, Mark; Counce, Dale; Johnson, Stuart D.

    1999-01-01

    Chemical and isotopic analyses of Dixie Valley regional waters indicated several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids (~12-14 ka) appear derived from water similar in composition to non thermal groundwater observed today in valley artesian well (also ~14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the range, more extensive interaction with deep seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  17. Geothermal Conceptual Model in Earthquake Swarm Area: Constrains from Physical Properties of Supercritical Fluids and Dissipative Theory

    NASA Astrophysics Data System (ADS)

    Wang, S. C.; Lee, C. S.

    2016-12-01

    In recent five years, geothermal energy became one of the most prosperous renewable energy in the world, but produces only 0.5% of the global electricity. Why this great potential of green energy cannot replace the fuel and nuclear energy? The necessity of complicated exploration procedures and precious experts in geothermal field is similar to that of the oil and gas industry. The Yilan Plain (NE Taiwan) is one of the hot area for geothermal development and research in the second phase of National Energy Program (NEP-II). The geological and geophysical studies of the area indicate that the Yilan Plain is an extension of the Okinawa Trough back arc rifting which provide the geothermal resource. Based on the new constrains from properties of supercritical fluids and dissipative structure theory, the geophysical evidence give confident clues on how the geothermal system evolved at depth. The geothermal conceptual model in NEP-II indicates that the volcanic intrusion under the complicate fault system is possibly beneath the Yilan Plain. However, the bottom temperature of first deep drilling and geochemical evidence in NEP-II imply no volcanic intrusion. In contrast, our results show that seismic activities in geothermal field observed self-organization, and are consistent with the brittle-ductile / brittle-plastic transition, which indicates that supercritical fluids triggered earthquake swarms. The geothermal gradient and geochemical anomalies in Yilan Plain indicate an open system far from equilibrium. Mantle and crust exchange energy and materials through supercritical fluids to generate a dissipative structure in geothermal fields and promote water-rock interactions and fractures. Our initial studies have suggested a dissipative structure of geothermal system that could be identified by geochemical and geophysical data. The key factor is the tectonic setting that triggered supercritical fluids upwelling from deep (possibly from the mantle or the upper crust). Our

  18. Research status of geothermal resources in China

    NASA Astrophysics Data System (ADS)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  19. Three-dimensional Magnetotelluric Characterization of the Xinzhou Geothermal Field, Southeastern China

    NASA Astrophysics Data System (ADS)

    Han, Q.; Hu, X.; Cai, J.; Wei, W.

    2016-12-01

    Xinzhou geothermal field is located in the Guangdong province and adjacent to the China South Sea, and its hot springs can reach up to 92 degree Celsius. Yanshanian granite expose widely in the south of this geothermal field and four faults cut across each other over it. A dense grid of 176 magnetotelluric (MT) sites with broadband has been acquired over the Xinzhou geothermal field and its surrounding area. Due to the related electromagnetic (EM) noise one permanent observatory was placed as a remote reference to suppress this cultural EM noise interference. The datasets are processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Data analysis reveals that the underground conductivity structure has obvious three-dimensional characterization. For the high resolution result ,two and three dimensional inversion are both applied in this area employing the non-linear conjugate gradient method (NLCG).These MT data sets are supposed to detect the deep subsurface resistivity structure correlated to the distribution of geothermal reservoir (such as faults and fractured granite) and investigate the channel of the upwelling magma. The whole and cold granite usually present high resistivity but once it functions as reservoir the resistivity will decrease, sometimes it is hard to separate the reservoir from the cap layer. The 3D inversion results delineate three high resistivity anomalies distributed in different locations. At last we put forward that the large areas of granite form the major thermal source for the study area and discuss whether any melt under these magma intrusions exists.

  20. Updating of the geological and geothermal research on Milos island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fytikas, M.

    1989-01-01

    The oldest geologic formations outcropping in Milos are an Alpine age crystalline basement and a transgressive marine Neogene sequence. The island is mainly volcanic. It belongs to the Aegean Active Arc, within which the Milos archipelago shows the most important volcanism in terms of quantity, variety of products and duration of activity (3.5-0.8 M.a.). There are no large central volcanic edifices but different, frequently coeval eruption centres. The initial and intermediate phases of activity were mainly pyroclastic and submarine, whereas the last one (0.1 M.a.) was subaerial and formed tuff rings, surge deposits and lava flows, all of homogenous rhyoliticmore » composition. Recent detailed studies have addressed the mechanism of feeding and the type of magmatic chambers beneath Milos. Distention tectonics have two main phases: an earlier one (Pliocene) with NE-SW direction and a much more intense recent (Quaternary) one, trending NW-SE. The geological, tectonic and magmatic activity favoured the formation of a high enthalpy geothermal field. Many fossil and active thermal manifestations exist: hot springs, fumaroles, hot grounds, phreatic explosion craters. The hydrothermal alteration of the volcanites produced, by self sealing, a perfect cover for the geothermal fluids. Geothermometry of the surface fluids indicated high values for the source temperatures and very high geothermal gradients in central and eastern Milos. Geothermally anomalous zones, defined by two different methods, together with superficial geological and tectonic information, permitted the location of sites for deep drilling. Five exploratory wells 1000-1400m deep gave satisfactory results of flow rate (40-120 t/h), temperature (300-320{sup 0}C) and enthalpy.« less

  1. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: GROUND WATER MONITORING GUIDELINES FOR GEOTHERMAL DEVELOPMENT

    EPA Science Inventory

    This report discusses potential ground water pollution from geothermal resource development, conversion, and waste disposal, and proposes guidelines for developing a ground water monitoring plan for any such development. Geothermal processes, borehole logging, and injection well ...

  2. DOE's Geothermal Program still in game

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    In the ongoing search to find cost-effective, renewable forms of energy that neither contribute to global warming nor threaten national security, geothermal energy remains a player. Although Department of Energy funding for geothermal research has declined over the past decade, from its peak in 1979 of $160 million, there is still tremendous potential in terms of geothermal development, said Gladys Hooper, program manager of DOE's Hot Dry Rock and Brine Chemistry divisions. Technology for harnessing geothermal power is by and large there, she said. What is needed is more awareness and publicity regarding the merits of geothermal energy.For fiscal year 1993, proposed DOE funding for geothermal research was $24 million, down from $27 million in fiscal 1992 and nearly $30 million in fiscal 1991. DOE's Geothermal Division oversees the network of national laboratories and universities involved in developing the nation's geothermal resources and bringing them into commercial competitiveness.

  3. Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing

    2017-04-01

    Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.

  4. Recovery Act. Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remote Sensing and On-Site Exploration, Testing, and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, Paul; Skeehan, Kirsten; Smith, Jerome

    Report on the confirmation of Commercial Geothermal Resources in Colorado describing the on site testing and analysis to confirm remote sensing identified potential resources. A series of thermal gradient wells were drilled in the Pagosa Springs region and the data collected is analyzed within.

  5. A geodynamic constraint on Archean continental geotherms

    NASA Astrophysics Data System (ADS)

    Bailey, R. C.

    2003-04-01

    Dewey (1988) observed that gravitational collapse appears to currently limit the altitudes of large plateaus on Earth to about 3 to 5 km above sea level. Arndt (1999) summarized the evidence for the failure of large parts of the continental crust to reach even sea-level during the Archean. If this property of Archean continental elevations was also enforced by gravitational collapse, it permits an estimation of the geothermal gradient in Archean continental crust. If extensional (collapse) tectonics is primarily a balance between gravitational power and the power consumed by extensional (normal) faulting in the upper brittle crust, as analysed by Bailey (1999), then it occurs when continental elevations above ocean bottoms exceed about 0.4 times the thickness of the brittle crust (Bailey, 2000). Assuming an Archean oceanic depth of about 5 km, it follows that that the typical thickness of Archean continental brittle crustal must have been less than about 12 km. Assuming the brittle-ductile transition to occur at about 350 degrees Celsius, this suggests a steep geothermal gradient of at least 30 degrees Celsius per kilometer for Archean continents, during that part of the Archean when continents were primarily submarine. This result does not help resolve the Archean thermal paradox (England and Bickle, 1984) whereby the high global heat flow of the Archean conflicts with the rather shallow crustal Archean geotherms inferred from geobarometry. In fact, the low elevation of Archean continental platforms raises another paradox, a barometric one: that continents were significantly below sea-level implies, by isostasy, that continental crustal thicknesses were significantly less than 30 km, yet the geobarometric data utilized by England and Bickle indicated burial pressures of Archean continental material of up to 10 kb. One resolution of both paradoxes (as discussed by England and Bickle) would be to interpret such deep burials as transient crustal thickening events of

  6. Screening for heat transport by groundwater in closed geothermal systems.

    PubMed

    Ferguson, Grant

    2015-01-01

    Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8)  m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed. © 2014, National Ground Water Association.

  7. Rare Earth Element Concentrations in Geothermal Wells at the Puna Geothermal Field, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in the geothermal wells at the Puna geothermal field, Hawaii. Samples taken from geothermal wells KS-5, KS-6W, KS-9W, KS-14E, and KS-16N. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples collected on November 11-17, 2016.

  8. Geothermic Potential Assessment of hydrothermal vents of Township Barranca De Upia - Meta - Colombia

    NASA Astrophysics Data System (ADS)

    Chica, J.; Chicangana, G.; Eco Energy Research Group

    2013-05-01

    Hydrothermal vents have been traditionally exploited in Colombia as a source of tourism revenue such as pools and saunas. Leaving aside its high potential for geothermal power generation in applications like heating, drying, cooling, extensive use in crops, livestock, electricity generation and more. Currently the use given to this natural resource in the town of Barranca de Upia in Meta department, central Colombia, is like Wellness Centre. However, the geothermal gradient for the area where hydrothermal vents occur, indicates that the water emerges at temperatures above 70 ° C (Alfaro et al., 2003), which opens a window of opportunity to assess their geothermal potential, in order to know the actual energy potential of the region as an option of augmenting their development. this research is the analysis of information gathered from databases in gravimetry and magnetometry of the study area and the temperatures measured in wells derived from the oil industry. Based on that information, a numerical analysis of the data will be performed in order to establish a model to parameterize the energy potential of the study area and identify possible uses of the energy contained by the hydrothermal vents.

  9. The potential for convection and implications for geothermal energy in the Perth Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Sheldon, Heather A.; Florio, Brendan; Trefry, Michael G.; Reid, Lynn B.; Ricard, Ludovic P.; Ghori, K. Ameed R.

    2012-11-01

    Convection of groundwater in aquifers can create areas of anomalously high temperature at shallow depths which could be exploited for geothermal energy. Temperature measurements in the Perth Basin (Western Australia) reveal thermal patterns that are consistent with convection in the Yarragadee Aquifer. This observation is supported by Rayleigh number calculations, which show that convection is possible within the range of aquifer thickness, geothermal gradient, salinity gradient and permeability encountered in the Yarragadee Aquifer, assuming that the aquifer can be treated as a homogeneous anisotropic layer. Numerical simulations of convection in a simplified model of the Yarragadee Aquifer show that: (1) the spacing of convective upwellings can be predicted from aquifer thickness and permeability anisotropy; (2) convective upwellings may be circular or elongate in plan view; (3) convective upwellings create significant temperature enhancements relative to the conductive profile; (4) convective flow rates are similar to regional groundwater flow rates; and (5) convection homogenises salinity within the aquifer. Further work is required to constrain the average horizontal and vertical permeability of the Yarragadee Aquifer, to assess the validity of treating the aquifer as a homogeneous anisotropic layer, and to determine the impact of realistic aquifer geometry and advection on convection.

  10. Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India

    USGS Publications Warehouse

    Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H.

    1983-01-01

    The isotopic compositions of the waters discharged from Parbati Valley geothermal areas indicate a higher altitude meteoric origin, with discharge temperatures reflecting variations in the depth of penetration of the waters to levels heated by the existence of a 'normal' geothermal gradient. On the basis of mixing models involving silica, tritium, discharge temperatures and chloride contents, deep equilibration temperatures of 120-140??C were obtained for Manikaran, possibly reaching 160??C at even greater depth. Geothermometers based on sulfate-water 18O exchange and gas reactions point to similar temperatures. Exceptionally high helium contents of the discharges correspond to apparent crustal residence times of the waters in the order of 10-100 Ma; relative nitrogen-argon contents support a largely meteoric origin of the waters with a possible fossil brine, but no detectable magmatic component. ?? 1983.

  11. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport

  12. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patten, Kim

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production.more » Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to

  13. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido

    2016-04-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  14. Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, B.L.; Gardner, M.C.; Koenig, J.B.

    The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Westernmore » Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with

  15. Geothermal Financing Workbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  16. Geothermal Technologies Program - Geothermal Energy: Putting Creative Ideas to Work (Green Jobs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-06-01

    Rapid expansion of U.S. geothermal capacity is opening new job opportunities across the nation. With more than 3,000 megawatts (MW) already installed, the United States leads the world in existing geothermal capacity.

  17. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (<7 L/s). Petrophysics and reservoir investigations based on core analysis revealed a low matrix porosity with fracture zones spatially isolated and sealed in the sandstone formations. Any stimulation operation was planned and the project was abandoned. The Soultz-sous-Forêts project, initiated in 1986, explored during more than 30 years the experimental geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were

  18. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian

  19. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE PAGES

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; ...

    2016-07-13

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian

  20. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar

    2016-07-01

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the

  1. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  2. Geothermal Energy | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Geothermal Energy Geothermal Energy Research campuses can take advantage of geothermal resources sections that describe how examining geothermal energy may fit into your climate action plans. Campus Options Considerations Sample Project Related Links Campus Geothermal Energy Options Campuses can use

  3. Uncertainty analysis of geothermal energy economics

    NASA Astrophysics Data System (ADS)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  4. Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis—A case study in Tengchong, China

    NASA Astrophysics Data System (ADS)

    Qin, Qiming; Zhang, Ning; Nan, Peng; Chai, Leilei

    2011-08-01

    Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using TIR data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. Based on radiometric calibration, atmospheric correction and emissivity calculation, a simple but efficient single channel algorithm with acceptable precision is applied to retrieve the land surface temperature (LST) of study area. The LST anomalous areas with temperature about 4-10 K higher than background area are discovered. Four geothermal areas are identified with the discussion of geothermal mechanism and the further analysis of regional geologic structure. The research reveals that the distribution of geothermal areas is consistent with the fault development in study area. Magmatism contributes abundant thermal source to study area and the faults provide thermal channels for heat transfer from interior earth to land surface and facilitate the present of geothermal anomalies. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect LST anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.

  5. Relative Contributions of Geothermal Pumping and Long-Term Earthquake Rate to Seismicity at California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jackson, D. D.

    2015-12-01

    In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.

  6. Greider geothermal statement, based on testimony presented to Lt. Gov. Dymally Committee. [Development of geothermal industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greider, B.

    Factors that contribute to the delay of geothermal development by utilities are discussed. These include: the increasingly complex regulations on the Geysers field; low quality and sizes of hot water resources; economics of financing geothermal exploration; professional experience; and lack of faith in the technology of conversion of hot water into electricity. Key issues that must be resolved before geothermal development can significantly penetrate the electricity generation industry are presented. It is pointed out that legislation to stimulate development of California's geothermal resources should be based on consideration of the following items: streamlined controls which allow geothermal exploration and developmentmore » to proceed under a minimum of effective regulation; reasonable tax provisions encouraging exploration, research, development, and production of geothermal energy; and suitable economic incentives for utility companies that will encourage early commitment to construct generating plants. (LBS)« less

  7. Double-diffusive convection in geothermal systems: the salton sea, California, geothermal system as a likely candidate

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.

  8. Stability of a penny-shaped geothermal reservoir in the earth's crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Sekine, H.

    1982-06-01

    The theoretical analysis of a penny-shaped geothermal reservoir in the earth's crust subject to linear tectonic stress gradients has been made on the basis of the three dimensional theory of elasticity. The condition for stability of a reservoir requires K/sub 1/ < K /SUB c/ , where K/sub 1/ and K /SUB c/ are, respectively, the stress intensity factor for the opening mode and the fracture toughness of the surrounding rock. From this condition the upper critical pressure being necessary for the reservoir stability is obtained and is shown graphically.

  9. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    PubMed

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  10. On the evolution of the geothermal regime of the North China Basin

    NASA Astrophysics Data System (ADS)

    Wang, Ji-yang; Chen, Mo-xiang; Wang, Ji-an; Deng, Xiao

    1985-12-01

    Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m -2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m -2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.

  11. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert K Podgorney; Thomas R. Wood; Travis L McLing

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associatedmore » with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).« less

  12. Research Staff | Geothermal Technologies | NREL

    Science.gov Websites

    Position Email Phone Akar, Sertac Energy Analyst - Geothermal Sertac.Akar@nrel.gov 303-275-3725 Augustine -Geoscience Kate Young joined NREL in 2008. She has worked on analysis of geothermal exploration, drilling ) Toolkit, the Geothermal Resource Portfolio Optimization and Reporting Technique (GeoRePORT), and the

  13. Geothermal energy abstract sets. Special report No. 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  14. Geothermal energy systems plan for Boise City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    This is a plan for development of a downtown Boise geothermal district space heating system incorporating legal, engineering, organizational, geological, and economic requirements. Topics covered include: resource characteristics, system design and feasibility, economic feasibility, legal overview, organizational alternatives, and conservation. Included in appendices are: property ownership patterns on the Boise Front, existing hot well data, legal briefs, environmental data, decision point communications, typical building heating system retrofit schematics, and background assumptions and data for cost summary. (MHR)

  15. Controls on the Karaha-Telaga Bodas geothermal reservoir, Indonesia

    USGS Publications Warehouse

    Nemcok, M.; Moore, J.N.; Christensen, Carl; Allis, R.; Powell, T.; Murray, B.; Nash, G.

    2007-01-01

    Karaha-Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 ??C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells. ?? 2006 CNR.

  16. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  17. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca

    2013-01-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circulation.

  18. Federal Geothermal Research Program Update - Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  19. Federal Geothermal Research Program Update Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  20. Environmental Assessment Lakeview Geothermal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternativesmore » considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.« less

  1. Groundwater chemistry in the vicinity of the Puna Geothermal Venture Power Plant, Hawai‘i, after two decades of production

    USGS Publications Warehouse

    Evans, W.C.; Bergfeld, D.; Sutton, A.J.; Lee, R.C.; Lorenson, T.D.

    2015-01-01

    We report chemical data for selected shallow wells and coastal springs that were sampled in 2014 to determine whether geothermal power production in the Puna area over the past two decades has affected the characteristics of regional groundwater. The samples were analyzed for major and minor chemical species, trace metals of environmental concern, stable isotopes of water, and two organic compounds (pentane and isopropanol) that are injected into the deep geothermal reservoir at the power plant. Isopropanol was not detected in any of the groundwaters; confirmed detection of pentane was restricted to one monitoring well near the power plant at a low concentration not indicative of source. Thus, neither organic compound linked geothermal operations to groundwater contamination, though chemical stability and transport velocity questions exist for both tracers. Based on our chemical analysis of geothermal fluid at the power plant and on many similar results from commercially analyzed samples, we could not show that geothermal constituents in the groundwaters we sampled came from the commercially developed reservoir. Our data are consistent with a long-held view that heat moves by conduction from the geothermal reservoir into shallow groundwaters through a zone of low permeability rock that blocks passage of geothermal water. The data do not rule out all impacts of geothermal production on groundwater. Removal of heat during production, for example, may be responsible for minor changes that have occurred in some groundwater over time, such as the decline in temperature of one monitoring well near the power plant. Such indirect impacts are much harder to assess, but point out the need for an ongoing groundwater monitoring program that should include the coastal springs down-gradient from the power plant.

  2. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  3. Exploring for geothermal resource in a dormant volcanic system: The Haleakala Southwest Rift Zone, Maui, Hawai'i

    NASA Astrophysics Data System (ADS)

    Martini, B. A.; Lewicki, J. L.; Kennedy, B. M.; Lide, C.; Oppliger, G.; Drakos, P. S.

    2011-12-01

    flux associated with upflow of magmatic fluids here is likely due to the aforementioned 'scrubbing' from extensive groundwater flow, as well as high background biogenic CO2 flux. Deep, temperature gradient core holes have been sited based on these geophysical and geochemical datasets.

  4. Geothermal and volcanism in west Java

    NASA Astrophysics Data System (ADS)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  5. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  6. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  7. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, James S.; Dobson, Patrick; Glassley, William

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  8. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In thismore » paper, we: Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONS's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing

  9. Outstanding issues for new geothermal resource assessments

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.

    2005-01-01

    A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS) is working closely with the Department of Energy's (DOE) Geothermal Research Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir permeability, limits to temperatures and depths for electric power production, and include the potential impact of evolving Enhanced (or Engineered) Geothermal Systems (EGS) technology.

  10. Geothermal Program Review XIV: proceedings. Keeping Geothermal Energy Competitive in Foreign and Domestic Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XIV in Berkeley, April 8-10, 1996. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focused on ``Keeping Geothermal Energy Competitive in Foreign and Domestic Markets.`` This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Program Review XIV consisted of eight sessions chaired by industry representatives. Introductorymore » and overview remarks were presented during every session followed by detailed reports on specific DOE-funded research projects. The progress of R&D projects over the past year and plans for future activities were discussed. The government-industry partnership continues to strengthen -- its success, achievements over the past twenty years, and its future direction were highlighted throughout the conference. The comments received from the conference evaluation forms are published in this year`s proceedings. Individual papers have been processed for inclusion in the Energy Science and Technology Database.« less

  11. Geothermal energy in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, J.W.; McEuen, R.B.; Roberts, A.

    1984-09-01

    During the fall of 1983, a American delegation of 14 geothermal experts visited the People's Republic of China. The three-week trip included visits to Beijing (Peking), Chengdu, Lhasa, Yangbajing, and Kunming. By far the highlight of the trip was the journey to Tibet where the geothermal field and power station at Yangbajing were toured. Technical exchanges with Chinese and Tibetan geothermal scientists and engineers were made at Beijing, Lhasa, Yangbajing and Kunming. At Kunming in Yunnan Province, the geothermal field in the western part of the province was discussed, but not visited. This latter field is in the process ofmore » extensive investigation, but only minor direct-use development such as sulfur collection and wool washing is being undertaken. The drilling of wells and power plant construction is anticipated in the Rehai and Ridian fields in the near future. In general, Yunnan has one of the largest geothermal potentials in China with over 600 sites identified so far. The sites are widespread throughout the province, but the high temperature sites are located in the western part, a very mountainous area.« less

  12. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance

    NASA Astrophysics Data System (ADS)

    Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio

    2014-02-01

    Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out "intrinsic" T1 and T2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.

  13. Optimizing Sustainable Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  14. NREL: Renewable Resource Data Center - Geothermal Resource Publications

    Science.gov Websites

    Publications For a list of Geothermal publications, go to Geothermal Technologies Publication page . For a list of legacy Geothermal publications, check out Geothermal Technologies Legacy Collection . NREL Publications Database For a comprehensive list of other NREL geothermal resource publications

  15. High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grijalva, R. L.; Sanemitsu, S. K.

    1978-11-01

    Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that onmore » a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.« less

  16. Alaska Geothermal Sites Map and Database: Bringing together legacy and new geothermal data for research, exploration and development

    NASA Astrophysics Data System (ADS)

    Clough, J. G.; Harun, N. T.; Hughes, C. A.; Weakland, J. R.; Cameron, C. E.

    2013-12-01

    Geothermal exploration activities in Alaska from the late 1970s into the 1980s generated vast quantities of scientific data that currently is in unpublished, forgotten and obscure, as well as published formats. Alaska has 61 hot springs (hotter than 50°C) and 34 'warm to cool springs' (cooler than 50°C). Thirty-seven thermal springs are located within the Aleutian and Alaska Peninsula volcanic arc into and are related to elevated heat flows in areas of arc volcanism as well as crustal scale faults associated with accretionary tectonism. The central interior belt that extends from the Seward Peninsula to Circle Hot Springs contains 37 thermal springs that formed due to mostly extensional tectonic forces. An additional 17 thermal springs are in southeast Alaska and 4 are in the Wrangell Mountains. A new cycle of geothermal exploration is underway in Alaska and is producing a wealth of new geothermal data. The Alaska Division of Geological and Geophysical Surveys (ADGGS), funded by the National Geothermal Data System, is compiling both new and legacy geothermal data into a comprehensive database accessible on the ADGGS website. ADGGS has created a new ';Geothermal Sites of Alaska Map' and associated database that includes data on geothermal hot springs, direct use of geothermal resources, volcanic vents, aqueous geochemistry, borehole temperatures, core descriptions, rock chemistry, earthquakes in proximity to hot springs, and active faults. Geothermal hot springs includes locality, temperature, flow rate, sources and related resources. Direct use of geothermal resources contains facilities, capacity, energy use, temperature, flow rate and contact information from geothermal hot springs that are or have recently been used for recreational use, space heating, agricultural or energy use. Volcanic vents records 395 volcanic vents and fumaroles throughout the state that are Holocene or younger. It includes their age, location, elevation, geologic history, composition

  17. Federal Geothermal Research Program Update Fiscal Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in themore » United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less

  18. Federal Geothermal Research Program Update Fiscal Year 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electricalmore » power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less

  19. National Geothermal Data System: State Geological Survey Contributions to Date

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.

    2012-12-01

    In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a

  20. Federal Geothermal Research Program Update Fiscal Year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates howmore » the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.« less

  1. Geothermal development in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizagaque, R.F.; Tolentino, B.S.

    1982-06-01

    The development of geothermal resources and energy in the Philippines is discussed. Philippine National Oil Company-Energy Development Corporation initiated the first semi-commercial generation of geothermal power in July 1977 with the installation of a 3MWe plant. By 1980 the country had 440 MWe on line at Mak-Ban and Tiwi. This placed the Philippines second after the US among countries using geothermal energy for power generation. Before the end of 1981, PNOC-EDC added 6 additional MWe of geothermal power generating capacity to increase the total to 446 MWe. As part of the five-year National Energy Development Programme covering the period 1981-1985,more » additional power plants will be installed in various project areas to increase the share of geothermal power generation from the present 9.8% to 18.6% of the nationwide power-generation total, or the equivalent of 16.6 million barrels of oil per year. (MJF)« less

  2. Geothermal development plan: Yuma County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential for utilizing geothermal energy was evaluated. Four potential geothermal resource areas with temperatures less than 900C (1940F) were identified, and in addition, two areas are inferred to contain geothermal resources with intermediate temperature potential. The resource areas are isolated. One resource site contains a hot dry rock resource. Anticipated population growth in the county is expected to be 2% per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without adverse affect on agriculture. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. It is suggested that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  3. Chemical logging of geothermal wells

    DOEpatents

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  4. Chemical logging of geothermal wells

    DOEpatents

    Allen, Charles A.; McAtee, Richard E.

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  5. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  6. NREL: Renewable Resource Data Center - Geothermal Resource Information

    Science.gov Websites

    Energy's Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program. Its collection , and thermal springs. View NREL's Geothermal resource maps as well as maps for other renewable energy Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources

  7. Entropy production and optimization of geothermal power plants

    NASA Astrophysics Data System (ADS)

    Michaelides, Efstathios E.

    2012-09-01

    Geothermal power plants are currently producing reliable and low-cost, base load electricity. Three basic types of geothermal power plants are currently in operation: single-flashing, dual-flashing, and binary power plants. Typically, the single-flashing and dual-flashing geothermal power plants utilize geothermal water (brine) at temperatures in the range of 550-430 K. Binary units utilize geothermal resources at lower temperatures, typically 450-380 K. The entropy production in the various components of the three types of geothermal power plants determines the efficiency of the plants. It is axiomatic that a lower entropy production would improve significantly the energy utilization factor of the corresponding power plant. For this reason, the entropy production in the major components of the three types of geothermal power plants has been calculated. It was observed that binary power plants generate the lowest amount of entropy and, thus, convert the highest rate of geothermal energy into mechanical energy. The single-flashing units generate the highest amount of entropy, primarily because they re-inject fluid at relatively high temperature. The calculations for entropy production provide information on the equipment where the highest irreversibilities occur, and may be used to optimize the design of geothermal processes in future geothermal power plants and thermal cycles used for the harnessing of geothermal energy.

  8. NREL: Renewable Resource Data Center - Geothermal Resource Related Links

    Science.gov Websites

    from the following sources: U.S. Department of Energy Geothermal Technologies Office. National Geothermal Resource Related Links Comprehensive geothermal resource information is also available Geothermal Data System A portal to geothermal data. Southern Methodist University Geothermal Laboratory The

  9. The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.

    2004-01-01

    The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.

  10. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    PubMed

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes.

  11. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greatermore » proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.« less

  12. AASG State Geothermal Data Repository for the National Geothermal Data System.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-01-01

    This Drupal metadata and documents capture and management system is a repository, used for maintenance of metadata which describe resources contributed to the AASG State Geothermal Data System. The repository also provides an archive for files that are not hosted by the agency contributing the resource. Data from all 50 state geological surveys is represented here, and is contributed in turn to the National Geothermal Data System.

  13. Washington Geothermal Play Fairway Analysis Heat, Permeability, and Fracture Model Data

    DOE Data Explorer

    Steely, Alex; Forson, Corina; Cladouhos, Trenton; Swyer, Mike; Davatzes, Nicholas; Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Peacock, Jared; Schermerhorn, William

    2017-12-07

    This submission contains raster and vector data for the entire state of Washington, with specific emphasis on the three geothermal play fairway sites: Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV), and Mount Baker (MB). Data are provided for 3 major geothermal models: heat, permeability, and fluid-filled fractures, and an additional infrastructure model. Both of the permeability and fluid-filled-fracture models are produced at 200 m and at 2 km depths; the heat model is only produced at the 200 m depth. Values are provided for both model favorability and model confidence. A combined model at 200m and 2 km depths is provided for favorability, confidence, and exploration risk. Raster data are provided in GeoTiff format and have a statewide coverage. Cell size is 104.355 ft; file type is unsigned 8-bit integer (0-255); 0 represents no favorability or confidence; 255 represents maximum favorability or confidence. The NAD83(HARN)/Washington South (ftUS) projection is used (EPSG:2927). Vector data are provided in shapefile or comma-delimited text file formats. Geographic coordinates, where provided, are in WGS84. A readme file accompanies each folder and provides an overview and description of the enclosed data. The heat model combines 5 intermediate raster layers (which are included in the download package): temperature gradient wells, young volcanic vents, hot springs, young intrusive volcanic rocks, and geothermometry. The permeability model combines 8 intermediate raster layers: density of mapped faults, 2D dilation tendency of mapped faults, 2D slip tendency of mapped faults, seismicity, 3D dilation tendency, 3D slip tendency, 3D maximum coulomb shear stress, and 3D slip gradients. The fluid-filled fracture model combines up to 4 intermediate rasters: resistivity from magneto-telluric 3D inversions, seismicity, Vp/Vs anomalies from passive seismic tomography, and Vs anomalies from ambient-noise tomography. A statewide infrastructure model is also

  14. Electric utility companies and geothermal power

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  15. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  16. China starts tapping rich geothermal resources

    NASA Astrophysics Data System (ADS)

    Guang, D.

    1980-09-01

    Attention is given to the electric and power installation running on geothermal energy at Yangbajain, Tibet. Other geothermal projects in Tibet, the Yunnan Province and the North China Plain are also outlined. Applications of geothermal energy are described, including the heating of homes and factories, spinning, weaving, paper-making and the making of wine.

  17. Federal Geothermal Research Program Update - Fiscal Year 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  18. The furnace in the basement: Part 1, The early days of the Hot Dry Rock Geothermal Energy Program, 1970--1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.C.

    1995-09-01

    This report presents the descriptions of the background information and formation of the Los Alamos Scientific Laboratory Geothermal Energy Group. It discusses the organizational, financial, political, public-relations,geologic, hydrologic, physical, and mechanical problems encountered by the group during the period 1970--1973. It reports the failures as well as the successes of this essential first stage in the development of hot dry rock geothermal energy systems.

  19. Geothermal industry employment: Survey results & analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-09-01

    The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach asmore » many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.« less

  20. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north ofmore » Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks

  1. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  2. Materials selection guidelines for geothermal energy utilization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world aremore » presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)« less

  3. Federal Geothermal Research Program Update, FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  4. Power-poor Philippines taps geothermal pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-04-15

    The current energy situation in the Philippines (75% imported oil) is reviewed and current and future activities in the area of geothermal energy use is discussed. It is estimated that by 1986, $830 million will be spent to develop the extensive geothermal sources to produce 13% of the nation's total energy. The high-quality geothermal sources are described as producing 162/sup 0/C water-steam mixture at a pressure of 6.68 kg/sec. Energy producing systems are described briefly as well as the environmental and equipment problems encountered already. The cost of geothermal energy is discussed (2.5 cents/kWh) and compared with energy costs ofmore » fossil-fuel and hydroelectricity. It is concluded that the geothermal energy sources should be a major contributor to the Philippines for at least 30 years. (MJJ)« less

  5. Algal Species and Light Microenvironment in a Low-pH, Geothermal Microbial Mat Community

    PubMed Central

    Ferris, M. J.; Sheehan, K. B.; Kühl, M.; Cooksey, K.; Wigglesworth-Cooksey, B.; Harvey, R.; Henson, J. M.

    2005-01-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to <1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of ≥49°C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of ≤39°C. PMID:16269755

  6. Algal species and light microenvironment in a low-pH, geothermal microbial mat community.

    PubMed

    Ferris, M J; Sheehan, K B; Kühl, M; Cooksey, K; Wigglesworth-Cooksey, B; Harvey, R; Henson, J M

    2005-11-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to < 1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of > or = 49 degrees C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of < or = 39 degrees C.

  7. Neutron imaging for geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Bingham, Philip; Polsky, Yarom; Anovitz, Lawrence

    2013-03-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or "engineered" within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  8. Geothermal Loan Guaranty Program and its impact on geothermal exploration and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasr, L.H.

    1978-05-01

    The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in themore » study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.« less

  9. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    NASA Astrophysics Data System (ADS)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp < 5.8 km/s, Vs < 3.2 km/s), high Poisson's ratio (> 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  10. Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California

    NASA Astrophysics Data System (ADS)

    Martínez-Garzón, P.; Zaliapin, I. V.; Ben-Zion, Y.; Kwiatek, G.; Bohnhoff, M.

    2017-12-01

    We investigate earthquake clustering properties from three geothermal reservoirs to clarify how earthquake patterns respond to hydraulic activities. We process ≈ 9 years from four datasets corresponding to the Geysers (both the entire field and a local subset), Coso and Salton Sea geothermal fields, California. For each, the completeness magnitude, b-value and fractal dimension are calculated and used to identify seismicity clusters using the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b]. Estimations of temporal evolution of different clustering properties in relation to hydraulic parameters point to different responses of earthquake dynamics to hydraulic operations in each case study. The clustering at the Geysers at local scale and Salton Sea are most and least affected by hydraulic activities, respectively. The response of the earthquake clustering from different datasets to the hydraulic activities may reflect the regional seismo-tectonic complexity as well as the dimension of the geothermal activities performed (e.g. number of active wells and superposition of injection + production activities).Two clustering properties significantly respond to hydraulic changes across all datasets: the background rates and the proportion of clusters consisting of a single event. Background rates are larger at the Geysers and Coso during high injection-production periods, while the opposite holds for the Salton Sea. This possibly reflects the different physical mechanisms controlling seismicity at each geothermal field. Additionally, a lower proportion of singles is found during time periods with higher injection-production rates. This may reflect decreasing effective stress in areas subjected to higher pore pressure and larger earthquake triggering by stress transfer.

  11. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  12. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  13. Expanding geothermal resource utilization through directed research, education, and public outreach: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    The University of Nevada, Reno (UNR) conducts research and outreach activities that will lead to increased utilization of geothermal resources in the western US. The Great Basin Center for Geothermal Energy (GBCGE) is working in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to energy supply in the western US. Task 1 involves conducting geoscience and engineering research and developing technology to improve the assessment, exploration, and stimulation of geothermal resources. Subtask projects were selected based on peer review of proposals submitted to the GBCGE from Nevada System of High Education (NSHE)more » institutions for short project development and seed awards intended to develop background and establish viability of approaches for future activities. Task 2 includes project management and organization of workshops periodically requested by DOE and others to satisfy other mission goals of the GBCGE and the DOE geothermal program. GBCGE supports interaction with national and international geothermal organizations, with brochures, presentations, and materials describing GBCGE accomplishments and current research. We continue to maintain and develop an internet-based information system that makes geothermal data and information available to industry, government, and academic stakeholders for exploration and development of geothermal resources. This award also partially supported post-doctoral scholar Drew Siler and research scientist Betsy Littlefield Pace whose effort is included under developing future research projects. Task 2 also focuses on education and outreach through a competitive graduate fellowship program. The budget is for two-year stipends for three graduate students to work collaboratively with GBCGE faculty on Master’s or PhD degrees in geoscience and engineering fields. This grant supported three MS students in full for two years toward the degree

  14. The USGS national geothermal resource assessment: An update

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  15. Analysis of Low-Temperature Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis ofmore » the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the

  16. The Geysers Geothermal Field Update1990/2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, P.; Lippmann, M.; Dobson, P.F.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, butmore » not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible

  17. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less

  18. Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galbraith, R.M.

    1978-05-01

    The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characcterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the accoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less

  19. Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galbraith, R.M.

    1978-05-01

    The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a leucogranite which intruded the metamorphic rocks. Only weak hydrothermal alteration was noted in these rocks. Drillhole surveys and drilling rate data indicate that the geothermal system is structurally controlled and that the drillhole itself was stronglymore » influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. Several geophysical logs were employed to characterize the drillhole geology. The natural gamma and neutron porosity logs indicate gross rock type and the acoustic logs indicate fractured rock and potentially permeable zones. A series of temperature logs run as a function of time during and after the completion of drilling were most useful in delineating the zones of maximum heat flux. Convective heat flow and temperatures greater than 350/sup 0/F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet.« less

  20. Dissolved gas concentrations of the geothermal fluids in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  1. Geothermal Energy Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachman, Gary

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  2. Geothermal development plan: Cochise/Santa Cruz Counties

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The regional market potential for utilizing geothermal energy was evaluated. Three potential geothermal resource areas with potential for resource temperatures less than 900C (1940F) were identified. Population growth rates are expected to average 3% per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy use analysis is included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan identifies potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.

  3. Geothermal Energy: Prospects and Problems

    ERIC Educational Resources Information Center

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  4. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.

    2015-10-01

    Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of

  5. Produced Water Treatment Using Geothermal Energy from Oil and Gas Wells: An Appropriateness of Decommissioned Wells Index (ADWI) Approach

    NASA Astrophysics Data System (ADS)

    Kiaghadi, A.; Rifai, H. S.

    2016-12-01

    This study investigated the feasibility of harnessing geothermal energy from retrofitted oil and gas decommissioned wells to power desalination units and overcome the produced water treatment energy barrier. Previous studies using heat transfer models have indicated that well depth, geothermal gradient, formation heat conductivity, and produced water salt levels were the most important constraints that affect the achievable volume of treated water. Thus, the challenge of identifying which wells would be best suited for retrofit as geothermal wells was addressed by defining an Appropriateness of Decommissioned Wells Index (ADWI) using a 25 km x 25 km grid over Texas. Heat transfer modeling combined with fuzzy logic methodology were used to estimate the ADWI at each grid cell using the scale of Very Poor, Poor, Average, Good and Excellent. Values for each of the four constraints were extracted from existing databases and were used to select 20 representative values that covered the full range of the data. A heat transfer model was run for all the 160,000 possible combination scenarios and the results were regressed to estimate weighting coefficients that indicate the relative effect of well depth, geothermal gradient, heat conductivity, and produced water salt levels on the volume of treated water in Texas. The results indicated that wells located in cells with ADWI of "Average", "Good" or "Excellent" can potentially deliver 35,000, 106,000, or 240,000 L/day of treated water, respectively. Almost 98% of the cells in the Granite Wash, 97% in Eagle Ford Shale, 90% in Haynesville Shale, 79% in Permian Basin, and 78% in Barnett Shale were identified as better than "Average" locations; whereas, south of the Eagle Ford, southwestern Permian Basin, and the center of Granite Wash were "Excellent". Importantly, most of the locations with better than "Average" ADWI are within drought prone agricultural regions that would benefit from this resilient source of clean water.

  6. Context-specific parasitism in Tubifex tubifex in geothermally influenced stream reaches in Yellowstone National Park

    USGS Publications Warehouse

    Alexander, Julie D.; Kerans, Billie L.; Koel, Todd M.; Rasmussen, Charlotte

    2011-01-01

    Parasites can regulate host abundance and influence the composition and structure of communities. However, host-parasite interactions might be context-specific if environmental conditions can alter the outcome of parasitism and disease. An understanding of how host-parasite interactions might change in different contexts will be useful for predicting and managing disease against a background of anthropogenic environmental change. We examined the ecology of Myxobolus cerebralis, the parasite that causes whirling disease in salmonids, and its obligate host, Tubifex tubifex, in geothermally variable stream reaches in Yellowstone National Park. We identified reaches in 4 categories of geothermal influence, which were characterized by variable substrates, temperatures, specific conductivities, and pH. In each reach, we measured aspects of host ecology (abundance, relative abundance, size, and genotype of T. tubifex), parasite ecology (infection prevalence in T. tubifex and abundance of M. cerebralis-infected T. tubifex), and risk to fish of contracting whirling disease. Tubifex tubifex abundance was high all in reaches characterized by geothermal influence, whereas abundance of M. cerebralis-infected T. tubifex was high only in reaches characterized by intermediate geothermal influence. We suggest that habitat had a contextual effect on parasitism in the oligochaete host. Abundance of infected hosts appeared to depend on host abundance in all reach types except those with high geothermal influence, where abundance of infected hosts depended on environmental factors.

  7. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica.

    PubMed

    Bendia, Amanda G; Signori, Camila N; Franco, Diego C; Duarte, Rubens T D; Bohannan, Brendan J M; Pellizari, Vivian H

    2018-01-01

    Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar "open-air" laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.

  8. Sensitivity Studies of 3D Reservoir Simulation at the I-Lan Geothermal Area in Taiwan Using TOUGH2

    NASA Astrophysics Data System (ADS)

    Kuo, C. W.; Song, S. R.

    2014-12-01

    A large scale geothermal project conducted by National Science Council is initiated recently in I-Lan south area, northeastern Taiwan. The goal of this national project is to generate at least 5 MW electricity from geothermal energy. To achieve this goal, an integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature distribution, hydrology, geochemistry, heat source study etc. were performed to build a large scale 3D conceptual model of the geothermal potential sites. In addition, not only a well of 3000m deep but also several shallow wells are currently drilling to give us accurate information about the deep underground. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The geothermal gradient measured at one drilling well (1200m) is about 49.1˚C/km. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. The preliminary results of this area from all the investigations are used as input parameters to create a realistic numerical reservoir model. This work is using numerical simulator TOUGH2/EOS1 to study the geothermal energy potential in I-Lan area. Once we can successfully predict the geothermal energy potential in this area and generate 5 MW electricity, we can apply the similar methodology to the other potential sites in Taiwan, and therefore increase the percentage of renewable energy in the generation of electricity. A large scale of three-dimensional subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. The dimensions of the reservoir model in x, y, and z coordinates are 20x10x5 km, respectively. Once the conceptual model and the well locations are set up appropriately based on the field data, sensitivity studies on production and

  9. The Geothermal Potential, Current and Opportunity in Taiwan

    NASA Astrophysics Data System (ADS)

    Song, Sheng-Rong

    2016-04-01

    Located in the west Pacific Rim of Fire, Taiwan possesses rich geothermal resources due to volcanic activities and rapid uplifting of plate collision. Based on available data prior to 1980, Taiwan may have about 1 GWe of potential shallow geothermal energy, which is less than 3% of the national gross power generation. A 3-Mw pilot power plant, therefore, was constructed in 1981 and terminated in 1993 in the Chingshui geothermal field of Ilan, northeastern Taiwan. Recently, one of the National Science & Technology Program (NSTP) projects has been conducting research and reevaluating the island-wide deep geothermal energy. Four hot potential sites have been recognized. They are: (1) Tatun Volcano Group of northern Taiwan; (2) I-Lan Plain of NE Taiwan; (3) Lu-Shan area of Central Taiwan; and (4) Hua-Tung area of eastern Taiwan. We found that the geothermal resource in Taiwan may be as high as 160 GWe, with 33.6 GWe of exploitable geothermal energy. There are no any commercial geothermal power plants until now in Taiwan, although the potential is great. However, geothermal energy has been listed as one of major tasks of National Energy Program, Phase II (NEP-II) in Taiwan. We will conduct more detailed geothermal energy surveys on some proposed hot sites and to construct an EGS pilot geothermal plant with 1 MWe capability in a few years. Currently, there are three nuclear power plants, named No. 1, 2 & 3, in operations, which produce 16.5% gross generation of electricity and one (No. 4) is under construction, but is stopped and sealed now in Taiwan. Furthermore, the life-span of 40-year operation for those three power plants will be close-at hand and retire in 2018-2019, 2021-2023 and 2024-2025, respectively. Therefore, to find alternative energy sources, especially on the clean, renewable and sustainable ones for generating electricity are emergent and important for Taiwan's government in next few years. Among various energy sources, geothermal energy can be as base

  10. Development of Genetic Occurrence Models for Geothermal Prospecting

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  11. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportablemore » template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.« less

  12. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    NASA Astrophysics Data System (ADS)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  13. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. Themore » characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.« less

  14. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    NASA Astrophysics Data System (ADS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region.

  15. Near-surface geothermal potential assessment of the region Leogang - Saalbach-Hinterglemm in Salzburg, Austria

    NASA Astrophysics Data System (ADS)

    Bottig, Magdalena; Rupprecht, Doris; Hoyer, Stefan

    2017-04-01

    Within the EU-funded Alpine Space project GRETA (Near-surface Geothermal Resources in the Territory of the Alpine space), a potential assessment for the use of near-surface geothermal energy is being performed. The focus region for Austria is represented by the two communities Leogang and Saalbach-Hinterglemm where settlements are located in altitudes of about 800 - 1.000 m. In these communities, as well as in large parts of the alpine space region in Austria, winter sports tourism is an important economic factor. The demand for heating and domestic hot water in this region of about 6.000 inhabitants rises significantly in the winter months due to around 2 million guest nights per year. This makes clear why the focus is on touristic infrastructure like alpine huts or hotels. It is a high-altitude area with a large number of remote houses, thus district-heating is not ubiquitous - thus, near-surface geothermal energy can be a useful solution for a self-sufficient energy supply. The objective of detailed investigation within the project is, to which extent the elevation, the gradient and the orientation of the hillside influence the geothermal usability of the shallow underground. To predict temperatures in depths of up to 100 m and therefore make statements on the geothermal usability of a certain piece of land, it is necessary to attain a precise ground-temperature map which reflects the upper model boundary. As there are no ground temperature measurement stations within the region, the GBA has installed four monitoring stations. Two are located in the valley, at altitudes of about 800 m, and two in higher altitudes of about 1.200 m, one on a south- and one on a north-slope. Using a software invented by the University of Soil Sciences in Vienna a ground-temperature map will be calculated. The calculation is based on climatic data considering parameters like soil composition. Measured values from the installed monitoring stations will help to validate or to

  16. Work with Us | Geothermal Technologies | NREL

    Science.gov Websites

    work with us and leverage our geothermal research, facilities, and expertise. Contact Us Photo of develop, test, and evaluate geothermal technologies. Commercialize Your Technology Accelerate the transfer

  17. Geothermal Energy; (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raridon, M.H.; Hicks, S.C.

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  18. Compilation of geothermal information: exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

  19. Multipurpose Use of Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, Paul J.; Lund, John W.

    1974-10-09

    The conference was organized to review the non-electric, multipurpose uses of geothermal energy in Hungary, Iceland, New Zealand, United States and the USSR. The international viewpoint was presented to provide an interchange of information from countries where non-electric use of geothermal energy has reached practical importance.

  20. Federal Geothermal Research Program Update Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  1. Crafting regulations in emerging geothermal countries: The Peru example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, A.J.

    1996-12-31

    Conventional wisdom holds that no prudent investor or lender will ante up a penny of investment money in a geothermal project unless and until there is a geothermal resources law in place. Since every law depends on a regulatory regime to make the law work in actual practice, implemented regulations are equally important conditions precedent for geothermal development. In recognition of the importance of assisting geothermal regulatory development in the emerging geothermal countries of Latin America, during the 1995 to 1996 timeframe, the Geothermal Energy Association has acted in an advisory capacity to the Ministry of Energy and Mines ofmore » Peru, in the drafting of geothermal regulations for Peru. These regulations are designed to promote developmental investment in the geothermal resources of Peru, while simultaneously establishing reasonable standards for the protection of the people and the environment of the country. While these regulations are specific to Peru, they may well serve as a model for other countries of Latin America. Thus, the lessons learned in crafting the Peru regulatory regime may have applicability in other countries in which the geothermal industry is now working or may work in the future.« less

  2. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  3. Microbial community biofabrics in a geothermal mine adit.

    PubMed

    Spear, John R; Barton, Hazel A; Robertson, Charles E; Francis, Christopher A; Pace, Norman R

    2007-10-01

    Speleothems such as stalactites and stalagmites are usually considered to be mineralogical in composition and origin; however, microorganisms have been implicated in the development of some speleothems. We have identified and characterized the biological and mineralogical composition of mat-like biofabrics in two novel kinds of speleothems from a 50 degrees C geothermal mine adit near Glenwood Springs, CO. One type of structure consists of 2- to 3-cm-long, 3- to 4-mm-wide, leather-like, hollow, soda straw stalactites. Light and electron microscopy indicated that the stalactites are composed of a mineralized biofabric with several cell morphotypes in a laminated form, with gypsum and sulfur as the dominant mineral components. A small-subunit rRNA gene phylogenetic community analysis along the stalactite length yielded a diverse gradient of organisms, with a relatively simple suite of main constituents: Thermus spp., crenarchaeotes, Chloroflexi, and Gammaproteobacteria. PCR analysis also detected putative crenarchaeal ammonia monooxygenase subunit A (amoA) genes in this community, the majority related to sequences from other geothermal systems. The second type of speleothem, dumpling-like rafts floating on a 50 degrees C pool on the floor of the adit, showed a mat-like fabric of evidently living organisms on the outside of the dumpling, with a multimineral, amorphous, gypsum-based internal composition. These two novel types of biofabrics are examples of the complex roles that microbes can play in mineralization, weathering, and deposition processes in karst environments.

  4. JEDI Geothermal Model | Jobs and Economic Development Impact Models | NREL

    Science.gov Websites

    Geothermal Model JEDI Geothermal Model The Jobs and Economic Development Impacts (JEDI) Geothermal Model allows users to estimate economic development impacts from geothermal projects and includes

  5. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  6. DARPA Workshop on Geothermal Energy for Military Operations

    DTIC Science & Technology

    2010-05-01

    is administered by its Geothermal Program Office (GPO) at the Navy Air Weapons Station, China Lake, CA. GPO manages the Coso Geo- thermal Field at...advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military would be able to take advantage. Supplying geothermal...was con- vened to explore whether investment in advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military

  7. Geothermal Energy: Tapping the Potential

    ERIC Educational Resources Information Center

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  8. Geothermal Monitoring in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Heasler, H. P.; Jaworowski, C.; Susong, D. D.; Lowenstern, J. B.

    2007-12-01

    When the first exploring parties surveyed the Yellowstone region in the late 19th Century, it was the geologic wonders - geysers, hot springs, mudpots, fumaroles - that captured their imaginations. Because of these treasures, the U.S. Congress set aside and dedicated this land of "natural curiosities" as the world's first "public pleasuring ground". Protection of Yellowstone's unique geothermal features is a key mission of Yellowstone National Park as mandated by U. S. Congressional law. In response to that mandate, the Yellowstone National Park Geology Program developed a peer-reviewed, Geothermal Monitoring Plan in 2003. With partial Congressional funding of the Plan in 2005, implementation of a scientific monitoring effort began. Yellowstone's scientific geothermal monitoring effort includes the acquisition of time-temperature data using electronic data loggers, basic water quality data, chloride flux data, estimates of radiative heat flux using airborne, thermal infrared imagery, geothermal gas monitoring, and the monitoring of groundwater wells. Time- temperature data are acquired for geysers, hot springs, steam vents, wells, rivers, and the ground. Uses of the time-temperature data include public safety, calibrating airborne thermal infrared-imagery, monitoring selected thermal features for potential hydrothermal explosions, and determining the spatial and temporal changes in thermal areas. Since 2003, upgrades of Yellowstone's stream gaging network have improved the spatial and temporal precision of the chloride flux, water quality, and groundwater components of the Geothermal Monitoring Plan. All of these methods serve both for geothermal monitoring and volcano monitoring as part of the Yellowstone Volcano Observatory. A major component of the Geothermal Monitoring Plan is remote sensing of the Yellowstone volcano and its active hydrothermal areas at various scales. The National Center for Landscape Fire Analysis at the University of Montana and the USDA

  9. Geothermal Exploration Case Studies on OpenEI (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developersmore » central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.« less

  10. Oxidative phosphorylation in a thermophilic, facultative chemoautotroph, Hydrogenophilus thermoluteolus, living prevalently in geothermal niches.

    PubMed

    Wakai, Satoshi; Masanari, Misa; Ikeda, Takumi; Yamaguchi, Naho; Ueshima, Saori; Watanabe, Kaori; Nishihara, Hirofumi; Sambongi, Yoshihiro

    2013-04-01

    Hydrogenophilus is a thermophilic, facultative chemoautotroph, which lives prevalently in high temperature geothermal niches. Despite the environmental distribution, little is known about its oxidative phosphorylation. Here, we show that inverted membrane vesicles derived from Hydrogenophilus thermoluteolus cells autotrophically cultivated with H2 formed a proton gradient on the addition of succinate, dl-lactate, and NADH, and exhibited oxidation activity toward these three organic compounds. These indicate the capability of mixotrophic growth of this bacterium. Biochemical analysis demonstrated that the same vesicles contained an F-type ATP synthase. The F1 sector of the ATP synthase purified from H. thermoluteolus membranes exhibited optimal ATPase activity at 65°C. Transformed Escherichia coli membranes expressing H. thermoluteolus F-type ATP synthase exhibited the same temperature optimum for the ATPase. These findings shed light on H. thermoluteolus oxidative phosphorylation from the aspects of membrane bioenergetics and ATPase biochemistry, which must be fundamental and advantageous in the biogeochemical cycles occurred in the high temperature geothermal niches. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Quantifying the undiscovered geothermal resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter

    2009-01-01

    In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone

  12. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    NASA Technical Reports Server (NTRS)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  13. Energy 101: Geothermal Heat Pumps

    ScienceCinema

    None

    2018-02-13

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  14. Geothermal Progress Monitor, report No. 13

    NASA Astrophysics Data System (ADS)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to 'substantial diversification' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation that the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R & D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  15. Leasing of federal geothermal resources

    NASA Technical Reports Server (NTRS)

    Stone, R. T.

    1974-01-01

    Pursuant to the Geothermal Steam Act of 1970 and the regulations published on December 21, 1973, the first Federal geothermal competitive lease sale was held on January 22, 1974, by the Department of the Interior, offering 33 tracts totalling over 50,000 acres in three Known Geothermal Resource Areas in California. On January 1, 1974, Federal lands outside Known Geothermal Resource Areas were opened to noncompetitive lease applications, of which, 3,763 had been received by June 1, 1974. During fiscal year 1974, a total of 22 competitive leases had been issued in California and Oregon. The principal components in the Department involved in the leasing program are the Geological Survey and the Bureau of Land Management. The former has jurisdiction over drilling and production operations and other activities in the immediate area of operations. The latter receives applications and issues leases and is responsible for managing leased lands under its jurisdiction outside the area of operations. The interrelationships of the above agencies and the procedures in the leasing program are discussed.

  16. Geothermal Workforce Education, Development, and Retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    2014-03-31

    The work funded under this award was the formation of a National Geothermal Academy to develop the human resources that will be needed to transform and grow the US energy infrastructure to achieve the utilization of America’s vast geothermal resource base. The NGA has worked to create the new intellectual capital that will be needed by centralizing and unifying our national assets. The basic idea behind the Academy was to create a centrally located, convening organization for developing and conducting instructional programs in geothermal science and technology to educate and train the next generation of US scientists, engineers, plant operators,more » technicians, and policy makers. Broad participation of staff, faculty, and students from a consortium of US universities along with scientists and other professionals from industry and national laboratories were utilized. Geothermal experts from the US and other countries were recruited to serve as instructors to develop relevant curricula. Given the long history of geothermal development in the US, there is a large group of experienced individuals who effectively hold the “corporate memory” of geothermal development in the US, many of whom are nearing the end of their professional careers, while some have recently retired. We planned to capture this extremely valuable intellectual resource by engaging a number of these individuals in developing course curricula, leading training workshops, providing classroom instruction and mentoring future instructors.« less

  17. NREL: Renewable Resource Data Center - Geothermal Resource Data

    Science.gov Websites

    sites Data related to geothermal technology and energy Resource Data The following geothermal resource data collections can be found in the Renewable Resource Data Center (RReDC). Geothermal Resource Data The datasets on this page offer a qualitative

  18. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Royalties on geothermal resources. 1202.351 Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1...

  19. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Royalties on geothermal resources. 1202.351 Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1...

  20. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Royalties on geothermal resources. 1202.351 Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1...

  1. Geothermal power development in Hawaii. Volume 1. Review and analysis

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topics covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, public utilities commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  2. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    NASA Astrophysics Data System (ADS)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was

  3. Symposium in the field of geothermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must bemore » surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.« less

  4. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    PubMed

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  5. Numerical simulations of heat transfer through fractured rock for an enhanced geothermal system development in Seokmodo, Korea

    NASA Astrophysics Data System (ADS)

    Shin, Jiyoun; Kim, Kyung-Ho; Hyun, Yunjung; Lee, Kang-Keun

    2010-05-01

    Estimating the expected capacity and efficiency of energy is a crucial issue in the construction of geothermal plant. It is the lasting temperature of extracted geothermal water that determines the effectiveness of enhanced geothermal systems (EGS), so the heat transfer processes in geothermal reservoirs under site-specific geologic conditions should be understood first. The construction of the first geothermal plant in Korea is under planning in Seokmodo, where a few flowing artesian wells showing relatively high water temperature of around 70°C were discovered lately. The site of interest is a part of the island region, consisting of the reclaimed land surrounded by the sea and small mountains. Geothermal gradient measures approximately 45°C/km and the geothermal water is as saline as seawater. Geologic structure in this region is characterized by the fractured granite. In this study, thermo-hydrological (TH) numerical simulations for the temperature evolution in a fractured geothermal reservoir under the supposed injection-extraction operating conditions were carried out using TOUGH2. Multiple porosity model which is useful to calculate the transient interporosity flow in TH coupled heat transfer problem was used in simulations. Several fracture planes which had been investigated in the field were assigned to have highly permeable properties in order to avoid the averaging approximation and describe the dominant flow through the fractures. This heterogeneous model showed the rise of relatively hot geothermal water in the densely fractured region. The temperature of the extracted geothermal water also increased slowly for 50 years due to the rising flow through the fractures. The most sensitive factor which affects the underground thermal distribution and temperature of geothermal water was permeability of the medium. Change in permeabilities of rock and fracture within the range of 1 order might cause such an extreme change in the temperature of geothermal

  6. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  7. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  8. Geothermal Power/Oil & Gas Coproduction Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  9. Processing of thermal parameters for the assessment of geothermal potential of sedimentary basins

    NASA Astrophysics Data System (ADS)

    Pasquale, V.; Chiozzi, P.; Gola, G.; Verdoya, M.

    2009-04-01

    The growing interest on renewable energy sources is stimulating new efforts aimed at the assessment of geothermal potential in several countries, and new developments are expected in the near future. In this framework, a basic step forward is to focus geothermal investigations on geological environments which so far have been relatively neglected. Some intracontinental sedimentary basins could reveal important low enthalpy resources. The evaluation of the geothermal potential in such geological contexts involves the synergic use of geophysical and hydrogeological methodologies. In sedimentary basins a large amount of thermal and hydraulic data is generally available from petroleum wells. Unfortunately, borehole temperature data are often affected by a number of perturbations which make very difficult determination of the true geothermal gradient. In this paper we addressed the importance of the acquisition of thermal parameters (temperature, geothermal gradient, thermal properties of the rock) and the technical processing which is necessary to obtain reliable geothermal characterizations. In particular, techniques for corrections of bottom-hole temperature (BHT) data were reviewed. The objective was to create a working formula usable for computing the undisturbed formation temperature for specific sedimentary basins. As test areas, we analysed the sedimentary basins of northern Italy. Two classical techniques for processing temperature data from oil wells are customarily used: (i) the method by Horner, that requires two or more measurements of bottom-hole temperatures carried out at the same depth but at different shut-in times te and (ii) the technique by Cooper and Jones, in which several physical parameters of the mud and formation need to be known. We applied both methods to data from a number of petroleum explorative wells located in two areas of the Po Plain (Apenninic buried arc and South Piedmont Basin - Pedealpine homocline). From a set of about 40 wells

  10. Aerated drilling cutting transport analysis in geothermal well

    NASA Astrophysics Data System (ADS)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  11. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material

  12. The Pawsey Supercomputer geothermal cooling project

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  13. Faults dominant structure? -Seismic images of the subsurface structure for the Ilan geothermal field in Taiwan.

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chun; Shih, Ruey-Chyuan; Wang, Chien-Ying; Kuo, Hsuan-Yu; Chen, Wen-Shan

    2016-04-01

    A prototype deep geothermal power plant is to be constructed at the Ilan plain in northeastern Taiwan. The site will be chosen from one of the two potential areas, one in the west and the other in the eastern side of the plain. The triangle-shaped Ilan plane is bounded by two mountain ranges at the northwest and the south, with argillite and slate outcrops exposed, respectively. The Ilan plane is believed situating in a structure extending area at the southwestern end of the Okinawa Trough. Many studies about subsurface structure of the plain have been conducted for years. The results showed that the thickest sediments, around 900 m, is located at the eastern coast of the plain, at north of the largest river in the plain, the Lanyang river, and then became shallower to the edges of the plain. Since the plane is covered by thick sediments, formations and structures beneath the sediments are barely known. However, the observed high geothermal gradient and the abundant hot spring in the Ilan area indicate that this area is having a high potential of geothermal energy. In order to build up a conceptual model for tracing the possible paths of geothermal water and search for a suitable site for the geothermal well, we used the seismic reflection method to delineate the subsurface structure. The seismic profiles showed a clear unconformity separating the sediments and the metamorphic bedrock, and some events dipping to the east in the bedrock. Seismic images above the unconformity are clear; however, seismic signals in the metamorphic bedrock are sort of ambiguous. There were two models interpreted by using around 10 seismic images that collected by us in the past 3 years by using two mini-vibrators (EnviroVibe) and a 360-channel seismic data acquisition system. In the first model, seismic signals in the bedrock were interpreted as layer boundaries, and a fractured metamorphic layer down the depth of 1200m was thought as the source of geothermal water reservoir. In the

  14. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica

    PubMed Central

    Bendia, Amanda G.; Signori, Camila N.; Franco, Diego C.; Duarte, Rubens T. D.; Bohannan, Brendan J. M.; Pellizari, Vivian H.

    2018-01-01

    Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar “open-air” laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions. PMID:29867810

  15. Middlesex Community College Geothermal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Jessie; Spaziani, Gina

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  16. Silica extraction from geothermal water

    DOEpatents

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  17. Perspectives on geopressured resources within the geothermal program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibona, B.

    1980-06-01

    This work reviews the potential of geothermal energy in the U.S. Current sources of and uses for geothermal energy are described. The study outlines how geopressured resources fit into the geothermal program of the U.S. Department of Energy (DOE). Description of the program status includes progress in drilling and assessing geopressured resources. The Division of Geothermal Energy within DOE is responsible for geothermal resources comprising point heat sources (igneous); high heat flow regions such as those between the Sierras and the Rockies; radiogenic heat sources of moderate temperatures of the eastern U.S. coast; geopressured zones; and hot dry rock systems.more » Interest in these resources focuses on electric power production, direct heat application, and methane production from the geopressured aquifers.« less

  18. Porous media of the Red River Formation, Williston Basin, North Dakota: a possible Sedimentary Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hartig, Caitlin M.

    2018-01-01

    Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.

  19. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  20. Geothermal energy development in the Philippines: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, D.; Javellana, S.P.; Benavidez, P.J.

    1993-10-01

    The Philippines is the third largest producer of geothermal electricity after the US and Mexico. Geothermal exploration was started in 1962, and the first large commercial power plants came on-line in 1979 in two fields. By 1984, four geothermal fields had a combined installed capacity of 890 MWe and in 1992 these plants supplied about 20% of the country`s electric needs. Geothermal energy development was stimulated in the mid-1970s by the oil crisis and rapidly growing power demand, government support, available foreign funding, and a combination of private and government investment and technical expertise. However, no new geothermal capacity hasmore » been added since 1984, despite the growing demand for energy and the continuing uncertainty in the supply of crude oil. The Philippines` geothermal capacity is expected to expand by 270--1,100 MWe by the end of 1999. Factors that will affect the rate growth in this decade include suitable legislation, environmental requirements, financing, degree of private involvement, politics, inter-island electric grid connections, and viability of the remaining prospects.« less

  1. Characterization of the paleo-hydrothermal fluids flow in the geothermal province of Limagne. (French Massif Central).

    NASA Astrophysics Data System (ADS)

    Fréville, K.; Sizaret, S.

    2017-12-01

    Exploitation of the geothermal energy is a prime target to future energy supply. Understanding the nature and the flow of geothermal fluids is a key objective for describe the functioning of current hydrothermal systems. Located in the French Massif Central, the Limagne basin is a tertiary hemi-graben characterized by a high thermal gradient with numerous occurrences of CO2-rich thermo-mineral waters. This basin has potential for high-temperature geothermal energy, expressed by numerous natural high temperature water sources, as well as at Royat and Vichy were the surface temperature of the water can reach 33°C and 27°C, respectively. In order to better localize this potential, the geological evolution has to be deciphered. In this aim we study the flow processes of the paleo-fluids and estimate the direction and the velocity of the hydrothermal flow from the studies of the growth bands of comb quartz grain localized in vein. In a second time, the studies fluids inclusions within the quartz grain are used to characterize the nature of the fluids involved. Preliminary results show that the flow is discontinuous over the time with changes in velocities and directions during the growth of a single quartz grain. Two main flows were identified, i) a relatively fast upward flow at 10-6,-5 m.s-1; ii) a downward flow at about 10-5,-4 m.s-1. The results allow: (i) to discuss the processes controlling the fluids flow in the Limagne basin; and (ii) to suggest to delimitate the areas with high geothermal potential which integrate the flow variation in time.

  2. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    USGS Publications Warehouse

    Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.

    2018-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt

  3. Shallow geothermal potential of Cantone Ticino through map modeling

    NASA Astrophysics Data System (ADS)

    Perego, Rodolfo; Pera, Sebastian; Belliardi, Marco

    2017-04-01

    Low enthalpy geothermal energy is continuously growing in importance within Europe, since it is a reliable and efficient renewable energy, especially when exploited by closed-loop systems. Switzerland hosts one of the greatest density of low temperature geothermal systems in the world. Cantone Ticino includes more than 4000 probes, with an overall installed length of more than 500 km and the requests are continuously growing: the management of this technology must be therefore accurately faced both from a physical and political standpoint. The current authorization approach for closed-loop systems in Cantone Ticino, however, is mainly based on basic maps taking into account the presence of restrictions arising from the enforcement of the water protection act and ordinance. Closed-loop systems cannot be installed within S groundwater protection zones, and within the Au (usable groundwater) sector the installation of such systems is allowed in specific areas where the presence of conflicts precludes groundwater exploitation for drinking purposes. The described procedure, however, does not consider the subsurface potential nor the techno-economic constraints. More empirically based maps could instead give precious planning indications and they could also be useful, if properly verified, to perform pre-emptive estimates of technical and economic parameters. The procedure for the mapping of the geothermal potential started with the identification of the main parameters affecting it, such as the ground surface temperature (GST), thermal conductivity of both outcrops/unconsolidated material and heat flux/geothermal gradient. Maps for all of these parameters were created and some of them were compared with real measurement data, with satisfactory results. The estimated error for the ground temperature reconstruction was quantified in ±1°C, while the error of the hydraulic conductivity reconstruction was estimated as half of an order of magnitude. A reference set of

  4. Realizing the geothermal electricity potential—water use and consequences

    NASA Astrophysics Data System (ADS)

    Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia

    2011-07-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  5. Estimate of radon exposure in geothermal spas in Poland.

    PubMed

    Walczak, Katarzyna; Olszewski, Jerzy; Zmyślony, Marek

    2016-01-01

    Geothermal waters may contain soluble, radioactive radon gas. Spa facilities that use geothermal water may be a source of an increased radiation dose to people who stay there. It has been necessary to assess the exposure to radon among people: workers and visitors of spa centers that use geothermal waters. In 2013, workers of the Nofer Institute of Occupational Medicine measured concentrations of radon over the geothermal water surfaces in 9 selected Polish spa centers which use geothermal water for recreational and medicinal purposes. The measurements were performed by active dosimetry using Lucas scintillation cells. According to our research, the doses received by the personnel in Polish geothermal spas are < 0.6 mSv/year. In 1 of the investigated spas, the estimated annual dose to the staff may exceed 3 mSv/year. In Polish geothermal spas, neither the workers nor the visitors are at risk of receiving doses that exceed the safe limits. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland,more » Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings

  7. Geothermal Exploration Cost and Time

    DOE Data Explorer

    Jenne, Scott

    2013-02-13

    The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  8. Proceedings and findings of the geothermal commercialization workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Dhillon, H.

    The proceedings are presented of a Geothermal Commercialization Workshop conducted by the Division of Geothermal Resource Management, Department of Energy. The workshop was held in January-February 1979 at The MITRE Corporation facility in McLean, Virginia. The workshop addressed geothermal hydrothermal commercialization achievements and needs in the areas of Marketing and Outreach, Economics, Scenarios, and Progress Monitoring.

  9. Microbial Community Biofabrics in a Geothermal Mine Adit▿ †

    PubMed Central

    Spear, John R.; Barton, Hazel A.; Robertson, Charles E.; Francis, Christopher A.; Pace, Norman R.

    2007-01-01

    Speleothems such as stalactites and stalagmites are usually considered to be mineralogical in composition and origin; however, microorganisms have been implicated in the development of some speleothems. We have identified and characterized the biological and mineralogical composition of mat-like biofabrics in two novel kinds of speleothems from a 50°C geothermal mine adit near Glenwood Springs, CO. One type of structure consists of 2- to 3-cm-long, 3- to 4-mm-wide, leather-like, hollow, soda straw stalactites. Light and electron microscopy indicated that the stalactites are composed of a mineralized biofabric with several cell morphotypes in a laminated form, with gypsum and sulfur as the dominant mineral components. A small-subunit rRNA gene phylogenetic community analysis along the stalactite length yielded a diverse gradient of organisms, with a relatively simple suite of main constituents: Thermus spp., crenarchaeotes, Chloroflexi, and Gammaproteobacteria. PCR analysis also detected putative crenarchaeal ammonia monooxygenase subunit A (amoA) genes in this community, the majority related to sequences from other geothermal systems. The second type of speleothem, dumpling-like rafts floating on a 50°C pool on the floor of the adit, showed a mat-like fabric of evidently living organisms on the outside of the dumpling, with a multimineral, amorphous, gypsum-based internal composition. These two novel types of biofabrics are examples of the complex roles that microbes can play in mineralization, weathering, and deposition processes in karst environments. PMID:17693567

  10. Technical Feasibility Aspects of the Geothermal Resource Reporting Methodology (GRRM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badgett, Alex; Young, Katherine R; Dobson, Patrick F.

    This paper reviews the technical assessment of the Geothermal Research Reporting Methodology (GRRM, http://en.openei.org/wiki/GRRM) being developed for reporting geothermal resources and project progress. The goal of the methodology is to provide the U.S. Department of Energy's Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. The GRRM is designed to provide uniform assessment criteria for geothermal resource grades and developmental phases of geothermal resource exploration and development. This resource grade system provides information on twelve attributes of geothermal resource locations (e.g., temperature, permeability, land access) to indicate potential for geothermal development.more » The GTO plans to use these Protocols to help quantitatively identify the greatest barriers to geothermal development, develop measureable program goals that will have the greatest impact to geothermal deployment, objectively evaluate proposals based (in part) on a project's ability to contribute to program goals, monitor project progress, and report on GTO portfolio performance. The GRRM assesses three areas of geothermal potential: geological, socio-economic, and technical. Previous work and publications have discussed the work done on the geological aspects of this methodology (Young et al. 2015c); this paper details the development of the technical assessment of the GRRM. Technical development attributes considered include: reservoir management, drilling, logistics, and power conversion.« less

  11. Geothermal Potential of Ascension Island, South Atlantic.

    DTIC Science & Technology

    1982-11-05

    7AD-A141 763 GEOTHERMAL POTENTIAL OF ASCENSION ISLAND SOUTH ATLANTIC 1/1. (U) UTAH UNIV RESEARCH IN T SALT LAKE CITY EARTH U LfIS SCIENCE LAB D L...STANDARDS 1%A A ~ 7- ESMC-TR-83-02 Geothermal Potential Of Ascension Island, South Atlantic Dennis L. Nielson Bruce S. Sibbett University Of Utah...Security Classification) Geothermal Potential of Ascension Island, South Atlantic 12 PERSONAL AUTHOR(S) Dennis L. Neilson and Bruce S. Sibbett IIa TYPE

  12. NREL: Renewable Resource Data Center - Geothermal Resource Models and Tools

    Science.gov Websites

    allow users to determine locations that are favorable to geothermal energy development. List of software Models and Tools The Renewable Resource Data Center (RReDC) features the following geothermal models and tools. Geothermal Prospector The Geothermal Prospector tool provides the information needed to

  13. A New Concept for Geothermal Energy Extraction: The Radiator - Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Geiser, P.; Marsh, B. D.; Malin, P. E.; Moore, S.

    2014-12-01

    Enhanced Geothermal Systems (EGS) in hot dry rock frequently underperform or fail due to insufficient reservoir characterization and poorly controlled permeability stimulation. Our new EGS design is based on the concept of a cooling radiator of an internal combustion engine, which we call the Radiator EGS (RAD-EGS). Within a hot sedimentary aquifer, we propose to construct vertically extensive heat exchanger vanes, which consist of rubblized zones of high permeability and which emulate a hydrothermal system. A "crows-foot" lateral drilling pattern at multiple levels is used to form a vertical array that includes S1 and Shmax. To create the radiator, we propose to use propellant fracing. System cool-down is delayed by regional background flow and induced upward flow of the coolant which initially heats the rock. Tomographic Fracture Imaging is used to image and control the permeability field changes. Preliminary heat transfer calculations suggest that the RAD-EGS will allow for commercial electricity production for at least several tens of years.

  14. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B; Faulds, James E

    fault, which accommodates motion such that the Mesozoic Nightingale sequence is juxtaposed with late Tertiary sedimentary rocks. The NW dextral fault, the NNE-down to east fault, and several NNE-down to the west faults intersect roughly at the thermal anomaly in Emerson Pass. This suggests that fault intersections locally control upwelling of geothermal fluids within the step-over. Based on this assumption, it is proposed that the area near Buckbrush Springs be investigated further for geothermal potential. At this location, a NNE-down to the west normal fault, with >1 km of offset, intersects a NW-striking down to the south fault at a small left step in the NNE fault. Further studies will include collection of available kinematic indicators near the shallow thermal anomaly in Emerson Pass, geothermometry on Buckbrush Spring, and possibly drilling of temperature gradient wells in Emerson Pass and at Buckbrush Spring.« less

  15. The Colorado School of Mines Nevada geothermal study

    NASA Technical Reports Server (NTRS)

    Keller, G. V.; Grose, L. T.; Crewpson, R. A.

    1974-01-01

    Geothermal systems in the Basin and Range Province of the western United States probably differ in many respects from geothermal systems already discovered in other parts of the world because of the unique tectonic setting. To investigate this, a study of the geothermal occurrences at Fly Ranch, approximately 100 miles north of Reno, Nevada, has been undertaken. Ample evidence for a geothermal system exists in this area, including the surface expression of heat flow in the form of hot springs, an extensive area of low electrical resistivity, and a high level of seismicity along faults bounding the thermal area. However, geophysical and geological studies have not yet provided evidence for a local heat source at depth. Additional detailed geophysical and geological studies, as well as drilling, must be completed before the geothermal system can be described fully.

  16. Hot Dry Rock; Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depthmore » originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by

  17. Adaptive microfluidic gradient generator for quantitative chemotaxis experiments.

    PubMed

    Anielski, Alexander; Pfannes, Eva K B; Beta, Carsten

    2017-03-01

    Chemotactic motion in a chemical gradient is an essential cellular function that controls many processes in the living world. For a better understanding and more detailed modelling of the underlying mechanisms of chemotaxis, quantitative investigations in controlled environments are needed. We developed a setup that allows us to separately address the dependencies of the chemotactic motion on the average background concentration and on the gradient steepness of the chemoattractant. In particular, both the background concentration and the gradient steepness can be kept constant at the position of the cell while it moves along in the gradient direction. This is achieved by generating a well-defined chemoattractant gradient using flow photolysis. In this approach, the chemoattractant is released by a light-induced reaction from a caged precursor in a microfluidic flow chamber upstream of the cell. The flow photolysis approach is combined with an automated real-time cell tracker that determines changes in the cell position and triggers movement of the microscope stage such that the cell motion is compensated and the cell remains at the same position in the gradient profile. The gradient profile can be either determined experimentally using a caged fluorescent dye or may be alternatively determined by numerical solutions of the corresponding physical model. To demonstrate the function of this adaptive microfluidic gradient generator, we compare the chemotactic motion of Dictyostelium discoideum cells in a static gradient and in a gradient that adapts to the position of the moving cell.

  18. Geothermal activity helps life survive glacial cycles

    PubMed Central

    Fraser, Ceridwen I.; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L.

    2014-01-01

    Climate change has played a critical role in the evolution and structure of Earth’s biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this “geothermal glacial refugia” hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  19. Biophysical model of prokaryotic diversity in geothermal hot springs.

    PubMed

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society

  20. Geothermally Coupled Well-Based Compressed Air Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well

  1. Advantage of incorporating geothermal energy into power-station cycles

    NASA Astrophysics Data System (ADS)

    White, A. A. L.

    1980-06-01

    The generation of electricity from low-temperature geothermal sources has been hampered by the low conversion efficiencies of Rankine cycle operating below 150 C. It is shown how the electrical output derived from a geothermal borehole may be substantially improved on that expected from these cycles by incorporating the geothermal heat into a conventional steam-cycle power station to provide feedwater heating. This technique can yield thermal conversion efficiencies of 11% which, for a well-head temperature of 100 C, is 50% greater than the output expected from a Rankine cycle. Coupled with the smaller capital costs involved, feedwater heating is thus a more attractive technique of converting heat into electricity. Although power stations above suitable geothermal resources would ideally have the geothermal heat incorporated from the design stage, experiments at Marchwood Power Station have shown that small existing sets can be modified to accept geothermal feedwater heating.

  2. INEL Geothermal Environmental Program. 1979 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  3. Integrated geophysical imaging of the Aluto-Langano geothermal field (Ethiopia).

    NASA Astrophysics Data System (ADS)

    Rizzello, Daniele; Armadillo, Egidio; Verdoya, Massimo; Pasqua, Claudio; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesh; Abera, Fitsum; Mengesha, Kebede; Meqbel, Naser

    2017-04-01

    The Aluto-Langano geothermal system is located in the central part of the Main Ethiopian Rift, one of the world's most tectonically active areas, where continental rifting has been occurring since several Ma and has yielded widespread volcanism and enhanced geothermal gradient. The geothermal system is associated to the Mt Aluto Volcanic Complex, located along the eastern margin of the rift and related to the Wonji Fault Belt, constituted by Quaternary NNE-SSW en-echelon faults. These structures are younger than the NE-SW border faults of the central Main Ethiopian Rift and were originated by a stress field oblique to the rift direction. This peculiar tectonism yielded local intense rock fracturing that may favour the development of geothermal reservoirs. In this paper, we present the results of an integrated geophysical survey carried out in 2015 over an area of about 200 km2 covering the Mt Aluto Volcanic Complex. The geophysical campaign included 162 coincident magnetotelluric and time domain electromagnetic soundings, and 207 gravity stations, partially located in the sedimentary plain surrounding the volcanic complex. Three-dimensional inversion of the full MT static-corrected tensor and geomagnetic tipper was performed in the 338-0.001 Hz band. Gravity data processing comprised digital enhancement of the residual Bouguer anomaly and 2D-3D inverse modelling. The geophysical results were compared to direct observations of stratigraphy, rock alteration and temperature available from the several deep wells drilled in the area. The magnetotelluric results imaged a low-resistivity layer which appears well correlated with the mixed alteration layer found in the wells and can be interpreted as a low-temperature clay cap. The clay-cap bottom depth is well corresponds to a change of thermal gradient. The clay cap is discontinuous, and in the central area of the volcanic complex is characterised by a dome-shape structure likely related to isotherm rising. The propilitic

  4. The Main Problems in the Development of Geothermal Energy Industry in China

    NASA Astrophysics Data System (ADS)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  5. Geothermal hazards - Mercury emission

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1975-01-01

    Enthusiasm for intensified geothermal exploration may induce many participants to overlook a long-term potential toxicity hazard possibly associated with the tapping of magmatic steam. The association of high atmospheric Hg levels with geothermal activity has been established both in Hawaii and Iceland, and it has been shown that mercury can be introduced into the atmosphere from fumaroles, hot springs, and magmatic sources. These arguments, extended to thallium, selenium, and other hazardous elements, underscore the need for environmental monitoring in conjunction with the delivery of magmatic steam to the surface.

  6. California's geothermal resource potential

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1978-01-01

    According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.

  7. Investigation on effective promotion of geothermal energy development

    NASA Astrophysics Data System (ADS)

    1991-03-01

    Efficient and effective measures for promoting geothermal energy development are studied considering the present status and the problems of the geothermal energy development in Japan. To promote it smoothly, solutions to technical and socioeconomic problems are needed: There are many unclear points about the location and amount of geothermal resources. For geothermal energy development, it is necessary to establish a consensus of procedures for surveying the development and settlement of selling prices, and risk sharing in the development. It is indispensable to consider an adjustment with natural parks and hot springs for the development. Troubles in making an adjustment are seen in many cases, and it is necessary to make efforts for that understanding. Improvement of economical efficiency of geothermal power generation is an important subject. From the above mentioned studies, the conclusion is obtained that it is most effective to make rules for development and to expand and strengthen resource prospecting by the government. If the rules are made, reduction of the development cost and shortening of the development period are planned, and the future of the geothermal energy business is expected to be promising.

  8. Tongonani geothermal power development, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minson, A.A.C.; Fry, T.J.; Kivell, J.A.

    1985-01-01

    This paper describes the features, design and construction of a 112 MWe geothermal power project, representing the first stage development of the substantial geothermal resources of the central Philippine region. The project has been undertaken by the Philippine Government. The National Powe Corporation is responsible for generation and distribution facilities and the Philippine National Oil Company Energy Development Corporation is responsible for controlled delivery of steam to the powe station.

  9. Performance of deep geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  10. Effect of microporosity on the permeability of geothermal systems, case study of Los Humeros geothermal fie

    NASA Astrophysics Data System (ADS)

    Carrasco, Gerardo; Cid, Hector; Ortega, Dante

    2017-04-01

    Los Humeros is the largest silicic caldera complex of the Trans-Mexican Volcanic Belt (TMVB), with an active geothermal field, which is currently producing around 65 MW. It is located in the northern part of the eastern TMVB. Its evolution includes voluminous caldera-forming eruption producing two large caldera structures (Los Humeros and Los Potreros calderas) with alternated episodes of effusive and explosive activity until the Holocene. The geothermal reservoir is located at a depth of about 1,500 m comprising a thick succession of porphyritic andesitic lava flows, and perhaps which overlay in a highly discordant contact a meta-sedimentary basement sequence dominated by altered limestone and skarn rocks. A NW/N-S structural system seems to be the main control of geothermal field distribution within the central part of the youngest caldera. Permeability in the geothermal reservoir has been associated with that system observed on the surficial geology, but also to some hidden secondary faulting and associated fracturing. Primary porosity has been considered negligible due to the low macroporosity observed in the volcanic rocks. However, a detailed analysis of the microporosity determined by X-ray microtomography new developed techniques, allow us to determine precise values of microporosity that were using for numerical simulation to obtain values of effective porosity, which reveals an interesting alternative solution to the permeability of the subsurface of Los Humeros geothermal field that should be taking into account to the final permeability of the system.

  11. NREL Taps Young to Oversee Geothermal Energy Program | News | NREL

    Science.gov Websites

    Taps Young to Oversee Geothermal Energy Program News Release: NREL Taps Young to Oversee Geothermal (NREL) promoted Katherine Young to laboratory program manager for geothermal energy. Young has been with NREL since 2008, working as a senior geothermal analyst and engineer in the Strategic Energy Analysis

  12. Geological investigation of the Socorro geothermal area. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, C.E.; Sanford, A.R.; White, D.W.

    1979-05-01

    The results of a comprehensive geological and geochemical study of the Socorro geothermal area are presented. The following are discussed: geologic setting, structural controls, stratigraphic controls, an ancient geothermal system, modern magma bodies, geothermal potential of the Socorro area, and the Socorro transverse shear zone. (MHR)

  13. Young (<7 Ma) gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    USGS Publications Warehouse

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  14. Microbial Diversity of Acidic Hot Spring (Kawah Hujan B) in Geothermal Field of Kamojang Area, West Java-Indonesia

    PubMed Central

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria. PMID:19440252

  15. Microbial diversity of acidic hot spring (kawah hujan B) in geothermal field of kamojang area, west java-indonesia.

    PubMed

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria.

  16. Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, P.

    1997-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct usemore » Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.« less

  17. The Geothermal Data Repository: Five Years of Open Geothermal Data, Benefits to the Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weers, Jonathan D; Taverna, Nicole; Anderson, Arlene

    In the five years since its inception, the Department of Energy's (DOE) Geothermal Data Repository (GDR) has grown from the simple idea of storing public data in a centralized location to a valuable tool at the center of the DOE open data movement where it is providing a tangible benefit to the geothermal scientific community. Throughout this time, the GDR project team has been working closely with the community to refine the data submission process, improve the quality of submitted data, and embrace modern proper data management strategies to maximize the value and utility of submitted data. This paper exploresmore » some of the motivations behind various improvements to the GDR over the last 5 years, changes in data submission trends, and the ways in which these improvements have helped to drive research, fuel innovation, and accelerate the adoption of geothermal technologies.« less

  18. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  19. Re-examining Potential for Geothermal Energy in United States

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New technological initiatives, along with potential policy and economic incentives, could help to bring about a resurgence in geothermal energy development in the United States, said several experts at a 22 May forum in Washington, D.C. The forum was sponsored by the House and Senate Renewable Energy and Energy Efficiency Caucuses, the Sustainable Energy Coalition, and the Environmental and Energy Study Institute. Among these initiatives is an ambitious program of the U.S. Department of Energy to expand existing geothermal energy fields and potentially create new fields through ``enhanced geothermal systems.'' In addition, a program of the Bush administration encourages geothermal development on some public lands, and current legislation would provide tax credits and other incentives for geothermal development.

  20. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  1. Geothermal resources and reserves in Indonesia: an updated revision

    NASA Astrophysics Data System (ADS)

    Fauzi, A.

    2015-02-01

    More than 300 high- to low-enthalpy geothermal sources have been identified throughout Indonesia. From the early 1980s until the late 1990s, the geothermal potential for power production in Indonesia was estimated to be about 20 000 MWe. The most recent estimate exceeds 29 000 MWe derived from the 300 sites (Geological Agency, December 2013). This resource estimate has been obtained by adding all of the estimated geothermal potential resources and reserves classified as "speculative", "hypothetical", "possible", "probable", and "proven" from all sites where such information is available. However, this approach to estimating the geothermal potential is flawed because it includes double counting of some reserve estimates as resource estimates, thus giving an inflated figure for the total national geothermal potential. This paper describes an updated revision of the geothermal resource estimate in Indonesia using a more realistic methodology. The methodology proposes that the preliminary "Speculative Resource" category should cover the full potential of a geothermal area and form the base reference figure for the resource of the area. Further investigation of this resource may improve the level of confidence of the category of reserves but will not necessarily increase the figure of the "preliminary resource estimate" as a whole, unless the result of the investigation is higher. A previous paper (Fauzi, 2013a, b) redefined and revised the geothermal resource estimate for Indonesia. The methodology, adopted from Fauzi (2013a, b), will be fully described in this paper. As a result of using the revised methodology, the potential geothermal resources and reserves for Indonesia are estimated to be about 24 000 MWe, some 5000 MWe less than the 2013 national estimate.

  2. Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir

    USGS Publications Warehouse

    Bergfeld, D.; Goff, F.; Janik, C.J.

    2001-01-01

    In the later part of the 1990s, a large die-off of desert shrubs occurred over an approximately 1 km2 area in the northwestern section of the Dixie Valley (DV) geothermal field. This paper reports results from accumulation-chamber measurements of soil CO2 flux from locations in the dead zone and stable isotope and chemical data on fluids from fumaroles, shallow wells, and geothermal production wells within and adjacent to the dead zone. A cumulative probability plot shows three types of flux sites within the dead zone: Locations with a normal background CO2 flux (7 g m-2 day-1); moderate flux sites displaying "excess" geothermal flux; and high flux sites near young vents and fumaroles. A maximum CO2 flux of 570 g m-2 day-1 was measured at a location adjacent to a fumarole. Using statistical methods appropriate for lognormally distributed populations of data, estimates of the geothermal flux range from 7.5 t day-1 from a 0.14-km2 site near the Stillwater Fault to 0.1 t day-1 from a 0.01 -km2 location of steaming ground on the valley floor. Anomalous CO2 flux is positively correlated with shallow temperature anomalies. The anomalous flux associated with the entire dead zone area declined about 35% over a 6-month period. The decline was most notable at a hot zone located on an alluvial fan and in the SG located on the valley floor. Gas geochemistry indicates that older established fumaroles along the Stillwater Fault and a 2-year-old vent in the lower section of the dead zone discharge a mixture of geothermal gases and air or gases from air-saturated meteoric water (ASMW). Stable isotope data indicate that steam from the smaller fumaroles is produced by ??? 100??C boiling of these mixed fluids and reservoir fluid. Steam from the Senator fumarole (SF) and from shallow wells penetrating the dead zone are probably derived by 140??C to 160??C boiling of reservoir fluid. Carbon-13 isotope data suggest that the reservoir CO2 is produced mainly by thermal decarbonation of

  3. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  4. The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.; O'Bryan, L.

    2010-12-01

    The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.

  5. Choosing a Geothermal as an HVAC System.

    ERIC Educational Resources Information Center

    Lensenbigler, John D.

    2002-01-01

    Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)

  6. POLLUTION CONTROL GUIDANCE FOR GEOTHERMAL ENERGY DEVELOPMENT

    EPA Science Inventory

    This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pol...

  7. ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS

    EPA Science Inventory

    Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...

  8. Documentation of the status of international geothermal power plants and a list by country of selected geothermally active governmental and private sector entities

    NASA Astrophysics Data System (ADS)

    1992-10-01

    This report includes the printouts from the International Geothermal Power Plant Data Base and the Geothermally Active Entity Data Base. Also included are the explanation of the abbreviations used in the power plant data base, maps of geothermal installations by country, and data base questionnaires and mailing lists.

  9. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.A. Kelley; N. Rogers; S. Sandberg

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Maderamore » Limestone, the most likely host for a major geothermal reservoir.« less

  10. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    ERIC Educational Resources Information Center

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  11. Access to Data Accelerates Innovation and Adoption of Geothermal

    Science.gov Websites

    Technologies | News | NREL Access to Data Accelerates Innovation and Adoption of Geothermal Technologies Access to Data Accelerates Innovation and Adoption of Geothermal Technologies May 18, 2018 A map of the continental U.S. is overlaid with a colored map showing deep geothermal heat potential. NREL's

  12. Ground Source Geothermal District Heating and Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, James William

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reducemore » worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx« less

  13. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45

  14. The multi-level perspective analysis: Indonesia geothermal energy transition study

    NASA Astrophysics Data System (ADS)

    Wisaksono, A.; Murphy, J.; Sharp, J. H.; Younger, P. L.

    2018-01-01

    The study adopts a multi-level perspective in technology transition to analyse how the transition process in the development of geothermal energy in Indonesia is able to compete against the incumbent fossil-fuelled energy sources. Three levels of multi-level perspective are socio-technical landscape (ST-landscape), socio-technical regime (ST-regime) and niche innovations in Indonesia geothermal development. The identification, mapping and analysis of the dynamic relationship between each level are the important pillars of the multi-level perspective framework. The analysis considers the set of rules, actors and controversies that may arise in the technological transition process. The identified geothermal resource risks are the basis of the emerging geothermal technological innovations in Indonesian geothermal. The analysis of this study reveals the transition pathway, which yields a forecast for the Indonesian geothermal technology transition in the form of scenarios and probable impacts.

  15. Association of Cancer Incidence and Duration of Residence in Geothermal Heating Area in Iceland: An Extended Follow-Up

    PubMed Central

    Kristbjornsdottir, Adalbjorg; Aspelund, Thor; Rafnsson, Vilhjalmur

    2016-01-01

    Background Residents of geothermal areas have higher incidence of non-Hodgkin’s lymphoma, breast cancer, prostate cancer, and kidney cancers than others. These populations are exposed to chronic low-level ground gas emissions and various pollutants from geothermal water. The aim was to assess whether habitation in geothermal areas and utilisation of geothermal water is associated with risk of cancer according to duration of residence. Methods The cohort obtained from the census 1981 was followed to the end of 2013. Personal identifier was used in record linkage with nation-wide emigration, death, and cancer registries. The exposed population, defined by community codes, was located on young bedrock and had utilised geothermal water supply systems since 1972. Two reference populations were located by community codes on older bedrock or had not utilised geothermal water supply systems for as long a period as had the exposed population. Adjusted hazard ratio (HR), 95% confidence intervals (CI) non-stratified and stratified on cumulative years of residence were estimated in Cox-model. Results The HR for all cancer was 1.21 (95% CI 1.12–1.30) as compared with the first reference area. The HR for pancreatic cancer was 1.93 (1.22–3.06), breast cancer, 1.48 (1.23–1.80), prostate cancer 1.47 (1.22–1.77), kidney cancer 1.46 (1.03–2.05), lymphoid and haematopoietic tissue 1.54 (1.21–1.97), non-Hodgkin´s lymphoma 2.08 (1.38–3.15) and basal cell carcinoma of the skin 1.62 (1.35–1.94). Positive dose-response relationship was observed between incidence of cancers and duration of residence, and between incidence of cancer and degree of geothermal/volcanic activity in the comparison areas. Conclusions The higher cancer incidence in geothermal areas than in reference areas is consistent with previous findings. As the dose-response relationships were positive between incidence of cancers and duration of residence, it is now more urgent than before to investigate

  16. High Resolution Magnetotelluric Imaging of the Nisyros Caldera and Geothermal Resource (Greece)

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas; Sakkas, Vassilis; Lagios, Evangelos

    2017-04-01

    This work reports the qualitative and quantitative re-examination of legacy magnetotelluric soundings data obtained in the caldera of Nisyros, a small island volcano at the eastern end of the Hellenic Volcanic Arc (HVA), Greece, in an attempt to explore the high temperature geothermal resource of the area. The data set comprises 39 single-site soundings and is re-examined with improved data processing methods, new hypothetical event analysis techniques to study the spatial configuration of the telluric field and two-dimensional inversion tools. Iteratively reweighted least squares have been implemented to compute stable and smooth Earth response functions, which were found to exhibit 2-D to weakly 3-D attributes as a result of induction in low-contrast local geoelectric inhomogeneities, superimposed on a dominantly 2-D background structure. The transfer functions appear to be free of coastal and island induction effects due to the low offshore/onshore resistivity contrast at, and below sea level. The spatial properties of the telluric field are studied with hypothetical event analysis based on 3-D decompositions of the impedance tensor [1]. The results indicate that convection and hydrothermal circulation is controlled by a system of antithetic NE-SW oriented active normal faults which form a graben-like structure and define the 2-D background, as well as a conjugate system of NNW-SSE normal faults which is particularly active at the SW quadrant of the island and define the main convection path. It was determined that under these conditions the data can be interpreted with 2-D inversion, which was carried out with [2]. The inversion has successfully reconstructed detailed images of the structural and functional elements of the hydrothermal system. The structural elements include a number of shallow hot water reservoirs in the argillic and phyllic alteration zones and a laterally extended deep (approx. 1km) circulation zone, all embedded in a low-resistivity matrix

  17. Engineering parameters used in geopressured geothermal Fairway evaluation and test-well site location, Frio formation, Texas Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, A.R.; Meriwether, J.

    1977-01-01

    Adequate deliverability of fluids from reservoirs with temperatures higher than 300/sup 0/F is a key factor in evaluating geopressured geothermal resources. In the Austin Bayou Prospect, Brazoria County, Texas, permeability is difficult to evaluate before wells are drilled and tested. However, this report discusses how reservoir pressure decline and high temperature reduce permeability. The history of gas-condensate production from geopressured reservoirs in the Chocolate Bayou field, located near the Austin Bayou Prospect, shows that deliverability of hydrocarbons is high in the early life of the reservoirs but drops sharply as pressure declines. Average geothermal gradient is 1.8/sup 0/F per hundredmore » feet and reservoir pressure gradients lie between 0.465 and 0.98 psia per foot for depths below 10,000 feet. Salinities vary from 40,000 to 80,000 ppM and methane content may range from 25 to 45 cubic feet per barrel for formation waters commonly found in the Chocolate Bayou field. The effective gas permeabilities determined from production flow tests are estimated to range from 1 to 6 millidarcys and absolute permeabilities lie between 2 and 10 millidarcys. More than 10 billion barrels of water inferred to occur in place in the prospective sandstone reservoirs of the Austin Bayou prospect contain potentially 1,733 MW-years of electrical energy and 400 billion cubic feet of methane in solution.« less

  18. Development situation and prospecting division of geothermal resources in Yangshan county, Guangdong Province

    NASA Astrophysics Data System (ADS)

    Yin, Lijun; Luo, Yizhen; Ma, Huiying; Xie, Yanxiao; Liu, Zhenzhen

    2017-03-01

    Yangshan County has abundant low-geothermal resources in its northeast, southwest, and midwest regions. These low-temperature geothermal resources in Yangshan County can prove to be beneficial for different purposes such as tourism, recuperation, sauna, and agriculture. Thirteen geothermal hot springs (spots) and seven geothermal anomalies have been discovered till now in this area. The geothermal resources are grouped on the basis of their conditions as follows: The Chengjia-Dianzhan and Dongguan-Jietan geothermal areas are classified as priority development zones, the Huangben-Mazishui and Qigongyuntankeng areas as sub-priority development zones, the Jiangying geothermal area as a general development zone, the Yangshan geothermal area as a potential development zone, and the Chengjia and Longfeng geothermal areas as restricted development zones.

  19. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  20. Honey Lake Geothermal Project, Lassen County, California

    NASA Astrophysics Data System (ADS)

    1984-11-01

    The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.

  1. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Elzie Lynn

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less

  2. Geothermal energy employment and requirements 1977-1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-12-01

    An assessment of the manpower needs of the geothermal industry is presented. The specific objectives were to: derive a base line estimate of the manpower involved in geothermal activities, determine if there is any current or impending likelihood of skill shortages, forecast future employment in the geothermal industry, conduct a technology assessment to ascertain the possibilities of some sudden breakthrough, and suggest alternatives commensurate with the findings. The methodology for fulfilling the objectives is described. Detailed results of these pursuits (objectives) are presented. Alternatives that are suggested, based upon the findings of the study, are summarized.

  3. RiverHeath: Neighborhood Loop Geothermal Exchange System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geall, Mark

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  4. The Geothermal Data Repository: Five Years of Open Geothermal Data, Benefits to the Community: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weers, Jonathan D; Taverna, Nicole; Anderson, Arlene

    In the five years since its inception, the Department of Energy's (DOE) Geothermal Data Repository (GDR) has grown from the simple idea of storing public data in a centralized location to a valuable tool at the center of the DOE open data movement where it is providing a tangible benefit to the geothermal scientific community. Throughout this time, the GDR project team has been working closely with the community to refine the data submission process, improve the quality of submitted data, and embrace modern proper data management strategies to maximize the value and utility of submitted data. This paper exploresmore » some of the motivations behind various improvements to the GDR over the last 5 years, changes in data submission trends, and the ways in which these improvements have helped to drive research, fuel innovation, and accelerate the adoption of geothermal technologies.« less

  5. The Marysville, Montana Geothermal Project

    NASA Technical Reports Server (NTRS)

    Mcspadden, W. R.; Stewart, D. H.; Kuwada, J. T.

    1974-01-01

    Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet.

  6. Geophysics of Geothermal Areas: State of the Art and Future Development

    NASA Astrophysics Data System (ADS)

    Mabey, Don R.

    In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.

  7. Philippine geothermal resources: General geological setting and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datuin, R.T.; Troncales, A.C.

    1986-01-01

    The Phillippine Archipelago has a composite geologic structure arising from the multi-stage development of volcanic-tectonic events evidenced by volcanism and seismic activity occurring along the active blocks of the major structural lines which traverse most of the major islands of the Phillipines. The widespread volcanic activity located along the active tectonic block has generated regions of high heat flow, where a vast number of potential rich geothermal resources could be exploited as an alternative source of energy. As part of a systematic geothermal development program launched by the Philippine government after the successful pilot study at the Tiwi geothermal fieldmore » in 1967 by the Commission on Volcanology (now called the Philippine Institute of Volcanology-PIV), the Philippines developed four geothermal fields in the period 1972-84. These four areas, Tiwi in Albay, Mak-Ban in Laguna, Tongonan in Leyte, and Palinpinon in Southern Negros, have already contributed 891 MW installed capacity to the total electrical power supply of the country, which is mainly dependent on oil resources. The Philippines envisaged that, with its accelerated geothermal energy programme, it would be able to achieve its target of reducing the country's dependence on imported fossil fuel by about 20% within the next decade through the utilization of its vast geothermal energy resources.« less

  8. NANA Geothermal Assessment Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in themore » Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.« less

  9. Combined Geothermal Potential of Subsurface Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2016-04-01

    The subsurface urban heat island (SUHI) can be seen as a geothermal potential in form of elevated groundwater temperatures caused by anthropogenic heat fluxes into the subsurface. In this study, these fluxes are quantified for an annual timeframe in two German cities, Karlsruhe and Cologne. Our two-dimensional (2D) statistical analytical model determines the renewable and sustainable geothermal potential caused by six vertical anthropogenic heat fluxes into the subsurface: from (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that at present 2.15 ± 1.42 PJ and 0.99 ± 0.32 PJ of heat are annually transported into the shallow groundwater of Karlsruhe and Cologne, respectively, due to anthropogenic heat fluxes into the subsurface. This is sufficient to sustainably cover 32% and 9% of the annual residential space heating demand of Karlsruhe and Cologne, respectively. However, most of the discussed anthropogenic fluxes into the subsurface are conductive heat fluxes and therefore dependent on the groundwater temperature itself. Accordingly, a decrease in groundwater temperature back to its natural (rural) state, achieved through the use of geothermal heat pumps, will increase these fluxes and with them the sustainable potential. Hence, we propose the introduction of a combined geothermal potential that maximizes the sustainability of urban shallow geothermal energy use and the efficiency of shallow geothermal systems by balancing groundwater temperature with anthropogenic heat fluxes into the subsurface. This will be a key element in the development of a demand-oriented, cost-efficient geothermal management tool with an additional focus on the sustainability of the urban heat sources.

  10. Geothermometer calculations for geothermal assessment

    USGS Publications Warehouse

    Reed, M.J.; Mariner, R.H.

    2007-01-01

    Geothermal exploration programs have relied on the calculation of geothermometers from hot spring chemistry as an early estimation of geothermal reservoir temperatures. Calibration of the geothermometers has evolved from experimental determinations of mineral solubility as a function of temperature to calibration from analyses of water chemistry from known depths and temperatures in thermal wells. Most of the geothermometers were calibrated from analyses of sodium-chloride type waters, and the application of some geothermometers should be restricted to waters of the chemical types that were used in their calibration. Chemical analyses must be determined to be reliable before they are used to calculate geothermometers. The USGS Geothermal Resource Assessment will rely on the silica geothermometer developed by Giggenbach that approximates the transition between chalcedony at 20??C and quartz at 200??C. Above 200??C, the assessment will rely on the quartz geothermometer. In addition, the assessment will also rely on the potassium-magnesium geothermometer.

  11. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denninger, Kate; Eustes, Alfred; Visser, Charles

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drillingmore » reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.« less

  12. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC codedmore » daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  13. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  14. Geothermal Resource Verification for Air Force Bases,

    DTIC Science & Technology

    1981-06-01

    phase of reservoir - ... geothermal techniques will begin to focus on the deeer, iso ’i fined reservoirs that will have little or no definitive surfa...1976. ;L-ison, D. L., PROGRAM REVIEW, GEOTHERMAL EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM, U. S. Department of Energy, DOE/ET/ 27002 -6, December 1979

  15. Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckers, Koenraad J; Zurmuhl, David P.; Lukawski, Maciej Z.

    The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime andmore » compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.« less

  16. Optimal Management of Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that

  17. Geothermal Gases--Community Experiences, Perceptions, and Exposures in Northern California.

    PubMed

    Chiu, Cindy H; Lozier, Matthew J; Bayleyegn, Tesfaye; Tait, Karen; Barreau, Tracy; Copan, Lori; Roisman, Rachel; Jackson, Rebecca; Smorodinsky, Svetlana; Kreutzer, Richard A; Yip, Fuyuen; Wolkin, Amy

    2015-12-01

    Lake County, California, is in a high geothermal-activity area. Over the past 30 years, the city of Clearlake has reported health effects and building evacuations related to geothermal venting. Previous investigations in Clearlake revealed hydrogen sulfide at levels known to cause health effects and methane at levels that can cause explosion risks. The authors conducted an investigation in multiple cities and towns in Lake County to understand better the risk of geothermal venting to the community. They conducted household surveys and outdoor air sampling of hydrogen sulfide and methane and found community members were aware of geothermal venting and some expressed concerns. The authors did not, however, find hydrogen sulfide above the California Environmental Protection Agency air quality standard of 30 parts per billion over one hour or methane above explosive thresholds. The authors recommend improving risk communication, continuing to monitor geothermal gas effects on the community, and using community reports and complaints to monitor and document geothermal venting incidents.

  18. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garside, L.J.

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  19. Institutional and environmental aspects of geothermal energy development

    NASA Technical Reports Server (NTRS)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  20. Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon

    2017-01-01

    Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.

  1. Geothermal Economics Calculator (GEC) - additional modifications to final report as per GTP's request.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowda, Varun; Hogue, Michael

    This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positivemore » economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.« less

  2. Utility company views of geothermal development

    NASA Technical Reports Server (NTRS)

    Hinrichs, T. C.

    1974-01-01

    The views of geothermal development from a utility company standpoint are presented. The impediments associated with such developments as required reliability and identification of risks are discussed. The utility industry historically is not a risk-taking industry. Support of rapid geothermal development by the utility industry requires identification and elimination of risks or absorption of the risks by other agencies. Suggestions as to the identification and minimization of risks are made.

  3. Downwell pump reliability: Geothermal experience update: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, P.F.

    1988-01-01

    Geothermal resources with temperatures between 250/sup 0/ and 360/sup 0/F (121/sup 0/C and 182/sup 0/C) are prime candidates for binary-cycle power generation, and constitute about 80% of the power-capable resources in the United States. The successful exploitation of these resources requires reliable high-capacity downwell brine production pumps, but earlier experience showed that high-capacity, high-temperature geothermal production pumps had many problems which resulted in a mean time-to-failure (MTTF) of less than 1000 h. However, steady progress has been made since 1981, and a large body of experience has been acquired by three geothermal binary plants. This survey of high-temperature geothermal downwellmore » pump users and manufacturers updates a prior survey (AP-3572) completed in early 1983. This survey traces the development of lineshaft pump technology from the late 1970s to the present (mid-1987), detailing the advances in design, materials selection, and operating practices. Case histories of 72 lineshaft pumps installed at three geothermal binary plants since late 1981 are documented, including some detailed cause of failure reports. In the recent past, pump lives in excess of 7000 h have become common, but a high continuing rate of premature failures resulted in a mean time-to-failure (MTTF) of about 5000 h. Based on recent advances which appear likely to eliminate most premature failures, the estimated near-term MTTF will be on the order of 8000 h. The survey found almost no development of high-temperature geothermal electric submersible pumps (ESP's) or close-coupled downwell hydraulic turbopumps, and concluded that considerable development and demonstration will be needed before these technologies are able to compete with existing high-temperature geothermal lineshaft pump technology. 36 refs., 10 figs., 25 tabs.« less

  4. Geologic controls on supercritical geothermal resources above magmatic intrusions

    PubMed Central

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-01-01

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle–ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg−1, depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems. PMID:26211617

  5. Geothermal FIT Design: International Experience and U.S. Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickerson, W.; Gifford, J.; Grace, R.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date,more » a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).« less

  6. Geologic controls on supercritical geothermal resources above magmatic intrusions.

    PubMed

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-07-27

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle-ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg(-1), depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems.

  7. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  8. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  9. WESTERN ENERGY RESOURCES AND THE ENVIRONMENT: GEOTHERMAL ENERGY

    EPA Science Inventory

    Geothermal energy--from subsurface heat sources created by the underlying geologic configuration of the earth--is addressed, from an environmental research and development perspective. The report covers various geothermal energy systems, which serve as present or potential energy...

  10. Isotopic and noble gas geochemistry in geothermal research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, B.M.; DePaolo, D.J.

    1997-12-31

    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb)more » are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.« less

  11. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema

    McGrail, Pete

    2017-12-27

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  12. Optimization of Well Configuration for a Sedimentary Enhanced Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mengnan; Cho, JaeKyoung; Zerpa, Luis E.

    The extraction of geothermal energy in the form of hot water from sedimentary rock formations could expand the current geothermal energy resources toward new regions. From previous work, we observed that sedimentary geothermal reservoirs with relatively low permeability would require the application of enhancement techniques (e.g., well hydraulic stimulation) to achieve commercial production/injection rates. In this paper we extend our previous work to develop a methodology to determine the optimum well configuration that maximizes the hydraulic performance of the geothermal system. The geothermal systems considered consist of one vertical well doublet system with hydraulic fractures, and three horizontal well configurationsmore » with open-hole completion, longitudinal fractures and transverse fractures, respectively. A commercial thermal reservoir simulation is used to evaluate the geothermal reservoir performance using as design parameters the well spacing and the length of the horizontal wells. The results obtained from the numerical simulations are used to build a response surface model based on the multiple linear regression method. The optimum configuration of the sedimentary geothermal systems is obtained from the analysis of the response surface model. The proposed methodology is applied to a case study based on a reservoir model of the Lyons sandstone formation, located in the Wattenberg field, Denver-Julesburg basin, Colorado.« less

  13. Novel approaches for an enhanced geothermal development of residential sites

    NASA Astrophysics Data System (ADS)

    Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.

  14. NREL/PG&E Condensation System Increases Geothermal Power Plant Efficiency

    Science.gov Websites

    . Geothermal power plants like The Geysers produce energy by collecting steam from underground reservoirs and NREL/PG&E Condensation System Increases Geothermal Power Plant Efficiency For more information world's largest producer of geothermal power has improved its power production efficiency thanks to a new

  15. Third workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.

    1977-12-15

    The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advancesmore » have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research

  16. Exploration drilling and reservoir model of the Platanares geothermal system, Honduras, Central America

    USGS Publications Warehouse

    Goff, F.; Goff, S.J.; Kelkar, S.; Shevenell, L.; Truesdell, A.H.; Musgrave, J.; Rufenacht, H.; Flores, W.

    1991-01-01

    Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ??? 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165??C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ??? 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ??? 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 ?? 106 l/(kg cm-2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ??? 0.78 km3. Downward continuation of a 139??C/km "conductive" gradient at a depth of 400 m in a third core hole implies that the depth to a 225??C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y. ?? 1991.

  17. Microbiological Monitoring in Geothermal Plants

    NASA Astrophysics Data System (ADS)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  18. Laboratory Simulation of the Geothermal Heating Effects on Ocean Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Xia, K. Q.; Wang, F.; Huang, S. D.; Zhou, S. Q.

    2016-12-01

    A large-scale circulation subject to an additional heat flux from the bottom is investigated laboratorially, motivated by understanding the geothermal heating effects on ocean circulation. Despite its idealization, our experiment suggests that the leading order effect of geothermal heating is to significantly enhance the abyssal overturning, which is in agreement with the findings in ocean circulation models. Our results also suggest that geothermal heating could not influence the poleward heat transport due to the strong stratification in the thermocline. It is revealed that the ratio of geothermal-flux-induced turbulent dissipation to the dissipation due to other energies is the key determining the dynamical importance of geothermal heating. This quantity explains why the impact of geothermal heating is sensitive to the deep stratification and the diapycnal mixing, in addition to the amount of geothermal flux. Moreover, this dissipation ratio may be used to understand results from different studies in a consistent way. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK1430115 and by the CUHK Research Committee through a Direct Grant (Project No. 3132740).

  19. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim, Nichols

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students alsomore » participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.« less

  20. Environmental aspects of the geothermal energy utilisation in Poland

    NASA Astrophysics Data System (ADS)

    Sowiżdżał, Anna; Tomaszewska, Barbara; Drabik, Anna

    2017-11-01

    Geothermal energy is considered as a strategic and sustainable source of renewable energy that can be effectively managed in several economic sectors. In Poland, despite the abundant potential of such resources, its share in the energy mix of renewable energy sources remains insubstantial. The utilisation of geothermal resources in Poland is related to the hydrogeothermal resources, however, numerous researches related to petrogeothermal energy resources are being performed. The utilisation of each type of energy, including geothermal, has an impact on the natural environment. In case of the effective development of geothermal energy resources, many environmental benefits are pointed out. The primary one is the extraction of clean, green energy that is characterised by the zero-emission rate of pollutants into the atmosphere, what considering the current environmental pollution in many Polish cities remains the extremely important issue. On the other hand, the utilisation of geothermal energy might influence the natural environment negatively. Beginning from the phase of drilling, which strongly interferes with the local landscape or acoustic climate, to the stage of energy exploitation. It should be noted that the efficient and sustainable use of geothermal energy resources is closely linked with the current law regulations at national and European level.

  1. Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhiyao; Liu, Xiaobing; Gluesenkamp, Kyle R

    2016-10-01

    The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproducedmore » water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.« less

  2. Status of geothermal direct use in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bujakowski, W.

    1997-12-31

    Geothermal Energy uses the natural heat of the Earth. It is a local energy source, competitive, renewable and acceptable from the ecological and social points of view, which is used either for the electricity production, or for direct application such as a district heating. A great number of operating geothermal installations are found in Europe. European Community energy programs foresee in the coming years a great reduction of conventional fuel consumption, due to the risks that dependency on imported fuels implies and to the future environmental problems, which a mass exploitation of these fuels can lead to. Thus, EC energymore » policy is aimed at a drastic reduction of oil consumption and at diversification of primary energy sources. This paper will present the results from the exploration and evaluation of geothermal water resources in Poland. Herewith, a short description of performed projects, examples of designed geothermal water utilization, some economical, sociological, ecological and political aspects of present out and future projects will be presented.« less

  3. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David

    2017-03-01

    This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.

  4. Technologies for the exploration of highly mineralized geothermal resources

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2017-09-01

    The prospects of the integrated processing of the high-parameter geothermal resources of the East Ciscaucasia of artesian basin (ECAB) with the conversion of their heat energy into electric energy at a binary geoPP and the subsequent extraction of solved chemical compounds from thermal waters are evaluated. The most promising areas for the exploration such resources are overviewed. The integrated exploration of hightemperature hydrogeothermal brines is a new trend in geothermal power engineering, which can make it possible to significantly increase the production volume of hydrogeothermal resources and develop the geothermal field at a higher level with the realization of the energy-efficient advanced technologies. The large-scale exploration of brines can solve the regional problems of energy supply and import substitution and fulfill the need of Russia in food and technical salt and rare elements. The necessity of the primary integrated exploration of the oil-field highly mineralized brines of the South Sukhokumskii group of gas-oil wells of Northern Dagestan was shown in view of the exacerbated environmental problems. Currently, the oil-field brines with the radioactive background exceeding the allowable levels are discharged at disposal fields. The technological solutions for their deactivation and integrated exploration are proposed. The realization of the proposed technological solutions provides 300 t of lithium carbonate, 1650 t of caustic magnesite powder, 27300 t of chemically precipitated chalk, 116100 t of food salt, and up to 1.4 mln m3 of desalinated water from oil-field brines yearly. Desalinated water at the output of a geotechnological complex can be used for different economic needs, which is important for the arid North Caucasus region, where the fresh water deficiency is acute, especially in its plain part within the ECAB.

  5. The missing link between submarine volcano and promising geothermal potential in Jinshan, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, S. C.; Hutchings, L.; Chang, C. C.; Lee, C. S.

    2017-12-01

    The Tatun volcanic group (TVG) and the Keelung submarine volcano (KSV) are active volcanoes and surrounding three nuclear plant sites in north Taiwan. The famous Jinshan-Wanli hot springs locates between TVG and KSV, moreover, the geochemical anomalies of acidic boiling springs on the seacoast infer that the origin is from magmatic fluids, sea water and meteoric water mixture, strongly implying that mantle fluids ascends into the shallow crust. The evidence for a magma chamber, submarine volcano, and boiling springs have a close spatial relationship. Based on UNECE specifications to Geothermal Energy Resources (2016), the Jinshan-Wanli geothermal area could be classified as Known Geothermal Energy Source for geothermal direct use and Potential Geothermal Energy Source for conventional geothermal system. High resolution reservoir exploration and modeling in Jinshan-Wanli geothermal area is developing for drilling risk mitigation. The geothermal team of National Taiwan Ocean University and local experts are cooperating for further exploration drilling and geothermal source evaluation. Keywords: geothermal resource evaluation, Jinshan-Wanli geothermal area, submarine volcano

  6. Careers in Geothermal Energy: Power from below

    ERIC Educational Resources Information Center

    Liming, Drew

    2013-01-01

    In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…

  7. Koenraad Beckers: A Love of Science Benefits Geothermal Research | News |

    Science.gov Websites

    for this avid biker. The reason, though, is unusual. Passionate about geothermal energy research, he forms of geothermal energy are gaining traction in Europe, China, and elsewhere, Koenraad says support ," he says-as well as a good way to keep tabs on geothermal energy

  8. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  9. A comparison of economic evaluation models as applied to geothermal energy technology

    NASA Technical Reports Server (NTRS)

    Ziman, G. M.; Rosenberg, L. S.

    1983-01-01

    Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.

  10. Geothermal Potential for China, Poland and Turkey with/Financing Workbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J G

    This collection of documents presents the results of assessments of the geothermal power potential in three countries: China, Poland, and Turkey. Also included is a Geothermal Financing Workbook, which is intended to provide a comprehensive package of information on financing, financing plans, financial analysis, and financial sources for smaller geothermal resource developers. All three countries are facing ever increasing demands for power in the coming decades, but each has some barriers to fully developing existing resources. For Poland and Turkey, it is important that legislation specific to geothermal resource development be enacted. For China, a crucial step is to developmore » more detailed and accurate estimates of resource potential. All three countries could benefit from the expertise of U.S. geothermal companies, and this collection of material provides crucial information for those interested companies.« less

  11. New Mexico statewide geothermal energy program. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Icerman, L.; Parker, S.K.

    1988-04-01

    This report summarizes the results of geothermal energy resource assessment work conducted by the New Mexico Statewide Geothermal Energy Program during the period September 7, 1984, through February 29, 1988, under the sponsorship of the US Dept. of Energy and the State of New Mexico Research and Development Institute. The research program was administered by the New Mexico Research and Development Institute and was conducted by professional staff members at New Mexico State University and Lightning Dock Geothermal, Inc. The report is divided into four chapters, which correspond to the principal tasks delineated in the above grant. This work extendsmore » the knowledge of the geothermal energy resource base in southern New Mexico with the potential for commercial applications.« less

  12. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: SUBSURFACE ENVIRONMENTAL ASSESSMENT FOR FOUR GEOTHERMAL SYSTEMS

    EPA Science Inventory

    This is the second in a series of reports concerning the environmental assessments of effluent extraction, energy conversion, and waste disposal in geothermal systems. This study involves the subsurface environmental impact of the Imperial Valley and The Geysers, California; Klam...

  13. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    PubMed

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  14. Hawaii's geothermal program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorpette, G.

    This paper reports that in a forest on the island of Hawaii, legal and regulatory activity has postponed the start-up of a small new power plant and imperilled the design and construction of several facilities like it. The same old story Hardly. The power plants at stake are not nuclear or coal- or even oil-fired, but geothermal, widely considered one of the more environmentally benign ways of generating electricity. In a further twist, the opposition is coming not only from the usual citizens; and environmental groups, but also from worshippers of a native good and, it has been alleged, growersmore » of marijuana, a lucrative local crop. The clash occurs just as geothermal power sources have finally proven commercially viable, experts say, adding that technological advances and industry trends in the United States and elsewhere seem to factor great expansion in its use.« less

  15. InSAR measurements and numerical models of deformation at Brady Hot Springs geothermal field (Nevada), 1995-2012

    NASA Astrophysics Data System (ADS)

    Ali, S. T.; Davatzes, N. C.; Mellors, R. J.; Foxall, W.; Drakos, P. S.; Zemach, E.; Kreemer, C.; Wang, H. F.; Feigl, K. L.

    2013-12-01

    We study deformation due to changes in fluid pressure caused by pumping during production, injection, and stimulation at the Brady Hot Springs geothermal field in the Basin and Range province in Nevada. To measure the deformation, we analyze Interferometric Synthetic Aperture Radar (InSAR) data acquired by the ERS-1, ERS-2, Envisat, and TerraSAR-X satellites between 1995 and 2013. The InSAR results indicate subsidence at the order of several centimeters per year over an elliptically shaped area roughly ~5 km long by ~2 km wide. Its long axis follows the NNE strike of the predominant normal fault system. The subsiding area is centered near a prominent bend in the fault system where the successful production wells are located. Within this broad bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. To explain the deformation signal, we use poroelastic models constrained by borehole measurements of pressure, temperature and mass flux, as well as geologic observations. We solve the coupled deformation-diffusion problem using the finite element method. To estimate parameters in the model, e.g., permeability, we use the General Inversion for Phase Technique -- GIPhT [Feigl and Thurber, 2009; Ali and Feigl, 2012] that utilizes the gradient of range change and avoids the need for unwrapping the observed wrapped phase. We then solve the non-linear inverse problem using a gradient-based inversion scheme. Our results suggest that a complex network of high permeability conduits associated with intersections between fault segments and bends in fault segments explains the smaller length-scale features observed in the interferograms. Such structurally controlled, high permeability conduits are consistent with relatively recent fault slip evidenced by scarps in late Pleistocene Lake Lahontan sediments and spatially associated surface hydrothermal features that predate production at Brady. In contrast, Desert Peak, a

  16. Rock geochemistry related to mineralization processes in geothermal areas

    NASA Astrophysics Data System (ADS)

    Kausar, A. Al; Indarto, S.; Setiawan, I.

    2018-02-01

    Abundant geothermal systems in Indonesia suggest high heat and mass transfer associated with recent or paleovolcanic arcs. In the active geothermal system, the upflow of mixed fluid between late stage hydrothermal and meteoric water might contain mass of minerals associated with epithermal mineralisation process as exemplified at Lihir gold mine in Papua New Guinea. In Indonesia, there is a lack of study related to the precious metals occurrence within active geothermal area. Therefore, in this paper, we investigate the possibility of mineralization process in active geothermal area of Guci, Central Java by using geochemical analysis. There are a lot of conducted geochemical analysis of water, soil and gas by mapping the temperature, pH, Hg and CO2 distribution, and estimating subsurface temperature based on geothermometry approach. Then we also apply rock geochemistry to find minerals that indicate the presence of mineralization. The result from selected geothermal area shows the presence of pyrite and chalcopyrite minerals on the laharic breccias at Kali Putih, Sudikampir. Mineralization is formed within host rock and the veins are associated with gold polymetallic mineralization.

  17. Hydrothermal Geothermal Subprogram, Hawaii Geothermal Research Station, Hawaii County, Hawaii: Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    This environmental impact assessment addresses the design, construction, and operation of an electric generating plant (3 to 4 MWe) and research station (Hawaii Geothermal Research Station (HGRS)) in the Puna district on the Island of Hawaii. The facility will include control and support buildings, parking lots, cooling towers, settling and seepage ponds, the generating plant, and a visitors center. Research activities at the facility will evaluate the ability of a successfully flow-tested well (42-day flow test) to provide steam for power generation over an extended period of time (two years). In future expansion, research activities may include direct heat applicationsmore » such as aquaculture and the effects of geothermal fluids on various plant components and specially designed equipment on test modules. 54 refs., 7 figs., 22 tabs.« less

  18. Philip, South Dakota geothermal district heating systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, J.W.

    1997-12-01

    The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.

  19. Play-fairway analysis for geothermal exploration: Examples from the Great Basin, western USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siler, Drew L; Faulds, James E

    2013-10-27

    Elevated permeability within fault systems provides pathways for circulation of geothermal fluids. Future geothermal development depends on precise and accurate location of such fluid flow pathways in order to both accurately assess geothermal resource potential and increase drilling success rates. The collocation of geologic characteristics that promote permeability in a given geothermal system define the geothermal ‘fairway’, the location(s) where upflow zones are probable and where exploration efforts including drilling should be focused. We define the geothermal fairway as the collocation of 1) fault zones that are ideally oriented for slip or dilation under ambient stress conditions, 2) areas withmore » a high spatial density of fault intersections, and 3) lithologies capable of supporting dense interconnected fracture networks. Areas in which these characteristics are concomitant with both elevated temperature and fluids are probable upflow zones where economic-scale, sustainable temperatures and flow rates are most likely to occur. Employing a variety of surface and subsurface data sets, we test this ‘play-fairway’ exploration methodology on two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These analyses, based on 3D structural and stratigraphic framework models, reveal subsurface characteristics about each system, well beyond the scope of standard exploration methods. At Brady’s, the geothermal fairways we define correlate well with successful production wells and pinpoint several drilling targets for maintaining or expanding production in the field. In addition, hot-dry wells within the Brady’s geothermal field lie outside our defined geothermal fairways. At Astor Pass, our play-fairway analysis provides for a data-based conceptual model of fluid flow within the geothermal system and indicates several targets for exploration drilling.« less

  20. Multi-usages of the Ilan geothermal field, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Tseng, P.; Wang, S.; Chang, C.

    2017-12-01

    The tectonics of Taiwan is very dynamic. The area produces more than 30,000 earthquakes/year; the mountains uplift 4-5 cm/year; the rainfall culminates 3,000 mm/year; there are some 4,000 hot spring operators. One of the two hot geothermal areas is located in NE Taiwan - the Ilan geothermal field. In order to develop the geothermal energy for the electricity need, the Ministry of Science and Technology have provided the fund to drill two 2,500 deep wells. The results are not so encourage for the need of an Enhanced Geothermal System. However, one of the wells has a bottom temperature of 160oC and the water up loading with 60 ton/hr. This can be combined with the near-by wells drilled by the private drilling company and the Cardinal Tien Junior College of Healthcare and Management to develop the multi-usages of the geothermal energy, such as 1 MW of electricity for the college and village, the long-term healthcare and hot spring medicare, aquaculture and agriculture need etc. The universities and private drilling company cooperate together to join the development. Hope this will provide a new model for the need of a self-sufficient community. The geothermal is a clean, renewable, and no pollution energy. Taiwan is in an initial stage of using this green energy.

  1. Calc-silicate mineralization in active geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, D.K.; Schiffman, P.; Elders, W.A.

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+}more » rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.« less

  2. Integrated Geologic and Geophysical Approach for Establishing Geothermal Play Fairways and Discovering Blind Geothermal Systems in the Great Basin Region, Western USA: A Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulds, James E.; Hinz, Nicholas H.; Coolbaugh, Mark F.

    We have undertaken an integrated geologic, geochemical, and geophysical study of a broad 240-km-wide, 400-km-long transect stretching from west-central to eastern Nevada in the Great Basin region of the western USA. The main goal of this study is to produce a comprehensive geothermal potential map that incorporates up to 11 parameters and identifies geothermal play fairways that represent potential blind or hidden geothermal systems. Our new geothermal potential map incorporates: 1) heat flow; 2) geochemistry from springs and wells; 3) structural setting; 4) recency of faulting; 5) slip rates on Quaternary faults; 6) regional strain rate; 7) slip and dilationmore » tendency on Quaternary faults; 8) seismologic data; 9) gravity data; 10) magnetotelluric data (where available); and 11) seismic reflection data (primarily from the Carson Sink and Steptoe basins). The transect is respectively anchored on its western and eastern ends by regional 3D modeling of the Carson Sink and Steptoe basins, which will provide more detailed geothermal potential maps of these two promising areas. To date, geological, geochemical, and geophysical data sets have been assembled into an ArcGIS platform and combined into a preliminary predictive geothermal play fairway model using various statistical techniques. The fairway model consists of the following components, each of which are represented in grid-cell format in ArcGIS and combined using specified weights and mathematical operators: 1) structural component of permeability; 2) regional-scale component of permeability; 3) combined permeability, and 4) heat source model. The preliminary model demonstrates that the multiple data sets can be successfully combined into a comprehensive favorability map. An initial evaluation using known geothermal systems as benchmarks to test interpretations indicates that the preliminary modeling has done a good job assigning relative ranks of geothermal potential. However, a major challenge is

  3. Hydrogeochemical characteristics and genesis of the high-temperature geothermal system in the Tashkorgan basin of the Pamir syntax, western China

    NASA Astrophysics Data System (ADS)

    Li, Yiman; Pang, Zhonghe; Yang, Fengtian; Yuan, Lijuan; Tang, Pinghui

    2017-11-01

    High-temperature geothermal systems in China, such as those found in Tenchong and Tibet, are common. A similar system without obvious manifestations found in the Tashkorgan basin in the western Xinjiang Autonomous Region, however, was not expected. The results from borehole measurements and predictions with geothermometers, such as quartz, Na-K and Na-K-Mg, indicate that the reservoir temperature is approximately 250-260 °C. Geothermal water is high in Total Dissolved Solids (>2.5 g/L) and SiO2 content (>273 mg/L), and the water type is Cl·SO4-Na, likely resulting from water-rock interactions in the granodiorite reservoirs. Based on isotope analysis, it appears to be recharged by local precipitation and river water. Evidence from the relationships between major ions and the Cl and molar Na/Cl ratio suggests mixing between deep geothermal water and shallow cold groundwater during the upwelling process. Mixing ratios calculated by the relationship between Cl and SiO2 show that the proportion from cold end-members are 96-99% and 40-90% for riparian zone springs and geothermal water from boreholes, respectively. Active regional tectonic and Neo-tectonic movements in the Pamir syntax as well as radioactive elements in the granodiorite reservoir of the Himalayan stage provide basis for the high heat flow background (150-350 mW/m2). NNW trending fault systems intersecting with overlying NE faults provide circulation conduits with high permeability for geothermal water.

  4. Estimation of the geothermal potential of the Caldara di Manziana site in the Mts Sabatini Volcanic District (Central Italy) by integrating geochemical data and 3D-GIS modelling.

    NASA Astrophysics Data System (ADS)

    Ranaldi, Massimo; Lelli, Matteo; Tarchini, Luca; Carapezza, Maria Luisa; Patera, Antonio

    2016-04-01

    High-enthalpy geothermal fields of Central Italy are hosted in deeply fractured carbonate reservoirs occurring in thermally anomalous and seismically active zones. However, the Mts. Sabatini volcanic district, located north of Rome, has an interesting deep temperatures (T), but it is characterized by low to very low seismicity and permeability in the reservoir rocks (mostly because of hydrothermal self-sealing processes). Low PCO2 facilitates the complete sealing of the reservoir fractures, preventing hot fluids rising and, determining a low CO2 flux at the surface. Conversely, high CO2 flux generally reflects a high pressure of CO2, suggesting that an active geothermal reservoir is present at depth. In Mts. Sabatini district, the Caldara of Manziana (CM) is the only zone characterized by a very high CO2 flux (188 tons/day) from a surface of 0.15 km2) considering both the diffuse and viscous CO2 emission. This suggests the likely presence of an actively degassing geothermal reservoir at depth. Emitted gas is dominated by CO2 (>97 vol.%). Triangular irregular networks (TINs) have been used to represent the morphology of the bottom of the surficial volcanic deposits, the thickness of the impervious formation and the top of the geothermal reservoir. The TINs, integrated by T-gradient and deep well data, allowed to estimate the depth and the temperature of the top of the geothermal reservoir, respectively to ~-1000 m from the surface and to ~130°C. These estimations are fairly in agreement with those obtained by gas chemistry (818geothermal potential has been estimated to 48÷68 MW, which would represent ~30% to ~40% of the total thermal power estimated at regional scale for the Manziana geothermal system. Our results, suggest that the W-SW sector of Bracciano lake is the most thermally anomalous zone of the area. Geothermometers and the GIS model indicated a temperature range between

  5. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.

    2018-01-01

    Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping

  6. Assessment of Moderate- and High-Temperature Geothermal Resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.; DeAngelo, Jacob; Galanis, S. Peter

    2008-01-01

    Scientists with the U.S. Geological Survey (USGS) recently completed an assessment of our Nation's geothermal resources. Geothermal power plants are currently operating in six states: Alaska, California, Hawaii, Idaho, Nevada, and Utah. The assessment indicates that the electric power generation potential from identified geothermal systems is 9,057 Megawatts-electric (MWe), distributed over 13 states. The mean estimated power production potential from undiscovered geothermal resources is 30,033 MWe. Additionally, another estimated 517,800 MWe could be generated through implementation of technology for creating geothermal reservoirs in regions characterized by high temperature, but low permeability, rock formations.

  7. 43 CFR 3201.10 - What lands are available for geothermal leasing?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What lands are available for geothermal...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Available Lands § 3201.10 What lands are available for geothermal leasing? (a) BLM may issue...

  8. Three-Component Long Offset Surface Seismic Survey Data Used to Find Large Aperture Fractures in Geothermal Resources - San Emidio Geothermal Resource Area

    DOE Data Explorer

    Ian Warren

    2010-09-15

    P and S-wave datasets and associated report studying the ability to use three-component long offset surface seismic surveys to find large aperture fractures in geothermal resources at the San Emidio geothermal resource area in Washoe County, Nevada.

  9. Insights to Engineered Geothermal System Performance Using Gringarten-Witherspoon-Ohnishi Analytical Solutions and Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Doe, T.; McLaren, R.; Finilla, A.

    2017-12-01

    An enduring legacy of Paul Witherspoon and his students and colleagues has been both the development of geothermal energy and the bases of modern fractured-rock hydrogeology. One of the seminal contributions to the geothermal field was Gringarten, Witherspoon, and Ohnishi's analytical models for enhanced geothermal systems. Although discrete fracture network (DFN) modeling developed somewhat independently in the late 1970s, Paul Witherspoon's foresight in promoting underground in situ testing at the Stripa Mine in Sweden was a major driver in Lawrence Berkeley Laboratory's contributions to its development.This presentation looks extensions of Gringarten's analytical model into discrete fracture network modeling as a basis for providing further insights into the challenges and opportunities of engineered geothermal systems. The analytical solution itself has many insightful applications beyond those presented in the original paper. The definition of dimensionless time by itself shows that thermal breakthrough has a second power dependence on surface area and on flow rate. The fracture intensity also plays a strong role, as it both increases the surface area and decrease his flow rate per fracture. The improvement of EGS performance with fracture intensity reaches a limit where thermal depletion of the rock lags only slightly behind the thermal breakthrough of cold water in the fracture network.Simple network models, which couple a DFN generator (FracMan) with a hydrothermally coupled flow solver (HydroGeoSphere) expand on Gringarten's concepts to show that realistic heterogeneity of spacing and transmissivity significantly degrades EGS performance. EGS production in networks of stimulated fractures initially follows Gringarten's type curves, with a later deviation is the smaller rock blocks thermally deplete and the entire stimulated volume acts as a single sink. Three-dimensional models of EGS performance show the critical importance of the relative magnitudes of

  10. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, Alan D.

    2014-07-24

    This report describes work toward a supercritical CO 2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO 2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO 2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  11. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development

    NASA Astrophysics Data System (ADS)

    Lu, Lianghua; Pang, Zhonghe; Kong, Yanlong; Guo, Qi; Wang, Yingchun; Xu, Chenghua; Gu, Wen; Zhou, Lingling; Yu, Dandan

    2018-01-01

    Geothermal resources are practical and competitive clean-energy alternatives to fossil fuels, and study on the recharge sources of geothermal water supports its sustainable exploitation. In order to provide evidence on the recharge source of water and circulation dynamics of the Tangshan Geothermal System (TGS) near Nanjing (China), a comprehensive investigation was carried out using multiple chemical and isotopic tracers (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C and 3H). The results confirm that a local (rather than regional) recharge source feeds the system from the exposed Cambrian and Ordovician carbonate rocks area on the upper part of Tangshan Mountain. The reservoir temperature up to 87 °C, obtained using empirical as well as theoretical chemical geothermometers, requires a groundwater circulation depth of around 2.5 km. The temperature of the geothermal water is lowered during upwelling as a consequence of mixing with shallow cold water up to a 63% dilution. The corrected 14C age shows that the geothermal water travels at a very slow pace (millennial scale) and has a low circulation rate, allowing sufficient time for the water to become heated in the system. This study has provided key information on the genesis of TGS and the results are instructive to the effective management of the geothermal resources. Further confirmation and even prediction associated with the sustainability of the system could be achieved through continuous monitoring and modeling of the responses of the karstic geothermal reservoir to hot-water mining.

  12. Geothermal Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Geothermal Technologies Office (GTO) accelerates deployment of clean, domestic geothermal energy by supporting innovative technologies that reduce the cost and risks of development. This abundant resource generates energy around the clock and has the potential to supply more than 100 GWe of electricity—roughly one-tenth of America’s energy demand. By optimizing the value stream for electricity production and cascaded uses, the office aims to make geothermal energy a fully cost-competitive, widely available, and geographically diverse component of the national energy mix.

  13. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have

  14. Honduras geothermal development: Regulations and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Winchester, W.W.

    1994-09-01

    The US Department of Energy (DOE) through the Assistant Secretary for Policy, Planning, and Evaluation funded a project to review and evaluate existing power sector laws and regulations in Honduras. Also included in the scope of the project was a review of regulations pertaining to the privatization of state-run companies. We paid particular attention to regulations which might influence opportunities to develop and commercialize Honduras` geothermal resources. We believe that Honduras is well on the road to attracting foreign investment and has planned or has already in place much of the infrastructure and legal guarantees which encourage the influx ofmore » private funds from abroad. In addition, in light of current power rationing and Honduras` new and increasing awareness of the negative effects of power sector development on the environment, geothermal energy development is even more attractive. Combined, these factors create a variety of opportunities. The potential for private sector development of geothermal positive.« less

  15. Heavy metal contamination from geothermal sources.

    PubMed Central

    Sabadell, J E; Axtmann, R C

    1975-01-01

    Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849

  16. Heavy metal contamination from geothermal sources.

    PubMed

    Sabadell, J E; Axtmann, R C

    1975-12-01

    Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals.

  17. Institutional and environmental problems in geothermal resource development

    NASA Technical Reports Server (NTRS)

    Maslan, F.; Gordon, T. J.; Deitch, L.

    1974-01-01

    A number of regulatory and institutional impediments to the development of geothermal energy exist. None of these seem likely to prevent the development of this energy source, but in the aggregate they will pace its growth as certainly as the technological issues. The issues are associated with the encouragement of exploration and development, assuring a market for geothermal steam or hot water, and accomplishing the required research and development in a timely manner. The development of geothermal energy in the United States at a high level is apt to cause both favorable and unfavorable, though manageable, impacts in eight major areas, which are discussed.

  18. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico andmore » The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn

  19. Doubling Geothermal Generation Capacity by 2020. A Strategic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Anna; Young, Katherine

    2016-01-01

    This report identifies the potential of U.S. geothermal resource and the current market to add an additional 3 GW of geothermal by 2020, in order to meet the goal set forth in the Climate Action Plan.

  20. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    NASA Astrophysics Data System (ADS)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.