Sample records for background methylmercury mehg

  1. Methylmercury (MeHg)

    Integrated Risk Information System (IRIS)

    Methylmercury ( MeHg ) ; CASRN 22967 - 92 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  2. Adverse effects of methylmercury (MeHg) on life parameters, antioxidant systems, and MAPK signaling pathways in the copepod Tigriopus japonicus.

    PubMed

    Lee, Young Hwan; Kang, Hye-Min; Kim, Duck-Hyun; Wang, Minghua; Jeong, Chang-Bum; Lee, Jae-Seong

    2017-03-01

    Methylmercury (MeHg) is a concerning environmental pollutant that bioaccumulates and biomagnifies in the aquatic food web. However, the effects of MeHg on marine zooplankton are poorly understood even though zooplankton are considered key mediators of the bioaccumulation and biomagnification of MeHg in high-trophic marine organisms. Here, the toxicity of MeHg in the benthic copepod Tigriopus japonicus was assessed, and its adverse effects on growth rate and reproduction were demonstrated. Antioxidant enzymatic activities were increased in the presence of MeHg, indicating that these enzymes play an important role in the defense response to MeHg, which is regulated by a complex mechanism. Subsequent activation of different patterns of mitogen-activated protein kinase (MAPK) pathways was demonstrated, providing a mechanistic approach to understand the signaling pathways involved in the effects of MeHg. Our results provide valuable information for understanding the toxicity of MeHg and the underlying defense mechanism in response to MeHg exposure in marine zooplankton. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The influence of Parachlorella beyerinckii CK-5 on the absorption and excretion of methylmercury (MeHg) in mice.

    PubMed

    Uchikawa, Takuya; Yasutake, Akira; Kumamoto, Yoshimitsu; Maruyama, Isao; Kumamoto, Shoichiro; Ando, Yotaro

    2010-02-01

    Chlorella (Parachlorella beyerinckii CK-5), previously identified as Chlorella vulgaris CK-5, is a unicellular green algae that has for many years been used as a nutritional supplement. In order to investigate the effects of methylmercury (MeHg) detoxification by Chlorella, we examined the absorption and excretion of MeHg in mice. Female C57BL/6N mice were randomly divided into three groups of five, and were housed in metabolism cages. Mice were orally administered MeHg chloride at doses of 5 mg (4 mg Hg)/kg body weight with or without 100 mg/mouse of P. beyerinckii powder (BP), and were assigned to either a MeHg group or MeHg + BP group, accordingly. Twenty-four hr after oral administration, feces and urine were collected, and blood, liver, and kidney samples were obtained. Total mercury contents in the samples obtained were determined using an atomic absorption method. The amounts of Hg excreted in feces and urine of the MeHg + BP group were increased nearly 1.9 and 2.2-fold compared with those of the MeHg group. On the other hand, blood and organ Hg levels were not significantly different between two groups. These results suggest that the intake of BP may induce the excretion of Hg both in feces and urine, although it does not affect MeHg absorption from the gastrointestinal tract. The effect of BP on the tissue mercury accumulation may become evident in a long-term experiment.

  4. Methylmercury in a predatory fish (Cichla spp.) inhabiting the Brazilian Amazon.

    PubMed

    Kehrig, Helena do A; Howard, Bruce M; Malm, Olaf

    2008-07-01

    This research tested whether limnological conditions, biological characteristics of fish and anthropogenic impacts influenced the assimilation of methylmercury into the muscle of a sedentary piscivorous fish, Cichla spp., from three rivers (Negro, Madeira, Tapajós) and two hydroelectric reservoirs (Balbina, Tucuruí) within the Brazilian Amazon. Methylmercury in this fish ranged from 0.04 to 1.43microgg(-1) w.w. across sites. No significant differences were observed in the methylmercury concentrations between males and females, or for different morphotypes of this species. Positive correlations were found between methylmercury and fish body weight. No differences were found between the weight normalized methylmercury (MeHg) concentrations or its percent of total mercury in fish from the three rivers; weight normalized MeHg was highest in one of the two reservoirs. In Rio Tapajós, where gold mining and deforestation cause high water turbidity, fish showed the highest MeHg and concentrations were different across the four sites examined. In all sampling areas, the %MeHg was found to be higher than 70.

  5. Methylmercury dynamics in Upper Sacramento Valley rice fields with low background soil mercury levels

    USGS Publications Warehouse

    Tanner, K. Christy; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Fleck, Jacob; Tate, Kenneth W.; Linquist, Bruce A.

    2018-01-01

    Few studies have considered how methylmercury (MeHg, a toxic form of Hg produced in anaerobic soils) production in rice (Oryza sativa L.) fields can affect water quality, and little is known about MeHg dynamics in rice fields. Surface water MeHg and total Hg (THg) imports, exports, and storage were studied in two commercial rice fields in the Sacramento Valley, California, where soil THg was low (25 and 57 ng g−1). The median concentration of MeHg in drainage water exiting the fields was 0.17 ng g−1 (range: <0.007–2.1 ng g−1). Compared with irrigation water, drainage water had similar MeHg concentrations, and lower THg concentrations during the growing season. Significantly elevated drainage water MeHg and THg concentrations were observed in the fallow season compared with the growing season. An analysis of surface water loads indicates that fields were net importers of both MeHg (76–110 ng m−2) and THg (1947–7224 ng m−2) during the growing season, and net exporters of MeHg (35–200 ng m−2) and THg (248–6496 ng m−2) during the fallow season. At harvest, 190 to 700 ng MeHg m−2 and 1400 to 1700 ng THg m−2 were removed from fields in rice grain. Rice straw, which contained 120 to 180 ng MeHg m−2 and 7000–10,500 ng m−2 THg was incorporated into the soil. These results indicate that efforts to reduce MeHg and THg exports in rice drainage water should focus on the fallow season. Substantial amounts of MeHg and THg were stored in plants, and these pools should be considered in future studies.

  6. Spatial characteristics of net methylmercury production hot spots in peatlands

    Treesearch

    Carl P.J. Mitchell; Brian A. Branfireun; Randall K. Kolka

    2008-01-01

    Many wetlands are sources of methylmercury (MeHg) to surface waters, yet little information exists about the distribution of MeHg within wetlands. Total mercury (THg) and MeHg in peat pore waters were studied in four peatlands in spring, summer, and fall 2005. Marked spatial variability in the distribution of MeHg, and %MeHg as a proxy for net MeHg production, was...

  7. Differential gene expression associated with dietary methylmercury (MeHg) exposure in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio)

    PubMed Central

    Liu, Qing; Basu, Niladri; Goetz, Giles; Jiang, Nan; Hutz, Reinhold J.; Tonellato, Peter J.; Carvan, Michael J.

    2013-01-01

    The objective of this study was to identify and evaluate conserved biomarkers that could be used in most species of teleost fish at most life-stages. We investigated the effects of sublethal methylmercury (MeHg) exposure on developing rainbow trout and zebrafish. Juvenile rainbow trout and young adult zebrafish were fed food with MeHg added at 0, 0.5, 5 and 50 ppm. Atomic absorption spectrometry was applied to measure whole body total Hg levels, and pathologic analysis was performed to identify MeHg-induced toxicity. Fish at six weeks were sampled from each group for microarray analysis using RNA from whole fish. MeHg-exposed trout and zebrafish did not show overt signs of toxicity or pathology, nor were significant differences seen in mortality, length, mass, or condition factor. The accumulation of MeHg in trout and zebrafish exhibited dose- and time-dependent patterns during six weeks, and zebrafish exhibited greater assimilation of total Hg than rainbow trout. The dysregulated genes in MeHg-treated fish have multiple functional annotations, such as iron ion homeostasis, glutathione transferase activity, regulation of muscle contraction, troponin I binding and calcium-dependent protein binding. Genes were selected as biomarker candidates based on their microarray data and their expression was evaluated by QPCR. Unfortunately, these genes are not good consistent biomarkers for both rainbow trout and zebrafish from QPCR evaluation using individual fish. Our conclusion is that biomarker analysis for aquatic toxicant assessment using fish needs to be based on tissue-, sex- and species-specific consideration. PMID:23529582

  8. Mechanisms and Modifiers of Methylmercury-Induced Neurotoxicity

    PubMed Central

    Fretham, Stephanie JB; Caito, Samuel; Martinez-Finley, Ebany J; Aschner, Michael

    2016-01-01

    The neurotoxic consequences of methylmercury (MeHg) exposure have long been known, however a complete understanding of the mechanisms underlying this toxicity is elusive. Recent epidemiological and experimental studies have provided many mechanistic insights, particularly into the contribution of genetic and environmental factors that interact with MeHg to modify toxicity. This review will outline cellular processes directly and indirectly affected by MeHg, including oxidative stress, cellular signaling and gene expression, and discuss genetic, environmental and nutritional factors capable of modifying MeHg toxicity. PMID:27795823

  9. Methylmercury declines in a boreal peatland when experimental sulfate deposition decreases

    Treesearch

    Jill K. Coleman Wasik; Carl P.J. Mitchell; Daniel R. Engstrom; Edward B. Swain; Bruce A. Monson; Steven J. Balogh; Jeffrey D. Jeremiason; Brian A. Branfireun; Susan L. Eggert; Randall K. Kolka; James E. Almendinger

    2012-01-01

    Between 2001 and 2008 we experimentally manipulated atmospheric sulfate-loading to a small boreal peatland and monitored the resulting short and long-term changes in methylmercury (MeHg) production. MeHg concentrations and %MeHg (fraction of total-Hg (HgT) present as MeHg) in the porewaters of the experimental treatment reached peak values within...

  10. Alternate wetting and drying decreases methylmercury in flooded rice (Oryza sativa) systems

    USGS Publications Warehouse

    Tanner, K. Christy; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Fleck, Jacob; Linquist, Bruce A.

    2018-01-01

    In flooded soils, including those found in rice (Oryza sativa L.) fields, microbes convert inorganic Hg to more toxic methylmercury (MeHg). Methylmercury is accumulated in rice grain, potentially affecting health. Methylmercury in rice field surface water can bioaccumulate in wildlife. We evaluated how introducing aerobic periods into an otherwise continuously flooded rice growing season affects MeHg dynamics. Conventional continuously flooded (CF) rice field water management was compared with alternate wetting and drying, where irrigation was stopped twice during the growing season, allowing soil to dry to 35% volumetric moisture content, at which point plots were reflooded (AWD-35). Methylmercury studies began at harvest in Year 3 and throughout Year 4 of a 4-yr replicated field experiment. Bulk soil, water, and plant samples were analyzed for MeHg and total Hg (THg), and iron (Fe) speciation was measured in soil samples. Rice grain yield over 4 yr did not differ between treatments. Soil chemistry responded quickly to AWD-35 dry-downs, showing significant oxidation of Fe(II) accompanied by a significant reduction of MeHg concentration (76% reduction at harvest) compared with CF. Surface water MeHg decreased by 68 and 39% in the growing and fallow seasons, respectively, suggesting that the effects of AWD-35 management can last through to the fallow season. The AWD-35 treatment reduced rice grain MeHg and THg by 60 and 32%, respectively. These results suggest that the more aerobic conditions caused by AWD-35 limited the activity of Hg(II)-methylating microbes and may be an effective way to reduce MeHg concentrations in rice ecosystems.

  11. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  12. [Methylmercury causes diffuse damage to the somatosensory cortex: how to diagnose Minamata disease].

    PubMed

    Ekino, Shigeo; Ninomiya, Tadashi; Imamura, Keiko; Susa, Mari

    2007-01-01

    The first acute case of methylmercury (MeHg) poisoning by the consumption of fish arose in Minamata, Japan, in 1953. It was officially recognized and called Minamata disease (MD) in 1956. There are still arguments about the definition of MD in terms of its associated clinical symptoms and lesions even 50 years after the initial recognition of MD. Studies on this MD epidemic are reviewed along with its historical background. Since MeHg dispersed from Minamata to the Shiranui Sea, residents living around the sea had been exposed to low-dose MeHg through fish consumption for about 20 years (at least from 1950 to 1968). These chronic MeHg poisoning patients complained of paresthesia at the distal parts of their extremities and around the lips even 30 years after the cessation of exposure to MeHg of anthropogenic origin. The persisting somatosensory disorders after the discontinuation of exposure to MeHg were induced by diffuse damage to the somatosensory cortex, but not by damage to the peripheral nervous system, as previously believed. Based on these findings, symptoms and lesions in MeHg poisoning are reappraised.

  13. Phytoremediation Of Mercury And Methylmercury Contaminated Sediments By Water Hyacinth (Eichhornia crassipes)

    EPA Science Inventory

    Phytoremediation has potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated f...

  14. High levels of methylmercury in guano and ornithogenic coral sand sediments on Xisha islands, South China sea.

    PubMed

    Chen, Qianqian; Liu, Xiaodong; Xu, Liqiang; Sun, Liguang; Yan, Hong; Liu, Yi; Luo, Yuhan; Huang, Jing

    2012-08-01

    This study determined the distribution and main source of methylmercury in ornithogenic coral sand sediments and pure guano collected from Guangjin and Jinqing islets of the South China Sea. Results showed that the levels of methylmercury (MeHg) and total mercury (THg), as well as the percentage of MeHg relative to THg (%MeHg), are high in both fresh and ancient guano samples. %MeHg in ancient guano exceeded 70 %, much greater than that in fresh seabird droppings (~45 %). These results suggest that excretion through feces likely plays an important role in the cycling of MeHg by seabirds. Guano has been identified as the major source of MeHg in the ornithogenic coral sand sediments in the Xisha Islands. The close relationship between MeHg and guano-derived phosphorus has weakened considerably since 1840 AD. This is probably caused by a significant increase in THg and MeHg in modern guano samples due to the recent increase of Hg pollution. %MeHg in the ornithogenic coral sand sediments is extremely high, ranging from 10 to 30 % (average 20 %).

  15. Mental retardation and prenatal methylmercury toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trasande, L.; Schechter, C.B.; Haynes, K.A.

    2006-03-15

    Methylmercury (MeHg) is a developmental neurotoxicant; exposure results principally from consumption of seafood contaminated by mercury (Hg). In this analysis, the burden of mental retardation (MR) associated with methylmercury exposure in the 2000 U.S. birth cohort is estimated, and the portion of this burden attributable to mercury (Hg) emissions from coal-fired power plants is identified. The aggregate loss in cognition associated with MeHg exposure in the 2000 U.S. birth cohort was estimated using two previously published dose-response models that relate increases in cord blood Hg concentrations with decrements in IQ. MeHg exposure was assumed not to be correlated with nativemore » cognitive ability. Previously published estimates were used to estimate economic costs of MR caused by MeHg. Downward shifts in IQ resulting from prenatal exposure to MeHg of anthropogenic origin are associated with 1,566 excess cases of MR annually (range: 376-14,293). This represents 3.2% of MR cases in the US (range: 0.8%-29.2%). The MR costs associated with decreases in IQ in these children amount to $2.0 billion/year (range: $0.5-17.9 billion). Hg from American power plants accounts for 231 of the excess MR cases year (range: 28-2,109), or 0.5% (range: 0.06%-4.3%) of all MR. These cases cost $289 million (range: $35 million-2.6 billion). Toxic injury to the fetal brain caused by Hg emitted from coal-fired power plants exacts a significant human and economic toll on American children.« less

  16. Evolution of our understanding of methylmercury as a health threat.

    PubMed Central

    Watanabe, C; Satoh, H

    1996-01-01

    Methylmercury (MeHg) is recognized as one of the most hazardous environmental pollutants, primarily due to endemic disasters that have occurred repeatedly. A review of the earlier literature on the Minamata outbreak shows how large-scale poisoning occurred and why it could not be prevented. With the repeated occurrences of MeHg poisoning, it gradually became clear that the fetus is much more susceptible to the toxicity of this compound than the adult. Thus, recent epidemiologic studies in several fish-eating populations have focused on the effects of in utero exposure to MeHg. Also, there have been many studies on neurobehavioral effects of in utero exposure to methylmercury in rodents and nonhuman primates. The results of these studies revealed that the effects encompass a wide range of behavioral categories without clear identification of the functional categories distinctively susceptible to MeHg. The overall neurotoxicity of MeHg in humans, nonhuman primates, and rodents appears to have similarities. However, several gaps exist between the human and animal studies. By using the large body of neurotoxicologic data obtained in human populations and filling in such gaps, we can use MeHg as a model agent for developing a specific battery of tests of animal behavior to predict human risks resulting from in utero exposure to other chemicals with unknown neurotoxicity. Approaches developing such a battery are also discussed. PMID:9182044

  17. Effects of Injected Methylmercury on the Hatching of Common Loon (Gavia immer) Eggs

    EPA Science Inventory

    To determine the level of in ovo methylmercury (MeHg) exposure that results in detrimental effects on fitness and survival of loon embryos and hatched chicks, we conducted a field study in which we injected eggs with various doses of MeHg on day 4 of incubation. Eggs were collect...

  18. Methylmercury photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylmercury complexation.

    PubMed

    Tai, Chao; Li, Yanbin; Yin, Yongguang; Scinto, Leonard J; Jiang, Guibin; Cai, Yong

    2014-07-01

    Photodegradation is the major pathway of methylmercury (MeHg) degradation in many surface waters. However, the mechanism of MeHg photodegradation is still not completely understood. Dissolved organic matter (DOM) is expected to play a critical role in MeHg photodegradation. By using several techniques, including N2/O2 purging and the addition of stable isotope (Me(201)Hg), scavengers, competing ligands, and a singlet oxygen ((1)O2) generator, the role played by MeHg-DOM complexation in MeHg photodegradation of Everglades surface water was investigated. DOM appeared to be involved in MeHg photodegradation via the formation MeHg-DOM complexes based on three findings: (1) MeHg was quickly photodegraded in solutions containing DOM extracts; (2) degradation of MeHg did not occur in deionized water; and (3) addition of competing complexation reagents (dithiothreitol-DTT) dramatically prohibited the photodegradation of MeHg in Everglades water. Further experiments indicated that free radicals/reactive oxygen species, including hydroxyl radical (·OH), (1)O2, triplet excited state of DOM ((3)DOM*), and hydrated electron (e(-)aq), played a minor role in MeHg photodegradation in Everglades water, based on the results of scavenger addition, (1)O2 generator addition and N2/O2 purging. A pathway, involving direct photodegradation of MeHg-DOM complexes via intramolecular electron transfer, is proposed as the dominant mechanism for MeHg photodegradation in Everglades water.

  19. Methylmercury dynamics at the upland-peatland interface: Topographic and hydrogeochemical controls

    Treesearch

    Carl P. J. Mitchell; Brian A. Branfireun; Randall K. Kolka

    2009-01-01

    Peatlands are important environments for the transformation of atmospherically deposited inorganic mercury into the bioaccumulative form, methylmercury (MeHg), which may accumulate in downstream aquatic biota, particularly in fish. In recent research, it was suggested that MeHg production and/or accumulation ‘‘hot spots’’ at the upland-peatland interface were the...

  20. Why dissolved organic matter (DOM) enhances photodegradation of methylmercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Yun; Yin, Xiangping Lisa; Brooks, Scott C

    2014-01-01

    Methylmercury (MeHg) is known to degrade photochemically, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM samples with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased MeHg photodegradation under solar irradiation, but the first-order rate constants varied depending on the oxidation state of DOM and the type and concentration of the ligands. Compounds containing both thiols and aromatics (e.g., thiosalicylate and reduced DOM) increased MeHg degradationmore » rates far greater than those containing only aromatic or thiol functional groups (e.g., salicylate or glutathione). Our results suggest that, among other factors, the synergistic effects of thiolate and aromatic moieties in DOM greatly enhance MeHg photodegradation.« less

  1. Recovery of aquatic insect-mediated methylmercury flux from ponds following drying disturbance.

    PubMed

    Chumchal, Matthew M; Drenner, Ray W; Greenhill, Frank M; Kennedy, James H; Courville, Ashlyn E; Gober, Charlie A A; Lossau, Luke O

    2017-08-01

    Small ponds exist across a permanence gradient, and pond permanence is hypothesized to be a primary determinant of insect community structure and insect-mediated methylmercury (MeHg) flux from ponds to the surrounding terrestrial landscape. The present study describes the first experiment examining the recovery of insect-mediated MeHg flux following a drying disturbance that converted permanent ponds with insectivorous fish to semipermanent ponds without fish. Floating emergence traps were used to collect emergent insects for 10 wk in the spring and summer from 5 ponds with fish (permanent) and 5 ponds that were drained to remove fish, dried, and refilled with water (semipermanent). During the 73-d period after semipermanent ponds were refilled, total MeHg flux from semipermanent ponds was not significantly different than total MeHg flux from permanent ponds, indicating that insect-mediated MeHg flux had rapidly recovered in semipermanent ponds following the drying disturbance. Methylmercury fluxes from dragonflies (Odonata: Anisoptera) and phantom midges (Diptera: Chaoboridae) were significantly greater from newly refilled semipermanent ponds than permanent ponds, but the MeHg fluxes from the other 8 emergent insect taxa did not differ between treatments. The present study demonstrates the impact of drying disturbance and the effect of community structure on the cross-system transport of contaminants from aquatic to terrestrial ecosystems. Environ Toxicol Chem 2017;36:1986-1990. © 2017 SETAC. © 2017 SETAC.

  2. Biochar amendment reduced methylmercury accumulation in rice plants.

    PubMed

    Shu, Rui; Wang, Yongjie; Zhong, Huan

    2016-08-05

    There is growing concern about methylmercury (MeHg) accumulation in rice grains and thus enhanced dietary exposure to MeHg in Asian countries. Here, we explored the possibility of reducing grain MeHg levels by biochar amendment, and the underlying mechanisms. Pot (i.e., rice cultivation in biochar amended soils) and batch experiments (i.e., incubation of amended soils under laboratory conditions) were carried out, to investigate MeHg dynamics (i.e., MeHg production, partitioning and phytoavailability in paddy soils, and MeHg uptake by rice) under biochar amendment (1-4% of soil mass). We demonstrate for the first time that biochar amendment could evidently reduce grain MeHg levels (49-92%). The declines could be attributed to the combined effects of: (1) increased soil MeHg concentrations, probably explained by the release of sulfate from biochar and thus enhanced microbial production of MeHg (e.g., by sulfate-reducing bacteria), (2) MeHg immobilization in soils, facilitated by the large surface areas and high organosulfur content of biochar, and (3) biodilution of MeHg in rice grains, due to the increased grain biomass under biochar amendment (35-79%). These observations together with mechanistic explanations improve understanding of MeHg dynamics in soil-rice systems, and support the possibility of reducing MeHg phytoaccumulation under biochar amendment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Protective effect of selenium on methylmercury toxicity: a possible mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.W.; Suber, R.

    1982-09-01

    Young adult male Charles River rats were injected (i.p.) with 2.0 mg/kg b.w. methylmercury chloride (MeHg), with 2.0 mg/kg b.w. sodium selenite (Se), or with 2.0 mg/kg b.w. MeHg and 2.0 mg/kg b.w. Se. Erythrocytic glutathione peroxidase activity was determined and the rate of oxidation of NADPH with t-butyl-hydroperoxide as a substrate was followed at 340 nm and 25/sup 0/C. Toxic signs (crossing reflex of the hind limbs) were displayed by MeHg-treated animals by the 6th week of intoxication. By 8 weeks of the experiment, overt neurological signs (crossing reflex, ataxic gait, and weight loss) were observed in MeHg-treated animals.more » No observable toxic signs or symptoms were evident in the control animals (saline or Se-treated) and in the MeHg/Se treated rats. Results have confirmed that exposure to methyl-mercury suppresses the activity of glutathione peroxidase. Furthermore, it was demonstrated that with co-administration of selenium (sodium selenite), the inhibitory effect of MeHg on GSH-Px was totally alleviated. These findings suggest that the level of GSH-Px level is important in influencing the toxic consequences in MeHg-intoxicated animals and may be useful as a predictive indicator for methylmercury toxic conditions of the animals. (JMT)« less

  4. Determination of MeHg sources to fish in the St. Louis River, MN, USA, using Hg stable isotopes

    EPA Science Inventory

    Mercury contamination in the Great Lakes region has become a prevalent concern due to elevated methylmercury (MeHg) levels in fish. While atmospheric deposition of Hg is ubiquitous, releases from legacy point-sources give rise to numerous Areas of Concern (AOCs) across the Great ...

  5. Bacterial methylmercury degradation in Florida Everglades peat sediment

    USGS Publications Warehouse

    Marvin-DiPasquale, M. C.; Oremland, R.S.

    1998-01-01

    Methylmercury (MeHg) degradation was investigated along an eutrophication gradient in the Florida Everglades by quantifying 14CH4 and 14CO2 production after incubation of anaerobic sediments with [14C]MeHg. Degradation rate constants (k) were consistently ???0.1 d-1 and decreased with sediment depth. Higher k values were observed when shorter incubation times and lower MeHg amendment levels were used, and k increased 2-fold as in-situ MeHg concentrations were approached. The average floc layer k was 0.046 ?? 0.023 d-1 (n = 17) for 1-2 day incubations. In-situ degradation rates were estimated to be 0.02-0.5 ng of MeHg (g of dry sediment)-1 d-1, increasing from eutrophied to pristine areas. Nitrate-respiring bacteria did not demethylate MeHg, and NO3- addition partially inhibited degradation in some cases. MeHg degradation rates were not affected by PO43- addition. 14CO2 production in all samples indicated that oxidative demethylation (OD) was an important degradation mechanism. OD occurred over 5 orders of magnitude of applied MeHg concentration, with lowest limits [1-18 ng of MeHg (g of dry sediment)-1] in the range of in-situ MeHg levels. Sulfate reducers and methanogens were the primary agents of anaerobic OD, although it is suggested that methanogens dominate degradation at in-situ MeHg concentrations. Specific pathways of OD by these two microbial groups are proposed.Methylmercury (MeHg) degradation was investigated along an eutrophication gradient in the Florida Everglades by quantifying 14CH4 and 14CO2 production after incubation of anaerobic sediments with [14C]MeHg. Degradation rate constants (k) were consistently ???0.1 d-1 and decreased with sediment depth. Higher k values were observed when shorter incubation times and lower MeHg amendment levels were used, and k increased 2-fold as in-situ MeHg concentrations were approached. The average floc layer k was 0.046??0.023 d-1 (n = 17) for 1-2 day incubations. In-situ degradation rates were estimated to be 0

  6. Role of Free Radicals/Reactive Oxygen Species in MeHg Photodegradation: Importance of Utilizing Appropriate Scavengers.

    PubMed

    Han, Xiaoxiao; Li, Yanbin; Li, Dan; Liu, Chang

    2017-04-04

    A variety of free radicals (FR)/reactive oxygen species (ROS) have been proposed to dominate methylmercury (MeHg) photodegradation, primarily based on the results of FR/ROS scavenger addition experiments. However, in addition to eliminating FR/ROS, the added scavengers may also affect the experimental results by altering some water chemical properties, resulting in a misleading assessment of the importance of FR/ROS. In this study, 20 common FR/ROS scavengers were evaluated in terms of their influence on light absorbance, pH, MeHg analysis, MeHg-dissolved organic matter (DOM) complexation, and the scavenger-induced degradation of MeHg. Only nine scavengers were identified to be appropriate for investigating MeHg photodegradation. By utilizing these appropriate scavengers, direct photodegradation of MeHg-DOM complexes was found to be the major pathway of MeHg photodegradation in Laoshan Reservoir water and Stone Old Beach seawater. In contrast, MeHg photodegradation in Ink River water primarily occurs through both ·OH and 3 DOM* mediated indirect pathways and direct photodegradation of MeHg-DOM complexes. The diverse pathways of MeHg photodegradation in the tested water may be due to differences in water chemical properties. A severe overestimation of the role of FR/ROS was observed when several improper but commonly used scavengers were adopted, highlighting the necessity of utilizing appropriate scavengers.

  7. BACTERIAL METHYLMERCURY DEGRADATION IN FLORIDA EVERGLADES PEAT SEDIMENT

    EPA Science Inventory

    Methylmercury (MeHg) degradation was investigated along an eutrophication gradient in the Florida Everglades by quantifying 14CH4 and 14CO2 production after incubation of anaerobic sediments with [14C]MeHg. Degradation rate constants (k) were consistently <=0.1 d-1 and decreased ...

  8. Behavioral Effects of Developmental Methylmercury Drinking Water Exposure in Rodents

    PubMed Central

    Bisen-Hersh, Emily B.; Farina, Marcelo; Barbosa, Fernando; Rocha, Joao BT; Aschner, Michael

    2013-01-01

    Early methylmercury (MeHg) exposure can have long-lasting consequences likely arising from impaired developmental processes, the outcome of which has been exposed in several longitudinal studies of affected populations. Given the large number of newborns at an increased risk of learning disabilities associated with in utero MeHg exposure, it is important to study neurobehavioral alterations using ecologically valid and physiologically relevant models. This review highlights the benefits of using the MeHg drinking water exposure paradigm and outlines behavioral outcomes arising from this procedure in rodents. Combination treatments that exacerbate or ameliorate MeHg-induced effects, and possible molecular mechanisms underlying behavioral impairment are also discussed. PMID:24210169

  9. Impact of macrozoobenthic bioturbation and wind fluctuation interactions on net methylmercury in freshwater lakes.

    PubMed

    Wang, Peifang; Yao, Yu; Wang, Chao; Hou, Jun; Qian, Jin; Miao, Lingzhan

    2017-11-01

    The methylmercury (MeHg) as the toxic fractions has presented significant threats to biota in freshwater ecosystems. Hg methylation process is demonstrated to be manipulated by biota process (benthic disturbance and algae bloom existence) as well as the abiotic influence (wind fluctuation and illumination intensity) in freshwater ecosystems. However, the mechanisms influencing Hg methylation are still unclear, and the coupled influences of the biotic and abiotic process with the shifts in variation on methylmercury remain unexplored. Accordingly, an annular flume experiment which simulated the freshwater ecosystem, was conducted for 108 days to examine the influences of typical disturbance by chironomid larvae and wind fluctuations on MeHg variation in sediment profiles. The in-situ, passive sampler technique of revealing diffusive gradients in thin films (DGT) encompassed the special resin, based on referenced extraction and coloration-computer imaging densitometry, were employed to obtain labile MeHg, Fe, and S concentrations at high resolution. The results indicate that larval bioturbation during the initial period of the experiment could diminish bioavailable MeHg concentrations and change the diffusion direction of MeHg fluxes. However, this inhibitive effect on MeHg concentrations ceased with larvae eclosion. Compared to bioturbation, wind fluctuation exerted slow but sustained inhibition on MeHg release. Furthermore, the eight parameters (dissolved organic carbon (DOC), DO, labile Fe and S concentrations, pH, sulfate-reducing bacteria (SRB) abundance in sediment, oxidation-reduction potential (ORP) and EC) could explain more of variation in MeHg concentrations which indicated by the canonical correspondence analysis. And these eight parameters manifest higher explanatory power for MeHg distributed in newly formed sediment. More notably, the comparison results of the multiple and simple regression directly demonstrated the DOC was the fundamental and robust

  10. Hair methylmercury levels of mummies of the Aleutian Islands, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egeland, G.M.; Ponce, Rafael; Bloom, Nicolas S.

    2009-04-15

    Ancient human hair specimens can shed light on the extent of pre-historic exposures to methylmercury and provide valuable comparison data with current-day exposures, particularly for Indigenous Peoples who continue to rely upon local traditional food resources. Human hair from ancient Aleutian Island Native remains were tested for total and methylmercury (Hg, MeHg) and were radiocarbon dated. The remains were approximately 500 years old (1450 A.D.). For four adults, the mean and median total hair mercury concentration was 5.8 ppm (SD=0.9). In contrast, MeHg concentrations were lower with a mean of 1.2 ppm (SD=1.8) and a median of 0.54 ppm (0.12-3.86).more » For the five infants, the mean and median MeHg level was 1.2 ppm (SD=1.8) and 0.20 ppm (0.007-4.61), respectively. Segmental analyses showed variations in MeHg concentrations in 1-cm segments, consistent with fluctuations in naturally occurring exposure to mercury through dietary sources. The levels are comparable to or lower than those found in fish and marine mammal-eating populations today who rely far less on subsistence food than pre-historic humans. The findings are, therefore, compatible with increased anthropogenic release of trace metals during the past several centuries.« less

  11. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach

    Treesearch

    Carl P.J. Mitchell; Brian A. Branfireun; Randall K. Kolka

    2008-01-01

    The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO4 (as an electron acceptor) because SO4...

  12. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    DOE PAGES

    Lin, Hui; Lu, Xia; Liang, Liyuan; ...

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. Inmore » comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.« less

  13. Hormetic effect of methylmercury on Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmcke, Kirsten J., E-mail: Kirsten.J.Helmcke@gmail.com; Aschner, Michael, E-mail: Michael.Aschner@vanderbilt.ed

    2010-10-15

    Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity.more » Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis.« less

  14. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments.

    PubMed

    Bailey, Logan T; Mitchell, Carl P J; Engstrom, Daniel R; Berndt, Michael E; Coleman Wasik, Jill K; Johnson, Nathan W

    2017-02-15

    In low-sulfate and sulfate-limited freshwater sediments, sulfate loading increases the production of methylmercury (MeHg), a potent and bioaccumulative neurotoxin. Sulfate loading to anoxic sediments leads to sulfide production that can inhibit mercury methylation, but this has not been commonly observed in freshwater lakes and wetlands. In this study, sediments were collected from sulfate-impacted, neutral pH, surface water bodies located downstream from ongoing and historic mining activities to examine how chronic sulfate loading produces porewater sulfide, and influences MeHg production and transport. Sediments were collected over two years, during several seasons from lakes with a wide range of overlying water sulfate concentration. Samples were characterized for in-situ solid phase and porewater MeHg, Hg methylation potentials via incubations with enriched stable Hg isotopes, and sulfur, carbon, and iron content and speciation. Porewater sulfide reflected historic sulfur loading and was strongly related to the extractable iron content of sediment. Overall, methylation potentials were consistent with the accumulation of MeHg on the solid phase, but both methylation potentials and MeHg were significantly lower at chronically sulfate-impacted sites with a low solid-phase Fe:S ratio. At these heavily sulfate-impacted sites that also contained elevated porewater sulfide, both MeHg production and partitioning are influenced: Hg methylation potentials and sediment MeHg concentrations are lower, but occasionally porewater MeHg concentrations in sediment are elevated, particularly in the spring. The dual role of sulfide as a ligand for inorganic mercury (decreasing bioavailability) and methylmercury (increasing partitioning into porewater) means that elucidating the role of iron and sulfur loads as they define porewater sulfide is key to understanding sulfate's influence on MeHg production and partitioning in sulfate-impacted freshwater sediment. Copyright © 2016

  15. Bioaccumulation of methylmercury in a marine copepod

    PubMed Central

    Lee, Cheng-Shiuan; Fisher, Nicholas S.

    2016-01-01

    Methylmercury (MeHg) is known to biomagnify in marine food chains, resulting in higher concentrations in upper trophic level animals than their prey. To better understand how marine copepods, an important intermediate between phytoplankton and forage fish at the bottom of the food chain, assimilate and release MeHg, we performed a series of laboratory experiments using the gamma-emitting radiotracer 203Hg2+ and Me203Hg with the calanoid copepod Acartia tonsa. Assimilation efficiencies (AEs) of Hg2+ and MeHg ranged from 25 to 31% and 58 to 79%, respectively, depending on algal diets. The AEs were positively related to the fraction of mercury in the cytoplasm of the algal cells that comprised their diet. Efflux rates of Hg2+ (0.29/d) and MeHg (0.21/d) following aqueous uptake were similar, but efflux rates following dietary uptake were significantly lower for MeHg (0.11-0.22 /d) than Hg2+ (0.47-0.66 /d). The calculated trophic transfer factors (TTFs) in copepods were >1 for MeHg and consistently low (≤0.2) for Hg2+. We used the parameters measured in this study to (1) quantitatively model the relative importance of MeHg sources (water or diet) for copepods, and to (2) predict the overall MeHg concentrations in copepods in different marine environments. In general, MeHg uptake from diet accounted for most of the body burden in copepods (>50%). For an algal diet whose MeHg dry weight bioconcentration factor (BCF) is ≥106, over 90% of a copepod's MeHg body burden can be shown to derive from diet. Our model-predicted MeHg concentrations in the copepods were comparable to independent measurements for copepods in coastal and open-ocean regions, implying our measured parameters and model are applicable to natural waters. PMID:27764899

  16. Accumulation of Methylmercury in Invertebrates and Masked Shrews (Sorex cinereus) at an Upland Forest-Peatland Interface in Northern Minnesota, USA.

    PubMed

    Tavshunsky, Ilana; Eggert, Susan L; Mitchell, Carl P J

    2017-12-01

    Mercury (Hg) methylation is often elevated at the terrestrial-peatland interface, but methylmercury (MeHg) production at this "hot spot" has not been linked with in situ biotic accumulation. We examined total Hg and MeHg levels in peat, invertebrates and tissues of the insectivore Sorex cinereus (masked shrew), inhabiting a terrestrial-peatland ecotone in northern Minnesota, USA. Mean MeHg concentrations in S. cinereus (71 ng g -1 ) fell between concentrations measured in spiders (mean 70-140 ng g -1 ), and ground beetles and millipedes (mean 29-42 ng g -1 ). Methylmercury concentrations in S. cinereus increased with age and differed among tissues, with highest concentrations in kidneys and muscle, followed by liver and brain. Nearly all Hg in S. cinereus was in the methylated form. Overall, the high proportional accumulation of MeHg in peat at the site (3.5% total Hg as MeHg) did not lead to particularly elevated concentrations in invertebrates or shrews, which are below values considered a toxicological risk.

  17. NAD+ Supplementation Attenuates Methylmercury Dopaminergic and Mitochondrial Toxicity in Caenorhabditis Elegans

    PubMed Central

    Caito, Samuel W.; Aschner, Michael

    2016-01-01

    Methylmercury (MeHg) is a neurotoxic contaminant of our fish supply that has been linked to dopaminergic (DAergic) dysfunction that characterizes Parkinson’s disease. We have previously shown that MeHg causes both morphological and behavioral changes in the Caenorhabditis elegans DAergic neurons that are associated with oxidative stress. We were therefore interested in whether the redox sensitive cofactor nicotinamide adenine dinucleotide (NAD+) may be affected by MeHg and whether supplementation of NAD + may prevent MeHg-induced toxicities. Worms treated with MeHg showed depletion in cellular NAD + levels, which was prevented by NAD + supplementation prior to MeHg treatment. NAD + supplementation also prevented DAergic neurodegeneration and deficits in DAergic-dependent behavior upon MeHg exposure. In a mutant worm line that cannot synthesize NAD + from nicotinamide, MeHg lethality and DAergic behavioral deficits were more sensitive to MeHg than wildtype worms, demonstrating the importance of NAD + in MeHg toxicity. In wildtype worms, NAD + supplementation provided protection from MeHg-induced oxidative stress and mitochondrial dysfunction. These data show the importance of NAD + levels in the response to MeHg exposure. NAD + supplementation may be beneficial for MeHg-induced toxicities and preventing cellular damage involved in Parkinson’s disease. PMID:26865665

  18. Genetic Variation in Glutathione-Related Genes and Body Burden of Methylmercury

    PubMed Central

    Engström, Karin Schläwicke; Strömberg, Ulf; Lundh, Thomas; Johansson, Ingegerd; Vessby, Bengt; Hallmans, Göran; Skerfving, Staffan; Broberg, Karin

    2008-01-01

    Background Exposure to toxic methylmercury (MeHg) through fish consumption is a large problem worldwide, and it has led to governmental recommendations of reduced fish consumption and blacklisting of mercury-contaminated fish. The elimination kinetics of MeHg varies greatly among individuals. Knowledge about the reasons for such variation is of importance for improving the risk assessment for MeHg. One possible explanation is hereditary differences in MeHg metabolism. MeHg is eliminated from the body as a glutathione (GSH) conjugate. Objectives We conducted this study to assess the influence of polymorphisms in GSH-synthesizing [glutamyl-cysteine ligase modifier subunit (GCLM-588) and glutamyl-cysteine ligase catalytic subunit (GCLC-129)] or GSH-conjugating [glutathione S-transferase pi 1 (GSTP1–105 and GSTP1–114)] genes on MeHg retention. Methods Based on information obtained from questionnaires, 292 subjects from northern Sweden had a high consumption of fish (lean/fat fish two to three times per week or more). We measured total Hg in erythrocytes (Ery-Hg) and long-chain n-3 polyunsaturated fatty acids in plasma (P-PUFA; an exposure marker for fish intake). Results The GSTP1 genotype modified Ery-Hg; effects were seen for GSTP1–105 and −114 separately, and combining them resulted in stronger effects. We found evidence of effect modification: individuals with zero or one variant allele demonstrated a steeper regression slope for Ery-Hg (p = 0.038) compared with individuals with two or more variant alleles. The GCLM-588 genotype also influenced Ery-Hg (p = 0.035): Individuals with the GCLM-588 TT genotype demonstrated the highest Ery-Hg, but we saw no evidence of effect modification with increasing P-PUFA. Conclusions These results suggest a role of GSH-related polymorphisms in MeHg metabolism. PMID:18560528

  19. Effect of methylmercury on the rat mast cell degranulation

    NASA Astrophysics Data System (ADS)

    Graevskaya, E. E.; Yasutake, A.; Aramai, R.; Rubin, A. B.

    2003-05-01

    Methylmercury is the well-known neurotoxicant as weil as a modulator of the immune system. We investigated the effects of MeHg on the rat mast cell degranulation induced by nonimmunological stimuli (the selective liberator of histamine, compound 48/80, and calcium ionophore A23187) both in vivo and in vitro. In 8, 12 and 15 days afterthe final administration of MeHg we observed the suppression of calcium ionophore A23187-and 48/80-induced histamine release, which enhanced with time. In experiments in vitro incubation of peritoneal mast cells with MeHg alone in the dose range 10^{-8} to 10^{-6} did not induce mast cell degranulation, however modified the activation of mast cells by compound 48/80, and calcium ionophore A23187. We observed activation of stimulated secretion by preliminary incubation with low dose of MeHg 10^{-8} M and inhibition by dose of MeHg 10^{-6} M. These results show that MeHg treatment can modify mast cell function in vivo and in vitro and provide insight into the understanding what role this cell has in the pathogenesis of Minamata disease-comlected disorders.

  20. Methylmercury Exposure and Health Effects from Rice and Fish Consumption: A Review

    PubMed Central

    Li, Ping; Feng, Xinbin; Qiu, Guangle

    2010-01-01

    Methylmercury (MeHg) is highly toxic, and its principal target tissue in humans is the nervous system, which has made MeHg intoxication a public health concern for many decades. The general population is primarily exposed to MeHg through consumption of contaminated fish and marine mammals, but recent studies have reported high levels of MeHg in rice and confirmed that in China the main human exposure to MeHg is related to frequent rice consumption in mercury (Hg) polluted areas. This article reviews the progress in the research on MeHg accumulation in rice, human exposure and health effects, and nutrient and co-contaminant interactions. Compared with fish, rice is of poor nutritional quality and lacks specific micronutrients identified as having health benefits (e.g., n-3 long chain polyunsaturated fatty acid, selenium, essential amino acids). The effects of these nutrients on the toxicity of MeHg should be better addressed in future epidemiologic and clinical studies. More emphasis should be given to assessing the health effects of low level MeHg exposure in the long term, with appropriate recommendations, as needed, to reduce MeHg exposure in the rice-eating population. PMID:20644695

  1. Production and retention of methylmercury in inundated boreal forest soils.

    PubMed

    Rolfhus, Kristofer R; Hurley, James P; Bodaly, Richard A Drew; Perrine, Gregory

    2015-03-17

    The Flooded Uplands Dynamics Experiment (FLUDEX) was an ecosystem-scale study examining the production of methylmercury (MeHg) and greenhouse gases from reservoirs constructed on an upland boreal forest landscape in order to quantify their dependence upon carbon stores. We detail the within-reservoir production and storage of MeHg before, during, and nine years after the experiment. The reservoirs were net MeHg producers during the first two years of flooding, and net demethylating systems afterward. During years 1-3, a rapid pulse of MeHg and total Hg was observed in floodwater, followed by substantial increases in MeHg in seston and sediment. Resampling of the dry reservoirs nine years after the experiment ended indicated that organic soil MeHg was still 8 to 52-fold higher than preflood conditions, and averaged 86% of the levels recorded at the end of the third flooding year. Both total Hg and MeHg retention in soil were a strong function of organic carbon content. The time scale of soil MeHg retention may help explain the decadal time lag frequently observed for the decrease of piscivorous fish Hg concentrations in new reservoirs. Predicted extreme precipitation events associated with climate change may serve to make landscapes more susceptible to this process.

  2. Warming increases methylmercury production in an Arctic soil

    DOE PAGES

    Yang, Ziming; Fang, Wei; Lu, Xia; ...

    2016-04-29

    The rapid temperature rise in Arctic permafrost concerns not only the degradation of stored soil organic carbon (SOC) and climate feedback, but also the production and bioaccumulation of methylmercury (MeHg) that may endanger humans, as well as wildlife in terrestrial, aquatic, and marine ecosystems. Decomposition of SOC provides an energy source for microbial methylation, although little is known how rapid permafrost thaw affects Hg methylation and how SOC degradation is coupled to MeHg biosynthesis. We describe rates of MeHg production in Arctic soils from an 8-month warming microcosm experiment under anoxic conditions. MeHg production increased >10 fold in both organic-more » and the mineral-rich soil layers at a warmer temperature (8 C) compared to a sub-zero temperature ( 2 C). MeHg production was positively correlated to methane and ferrous ion concentrations, suggesting that Hg methylation is coupled with methanogenesis and iron reduction. Labile SOC, such as reducing sugars and alcohol, were particularly effective in fueling the initial rapid biosynthesis of MeHg. In freshly amended Hg we found that there was more bioavailable than existing Hg in the mineral soil. Finally, the data indicate that climate warming and permafrost thaw could greatly enhance MeHg production, thereby impacting Arctic aquatic and marine ecosystems through biomagnification in the food web.« less

  3. Selenomethionine protects against neuronal degeneration by methylmercury in the developing rat cerebrum.

    PubMed

    Sakamoto, Mineshi; Yasutake, Akira; Kakita, Akiyoshi; Ryufuku, Masae; Chan, Hing Man; Yamamoto, Megumi; Oumi, Sanae; Kobayashi, Sayaka; Watanabe, Chiho

    2013-03-19

    Although many experimental studies have shown that selenium protects against methylmercury (MeHg) toxicity at different end points, the direct interactive effects of selenium and MeHg on neurons in the brain remain unknown. Our goal is to confirm the protective effects of selenium against neuronal degeneration induced by MeHg in the developing postnatal rat brain using a postnatal rat model that is suitable for extrapolating the effects of MeHg to the fetal brain of humans. As an exposure source of selenium, we used selenomethionine (SeMet), a food-originated selenium. Wistar rats of postnatal days 14 were orally administered with vehicle (control), MeHg (8 mg Hg/kg/day), SeMet (2 mg Se/kg/day), or MeHg plus SeMet coexposure for 10 consecutive days. Neuronal degeneration and reactive astrocytosis were observed in the cerebral cortex of the MeHg-group but the symptoms were prevented by coexposure to SeMet. These findings serve as a proof that dietary selenium can directly protect neurons against MeHg toxicity in the mammalian brain, especially in the developing cerebrum.

  4. Total mercury and methylmercury in high altitude surface snow from the French Alps.

    PubMed

    Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Yumvihoze, Emmanuel; Lean, David; Nedjai, Rachid; Ferrari, Christophe

    2011-09-01

    Surface snow samples were collected weekly from the 31st of December 2008 to the 21st of June 2009 from Lake Bramant in the French Alps. Total mercury (THg), total dissolved mercury (THgD), methylmercury (MeHg) and particle distributions in surface snow were analyzed. Results showed that THg concentrations, MeHg concentrations and particle load increased with snow surface temperature, which is an indicator of rising temperatures as the season progresses. Significant correlations between MeHg and snow surface temperature and MeHg and total particles greater than 10 μm were observed. This suggests that the MeHg found in the snow originates from atmospheric deposition processes rather than in situ snowpack sources. This study suggests that an important post-winter atmospheric deposition of MeHg and THg occurs on summital zones of the French Alps and it is likely that this contamination originates from the surrounding valleys. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Methylmercury in fish from the South China Sea: geographical distribution and biomagnification.

    PubMed

    Zhu, Aijia; Zhang, Wei; Xu, Zhanzhou; Huang, Liangmin; Wang, Wen-Xiong

    2013-12-15

    We conducted a large-scale investigation of methylmercury (MeHg) in a total of 628 marine wild fish covering 46 different species collected from the South China Sea between 2008 and 2009. Biological and ecological characteristics such as size (length and wet weight), feeding habit, habitat, and stable isotope (δ(15)N) were examined to explain MeHg bioaccumulation in marine fish and their geographical distribution. MeHg levels in the muscle tissues of the 628 individuals ranged from 0.010 to 1.811 μg/g dry wt. Log10MeHg concentration was significantly related to their length and wet weight. Feeding habit and habitat were the primary factors influencing MeHg bioaccumulation. Demersal fish were more likely to be contaminated with MeHg than the epipelagic and mesopelagic varieties. Linear relationships were obtained between Log10(MeHg) and δ(15)N only for one location, indicating that biomagnification was site-specific. Results from this study suggest that dietary preference and trophic structure were the main factors affecting MeHg bioaccumulation in marine fish from the South China Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Methylmercury bioaccumulation in stream food webs declines with increasing primary production

    USGS Publications Warehouse

    Walters, David; D.F. Raikow,; C.R. Hammerschmidt,; M.G. Mehling,; A. Kovach,; J.T. Oris,

    2015-01-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048–0.71 mg O2 L–1 d–1) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.

  7. Sulfate Addition Increases Methylmercury Production in an Experimental Wetland

    Treesearch

    Jeff D. Jeremiason; Daniel R. Engstrom; Edward B. Swain; Edward A. Nater; Brian M. Johnson; James E. Almendinger; Bruce A. Monson; Randy K. Kolka

    2006-01-01

    Atmospheric mercury is the dominant Hg source to fish in northern Minnesota and elsewhere. However, atmospherically derived Hg must be methylated prior to accumulating in fish. Sulfate-reducing bacteria are thought to be the primary methylators of Hg in the environment. Previous laboratory and field mesocosm studies have demonstrated an increase in methylmercury (MeHg...

  8. Methylmercury Modulation in Amazon Rivers Linked to Basin Characteristics and Seasonal Flood-Pulse.

    PubMed

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2017-12-19

    We investigated the impact of the seasonal inundation of wetlands on methylmercury (MeHg) concentration dynamics in the Amazon river system. We sampled 38 sites along the Solimões/Amazon and Negro rivers and their tributaries during distinct phases of the annual flood-pulse. MeHg dynamics in both basins was contrasted to provide insight into the factors controlling export of MeHg to the Amazon system. The export of MeHg by rivers was substantially higher during high-water in both basins since elevated MeHg concentrations and discharge occurred during this time. MeHg concentration was positively correlated to %flooded area upstream of the sampling site in the Solimões/Amazon Basin with the best correlation obtained using 100 km buffers instead of whole basin areas. The lower correlations obtained with the whole basin apparently reflected variable losses of MeHg exported from upstream wetlands due to demethylation, absorption, deposition, and degradation before reaching the sampling site. A similar correlation between %flooded area and MeHg concentrations was not observed in the Negro Basin probably due to the variable export of MeHg from poorly drained soils that are abundant in this basin but not consistently flooded.

  9. Effect of methylmercury on acetylcholinestrase and serum cholinesterase activity in monkeys, Macaca fascicularis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petruccioli, L.; Turillazzi, P.G.

    1991-05-01

    The consumption of fish and fish-derived products is the main pathway of human exposure to methylmercury (MeHg). Methylmercury levels vary widely in fish, depending on age, size, the position of the species in the food chain, and most of all, on pollution levels. MeHg affects the Acetylcholinesterase activity (AChE) and the serum Cholinesterase activity (BChE). Histoenzymatic studies showed that 100mg Methyoxyethylmercury chloride administered for 6 days to rats caused a reduction of AChE activity in the thalamus and an increase in different parts of the nervous central system. The present study aims at verifying whether the dose permitted by F.A.O.more » and doses 10 and 100 fold higher affect the Cholinesterase activity in primates, and whether there is a correlation between AChE and BChE.« less

  10. Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands.

    PubMed

    Strickman, R J; Mitchell, C P J

    2017-02-01

    Stormwater management ponds and created habitat wetlands effectively manage erosion, flooding, and pollutant loadings while providing biodiversity and aesthetic benefits, but these structures are also potential sources of methylmercury (MeHg), a bioaccumulative neurotoxin. While MeHg accumulation has been confirmed in habitat wetlands, the extent of MeHg production and accumulation in stormwater ponds is unknown. Additionally, the fine-scale spatial variation in MeHg in these wetlands has never been explored despite the possibility that cycles of wetting and drying, and the presence of aquatic plants may stimulate methylation at their margins. To address these knowledge gaps, we compared MeHg and inorganic mercury concentrations, the percent of total mercury present as MeHg (%MeHg), and potential mercury methylation rate constants (K meth ) in the sediments of terrestrial-aquatic transects through several stormwater and habitat wetlands. We present novel evidence confirming the in situ production of MeHg in both stormwater ponds and habitat wetlands, but observe no systematic differences across the terrestrial-aquatic gradient, suggesting that routine variations in water level do not alter MeHg production and accumulation. Stormwater ponds effectively trap mercury while converting relatively little to MeHg, as evidenced by lower MeHg concentrations, %-MeHg, and K meth values than habitat wetlands, but often greater inorganic Hg concentrations. The relationship of aquatic vegetation to MeHg accumulation is weak and ambiguous, suggesting plants are not strong drivers of MeHg biogeochemistry in these systems. Although the MeHg hazard associated with individual artificial wetlands is low, they may be important sources of MeHg at the landscape level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mercury and methylmercury in reservoirs in Indiana

    USGS Publications Warehouse

    Risch, Martin R.; Fredericksen, Amanda L.

    2015-01-01

    Methylmercury (reported as Hg) in fish-tissue samples collected for the State fish consumption advisory program was used to describe MeHg food-web accumulation and magnification in the reservoirs. The highest percentages of fish-tissue samples with Hg concentrations that exceeded the criterion of 0.30 milligram per kilogram for protection of human health were from Monroe Lake (38 percent) and Patoka Lake (33 percent). A review of the number and size of fish species caught from these two reservoirs resulted in two implications for fish consumption by humans. First, the highest numbers of fish harvested for potential human consumption were species more likely to have MeHg concentrations lower than the human-health criterion (crappie, bluegill, and catfish). Second, although largemouth bass were likely to have MeHg concentrations higher than the human-health criterion, they were caught and released more often than they were harvested. However, the average size largemouth bass (in both reservoirs) and above-average size walleye (in Monroe Lake) that were harvested for potential human consumption were likely to have MeHg concentrations higher than the human-health criterion.

  12. Methylmercury bioaccumulation in an urban estuary: Delaware River USA.

    PubMed

    Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia

    2017-09-01

    Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.

  13. De Novo Synthesized Estradiol Protects against Methylmercury-Induced Neurotoxicity in Cultured Rat Hippocampal Slices

    PubMed Central

    Ishihara, Yasuhiro; Komatsu, Shota; Munetsuna, Eiji; Onizaki, Masahiro; Ishida, Atsuhiko; Kawato, Suguru; Mukuda, Takao

    2013-01-01

    Background Estrogen, a class of female sex steroids, is neuroprotective. Estrogen is synthesized in specific areas of the brain. There is a possibility that the de novo synthesized estrogen exerts protective effect in brain, although direct evidence for the neuroprotective function of brain-synthesized estrogen has not been clearly demonstrated. Methylmercury (MeHg) is a neurotoxin that induces neuronal degeneration in the central nervous system. The neurotoxicity of MeHg is region-specific, and the molecular mechanisms for the selective neurotoxicity are not well defined. In this study, the protective effect of de novo synthesized 17β-estradiol on MeHg-induced neurotoxicity in rat hippocampus was examined. Methodology/Principal Findings Neurotoxic effect of MeHg on hippocampal organotypic slice culture was quantified by propidium iodide fluorescence imaging. Twenty-four-hour treatment of the slices with MeHg caused cell death in a dose-dependent manner. The toxicity of MeHg was attenuated by pre-treatment with exogenously added estradiol. The slices de novo synthesized estradiol. The estradiol synthesis was not affected by treatment with 1 µM MeHg. The toxicity of MeHg was enhanced by inhibition of de novo estradiol synthesis, and the enhancement of toxicity was recovered by the addition of exogenous estradiol. The neuroprotective effect of estradiol was inhibited by an estrogen receptor (ER) antagonist, and mimicked by pre-treatment of the slices with agonists for ERα and ERβ, indicating the neuroprotective effect was mediated by ERs. Conclusions/Significance Hippocampus de novo synthesized estradiol protected hippocampal cells from MeHg-induced neurotoxicity via ERα- and ERβ-mediated pathways. The self-protective function of de novo synthesized estradiol might be one of the possible mechanisms for the selective sensitivity of the brain to MeHg toxicity. PMID:23405170

  14. The contribution of rice agriculture to methylmercury in surface waters: A review of data from the Sacramento Valley, California

    USGS Publications Warehouse

    Tanner, K. Christy; Windham-Myers, Lisamarie; Fleck, Jacob; Tate, Kenneth W.; McCord, Stephen A.; Linquist, Bruce A.

    2017-01-01

    Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice (Oriza sativa L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L−1, range 0.15–0.23 ng L−1) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L−1, range 0.6–1.6 ng L−1) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.

  15. Neurotoxic response of infant monkeys to methylmercury.

    PubMed

    Willes, R F; Truelove, J F; Nera, E A

    1978-02-01

    Four infant monkeys were dosed orally with 500 microgram Hg/kg body wt./day /as methylmercury (MeHg) chloride dissolved sodium carbonate) beginning at 1 day of age. Neurological and behavioral signs of MeHg toxicity and blood Hg levels were monitored weekly. At first sign of MeHg intoxication, dosing with MeHg was terminated and the infants were monitored to assess reversal of the signs of MeHg toxicity. The first signs of MeHg toxicity, exhibited as a loss in dexterity and locomotor ability, were observed after 28--29 days of treatment; the blood Hg levels were 8.0--9.4 microgram Hg/g blood. Dosing was terminated at 28--29 days of treatment but the signs of MeHg toxicity continued to develop. The infants became ataxic, blind, comatose and were necropsied at 35--43 days after initiating treatment with MgHg. The mercury concentrations in tissues analyzed after necropsy were highest in liver (55.8 +/- 3.2 microgram Hg/g) followed by occipital cortex (35.6 +/- 4.8 microgram Hg/g) renal cortex (32.8 +/- 1.6 microgram Hg/g). The frontal and temporal cortices had 27.0 +/- 3.4 and 29.6 +/- 4.9 microgram Hg/g respectively while the cerebellar Hg concentration averaged 13.0 +/- 1.5 microgram Hg/g. The mean blood/brain ratio was 0.21 +/- 0.4. Histopathologic lesions were marked in the cerebrum with less severe lesions in the cerebellar nuclei. The Purkinje and granular cells of the cerebellar vermis appeared histologically normal. Lesions were not observed in the peripheral nervous system. The signs of MeHg intoxication, the tissue distribution of MeHg and histopathologic lesions observed in the infant monkeys were similar to those reported for adult monkeys.

  16. The chemokine CCL2 protects against methylmercury neurotoxicity.

    PubMed

    Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William

    2012-01-01

    Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.

  17. Diffusive gradients in thin films for predicting methylmercury bioavailability in freshwaters after photodegradation.

    PubMed

    Fernández-Gómez, C; Bayona, J M; Díez, S

    2015-07-01

    Determination of the dissolved-bioavailable fraction of methylmercury (MeHg) and its degradation pathways in freshwaters deserve attention, to further our understanding of the potential risk and toxicity of MeHg. Since the photodegradation of MeHg is the most important known abiotic process able to demethylate MeHg, this study investigated the role of sunlight on MeHg bioavailability in freshwater environments. Experiments to calculate photodegradation rate constants of MeHg in different types of freshwater in combination with experiments to distinguish the labile fraction of MeHg after being exposed to sunlight were performed. The ability of diffusive gradients in thin films based on polyacrylamide (P-DGT) to assess DGT-labile MeHg during photodegradation was successfully tested. First order photodegradation rate constants (kpd) of bioavailable MeHg determined in five different types of waters with different amount of dissolved organic matter (DOM), were in the range 0.073-0.254 h(-1), confirming previous findings that once there is DOM in solution, which would favour the photodegradation process, the kpd is mainly affected by light attenuation. Simulated sunlight seems not to alter the lability of MeHg, although photodegradation processes may decrease the concentrations of MeHg, contributing to reduce the amount of bioavailable MeHg (i.e. MeHg uptake by DGT). However, the quality of DOM, rather than the quantity, plays an important role in the bioavailability of MeHg in freshwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Toxic effects of dietary methylmercury on immune system development in nestling American kestrels (Falco sparverius)

    USGS Publications Warehouse

    Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.

    2011-01-01

    This study evaluated the effects of dietary methylmercury (MeHg) on immune system development in captive-reared nestling American kestrels (Falco sparverius) to determine whether T cell–mediated and antibody-mediated adaptive immunity are targets for MeHg toxicity at environmentally relevant concentrations. Nestlings received various diets, including 0 (control), 0.6, and 3.9 μg/g (dry wt) MeHg for up to 18 d posthatch. Immunotoxicity endpoints included cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and antibody-mediated immune response via the sheep red blood cell (SRBC) hemagglutination assay. T cell– and B cell–dependent histological parameters in the spleen, thymus, and bursa of Fabricius were correlated with the functional assays. For nestlings in the 0.6 and 3.9 μg/g MeHg groups, CMI was suppressed by 73 and 62%, respectively, at 11 d of age. Results of this functional assay were correlated with T cell–dependent components of the spleen and thymus. Dose-dependent lymphoid depletion in spleen tissue directly affected the proliferation of T-lymphocyte populations, insofar as lower stimulation indexes from the PHA assay occurred in nestlings with lower proportions of splenic white pulp and higher THg concentrations. Nestlings in the 3.9 μg/g group also exhibited lymphoid depletion and a lack of macrophage activity in the thymus. Methylmercury did not have a noticeable effect on antibody-mediated immune function or B cell–dependent histological correlates. We conclude that T cell–mediated immunosuppression is the primary target of MeHg toward adaptive immunity in developing kestrels. This study provides evidence that environmentally relevant concentrations of MeHg may compromise immunocompetence in a developing terrestrial predator and raises concern regarding the long-term health effects of kestrels that were exposed to dietary MeHg during early avian development.

  19. Methylmercury Mass Budgets and Distribution Characteristics in the Western Pacific Ocean.

    PubMed

    Kim, Hyunji; Soerensen, Anne L; Hur, Jin; Heimbürger, Lars-Eric; Hahm, Doshik; Rhee, Tae Siek; Noh, Seam; Han, Seunghee

    2017-02-07

    Methylmercury (MeHg) accumulation in marine organisms poses serious ecosystem and human health risk, yet the sources of MeHg in the surface and subsurface ocean remain uncertain. Here, we report the first MeHg mass budgets for the Western Pacific Ocean estimated based on cruise observations. We found the major net source of MeHg in surface water to be vertical diffusion from the subsurface layer (1.8-12 nmol m -2  yr -1 ). A higher upward diffusion in the North Pacific (12 nmol m -2  yr -1 ) than in the Equatorial Pacific (1.8-5.7 nmol m -2  yr -1 ) caused elevated surface MeHg concentrations observed in the North Pacific. We furthermore found that the slope of the linear regression line for MeHg versus apparent oxygen utilization in the Equatorial Pacific was about 2-fold higher than that in the North Pacific. We suggest this could be explained by redistribution of surface water in the tropical convergence-divergence zone, supporting active organic carbon decomposition in the Equatorial Pacific Ocean. On the basis of this study, we predict oceanic regions with high organic carbon remineralization to have enhanced MeHg concentrations in both surface and subsurface waters.

  20. Biomarkers of Methylmercury Exposure Immunotoxicity among Fish Consumers in Amazonian Brazil

    PubMed Central

    Fillion, Myriam; Barbosa, Fernando; Shirley, Devon L.; Chine, Chiameka; Lemire, Melanie; Mergler, Donna; Silbergeld, Ellen K.

    2011-01-01

    Background: Mercury (Hg) is a ubiquitous environmental contaminant with neurodevelopmental and immune system effects. An informative biomarker of Hg-induced immunotoxicity could aid studies on the potential contribution to immune-related health effects. Objectives: Our objectives were to test the hypothesis that methylmercury (MeHg) exposures affect levels of serum biomarkers and to examine interactions between Hg and selenium (Se) in terms of these responses. Methods: This cross-sectional epidemiological study assessed adults living along the Tapajós River, a system long affected by MeHg. We measured antinuclear (ANA) and antinucleolar (ANoA) autoantibody levels and eight cytokines in serum samples (n = 232). Total Hg (including MeHg) and Se were measured in blood, plasma, hair, and urine. Results: The median (range) total Hg concentrations were 14.1 μg/g (1.1–62.4), 53.5 μg/L (4.3–288.9), 8.8 μg/L (0.2–40), and 3.0 μg/L (0.2–16.1) for hair, blood, plasma, and urine, respectively. Elevated titers of ANA (but not ANoA) were positively associated with MeHg exposure (log-transformed, for blood and plasma), unadjusted [odds ratio (OR) = 2.6; 95% confidence interval (CI): 1.1, 6.2] and adjusted for sex and age (OR = 2.9; 95% CI: 1.1, 7.5). Proinflammatory [interleukin (IL)-6 and interferon (IFN)-©], anti-inflammatory (IL-4), and IL-17 cytokine levels were increased with MeHg exposure; however, in the subset of the population with elevated ANA, proinflammatory IL-1®, IL-6, IFN-©, and tumor necrosis factor (TNF)-〈 and anti-inflammatory (IL-4) cytokine levels were decreased with MeHg exposure. Although Se status was associated with MeHg level (correlation coefficient = 0.86; 95% CI: 0.29, 1.43), Se status was not associated with any changes in ANA and did not modify associations between Hg and ANA titers. Conclusions: MeHg exposure was associated with an increased ANA and changes in serum cytokine profile. Moreover, alterations in serum cytokine profiles

  1. Reappraisal of somatosensory disorders in methylmercury poisoning.

    PubMed

    Ninomiya, Tadashi; Imamura, Keiko; Kuwahata, Misako; Kindaichi, Michiaki; Susa, Mari; Ekino, Shigeo

    2005-01-01

    The first well-documented methylmercury (MeHg) poisoning by consumption of fish arose in Minamata, Japan in 1953. MeHg had dispersed from Minamata to the Shiranui Sea. The temporal changes in MeHg in the umbilical cords indicate that residents living around that Sea had been exposed to low-dose MeHg through fish consumption for about 20 years (at least from 1950 to 1968). They have complained of paresthesia at the distal parts of the extremities and around the lip even 30 years after the cessation of exposure to anthropogenic MeHg. The thresholds of touch and two-point discrimination of those residents and Minamata disease (MD) patients were examined using the quantifiable instruments. They could perceive the stimulation of touch although their touch thresholds significantly increased in comparison to those of the control people. Their touch thresholds increased at the proximal extremities and the trunks as well as at the distal extremities. The evenly distributed increases at both distal and proximal parts revealed that the persistent somatosensory disturbances were not caused by the injuries to their peripheral nerves. The thresholds of two-point discrimination, which are associated with the function of the somatosensory cortex, increased at both forefingers and the lip in both groups. Taking into consideration that, the apraxia limb kinetics, astereognosis and disorder of active sensation, which are all associated with damage to the somatosensory cortex, were detected, it is proposed that the persisting somatosensory disorders after discontinuation of exposure to MeHg were induced by diffuse damage to the somatosensory cortex.

  2. Methylmercury Bioaccumulation, Transformation, and Trophic Transfer in Marine Plankton Assemblages

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Fisher, N. S.

    2016-02-01

    Few studies have quantified the bioconcentration of methylmercury (MeHg) in marine phytoplankton from seawater, even though this is by far the largest bioaccumulation step in aquatic organisms. Aquatic animals acquire MeHg mainly from dietary exposure and it is important to evaluate the bioaccumulation of this compound in planktonic organisms that form the base of marine food webs. We used a gamma-emitting radioisotope, 203Hg, to assess the rate and extent of MeHg uptake in marine diatoms, dinoflagellates, coccolithophores, cryptophytes chlorophytes, and cyanobacteria held in unialgal cultures under varying temperature, light and nutrient conditions. For experimental conditions in which cells were exposed to MeHg at 300 pM, the uptake rates in all species ranged from 0.001 to 0.034 atto-mol MeHg µm-2 cell surface h-1 and reached steady state within 2 d. Volume concentration factors (VCFs) ranged from 0.3 to 40 x 105 for the different species. Temperature, light and nutrient conditions had no direct effect on cellular MeHg uptake but ultimately affected growth of the cells, resulting in greater suspended particulate matter and associated MeHg. VCFs strongly correlated with cell surface area to volume ratios in all species. Nearly 40 % of the MeHg was released into the air from coccolithophore cultures within 4 d, but <10 % from other algal cultures. Assimilation efficiencies of MeHg from different phytoplankton diets in a marine copepod (Acartia tonsa) ranged from 74 to 92%, directly proportional to the cytoplasmic partitioning of MeHg in the phytoplankton cells. MeHg uptake in copepods from the aqueous phase was low and modeling shows that nearly all the MeHg acquired by this zooplankter is from diet. Herbivorous zooplankton can be an important link from phytoplankton at the base of the food web to fish higher in the food chain.

  3. Isothiocyanates Reduce Mercury Accumulation via an Nrf2-Dependent Mechanism during Exposure of Mice to Methylmercury

    PubMed Central

    Toyama, Takashi; Shinkai, Yasuhiro; Yasutake, Akira; Uchida, Koji; Yamamoto, Masayuki

    2011-01-01

    Background: Methylmercury (MeHg) exhibits neurotoxicity through accumulation in the brain. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) plays an important role in reducing the cellular accumulation of MeHg. Objectives: We investigated the protective effect of isothiocyanates, which are known to activate Nrf2, on the accumulation of mercury after exposure to MeHg in vitro and in vivo. Methods: We used primary mouse hepatocytes in in vitro experiments and mice as an in vivo model. We used Western blotting, luciferase assays, atomic absorption spectrometry assays, and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assays, and we identified toxicity in mice based on hind-limb flaccidity and mortality. Results: The isothiocyanates 6-methylsulfinylhexyl isothiocyanate (6-HITC) and sulforaphane (SFN) activated Nrf2 and up-regulated downstream proteins associated with MeHg excretion, such as glutamate-cysteine ligase, glutathione S-transferase, and multidrug resistance–associated protein, in primary mouse hepatocytes. Under these conditions, intracellular glutathione levels increased in wild-type but not Nrf2-deficient primary mouse hepatocytes. Pretreatment with 6-HITC and SFN before MeHg exposure suppressed cellular accumulation of mercury and cytotoxicity in wild-type but not Nrf2-deficient primary mouse hepatocytes. In comparison, in vivo administration of MeHg to Nrf2-deficient mice resulted in increased sensitivity to mercury concomitant with an increase in mercury accumulation in the brain and liver. Injection of SFN before administration of MeHg resulted in a decrease in mercury accumulation in the brain and liver of wild-type, but not Nrf2-deficient, mice. Conclusions: Through activation of Nrf2, 6-HITC and SFN can suppress mercury accumulation and intoxication caused by MeHg intake. PMID:21382770

  4. COMPARISON OF FOUR HUMAN STUDIES OF PERINATAL EXPOSURE TO METHYLMERCURY FOR USE IN RISK ASSESSMENT

    EPA Science Inventory

    Newer data from human epidemiologic studies of methylmercury (MeHg) poisoning in which perinatal exposure occurred are available from four distinct populations. The results of an Iraqi grain-consuming population are compared to results from studies performed in fish-consuming gro...

  5. Methylmercury production in estuarine sediments: role of organic matter

    PubMed Central

    Schartup, Amina T.; Mason, Robert P.; Balcom, Prentiss H.; Hollweg, Terill A.; Chen, Celia Y.

    2013-01-01

    Methylmercury (MeHg) affects wildlife and human health mainly through marine fish consumption. In marine systems, MeHg is formed from inorganic mercury (HgII) species primarily in sediments then accumulates and biomagnifies in the food web. Most of the fish consumed in the US are from estuarine and marine systems highlighting the importance of understanding MeHg formation in these productive regions. Sediment organic matter has been shown to limit mercury methylation in estuarine ecosystems, as a result it is often described as the primary control over MeHg production. In this paper, we explore the role of organic matter by looking at the effects of its changing sediment concentrations on the methylation rates across multiple estuaries. We measured sedimentary MeHg production at eleven estuarine sites that were selected for their contrasting biogeochemical characteristics, mercury (Hg) content, and location in the Northeastern US (ME, NH, CT, NY, and NJ). Sedimentary total Hg concentrations ranged across five orders of magnitude, increasing in concentration from the pristine, sandy sediments of Wells (ME), to industrially contaminated areas like Portsmouth (NH) and Hackensack (NJ). We find that methylation rates are the highest at locations with high Hg content (relative to carbon), and that organic matter does not hinder mercury methylation in estuaries. PMID:23194318

  6. Gene Expression Changes Related to Endocrine Function and Decline in Reproduction in Fathead Minnow (Pimephales promelas) after Dietary Methylmercury Exposure

    PubMed Central

    Klaper, Rebecca; Rees, Christopher B.; Drevnick, Paul; Weber, Daniel; Sandheinrich, Mark; Carvan, Michael J.

    2006-01-01

    Background Methylmercury (MeHg) is a known neurotoxic agent, but the mechanisms by which MeHg may act on reproductive pathways are relatively unknown. Several studies have indicated potential changes in hormone levels as well as declines in vertebrates with increasing dietary MeHg exposure. Objectives The purpose of this study was to identify alterations in gene expression associated with MeHg exposure, specifically those associated with previously observed changes in reproduction and reproductive biomarkers. Fathead minnows, Pimephales promelas, were fed one of three diets that were similar to documented concentrations of MeHg in the diets of wild invertivorous and piscivorous fish. We used a commercial macroarray in conjunction with quantitative polymerase chain reaction to examine gene expression in fish in relation to exposure to these environmentally relevant doses of MeHg. Results Expression of genes commonly associated with endocrine disruption was altered with Hg exposure. Specifically, we observed a marked up-regulation in vitellogenin mRNA in individual Hg-exposed males and a significant decline in vitellogenin gene expression in female fish with increasing Hg concentrations. Other genes identified by the macroarray experiment included those associated with egg fertilization and development, sugar metabolism, apoptosis, and electron transport. We also observed differences in expression patterns between male and female fish not related to genes specifically associated with reproduction, indicating a potential physiological difference in the reaction of males and females to MeHg. Conclusion Gene expression data may provide insight into the mechanisms by which MeHg affects reproduction in fish and indicate how MeHg differs in its effect from other heavy metals and endocrine-disrupting compounds. PMID:16966085

  7. Hydrological controls on methylmercury distribution and flux in a tidal marsh

    USGS Publications Warehouse

    Zhang, Hua; Moffett, Kevan B.; Windham-Myers, Lisamarie; Gorelick, Steven M.

    2014-01-01

    The San Francisco Estuary, California, contains mercury (Hg) contamination originating from historical regional gold and Hg mining operations. We measured hydrological and geochemical variables in a tidal marsh of the Palo Alto Baylands Nature Preserve to determine the sources, location, and magnitude of hydrological fluxes of methylmercury (MeHg), a bioavailable Hg species of ecological and health concern. Based on measured concentrations and detailed finite-element simulation of coupled surface water and saturated-unsaturated groundwater flow, we found pore water MeHg was concentrated in unsaturated pockets that persisted over tidal cycles. These pockets, occurring over 16% of the marsh plain area, corresponded to the marsh root zone. Groundwater discharge (e.g., exfiltration) to the tidal channel represented a significant source of MeHg during low tide. We found that nonchannelized flow accounted for up to 20% of the MeHg flux to the estuary. The estimated net flux of filter-passing (0.45 μm) MeHg toward estuary was 10 ± 5 ng m–2 day–1 during a single 12-h tidal cycle, suggesting an annual MeHg load of 1.17 ± 0.58 kg when the estimated flux was applied to present tidal marshes and planned marsh restorations throughout the San Francisco Estuary.

  8. Influence of Cladophora-Quagga Mussel Assemblages on Nearshore Methylmercury Production in Lake Michigan.

    PubMed

    Lepak, Ryan F; Krabbenhoft, David P; Ogorek, Jacob M; Tate, Michael T; Bootsma, Harvey A; Hurley, James P

    2015-07-07

    Recent spread of invasive mussels in Lake Michigan has altered primary productivity in the nearshore zone, resulting in proliferation of filamentous benthic green algae (Cladophora glomerata). In areas of dense Cladophora and quagga mussel (Dreissena bugensis) assemblages, as well as in regions where sloughed Cladophora accumulates, methylmercury (MeHg) production is enhanced. A shoreline transect from a river mouth through waters overlying Cladophora/quagga-rich zones showed that aqueous MeHg concentrations increased, despite river dilution. Cladophora, as primary producers, ranged from 0.6 to 7.5 ng g(-1) MeHg [4-47% of total mercury (Hg) as MeHg], and were higher than MeHg concentrations in offshore-collected seston. Concentrations of MeHg in decaying Cladophora accumulated onshore ranged from 2.6 to 18.0 ng g(-1) MeHg (18-41% as MeHg) and from 0.1 to 3.0 ng g(-1) MeHg (2-21% as MeHg) in deposits of recently sloughed and accumulated Cladophora in a nearshore topographical depression. Relative to offshore open waters, interstitial waters within decaying Cladophora from onshore and nearshore deposits were elevated in MeHg concentration, 1000- and 10-fold, respectively. Percent Hg as MeHg was also elevated (65-75% and 9-19%, respectively for onshore interstitial water and nearshore interstitial water, compared to 0.2-3.3% as MeHg for open water). Quagga mussels collected within growing Cladophora beds in the nearshore zone were significantly higher in MeHg than offshore counterparts. Our combined results suggest that recent changes in nearshore primary production contributes to MeHg production and bioaccumulation in Lake Michigan.

  9. Antioxidant compounds and Ca(2+) pathway blockers differentially protect against methylmercury and mercuric chloride neurotoxicity.

    PubMed

    Gassó, S; Cristòfol, R M; Selema, G; Rosa, R; Rodríguez-Farré, E; Sanfeliu, C

    2001-10-01

    The effects of the environmental contaminants methylmercury (MeHg) and inorganic mercury (HgCl(2)) on cell viability, intracellular calcium concentration ([Ca(2+)](i)), and reactive oxygen species (ROS) generation were studied in rat cerebellar granule neuron cultures using fluorescent methods. MeHg exhibited an LC(50) (2.47 microM) tenfold lower than that of HgCl(2) (26.40 microM). To study the involvement of oxidative stress and Ca(2+) homeostasis disruption in mercury-induced cytotoxicity, we tested the neuroprotective effects of several agents that selectively interfere with these mechanisms. After a 24 hr exposure, the cytotoxic effect of both mercury compounds was reduced by thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase; the Ca(2+) channel blocker flunarizine; and the Na(+)/Ca(2+) exchanger blocker benzamil. All these compounds decreased the mercury-mediated [Ca(2+)](i) rise. These results indicate that Ca(2+) influx through Ca(2+) channels and the Na(+)/Ca(2+) exchanger and Ca(2+) mobilization from the endoplasmic reticulum are involved in mercury-mediated cytotoxicity. The antioxidants probucol and propyl gallate reduced the HgCl(2) toxicity. Probucol and vitamin E partially inhibited the MeHg toxicity after a 24 hr period, whereas propyl gallate completely prevented this effect. Probucol slightly reduced ROS generation in methylmercury-exposed cultures and decreased mercury-mediated rise of [Ca(2+)](i). Propyl gallate abolished ROS generation and partially inhibited the increase of [Ca(2+)](i) induced by both mercury compounds. Propyl gallate also protected human cerebral cortical neuron cultures from the MeHg effect even after 72 hr of MeHg exposure, thus showing a long-lasting effect. Our data suggest that disruption of redox equilibrium and Ca(2+) homeostasis contribute equally to HgCl(2)-mediated toxicity, whereas oxidative stress is the main cause of MeHg neurotoxicity. Copyright 2001 Wiley-Liss, Inc.

  10. Human Body Burden and Dietary Methylmercury Intake: The Relationship in a Rice-Consuming Population.

    PubMed

    Li, Ping; Feng, Xinbin; Chan, Hing-Man; Zhang, Xiaofeng; Du, Buyun

    2015-08-18

    Rice can be the main route of methylmercury (MeHg) exposure for rice-consuming populations living in area where mercury (Hg) is mined. However, the current risk assessment paradigm for MeHg exposure is based on epidemiological data collected from fish-consuming populations. This study was designed to evaluate the relationship between dietary MeHg intake and human body burden in a rice -consuming population from the Wanshan Hg mining area in China. Hair MeHg concentrations averaged 2.07 ± 1.79 μg/g, and the average blood MeHg concentration across the study area ranged from 2.20 to 9.36 μg/L. MeHg constituted 52.8 ± 17.5% and 71.7 ± 18.2% of total Hg (THg) on average in blood and hair samples, respectively. Blood and hair MeHg concentrations, rather than THg, can be used as a proxy of human MeHg exposure. Hair MeHg levels showed no significant monthly variation; however, hair THg can be impacted by inorganic Hg exposure. The toxicokinetic model of MeHg exposure based on fish consumption underestimated the human hair MeHg levels, and this may be a consequence of the high hair-to-blood MeHg ratio (361 ± 105) in the studied rice-consuming population. The use of risk assessment models based on fish consumption may not be appropriate for inland mining areas where rice is the staple food.

  11. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    PubMed

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  12. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain.

    PubMed

    Karri, Venkatanaidu; Schuhmacher, Marta; Kumar, Vikas

    2016-12-01

    Human exposure to toxic heavy metals is a global challenge. Concurrent exposure of heavy metals, such as lead (Pb), cadmium (Cd), arsenic (As) and methylmercury (MeHg) are particularly important due to their long lasting effects on the brain. The exact toxicological mechanisms invoked by exposure to mixtures of the metals Pb, Cd, As and MeHg are still unclear, however they share many common pathways for causing cognitive dysfunction. The combination of metals may produce additive/synergetic effects due to their common binding affinity with NMDA receptor (Pb, As, MeHg), Na + - K + ATP-ase pump (Cd, MeHg), biological Ca +2 (Pb, Cd, MeHg), Glu neurotransmitter (Pb, MeHg), which can lead to imbalance between the pro-oxidant elements (ROS) and the antioxidants (reducing elements). In this process, ROS dominates the antioxidants factors such as GPx, GS, GSH, MT-III, Catalase, SOD, BDNF, and CERB, and finally leads to cognitive dysfunction. The present review illustrates an account of the current knowledge about the individual metal induced cognitive dysfunction mechanisms and analyse common Mode of Actions (MOAs) of quaternary metal mixture (Pb, Cd, As, MeHg). This review aims to help advancement in mixture toxicology and development of next generation predictive model (such as PBPK/PD) combining both kinetic and dynamic interactions of metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Patterns and Consequences of in ovo Exposure to Methylmercury in Common Loons, poster presentation

    EPA Science Inventory

    A critical component of a common loon/mercury (Hg) risk assessment model under development is the determination of the concentration of Hg in eggs that poses a population level risk. We conducted a field study to (1) characterize in ovo methylmercury (MeHg) exposure in Wisconsin...

  14. Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branco, Vasco, E-mail: vbranco@ipimar.pt; Marine Environment and Biodiversity Unit, National Institute for Biological Resources; Canario, Joao, E-mail: jcanario@ipimar.pt

    2011-03-01

    Mercury compounds were recently found to interact in vitro with the thioredoxin system, inhibiting both Thioredoxin (Trx) and Thioredoxin reductase (TrxR). In order to evaluate if Trx and TrxR are affected in vivo by methylmercury (MeHg), we exposed juvenile zebra-seabreams to different concentrations of this toxicant in water for 28 days followed by a 14-day depuration period. Methylmercury accumulated to a larger extent in the kidney and liver of fishes, but decreased significantly during the depuration. During the exposure, MeHg percentage in the liver reached levels above 90% of total mercury (HgT) decreasing to 60% of HgT by the endmore » of the depuration period. In the kidney, MeHg accounted for 50-70% of HgT. In the brain and muscle, mercury accumulated throughout the exposure with all mercury being MeHg. The total mercury kept increasing in these organs during the depuration period. However, in the brain, this increase in HgT was accompanied by a decrease in the MeHg percentage ({approx} 10%). In the liver, both Trx and TrxR activities were significantly reduced (TrxR - 40%; Trx - 70%) by the end of the exposure, but recovered to control levels (100%) during the depuration. In the brain, both enzymes where inhibited during the depuration period (TrxR - 75%; Trx - 70%) when some production of inorganic mercury was detected. Activity of glutathione reductase showed increased levels when TrxR activity was low, suggesting complementarity between both systems. These results indicate that in vivo the thioredoxin system is a toxicological target for MeHg with TrxR being particularly affected.« less

  15. Fetal methylmercury poisoning: new data on clinical and toxicological aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, D.O.; Myers, G.J.; Clarkson, T.W.

    1977-01-01

    Fetal methylmercury (MeHg) poisoning causing severe brain damage has been reported previously but dose-response data for critical levels of MeHg have been inadequate. Following the consumption of MeHg contaminated bread in Iraq, hair samples were obtained from women who had been pregnant during MeHg exposure and consecutive segments of hair were analyzed to provide peak hair mercury concentrations. When last examined the children were aged 4/sup 1///sub 2/ to 5 years. Only 4 of the 29 children had severe neurological signs but mild spastic diplegia was observed. Ten mothers had peak hair mercury concentrations between 112 and 384 parts permore » million (ppM). Their children had the following abnormalities (percentages in parentheses refer to findings in the children of 15 mothers with peak hair mercury levels less than 25 ppM); early motor retardation 50%; delayed speech 70% (7%); mental retardation 40%; convulsive disorder 30%; extensor plantar 55%; neurological signs other than plantars 40%; small head 40%; short stature 70%. MeHg induced fetal brain damage with maternal hair mercury concentrations as low as 112 to 384 ppM has not been reported previously and indicates the particular susceptibility of the fetal brain.« less

  16. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean

    PubMed Central

    Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-01-01

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production. PMID:25993348

  17. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.

    PubMed

    Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-20

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  18. Coupling of methylmercury uptake with respiration and water pumping in freshwater tilapia Oreochromis niloticus.

    PubMed

    Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong

    2011-09-01

    The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments. Copyright © 2011 SETAC.

  19. Diurnal trends in methylmercury concentration in a wetland adjacent to Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.L.; Cederberg, J.R.; Krabbenhoft, D.P.; Beisner, K.R.; Whitehead, J.; Gardberg, J.

    2011-01-01

    A 24-h field experiment was conducted during July 2008 at a wetland on the eastern shore of Great Salt Lake (GSL) to assess the diurnal cycling of methylmercury (MeHg). Dissolved (<0.45??m) MeHg showed a strong diurnal variation with consistently decreasing concentrations during daylight periods and increasing concentrations during non-daylight periods. The proportion of MeHg relative to total Hg in the water column consistently decreased with increasing sunlight duration, indicative of photodegradation. During the field experiment, measured MeHg photodegradation rates ranged from 0.02 to 0.06ngL-1h-1. Convective overturn of the water column driven by nighttime cooling of the water surface was hypothesized as the likely mechanism to replace the MeHg in the water column lost via photodegradation processes. A hydrodynamic model of the wetland successfully simulated convective overturn of the water column during the field experiment. Study results indicate that daytime monitoring of selected wetlands surrounding GSL may significantly underestimate the MeHg content in the water column. Wetland managers should consider practices that maximize the photodegradation of MeHg during daylight periods. ?? 2011.

  20. Impact of Beaver Pond Colonization History on Methylmercury Concentrations in Surface Water.

    PubMed

    Levanoni, Oded; Bishop, Kevin; Mckie, Brendan G; Hartman, Göran; Eklöf, Karin; Ecke, Frauke

    2015-11-03

    Elevated concentrations of methylmercury (MeHg) in freshwater ecosystems are of major environmental concern in large parts of the northern hemisphere. Beaver ponds have been identified as a potentially important source of MeHg. The role of beavers might be especially pronounced in large parts of Europe, where beaver populations have expanded rapidly following near-extirpation. This study evaluates the role of the age and colonization history (encompassing patterns of use and reuse) of ponds constructed by the Eurasian beaver Castor fiber in regulating MeHg concentrations in Swedish streams. In 12 beaver systems located in three regions, we quantified MeHg concentrations together with other relevant parameters on five occasions per year in 2012-2013. Five were pioneer systems, inundated for the first time since beaver extirpation, and seven were recolonized, with dams reconstructed by newly recolonizing beavers. MeHg concentrations in pioneer but not in recolonized beaver systems were up to 3.5 fold higher downstream than upstream of the ponds, and varied between seasons and years. Our results show that pioneer inundation by beavers can increase MeHg concentrations in streams, but that this effect is negligible when dams are reconstructed on previously used ponds. We therefore expect that the recovery and expansion of beavers in the boreal system will only have a transitional effect on MeHg in the environment.

  1. Sources of methylmercury to a wetland-dominated lake in northern Wisconsin.

    PubMed

    Watras, C J; Morrison, K A; Kent, A; Price, N; Regnell, O; Eckley, C; Hintelmann, H; Hubacher, T

    2005-07-01

    Several lines of evidence suggest that wetlands may be a major source of methylmercury (MeHg) to receiving waters, perhaps explaining the strong correlation between concentrations of waterborne MeHg and dissolved organic carbon (DOC) in regions such as northern Wisconsin. We evaluated the relative importance of wetland export in the MeHg budget of a wetland-dominated lake in northern Wisconsin using mass balance. Channelized runoff from a large headwater wetland was the major source of water and total mercury (HgT) to the lake during the study period. The wetland also exported MeHg in high concentrations (0.2-0.8 ng L(-1)), resulting in an export rate similar to those reported for other northern wetlands (ca. 0.3 microg MeHg m(-2) y(-1)). Yet, based on intensive sampling during 2002, the mass of MeHg that accumulated in the lake during summer was an order of magnitude greater than the export of MeHg from the wetland to the lake. Hence, a large in-lake source of MeHg is inferred from the mass balance. Most of the accumulated MeHg built-up in anoxic hypolimnetic waters; and the build-up was roughly balanced by losses of inorganic Hg (Hg(II)) implying a chemical transformation within the anoxic water column. An abundance of sulfate-reducing bacteria (SRB) in hypolimnetic waters, established by DNA analysis of the pelagic microbial community, along with a previous report documenting high methylation rates in the hypolimnion of this lake (ca. 10% d(-1)), suggest that this transformation was microbially mediated. These findings indicate that the direct effect of wetland runoff may be outweighed by indirect effects on the lacustrine MeHg cycle, enhancing the load of Hg(II), the activity of SRB, and the retention of MeHg, especially in northern lakes with flushing times longer than six months.

  2. In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments

    NASA Astrophysics Data System (ADS)

    Branfireun, Brian A.; Roulet, Nigel T.; Kelly, Carol. A.; Rudd, John W. M.

    1999-09-01

    Recent studies have found that "pristine" peatlands have high peat and pore water methylmercury (MeHg) concentrations and that peatlands may act as large sources of MeHg to the downstream aquatic system, depending upon the degree of hydrologie connectivity and catchment physiography. Sulphate-reducing bacteria have been implicated as principal methylators of inorganic mercury in many environments with previous research focused primarily on mercury methylation in aquatic sediments. Experiments in a poor fen in the Experimental Lakes Area, northwestern Ontario, Canada, demonstrated that the in situ addition of sulphate to peat and peat pore water resulted in a significant increase in pore water MeHg concentrations. As peatlands cover a large area of the Northern Hemisphere, this finding has potentially far ranging implications for the global mercury cycle, particularly in areas impacted by anthropogenically derived sulphate where the methylmercury fraction of total mercury species may be much larger than in nonimpacted environments.

  3. Methylmercury biomagnification in an Arctic pelagic food web.

    PubMed

    Ruus, Anders; Øverjordet, Ida B; Braaten, Hans Fredrik V; Evenset, Anita; Christensen, Guttorm; Heimstad, Eldbjørg S; Gabrielsen, Geir W; Borgå, Katrine

    2015-11-01

    Mercury (Hg) is a toxic element that enters the biosphere from natural and anthropogenic sources, and emitted gaseous Hg enters the Arctic from lower latitudes by long-range transport. In aquatic systems, anoxic conditions favor the bacterial transformation of inorganic Hg to methylmercury (MeHg), which has a greater potential for bioaccumulation than inorganic Hg and is the most toxic form of Hg. The main objective of the present study was to quantify the biomagnification of MeHg in a marine pelagic food web, comprising species of zooplankton, fish, and seabirds, from the Kongsfjorden system (Svalbard, Norway), by use of trophic magnification factors. As expected, tissue concentrations of MeHg increased with increasing trophic level in the food web, though at greater rates than observed in several earlier studies, especially at lower latitudes. There was strong correlation between MeHg and total Hg concentrations through the food web as a whole. The concentration of MeHg in kittiwake decreased from May to October, contributing to seasonal differences in trophic magnification factors. The ecology and physiology of the species comprising the food web in question may have a large influence on the magnitude of the biomagnification. A significant linear relationship was also observed between concentrations of selenium and total Hg in birds but not in zooplankton, suggesting the importance of selenium in Hg detoxification for individuals with high Hg concentrations. © 2015 SETAC.

  4. Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments.

    PubMed

    Gilmour, Cynthia C; Riedel, Georgia S; Riedel, Gerhardt; Kwon, Seokjoon; Landis, Richard; Brown, Steven S; Menzie, Charles A; Ghosh, Upal

    2013-11-19

    There are few available in situ remediation options for Hg contaminated sediments, short of capping. Here we present the first tests of activated carbon and other sorbents as potential in situ amendments for remediation of mercury and methylmercury (MeHg), using a study design that combined 2 L sediment/water microcosms with 14 day bioaccumulation assays. Our key end points were pore water concentrations, and bioaccumulation of total Hg and MeHg by a deposit-feeding oligochaete Lumbriculus variegatus. Four amendments were tested: an activated carbon (AC); CETCO Organoclay MRM (MRM); Thiol-SAMMS (TS), a thiol-functionalized mesoporous silica; and AMBERSEP GT74, an ion-exchange resin. Amendments were tested in four separate microcosm assays using Hg-contaminated sediments from two freshwater and two estuarine sites. AC and TS amendments, added at 2-7% of the dry weight of sediments significantly reduced both MeHg concentrations in pore waters, relative to unamended controls (by 45-95%) and bioaccumulation of MeHg by Lumbriculus (by between 30 and 90%). Both amendments had only small impacts on microcosm surface water, sediment and pore water chemistry, with the exception of significant reductions in pore water dissolved organic matter. The effectiveness of amendments in reducing bioaccumulation was well-correlated with their effectiveness in increasing sediment:water partitioning, especially of MeHg. Sediments with low native sediment:water MeHg partition coefficients were most effectively treated. Thus, in situ sediment sorbent amendments may be able to reduce the risk of biotic Hg and MeHg uptake in contaminated sediments, and subsequent contamination of food webs.

  5. Delayed neurochemical effects of prenatal exposure to MeHg in the cerebellum of developing rats.

    PubMed

    Heimfarth, Luana; Delgado, Jeferson; Mingori, Moara Rodrigues; Moresco, Karla Suzana; Pureur, Regina Pessoa; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2018-03-01

    Human fetuses and neonates are particularly vulnerable to methylmercury (MeHg)-induced brain damage and are sensitive even to low exposure levels. Previous work of our group evidence that prenatal exposure to MeHg causes cognitive and behavioral alterations and disrupt hippocampus signaling. The current study aimed to investigate the effect of gestational exposure of rats to MeHg at low doses (1 or 2 mg/kg) on parameters of redox imbalance and key signaling pathways in the cerebellum of their offspring. Pregnant females received MeHg (treated group) or 0.9% saline water (control group) by gavage in alternated days from gestational day 5 (GD5) until parturition and analyzes were proceed in the cerebellum of 30-day-old pups. We found increased lipid peroxidation and protein carbonylation levels as well as decreased SH content in pups prenatally exposed to 2 mg/kg MeHg. In addition, misregulated SOD/catalase activities supported imbalanced redox equilibrium. We found decreased GSK3β(Ser9) phosphorylation, suggesting activation of this enzyme and dephosphorylation/inhibition of ERK1/2 and JNK pathways. Increased PKAα catalytic subunit could be upstream of hyperphosphorylated c-Raf(Ser259) and downregulated MAPK pathway. In addition, we found raised levels of the Ca 2+ -dependent protein phosphatase 2 B (PP2B). We also found preserved immunohistochemical staining for both glial fibrillary acidic protein (GFAP) and NeuN in MeHg-exposed pups. Western blot analysis showed unaltered levels of BAX/BCL-XL, BAD/BCL-2 and active caspase 3. Together, these findings support absence of reactive astrocytes, neuronal damage and apoptotic cell death in the cerebellum of MeHg treated pups. The present study provides evidence that prenatal exposure to MeHg leads to later redox imbalance and disrupted signaling mechanisms in the cerebellum of 30-day-old pups potentially predisposing them to long-lasting neurological impairments in CNS. Copyright © 2017 Elsevier B.V. All rights

  6. Benthic and Pelagic Pathways of Methylmercury Bioaccumulation in Estuarine Food Webs of the Northeast United States

    PubMed Central

    Chen, Celia Y.; Borsuk, Mark E.; Bugge, Deenie M.; Hollweg, Terill; Balcom, Prentiss H.; Ward, Darren M.; Williams, Jason; Mason, Robert P.

    2014-01-01

    Methylmercury (MeHg) is a contaminant of global concern that bioaccumulates and bioamagnifies in marine food webs. Lower trophic level fauna are important conduits of MeHg from sediment and water to estuarine and coastal fish harvested for human consumption. However, the sources and pathways of MeHg to these coastal fisheries are poorly known particularly the potential for transfer of MeHg from the sediment to biotic compartments. Across a broad gradient of human land impacts, we analyzed MeHg concentrations in food webs at ten estuarine sites in the Northeast US (from the Hackensack Meadowlands, NJ to the Gulf of Maine). MeHg concentrations in water column particulate material, but not in sediments, were predictive of MeHg concentrations in fish (killifish and Atlantic silversides). Moreover, MeHg concentrations were higher in pelagic fauna than in benthic-feeding fauna suggesting that MeHg delivery to the water column from methylation sites from within or outside of the estuary may be an important driver of MeHg bioaccumulation in estuarine pelagic food webs. In contrast, bulk sediment MeHg concentrations were only predictive of concentrations of MeHg in the infaunal worms. Our results across a broad gradient of sites demonstrate that the pathways of MeHg to lower trophic level estuarine organisms are distinctly different between benthic deposit feeders and forage fish. Thus, even in systems with contaminated sediments, transfer of MeHg into estuarine food webs maybe driven more by the efficiency of processes that determine MeHg input and bioavailability in the water column. PMID:24558491

  7. Modulation of methylmercury uptake by methionine: Prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, Daniel Henrique; Puntel, Robson Luiz; Farina, Marcelo

    2011-04-01

    Methylmercury (MeHg) is an ubiquitous environmental pollutant which is transported into the mammalian cells when present as the methylmercury-cysteine conjugate (MeHg-Cys). With special emphasis on hepatic cells, due to their particular propensity to accumulate an appreciable amount of Hg after exposure to MeHg, this study was performed to evaluate the effects of methionine (Met) on Hg uptake, reactive species (RS) formation, oxygen consumption and mitochondrial function/cellular viability in both liver slices and mitochondria isolated from these slices, after exposure to MeHg or the MeHg-Cys complex. The liver slices were pre-treated with Met (250 {mu}M) 15 min before being exposed tomore » MeHg (25 {mu}M) or MeHg-Cys (25 {mu}M each) for 30 min at 37 {sup o}C. The treatment with MeHg caused a significant increase in the Hg concentration in both liver slices and mitochondria isolated from liver slices. Moreover, the Hg uptake was higher in the group exposed to the MeHg-Cys complex. In the DCF (dichlorofluorescein) assay, the exposure to MeHg and MeHg-Cys produced a significant increase in DFC reactive species (DFC-RS) formation only in the mitochondria isolated from liver slices. As observed with Hg uptake, DFC-RS levels were significantly higher in the mitochondria treated with the MeHg-Cys complex compared to MeHg alone. MeHg exposure also caused a marked decrease in the oxygen consumption of liver slices when compared to the control group, and this effect was more pronounced in the liver slices treated with the MeHg-Cys complex. Similarly, the loss of mitochondrial activity/cell viability was greater in liver slices exposed to the MeHg-Cys complex when compared to slices treated only with MeHg. In all studied parameters, Met pre-treatment was effective in preventing the MeHg- and/or MeHg-Cys-induced toxicity in both liver slices and mitochondria. Part of the protection afforded by Met against MeHg may be related to a direct interaction with MeHg or to the

  8. Accumulation of methylmercury in rice and flooded soil in experiments with an enriched isotopic Hg(II) tracer

    NASA Astrophysics Data System (ADS)

    Strickman, R. J.; Mitchell, C. P. J.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxin produced in anoxic aquatic sediments. Numerous factors, including the presence of aquatic plants, alter the biogeochemistry of sediments, affecting the rate at which microorganisms transform bioavailable inorganic Hg (IHg) to MeHg. Methylmercury produced in flooded paddy soils and its transfer into rice has become an important dietary consideration. An improved understanding of how MeHg reaches the grain and the extent to which rice alters MeHg production in rhizosphere sediments could help to inform rice cultivation practices. We conducted a controlled greenhouse experiment with thirty rice plants grown in individual, flooded pots amended with enriched 200Hg. Unvegetated controls were maintained under identical conditions. At three plant growth stages (vegetative growth, flowering, and grain maturity), ten plants were sacrificed and samples collected from soil, roots, straw, panicle, and grain of vegetated and unvegetated pots, and assessed for MeHg and THg concentrations. We observed consistent ratios between ambient and tracer MeHg between soils (0.36 ±0.04 — 0.44 ± 0.09) and plant compartments (0.23 ± 0.07 -0.34 ± 0.05) indicating that plant MeHg contamination originates in the soil rather than in planta methylation. The majority of this MeHg was absorbed between the tillering (4.48 ± 2.38 ng/plant) and flowering (8.43 ± 5.12 ng/pl) phases, with a subsequent decline at maturity (2.87 ± 1.23 ng/pl) only partly explained by translocation to the developing grain, indicating that MeHg was demethylated in planta. In contrast, IHg was absorbed from both soil and air, as evidenced by the higher ambient IHg concentrations compared to tracer (3.76 ± 1.19 vs. 0.27 ± 0.40 ng/g). Surprisingly, MeHg accumulation was significantly (p= 0.042-- 0.003) lower in vegetated vs. unvegetated sediments at flowering (1.41 ± 0.26 vs. 1.57 ± 0.23) and maturity (1.27 ± 0.22 vs. 1.71 ± 0.25), suggesting that plant exudates bound Hg

  9. Influence of intensive fishing on the partitioning of mercury and methylmercury in three lakes of Northern Québec.

    PubMed

    Surette, Céline; Lucotte, Marc; Tremblay, A

    2006-09-01

    It has been demonstrated that intensive fishing, i.e., removing more than 25% of the fish biomass, can reduce mercury levels in predator fish in a lake. We test here the hypothesis that, by removing an important part of the fish biomass from a lake, a significant amount of methylmercury can be eliminated, therefore reducing the mercury available to the remaining biota, at least in the short term. A mass burden approach is used to evaluate the partitioning of total mercury and methylmercury in natural lake ecosystems. Three small natural lakes from the James Bay territory, in northern Québec, Canada, were selected for intensive fishing. Mercury (Hg) and methylmercury (MeHg) concentrations were evaluated for sediments, water column (dissolved fraction and suspended particulate matter), plankton, aquatic invertebrates, and fish. Biomasses were determined for fish, plankton, and aquatic invertebrates. Two case scenarios are presented using different mercury contributions from the sediment component (1 cm depth, and no sediment). Our results for the scenario including the sediment contribution show that lake sediments represent over 98% of the total mercury while the biotic components represent less than 0.1% of the same burden. For methylmercury, fish account for up to 5% of the burden, while sediments make up 84.6% to 93.1%. If we put aside the sediment contribution, the methylmercury in fish partitioning can represent up to 48%. As for invertebrates, they can account for up to 48% of the total MeHg burden. We do not observe any change in the partitionings or the quantities of Hg and MeHg before and after fishing in either of the two case scenarios even when we do not take into account dynamics of the ecosystems. This will be all the more the case when the dynamics of the system are included in the analyses. Therefore, biological parameters such as growth rates or fish diet must be considered.

  10. Recent Advances in Understanding the Sources of Methylmercury to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Mason, R. P.; Balcom, P.; Chen, C.; Gosnell, K. J.; Jonsson, S.; Mazrui, N.; Ortiz, V.; Seelen, E.; Schartup, A. T.; Sunderland, E. M.

    2015-12-01

    Understanding the sources of methylmercury (MeHg) to the food chain in coastal waters is important given the related health concerns from consumption of seafood containing elevated MeHg. While water column dissolved or particulate MeHg is the best predictor of bioaccumulation into pelagic organisms in coastal waters, there is debate concerning the dominant sources of MeHg to the water column, and how the relative importance of these sources vary with ecosystem characteristics. Potential sources include both external inputs from the watershed and offshore waters and internal sources (net methylation in sediments and the associated flux of MeHg to the water column and/or net MeHg production in the water column). We will report the results from our various studies in estuarine and coastal waters which have examined the distribution and partitioning of sediment and water column MeHg, and its formation and degradation, across a geographic range from Labrador, Canada to the Chesapeake Bay, USA. The ecosystems studied vary from shallow estuarine bays to deeper systems, and from salt wedge to tidally-dynamic systems. Additionally, both pristine and contaminated environments were examined. The studies examined the factors controlling the net production of MeHg in sediments, and in our more recent work, the potential formation of MeHg in the oxic water column of coastal waters. Sediment measurements (core and grab samples) included both solid phase and porewater MeHg and total mercury (HgT) and important ancillary parameters. Water column parameters included dissolved and particulate MeHg and HgT, TSS, nutrients, and DOC. Stable Hg isotope tracer incubations were used to assess the degree of methylation and demethylation in sediments and surface waters. Average suspended particle MeHg ranged from <5 to 120 pmol/g, and was 1-8% of HgT across sites. Mass balance estimates provide insights into the importance of external MeHg sources to coastal waters. We will use the

  11. A Unified Model for Methylmercury Formation and Bioaccumulation in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schartup, A. T.; Soerensen, A.; Dutkiewicz, S.; Sunderland, E. M.

    2017-12-01

    Marine fish consumption is the main exposure pathway for methylmercury (MeHg), a neurotoxin, in many countries. The Hg in the ocean is mainly from atmospheric deposition in inorganic forms. How the deposited Hg is methylated and accumulated in biota remain an open question. We develop a 3D model (MITgcm) for MeHg formation and bioaccumulation in the global ocean and evaluate the driving factors. The model is based on a previous published inorganic Hg model and is coupled with the bioaccumulation model for marine methylmercury (BAM3) with ocean biogeochemistry from DARWIN model. We develop a unified scheme that scales methylation by microbe activity and assumes demethylation a function of short wave radiation and temperature. The model result agrees well with currently available observations at the 0-100 m (mod.: 43±52 fM vs obs.: 69±67 fM, 1 fM = 10-15 mol/L), 500 m (360±280 fM vs 340±260 fM), and 1000 m depth (260±170 fM vs 290±210 fM). In the surface ocean, we find the MeHg concentrations are a function of latitude, resulting from photodemethylation. The model reproduces the high concentrations observed over the sub-thermocline of Pacific Subarctic Gyre, which is associated with active microbe activity. On the other hand, both the model and observations suggest low concentrations over oligotrophic regions such as Indian Ocean Gyre. In the tropical oceans, the model predicts the highest MeHg concentrations, consistent with observation, and it is caused by the overlapping high atmospheric deposition and active microbe activities. The model captures the high concentrations in the subsurface of the Arctic and Southern Ocean where low temperature slows down abiotic demethylation. The modeled global average MeHg concentration in phytoplankton is 2.0 ng/g (by wet weight), within the same range of observations. High concentrations are modeled over tropical and high-latitude regions due to the dominance of small sized prochlorococcus and high seawater concentrations

  12. Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos.

    PubMed

    Duan, Junchao; Hu, Hejing; Li, Qiuling; Jiang, Lizhen; Zou, Yang; Wang, Yapei; Sun, Zhiwei

    2016-06-01

    This study was to investigate the combined toxicity of silica nanoparticles (SiNPs) and methylmercury (MeHg) on cardiovascular system in zebrafish (Danio rerio) embryos. Ultraviolet absorption analysis showed that the co-exposure system had high absorption and stability. The dosages used in this study were based on the NOAEL level. Zebrafish embryos exposed to the co-exposure of SiNPs and MeHg did not show any cardiovascular malformation or atrioventricular block, but had an inhibition effect on bradycardia. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased gradually in SiNPs, MeHg, co-exposure groups, respectively. Co-exposure of SiNPs and MeHg enhanced the vascular endothelial damage in Tg(fli-1:EGFP) transgenic zebrafish line. Moreover, the co-exposure significantly activated the oxidative stress and inflammatory response in neutrophils-specific Tg(mpo:GFP) transgenic zebrafish line. This study suggested that the combined toxic effects of SiNPs and MeHg on cardiovascular system had more severe toxicity than the single exposure alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Methylmercury Exposure Induces Sexual Dysfunction in Male and Female Drosophila Melanogaster.

    PubMed

    Chauhan, Ved; Srikumar, Syian; Aamer, Sarah; Pandareesh, Mirazkar D; Chauhan, Abha

    2017-09-24

    Mercury, an environmental health hazard, is a neurotoxic heavy metal. In this study, the effect of methylmercury (MeHg) exposure was analyzed on sexual behavior in Drosophila melanogaster (fruit fly), because neurons play a vital role in sexual functions. The virgin male and female flies were fed a diet mixed with different concentrations of MeHg (28.25, 56.5, 113, 226, and 339 µM) for four days, and the effect of MeHg on copulation of these flies was studied. While male and female control flies (no MeHg) and flies fed with lower concentrations of MeHg (28.25, 56.5 µM) copulated in a normal manner, male and female flies exposed to higher concentrations of MeHg (113, 226, and 339 µM) did not copulate. When male flies exposed to higher concentrations of MeHg were allowed to copulate with control female flies, only male flies fed with 113 µM MeHg were able to copulate. On the other hand, when female flies exposed to higher concentrations of MeHg were allowed to copulate with control male flies, none of the flies could copulate. After introduction of male and female flies in the copulation chamber, duration of wing flapping by male flies decreased in a MeHg-concentration-dependent manner from 101 ± 24 seconds (control) to 100.7 ± 18, 96 ±12, 59 ± 44, 31 ± 15, and 3.7 ± 2.7 seconds at 28.25, 56.5, 113, 226, and 339 µM MeHg, respectively. On the other hand, grooming in male and female flies increased in a MeHg-concentration-dependent manner. These findings suggest that MeHg exposure causes sexual dysfunction in male and female Drosophila melanogaster . Further studies showed that MeHg exposure increased oxidative stress and decreased triglyceride levels in a concentration-dependent manner in both male and female flies, suggesting that MeHg-induced oxidative stress and decreased triglyceride levels may partly contribute to sexual dysfunction in fruit flies.

  14. Occurrence and photodegradation of methylmercury in surface water of Wen-Rui-Tang River network, Wenzhou, China.

    PubMed

    Pan, Shuihong; Feng, Chuchu; Lin, Jialu; Cheng, Lidong; Wang, Chengjun; Zuo, Yuegang

    2017-04-01

    The spatial distribution and seasonal variations of methylmercury (MeHg) in Wen-Rui-Tang (WRT) River network were investigated by monitoring the MeHg concentrations in surface water samples collected from 30 sites across the river network over four seasons. Detection frequencies and concentrations of MeHg were generally higher in January, indicating that low sunlight irradiation, wind speed, and temperature conditions might enhance the persistence of MeHg in surface water. The MeHg levels varied with sampling locations, with the highest concentrations being observed in the industrial area especially around wastewater outfall, revealing that the mercury contamination in WRT River mainly comes from the industrial wastewater. Photodegradation of MeHg in WRT River surface water and the effects of natural constituents such as fulvic acid (FA), ferric ions (Fe 3+ ), nitrate (NO 3 - ), and dissolved oxygen on the MeHg photodegradation in aqueous solutions were studied under the simulated sunlight. The experimental data indicated that the indirect photodecomposition of MeHg occurred in WRT River surface water. Photodegradation of MeHg in FA solution was initiated by triplet 3 FA* or MeHg-FA* via electron transfer interaction under light irradiations. The Fe 3+ and NO 3 - can absorb light energy to produce ·OH and enhance the photochemical degradation of MeHg. The MeHg photodecompositions in FA, nitrate, and Fe 3+ solutions were markedly accelerated after removing the dissolved oxygen.

  15. Photodemethylation of Methylmercury in Eastern Canadian Arctic Thaw Pond and Lake Ecosystems.

    PubMed

    Girard, Catherine; Leclerc, Maxime; Amyot, Marc

    2016-04-05

    Permafrost thaw ponds of the warming Eastern Canadian Arctic are major landscape constituents and often display high levels of methylmercury (MeHg). We examined photodegradation potentials in high-dissolved organic matter (DOC) thaw ponds on Bylot Island (BYL) and a low-DOC oligotrophic lake on Cornwallis Island (Char Lake). In BYL, the ambient MeHg photodemethylation (PD) rate over 48 h of solar exposure was 6.1 × 10(-3) m(2) E(-1), and the rate in MeHg amended samples was 9.3 × 10(-3) m(2) E(-1). In contrast, in low-DOC Char Lake, PD was only observed in the first 12 h, which suggests that PD may not be an important loss process in polar desert lakes. Thioglycolic acid addition slowed PD, while glutathione and chlorides did not impact northern PD rates. During an ecosystem-wide experiment conducted in a covered BYL pond, there was neither net MeHg increase in the dark nor loss attributable to PD following re-exposure to sunlight. We propose that high-DOC Arctic thaw ponds are more prone to MeHg PD than nearby oligotrophic lakes, likely through photoproduction of reactive species rather than via thiol complexation. However, at the ecosystem level, these ponds, which are widespread through the Arctic, remain likely sources of MeHg for neighboring systems.

  16. Identification of sources and bioaccumulation pathways of MeHg in subantarctic penguins: a stable isotopic investigation.

    PubMed

    Renedo, Marina; Amouroux, David; Pedrero, Zoyne; Bustamante, Paco; Cherel, Yves

    2018-06-11

    Seabirds are widely used as bioindicators of mercury (Hg) contamination in marine ecosystems and the investigation of their foraging strategies is of key importance to better understand methylmercury (MeHg) exposure pathways and environmental sources within the different ecosystems. Here we report stable isotopic composition for both Hg mass-dependent (e.g. δ 202 Hg) and mass-independent (e.g. Δ 199 Hg) fractionation (proxies of Hg sources and transformations), carbon (δ 13 C, proxy of foraging habitat) and nitrogen (δ 15 N, proxy of trophic position) in blood of four species of sympatric penguins breeding at the subantarctic Crozet Islands (Southern Indian Ocean). Penguins have species-specific foraging strategies, from coastal to oceanic waters and from benthic to pelagic dives, and feed on different prey. A progressive increase to heavier Hg isotopic composition (δ 202 Hg and Δ 199 Hg, respectively) was observed from benthic (1.45 ± 0.12 and 1.41 ± 0.06‰) to epipelagic (1.93 ± 0.18 and 1.77 ± 0.13‰) penguins, indicating a benthic-pelagic gradient of MeHg sources close to Crozet Islands. The relative variations of MeHg concentration, δ 202 Hg and Δ 199 Hg with pelagic penguins feeding in Polar Front circumpolar waters (1.66 ± 0.11 and 1.54 ± 0.06‰) support that different MeHg sources occur at large scales in Southern Ocean deep waters.

  17. Widespread neuronal degeneration in rats following oral administration of methylmercury during the postnatal developing phase: a model of fetal-type minamata disease.

    PubMed

    Sakamoto, M; Wakabayashi, K; Kakita, A; Hitoshi Takahashi; Adachi, T; Nakano, A

    1998-02-16

    The neurotoxicity of methylmercury (MeHg) treatment during the postnatal developing phase in rats was studied. Rats on postnatal day 1 were orally administered 5 mg/kg/day methylmercury chloride (MMC) for more than 30 consecutive days. Body weight loss began 26 days after MMC was administered, and severe paralysis of the hind-limbs and unsteadiness appeared subsequently. Histopathologically, the widespread neuronal degeneration was observed in the cerebral neocortex, neostriatum, red nucleus, brainstem, cerebellum and spinal dorsal root ganglia on day 32. The widespread distribution of the lesions was quite similar to that in fetal cases of MeHg intoxication in Minamata, Japan. These findings suggest that MMC treatment during the postnatal development phase in rats produce a good model of fetal-type Minamata disease. Copyright 1998 Elsevier Science B.V.

  18. Economic evaluation of health consequences of prenatal methylmercury exposure in France

    PubMed Central

    2012-01-01

    Background Evidence of a dose–response relationship between prenatal exposure to methylmercury (MeHg) and neurodevelopmental consequences in terms of IQ reduction, makes it possible to evaluate the economic consequences of MeHg exposures. Objective To perform an economic evaluation of annual national benefits of reduction of the prenatal MeHg exposure in France. Methods We used data on hair-Hg concentrations in French women of childbearing age (18–45 years) from a national sample of 126 women and from two studies conducted in coastal regions (n = 161and n = 503). A linear dose response function with a slope of 0.465 IQ point reduction per μg/g increase in hair-Hg concentration was used, along with a log transformation of the exposure scale, where a doubling of exposure was associated with a loss of 1.5 IQ points. The costs calculations utilized an updated estimate of €2008 17,363 per IQ point decrement, with three hypothetical exposure cut-off points (hair-Hg of 0.58, 1.0, and 2.5 μg/g). Results Because of higher exposure levels of women in coastal communities, the annual economic impacts based on these data were greater than those using the national data, i.e. € 1.62 billion (national), and € 3.02 billion and € 2.51 billion (regional), respectively, with the linear model, and € 5.46 billion (national), and € 9.13 billion and € 8.17 billion (regional), with the log model, for exposures above 0.58 μg/g. Conclusions These results emphasize that efforts to reduce MeHg exposures would have high social benefits by preventing the serious and lifelong consequences of neurodevelopmental deficits in children. PMID:22883022

  19. The effects of experimental reservoir creation on the bioaccumulation of methylmercury and reproductive success of tree swallows (Tachycineta bicolor).

    PubMed

    Gerrard, P M; St Louis, V L

    2001-04-01

    Reservoir creation results in decomposition of flooded organic matter and increased rates of mercury methylation. Methylmercury (MeHg), the most toxic form of mercury, bioaccumulates through aquatic food webs. Our objective was to quantify the transfer of MeHg from aquatic food webs into terrestrial organisms. We examined rates of MeHg bioaccumulation in an insectivorous songbird, the tree swallow, breeding near an experimentally created reservoir. We also determined the impact of flooding and MeHg bioaccumulation on the reproductive success of these birds. Mean MeHg burdens in nestling swallows from near the experimental reservoir increased from 1,210 +/- 150 ng before flooding to 2,200 +/- 102 ng after flooding. Postflood MeHg concentrations in both the body and feathers of the birds were significantly greater than preflood MeHg concentrations. Although MeHg burdens in swallows were elevated in postflood years, we found no overt toxicological affects. An increase in dipteran productivity (the primary food source of tree swallows) after reservoir creation resulted in earlier nest initiation, larger eggs, and faster growth rates of wing and bill length in nestlings raised during postflood years.

  20. Effect of Bacopa monniera extract on methylmercury-induced behavioral and histopathological changes in rats.

    PubMed

    Christinal, Johnson; Sumathi, Thangarajan

    2013-10-01

    Methylmercury (MeHg) is a well-recognized environmental contaminant with established health risk to human beings by fish and marine mammal consumption. Bacopa monniera (BM) is a perennial herb and is used as a nerve tonic in Ayurveda, a traditional medicine system in India. This study was aimed to evaluate the effect of B. monniera extract (BME) on MeHg-induced toxicity in rat cerebellum. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with BME (40 mg/kg, orally) 1 h prior to the administration of MeHg for 21 days. After treatment period, MeHg exposure significantly decreases the body weight and also caused the following behavioral changes. Decrease tail flick response, longer immobility time, significant decrease in motor activity, and spatial short-term memory. BME pretreatment reverted the behavioral changes to normal. MeHg exposure decreases the DNA and RNA content in cerebellum and also caused some pathological changes in cerebellum. Pretreatment with BME restored all the changes to near normal. These findings suggest that BME has a potent efficacy to alleviate MeHg-induced toxicity in rat cerebellum.

  1. Pathways of Methylmercury Transfer to the Water Column Across Multiple Estuaries

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.; Balcom, P. H.; Mason, R. P.; Chen, C.

    2014-12-01

    Estuarine water column methylmercury (MeHg) is an important driver of bioaccumulation in pelagic organisms so it is important to understand the sources and cycling of MeHg. As MeHg biomagnifies in food webs, increased water column concentrations can be transferred to fish consumed by humans. Few studies have taken a multi-estuary approach to look at MeHg cycling in the water column of these important MeHg producing areas. We examined the distributions and partitioning of sediment and water column MeHg across a geographic range of estuaries. In 2008 we sampled 10 shallow-water estuarine sites from Maine to New Jersey, sampled 11 sites in 4 estuaries in 2009, and sampled at 3 estuarine turbidity maximum (ETM) sites in 1 estuary in 2012. Sediment measurements included both solid phase and pore water MeHg and total mercury (HgT). Water column parameters included dissolved and particulate MeHg and HgT, total suspended solids, nutrients, and dissolved organic carbon. Average suspended particle MeHg was highest at Wells (ME; 6 to 11.5 pmol/g; 4.5 to 7% of HgT) and lowest at Portsmouth (NH) and in Long Island Sound (CT-NY; 0.2 to 5.5 pmol/g; 0.25 to 3.75% of HgT). Average water column dissolved MeHg was highest in the Delaware River ETM (0.5 to 0.7 pM; 16 to 24% of HgT) and lowest at Portsmouth (0.06 to 0.12 pM; 1 to 2% of HgT). Significant positive correlations were found between MeHg and HgT across multiple estuaries in both sediment and the water column in 2008 and 2009. In contrast, water column dissolved and suspended particle MeHg do not correlate well with sediment MeHg or HgT, pore water MeHg or methylation rates in sediment across estuaries, indicating that sediment is often not a good predictor of water MeHg levels. However, ratios of average dissolved:pore water MeHg and suspended particle:sediment MeHg are close to 1 in the Delaware River ETM, suggesting that sediment supplies MeHg to the water column in this turbulent region, but average pore water MeHg was

  2. Methylmercury level in umbilical cords from patients with congenital Minamata disease.

    PubMed

    Harada, M; Akagi, H; Tsuda, T; Kizaki, T; Ohno, H

    1999-08-30

    A total of 151 umbilical cords during the period from 1950 to 1969 were collected from the residents of the Minamata area (including 25 patients with congenital Minamata disease) for methylmercury (MeHg) analysis. When the MeHg discharge from the Chisso Company's Minamata factory into the Minamata Bay is compared with the incidence of congenital Minamata disease, the abrupt increase of the former in 1952 [Nishimura H. Chem. Today 1998;323:60-66] was found to precede that of the latter by approximately 2 years, thereby indicating that MeHg is the cause of the disaster. This was confirmed by the elevated levels of MeHg in the umbilical cords from residents of the Minamata area [from 0.35 +/- 0.30 (S.D.) ppm in 1952 to 0.96 +/- 0.75 ppm in 1955], the MeHg levels (1.60 +/- 1.00 ppm) in the cords from patients with congenital Minamata disease showing the highest values [P < 0.01 vs. acquired Minamata disease (0.72 +/- 0.65 ppm), mental retardation (0.74 +/- 0.64 ppm), other diseases (0.22 +/- 0.15 ppm), and no symptoms (0.28 +/- 0.20 ppm), respectively]. Thus, in order to fill a gap, which extends over a long period of time, in studies on environmental Hg pollution, umbilical cord samples were considered to be a useful tool.

  3. Future Impacts of Hydroelectric Power Development on Methylmercury Exposures of Canadian Indigenous Communities.

    PubMed

    Calder, Ryan S D; Schartup, Amina T; Li, Miling; Valberg, Amelia P; Balcom, Prentiss H; Sunderland, Elsie M

    2016-12-06

    Developing Canadian hydroelectric resources is a key component of North American plans for meeting future energy demands. Microbial production of the bioaccumulative neurotoxin methylmercury (MeHg) is stimulated in newly flooded soils by degradation of labile organic carbon and associated changes in geochemical conditions. We find all 22 Canadian hydroelectric facilities being considered for near-term development are located within 100 km of indigenous communities. For a facility in Labrador, Canada (Muskrat Falls) with planned completion in 2017, we probabilistically modeled peak MeHg enrichment relative to measured baseline conditions in the river to be impounded, downstream estuary, locally harvested fish, birds and seals, and three Inuit communities. Results show a projected 10-fold increase in riverine MeHg levels and a 2.6-fold increase in estuarine surface waters. MeHg concentrations in locally caught species increase 1.3 to 10-fold depending on time spent foraging in different environments. Mean Inuit MeHg exposure is forecasted to double following flooding and over half of the women of childbearing age and young children in the most northern community are projected to exceed the U.S. EPA's reference dose. Equal or greater aqueous MeHg concentrations relative to Muskrat Falls are forecasted for 11 sites across Canada, suggesting the need for mitigation measures prior to flooding.

  4. Influence of Reservoir Water Level Fluctuations on Sediment Methylmercury Concentrations Downstream of the Historical Black Butte Mercury Mine, OR

    EPA Science Inventory

    Mercury (Hg) is a pollutant of global concern due to its ability to accumulate as methylmercury (MeHg) in biota. Mercury is methylated by anaerobic microorganisms such as sulfate reducing bacteria (SRB) in water and sediment. Throughout North America, reservoirs tend to have e...

  5. Portuguese preschool children: Benefit (EPA+DHA and Se) and risk (MeHg) assessment through the consumption of selected fish species.

    PubMed

    Cardoso, C; Bernardo, I; Bandarra, N M; Louro Martins, L; Afonso, C

    2018-05-01

    This study aimed to assess the risk-benefit balance associated to fish consumption by Portuguese preschool children. For this purpose, databases (from IPMA and literature) were mined and mathematically processed by a model based on the Extreme Value Theory assuming consumption scenarios. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) and selenium (Se) and methylmercury (MeHg) were selected as critical components of fish, given their health impact and significant contents in some fish species. Assessment also took into account that Se may protect against MeHg toxicity. With exception of blue shark, Se Health Benefit Value (Se-HBV), was always positive (ranging between 3.3 and 14.9) and Se:MeHg ratio was always higher than one (3.8 to 32.3). It was also estimated that the deleterious effects of MeHg on children IQ were offset by the beneficial impact of EPA+DHA in fish except for grilled black scabbardfish consumed every day. Blue shark, regardless of the culinary treatment, yielded very high probabilities of exceeding MeHg TWI (higher than 84 % with a single weekly meal), thus raising serious concerns. EPA+DHA benefits were high in salmon regardless of culinary treatment (> 84 %). Fish consumption by children is advisable with exception of blue shark and boiled and grilled tuna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    Some species of freshwater fish in the Canadian high Arctic contain levels of methylmercury (MeHg) that pose health risks to the northern Inuit peoples that harvest these species as a traditional food source. In temperate regions, wetlands are known natural sites of MeHg production and hence significant MeHg sources to downstream ecosystems. However, the importance of wetlands to Hg methylation in the Arctic is unclear and the sources of MeHg to arctic freshwater ecosystems are still largely unidentified. Our research is demonstrating that some shallow and warm wetland ponds on the Arctic landscape contain high MeHg concentrations compared to nearby deep and cold lakes. We used a mass-balance approach to measure the net in-pond production of MeHg in two warm wetland ponds (Ponds 1 and 2) near Lake Hazen, Ellesmere Island, Nunavut (81° N latitude). We quantified external inputs and outputs of MeHg to and from the ponds, as well as the accumulation of MeHg in the water column during the summers of 2005 and 2008. Any changes in water column MeHg concentrations that could not be accounted for by external inputs or sinks were attributed to in-pond production. The principal external input and sink of MeHg was, respectively, wet atmospheric deposition and water-column MeHg photodemethylation. For 2005, we estimate that the net flux of MeHg from sediments into the water column was 0.015 μg m-2 d-1 in Pond 1 and 0.0016 μg m-2 d-1 in Pond 2. Compared to sediment-water MeHg fluxes measured in Alaskan tundra lakes (0.0015-0.0045 μg m-2 d-1), Pond 1 sediments are a greater source of MeHg while Pond 2 is similar to the Alaskan lakes. Furthermore, the accumulation of MeHg in the water column of Pond 1 (0.0061 μg m-2 d-1) was similar to the net yield of MeHg from temperate boreal wetlands (0.0005-0.006 μg m-2 d-1), demonstrating that these Arctic wetlands are important sites of MeHg production. In addition, we used mercury stable-isotope tracers to quantify methylation and

  7. Influence of food, aquatic humus, and alkalinity on methylmercury uptake by Daphnia magna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monson, B.A.; Brezonik, P.L.

    Six-day-old Daphnia magna were exposed to low concentrations of methylmercury (MeHg) in synthetic freshwater and synthetic food. Uptake kinetics were determined in 24- to 72-h experiments, measuring both the loss of Hg from water and accumulation in D. magna. Dose-uptake response was linear for MeHg concentrations up to 4.0 ng/L; an initial concentration of 2.0 ng/L was used when other factors were varied. Concentrations of total Hg and MeHg in water and D. magna were measured in treatments with varied hardness and alkalinity, aquatic humus (AH), and food spiked with MeHg versus water spiked with MeHg. Uptake rate coefficients weremore » derived from two versions of a first-order, two-compartment model. The first version assumed constant MeHg concentration; the second accounted for changing MeHg concentration in water over time. Both models accounted for a nonzero starting concentration of MeHg in plankton. Fitted rate coefficients were higher for the second model than the first: the uptake coefficient (k{sub u}) was nine times higher; the depuration coefficient (k{sub d}) was twice as high. Assuming a constant MeHg concentration for a one-time spike thus underestimated the rate coefficient. The source of MeHg was compared by exposing D. magna for 48 h to MeHg at 2 ng/L in food or water. Daphnia magna accumulated significantly more inorganic Hg (i.e., Hg{sup 2+}) from spiked food than from spiked water, but accumulation of MeHg was the same from both sources. A similar response was found when D. magna were exposed to a lake water extraction of AH at concentrations of C at 3 and 10 mg/L. At the higher AH concentration, total Hg in daphnids was higher, but MeHg was lower, suggesting that AH was a source of inorganic Hg but reduced the bioavailability of MeHg. Exposure of D. magna to MeHg at 2 ng/L in hard or soft water adjusted to pH 6.7 showed no significant difference in MeHg uptake, supporting an argument that hardness and alkalinity per se do not affect MeHg

  8. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen.

    PubMed

    Yin, Zhaobao; Lee, Eunsook; Ni, Mingwei; Jiang, Haiyan; Milatovic, Dejan; Rongzhu, Lu; Farina, Marcelo; Rocha, Joao B T; Aschner, Michael

    2011-06-01

    Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments. MeHg-induced changes in astrocytic [(3)H]-glutamine uptake were assessed along with changes in mitochondrial membrane potential (ΔΨ(m)), using the potentiometric dye tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation. MeHg treatment significantly decreased (p<0.05) astrocytic [(3)H]-glutamine uptake at all time points and concentrations. Ebselen fully reversed MeHg's (1 μM) effect on [(3)H]-glutamine uptake at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic inhibition of [(3)H]-glutamine uptake [at 1 min (5 and 10 μM) (p<0.05); 5 min (1, 5 and 10 μM) (p<0.05)]. MeHg treatment (1h) significantly (p<0.05) dissipated the ΔΨ(m) in astrocytes as evidenced by a decrease in mitochondrial TMRE fluorescence. Ebselen fully reversed the effect of 1 μM MeHg treatment for 1h on astrocytic ΔΨ(m) and partially reversed the effect of 5 and 10 μM MeHg treatments for 1h on ΔΨ(m). In addition, ebselen inhibited MeHg-induced phosphorylation of ERK (p<0.05) and blocked MeHg-induced activation of caspase-3 (p<0.05-0.01). These results are consistent with the hypothesis that MeHg exerts its toxic effects via oxidative stress and that the phosphorylation of ERK and the dissipation of the astrocytic mitochondrial membrane potential are involved in MeHg toxicity. In addition, the protective effects elicited by ebselen reinforce the idea that

  9. DIETARY SELENIUM PROTECTS AGAINST SELECTED SIGNS OF AGING AND METHYLMERCURY EXPOSURE

    PubMed Central

    Banna, Kelly M.; Reed, Miranda N.; Pesek, Erin F.; Cole, Nathan; Li, Jun; Newland, M. Christopher

    2010-01-01

    Acute or short-term exposure to high doses of methylmercury (MeHg) causes a well-characterized syndrome that includes sensory and motor deficits. The environmental threat from MeHg, however, comes from chronic, low-level exposure, the consequences of which are poorly understood. Selenium (Se), an essential nutrient, both increases deposition of mercury (Hg) in neurons and mitigates some of MeHg's neurotoxicity in the short term, but it is unclear whether this deposition produces long-term adverse consequences. To investigate these issues, adult Long Evans rats were fed a diet containing 0.06 or 0.6 ppm of Se as sodium selenite. After 100 days on these diets, the subjects began consuming 0.0, 0.5, 5.0, or 15 ppm of Hg as methylmercuric chloride in their drinking water for 16 months. Somatosensory sensitivity, grip strength, hind-limb cross (clasping reflex), flexion, and voluntary wheel-running in overnight sessions were among the measures examined. MeHg caused a dose- and time-dependent impairment in all measures, No effects appeared in rats consuming 0 or 0.5 ppm of Hg. Somatosensory function, grip strength, and flexion were among the earliest signs of exposure. Selenium significantly delayed or blunted MeHgs effects. Selenium also increased running in unexposed animals as they aged, a novel finding that may have important clinical implications. Nerve pathology studies revealed axonal atrophy or mild degeneration in peripheral nerve fibers, which is consistent with abnormal sensorimotor function in chronic MeHg neurotoxicity. Lidocaine challenge reproduced the somatosensory deficits but not hind-limb cross or flexion. Together, these results quantify the neurotoxicity of long-term MeHg exposure, support the safety and efficacy of Se in ameliorating MeHg's neurotoxicity, and demonstrate the potential benefits of Se during aging. PMID:20079371

  10. Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation.

    PubMed

    Prince, Lisa M; Rand, Matthew D

    2018-01-15

    Methylmercury (MeHg) is a ubiquitous environmental toxicant, best known for its selective targeting of the developing nervous system. MeHg exposure has been shown to cause motor deficits such as impaired gait and coordination, muscle weakness, and muscle atrophy, which have been associated with disruption of motor neurons. However, recent studies have suggested that muscle may also be a target of MeHg toxicity, both in the context of developmental myogenic events and of low-level chronic exposures affecting muscle wasting in aging. We therefore investigated the effects of MeHg on myotube formation, using the C2C12 mouse myoblast model. We found that MeHg inhibits both differentiation and fusion, in a concentration-dependent manner. Furthermore, MeHg specifically and persistently inhibits myogenin (MyoG), a transcription factor involved in myocyte differentiation, within the first six hours of exposure. MeHg-induced reduction in MyoG expression is contemporaneous with a reduction of a number of factors involved in mitochondrial biogenesis and mtDNA transcription and translation, which may implicate a role for mitochondria in mediating MeHg-induced change in the differentiation program. Unexpectedly, inhibition of myoblast differentiation with MeHg parallels inhibition of Notch receptor signaling. Our research establishes muscle cell differentiation as a target for MeHg toxicity, which may contribute to the underlying etiology of motor deficits with MeHg toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Environmental, geographic and trophic influences on methylmercury concentrations in macroinvertebrates from lakes and wetlands across Canada.

    PubMed

    Clayden, Meredith G; Kidd, Karen A; Chételat, John; Hall, Britt D; Garcia, Edenise

    2014-03-01

    Macroinvertebrates are a key vector in the transfer of methylmercury (MeHg) to fish. However, the factors that affect MeHg concentrations and bioaccumulation in these organisms are not as well understood as for fish, and studies on a broad geographic scale are lacking. In this study, we gathered published and unpublished MeHg and carbon (δ(13)C) and nitrogen (δ(15)N) stable isotope data for freshwater macroinvertebrates from 119 lakes and wetlands across seven Canadian provinces, along with selected physical, chemical and biological characteristics of these systems. Overall, water pH was the most important determinant of MeHg concentrations in both predatory and non-predatory invertebrates [[Formula: see text] = 0.32, p < 0.001; multivariate canonical redundancy analysis (RDA)]. The location of lakes explained additional variation in invertebrate MeHg (partial R(2) = 0.08 and 0.06 for latitude and longitude, respectively; RDA), with higher concentrations in more easterly and southerly regions. Both invertebrate foraging behaviour and trophic position (indicated by functional feeding groups and δ(15)N values, respectively) also predicted MeHg concentrations in the organisms. Collectively, results indicate that in addition to their feeding ecology, invertebrates accumulate more MeHg in acidic systems where the supply of MeHg to the food web is typically high. MeHg concentrations in macroinvertebrates may also be influenced by larger-scale geographic differences in atmospheric mercury deposition among regions.

  12. Protective Effects of the Flavonoid Chrysin against Methylmercury-Induced Genotoxicity and Alterations of Antioxidant Status, In Vivo

    PubMed Central

    Manzolli, Eduardo Scandinari; Serpeloni, Juliana Mara; Bastos, Jairo Kennup; Antunes, Lusânia Maria Greggi; Barbosa, Fernando; Barcelos, Gustavo Rafael Mazzaron

    2015-01-01

    The use of phytochemicals has been widely used as inexpensive approach for prevention of diseases related to oxidative damage due to its antioxidant properties. One of dietary flavonoids is chrysin (CR), found mainly in passion fruit, honey, and propolis. Methylmercury (MeHg) is a toxic metal whose main toxic mechanism is oxidative damage. Thus, the study aimed to evaluate the antioxidant effects of CR against oxidative damage induced by MeHg in Wistar rats. Animals were treated with MeHg (30 µg/kg/bw) in presence and absence of CR (0.10, 1.0, and 10 mg/kg/bw) by gavage for 45 days. Glutathione (GSH) in blood was quantified spectrophotometrically and for monitoring of DNA damage, comet assay was used in leukocytes and hepatocytes. MeHg led to a significant increase in the formation of comets; when the animals were exposed to the metal in the presence of CR, higher concentrations of CR showed protective effects. Moreover, exposure to MeHg decreased the levels of GSH and GSH levels were restored in the animals that received CR plus MeHg. Taken together the findings of the present work indicate that consumption of flavonoids such as CR may protect humans against the adverse health effects caused by MeHg. PMID:25810809

  13. Methionine stimulates motor impairment and cerebellar mercury deposition in methylmercury-exposed mice.

    PubMed

    Zimmermann, Luciana T; dos Santos, Danúbia B; Colle, Dirleise; dos Santos, Alessandra A; Hort, Mariana A; Garcia, Solange C; Bressan, Lucas Paines; Bohrer, Denise; Farina, Marcelo

    2014-01-01

    Methylmercury (MeHg) is a highly toxic environmental contaminant that produces neurological and developmental impairments in animals and humans. Although its neurotoxic properties have been widely reported, the molecular mechanisms by which MeHg enters the cells and exerts toxicity are not yet completely understood. Taking into account that MeHg is found mostly bound to sulfhydryl-containing molecules such as cysteine in the environment and based on the fact that the MeHg-cysteine complex (MeHg-S-Cys) can be transported via the L-type neutral amino acid carrier transport (LAT) system, the potential beneficial effects of L-methionine (L-Met, a well known LAT substrate) against MeHg (administrated as MeHg-S-Cys)-induced neurotoxicity in mice were investigated. Mice were exposed to MeHg (daily subcutaneous injections of MeHg-S-Cys, 10 mg Hg/kg) and/or L-Met (daily intraperitoneal injections, 250 mg/kg) for 10 consecutive days. After treatments, the measured hallmarks of toxicity were mostly based on behavioral parameters related to motor performance, as well as biochemical parameters related to the cerebellar antioxidant glutathione (GSH) system. MeHg significantly decreased motor activity (open-field test) and impaired motor performance (rota-rod task) compared with controls, as well as producing disturbances in the cerebellar antioxidant GSH system. Interestingly, L-Met administration did not protect against MeHg-induced behavioral and cerebellar changes, but rather increased motor impairments in animals exposed to MeHg. In agreement with this observation, cerebellar levels of mercury (Hg) were higher in animals exposed to MeHg plus L-Met compared to those only exposed to MeHg. However, this event was not observed in kidney and liver. These results are the first to demonstrate that L-Met enhances cerebellar deposition of Hg in mice exposed to MeHg and that this higher deposition may be responsible for the greater motor impairment observed in mice simultaneously

  14. Effects of Methylmercury on Reproduction in American Kestrels and Comparison to Effects Observed in Other Avian Species, poster presentation

    EPA Science Inventory

    To assess the effects of methylmercury (MeHg) on the survival and reproduction of birds, several controlled-dose laboratory studies have been conducted over the years on a variety of avian species, but none of the previous studies measured reproductive effects in a flesh-eating s...

  15. Effects of methylmercury and alcohol exposure in Drosophila melanogaster: Potential risks in neurodevelopmental disorders.

    PubMed

    Chauhan, Ved; Chauhan, Abha

    2016-06-01

    Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders. Published by Elsevier Ltd.

  16. Adverse effects of methylmercury (MeHg) on life parameters, antioxidant systems, and MAPK signaling pathways in the rotifer Brachionus koreanus and the copepod Paracyclopina nana.

    PubMed

    Lee, Young Hwan; Kim, Duck-Hyun; Kang, Hye-Min; Wang, Minghua; Jeong, Chang-Bum; Lee, Jae-Seong

    2017-09-01

    To evaluate the adverse effects of MeHg on the rotifer Brachionus koreanus and the copepod Paracyclopina nana, we assessed the effects of MeHg toxicity on life parameters (e.g. growth retardation and fecundity), antioxidant systems, and mitogen-activated protein kinase (MAPK) signaling pathways at various concentrations (1ng/L, 10ng/L, 100ng/L, 500ng/L, and 1000ng/L). MeHg exposure resulted in the growth retardation with the increased ROS levels but decreased glutathione (GSH) levels in a dose-dependent manner in both B. koreanus and P. nana. Antioxidant enzymatic activities (e.g. glutathione S-transferase [GST], glutathione reductase [GR], and glutathione peroxidase [GPx]) in B. koreanus showed more positive responses compared the control but in P. nana, those antioxidant enzymatic activities showed subtle changes due to different no observed effect concentration (NOEC) values among the two species. Expression of antioxidant genes (e.g. superoxide dismutase [SOD], GSTs, glutathione peroxidase [GPx], and catalase [CAT]) also demonstrated similar effects as shown in antioxidant enzymatic activities. In B. koreanus, the level of p-ERK was decreased in the presence of 1000ng/L MeHg, while the levels of p-ERK and p-p38 in P. nana were reduced in the presence of 10ng/L MeHg. However, p-JNK levels were not altered by MeHg in B. koreanus and P. nana, compared to the corresponding controls. In summary, life parameters (e.g. reduced fecundity and survival rate) were closely associated with effects on the antioxidant system in response to MeHg. These observations provide a better understanding on the adverse effects of MeHg on in vivo life parameters and molecular defense mechanisms in B. koreanus and P. nana. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Carbon monoxide derived from heme oxygenase-2 mediates reduction of methylmercury toxicity in SH-SY5Y cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyama, Takashi; Research Fellow of the Japan Society for the Promotion of Science; Shinkai, Yasuhiro

    2010-11-15

    We examined the contribution of carbon monoxide (CO), an enzymatic product of heme oxygenase (HO), to methylmercury (MeHg) cytotoxicity in SH-SY5Y cells, because this gas molecule is reported to activate Nrf2, which plays a protective role against MeHg-mediated cell damage. Exposure of SH-SY5Y cells to CO gas resulted in protection against MeHg cytotoxicity, with activation of Nrf2. Interestingly, pretreatment with tin-protoporphyrin IX, a specific inhibitor of HO, caused a reduction in basal Nrf2 activity and thus enhanced sensitivity to MeHg. No induction of isoform 1 of HO (HO-1) was seen during MeHg exposure, but constitutive expression of isoform 2 (HO-2)more » occurred, suggesting that CO produced by HO-2 is the main participant in the protection against MeHg toxicity. Studies of small interfering RNA-mediated knockdown of HO-2 in the cells supported this possibility. Our results suggest that CO gas and its producing enzyme HO-2 are key molecules in cellular protection against MeHg, presumably through basal activation of Nrf2.« less

  18. Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U.S. Estuaries.

    PubMed

    Buck, Clifton S; Hammerschmidt, Chad R; Bowman, Katlin L; Gill, Gary A; Landing, William M

    2015-12-15

    To better understand the source of elevated methylmercury (MeHg) concentrations in Gulf of Mexico (GOM) fish, we quantified fluxes of total Hg and MeHg from 11 rivers in the southeastern United States, including the 10 largest rivers discharging to the GOM. Filtered water and suspended particles were collected across estuarine salinity gradients in Spring and Fall 2012 to estimate fluxes from rivers to estuaries and from estuaries to coastal waters. Fluxes of total Hg and MeHg from rivers to estuaries varied as much as 100-fold among rivers. The Mississippi River accounted for 59% of the total Hg flux and 49% of the fluvial MeHg flux into GOM estuaries. While some estuaries were sources of Hg, the combined estimated fluxes of total Hg (~5200 mol y(-1)) and MeHg (~120 mol y(-1)) from the estuaries to the GOM were less than those from rivers to estuaries, suggesting an overall estuarine sink. Fluxes of total Hg from the estuaries to coastal waters of the northern GOM are approximately an order of magnitude less than from atmospheric deposition. However, fluxes from rivers are significant sources of MeHg to estuaries and coastal regions of the northern GOM.

  19. Morphological evidence of neurotoxicity in retina after methylmercury exposure.

    PubMed

    Mela, Maritana; Grötzner, Sonia Regina; Legeay, Alexia; Mesmer-Dudons, Nathalie; Massabuau, Jean-Charles; Ventura, Dora Fix; de Oliveira Ribeiro, Ciro Alberto

    2012-06-01

    The visual system is particularly sensitive to methylmercury (MeHg) exposure and, therefore, provides a useful model for investigating the fundamental mechanisms that direct toxic effects. During a period of 70 days, adult of a freshwater fish species Hoplias malabaricus were fed with fish prey previously labeled with two different doses of methylmercury (0.075 and 0.75 μgg(-1)) to determine the mercury distribution and morphological changes in the retina. Mercury deposits were found in the photoreceptor layer, in the inner plexiform layer and in the outer plexiform layer, demonstrating a dose-dependent bioaccumulation. The ultrastructure analysis of retina revealed a cellular deterioration in the photoreceptor layer, morphological changes in the inner and outer segments of rods, structural changes in the plasma membrane of rods and double cones, changes in the process of removal of membranous discs and a structural discontinuity. These results lead to the conclusion that methylmercury is able to cross the blood-retina barrier, accumulate in the cells and layers of retina and induce changes in photoreceptors of H. malabaricus even under subchronic exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    USGS Publications Warehouse

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pMeHg exposure. Individual genes exhibiting altered expression in response to MeHg exposure implicate effects on glutathione metabolism in the mechanism of MeHg neurotoxicity. Gene ontology (GO) terms significantly enriched among altered genes included protein folding, cell redox homeostasis, and steroid biosynthetic process. The most affected biological functions were related to nervous system development and function, as well as lipid metabolism and molecular transport. These results support the involvement of oxidative stress and effects on protein structure in the mechanism of action of MeHg in the female brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  1. Meeting Report: Methylmercury in Marine Ecosystems—From Sources to Seafood Consumers

    PubMed Central

    Chen, Celia Y.; Serrell, Nancy; Evers, David C.; Fleishman, Bethany J.; Lambert, Kathleen F.; Weiss, Jeri; Mason, Robert P.; Bank, Michael S.

    2008-01-01

    Mercury and other contaminants in coastal and open-ocean ecosystems are an issue of great concern globally and in the United States, where consumption of marine fish and shellfish is a major route of human exposure to methylmercury (MeHg). A recent National Institute of Environmental Health Sciences–Superfund Basic Research Program workshop titled “Fate and Bioavailability of Mercury in Aquatic Ecosystems and Effects on Human Exposure,” convened by the Dartmouth Toxic Metals Research Program on 15–16 November 2006 in Durham, New Hampshire, brought together human health experts, marine scientists, and ecotoxicologists to encourage cross-disciplinary discussion between ecosystem and human health scientists and to articulate research and monitoring priorities to better understand how marine food webs have become contaminated with MeHg. Although human health effects of Hg contamination were a major theme, the workshop also explored effects on marine biota. The workgroup focused on three major topics: a) the biogeochemical cycling of Hg in marine ecosystems, b) the trophic transfer and bioaccumulation of MeHg in marine food webs, and c) human exposure to Hg from marine fish and shellfish consumption. The group concluded that current understanding of Hg in marine ecosystems across a range of habitats, chemical conditions, and ocean basins is severely data limited. An integrated research and monitoring program is needed to link the processes and mechanisms of MeHg production, bioaccumulation, and transfer with MeHg exposure in humans. PMID:19079724

  2. Effects of dietary methylmercury on reproduction of fathead minnows

    USGS Publications Warehouse

    Hammerschmidt, C.R.; Sandheinrich, M.B.; Wiener, J.G.; Rada, R.G.

    2002-01-01

    We examined effects of dietary methylmercury (MeHg) on reproduction of fathead minnows (Pimephales promelas). Juvenile fish were fed one of four diets until sexual maturity (phase 1): a control diet (0.06 μg Hg g-1 dry weight) and three diets contaminated with MeHg at 0.88 (low), 4.11 (medium), and 8.46 μg Hg g-1 dry weight (high). At sexual maturity, male and female fish were paired, again fed one of the four diets, and allowed to reproduce (phase 2). To assess effects of MeHg during gametogenesis, some fish were fed diets during phase 2 that differed from those during phase 1. Spawning success of pairs fed the same diet during phases 1 and 2 was 75% for controls and 46%, 50%, and 36% for the low-, medium-, and high-MeHg treatments, respectively. Spawning success of pairs fed a contaminated diet during phase 1 and a control diet during phase 2 was 63%, 40%, and 14% for the low-, medium-, and high-MeHg treatments, respectively, whereas exposure to dietary MeHg only during phase 2 did not reduce spawning success. Dietary MeHg delayed spawning, and days to spawning was positively correlated with concentration of total mercury in the carcasses of test fish. MeHg reduced the instantaneous rate of reproduction of fish fed the same diets during phases 1 and 2. Both the gonadosomatic index and reproductive effort of female fish were inversely correlated with mercury in carcasses, whereas developmental and hatching success of embryos, 7-d survival, and 7-d growth of larvae were unrelated to mercury concentrations in parental fish or their diets. MeHg decreased reproduction of adult fathead minnows at dietary concentrations encountered by predatory fishes in aquatic systems with MeHg-contaminated food webs, implying that exposed fish populations could be adversely affected by this widespread contaminant.

  3. Identification and Prioritization of Management Practices to Reduce Methylmercury Exports from Wetlands and Irrigated Agricultural Lands

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Heim, Wesley A.

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  4. Characterization of the effects of methylmercury on Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmcke, Kirsten J.; Syversen, Tore; Miller, David M.

    2009-10-15

    The rising prevalence of methylmercury (MeHg) in seafood and in the global environment provides an impetus for delineating the mechanism of the toxicity of MeHg. Deleterious effects of MeHg have been widely observed in humans and in other mammals, the most striking of which occur in the nervous system. Here we test the model organism, Caenorhabditis elegans (C. elegans), for MeHg toxicity. The simple, well-defined anatomy of the C. elegans nervous system and its ready visualization with green fluorescent protein (GFP) markers facilitated our study of the effects of methylmercuric chloride (MeHgCl) on neural development. Although MeHgCl was lethal tomore » C. elegans, induced a developmental delay, and decreased pharyngeal pumping, other traits including lifespan, brood size, swimming rate, and nervous system morphology were not obviously perturbed in animals that survived MeHgCl exposure. Despite the limited effects of MeHgCl on C. elegans development and behavior, intracellular mercury (Hg) concentrations ({<=} 3 ng Hg/mg protein) in MeHgCl-treated nematodes approached levels that are highly toxic to mammals. If MeHgCl reaches these concentrations throughout the animal, this finding indicates that C. elegans cells, particularly neurons, may be less sensitive to MeHgCl toxicity than mammalian cells. We propose, therefore, that C. elegans should be a useful model for discovering intrinsic mechanisms that confer resistance to MeHgCl exposure.« less

  5. Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA

    USGS Publications Warehouse

    Shanley, J.B.; Kamman, N.C.; Clair, T.A.; Chalmers, A.

    2005-01-01

    The physical factors controlling total mercury (HgT) and methylmercury (MeHg) concentrations in lakes and streams of northeastern USA were assessed in a regional data set containing 693 HgT and 385 corresponding MeHg concentrations in surface waters. Multiple regression models using watershed characteristics and climatic variables explained 38% or less of the variance in HgT and MeHg. Land cover percentages and soil permeability generally provided modest predictive power. Percent wetlands alone explained 19% of the variance in MeHg in streams at low-flow, and it was the only significant (p < 0.02) predictor for MeHg in lakes, albeit explaining only 7% of the variance. When stream discharge was added as a variable it became the dominant predictor for HgT in streams, improving the model r 2 from 0.19 to 0.38. Stream discharge improved the MeHg model more modestly, from r 2 of 0.25 to 0.33. Methylation efficiency (MeHg/HgT) was modeled well (r 2 of 0.78) when a seasonal term was incorporated (sine wave with annual period). Physical models explained 18% of the variance in fish Hg concentrations in 134 lakes and 55% in 20 reservoirs. Our results highlight the important role of seasonality and short-term hydrologic changes to the delivery of Hg to water bodies. ?? 2005 Springer Science+Business Media, Inc.

  6. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies

    PubMed Central

    Farina, Marcelo; Rocha, João B. T.; Aschner, Michael

    2011-01-01

    Neurological disorders are common, costly, and can cause enduring disability. Although mostly unknown, a few environmental toxicants are recognized causes of neurological disorders and subclinical brain dysfunction. One of the best known neurotoxins is methylmercury (MeHg), a ubiquitous environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. In the aquatic environment, MeHg is accumulated in fish, which represent a major source of human exposure. Although several episodes of MeHg poisoning have contributed to the understanding of the clinical symptoms and histological changes elicited by this neurotoxicant in humans, experimental studies have been pivotal in elucidating the molecular mechanisms that mediate MeHg-induced neurotoxicity. The objective of this mini-review is to summarize data from experimental studies on molecular mechanisms of MeHg-induced neurotoxicity. While the full picture has yet to be unmasked, in vitro approaches based on cultured cells, isolated mitochondria and tissue slices, as well as in vivo studies based mainly on the use of rodents, point to impairment in intracellular calcium homeostasis, alteration of glutamate homeostasis and oxidative stress as important events in MeHg-induced neurotoxicity. The potential relationship among these events is discussed, with particular emphasis on the neurotoxic cycle triggered by MeHg-induced excitotoxicity and oxidative stress. The particular sensitivity of the developing brain to MeHg toxicity, the critical role of selenoproteins and the potential protective role of selenocompounds are also discussed. These concepts provide the biochemical bases to the understanding of MeHg neurotoxicity, contributing to the discovery of endogenous and exogenous molecules that counteract such toxicity and provide efficacious means for ablating this vicious cycle. PMID:21683713

  7. Protective Effect of Prolactin against Methylmercury-Induced Mutagenicity and Cytotoxicity on Human Lymphocytes

    PubMed Central

    Silva-Pereira, Liz Carmem; da Rocha, Carlos Alberto Machado; Cunha, Luiz Raimundo Campos da Silva e; da Costa, Edmar Tavares; Guimarães, Ana Paula Araújo; Pontes, Thais Brilhante; Diniz, Domingos Luiz Wanderley Picanço; Leal, Mariana Ferreira; Moreira-Nunes, Caroline Aquino; Burbano, Rommel Rodríguez

    2014-01-01

    Mercury exhibits cytotoxic and mutagenic properties as a result of its effect on tubulin. This toxicity mechanism is related to the production of free radicals that can cause DNA damage. Methylmercury (MeHg) is one of the most toxic of the mercury compounds. It accumulates in the aquatic food chain, eventually reaching the human diet. Several studies have demonstrated that prolactin (PRL) may be differently affected by inorganic and organic mercury based on interference with various neurotransmitters involved in the regulation of PRL secretion. This study evaluated the cytoprotective effect of PRL on human lymphocytes exposed to MeHg in vitro, including observation of the kinetics of HL-60 cells (an acute myeloid leukemia lineage) treated with MeHg and PRL at different concentrations, with both treatments with the individual compounds and combined treatments. All treatments with MeHg produced a significant increase in the frequency of chromatid gaps, however, no significant difference was observed in the chromosomal breaks with any treatment. A dose-dependent increase in the mitotic index was observed for treatments with PRL, which also acts as a co-mitogenic factor, regulating proliferation by modulating the expression of genes that are essential for cell cycle progression and cytoskeleton organization. These properties contribute to the protective action of PRL against the cytotoxic and mutagenic effects of MeHg. PMID:25247425

  8. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides)

    PubMed Central

    Annis, Mandy L.; Brumbaugh, William G.; Chasar, Lia C.; Denslow, Nancy D.; Tillitt, Donald E.

    2014-01-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates. PMID:24694518

  9. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides).

    PubMed

    Richter, Catherine A; Martyniuk, Christopher J; Annis, Mandy L; Brumbaugh, William G; Chasar, Lia C; Denslow, Nancy D; Tillitt, Donald E

    2014-07-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates. Published by Elsevier Inc.

  10. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Richter, Catherine A.; Martyniuk, Christopher J.; Annis, Mandy L.; Brumbaugh, William G.; Chasar, Lia C.; Denslow, Nancy D.; Tillitt, Donald E.

    2014-01-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates.

  11. Comparison of in vivo with in vitro pharmacokinetics of mercury between methylmercury chloride and methylmercury cysteine using rats and Caco2 cells.

    PubMed

    Mori, Nobuhiro; Yamamoto, Megumi; Tsukada, Eri; Yokooji, Tomoharu; Matsumura, Naoko; Sasaki, Masanori; Murakami, Teruo

    2012-11-01

    The in vivo and in vitro pharmacokinetics of mercury (Hg) were compared between methylmercury chloride (MeHg·Cl) and methylmercury cysteine (MeHg-Cys) using rats and Caco2 cells because humans can be exposed to MeHg compounds through dietary fish. The in vivo pharmacokinetics of Hg immediately after the digestion of MeHg compounds are still obscure. In Caco2 cells, membrane uptake and subcellular distribution of MeHg compounds were examined. When rats received it intravenously, MeHg·Cl showed 20-fold greater plasma and 2-fold greater blood concentrations of Hg than MeHg-Cys, indicating that their pharmacokinetic properties are different. One hour later, however, Hg concentrations in plasma and blood became virtually identical between MeHg·Cl and MeHg-Cys, although blood Hg concentrations were >100-fold greater than those in plasma. When administered into the closed rat's jejunum loop, MeHg·Cl and MeHg-Cys were rapidly and efficiently taken up by intestinal membranes, and Hg was retained in intestinal membranes for a relatively long time. When administered orally, no difference was observed in plasma and blood Hg concentrations between MeHg·Cl and MeHg-Cys: plasma and blood Hg concentrations increased gradually and reached steady levels at 8 h after administration. In Caco2 cells, uptake of MeHg-Cys was significantly suppressed by L-leucine, although this was not seen with MeHg·Cl. In Caco2 cells, 81 % of Hg was recovered from cytosol fractions and 13 % of Hg from nuclear fractions (including debris) after a 2-h incubation with MeHg-Cys. In conclusion, the mechanism of membrane uptake and volume of distribution in the initial distribution phase were clearly different between MeHg·Cl and MeHg-Cys. However, such pharmacokinetic differences between them disappeared 1 h after intravenous and after oral routes of administration, possibly due to the metabolism in the body.

  12. Methylmercury causes epigenetic suppression of the tyrosine hydroxylase gene in an in vitro neuronal differentiation model.

    PubMed

    Go, Suzuna; Kurita, Hisaka; Matsumoto, Kana; Hatano, Manami; Inden, Masatoshi; Hozumi, Isao

    2018-08-25

    Methylmercury (MeHg) is the causative substance of Minamata disease, which is associated with various neurological disorders such as sensory disturbance and ataxia. It has been suggested low-level dietary intake of MeHg from MeHg-containing fish during gestation adversely affects the fetus. In our study, we investigated the toxicological effects of MeHg exposure on neuronal differentiation focusing on epigenetics. We used human fetal brain-derived immortalized cells (LUHMES cells) as a human neuronal differentiation model. Cell viability, neuronal, and catecholamine markers in LUHMES cells were assessed after exposure to MeHg (0-1000 nM) for 6 days (from day 2 to day 8 of neuronal differentiation). Cell viability on day 8 was not affected by exposure to 1 nM MeHg for 6 days. mRNA levels of AADC, DBH, TUJ1, and SYN1 also were unaffected by MeHg exposure. In contrast, levels of TH, the rate-limiting enzyme for dopamine synthesis, were significantly decreased after MeHg exposure. Acetylated histone H3, acetylated histone H3 lysine 9, and tri-methyl histone H3 lysine 9 levels at the TH gene promoter were not altered by MeHg exposure. However, tri-methylation of histone H3 lysine 27 levels, related to transcriptional repression, were significantly increased at the TH gene promotor after MeHg exposure. In summary, MeHg exposure during neuronal differentiation led to epigenetic changes that repressed TH gene expression. This study provides useful insights into the toxicological mechanisms underlying the effects of developmental MeHg exposure during neuronal differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A longitudinal analysis of prenatal exposure to methylmercury and fatty acids in the Seychelles.

    PubMed

    Stokes-Riner, Abbie; Thurston, Sally W; Myers, Gary J; Duffy, Emeir M; Wallace, Julie; Bonham, Maxine; Robson, Paula; Shamlaye, Conrad F; Strain, J J; Watson, Gene; Davidson, Philip W

    2011-01-01

    Maternal fish consumption during pregnancy exposes the fetus simultaneously to methylmercury (MeHg) and long chain polyunsaturated fatty acids (LCPUFA). Data from the Seychelles Child Development Nutrition Study (SCDNS) showed a negative association of MeHg with child development when children were 30 months of age, only when controlling for LCPUFA. Concomitantly, n-3 LCPUFA were found to have a significant positive association only at 9 months. These findings suggest that the effects of MeHg and LCPUFA may vary with age over the first few years of life. We address this by including outcomes at two ages and adjusting for the child's age at testing. A longitudinal analysis utilizing linear mixed models was performed to assess the associations of maternal hair total mercury (THg, a biomarker for MeHg) and maternal LCPUFA with children's Bayley Scales of Infant Development Psychomotor Developmental Index (BSID-II PDI) at 9 and 30 months of age, and to determine whether these associations change over time. Data from 228 children were included. Maternal hair MeHg had a negative effect on BSID PDI, while maternal n-3 LCPUFA had a positive effect. These effects did not change significantly from 9 to 30 months in this analysis. The longitudinal analysis provides increased power for estimating the relationships of prenatal MeHg and LCPUFA exposures during child development. Significant associations of these exposures in opposite directions confirm the importance of LCPUFA in development and the need to adjust for maternal nutrition when studying prenatal MeHg exposure. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The effect of a low iron diet and early life methylmercury exposure in Daphnia pulex

    PubMed Central

    Hudson, Sherri L.; Doke, Dzigbodi A.; Gohlke, Julia M.

    2016-01-01

    Iron (Fe) deficiency increases risk for adverse health outcomes in humans; however little is known about the potential interaction with methylmercury (MeHg) exposure. Studies testing multiple stressor hypotheses are expensive and time consuming in mammalian model systems; therefore, determining relevance of alternative models is important. Daphnia pulex were fed standard or low-Fe diets of freshwater algae, Ankistrodesmus falcatus. MeHgCl (1600 ng/L) or vehicle was added to culture media for 24 h during early life, and the combinatorial effects of a low-Fe diet and MeHg exposure on lifespan, maturation time, and reproduction were evaluated. Lipid storage effects were measured using image analysis of Oil Red O staining and triacylglyceride quantification. Our results show a dose-dependent reduction in lifespan in D. pulex fed low Fe diets. Lipid analysis suggests an interactive effect of diet and MeHg exposure, with MeHg exposure increasing lipid storage in D. pulex fed a low-Fe diet. These findings suggest the effects of dietary iron intake and early life MeHg exposure in D. pulex may be mediated by changes in energetics that result in differential lipid storage. Therefore, lipid storage in D. pulex may be a useful screen for detecting long-term effects of multiple stressors early in life. PMID:26806633

  15. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading

    USGS Publications Warehouse

    Jeremiason, Jeffrey D.; Reiser, T. K.; Weitz, R. A.; Berndt, M.E.; Aiken, George R.

    2016-01-01

    Methylmercury (MeHg) levels in dragonfly larvae and water were measured over two years in aquatic systems impacted to varying degrees by sulfate releases related to iron mining activity. This study examined the impact of elevated sulfate loads on MeHg concentrations and tested the use of MeHg in dragonfly larvae as an indicator of MeHg levels in a range of aquatic systems including 16 river/stream sites and two lakes. MeHg concentrations in aeshnid dragonfly larvae were positively correlated (R2 = 0.46, p < 0.01) to peak MeHg concentrations in the dissolved phase for the combined years of 2012 and 2013. This relation was strong in 2012 (R2 = 0.85, p < 0.01), but showed no correlation in 2013 (R2 = 0.02, p > 0.05). MeHg in dragonfly larvae were not elevated at the highest sulfate sites, but rather the reverse was generally observed. Record rainfall events in 2012 and above average rainfall in 2013 likely delivered the majority of Hg and MeHg to these systems via interflow and activated groundwater flow through reduced sediments. As a result, the impacts of elevated sulfate releases due to mining activities were not apparent in these systems where little of the sulfate is reduced. Lower bioaccumulation factors for MeHg in aeshnid dragonfly larvae were observed with increasing dissolved organic carbon (DOC) concentrations. This finding is consistent with previous studies showing that MeHg in high DOC systems is less bioavailable; an equilibrium model shows that more MeHg being associated with DOC rather than algae at the base of the food chain readily explains the lower bioaccumulation factors.

  16. Methylmercury in fish from the southern Baltic Sea and coastal lagoons as a function of species, size, and region.

    PubMed

    Polak-Juszczak, Lucyna

    2017-06-01

    Methylmercury (MeHg) is a highly toxic compound that traverses the blood-brain barrier with deleterious effects to the central nervous system. Exposure is generally through the ingestion of contaminated fish. Fish are a main source of MeHg. Goals and methods: The aim of this study was to determine the dependence of MeHg concentrations on fish species and age, the percentage of MeHg in total mercury (THg) and risk assessment depending on the size of fish. Assays of THg and MeHg were performed on the muscle tissues of 18 species of fish. The investigations indicated there were differences in the mercury concentrations depending on fish size. THg and MeHg concentrations in the muscles of fish species that have a wide length distribution were strongly, positively correlated with fish length. However, concentrations of MeHg were strongly, positively correlated with those of THg in all the fish species investigated. Variation in the percentage share of MeHg in THg in the muscles of fish of large sizes was also noted within species, but this correlation was not noted in small-sized fish. The dose of MeHg in small-sized fish species was estimated and the risk posed to consumer health was assessed using mean MeHg concentrations determined for different fish species. For species of fish that occur within a wide length distribution, the dose of MeHg should be assessed separately in different length classes. Fish consumption of small-sized species poses no health risk.

  17. Methylmercury in flood-control impoundments and natural waters of northwestern Minnesota, 1997-99

    USGS Publications Warehouse

    Brigham, M.E.; Krabbenhoft, D.P.; Olson, M.L.; DeWild, J.F.

    2002-01-01

    We studied methylmercury (MeHg) and total mercury (HgT) in impounded and natural surface waters in northwestern Minnesota, in settings ranging from agricultural to undeveloped. In a recently constructed (1995) permanent-pool impoundment, MeHg levels typically increased from inflow to outflow during 1997; this trend broke down from late 1998 to early 1999. MeHg levels in the outflow reached seasonal maxima in mid-summer (maximum of 1.0 ng L−1 in July 1997) and late-winter (maximum of 6.6 ng L−1 in February 1999), and are comparable to high levels observed in new hydroelectric reservoirs in Canada. Spring and autumn MeHg levels were typically about 0.1–0.2 ng L−1. Overall, MeHg levels in both the inflow (a ditch that drains peatlands) and outflow were significantly higher than in three nearby reference natural lakes. Eleven older permanent-pool impoundments and six natural lakes in northwestern Minnesota were sampled five times. The impoundments typically had higher MeHg levels (0.071–8.36 ng L−1) than natural lakes. Five of six lakes MeHg levels typical of uncontaminated lakes (0.014–1.04 ng L−1) with highest levels in late winter, whereas a hypereutrophic lake had high levels (0.37–3.67 ng L−1) with highest levels in mid-summer. Seven temporary-pool impoundments were sampled during summer high-flow events. Temporary-pool impoundments that retained water for about 10–15 days after innundation yielded pronounced increases in MeHg from inflow to outflow, in one case reaching 4.6 ng L−1, which was about 2 ng L−1 greater than the mean inflow concentration during the runoff event.

  18. Methylmercury exposure and neurological outcomes in Taiji residents accustomed to consuming whale meat.

    PubMed

    Nakamura, Masaaki; Hachiya, Noriyuki; Murata, Ken-ya; Nakanishi, Ichiro; Kondo, Tomoyoshi; Yasutake, Akira; Miyamoto, Ken-ichiro; Ser, Ping Han; Omi, Sanae; Furusawa, Hana; Watanabe, Chiho; Usuki, Fusako; Sakamoto, Mineshi

    2014-07-01

    Methylmercury (MeHg) is a major environmental neurotoxicant that causes damage to the central nervous system. In Japan, industrial emission of MeHg has resulted in MeHg intoxication in Minamata and Niigata, the so-called Minamata disease. Humans are exposed to MeHg derived from natural sources, primarily fish and fish predators. Therefore, MeHg continues to be an environmental risk to human health, particularly in susceptible populations that frequently consume substantial amounts of fish or fish predators such as whale. This study aimed to investigate the health effects of MeHg exposure in adults. The subjects were 194 residents (117 males, 77 females; age 20-85 years) who resided in the coastal town of Taiji, the birthplace of traditional whaling in Japan. We analyzed hair for mercury content and performed detailed neurological examinations and dietary surveys. Audiometry, magnetic resonance imaging, and electromyography were performed to diagnose neurological defects. Whole blood mercury and selenium (Se) levels were measured in 23 subjects. The geometric mean of the hair mercury levels was 14.9 μg/g. Twelve subjects revealed hair mercury levels >50 μg/g (NOAEL) set by WHO. Hair mercury levels significantly correlated with daily whale meat intake. These results suggested that residents in Taiji were highly exposed to MeHg by ingesting MeHg-contaminated whale meat. Multivariate regression analysis demonstrated no significant correlations between hair mercury levels and neurological outcomes, whereas some of the findings significantly correlated with age. A significantly positive correlation between whole blood mercury and Se levels was observed and the whole blood mercury/Se molar ratios of all subjects were <1. These findings suggested that sufficient Se intake might be one of causes of the absence of adverse effects of MeHg exposure in this study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Neurobehavioral effects of combined prenatal exposure to low-level mercury vapor and methylmercury.

    PubMed

    Yoshida, Minoru; Suzuki, Megumi; Satoh, Masahiko; Yasutake, Akira; Watanabe, Chiho

    2011-01-01

    We evaluated the effects of prenatal exposure to low-level mercury (Hg(0)) or methylmercury (MeHg) as well as combined exposure (Hg(0) + MeHg exposure) on the neurobehavioral function of mice. The Hg(0) exposure group was exposed to Hg(0) at a mean concentration of 0.030 mg/m(3) for 6 hr/day during gestation period. The MeHg exposure was supplied with food containing 5 ppm of MeHg from gestational day 1 to postnatal day 10. The combined exposure group was exposed to both Hg(0) vapor and MeHg according to above described procedure. After delivery, when their offspring reached the age of 8 weeks, behavioral analysis was performed. Open field (OPF) tests of the offspring showed an increase and decrease in voluntary activity in male and female mice, respectively, in the MeHg exposure group. In addition, the rate of central entries was significantly higher in this group than in the control group. The results of OPF tests in the Hg(0) + MeHg exposure group were similar to those in the MeHg exposure group in both males and females. The results in the Hg(0) exposure group did not significantly differ from those in the control group in males or females. Passive avoidance response (PA) tests revealed no significant differences in avoidance latency in the retention trial between the Hg(0), MeHg, or Hg(0) + MeHg exposure group and the control group in males or females. Morris water maze tests showed a delay in the latency to reach the platform in the MeHg and Hg(0) + MeHg exposure groups compared with the control group in males but no significant differences between the Hg(0), MeHg, or Hg(0) + MeHg exposure group and the control group in females. The results of OPF tests revealed only slight effects of prenatal low-level Hg(0) exposure (0.03 mg/m(3)), close to the no-observable-effect level (NOEL) stated by the WHO (0.025 mg/m(3)), on the subsequent neurobehavioral function. However, prenatal exposure to 5 ppm of MeHg affected exploratory activity in the OPF test, and, in

  20. Low doses of methylmercury intoxication solely or associated to ethanol binge drinking induce psychiatric-like disorders in adolescent female rats.

    PubMed

    Belém-Filho, Ivaldo Jesus Almeida; Ribera, Paula Cardoso; Nascimento, Aline Lima; Gomes, Antônio Rafael Quadros; Lima, Rafael Rodrigues; Crespo-Lopez, Maria Elena; Monteiro, Marta Chagas; Fontes-Júnior, Enéas Andrade; Lima, Marcelo Oliveira; Maia, Cristiane Socorro Ferraz

    2018-04-30

    Methylmercury (MeHg) is an environmental contaminant that provokes damage to developing brain. Simultaneously, the consumption of ethanol among adolescents has increased. Evidence concerning the effects of MeHg low doses per se or associated with ethanol during adolescence are scarce. Thus, we investigate behavioral disorders resulted from exposure to MeHg low doses and co-intoxicated with ethanol in adolescent rats. Wistar rats received chronic exposure to low doses of MeHg (40 μg/kg/day for 5 weeks) and/or ethanol binge drinking (3 g/kg/day at 3 days per week for 5 weeks). Animals were submitted to behavioral assays to assess emotionality and cognitive function. Total mercury content was evaluated in the brain and hair. Oxidative parameters were analyzed in blood samples. MeHg at low doses or associated to ethanol binge drinking produced psychiatric-like disorders and cognitive impairment. Peripherally, MeHg altered oxidative parameters when associated to ethanol. Ethanol administration reduced brain mercury deposit. We proposed that ethanol reduces the necessity of mercury tissue levels to display psychiatric-like disorders/cognitive impairment. Copyright © 2018. Published by Elsevier B.V.

  1. Distribution and biogeochemical controls on net methylmercury production in Penobscot River marshes and sediment.

    PubMed

    Gilmour, Cynthia; Bell, James Tyler; Soren, Ally Bullock; Riedel, Georgia; Riedel, Gerhardt; Kopec, A Dianne; Bodaly, R A

    2018-06-01

    The distribution of mercury and methylmercury (MeHg) in sediment, mudflats, and marsh soils of the Hg-contaminated tidal Penobscot River was investigated, along with biogeochemical controls on production. Average total Hg in surface samples (0-3 cm) ranged from 100 to 1200 ng/g; average MeHg ranged from 5 to 50 ng/g. MeHg was usually highest at or near the surface except in highly mobile mudflats. Although total Hg concentrations in the Penobscot are elevated, it is the accumulation of MeHg that stands out in comparison to other ecosystems. Surface soils in the large Mendall Marsh, about 17 km downstream from the contamination source, contained particularly high %MeHg (averaging 8%). In Mendall marsh soil porewaters, MeHg often accounted for more than half of total Hg. Salt marshes are areas of particular concern in the Penobscot River, for they are depositional environments for a Hg-contaminated mobile pool of river sediment, hot spots for net MeHg production, and sources of risk to marsh animals. We hypothesized that exceptionally low mercury partitioning between the solid and aqueous phases (with log K d averaging ~4.5) drives high MeHg in Penobscot marshes. The co-occurrence of iron and sulfide in filtered soil porewaters, sometimes both above 100 μM, suggests the presence of nanoparticulate and/or colloidal metal sulfides. These colloids may be stabilized by high concentrations of aromatic and potentially sulfurized dissolved organic matter (DOM) in marsh soils. Thus, Hg in Penobscot marsh soils appears to be in a highly available for microbial methylation through the formation of DOM-associated HgS complexes. Additionally, low partitioning of MeHg to marsh soils suggests high MeHg bioavailability to animals. Overall, drivers of high MeHg in Penobscot marshes include elevated Hg in soils, low partitioning of Hg to solids, high Hg bioavailability for methylation, rapidly shifting redox conditions in surface marsh soils, and high rates of microbial

  2. Mercury and methylmercury concentrations in high altitude lakes and fish (Arctic charr) from the French Alps related to watershed characteristics.

    PubMed

    Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Paquet, Serge; Beaulne, Jean-Sébastien; Maury-Brachet, Régine; Lucotte, Marc; Nedjai, Rachid; Ferrari, Christophe P

    2011-04-15

    Total mercury (THg) and methylmercury (MeHg) concentrations were measured in the muscle of Arctic charr (Salvelinus alpinus) and in the water column of 4 lakes that are located in the French Alps. Watershed characteristics were determined (6 coverage classes) for each lake in order to evaluate the influence of watershed composition on mercury and methylmercury concentrations in fish muscle and in the water column. THg and MeHg concentrations in surface water were relatively low and similar among lakes and watershed characteristics play a major role in determining water column Hg and MeHg levels. THg muscle concentrations for fish with either a standardized length of 220mm, a standardized age of 5 years or for individualuals did not exceed the 0.5mg kg(-1) fish consumption advisory limit established for Hg by the World Health Organization (WHO, 1990). These relatively low THg concentrations can be explained by watershed characteristics, which lead to short Hg residence time in the water column, and also by the short trophic chain that is characteristic of mountain lakes. Growth rate did not seem to influence THg concentrations in fish muscles of these lakes and we observed no relationship between fish Hg concentrations and altitude. This study shows that in the French Alps, high altitude lakes have relatively low THg and MeHg concentrations in both the water column and in Arctic charr populations. Therefore, Hg does not appear to present a danger for local populations and the fishermen of these lakes. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. SUB-ACUTE TREATMENT WITH METHYLMERCURY DURING DIFFERENTIATION OF PHEOCHROMOCYTOMA (PC12) CELLS DOES NOT ALTER BINDING OF ION CHANNEL LIGANDS OR CELL MORPHOLOGY.

    EPA Science Inventory

    We demonstrated recently that 6 days of exposure to nanomolar concentrations (3-10 nM) of methylmercury (MeHg) during nerve growth factor (NGF) induced PC12 cell differentiation reduced the amplitude and density of voltage-gated sodium and calcium currents. In the present study,...

  4. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.

    2005-11-01

    The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 {mu}M MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 {mu}M MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in amore » proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca{sup 2+} and non-Ca{sup 2+} divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 {mu}M MeHg, 97.7% of Purkinje cells were viable. At 3 {mu}M MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 {mu}M MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca{sup 2+} divalent cation released by MeHg in Purkinje neurons.« less

  5. Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans.

    PubMed

    Girard, Catherine; Charette, Tania; Leclerc, Maxime; Shapiro, B Jesse; Amyot, Marc

    2018-03-01

    Fish consumption is a major pathway for mercury exposure in humans. Current guidelines and risk assessments assume that 100% of methylmercury (MeHg) in fish is absorbed by the human body after ingestion. However, a growing body of literature suggests that this absorption rate may be overestimated. We used an in vitro digestion method to measure MeHg bioaccessibility in commercially-purchased fish, and investigated the effects of dietary practices on MeHg bioaccessibility. Cooking had the greatest effect, decreasing bioaccessibility on average to 12.5±5.6%. Polyphenol-rich beverages also significantly reduced bioaccessibility to 22.7±3.8% and 28.6±13.9%, for green and black tea respectively. We confirmed the suspected role of polyphenols in tea as being a driver of MeHg's reduced bioaccessibility, and found that epicatechin, epigallocatechin gallate, rutin and cafeic acid could individually decrease MeHg bioaccessibility by up to 55%. When both cooking and polyphenol-rich beverage treatments were combined, only 1% of MeHg remained bioaccessible. These results call for in vivo validation, and suggest that dietary practices should be considered when setting consumer guidelines for MeHg. More realistic risk assessments could promote consumption of fish as a source of fatty acids, which can play a protective role against cardiovascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning.

    PubMed

    Marvin-Dipasquale, Mark; Lutz, Michelle A; Brigham, Mark E; Krabbenhoft, David P; Aiken, George R; Orem, William H; Hall, Britt D

    2009-04-15

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment-pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 microm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 +/- 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd's for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily from

  7. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment - Pore water partitioning

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Lutz, Michelle A; Brigham, Mark E.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.

    2009-01-01

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment−pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 μm) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 ± 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd’s) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC concentration and the lowest log Kd’s for both THg and MeHg. No significant relationship existed between overlying water MeHg concentrations and those in bed sediment or pore water, suggesting upstream sources of MeHg production may be more important than local streambed production as a driver of water column MeHg concentration in drainage basins that receive Hg inputs primarily

  8. Mercury and methylmercury concentrations in Mediterranean seafood and surface sediments, intake evaluation and risk for consumers.

    PubMed

    Spada, Lucia; Annicchiarico, Cristina; Cardellicchio, Nicola; Giandomenico, Santina; Di Leo, Antonella

    2012-04-01

    Total mercury and methylmercury concentrations were measured in sediments and marine organisms from the Taranto Gulf to understand their distribution and partitioning. Sediment concentrations ranged from 0.036 to 7.730 mg/kg (mean: 2.777 mg/kg d.w.) and from 1 to 40 μg/kg (mean: 11 μg/kg d.w.) for total mercury (THg) and methylmercury (Me-Hg), respectively. In mollusks THg ranged from n.d. to 1870 μg/kg d.w. while in fish from 324 to 1740 μg/kg d.w. Me-Hg concentrations in fish ranged from 190 to 1040 μg/kg d.w. and from n.d. to 1321 μg/kg d.w. in mollusks. THg exceeded the maximum level fixed by the European Commission (0.5 mg/kg w.w.) only in gastropod Hexaplex t. The calculated weekly intake was in many cases over the Provisional Tolerable Weekly Intake established by EFSA for all edible species. These results seem to indicate that dietary consumption of this seafood implicates an appreciable risk for human health. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Assessing the utility of dissolved organic matter photoreactivity as a predictor of in situ methylmercury concentration.

    PubMed

    Klapstein, Sara J; Ziegler, Susan E; Risk, David A; O'Driscoll, Nelson J

    2018-06-01

    Methylmercury (MeHg) bioaccumulation is a growing concern in ecosystems worldwide. The absorption of solar radiation by dissolved organic matter (DOM) and other photoreactive ligands can convert MeHg into less toxic forms of mercury through photodemethylation. In this study, spectral changes and photoreactivity of DOM were measured to assess the potential to control photoreactions and predict in situ MeHg concentration. Water samples collected from a series of lakes in southwestern Nova Scotia in June, August, and September were exposed to controlled ultraviolet-A (UV-A) radiation for up to 24hr. Dissolved organic matter photoreactivity, measured as the loss of absorbance at 350nm at constant UV-A irradiation, was positively dependent on the initial DOM concentration in lake waters (r 2 =0.94). This relationship was consistent over time with both DOM concentration and photoreactivity increasing from summer into fall across lakes. Lake in situ MeHg concentration was positively correlated with DOM concentration and likely catchment transport in June (r=0.77) but not the other sampling months. Despite a consistent seasonal variation in both DOM and Fe, and their respective correlations with MeHg, no discernable seasonal trend in MeHg was observed. However, a 3-year dataset from the 6 study lakes revealed a positive correlation between DOM concentration and both Fe (r=0.91) and MeHg concentrations (r=0.51) suggesting a more dominant landscape mobility control on MeHg. The DOM-MeHg relationships observed in these lakes highlights the need to examine DOM photoreactivity controls on MeHg transport and availability in natural waters particularly given future climate perturbations. Copyright © 2018. Published by Elsevier B.V.

  10. Beaver Ponds Increase Methylmercury and Nutrients Concentrations in Canadian Shield Streams

    NASA Astrophysics Data System (ADS)

    Roy, V.; Amyot, M.; Carignan, R.

    2007-12-01

    Beaver populations and the number of beaver dams are currently increasing in many Canadian regions. Since natural and anthropogenic impoundments have historically been identified as sources of the potent neurotoxin methylmercury (MeHg), beaver dams could also increase MeHg levels in streams. During summer 2006, we collected water samples upstream and downstream from twenty beaver dams of the Laurentians, located on the Canadian Shield. Samples were analysed for total Hg, MeHg and other chemical variables including DOC, TP, TDP, TN, and major ions. Significant increases of nutrients (DOC, TP, TDP, TN) and ammonium concentrations and depletions of oxygen, nitrate and sulphate concentrations between inlet and outlet show that beaver ponds provide environmental conditions that can favour methylation of inorganic mercury. Heterogeneity of the ratio MeHg/THg at the outlet among our sites was well explained by the estimated age of the impoundment, with methylation capacity of beaver ponds decreasing with age. Further, the geographic location of beaver ponds influenced water chemistry at the outlet, as we observed a dichotomy between northern and southern sites; these differences were based mainly on forest composition. On average, beaver impoundments increased MeHg concentrations by 5.7 fold, total Hg concentrations by 1.6 fold and nutrients concentrations by 2-3 fold. Overall, our results suggest that beaver dams may considerably increase MeHg and nutrients levels in downstream ecosystems. The impact of beavers on the cycling of contaminants and nutrients in boreal watersheds should therefore be considered in the management of their populations.

  11. Decreased plasma thiol antioxidant barrier and selenoproteins as potential biomarkers for ongoing methylmercury intoxication and an individual protective capacity.

    PubMed

    Usuki, Fusako; Fujimura, Masatake

    2016-04-01

    Manifestation of methylmercury (MeHg) toxicity depends on individual susceptibility to MeHg, as well as MeHg burden level. Therefore, biomarkers that reflect the protective capacity against MeHg are needed. The critical role of oxidative stress in the pathogenesis of MeHg cytotoxicity has been demonstrated. Because MeHg has high affinity for selenohydryl groups, sulfhydryl groups, and selenides, and causes posttranscriptional defects in selenoenzymes, proteins with selenohydryl and sulfhydryl groups should play a critical role in mediating MeHg-induced oxidative stress. Here, plasma oxidative stress markers and selenoproteins were investigated in MeHg-intoxicated rats showing neuropathological changes after 4 weeks of MeHg exposure. The thiol antioxidant barrier (-SHp) level significantly decreased 2 weeks after MeHg exposure, which is an early stage at which no systemic oxidative stress, histopathological changes, or clinical signs were detected. Diacron reactive oxidant metabolite (d-ROM) levels significantly increased 3 weeks after MeHg exposure, indicating the occurrence of systemic oxidative stress. Rats treated with lead acetate or cadmium chloride showed no changes in levels of -SHp and d-ROM. Selenoprotein P1 abundance significantly decreased in MeHg-treated rats, whereas it significantly increased in rats treated with Pb or Cd. Plasma selenium-dependent glutathione peroxidase (GPx3) activity also significantly decreased after MeHg exposure, whereas plasma non-selenoenzyme glutathione reductase activity significantly increased in MeHg-treated rats. The results suggest that decreased capacity of -SHp and selenoproteins (GPx3 and selenoprotein P) can be useful biomarkers of ongoing MeHg cytotoxicity and the individual protective capacity against the MeHg body burden.

  12. Does background postnatal methyl mercury exposure in toddlers affect cognition and behavior?

    PubMed

    Cao, Yang; Chen, Aimin; Jones, Robert L; Radcliffe, Jerilynn; Caldwell, Kathleen L; Dietrich, Kim N; Rogan, Walter J

    2010-01-01

    Because the toxicological effects of mercury (Hg) are more serious in the developing central nervous system of children than adults, there are growing concerns about prenatal and early childhood Hg exposure. This study examined postnatal methylmercury (MeHg) exposure and cognition and behavior in 780 children enrolled in the Treatment of Lead (Pb)-exposed Children clinical trial (TLC) with 396 children allocated to the succimer and 384 to the placebo groups. Mercury exposure was determined from analyses of blood drawn 1 week before randomization and 1 week after treatment began when succimer had its maximal effect on blood Pb (PbB). The baseline MeHg concentrations were 0.54 microg/L and 0.52 microg/L and post-treatment concentrations were 0.51 microg/L and 0.48 microg/L for placebo and succimer groups, respectively. Because the baseline characteristics in the two groups were balanced and because succimer had little effect on MeHg concentration and no effect on the cognitive or behavioral test scores, the groups were combined in the analysis of MeHg and neurodevelopment. The children's IQ and neurobehavioral performance were tested at age 2, 5 and 7 years. We saw weak, non-significant but consistently positive associations between blood MeHg and IQ test scores in stratified, spline regression and generalized linear model data analyses. The behavioral problem scores were constant or decreased slightly with increasing MeHg concentration. Additional adjustment for PbB levels in multivariable models did not alter the conclusion for MeHg and IQ scores, but did confirm that concurrent PbB was strongly associated with IQ and behavior in TLC children. The effects of MeHg on neurodevelopmental indices did not substantially differ by PbB strata. We conclude that at the present background postnatal MeHg exposure levels of US children, adverse effects on children's IQ and behavior are not detectable. 2009 Elsevier Inc. All rights reserved.

  13. Unravelling motor behaviour hallmarks in intoxicated adolescents: methylmercury subtoxic-dose exposure and binge ethanol intake paradigm in rats.

    PubMed

    Oliveira, Aline Nascimento; Pinheiro, Alana Miranda; Belém-Filho, Ivaldo Jesus Almeida; Fernandes, Luanna Melo Pereira; Cartágenes, Sabrina Carvalho; Ribera, Paula Cardoso; Fontes-Júnior, Enéas Andrade; Crespo-Lopez, Maria Elena; Monteiro, Marta Chagas; Lima, Marcelo Oliveira; Maia, Cristiane Socorro Ferraz

    2018-05-24

    Methylmercury (MeHg) is a hazardous environmental pollutant, affecting Amazon basin communities by anthropogenic activities. The exact safe level of MeHg exposure is unclear, despite the efforts of health international societies to avoid mercury (Hg) poisoning. Central nervous system is severely impacted by Hg intoxication, reflecting on motor impairment. In addition, alcohol has been associated to an overall brain damage. According to lifestyle of Amazon riverside communities, alcohol intake occurs frequently. Thus, we investigated if continuous MeHg exposure at low doses during adolescence displays motor deficits (experiment 1). In the experiment 2, we examine if the co-intoxication (i.e. MeHg plus ethanol exposure) during adolescence intensify motor damage. In the experiment 1, Wistar adolescent rats (31 days old) received chronic exposure to low dose (CELD) of MeHg (40 μg/kg/day) for 35 days. For the experiment 2, five sessions of alcohol binge drinking paradigm (3ON-4OFF; 3.0 g/kg/day) were employed associated to MeHg intoxication. Motor behaviour was evaluated by the open field, pole test, beam walking and rotarod paradigms. CELDS of MeHg display motor function damage, related to hypoactivity, bradykinesia-like behaviour, coordination deficits and motor learning impairment. Co-intoxication of MeHg plus ethanol reduced cerebellar Hg content, however also resulted in motor behavioural impairment, as well as additive effects on bradykinesia and fine motor evaluation.

  14. Adolescent Methylmercury Exposure Affects Choice and Delay Discounting in Mice

    PubMed Central

    Boomhower, Steven R.; Newland, M. Christopher

    2016-01-01

    The developing fetus is vulnerable to low-level exposure to methylmercury (MeHg), an environmental neurotoxicant, but the consequences of exposure during the adolescent period remain virtually unknown. The current experiments were designed to assess the effects of low-level MeHg exposure during adolescence on delay discounting, preference for small, immediate reinforcers over large, delayed ones, using a mouse model. Thirty-six male C57BL/6n mice were exposed to 0, 0.3, or 3.0 ppm mercury (as MeHg) via drinking water from postnatal day 21 through 59, encompassing the murine adolescent period. As adults, mice lever-pressed for a 0.01-cc droplet of milk solution delivered immediately or four 0.01-cc droplets delivered after a delay. Delays ranged from 1.26 to 70.79 seconds, all presented within a session. A model based on the Generalized Matching Law indicated that sensitivity to reinforcer magnitude was lower for MeHg-exposed mice relative to controls; responding in MeHg-exposed mice was relatively indifferent to the larger reinforcer. Sensitivity to reinforcer delay was reduced (delay discounting was decreased) in the 0.3-ppm group, but not in the 3.0-ppm group, compared to controls. Adolescence is a developmental period during which the brain and behavior may be vulnerable to MeHg exposure. As with gestational exposure, the effects are reflected in the impact of reinforcing stimuli. PMID:27677934

  15. Methylmercury accumulation and elimination in mink (Neovison vison) hair and blood: results of a controlled feeding experiment using stable isotope tracers.

    PubMed

    Wang, Wei; Evans, R Douglas; Hickie, Brendan E; Rouvinen-Watt, Kirsti; Evans, Hayla E

    2014-12-01

    Concentrations of metals in hair are used often to develop pharmacokinetic models for both animals and humans. Although data on uptake are available, elimination kinetics are less well understood; stable isotope tracers provide an excellent tool for measuring uptake and elimination kinetics. In the present study, methylmercury concentrations through time were measured in the hair and blood of mink (Neovison vison) during a controlled 60-d feeding experiment. Thirty-four mink were fed a standard fish-based diet for 14 d, at the end of which (day 0), 4 mink were sacrificed to determine baseline methylmercury (MeHg) concentrations. From day 0 to day 10, the remaining mink were fed a diet consisting of the base diet supplemented with 0.513 ± 0.013 µg Me(199) Hg/g and 0.163 ± 0.003 µg Me(201) Hg/g. From day 10 to day 60, mink were fed the base diet supplemented with 0.175 ± 0.024 µg Me(201) Hg/g. Animals were sacrificed periodically to determine accumulation of Me(201) Hg in blood and hair over the entire 60-d period and the elimination of Me(199) Hg over the last 50 d. Hair samples, collected from each mink and cut into 2.0-mm lengths, indicate that both isotopes of MeHg appeared in the hair closest to the skin at approximately day 10, with concentrations in the hair reaching steady state from day 39 onward. The elimination rate of Me(199) Hg from the blood was 0.05/d, and the ratio of MeHg in the hair to blood was 119. A large fraction of MeHg (22% to >100%) was stored in the hair, suggesting that in fur-bearing mammals the hair is a major route of elimination of MeHg from the body. © 2014 SETAC.

  16. Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil.

    PubMed

    Nyland, Jennifer F; Fillion, Myriam; Barbosa, Fernando; Shirley, Devon L; Chine, Chiameka; Lemire, Melanie; Mergler, Donna; Silbergeld, Ellen K

    2011-12-01

    Mercury (Hg) is a ubiquitous environmental contaminant with neurodevelopmental and immune system effects. An informative biomarker of Hg-induced immunotoxicity could aid studies on the potential contribution to immune-related health effects. Our objectives were to test the hypothesis that methylmercury (MeHg) exposures affect levels of serum biomarkers and to examine interactions between Hg and selenium (Se) in terms of these responses. This cross-sectional epidemiological study assessed adults living along the Tapajós River, a system long affected by MeHg. We measured antinuclear (ANA) and antinucleolar (ANoA) autoantibody levels and eight cytokines in serum samples (n = 232). Total Hg (including MeHg) and Se were measured in blood, plasma, hair, and urine. The median (range) total Hg concentrations were 14.1 μg/g (1.1-62.4), 53.5 μg/L (4.3-288.9), 8.8 μg/L (0.2-40), and 3.0 μg/L (0.2-16.1) for hair, blood, plasma, and urine, respectively. Elevated titers of ANA (but not ANoA) were positively associated with MeHg exposure (log-transformed, for blood and plasma), unadjusted [odds ratio (OR) = 2.6; 95% confidence interval (CI): 1.1, 6.2] and adjusted for sex and age (OR = 2.9; 95% CI: 1.1, 7.5). Proinflammatory [interleukin (IL)-6 and interferon (IFN)-γ], anti-inflammatory (IL-4), and IL-17 cytokine levels were increased with MeHg exposure; however, in the subset of the population with elevated ANA, proinflammatory IL-1β, IL-6, IFN-γ, and tumor necrosis factor (TNF)-α and anti-inflammatory (IL-4) cytokine levels were decreased with MeHg exposure. Although Se status was associated with MeHg level (correlation coefficient = 0.86; 95% CI: 0.29, 1.43), Se status was not associated with any changes in ANA and did not modify associations between Hg and ANA titers. MeHg exposure was associated with an increased ANA and changes in serum cytokine profile. Moreover, alterations in serum cytokine profiles differed based on ANA response, suggesting a specific phenotype

  17. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    USGS Publications Warehouse

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  18. EFFECTS OF METHYLMERCURY ON SPINAL CORD AFFERENTS AND EFFERENTS—A REVIEW

    PubMed Central

    Colón-Rodríguez, Alexandra; Hannon, Heidi E.; Atchison, William D.

    2017-01-01

    Methylmercury (MeHg) is an environmental neurotoxicant of public health concern. It readily accumulates in exposed humans, primarily in neuronal tissue. Exposure to MeHg, either acutely or chronically, causes severe neuronal dysfunction in the central nervous system and spinal neurons; dysfunction of susceptible neuronal populations results in neurodegeneration, at least in part through Ca2+-mediated pathways. Biochemical and morphologic changes in peripheral neurons precede those in central brain regions, despite the fact that MeHg readily crosses the blood-brain barrier. Consequently, it is suggested that unique characteristics of spinal cord afferents and efferents could heighten their susceptibility to MeHg toxicity. Transient receptor potential (TRP) ion channels are a class of Ca2+-permeable cation channels that are highly expressed in spinal afferents, among other sensory and visceral organs. These channels can be activated in numerous ways, including directly via chemical irritants or indirectly via Ca2+ release from intracellular storage organelles. Early studies demonstrated that MeHg interacts with heterologous TRPs, though definitive mechanisms of MeHg toxicity on sensory neurons may involve more complex interaction with, and among, differentially-expressed TRP populations. In spinal efferents, glutamate receptors of the N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and possibly kainic acid (KA) classes are thought to play a major role in MeHg-induced neurotoxicity. Specifically, the Ca2+-permeable AMPA receptors, which are abundant in motor neurons, have been identified as being involved in MeHg-induced neurotoxicity. In this review, we will describe the mechanisms that could contribute to MeHg-induced spinal cord afferent and efferent neuronal degeneration, including the possible mediators, such as uniquely expressed Ca2+-permeable ion channels. PMID:28041893

  19. Drosophila CYP6g1 and its human homolog CYP3A4 confer tolerance to methylmercury during development

    PubMed Central

    Rand, Matthew D.; Lowe, Jessica A.; Mahapatra, Cecon T.

    2012-01-01

    Methylmercury (MeHg) is a persistent environmental toxicant that is commonly encountered through dietary fish and seafood. While the fetal nervous system is a well-known primary target for MeHg toxicity, the risks of MeHg exposures that are commonly experienced today through diet and environmental exposure remain uncertain. Despite knowledge of numerous cellular processes that are affected by MeHg, the mechanisms that ultimately influence tolerance or susceptibility to MeHg in the developing fetus are not well understood. Using transcriptomic analyses of developing brains of MeHg tolerant and susceptible strains of Drosophila, we previously identified members of the cytochrome p450 (CYP) family of monooxygenases/oxidoreductases as candidate MeHg tolerance genes. While CYP genes encode Phase I enzymes best known for xenobiotic metabolism in the liver, several classes of CYPs are required for synthesis or degradation of essential endobiotics, such as hormones and fatty acids, that are critical to normal development. We now demonstrate that variation in expression CYP genes can strongly influence MeHg tolerance in the developing fly. Importantly, modulating expression of a single CYP, CYP6g1, specifically in neurons or the fat body (liver equivalent) is sufficient to rescue development in the presence of MeHg. We also demonstrate a conserved function for CYP3A4, a human homolog of CYP6g1, in conferring MeHg tolerance to flies. Finally, we show that pharmacological induction of CYPs with caffeine parallels an increase in tolerance to MeHg in developing flies. These findings establish a previously unidentified role for CYPs in MeHg toxicity and point to a potentially conserved role of CYP genes to influence susceptibility to MeHg toxicity across species. PMID:22699155

  20. Target organ specific activity of drosophila MRP (ABCC1) moderates developmental toxicity of methylmercury.

    PubMed

    Prince, Lisa; Korbas, Malgorzata; Davidson, Philip; Broberg, Karin; Rand, Matthew Dearborn

    2014-08-01

    Methylmercury (MeHg) is a ubiquitous and persistent neurotoxin that poses a risk to human health. Although the mechanisms of MeHg toxicity are not fully understood, factors that contribute to susceptibility are even less well known. Studies of human gene polymorphisms have identified a potential role for the multidrug resistance-like protein (MRP/ABCC) family, ATP-dependent transporters, in MeHg susceptibility. MRP transporters have been shown to be important for MeHg excretion in adult mouse models, but their role in moderating MeHg toxicity during development has not been explored. We therefore investigated effects of manipulating expression levels of MRP using a Drosophila development assay. Drosophila MRP (dMRP) is homologous to human MRP1-4 (ABCC1-4), sharing 50% identity and 67% similarity with MRP1. A greater susceptibility to MeHg is seen in dMRP mutant flies, demonstrated by reduced rates of eclosion on MeHg-containing food. Furthermore, targeted knockdown of dMRP expression using GAL4>UAS RNAi methods demonstrates a tissue-specific function for dMRP in gut, Malpighian tubules, and the nervous system in moderating developmental susceptibility to MeHg. Using X-ray synchrotron fluorescence imaging, these same tissues were also identified as the highest Hg-accumulating tissues in fly larvae. Moreover, higher levels of Hg are seen in dMRP mutant larvae compared with a control strain fed an equivalent dose of MeHg. In sum, these data demonstrate that dMRP expression, both globally and within Hg-targeted organs, has a profound effect on susceptibility to MeHg in developing flies. Our findings point to a potentially novel and specific role for dMRP in neurons in the protection against MeHg. Finally, this experimental system provides a tractable model to evaluate human polymorphic variants of MRP and other gene variants relevant to genetic studies of mercury-exposed populations. © The Author 2014. Published by Oxford University Press on behalf of the Society of

  1. Museum Preserved Bivalves as Indicators of Long-term Trends in Methylmercury Concentrations

    NASA Astrophysics Data System (ADS)

    Luengen, A. C.; Foslund, H. M.; Greenfield, B. K.

    2015-12-01

    Despite the many efforts to reduce mercury concentrations in the environment, there are relatively few datasets on long-term trends in mercury in biota, especially for the bioavailable form, methylmercury (MeHg). This study used museum preserved bivalves (stored in ethanol) to look at MeHg trends in the Asian date mussel Musculista senhousia and the Asian clam Potamocorbula amurensis, collected from San Francisco Bay, California between 1975 and 2012. For each sampling date, 4 to 15 individuals were obtained from museum collections (N = 156 total specimens), freeze-dried, weighed, homogenized, digested, and individually analyzed for MeHg using trace metal clean techniques. The bivalves were also analyzed for δ13C and δ15N to look for changes in food web structure. P. amurensis specimens were only available from 1988 to 2012, and an increase in MeHg was observed during that time. In contrast, M. senhousia specimens were available for the entire 37 year period and exhibited a significant decline in MeHg in the southern reach of the estuary (South Bay). The median MeHg concentration in M. senhousia was highest at 239 ng/g dw in October 1975. That year was the last year of operations for the New Almaden Mercury Mining District, which drained into South Bay. By the 1990s, MeHg concentrations in M. senhousia dropped significantly to a median of 37 ng/g dw. Isotopic δ15N values did not support a hypothesis of reduced trophic position causing the MeHg decline. Over the study duration, δ15N increased in M. senhousia, which we attributed to a baseline shift. We also observed a decline in δ13C since 2000, which may represent a shift in bivalve carbon towards greater utilization of planktonic sources. To validate the use of museum specimens, we ran a preservation study, where we collected fresh bivalves, fixed them in ethanol or formalin, and then transferred them to ethanol for long-term storage. Although MeHg concentrations increased after 1 week, they stabilized over

  2. Partitioning and kinetics of methylmercury among organs in captive mink (Neovison vison): A stable isotope tracer study.

    PubMed

    Evans, R Douglas; Hickie, Brendan; Rouvinen-Watt, Kirsti; Wang, Wei

    2016-03-01

    Despite the importance of methylmercury (MeHg) as a neurotoxin, we have relatively few good data on partitioning and kinetics of MeHg among organs, particularly across the blood-brain barrier, for mammals that consume large quantities of fish. The objective of this study was to determine the partition coefficients between blood and brain, liver and kidney and fur for MeHg under steady-state conditions and to measure the half-lives for MeHg in these organs. Captive mink (Neovison vison) were fed a diet enriched with two stable isotopes of Hg, Me(199)Hg and Me(201)Hg for a period of 60 days. After a period of 10 days the diet was changed to contain only Me(201)Hg so that, between days 10 and 60, we were able to measure both uptake and elimination rates from blood, brain, liver kidney and fur. Liver and kidney response was very rapid, closely following changes in blood concentrations but there was a small lag time between peak blood concentrations and peak brain concentrations. Half-lives for MeHg were 15.4, 10.2 and 13.4 days for brain, liver and kidney, respectively. There was no measurable conversion of the MeHg to inorganic Hg (IHg) in the brain over the 60 day period, unlike in liver and kidney. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cadmium, lead, tin, total mercury, and methylmercury in canned tuna commercialised in São Paulo, Brazil.

    PubMed

    de Paiva, Esther Lima; Morgano, Marcelo Antonio; Milani, Raquel Fernanda

    2017-09-01

    The objective of this work was to determine levels of inorganic contaminants in 30 samples of five commercial brands of canned tuna, acquired on the local market in Campinas, São Paulo, Brazil, in the year of 2015. Total mercury and methylmercury (MeHg+) were determined by atomic absorption with thermal decomposition and amalgamation; and cadmium, lead, and tin were determined by inductively coupled plasma optical emission spectrometry. Results indicated that 20% of the tuna samples surpassed limits determined by the Brazilian and European Commission legislation for cadmium; for lead, the maximum value found was 59 µg kg -1 and tin was not detected in any samples. The maximum values found for total Hg and MeHg+ were 261 and 258 µg kg -1 , respectively. As from the results obtained, it was estimated that the consumption of four cans per week (540 g) of tuna canned in water could surpass the provisional tolerable monthly intake for MeHg + by 100%.

  4. The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.).

    PubMed

    Xu, Xiaohang; Meng, Bo; Zhang, Chao; Feng, Xinbin; Gu, Chunhao; Guo, Jianyang; Bishop, Kevin; Xu, Zhidong; Zhang, Sensen; Qiu, Guangle

    2017-04-01

    Emission from coal-fired power plants is one of the major anthropogenic sources of mercury (Hg) in the environment, because emitted Hg can be quickly deposited nearby the source, attention is paid to the effects of coal-burning facilities on levels of toxic methyl-mercury (MeHg) in biota near such sources. Since rice is an agricultural crop that can bio-accumulate MeHg, the potential effects of a large Hg-emitting coal-fired power plant in Hunan Province, China on both inorganic Hg (Hg(II)) and MeHg distributions in rice was investigated. Relatively high MeHg (up to 3.8 μg kg -1 ) and Hg(II) (up to 22 μg kg -1 ) concentrations were observed in rice samples collected adjacent to the plant, suggesting a potential impact of Hg emission from the coal fired power plant on the accumulation of Hg in rice in the area. Concentrations of MeHg in rice were positively correlated with soil MeHg, soil S, and gaseous elemental Hg (GEM) in ambient air. Soil MeHg was the most important factor controlling MeHg concentrations in rice. The methylation of Hg in soils may be controlled by factors such as the chemical speciation of inorganic Hg, soil S, and ambient GEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modeled methylmercury exposure and risk from rice consumption for vulnerable populations in a traditional fish-eating area in China.

    PubMed

    Tong, Yin-Dong; Ou, Lang-Bo; Chen, Long; Wang, Huan-Huan; Chen, Cen; Wang, Xue-Jun; Zhang, Wei; Wang, Qi-Guang

    2015-05-01

    The circulation of rice from contaminated areas could escalate exposure risk from a local problem to a national issue and affect a wider population beyond the region of origin, as confirmed by the "Poison Rice Incident" in May 2013 in Guangzhou, China. In the present study, the authors established a food chain model based on the aquivalence method to identify major sources of methylmercury (MeHg), estimate the levels of MeHg, and quantify exposure to MeHg via rice and aquatic food consumption. Different types of organism samples from the Haihe River also were collected to verify the calculated values. The MeHg intake in pregnant women was 1529.1 ng/d from the aquatic food chain and as high as 2804.0 ng/d from rice, although the intake varied among scenarios. The maximum possible MeHg concentration in the blood of pregnant women was 5.21 µg/L, higher than the threshold value of MeHg recommended by the US Environmental Protection Agency (4.4 µg/L), which indicated that pregnant women could face risk from MeHg exposure. The authors also assessed the risk of MeHg exposure in pregnant women and their breastfed infants using a new index, HQEquivalent . In 4 scenarios, the HQEquivalent indices ranged from 0.42 to 1.18 for pregnant women and from 0.29 to 0.83 for breastfed infants. © 2014 SETAC.

  6. Endoplasmic reticulum stress preconditioning attenuates methylmercury-induced cellular damage by inducing favorable stress responses

    PubMed Central

    Usuki, Fusako; Fujimura, Masatake; Yamashita, Akio

    2013-01-01

    We demonstrate that methylmercury (MeHg)-susceptible cells preconditioned with an inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase, thapsigargin, showed resistance to MeHg cytotoxicity through favorable stress responses, which included phosphorylation of eukaryotic initiation factor 2 alpha (Eif2α), accumulation of activating transcription factor 4 (Atf4), upregulation of stress-related proteins, and activation of extracellular signal regulated kinase pathway. In addition, ER stress preconditioning induced suppression of nonsense-mediated mRNA decay (NMD) mainly through the phospho-Eif2α-mediated general suppression of translation initiation and possible combined effects of decreased several NMD components expression. Atf4 accumulation was not mediated by NMD inhibition but translation inhibition of its upstream open reading frame (uORF) and translation facilitation of its protein-coding ORF by the phospho-Eif2α. These results suggested that ER stress plays an important role in MeHg cytotoxicity and that the modulation of ER stress has therapeutic potential to attenuate MeHg cytotoxicity, the underlying mechanism being the induction of integrated stress responses. PMID:23907635

  7. Mercury loading and methylmercury production and cycling in high-altitude lakes from the Western United States

    USGS Publications Warehouse

    Krabbenhoft, David P.; Olson, Mark L.; DeWild, John F.; Clow, David W.; Striegl, Robert G.; Dornblaser, Mark M.; Van Metre, Peter C.

    2002-01-01

    Studies worldwide have shown that mercury (Hg) is a ubiquitous contaminant, reaching even the most remote environments such as high-altitude lakes via atmospheric pathways. However, very few studies have been conducted to assess Hg contamination levels of these systems. We sampled 90 mid-latitude, high-altitude lakes from seven national parks in the western United States during a four-week period in September 1999. In addition to the synoptic survey, routine monitoring and experimental studies were conducted at one of the lakes (Mills Lake) to quantify MeHg fluxrates and important process rates such as photo-demethylation. Results show that overall, high-altitude lakes have low total mercury (HgT) and methylmercury (MeHg) levels (1.07 and 0.05 ng L-1, respectively), but a very good correlation of Hg to MeHg (r2= 0.82) suggests inorganic Hg(II) loading is a primary controlling factor of MeHg levels in dilute mountain lakes. Positive correlations were also observed for dissolved organic carbon (DOC) and both Hg and MeHg, although to a much lesser degree. Levels of MeHg were similar among the seven national parks, with the exception of Glacier National Park where lowerconcentrations were observed (0.02 ng L-1), and appear to be related to naturally elevated pH values there. Measured rates ofMeHg photo-degradation at Mills Lake were quite fast, and this process was of equal importance to sedimentation and stream flow for removing MeHg. Enhanced rates of photo-demethylation are likely an important reason why high-altitude lakes, with typically high water clarity and sunlight exposure, are low in MeHg.

  8. Uptake dynamics of inorganic mercury and methylmercury by the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Zhou, Dongmei

    2016-02-01

    Mercury uptake dynamics in the earthworm Pheretima guillemi, including the dissolved uptake rate constant (ku) from pore-water and assimilation efficiencies (AEs) from mercury-contaminated soil, was quantified in this study. Dissolved uptake rate constants were 0.087 and 0.553 L g(-1) d(-1) for inorganic mercury (IHg) and methylmercury (MeHg), respectively. Assimilation efficiency of IHg in field-contaminated soil was 7.2%, lower than 15.4% of spiked soil. In contrast, MeHg exhibited comparable AEs for both field-contaminated and spiked soil (82.4-87.2%). Within the framework of biodynamic model, we further modelled the exposure pathways (dissolved exposure vs soil ingestion) to source the accumulated mercury in Pheretima guillemi. The model showed that the relative importance of soil ingestion to mercury bioaccumulation depended largely on mercury partitioning coefficients (K(d)), and was also influenced by soil ingestion rate of earthworms. In the examined field-contaminated soil, almost (>99%) accumulated IHg and MeHg was predicted to derive from soil ingestion. Therefore, soil ingestion should be carefully considered when assessing mercury exposure risk to earthworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression

    PubMed Central

    Takahashi, Tetsuya; Fujimura, Masatake; Koyama, Misaki; Kanazawa, Masato; Usuki, Fusako; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2017-01-01

    Clinical manifestations of methylmercury (MeHg) intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB) damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG) and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF), a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity. PMID:28118383

  10. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption

    PubMed Central

    Mahaffey, Kathryn R; Sunderland, Elsie M; Chan, Hing Man; Choi, Anna L; Grandjean, Philippe; Mariën, Koenraad; Oken, Emily; Sakamoto, Mineshi; Schoeny, Rita; Weihe, Pál; Yan, Chong-Huai; Yasutake, Akira

    2011-01-01

    Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce risks of certain forms of heart disease in adults. However, fish and shellfish can also be a major source of methylmercury (MeHg), a known neurotoxicant that is particularly harmful to fetal brain development. This review documents the latest knowledge on the risks and benefits of seafood consumption for perinatal development of infants. It is possible to choose fish species that are both high in n-3 PUFAs and low in MeHg. A framework for providing dietary advice for women of childbearing age on how to maximize the dietary intake of n-3 PUFAs while minimizing MeHg exposures is suggested. PMID:21884130

  11. Sulfur and Methylmercury in the Florida Everglades - the Biogeochemical Connection

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Gilmour, C. C.; Krabbenhoft, D. P.; Aiken, G.

    2011-12-01

    Methylmercury (MeHg) is a serious environmental problem in aquatic ecosystems worldwide because of its toxicity and tendency to bioaccumulate. The Everglades receives some of the highest levels of atmospheric mercury deposition and has some of the highest levels of MeHg in fish in the USA, posing a threat to pisciverous wildlife and people through fish consumption. USGS studies show that a combination of biogeochemical factors make the Everglades especially susceptible to MeHg production and bioaccumulation: (1) vast wetland area with anoxic soils supporting anaerobic microbial activity, (2) high rates of atmospheric mercury deposition, (3) high levels of dissolved organic carbon (DOC) that complexes and stabilizes mercury in solution for transport to sites of methylation, and (4) high sulfate loading in surface water that drives microbial sulfate reduction and mercury methylation. The high levels of sulfate in the Everglades represent an unnatural condition. Background sulfate levels are estimated to be <1 mg/L, but about 60% of the Everglades has surface water sulfate concentrations exceeding background. Highly sulfate-enriched marshes in the northern Everglades have average sulfate levels of 60 mg/L. Sulfate loading to the Everglades is principally a result of land and water management in south Florida. The highest concentrations of sulfate, averaging 60-70 mg/L, are in canal water in the Everglades Agricultural Area (EAA). Geochemical data and a preliminary sulfur mass balance for the EAA are consistent with sulfur currently used in agriculture, and sulfur released by oxidation of organic EAA soils (including legacy agricultural applications and natural sulfur) as the primary sources of sulfate enrichment to the canals and ecosystem. Sulfate loading increases microbial sulfate reduction and MeHg production in soils. The relationship between sulfate loading and MeHg production, however, is complex. Sulfate levels up to about 20-30 mg/L increase mercury

  12. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.

    PubMed

    Ndu, Udonna; Barkay, Tamar; Schartup, Amina Traore; Mason, Robert P; Reinfelder, John R

    2016-02-01

    Mercury resistant bacteria play a critical role in mercury biogeochemical cycling in that they convert methylmercury (MeHg) and inorganic mercury to elemental mercury, Hg(0). To date there are very few studies on the effects of speciation and bioavailability of MeHg in these organisms, and even fewer studies on the role that binding to cellular ligands plays on MeHg uptake. The objective of this study was to investigate the effects of thiol complexation on the uptake of MeHg by measuring the intracellular demethylation-reduction (transformation) of MeHg to Hg(0) in Hg-resistant bacteria. Short-term intracellular transformation of MeHg was quantified by monitoring the loss of volatile Hg(0) generated during incubations of bacteria containing the complete mer operon (including genes from putative mercury transporters) exposed to MeHg in minimal media compared to negative controls with non-mer or heat-killed cells. The results indicate that the complexes MeHgOH, MeHg-cysteine, and MeHg-glutathione are all bioavailable in these bacteria, and without the mer operon there is very little biological degradation of MeHg. In both Pseudomonas stutzeri and Escherichia coli, there was a pool of MeHg that was not transformed to elemental Hg(0), which was likely rendered unavailable to Mer enzymes by non-specific binding to cellular ligands. Since the rates of MeHg accumulation and transformation varied more between the two species of bacteria examined than among MeHg complexes, microbial bioavailability, and therefore microbial demethylation, of MeHg in aquatic systems likely depends more on the species of microorganism than on the types and relative concentrations of thiols or other MeHg ligands present.

  13. Quantitative Approach for Incorporating Methylmercury Risks and Omega-3 Fatty Acid Benefits in Developing Species-Specific Fish Consumption Advice

    PubMed Central

    Ginsberg, Gary L.; Toal, Brian F.

    2009-01-01

    Background Despite general agreement about the toxicity of methylmercury (MeHg), fish consumption advice remains controversial. Concerns have been raised that negative messages will steer people away from fish and omega-3 fatty acid (FA) benefits. One approach is to provide advice for individual species that highlights beneficial fish while cautioning against riskier fish. Objectives Our goal in this study was to develop a method to quantitatively analyze the net risk/benefit of individual fish species based on their MeHg and omega-3 FA content. Methods We identified dose–response relationships for MeHg and omega-3 FA effects on coronary heart disease (CHD) and neurodevelopment. We used the MeHg and omega-3 FA content of 16 commonly consumed species to calculate the net risk/benefit for each species. Results Estimated omega-3 FA benefits outweigh MeHg risks for some species (e.g., farmed salmon, herring, trout); however, the opposite was true for others (swordfish, shark). Other species were associated with a small net benefit (e.g., flounder, canned light tuna) or a small net risk (e.g., canned white tuna, halibut). These results were used to place fish into one of four meal frequency categories, with the advice tentative because of limitations in the underlying dose–response information. Separate advice appears warranted for the neurodevelopmental risk group versus the cardiovascular risk group because we found a greater net benefit from fish consumption for the cardiovascular risk group. Conclusions This research illustrates a framework for risk/benefit analysis that can be used to develop categories of consumption advice ranging from “do not eat” to “unlimited,” with the caveat that unlimited may need to be tempered for certain fish (e.g., farm-raised salmon) because of other contaminants and end points (e.g., cancer risk). Uncertainties exist in the underlying dose–response relationships, pointing in particular to the need for more research on

  14. Neurobehavioral effects of postnatal exposure to low-level mercury vapor and/or methylmercury in mice.

    PubMed

    Yoshida, Minoru; Lee, Jin-Yong; Satoh, Masahiko; Watanabe, Chiho

    2018-01-01

    This study examined the effects on neurobehavioral function of exposure to low-level mercury vapor (Hg 0 ), methylmercury (MeHg) in female mice and the combination of Hg 0 and MeHg during postnatal development. Postnatal mice were exposed to Hg 0 at a mean concentration of 0.188 mg/m 3 Hg 0 and supplied with food containing 3.85 μg/g of MeHg from day 2 to day 28 after delivery. The combined exposure group was exposed to both Hg 0 and MeHg, using the same procedure. When their offspring reached the age of 11 weeks, behavioral analyses were performed. The behavioral effects in mice were evaluated based on locomotive activity and rate of center entries in the open field (OPF), learning activity in the passive avoidance response (PA) and spatial learning ability in the radial maze (RM). Total locomotive activity in the OPF significantly decreased in the Hg 0 , MeHg and combined exposure groups compared with the control group. The proportion of entries to central area in the OPF was significantly higher in the combined exposure group than in the control group, while those in the Hg 0 or MeHg exposure group did not differ from the control group. Other behavioral tests did not reveal significant differences among the groups. Behavioral anomalies were more distinctive after combined exposure compared to Hg 0 or MeHg exposure alone. The brain Hg concentration of offspring, immediately after exposure, was highest in the combined exposure group, exceeding 2 μg/g, followed by the MeHg and Hg 0 exposure groups. Thus, the enhancement of neurobehavioral effects in the combined exposure group was associated with higher brain mercury concentration.

  15. Spatial and temporal variations of total and methylmercury concentrations in plankton from a mercury-contaminated and eutrophic reservoir in Guizhou Province, China.

    PubMed

    Wang, Qing; Feng, Xinbin; Yang, Yufeng; Yan, Haiyu

    2011-12-01

    Total mercury (THg) and methylmercury (MeHg) concentrations in four size fractions of plankton from three sampling stations in the Hg-contaminated and eutrophic Baihua Reservoir, Guizhou, China, were investigated for biomagnification and trophic transfer of Hg at different sites with various proximity to the major point sources of nutrients and metals. Total Hg concentrations in plankton of the various size fractions varied from 49 to 5,504 ng g(-1) and MeHg concentrations ranged from 3 to 101 ng g(-1). The percentage of Hg as MeHg varied from 0.16 to 70%. Total Hg and MeHg concentrations in plankton samples differed among the three sampling stations with different proximities from the major point sources. The plankton from the site closest to the dam contained the highest concentrations of MeHg. The successive increase of the ratios of MeHg to Hg from seston to macroplankton at all sites indicated that biomagnification is occurring along the plankton food web. However, biomagnification factors (BMF) for MeHg were low (1.5-2.0) between trophic levels. Concentrations of THg in seston decreased with an increase of chlorophyll concentrations, suggesting a significant dilution effect by the algae bloom for Hg. Eutrophication dilution may be a reason for lower MeHg accumulation by the four size classes of plankton in this Hg-contaminated reservoir. Copyright © 2011 SETAC.

  16. Evaluation of diatomea algae Thalassiosira weissflogii sensitivity to chloride mercury and methylmercury by chlorophyll fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Graevskaya, E. E.; Antal, T. K.; Matorin, D. N.; Voronova, E. N.; Pogosyan, S. I.; Rubin, A. B.

    2003-05-01

    Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In our study, the pulseamplitude-modulation (PAM) - fluorometric method was used to evaluate the sensitivity to chloride mercury and methylmercury chloride of diatomea microalgae Thalassiosira weissflogii. We found that 10^{-6} and 10^{-7} M MeHg led to a slow decrease in the PS II activity following for prolonged lag phase, whereas the algae was not sensitive to the same concentrations of HgCl2. However observed PS II inactivation by methylmercury was not complete and about 10 percents ofthe cells kept the high level of PS II activity as it was shown by microfluorometric analysis. These cells could determine adaptation of algae to methylmercury effect. Both toxicants decreased the rate of PS II reparation, as well as increased a heat pathway of excitation dissipation in PS II antennae complex.

  17. Long-term trends of surface-water mercury and methylmercury concentrations downstream of historic mining within the Carson River watershed

    USGS Publications Warehouse

    Morway, Eric D.; Thodal, Carl E.; Marvin-DiPasquale, Mark C.

    2017-01-01

    The Carson River is a vital water resource for local municipalities and migratory birds travelling the Pacific Flyway. Historic mining practices that used mercury (Hg) to extract gold from Comstock Lode ore has left much of the river system heavily contaminated with Hg, a practice that continues in many parts of the world today. Between 1998 and 2013, the United States Geological Survey (USGS) collected and analyzed Carson River water for Hg and methylmercury (MeHg) concentrations resulting in a sixteen year record of unfiltered total mercury (uf.THg), filtered (dissolved) Hg (f.THg), total methylmercury (uf.MeHg), filtered MeHg (f.MeHg), and particulate-bound THg (p.THg) and MeHg (p.MeHg) concentrations. This represents one of the longest continuous records of Hg speciation data for any riverine system, thereby providing a unique opportunity to evaluate long-term trends in concentrations and annual loads. During the period of analysis, uf.THg concentration and load trended downward at rates of −0.85% and −1.8% per year, respectively. Conversely, the f.THg concentration increased at a rate of 1.7% per year between 1998 and 2005, and 4.9% per year between 2005 and 2013. Trends in flow-normalized partition coefficients for both Hg and MeHg suggest a statistically significant shift from the particulate to the filtered phase. The upwardly accelerating f.THg concentration and observed shift from the solid phase to the aqueous phase among the pools of Hg and MeHg within the river water column signals an increased risk of deteriorating ecological conditions in the lower basin with respect to Hg contamination. More broadly, the 16-year trend analysis, completed 140 years after the commencement of major Hg releases to the Carson River, provides a poignant example of the ongoing legacy left behind by gold and silver mining techniques that relied on Hg amalgamation, and a cautionary tale for regions still pursuing the practice in other countries.

  18. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mailloux, Ryan J.; Yumvihoze, Emmanuel; Chan, Hing Man, E-mail: laurie.chan@uottawa.ca

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O{sub 2}·{sup −}), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O{sub 2}·{sup −} mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O{sub 2}·{sup −} in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O{sub 2}·{sup −} productionmore » by mitochondria. Both rotenone and PQ, which increase O{sub 2}·{sup −} in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O{sub 2}·{sup −} into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O{sub 2}·{sup −} emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O{sub 2}·{sup −}, specifically within the matrix of mitochondria when O{sub 2}·{sup −} is in adequate supply. Our results also show that O{sub 2}·{sup −} amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. - Highlights: • Superoxide produced in the matrix of mitochondria degrades MeHg. • Superoxide produced in intermembrane space does not degrade MeHg. • Matrix-generated superoxide enhances Hg toxicity by converting MeHg to iHg.« less

  19. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary

    USGS Publications Warehouse

    Bergamaschi, B.A.; Krabbenhoft, D.P.; Aiken, G.R.; Patino, E.; Rumbold, D.G.; Orem, W.H.

    2012-01-01

    The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (??12.6) g C m -2 yr -1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ?? 4.5 ??g total Hg m -2 yr -1 and 3.1 ?? 0.4 ??g methyl Hg m -2 yr -1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. ?? 2011 American Chemical Society.

  20. Tidally Driven Export of Dissolved Organic Carbon, Total Mercury, and Methylmercury from a Mangrove-Dominated Estuary

    PubMed Central

    2011-01-01

    The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (±12.6) g C m–2 yr–1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ± 4.5 μg total Hg m–2 yr–1 and 3.1 ± 0.4 μg methyl Hg m–2 yr–1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. PMID:22206226

  1. Effects of cellular sorption on mercury bioavailability and methylmercury production by Desulfovibrio desulfuricans ND132

    DOE PAGES

    Liu, Yu-Rong; Lu, Xia; Zhao, Linduo; ...

    2016-11-14

    Microbial conversion of inorganic mercury (IHg) to methylmercury (MeHg) is a significant environmental concern because of the bioaccumulation and biomagnification of toxic MeHg in the food web. Laboratory incubation studies have shown that, despite the presence of large quantities of IHg in cell cultures, MeHg biosynthesis often reaches a plateau or a maximum within hours or a day by an as yet unexplained mechanism. In this paper, we report that mercuric Hg(II) can be taken up rapidly by cells of Desulfovibrio desulfuricans ND132, but a large fraction of the Hg(II) is unavailable for methylation because of strong cellular sorption. Thiols,more » such as cysteine, glutathione, and penicillamine, added either simultaneously with Hg(II) or after cells have been exposed to Hg(II), effectively desorb or mobilize the bound Hg(II), leading to a substantial increase in MeHg production. The amount of thiol-desorbed Hg(II) is strongly correlated to the amount of MeHg produced (r = 0.98). Furthermore, cells do not preferentially take up Hg(II)–thiol complexes, but Hg(II)–ligand exchange between these complexes and the cell-associated proteins likely constrains Hg(II) uptake and methylation. Finally, we suggest that, aside from aqueous chemical speciation of Hg(II), binding and exchange of Hg(II) between cells and complexing ligands such as thiols and naturally dissolved organics in solution is an important controlling mechanism of Hg(II) bioavailability, which should be considered when predicting MeHg production in the environment.« less

  2. Methylmercury Increases and Eicosapentaenoic Acid Decreases the Relative Amounts of Arachidonic Acid-Containing Phospholipids in Mouse Brain.

    PubMed

    Zeng, Ying-Xu; Du, Zhen-Yu; Mjøs, Svein Are; Grung, Bjørn; Midtbø, Lisa K

    2016-01-01

    The membrane phospholipid composition in mammalian brain can be modified either by nutrients such as dietary fatty acids, or by certain toxic substances such as methylmercury (MeHg), leading to various biological and toxic effects. The present study evaluated the effects of eicosapentaenoic acid (EPA) and MeHg on the composition of the two most abundant membrane phospholipid classes, i.e., phosphatidylcholines (PtdCho) and phosphatidylethanolamines (PtdEtn), in mouse brain by using a two-level factorial design. The intact membrane PtdCho and PtdEtn species were analyzed by liquid chromatography-mass spectrometry. The effects of EPA and MeHg on the PtdCho and PtdEtn composition were evaluated by principal component analysis and ANOVA. The results showed that EPA and MeHg had different effects on the composition of membrane PtdCho and PtdEtn species in brain, where EPA showed strongest impact. EPA led to large reductions in the levels of arachidonic acid (ARA)-containing PtdCho and PtdEtn species in brain, while MeHg tended to elevate the levels of ARA-containing PtdCho and PtdEtn species. EPA also significantly increased the levels of PtdCho and PtdEtn species with n-3 fatty acids. Our results indicate that EPA may to some degree counteract the alterations of the PtdCho and PtdEtn pattern induced by MeHg, and thus alleviate the MeHg neurotoxicity in mouse brain through the inhibition of ARA-derived pro-inflammatory factors. These results may assist in the understanding of the interaction between MeHg, EPA and phospholipids, as well as the risk and benefits of a fish diet.

  3. The Contribution of Oil Sands Industry Related Atmospheric THg and MeHg Deposition to Rivers of the Athabasca Oil Sands Region of Canada

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Cooke, C. A.; Kirk, J.; Chambers, P. A.; Alexander, A. C.; Rooney, R. C.

    2017-12-01

    Rapid development of Oil Sands deposits in northern Alberta (Canada) raises concerns about human health and environmental impacts. We present results from a three-year study of winter-time atmospheric deposition of total mercury (THg) and methylmercury (MeHg) in six tributary watersheds of the Athabasca River. Seasonal snowpack THg and MeHg concentrations were obtained from spring-time sampling throughout the oil sands region. Winter-time Hg loads were then modeled at watershed and sub-basin scales using ArcGIS geostatistical kriging. To determine the potential impacts of snowmelt on aquatic ecosystems, six rivers were sampled at high frequency over 2012 to 2014 ice-free seasons. Hydrologic year (HY) and first discharge peak loads were then calculated from linear extrapolation of measured concentrations and mean daily discharge. Results showed high THg and MeHg loads from atmospheric deposition around regional upgrading facilities with loads diminishing outwards. This reflects the large proportion of particle bound Hg with a short atmospheric residence time, and deposition close to emission sources. Snowpacks within the six watersheds contained substantial proportions of tributary river THg and MeHg loads. For example, HY2014 snowpacks contained 24 to 46 % of river MeHg loads. All rivers showed a large proportion of HY loads discharged, within a few weeks, in the spring first discharge peak. HY2014 snowpack MeHg loads were greater than river loads in the first discharge peak for all watersheds except the High Hills. This first discharge peak is important as it occurs during critical growth periods for aquatic life. Large differences in tributary river THg and MeHg loads suggest factors other than atmospheric deposition and watershed scale contributed to the load. Considerably higher THg and MeHg snowpack loads in the Muskeg Watershed relative to river export suggest substantial losses to catchment soils or wetlands during snowmelt. Evaluation of factors that could

  4. Distributions and fluxes of methylmercury in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Yang, Jisook; Kim, Hyunji; Kang, Chang-Keun; Kim, Kyung-Ryul; Han, Seunghee

    2017-12-01

    The East/Japan Sea (EJS) is well ventilated to deep water via brine rejection from ice formations and thermohaline convection, resulting in a short overturning period in several decades. Due to these characteristics, the dissolved oxygen concentration in the EJS deep water is much higher (190-200 μg L-1 at 3000 m water depth) than that found at the same depths of the Northwestern Pacific (30 μg L-1) or anywhere in the Pacific Ocean. The total mercury (THg) and methylmercury (MeHg) distributions, and MeHg mass budgets were investigated to identify how the EJS's distinct circulation pattern affects Hg speciation. Whereas the THg concentration in the surface seawater (ranging from 0.20 to 1.2 pM, mean 0.59 ± 0.24 pM) showed no site variation between the Japan Basin and the Ulleung Basin, the MeHg concentration in the surface seawater was significantly higher (p < 0.05) in the Japan Basin (32 ± 24 fM) than in the Ulleung Basin (12 fM), with a south to north increasing gradient. This observation was supported by the mass budget estimation showing that upward diffusion as well as net methylation of Hg(II) was the primary source of MeHg in the surface seawater; the upward diffusion value was higher in the Japan Basin (3.2 nmol m-2 yr-1) than in the Ulleung Basin (1.9 nmol m-2 yr-1) due to the shallow thermocline depths in the Japan Basin. In contrast, the MeHg concentration in deep seawater (1000-3000 m) was similar between the Japan Basin (530 ± 87 fM) and the Ulleung Basin (610 ± 99 fM) and significantly (p < 0.05) higher than in the North Pacific (24 ± 40 fM) or North Atlantic (87 ± 96 fM) deep seawater. The Hg(II) methylation capacity, represented by the MeHg concentration normalized to apparent oxygen utilization, was also higher for the EJS deep water (0.0048) than the Northeastern Pacific (0.0030) and Northwestern Pacific (0.0025) intermediate waters, implying that the short overturning period of EJS may cause exclusively high MeHg concentrations in the

  5. Total mercury and methylmercury concentrations over a gradient of contamination in earthworms living in rice paddy soil.

    PubMed

    Abeysinghe, Kasun S; Yang, Xiao-Dong; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Cao, Axiang; Feng, Xinbin; Liu, Shengjie; Mammides, Christos; Meng, Bo; Quan, Rui-Chang; Sun, Jing; Qiu, Guangle

    2017-05-01

    Mercury (Hg) deposited from emissions or from local contamination, can have serious health effects on humans and wildlife. Traditionally, Hg has been seen as a threat to aquatic wildlife, because of its conversion in suboxic conditions into bioavailable methylmercury (MeHg), but it can also threaten contaminated terrestrial ecosystems. In Asia, rice paddies in particular may be sensitive ecosystems. Earthworms are soil-dwelling organisms that have been used as indicators of Hg bioavailability; however, the MeHg concentrations they accumulate in rice paddy environments are not well known. Earthworm and soil samples were collected from rice paddies at progressive distances from abandoned mercury mines in Guizhou, China, and at control sites without a history of Hg mining. Total Hg (THg) and MeHg concentrations declined in soil and earthworms as distance increased from the mines, but the percentage of THg that was MeHg, and the bioaccumulation factors in earthworms, increased over this gradient. This escalation in methylation and the incursion of MeHg into earthworms may be influenced by more acidic soil conditions and higher organic content further from the mines. In areas where the source of Hg is deposition, especially in water-logged and acidic rice paddy soil, earthworms may biomagnify MeHg more than was previously reported. It is emphasized that rice paddy environments affected by acidifying deposition may be widely dispersed throughout Asia. Environ Toxicol Chem 2017;36:1202-1210. © 2016 SETAC. © 2016 SETAC.

  6. Spatial and temporal distribution of mercury and methylmercury in bivalves from the French coastline.

    PubMed

    Briant, N; Chouvelon, T; Martinez, L; Brach-Papa, C; Chiffoleau, J F; Savoye, N; Sonke, J; Knoery, J

    2017-01-30

    Marine mercury (Hg) concentrations have been monitored in the French coastline for the last half a century using bivalves. The analyses presented in this study concerned 192 samples of bivalves (mussels: Mytilus edulis and Mytilus galloprovincialis and oysters: Crassostrea gigas and Isognomon alatus) from 77 sampling stations along the French coast and in the French Antilles sea. The goals of this study were to assess MeHg levels in various common bivalves from French coastline, and to identify possible geographic, taxonomic or temporal variations of concentrations. We show that the evolution of methylmercury (MeHg) concentrations covary with total mercury (HgT) concentrations. Moreover, in most of the study sites, HgT concentrations have not decreased since 1987, despite regulations to decrease or ban mercury used for anthropic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Co-exposure to methylmercury and inorganic arsenic in baby rice cereals and rice-containing teething biscuits.

    PubMed

    Rothenberg, Sarah E; Jackson, Brian P; Carly McCalla, G; Donohue, Alexis; Emmons, Alison M

    2017-11-01

    Rice is an important dietary source for methylmercury (MeHg), a potent neurotoxin, and inorganic arsenic (As), a human carcinogen. Rice baby cereals are a dietary source of inorganic As; however, less is known concerning MeHg concentrations in rice baby cereals and rice teething biscuits. MeHg concentrations were measured in 36 rice baby cereals, eight rice teething biscuits, and four baby cereals manufactured with oats/wheat (n = 48 total). Arsenic (As) species, including inorganic As, were determined in rice baby cereals and rice teething biscuits (n = 44/48), while total As was determined in all products (n = 48). Rice baby cereals and rice teething biscuits were on average 61 and 92 times higher in MeHg, respectively, and 9.4 and 4.7 times higher in total As, respectively, compared to wheat/oat baby cereals. For a 15-g serving of rice baby cereal, average MeHg intake was 0.0092μgday -1 (range: 0.0013-0.034μgday -1 ), while average inorganic As intake was 1.3μgday -1 (range: 0.37-2.3μgday -1 ). Inorganic As concentrations in two brands of rice baby cereal (n = 12/36 boxes of rice cereal) exceeded 100ng/g, the proposed action level from the U.S. Food and Drug Administration. Log 10 MeHg and inorganic As concentrations in rice baby cereals were strongly, positively correlated (Pearson's rho = 0.60, p < 0.001, n = 36). Rice-containing baby cereals and teething biscuits were a dietary source of both MeHg and inorganic As. Studies concerning the cumulative impacts of MeHg and inorganic As on offspring development are warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Neurotoxicity of Methylmercury in Isolated Astrocytes and Neurons: the Cytoskeleton as a Main Target.

    PubMed

    Pierozan, Paula; Biasibetti, Helena; Schmitz, Felipe; Ávila, Helena; Fernandes, Carolina Gonçalves; Pessoa-Pureur, Regina; Wyse, Angela T S

    2017-10-01

    In the present work, we focused on mechanisms of methylmercury (MeHg) toxicity in primary astrocytes and neurons of rats. Cortical astrocytes and neurons exposed to 0.5-5 μM MeHg present a link among morphological alterations, glutathione (GSH) depletion, glutamate dyshomeostasis, and cell death. Disrupted neuronal cytoskeleton was assessed by decreased neurite length and neurite/neuron ratio. Astrocytes presented reorganization of actin and glial fibrillary acidic protein (GFAP) networks and reduced cytoplasmic area. Glutamate uptake and Na + K + ATPase activity in MeHg-treated astrocytes were preserved; however, downregulated EAAC1-mediated glutamate uptake was associated with impaired Na + K + ATPase activity in neurons. Oxidative imbalance was found in astrocytes and neurons through increased 2'7'-dichlorofluorescein (DCF) production and misregulated superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GPX) activities. Glutathione (GSH) levels were downregulated in both astrocytes and neurons. MeHg reduced neuronal viability and induced caspase 3-dependent apoptosis together with downregulated PI3K/Akt pathway. In astrocytes, necrotic death was associated with increased TNF-α and JNK/MAPK activities. Cytoskeletal remodeling and cell death were fully prevented in astrocytes and neurons by GSH, but not melatonin or Trolox supplementation. These findings support a role for depleted GSH in the cytotoxicity of MeHg leading to disruption of the cytoskeleton and cell death. Moreover, in neurons, glutamate antagonists also prevented cytoskeletal disruption and neuronal death. We propose that cytoskeleton is an end point in MeHg cytotoxicity. Oxidative imbalance and glutamate mechanisms mediate MeHg cytoskeletal disruption and apoptosis in neurons. Otherwise, redox imbalance and glutamate-independent mechanisms disrupted the cytoskeleton and induced necrosis in MeHg-exposed astrocyte.

  9. Oxygen intrusion into anoxic fjords leads to increased methylmercury availability

    NASA Astrophysics Data System (ADS)

    Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy

    2013-04-01

    Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the

  10. Proteome profiling reveals regional protein alteration in cerebrum of common marmoset (Callithrix jacchus) exposed to methylmercury.

    PubMed

    Shao, Yueting; Yamamoto, Megumi; Figeys, Daniel; Ning, Zhibin; Chan, Hing Man

    2016-03-10

    Methylmercury (MeHg) is known to selectively damage the calcarine and precentral cortices along deep sulci and fissures in adult cases, but the detailed mechanism is still unclear. This study aims to identify and analyze the differential proteome expression in two regions of the cerebrum (the frontal lobe and the occipital lobe including the calcarine sulcus) of the common marmoset exposed to MeHg using a shot-gun proteomic approach. A total of 1045 and 1062 proteins were identified in the frontal lobe (FL) and occipital lobe (OL), of which, 62 and 89 proteins were found significantly changed with MeHg exposure. Functional enrichment/depletion analysis showed that the lipid metabolic process and proteolysis were affected in both two lobes. Functional changes in FL were characterized in cell cycle and cell division, sulfur compound metabolic process, microtubule-based process and glycerolipid metabolic process. In comparison, proteins were enriched in the functions of transport, carbohydrate metabolic process, chemical caused homeostasis and regulation of body fluid levels in OL. Pathway analysis predicted that vasopressin-regulated water reabsorption was disturbed in MeHg-treated FL. Our results showed that MeHg induced regional specific protein changes in FL and OL but with similar endpoint effects such as energy diminish and disruption of water transport. APOE and GPX1 were shown to be possible key proteins targeted by MeHg leading to multiple functional changes in OL. This is the first report of the whole proteome changes of primate cerebrum for MeHg neurotoxicity, and the results will contribute to the understanding of molecular basis of MeHg intoxication in humans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Is Susceptibility to Prenatal Methylmercury Exposure from Fish Consumption Non-Homogeneous? Tree-Structured Analysis for the Seychelles Child Development Study

    PubMed Central

    Huang, Li-Shan; Myers, Gary J.; Davidson, Philip W.; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W.; Cernichiari, Elsa; Shamlaye, Conrad F.; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W.

    2007-01-01

    Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age nine years. The analyses for the most recent nine-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated nonlinearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of twenty-one endpoints available at age nine years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other nine-year endpoints that in the linear analysis has a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels. PMID:17942158

  12. Is susceptibility to prenatal methylmercury exposure from fish consumption non-homogeneous? Tree-structured analysis for the Seychelles Child Development Study.

    PubMed

    Huang, Li-Shan; Myers, Gary J; Davidson, Philip W; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W; Cernichiari, Elsa; Shamlaye, Conrad F; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W

    2007-11-01

    Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age 9 years. The analyses for the most recent 9-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated non-linearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of 21 endpoints available at age 9 years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other 9-year endpoints that in the linear analysis had a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels.

  13. Effects of adolescent exposure to methylmercury and d-amphetamine on reversal learning and an extradimensional shift in male mice

    PubMed Central

    Boomhower, Steven R.; Newland, M. Christopher

    2016-01-01

    Adolescence is associated with the continued maturation of dopamine neurotransmission and is implicated in the etiology of many psychiatric illnesses. Adolescent exposure to neurotoxicants that distort dopamine neurotransmission, such as methylmercury (MeHg), may modify the effects of chronic d-amphetamine (d-AMP) administration on reversal learning and attentional-set shifting. Male C57Bl/6n mice were randomly assigned to two MeHg-exposure groups (0 ppm and 3 ppm) and two d-AMP-exposure groups (saline and 1 mg/kg/day), producing four treatment groups (n = 10–12/group): Control, MeHg, d-AMP, and MeHg + d-AMP. MeHg exposure (via drinking water) spanned postnatal day 21–59 (the murine adolescent period), and once daily i.p. injections of d-AMP or saline spanned postnatal day 28–42. As adults, mice were trained on a spatial-discrimination-reversal (SDR) task in which the spatial location of a lever press predicted reinforcement. Following two SDRs, a visual-discrimination task (extradimensional shift) was instated in which the presence of a stimulus light above a lever predicted reinforcement. Responding was modeled using a logistic function, which estimated the rate (slope) of a behavioral transition and trials required to complete half a transition (half-max). MeHg, d-AMP, and MeHg + d-AMP exposure increased estimates of half-max on the second reversal. MeHg exposure increased half-max and decreased the slope term following the extradimensional shift, but these effects did not occur following MeHg + d-AMP exposure. MeHg + d-AMP exposure produced more perseverative errors and omissions following a reversal. Adolescent exposure to MeHg can modify the behavioral effects of chronic d-AMP administration. PMID:28287789

  14. Effects of adolescent exposure to methylmercury and d-amphetamine on reversal learning and an extradimensional shift in male mice.

    PubMed

    Boomhower, Steven R; Newland, M Christopher

    2017-04-01

    Adolescence is associated with the continued maturation of dopamine neurotransmission and is implicated in the etiology of many psychiatric illnesses. Adolescent exposure to neurotoxicants that distort dopamine neurotransmission, such as methylmercury (MeHg), may modify the effects of chronic d -amphetamine ( d -AMP) administration on reversal learning and attentional-set shifting. Male C57Bl/6n mice were randomly assigned to two MeHg-exposure groups (0 ppm and 3 ppm) and two d -AMP-exposure groups (saline and 1 mg/kg/day), producing four treatment groups (n = 10-12/group): control, MeHg , d -AMP, and MeHg + d -AMP. MeHg exposure (via drinking water) spanned postnatal days 21-59 (the murine adolescent period), and once daily intraperitoneal injections of d -AMP or saline spanned postnatal days 28-42. As adults, mice were trained on a spatial-discrimination-reversal (SDR) task in which the spatial location of a lever press predicted reinforcement. Following 2 SDRs, a visual-discrimination task (extradimensional shift) was instated in which the presence of a stimulus light above a lever predicted reinforcement. Responding was modeled using a logistic function, which estimated the rate (slope) of a behavioral transition and trials required to complete half a transition (half-max). MeHg, d -AMP, and MeHg + d -AMP exposure increased estimates of half-max on the second reversal. MeHg exposure increased half-max and decreased the slope term following the extradimensional shift, but these effects did not occur following MeHg + d -AMP exposure. MeHg + d -AMP exposure produced more perseverative errors and omissions following a reversal. Adolescent exposure to MeHg can modify the behavioral effects of chronic d -AMP administration. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution.

    PubMed

    Harada, M

    1995-01-01

    Minamata disease (M. d.) is methylmercury (MeHg) poisoning that occurred in humans who ingested fish and shellfish contaminated by MeHg discharged in waste water from a chemical plant (Chisso Co. Ltd.). It was in May 1956, that M. d. was first officially "discovered" in Minamata City, south-west region of Japan's Kyushu Island. The marine products in Minamata Bay displayed high levels of Hg contamination (5.61 to 35.7 ppm). The Hg content in hair of patients, their family and inhabitants of the Shiranui Sea coastline were also detected at high levels of Hg (max. 705 ppm). Typical symptoms of M. d. are as follows: sensory disturbances (glove and stocking type), ataxia, dysarthria, constriction of the visual field, auditory disturbances and tremor were also seen. Further, the fetus was poisoned by MeHg when their mothers ingested contaminated marine life (named congenital M. d.). The symptom of patients were serious, and extensive lesions of the brain were observed. While the number of grave cases with acute M. d. in the initial stage was decreasing, the numbers of chronic M. d. patients who manifested symptoms gradually over an extended period of time was on the increase. For the past 36 years, of the 2252 patients who have been officially recognized as having M. d., 1043 have died. This paper also discusses the recent remaining problems.

  16. Effects of dietary methylmercury on juvenile Sacramento blackfish bioenergetics.

    PubMed

    Houck, Ann; Cech, Joseph J

    2004-08-10

    Although much is known about the biogeochemical cycling of mercury in the environment, relatively little is known about methylmercury (MeHg) bioaccumulation in fishes and how chronic sub-lethal exposures affect their functioning. Several species of fish in Clear Lake, California have high MeHg tissue levels, including Sacramento blackfish, Orthodon microlepidotus, a large native cyprinid that is fished commercially. We fed juvenile blackfish one of four diets containing MeHg (0.21 mg/kg control; 0.52 mg/kg low; 22.2 mg/kg medium; and 55.5 mg/kg high treatments) for 70 days. There were no statistical differences (P > 0.05) in food consumption among the treatment groups. By 35 days the high treatment group had a significantly depressed growth rate when compared to the control group (P < 0.05) and by 70 days both the medium and the high groups had significantly lower growth rates (P < 0.05). The high-dose group had a significantly (P < 0.05) lower specific growth rate (SGR) compared all other treatment groups at 35 days, although by 70 days these differences were not significant. The wet/dry muscle mass and muscle mass/total mass ratios, condition factor, and resting routine metabolic rates at both 35 and 70 days were statistically indistinguishable (P > 0.05) between treatment groups. All treatment groups assimilated the dietary MeHg into muscle tissue in a dose-dependent fashion. Percent assimilation was significantly lower (P < 0.05) in the high-dose group compared to the low-dose group at 35 days, (control 53%, low-dose 61%, medium-dose 50%, and high-dose 40%) but at 70 days assimilation was lower (35, 43, 42, and 32%, respectively) and statistically indistinguishable (P > 0.05) among the treatment groups. Dietary MeHg concentrations and bioaccumulation rates were correlated (r2 = 0.98 at 35 days, 0.99 at 70 days). These results may contribute to construction of ecosystem mercury models and more informed natural resources management at Clear Lake.

  17. Linking diurnal trends in methylmercury concentration and organic matter photo-reactivity in wetlands of the Yolo Bypass, California

    NASA Astrophysics Data System (ADS)

    Fleck, J. A.; Downing, B. D.; Saraceno, J.; Gill, G.; Stephenson, M.; Bergamaschi, B. A.

    2008-12-01

    Aqueous concentrations of methylmercury (MeHg) are known to vary temporally and spatially due to multiple concurrent production and loss mechanisms, and due to variations in the hydrologic connectivity between the methylating substrate (most commonly the benthos) and the overlying water compartments. Diurnal trends in MeHg production, bacterial demethylation, photo-demethylation, diffusion and advection transport processes have been identified and investigated; however, the magnitude and relative importance of each process in mediating overlying water MeHg concentrations, is not well known in natural wetland systems. Temporal variations in aqueous MeHg concentrations may impact the biological accumulation of MeHg into the base of the aquatic food chain, and may challenge regulatory efforts designed to mitigate MeHg exports from point and non-point sources. To identify the possible "hot moments" during the diurnal cycle, surface water MeHg concentrations were monitored in two agricultural wetland settings (wild rice and white rice fields) over a 24- hour period within the Yolo Bypass Wildlife Area, California using a combination of in situ optical sensors and traditional surface-water grab samples. In the wild rice field, MeHg concentrations doubled from 1 ng/L to 2 ng/L over the nighttime hours and returned to 1 ng/L during the daylight hours, whereas the white rice field showed no significant variation in MeHg concentration (0.73 +/- 0.08 ng/L) throughout the diurnal cycle. Similar trends were observed when MeHg data was expressed as a percentage of total Hg, with both wetland habitats exhibiting similar levels (20% MeHg) following the nighttime period and the wild rice field declining to 10% in the early evening. Field parameters measured in situ (including: solar radiation, pH, dissolved oxygen, and temperature) exhibited large diurnal trends in both wetlands, whereas optical proxies for dissolved organic matter (DOM) composition mirrored the fluctuations in MeHg

  18. Sulfate threshold target to control methylmercury levels in wetland ecosystems

    USGS Publications Warehouse

    Corrales, J.; Naja, G.M.; Dziuba, C.; Rivero, R.G.; Orem, W.

    2011-01-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear-1, respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear-1, respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear-1, and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear-1. Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL-1 was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2??gL-1 criterion for surface water already established by the U.S. Environmental Protection Agency (EPA). ?? 2011 Elsevier B.V.

  19. The pathology of methylmercury poisoning (Minamata disease): The 50th Anniversary of Japanese Society of Neuropathology.

    PubMed

    Eto, Komyo; Marumoto, Masumi; Takeya, Motohiro

    2010-10-01

    Methylmercury (Me-Hg) poisoning (Minamata disease: MD) is one of the most severe types of disease caused by humans to humans in Japan. The disease is a special class of food-borne methylmercury intoxication in humans as typified by the outbreak that began in 1953 in Minamata and its vicinity in Kumamoto Prefecture, Japan. There are 450 autopsy cases in Kumamoto and 30 autopsy cases in Niigata Prefecture related to MD in Japan. Two hundred and one cases in Kumamoto and 22 cases in Niigata showed pathological changes of MD. This report provides a brief research history and overview of the pathological changes of MD, and also presents representative cases of adult, infantile and fetal forms of MD among the 450 MD-related autopsy cases in Kumamoto Prefecture. © 2010 Japanese Society of Neuropathology.

  20. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils.

    PubMed

    Braaten, Hans Fredrik Veiteberg; de Wit, Heleen A

    2016-11-01

    Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry

  1. Prenatal exposure to low-level methylmercury alters the child's fine motor skills at the age of 18 months.

    PubMed

    Prpić, Igor; Milardović, Ana; Vlašić-Cicvarić, Inge; Špiric, Zdravko; Radić Nišević, Jelena; Vukelić, Petar; Snoj Tratnik, Janja; Mazej, Darja; Horvat, Milena

    2017-01-01

    To compare motor, cognitive and language characteristics in children aged 18 months who were prenatally exposed to low-level methyl-mercury (MeHg), and to analyze the eventual differences in these characteristics in relation to cord blood THg concentration. The total number of 205 child-mother pairs was included in the study, and total cord blood mercury was measured in 198 of them. Out of the 198 already measured samples, 47 of them have also been tested for methyl-mercury in cord blood. Data regarding the 47 samples of MeHg levels has been used for calculating the correlation between cord blood THg and cord blood MeHg. MeHg and THg showed a significant correlation (r=0.95, p<0.05). One month after the delivery, mothers were asked to complete the questionnaire regarding socioeconomic factors, breastfeeding of their infants, and dietary habits during pregnancy. Neurodevelopmental assessment of motor, cognitive and language skills were conducted on 168 children using The Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Regarding the cord blood THg concentration, 135 children were divided in 4 quartile groups. Their neurodevelopmental characteristics have been compared. The cord blood THg concentration median and inter-quartile range was 2.98ng/g (1.41-5.61ng/g). There was a negative correlation between cord blood THg concentration and fine motor skills (rho=-0.22, p=0.01). It is evident that children grouped in 2nd ,3rd and 4th quartile had statistically significant lower fine motor skills assessment related to those grouped in 1st quartile (2nd quartile -1.24, p=0.03; 3rd quartile -1.28, p=0.03; 4th quartile -1.45, p=0.01). The differences in fine motor skills assessments between children in 2nd and 3rd and 3rd and 4th quartile were not statistically significant. Intrauterine exposure to low-level THg (MeHg) is associated with alterations in fine motor skills at the age of 18 months. Copyright © 2016. Published by Elsevier Inc.

  2. Role of the floodplain lakes in the methylmercury distribution and exchanges with the Amazon River, Brazil.

    PubMed

    Maia, Poliana Dutra; Maurice, Laurence; Tessier, Emmanuel; Amouroux, David; Cossa, Daniel; Moreira-Turcq, Patricia; Etcheber, Henri

    2018-06-01

    Seasonal variability of dissolved and particulate methylmercury (F-MeHg, P-MeHg) concentrations was studied in the waters of the Amazon River and its associated Curuai floodplain during hydrological year 2005-2006, to understand the MeHg exchanges between these aquatic systems. In the oxic white water lakes, with neutral pH, high F-MeHg and P-MeHg concentrations were measured during the rising water stage (0.70±0.37pmol/L, n=26) and flood peak (14.19±9.32pmol/g, n=7) respectively, when the Amazon River water discharge into the lakes was at its maximum. The lowest mean values were reported during the dry season (0.18±0.07pmol/L F-MeHg, n=10 and 1.35±1.24pmol/g P-MeHg, n=8), when water and suspended sediments were outflowing from the lakes into the River. In these lakes, the MeHg concentrations were associated to the aluminium and organic carbon/nitrogen changes. In the black water lakes, with acidic pH and reducing conditions, elevated MeHg concentrations were recorded (0.58±0.32pmol/L F-MeHg, n=16 and 19.82±15.13pmol/g P-MeHg, n=6), and correlated with the organic carbon and manganese concentrations. Elevated values of MeHg partition coefficient (4.87MeHg is mainly transported associated with the particulate phase. The P-MeHg enrichment detected in all lakes suggests autochthonous MeHg inputs from the sediments into the water column. The MeHg mass balance showed that the Curuai floodplain is not the source of P-MeHg for the Amazon River. Copyright © 2017. Published by Elsevier B.V.

  3. Evaluating the Efficacy of a Low-Impact Delivery System for In situ Treatment of Sediments Contaminated with Methylmercury and Other Hydrophobic Chemicals

    DTIC Science & Technology

    2016-02-01

    coefficient LCC Lower Canal Creek MeHg methylmercury MNR monitored natural recovery NIEHS National Institute of Environmental Health Services PAC... Health Command, Naval Facilities Engineering Command Atlantic Division (NAVFAC LANT), U.S. Air Force (USAF), Engineer Research and Development Center...Project ER-200835); (3) a PCB-contaminated tidal creek (Bailey Creek) at Fort Eustis in Virginia (National Institute of Environmental Health Services

  4. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach

    USGS Publications Warehouse

    Shanley, J.B.; Alisa, Mast M.; Campbell, D.H.; Aiken, G.R.; Krabbenhoft, D.P.; Hunt, R.J.; Walker, J.F.; Schuster, P.F.; Chalmers, A.; Aulenbach, Brent T.; Peters, N.E.; Marvin-DiPasquale, M.; Clow, D.W.; Shafer, M.M.

    2008-01-01

    The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1 ng L-1 and MeHg was less than 0.2 ng L-1. THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56) ng L-1 at Sleepers River, Vermont; 112 (0.75) ng L-1 at Rio Icacos, Puerto Rico; and 55 (0.80) ng L-1 at Panola Mt., Georgia. Filtered (<0.7 ??m) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5 ng L-1 at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling. ?? 2008 Elsevier Ltd. All rights reserved.

  5. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Fleck, Jacob A.; Ackerman, Joshua T.; Marvin-DiPasquale, Mark C.; Stricker, Craig A.; Heim, Wesley A.; Bachand, Philip A.M.; Eagles-Smith, Collin A.; Gill, Gary; Stephenson, Mark; Alpers, Charles N.

    2014-01-01

    With seasonal wetting and drying, and high biological productivity, agricultural wetlands (rice paddies) may enhance the conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg), the more toxic, organic form that biomagnifies through food webs. Yet, the net balance of MeHg sources and sinks in seasonal wetland environments is poorly understood because it requires an annual, integrated assessment across biota, sediment, and water components. We examined a suite of wetlands managed for rice crops or wildlife during 2007–2008 in California's Central Valley, in an area affected by Hg contamination from historic mining practices. Hydrologic management of agricultural wetlands for rice, wild rice, or fallowed — drying for field preparation and harvest, and flooding for crop growth and post-harvest rice straw decay — led to pronounced seasonality in sediment and aqueous MeHg concentrations that were up to 95-fold higher than those measured concurrently in adjacent, non-agricultural permanently-flooded and seasonally-flooded wetlands. Flooding promoted microbial MeHg production in surface sediment of all wetlands, but extended water residence time appeared to preferentially enhance MeHg degradation and storage. When incoming MeHg loads were elevated, individual fields often served as a MeHg sink, rather than a source. Slow, horizontal flow of shallow water in the agricultural wetlands led to increased importance of vertical hydrologic fluxes, including evapoconcentration of surface water MeHg and transpiration-driven advection into the root zone, promoting temporary soil storage of MeHg. Although this hydrology limited MeHg export from wetlands, it also increased MeHg exposure to resident fish via greater in situ aqueous MeHg concentrations. Our results suggest that the combined traits of agricultural wetlands — slow-moving shallow water, manipulated flooding and drying, abundant labile plant matter, and management for wildlife — may enhance microbial

  7. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study.

    PubMed

    Windham-Myers, Lisamarie; Fleck, Jacob A; Ackerman, Joshua T; Marvin-DiPasquale, Mark; Stricker, Craig A; Heim, Wesley A; Bachand, Philip A M; Eagles-Smith, Collin A; Gill, Gary; Stephenson, Mark; Alpers, Charles N

    2014-06-15

    With seasonal wetting and drying, and high biological productivity, agricultural wetlands (rice paddies) may enhance the conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg), the more toxic, organic form that biomagnifies through food webs. Yet, the net balance of MeHg sources and sinks in seasonal wetland environments is poorly understood because it requires an annual, integrated assessment across biota, sediment, and water components. We examined a suite of wetlands managed for rice crops or wildlife during 2007-2008 in California's Central Valley, in an area affected by Hg contamination from historic mining practices. Hydrologic management of agricultural wetlands for rice, wild rice, or fallowed - drying for field preparation and harvest, and flooding for crop growth and post-harvest rice straw decay - led to pronounced seasonality in sediment and aqueous MeHg concentrations that were up to 95-fold higher than those measured concurrently in adjacent, non-agricultural permanently-flooded and seasonally-flooded wetlands. Flooding promoted microbial MeHg production in surface sediment of all wetlands, but extended water residence time appeared to preferentially enhance MeHg degradation and storage. When incoming MeHg loads were elevated, individual fields often served as a MeHg sink, rather than a source. Slow, horizontal flow of shallow water in the agricultural wetlands led to increased importance of vertical hydrologic fluxes, including evapoconcentration of surface water MeHg and transpiration-driven advection into the root zone, promoting temporary soil storage of MeHg. Although this hydrology limited MeHg export from wetlands, it also increased MeHg exposure to resident fish via greater in situ aqueous MeHg concentrations. Our results suggest that the combined traits of agricultural wetlands - slow-moving shallow water, manipulated flooding and drying, abundant labile plant matter, and management for wildlife - may enhance microbial methylation

  8. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Sameera; Yuan, Yukun, E-mail: yuanyuku@msu.ed

    2009-11-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20-200 msmore » inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca{sup 2+}]{sub e} or application of the GABA{sub A} receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect.« less

  9. Total mercury and methyl-mercury contents and accumulation in polar microbial mats.

    PubMed

    Camacho, Antonio; Rochera, Carlos; Hennebelle, Raphaëlle; Ferrari, Christophe; Quesada, Antonio

    2015-03-15

    Although polar regions are considered isolated and pristine areas, the organisms that inhabit these zones are exposed to global pollution. Heavy metals, such as mercury, are global pollutants and can reach almost any location on Earth. Mercury may come from natural, volcanic or geological sources, or result from anthropogenic sources, in particular industrial or mining activities. In this study, we have investigated one of the most prominent biological non-marine communities in both polar regions, microbial mats, in terms of their Hg and methyl-mercury (MeHg) concentrations and accumulation capacities. The main hypotheses posed argued on the importance of different factors, and to test them, we have measured Hg concentrations in microbial mats that were collected from 6 locations in different ecological situations. For this purpose, the direct anthropogenic impacts, volcanic influences, proximity to the seashore, latitudinal gradients and C contents were investigated. Our results show that, other than the direct anthropogenic influence, none of the other hypotheses alone satisfactorily explains the Hg content in microbial mats. In contrast, the MeHg contents were noticeably different between the investigated locations, with a higher proportion of MeHg on the McMurdo Ice Shelf (Antarctica) and a lower proportion on Ward Hunt Island (High Arctic). Furthermore, our results from in situ experiments indicated that the microbial mats from South Shetland Islands could quickly accumulate (48 h) Hg when Hg dissolved salts were supplied. Over short-term periods, these mats do not transform Hg into MeHg under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Water-level fluctuations influence sediment porewater chemistry and methylmercury production in a flood-control reservoir.

    PubMed

    Eckley, Chris S; Luxton, Todd P; Goetz, Jennifer; McKernan, John

    2017-03-01

    Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log K d values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management actions can have an impact on the sediment-porewater characteristics that affect MeHg production. Such findings are also relevant to natural water systems that experience wetting and drying cycles, such as floodplains and ombrotrophic wetlands. Published by Elsevier Ltd.

  11. Neuroprotective Effect of Portulaca oleraceae Ethanolic Extract Ameliorates Methylmercury Induced Cognitive Dysfunction and Oxidative Stress in Cerebellum and Cortex of Rat Brain.

    PubMed

    Sumathi, Thangarajan; Christinal, Johnson

    2016-07-01

    Methylmercury (MeHg) is highly toxic, and its principal target tissue in human is the nervous system, which has made MeHg intoxication a public health concern for many decades. Portulaca oleraceae (purslane), a member of the Portulacaceae family, is widespread as a weed and has been ranked the eighth most common plant in the world. In this study, we sought for potential beneficial effects of Portulaca oleracea ethanolic extract (POEE) against the neurotoxicity induced by MeHg in cerebellum and cortex of rats. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with POEE (4 mg/kg, orally) 1 h prior to the administration of MeHg for 21 days. After MeHg exposure, we determine the mercury concentration by atomic absorption spectroscopy (AAS); mercury content was observed high in MeHg-induced group. POEE reduced the mercury content. We also observed that the activities of catalase, superoxide dismutase, glutathione peroxidase, and the level of glutathione were reduced. The levels of glutathione reductase and thiobarbituric acid reactive substance were found to be increased. The above biochemical changes were found to be reversed with POEE. Behavioral changes like decrease tail flick response, longer immobility time, and decreased motor activity were noted down during MeHg exposure. POEE pretreatment offered protection from these behavioral changes. MeHg intoxication also caused histopathological changes in cerebellum and cortex, which was found to be normalized by treatment with POEE. The present results indicate that POEE has protective effect against MeHg-induced neurotoxicity.

  12. The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice.

    PubMed

    Kirkpatrick, Meg; Benoit, Janina; Everett, Wyll; Gibson, Jennifer; Rist, Michael; Fredette, Nicholas

    2015-09-01

    Methylmercury (MeHg) is a widely distributed environmental neurotoxin with established effects on locomotor behaviors and cognition in both human populations and animal models. Despite well-described neurobehavioral effects, the mechanisms of MeHg toxicity are not completely understood. Previous research supports a role for oxidative stress in the toxic effects of MeHg. However, comparing findings across studies has been challenging due to differences in species, methodologies (in vivo or in vitro studies), dosing regimens (acute vs. long-term) and developmental life stage. The current studies assess the behavioral effects of MeHg in adult mice in conjunction with biochemical and cellular indicators of oxidative stress using a consistent dosing regimen. In Experiment 1, adult male C57/BL6 mice were orally administered 5 mg/kg/day MeHg or the vehicle for 28 days. Impact of MeHg exposure was assessed on inverted screen and Rotor-Rod behaviors as well as on biomarkers of oxidative stress (thioredoxin reductase (TrxR), glutathione reductase (GR) and glutathione peroxidase (GPx)) in brain and liver. In Experiment 2, brain tissue was immunohistochemically labeled for 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidation and an indicator of oxidative stress, following the same dosing regimen. 8-OHdG immunoreactivity was measured in the motor cortex, the magnocellular red nucleus (RMC) and the accessory oculomotor nucleus (MA3). Significant impairments were observed in MeHg-treated animals on locomotor behaviors. TrxR and GPx was significantly inhibited in brain and liver, whereas GR activity decreased in liver and increased in brain tissue of MeHg-treated animals. Significant MeHg-induced alterations in DNA oxidation were observed in the motor cortex, the RMC and the MA3. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region

    USGS Publications Warehouse

    Hall, B.D.; Aiken, G.R.; Krabbenhoft, D.P.; Marvin-DiPasquale, M.; Swarzenski, C.M.

    2008-01-01

    It is widely recognized that wetlands, especially those rich in organic matter and receiving appreciable atmospheric mercury (Hg) inputs, are important sites of methylmercury (MeHg) production. Extensive wetlands in the southeastern United States have many ecosystem attributes ideal for promoting high MeHg production rates; however, relatively few mercury cycling studies have been conducted in these environments. We conducted a landscape scale study examining Hg cycling in coastal Louisiana (USA) including four field trips conducted between August 2003 and May 2005. Sites were chosen to represent different ecosystem types, including: a large shallow eutrophic estuarine lake (Lake Pontchartrain), three rivers draining into the lake, a cypress-tupelo dominated freshwater swamp, and six emergent marshes ranging from a freshwater marsh dominated by Panicum hemitomon to a Spartina alterniflora dominated salt marsh close to the Gulf of Mexico. We measured MeHg and total Hg (THg) concentrations, and ancillary chemical characteristics, in whole and filtered surface water, and filtered porewater. Overall, MeHg concentrations were greatest in surface water of freshwater wetlands and lowest in the profundal (non-vegetated) regions of the lake and river mainstems. Concentrations of THg and MeHg in filtered surface water were positively correlated with the highly reactive, aromatic (hydrophobic organic acid) fraction of dissolved organic carbon (DOC). These results suggest that DOC plays an important role in promoting the mobility, transport and bioavailability of inorganic Hg in these environments. Further, elevated porewater concentrations in marine and brackish wetlands suggest coastal wetlands along the Gulf Coast are key sites for MeHg production and may be a principal source of MeHg to foodwebs in the Gulf of Mexico. Examining the relationships among MeHg, THg, and DOC across these multiple landscape types is a first step in evaluating possible links between key zones for

  14. SPME-GC-pyrolysis-AFS determination of methylmercury in marine fish products by alkaline sample preparation and aqueous phase phenylation derivatization.

    PubMed

    Jókai, Zsuzsa; Abrankó, László; Fodor, Péter

    2005-07-13

    Characterization of a cost-efficient analytical method based on alkaline sample digestion with KOH and NaOH, followed by aqueous phase phenylation derivatization with NaBPh4 and solid phase microextraction (SPME) for the determination of methylmercury in typical fish-containing food samples commercially available in Hungary, is reported. The sample preparation procedure along with the applied SPME-GC-pyrolysis-AFS system was validated by measuring certified reference materials (CRM) BCR-464, TORT-2, and a candidate CRM BCR 710. To carry out an estimation of average Hungarian methylmercury exposures via marine fish and/or fish-containing food consumption, 16 commercially available products and 3 pooled representative seafood samples of-according to a previous European survey--the three most consumed fish species in Hungary, herring, sardines, and hake, were analyzed. Methylmercury concentrations of the analyzed samples were in the range 0.016-0.137 microg of MeHg g(-1) dry weight as Hg.

  15. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity

    USGS Publications Warehouse

    Kwon, Sae Yun; Blum, Joel D.; Carvan, Michael J.; Basu, Niladri; Head, Jessica A.; Madenjian, Charles P.; David, Solomon R.

    2012-01-01

    We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on unamended food pellets (0.1 μg/g MeHg) or was switched to food pellets with 1.0 μg/g or 4.0 μg/g of added MeHg, for a period of 2 months. The difference in δ202Hg (MDF) and Δ199Hg (MIF) between fish tissues and food pellets with added MeHg was within the analytical uncertainty (δ202Hg, 0.07 ‰; Δ199Hg, 0.06 ‰), indicating no isotope fractionation. In experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ202Hg and Δ199Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting reequilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems.

  16. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity

    PubMed Central

    Kwon, Sae Yun; Blum, Joel D; Carvan, Michael J; Basu, Niladri; Head, Jessica A; Madenjian, Charles P; David, Solomon R

    2015-01-01

    We performed two controlled experiments to determine the amount of mass-dependent and mass-independent fractionation (MDF and MIF) of methylmercury (MeHg) during trophic transfer into fish. In Experiment 1, juvenile yellow perch (Perca flavescens) were raised in captivity on commercial food pellets and then their diet was either maintained on un-amended food pellets (0.1 µg/g MeHg), or was switched to food pellets with 1.0 µg/g or 4.0 µg/g of added MeHg, for a period of 2 months. The difference in δ202Hg (MDF) and Δ199Hg (MIF) between fish tissues and food pellets with added MeHg were within the analytical uncertainty (δ202Hg; 0.07 ‰, Δ199Hg; 0.06 ‰) indicating no isotope fractionation. In Experiment 2, lake trout (Salvelinus namaycush) were raised in captivity on food pellets, and then shifted to a diet of bloater (Coregonus hoyi) for 6 months. The δ202Hg and Δ199Hg of the lake trout equaled the isotopic composition of the bloater after 6 months, reflecting re-equilibration of the Hg isotopic composition of the fish to new food sources and a lack of isotope fractionation during trophic transfer. We suggest that the stable Hg isotope ratios in fish can be used to trace environmental sources of Hg in aquatic ecosystems. PMID:22681311

  17. Economic benefits of methylmercury exposure control in Europe: Monetary value of neurotoxicity prevention

    PubMed Central

    2013-01-01

    Background Due to global mercury pollution and the adverse health effects of prenatal exposure to methylmercury (MeHg), an assessment of the economic benefits of prevented developmental neurotoxicity is necessary for any cost-benefit analysis. Methods Distributions of hair-Hg concentrations among women of reproductive age were obtained from the DEMOCOPHES project (1,875 subjects in 17 countries) and literature data (6,820 subjects from 8 countries). The exposures were assumed to comply with log-normal distributions. Neurotoxicity effects were estimated from a linear dose-response function with a slope of 0.465 Intelligence Quotient (IQ) point reduction per μg/g increase in the maternal hair-Hg concentration during pregnancy, assuming no deficits below a hair-Hg limit of 0.58 μg/g thought to be safe. A logarithmic IQ response was used in sensitivity analyses. The estimated IQ benefit cost was based on lifetime income, adjusted for purchasing power parity. Results The hair-mercury concentrations were the highest in Southern Europe and lowest in Eastern Europe. The results suggest that, within the EU, more than 1.8 million children are born every year with MeHg exposures above the limit of 0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World Health Organization (WHO). The total annual benefits of exposure prevention within the EU were estimated at more than 600,000 IQ points per year, corresponding to a total economic benefit between €8,000 million and €9,000 million per year. About four-fold higher values were obtained when using the logarithmic response function, while adjustment for productivity resulted in slightly lower total benefits. These calculations do not include the less tangible advantages of protecting brain development against neurotoxicity or any other adverse effects. Conclusions These estimates document that efforts to combat mercury pollution and to reduce MeHg exposures will have very substantial

  18. Prenatal methylmercury exposure and language delay at three years of age in the Norwegian Mother and Child Cohort Study.

    PubMed

    Vejrup, Kristine; Schjølberg, Synnve; Knutsen, Helle Katrine; Kvalem, Helen Engelstad; Brantsæter, Anne Lise; Meltzer, Helle Margrete; Alexander, Jan; Magnus, Per; Haugen, Margaretha

    2016-01-01

    Prenatal methylmercury (MeHg) exposure and its possible neurodevelopmental effects in susceptible children are of concern. Studies of MeHg exposure and negative health outcomes have shown conflicting results and it has been suggested that co-exposure to other contaminants and/or nutrients in fish may confound the effect of MeHg. Our objective was to examine the association between prenatal exposure to MeHg and language and communication development at three years, adjusting for intake of fish, n-3 long chain polyunsaturated fatty acids (n-3 LCPUFAs) and co-exposure to dioxins and dioxin like polychlorinated biphenyls (dl-PCBs). We used data from the Norwegian Mother and Child Cohort Study (MoBa) collected between 2002 and 2008. The study sample consisted of 46,750 mother-child pairs. MeHg exposure was calculated from reported fish intake during pregnancy by a FFQ in mid-pregnancy. Children's language and communication skills were measured by maternal report on the Dale and Bishop grammar rating and the Ages and Stages communication scale (ASQ). We estimated odds ratios (OR) and 95% confidence intervals (CI) using logistic regressions. Median MeHg exposure was 1.3μg/day, corresponding to 0.14μg/kgbw/week. An exposure level above the 90th percentile (>2.6μg/day, >0.29μg/kgbw/week) was defined as the high MeHg exposure. Results indicated an association between high MeHg exposure and unintelligible speech with an adjusted OR 2.22 (1.31, 3.72). High MeHg exposure was also associated with weaker communication skills adjusted OR 1.33 (1.03, 1.70). Additional adjustment for fish intake strengthened the associations, while adjusting for PCBs and n-3 LCPUFA from diet or from supplements had minor impact. In conclusion, significant associations were found between prenatal MeHg exposure above the 90th percentile and delayed language and communication skills in a generally low exposed population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Analysis of methylmercury in biological guano by the optimized atomic fluorescence spectrometry coupled with microwave assisted extraction].

    PubMed

    Chen, Qian-Qian; Liu, Xiao-Dong; Sun, Li-Guang; Jiang, Shan; Yan, Hong; Liu, Yi; Luo, Yu-Han; Huang, Jing

    2011-01-01

    The analytical method for the determination of methylmercury in seabird excrements was established using atomic fluorescence spectrometry coupled with microwave-assisted extraction In general, temperature and hydrochloric amount are the most important influencing factors on the extraction of MeHg in the samples, and the present paper optimized these two parameters. The result showed that 120 degrees C and 200 microL 6 mol x L(-1) hydrochloric acid are the best extraction conditions. Under these experimental conditions, the relative standard deviation (RSD) values of reduplicative analyses on standard reference material (human hair powder) and the same seabird excrement sample were 0.74% and 6.61% respectively, and their percent recoveries were over 90%. The combination of microwave-assisted extraction and atomic fluorescence spectrometry has many advantages such as simple operation, high sensitivity, low detection limit and low cost, therefore, it is suitable for rapid separation and analysis of trace methylmercury composition in the biological guanos. Using this method, we analyzed the methylmercury contents in the ancient and fresh seabird droppings taken from Xisha Islands of South China Sea, and the result showed that the Xisha guanos were rich in methylmercury and the large input of seabird guanos will cause serious environmental contamination in the remote island ecosystem of Xisha Islands.

  20. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.).

    PubMed

    Zhou, Jun; Liu, Hongyan; Du, Buyun; Shang, Lihai; Yang, Junbo; Wang, Yusheng

    2015-04-01

    Recent studies showed that rice is the major pathway for methylmercury (MeHg) exposure to inhabitants in mercury (Hg) mining areas in China. There is, therefore, a concern regarding accumulation of Hg in rice grown in soils with high Hg concentrations. A soil pot experimental study was conducted to investigate the effects of Hg-contaminated soil on the growth of rice and uptake and speciation of Hg in the rice. Our results imply that the growth of rice promotes residual fraction of Hg transforming to organic-bound fraction in soil and increased the potential risks of MeHg production. Bioaccumulation factors deceased for IHg but relatively stabilized for MeHg with soil total mercury (THg) increasing. IHg in soil was the major source of Hg in the root and stalk, but leaf was contributed by Hg from both atmosphere and soil. Soluble and exchangeable Hg fraction can predict the bioavailability of IHg and MeHg in soils, and that can provide quantitative description of the rate of uptake of the bioavailable Hg. Soluble and exchangeable Hg fraction in paddy soil exceeding 0.0087 mg kg(-1) may cause THg concentration in rice grain above the permissible limit standard, and MeHg concentration in paddy soil more than 0.0091 mg kg(-1) may have the health risks to humans.

  1. Cyanobacteria enhance methylmercury production: a hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil.

    PubMed

    Lázaro, Wilkinson L; Guimarães, Jean Remy D; Ignácio, Aurea R A; Da Silva, Carolina J; Díez, Sergi

    2013-07-01

    The toxic potential of mercury (Hg) in aquatic systems is due to the presence and production of methylmercury (MeHg). Recent studies in tropical floodplain environments showed that periphyton associated with the roots of aquatic macrophytes produce MeHg. Periphyton communities are the first link in the food chain and one of the main MeHg sources in aquatic environments. The aim of this work was to test the hypotheses that the algal community structure affects potential methylation, and ecologically distinct communities with different algal and bacterial densities directly affect the formation of MeHg in the roots of macrophytes. To evaluate these, net MeHg production in the roots of Eichhornia crassipes in relation to the taxonomic structure of associated periphytic algae was evaluated. Macrophyte root samples were collected in the dry and flood season from two floodplain lakes in the Pantanal (Brazil). These lakes have different ecological conditions as a function of their lateral hydrological connectivity with the Paraguay River that is different during times of drought. Results indicated that MeHg production was higher in the flood season than in the dry season. MeHg production rates were higher in the disconnected lake in comparison to the connected lake during the dry season. MeHg production exhibited a strong positive co-variation with cyanobacteria abundance (R(2)=0.78; p<0.0001 in dry; R(2)=0.40; p=0.029 in flood) and with total algal biomass (R(2)=0.86; p<0.0001), and a negative co-variation with Zygnemaphyceae (R(2)=0.50; p=0.0018) in the lake community in dry season. This indicates that ecological conditions that favour the establishment and development of cyanobacteria are associated with higher rates of methylation in aquatic systems. This suggests that cyanobacteria could be a proxy for sites of MeHg production in some natural aquatic environments. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Watershed and discharge influences on the phase distribution and tributary loading of total mercury and methylmercury into Lake Superior.

    PubMed

    Babiarz, Christopher; Hoffmann, Stephen; Wieben, Ann; Hurley, James; Andren, Anders; Shafer, Martin; Armstrong, David

    2012-02-01

    Knowledge of the partitioning and sources of mercury are important to understanding the human impact on mercury levels in Lake Superior wildlife. Fluvial fluxes of total mercury (Hg(T)) and methylmercury (MeHg) were compared to discharge and partitioning trends in 20 sub-basins having contrasting land uses and geological substrates. The annual tributary yield was correlated with watershed characteristics and scaled up to estimate the basin-wide loading. Tributaries with clay sediments and agricultural land use had the largest daily yields with maxima observed near the peak in water discharge. Roughly 42% of Hg(T) and 57% of MeHg was delivered in the colloidal phase. Tributary inputs, which are confined to near-shore zones of the lake, may be more important to the food-web than atmospheric sources. The annual basin-wide loading from tributaries was estimated to be 277 kg yr(-1) Hg(T) and 3.4 kg yr(-1) MeHg (5.5 and 0.07 mg km(-2) d(-1), respectively). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Suppression of methylmercury-induced MIP-2 expression by N-acetyl-L-cysteine in murine RAW264.7 macrophage cell line.

    PubMed

    David, Juliet; Nandakumar, Athira; Muniroh, Muflihatul; Akiba, Suminori; Yamamoto, Megumi; Koriyama, Chihaya

    2017-11-09

    The aim of this study is to examine the inflammatory-cytokine expressions in the presence of non-cytotoxic dose of methylmercury (MeHg) in murine macrophages, which is suspected to play an important role in brain damage caused by MeHg exposure. We focused on murine macrophage inflammatory protein-2 (MIP-2), keratinocyte chemoattractant (KC), and monocyte chemoattractant protein-5 (MCP-5). MIP-2 and KC are murine functional homologues of human IL-8 and MCP-5 for human MCP-1. Furthermore, we examined the suppressive effect of N-acetyl-L-cysteine (NAC) on the MeHg-induced inflammatory cytokines. In a murine RAW264.7 macrophage cell line, MeHg-induced cytokine expressions were measured using real-time PCR. The suppressive effect of NAC was examined by putting it into the culture medium together with MeHg (co-treatment). In addition, pre- and post-treatment experiments were conducted, in which the cells were treated with NAC before and after MeHg exposure, respectively. Exposure to a non-cytotoxic dose of MeHg up-regulated the mRNA expression of MIP-2 and MCP-5. On the other hand, KC expression was not induced in the presence of MeHg. Effect of MeHg on MIP-2 expressions was suppressed by pre-, co-, and post-treatment with NAC. However, the suppressive effect of pre-treatment was less than the post-treatment, which was as effective as co-treatment. In functional homologues of human IL-8, only MIP-2 expression, not KC, was activated in the presence of non-cytotoxic dose of MeHg in murine RAW264.7 macrophage cell line. The more evident inhibitory effect of NAC observed in post-treatment experiments suggests a possible involvement of intracellular activities such as antioxidant effects.

  5. Mercury and methylmercury dynamics in the hyporheic zone of an Oregon stream

    USGS Publications Warehouse

    Hinkle, Stephen R.; Bencala, Kenneth E.; Wentz, Dennis A.; Krabbenhoft, David P.

    2014-01-01

    The role of the hyporheic zone in mercury (Hg) cycling has received limited attention despite the biogeochemically active nature of this zone and, thus, its potential to influence Hg behavior in streams. An assessment of Hg geochemistry in the hyporheic zone of a coarse-grained island in the Coast Fork Willamette River in Oregon, USA, illustrates the spatially dynamic nature of this region of the stream channel for Hg mobilization and attenuation. Hyporheic flow through the island was evident from the water-table geometry and supported by hyporheic-zone chemistry distinct from that of the bounding groundwater system. Redox-indicator species changed abruptly along a transect through the hyporheic zone, indicating a biogeochemically reactive stream/hyporheic-zone continuum. Dissolved organic carbon (DOC), total Hg, and methylmercury (MeHg) concentrations increased in the upgradient portion of the hyporheic zone and decreased in the downgradient region. Total Hg (collected in 2002 and 2003) and MeHg (collected in 2003) were correlated with DOC in hyporheic-zone samples: r2=0.63 (total Hg-DOC, 2002), 0.73 (total Hg-DOC, 2003), and 0.94 (MeHg-DOC, 2003). Weaker Hg/DOC association in late summer 2002 than in early summer 2003 may reflect seasonal differences in DOC reactivity. Observed correlations between DOC and both total Hg and MeHg reflect the importance of DOC for Hg mobilization, transport, and fate in this hyporheic zone. Correlations with DOC provide a framework for conceptualizing and quantifying Hg and MeHg dynamics in this region of the stream channel, and provide a refined conceptual model of the role hyporheic zones may play in aquatic ecosystems.

  6. Impact of collection container material and holding times on sample integrity for mercury and methylmercury in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riscassi, Ami L; Miller, Carrie L; Brooks, Scott C

    Mercury (Hg) and methylmercury (MeHg) concentrations in streamwater can vary on short timescales (hourly or less) during storm flow and on a diel cycle; the frequency and timing of sampling required to accurately characterize these dynamics may be difficult to accomplish manually. Automated sampling can assist in sample collection; however use has been limited for Hg and MeHg analysis due to stability concerns of trace concentrations during extended storage times. We examined the viability of using automated samplers with disposable low-density polyethylene (LDPE) sample bags to collect industrially contaminated streamwater for unfiltered and filtered Hg and MeHg analysis. Specifically wemore » investigated the effect of holding times ranging from hours to days on streamwater collected during baseflow and storm flow. Unfiltered and filtered Hg and MeHg concentrations decreased with increases in time prior to sample processing; holding times of 24 hours or less resulted in concentration changes (mean 11 7% different) similar to variability in duplicates collected manually during analogous field conditions (mean 7 10% different). Comparisons of samples collected with manual and automated techniques throughout a year for a wide range of stream conditions were also found to be similar to differences observed between duplicate grab samples. These results demonstrate automated sampling into LDPE bags with holding times of 24 hours or less can be effectively used to collect streamwater for Hg and MeHg analysis, and encourage the testing of these materials and methods for implementation in other aqueous systems where high-frequency sampling is warranted.« less

  7. Species- and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake.

    PubMed

    Arcagni, Marina; Juncos, Romina; Rizzo, Andrea; Pavlin, Majda; Fajon, Vesna; Arribére, María A; Horvat, Milena; Ribeiro Guevara, Sergio

    2018-01-15

    Niche segregation between introduced and native fish in Lake Nahuel Huapi, a deep oligotrophic lake in Northwest Patagonia (Argentina), occurs through the consumption of different prey. Therefore, in this work we analyzed total mercury [THg] and methylmercury [MeHg] concentrations in top predator fish and in their main prey to test whether their feeding habits influence [Hg]. Results indicate that [THg] and [MeHg] varied by foraging habitat and they increased with greater percentage of benthic diet and decreased with pelagic diet in Lake Nahuel Huapi. This is consistent with the fact that the native creole perch, a mostly benthivorous feeder, which shares the highest trophic level of the food web with introduced salmonids, had higher [THg] and [MeHg] than the more pelagic feeder rainbow trout and bentho-pelagic feeder brown trout. This differential THg and MeHg bioaccumulation observed in native and introduced fish provides evidence to the hypothesis that there are two main Hg transfer pathways from the base of the food web to top predators: a pelagic pathway where Hg is transferred from water, through plankton (with Hg in inorganic species mostly), forage fish to salmonids, and a benthic pathway, as Hg is transferred from the sediments (where Hg methylation occurs mostly), through crayfish (with higher [MeHg] than plankton), to native fish, leading to one fold higher [Hg]. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Economic evaluation of health consequences of prenatal methylmercury exposure in France.

    PubMed

    Pichery, Céline; Bellanger, Martine; Zmirou-Navier, Denis; Fréry, Nadine; Cordier, Sylvaine; Roue-Legall, Anne; Hartemann, Philippe; Grandjean, Philippe

    2012-08-10

    Evidence of a dose-response relationship between prenatal exposure to methylmercury (MeHg) and neurodevelopmental consequences in terms of IQ reduction, makes it possible to evaluate the economic consequences of MeHg exposures. To perform an economic evaluation of annual national benefits of reduction of the prenatal MeHg exposure in France. We used data on hair-Hg concentrations in French women of childbearing age (18-45 years) from a national sample of 126 women and from two studies conducted in coastal regions (n = 161and n = 503). A linear dose response function with a slope of 0.465 IQ point reduction per μg/g increase in hair-Hg concentration was used, along with a log transformation of the exposure scale, where a doubling of exposure was associated with a loss of 1.5 IQ points. The costs calculations utilized an updated estimate of €2008 17,363 per IQ point decrement, with three hypothetical exposure cut-off points (hair-Hg of 0.58, 1.0, and 2.5 μg/g). Because of higher exposure levels of women in coastal communities, the annual economic impacts based on these data were greater than those using the national data, i.e., € 1.62 billion (national), and € 3.02 billion and € 2.51 billion (regional), respectively, with the linear model, and € 5.46 billion (national), and € 9.13 billion and € 8.17 billion (regional), with the log model, for exposures above 0.58 μg/g. These results emphasize that efforts to reduce MeHg exposures would have high social benefits by preventing the serious and lifelong consequences of neurodevelopmental deficits in children.

  9. Effects of methylmercury on muscarinic receptors in the mouse brain: A quantitative autoradiographic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Haesung; Yee, S.; Geddes, J.

    1991-03-11

    Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({supmore » 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.« less

  10. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E,more » a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.« less

  11. Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen.

    PubMed

    Meinerz, Daiane F; Branco, Vasco; Aschner, Michael; Carvalho, Cristina; Rocha, João Batista T

    2017-09-01

    Exposure to methylmercury (MeHg), an important environmental toxicant, may lead to serious health risks, damaging various organs and predominantly affecting the brain function. The toxicity of MeHg can be related to the inhibition of important selenoenzymes, such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Experimental studies have shown that selenocompounds play an important role as cellular detoxifiers and protective agents against the harmful effects of mercury. The present study investigated the mechanisms by which diphenyl diselenide [(PhSe) 2 ] and ebselen interfered with the interaction of mercury (MeHg) and selenoenzymes (TrxR and GPx) in an in vitro experimental model of cultured human neuroblastoma cells (SH-SY5Y). Our results established that (PhSe) 2 and ebselen increased the activity and expression of TrxR. In contrast, MeHg inhibited TrxR activity even at low doses (0.5 μm). Coexposure to selenocompounds and MeHg showed a protective effect of (PhSe) 2 on both the activity and expression of TrxR. When selenoenzyme GPx was evaluated, selenocompounds did not alter its activity or expression significantly, whereas MeHg inhibited the activity of GPx (from 1 μm). Among the selenocompounds only (PhSe) 2 significantly protected against the effects of MeHg on GPx activity. Taken together, these results indicate a potential use for ebselen and (PhSe) 2 against MeHg toxicity. Furthermore, for the first time, we have demonstrated that (PhSe) 2 caused a more pronounced upregulation of TrxR than ebselen in neuroblastoma cells, likely reflecting an important molecular mechanism involved in the antioxidant properties of this compound. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review

    PubMed Central

    Burke, Thomas A; Navas-Acien, Ana; Breysse, Patrick N; McGready, John; Fox, Mary A

    2014-01-01

    Abstract Objective To examine biomarkers of methylmercury (MeHg) intake in women and infants from seafood-consuming populations globally and characterize the comparative risk of fetal developmental neurotoxicity. Methods A search was conducted of the published literature reporting total mercury (Hg) in hair and blood in women and infants. These biomarkers are validated proxy measures of MeHg, a neurotoxin found primarily in seafood. Average and high-end biomarkers were extracted, stratified by seafood consumption context, and pooled by category. Medians for average and high-end pooled distributions were compared with the reference level established by a joint expert committee of the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). Findings Selection criteria were met by 164 studies of women and infants from 43 countries. Pooled average biomarkers suggest an intake of MeHg several times over the FAO/WHO reference in fish-consuming riparians living near small-scale gold mining and well over the reference in consumers of marine mammals in Arctic regions. In coastal regions of south-eastern Asia, the western Pacific and the Mediterranean, average biomarkers approach the reference. Although the two former groups have a higher risk of neurotoxicity than the latter, coastal regions are home to the largest number at risk. High-end biomarkers across all categories indicate MeHg intake is in excess of the reference value. Conclusion There is a need for policies to reduce Hg exposure among women and infants and for surveillance in high-risk populations, the majority of which live in low-and middle-income countries. PMID:24700993

  13. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review.

    PubMed

    Sheehan, Mary C; Burke, Thomas A; Navas-Acien, Ana; Breysse, Patrick N; McGready, John; Fox, Mary A

    2014-04-01

    To examine biomarkers of methylmercury (MeHg) intake in women and infants from seafood-consuming populations globally and characterize the comparative risk of fetal developmental neurotoxicity. A search was conducted of the published literature reporting total mercury (Hg) in hair and blood in women and infants. These biomarkers are validated proxy measures of MeHg, a neurotoxin found primarily in seafood. Average and high-end biomarkers were extracted, stratified by seafood consumption context, and pooled by category. Medians for average and high-end pooled distributions were compared with the reference level established by a joint expert committee of the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). Selection criteria were met by 164 studies of women and infants from 43 countries. Pooled average biomarkers suggest an intake of MeHg several times over the FAO/WHO reference in fish-consuming riparians living near small-scale gold mining and well over the reference in consumers of marine mammals in Arctic regions. In coastal regions of south-eastern Asia, the western Pacific and the Mediterranean, average biomarkers approach the reference. Although the two former groups have a higher risk of neurotoxicity than the latter, coastal regions are home to the largest number at risk. High-end biomarkers across all categories indicate MeHg intake is in excess of the reference value. There is a need for policies to reduce Hg exposure among women and infants and for surveillance in high-risk populations, the majority of which live in low-and middle-income countries.

  14. Seasonal and flow-driven dynamics of particulate and dissolved mercury and methylmercury in a stream impacted by an industrial mercury source

    DOE PAGES

    Riscassi, Ami; Miller, Carrie; Brooks, Scott

    2015-11-17

    Sediments and floodplain soils in the East Fork Poplar Creek watershed (Oak Ridge, TN, USA) are contaminated with high levels of mercury (Hg) from an industrial source at the headwaters. Although baseflow conditions have been monitored, concentrations of Hg and methylmercury (MeHg) during high-flow storm events, when the stream is more hydrologically connected to the floodplain, have yet to be assessed. This paper evaluated baseflow and event-driven Hg and MeHg dynamics in East Fork Poplar Creek, 5 km upstream of the confluence with Poplar Creek, to determine the importance of hydrology to in-stream concentrations and downstream loads and to ascertainmore » whether the dynamics are comparable to those of systems without an industrial Hg source. Particulate Hg and MeHg were positively correlated with discharge (r 2 = 0.64 and 0.58, respectively) and total suspended sediment (r 2 = 0.97 and 0.89, respectively), and dissolved Hg also increased with increasing flow (r 2 = 0.18) and was associated with increases in dissolved organic carbon (r 2 = 0.65), similar to the dynamics observed in uncontaminated systems. Dissolved MeHg decreased with increases in discharge (r 2 = 0.23) and was not related to dissolved organic carbon concentrations (p = 0.56), dynamics comparable to relatively uncontaminated watersheds with a small percentage of wetlands (<10%). Finally, although stormflows exert a dominant control on particulate Hg, particulate MeHg, and dissolved Hg concentrations and loads, baseflows were associated with the highest dissolved MeHg concentration (0.38 ng/L) and represented the majority of the annual dissolved MeHg load.« less

  15. Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies.

    PubMed

    Siedlikowski, Maia; Bradley, Mark; Kubow, Stan; Goodrich, Jaclyn M; Franzblau, Alfred; Basu, Niladri

    2016-08-01

    Methylmercury (MeHg) is a global contaminant of concern and human exposures are largely realized via seafood consumption. While it is assumed that 95-100% of the ingested MeHg from seafood reaches systemic circulation, recent in vitro studies have yielded results to suggest otherwise. Of the published studies to have characterized the bioaccessibility or bioavailability of MeHg from seafood, only a handful of seafood species have been characterized, there exists tremendous variability in data within and across species, few species of relevance to North America have been studied, and none of the in vitro studies have adapted results to an epidemiology study. The objective of the current study was two-fold: (a) to characterize in vitro MeHg bioaccessibility and bioavailability from ten commonly consumed types of seafood in North America; and (b) to apply the bioaccessibility and bioavailability data from the in vitro study to an existing human MeHg exposure assessment study. Raw seafood samples (cod, crab, halibut, salmon, scallop, shrimp, tilapia, and three tuna types: canned light, canned white, fresh) were purchased in Montreal and their MeHg concentrations generally overlapped with values reported elsewhere. The bioaccessibility of MeHg from these samples ranged from 50.1±19.2 (canned white tuna) to 100% (shrimp and scallop) of the amount measured in the raw undigested sample. The bioavailability of MeHg from these samples ranged from 29.3±10.4 (crab) to 67.4±9.7% (salmon) of the value measured in the raw undigested sample. There were significant correlations between the initial MeHg concentration in seafood with the percent of that Hg that was bioaccessible (r=-0.476) and bioavailable (r=-0.294). When the in vitro data were applied to an existing MeHg exposure assessment study, the estimated amount of MeHg absorbed into systemic circulation decreased by 25% and 42% when considering bioaccessibility and bioavailability, respectively. When the in vitro data

  16. Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies

    PubMed Central

    Siedlikowski, Maia; Bradley, Mark; Kubow, Stan; Goodrich, Jaclyn M.; Franzblau, Alfred; Basu, Niladri

    2016-01-01

    Methylmercury (MeHg) is a global contaminant of concern and human exposures are largely realized via seafood consumption. While it is assumed that 95 to 100% of the ingested MeHg from seafood reaches systemic circulation, recent in vitro studies have yielded results to suggest otherwise. Of the published studies to have characterized the bioaccessibility or bioavailability of MeHg from seafood, only a handful of seafood species have been characterized, there exists tremendous variability in data within and across species, few species of relevance to North America have been studied, and none of the in vitro studies have adapted results to an epidemiology study. The objective of the current study was two-fold: a) to characterize in vitro MeHg bioaccessibility and bioavailability from ten commonly consumed types of seafood in North America; and b) to apply the bioaccessibility and bioavailability data from the in vitro study to an existing human MeHg exposure assessment study. Raw seafood samples (cod, crab, halibut, salmon, scallop, shrimp, tilapia, and three tuna types: canned light, canned white, fresh) were purchased in Montreal and their MeHg concentrations generally overlapped with values reported elsewhere. The bioaccessibility of MeHg from these samples ranged from 50.1±19.2 (canned white tuna) to 100% (shrimp and scallop) of the amount measured in the raw undigested sample. The bioavailability of MeHg from these samples ranged from 29.3±10.4 (crab) to 67.4±9.7% (salmon) of the value measured in the raw undigested sample. There were significant correlations between the initial MeHg concentration in seafood with the percent of that Hg that was bioaccessible (r= -0.476) and bioavailable (r=-0.294). When the in vitro data were applied to an existing MeHg exposure assessment study, the estimated amount of MeHg absorbed into systemic circulation decreased by 25% and 42% when considering bioaccessibility and bioavailability, respectively. When the in vitro data

  17. Biogeochemical and Hydrological Controls on Mercury and Methylmercury in First Order Coastal Plain Watersheds of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Heyes, A.; Gilmour, C. C.; Bell, J. T.; Butera, D.; McBurney, A. W.

    2015-12-01

    Over the past 7 years we made use of the long-term research site at the Smithsonian Environmental Research Center (SERC) in central Maryland to study the fluxes of mercury (Hg) and methylmercury (MeHg) in three small first-order mid-Atlantic coastal plain watersheds. One watershed is entirely forested, one watershed is primarily agriculture with a forested stream buffer, and one watershed is mixed land use but contains a beaver produced wetland pond. Our initial goals were to assess watershed Hg yields in the mid-Atlantic and to establish a baseline prior to implementation of Hg emissions controls. All three studied watersheds produced relatively high yields of Hg, with the greatest yield coming from the forested watershed. Our initial evaluation of three watersheds showed that MeHg production and flux could also be high, but varied dramatically among watersheds and across years and seasons. During each year we observed episodic MeHg production in the spring and sometimes during prolonged high-flow storm events in the fall. The observed spring maxima of MeHg release coincided with development of anoxia in riparian groundwater. MeHg accumulation in riparian groundwater began once nitrate was depleted and either iron accumulation or sulfate depletion of groundwater began. We propose the presence of nitrate was modulating MeHg production through the suppression of sulfate and iron reducers and perhaps methanogens. As sulfate is not limiting in any of the watersheds owing to the sediments marine origin, we hypothesize the depletion of nitrate allows sulfate reducing bacteria to now utilize available carbon. Although wetlands are generally thought of as the primary zones of MeHg production in watersheds, shallow riparian groundwaters very close to the stream appear to play that role in SERC Coastal Plain watersheds. We hypothesize that the balance between nitrate, sulfate and other microbial electron acceptors in watersheds is a major control on MeHg production. Land

  18. Methylmercury exposure, PON1 gene variants and serum paraoxonase activity in Eastern James Bay Cree adults.

    PubMed

    Drescher, Olivia; Dewailly, Eric; Diorio, Caroline; Ouellet, Nathalie; Sidi, Elhadji Anassour Laouan; Abdous, Belkacem; Valera, Beatriz; Ayotte, Pierre

    2014-11-01

    There is growing evidence that cardiovascular health can be affected by exposure to methylmercury (MeHg), by a mechanism involving oxidative stress. Paraoxonase 1 (PON1) is a high-density lipoprotein-bound enzyme that hydrolyzes toxic oxidized lipids and protects against cardiovascular diseases. Evidence from in vitro studies indicates that MeHg can inhibit PON1 activity but little is known regarding this effect in humans. We investigated whether increased blood mercury levels are associated with decreased serum PON1 activity in Cree people who are exposed to MeHg by fish consumption. We conducted a multi-community study of 881 Cree adults living in Eastern James Bay communities (Canada). Multivariate analyses considered sociodemographic, anthropometric, clinical, dietary and lifestyle variables and six PON1 gene variants (rs705379 (-108C/T), rs662 (Q192R), rs854560 (L55M), rs854572 (-909C/G), rs854571 (-832C/T) and rs705381 (-162C/T)). In a multiple regression model adjusted for all potential confounding factors and the rs854560 PON1 variant, a statistically significant MeHg*rs705379 interaction was observed. Blood mercury levels were inversely associated with serum PON1 activities in individual homozygous for the -108T allele (P=0.009). Our results suggest a gene-environment interaction between the rs705379 polymorphism and MeHg exposure on PON1 activity levels in this aboriginal population. This finding will need to be replicated in other population studies.

  19. Source identification of Florida Bay's methylmercury problem: Mainland runoff versus atmospheric deposition and in situ production

    USGS Publications Warehouse

    Rumbold, Darren G.; Evans, David W.; Niemczyk, Sharon; Fink, Larry E.; Laine, Krysten A.; Howard, Nicole; Krabbenhoft, David P.; Zucker, Mark

    2011-01-01

    The first advisory to limit consumption of Florida Bay fish due to mercury was issued in 1995. Studies done by others in the late 1990s found elevated water column concentrations of both total Hg (THg) and methylmercury (MeHg) in creeks discharging from the Everglades, which had its own recognized mercury problem. To investigate the significance of allochthonous MeHg discharging from the upstream freshwater Everglades, we collected surface water and sediment along two transects from 2000 to 2002. Concentrations of THg and MeHg, ranging from 0.36 ng THg/L to 5.98 ng THg/L and from <0.02 ng MeHg/L to 1.79 ng MeHg/L, were elevated in the mangrove transition zone when compared both to upstream canals and the open waters of Florida Bay. Sediment concentrations ranged from 5.8 ng THg/g to 145.6 ng THg/g and from 0.05 ng MeHg/g to 5.4 ng MeHg/g, with MeHg as a percentage of THg occasionally elevated in the open bay. Methylation assays indicated that sediments from Florida Bay have the potential to methylate Hg. Assessment of mass loading suggests that canals delivering stormwater from the northern Everglades are not as large a source as direct atmospheric deposition and in situ methylation, especially within the mangrove transition zone.

  20. Dietary exposure of Hong Kong secondary school students to total mercury and methylmercury from fish intake.

    PubMed

    Tang, Anna Shiu Ping; Kwong, Ka Ping; Chung, Stephen Wai Cheung; Ho, Yuk Yin; Xiao, Ying

    2009-01-01

    Fish is the main source of dietary exposure to methylmercury (MeHg), which is a public health concern owing to its potential neurotoxicity. To evaluate the public health risk, this study estimated the total mercury (tHg) and MeHg exposure from fish intake in Hong Kong secondary school students. Median tHg and MeHg concentrations of 280 samples purchased from different commercial outlets (covering 89 species of whole fish and three types of canned tuna), together with the local food consumption data of secondary school students obtained by semi-quantitative food frequency questionnaire in 2000, were used to estimate dietary exposure from fish intake for the average and high consumer (95th percentile exposure). For tHg, the median concentration was 63 µg kg(-1) (range 3-1370 µg kg(-1)) and estimated exposures ranged 0.5-0.6 µg kg(-1) body weight (bw) week(-1) for an average consumer and 1.6-1.9 µg kg(-1) bw week(-1) for a high consumer. For MeHg, median concentration was 48 µg kg(-1) (range 3-1010 µg kg(-1)) and estimated dietary exposures were 0.4-0.5 µg kg(-1) bw week(-1) for an average consumer and 1.2-1.4 µg kg(-1) bw week(-1) for a high consumer. These values are below the respective provisional tolerable weekly intake (PTWI) established by the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA). The health risk is greater for high consumers since MeHg exposures may approach or exceed the PTWI when other dietary sources are taken into account.

  1. Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters.

    PubMed

    Babiarz, C L; Hurley, J P; Hoffmann, S R; Andren, A W; Shafer, M M; Armstrong, D E

    2001-12-15

    Using tangential flow ultrafiltration, total mercury (HgT) and methylmercury (MeHg) concentrations in the colloidal phase (0.4 microm-10 kDa) were determined for 15 freshwaters located in the upper Midwest (Minnesota, Michigan, and Wisconsin) and the Southern United States (Georgia and Florida). Unfiltered concentrations were typical of those reported for freshwater and ranged from 0.9 to 27.1 ng L(-1) HgT and from 0.08 to 0.86 ng L(-1) MeHg. For some rivers, HgT and MeHg in the colloidal phase comprised up to 72% of the respective unfiltered concentration. On average, however, HgT and MeHg concentrations were evenly distributed between the particulate (>0.4 microm), colloidal, and dissolved (<10 kDa) phases. The pool of Hg in the colloidal phase decreased with increasing specific conductance. Results from experiments on freshwaters with artificially elevated specific conductance suggest that HgT and MeHg may partition to different subfractions of colloidal material. The colloidal-phase HgT correlation with filtered organic carbon (OC(F)) was generally poor (r2 < 0.14; p > 0.07), but the regression of MeHg with OC(F) was strong, especially in the upper Midwest (r2 = 0.78; p < 0.01). On a mass basis, colloidal-phase Hg concentrations were similar to those of unimpacted sediments in the Midwest. Mercury to carbon ratios averaged 352 pg of HgT/mg of C and 25 pg of MeHg/mg of C and were not correlated to ionic strength. The log of the partition coefficient (log K(D)) for HgT and MeHg ranged from 3.7 to 6.4 and was typical of freshwater values determined using a 0.4 microm cutoff between the particulate phase and the dissolved phase. Log K(D) calculated using the <10 kDa fraction as "dissolved" ranged from 4.3 to 6.6 and had a smaller standard deviation about the mean. In addition, our data support the "particle concentration effect" (PCE) hypothesis that the association of Hg with colloids in the filter-passing fraction can lower the observed log K(D). The similarity

  2. Response of oxidative stress transcripts in the brain of wild yellow perch (Perca flavescens) exposed to an environmental gradient of methylmercury.

    PubMed

    Graves, Stephanie D; Kidd, Karen A; Batchelar, Katharina L; Cowie, Andrew M; O'Driscoll, Nelson J; Martyniuk, Christopher J

    2017-02-01

    Methylmercury (MeHg) exposure and adverse health effects in fishes have been documented, but the molecular mechanisms involved in toxicity have not been fully characterized. The objectives of the current study were to (1) determine whether total Hg (THg) in the muscle was predictive of MeHg concentrations in the brain of wild female yellow perch (Perca flavescens) collected from four lakes in Kejimkujik National Park, a known biological mercury (Hg) hotspot in Nova Scotia, Canada and (2) to determine whether transcripts involved in the oxidative stress response were altered in abundance in fish collected across five lakes representing a MeHg gradient. In female yellow perch, MeHg in whole brain (0.38 to 2.00μg/g wet weight) was positively associated with THg in muscle (0.18 to 2.13μg/g wet weight) (R 2 =0.61, p<0.01), suggesting that muscle THg may be useful for predicting MeHg concentrations in the brain. Catalase (cat) mRNA levels were significantly lower in brains of perch collected from lakes with high Hg when compared to those individuals from lakes with relatively lower Hg (p=0.02). Other transcripts (cytochrome c oxidase, glutathione peroxidase, glutathione-s-transferase, heat shock protein 70, protein disulfide isomerase, and superoxide dismutase) did not show differential expression in the brain over the gradient. These findings suggest that MeHg may be inversely associated with catalase mRNA abundance in the central nervous system of wild fishes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Assessment of neurotoxic effects and brain region distribution in rat offspring prenatally co-exposed to low doses of BDE-99 and methylmercury.

    PubMed

    Zhao, Wenchang; Cheng, Jinping; Gu, Jinmin; Liu, Yuanyuan; Fujimura, Masatake; Wang, Wenhua

    2014-10-01

    Exposure to polybrominated diphenyl ether (PDBE) and methylmercury (MeHg) can occur simultaneously as both contaminants are found in the same food sources, especially fish, seafood, marine mammals and milk. The aim of this study was to assess the effects of exposure to low levels of MeHg (2.0 μg mL(-1) in drinking water) and BDE-99 (0.2 mg kg(-1) d(-1)) from gestational day 6 to postnatal day (PND) 21, alone and in combination, on neurobehavioral development and redox responses in offspring. The present study demonstrated an interaction due to co-exposure with low doses of MeHg and BDE-99 enhanced developmental neurotoxic effects. These effects were manifested as the delayed appearance of negative geotaxis reflexes, impaired motor coordination, and induction of oxidative stress in the cerebellum. In particular, the cerebellum may be a sensitive target for combined MeHg and BDE-99 toxicity. The neurotoxicity of low dose MeHg was exacerbated by the presence of low dose of BDE-99. It is concluded that prenatal co-exposure to MeHg and BDE-99 causes oxidative stress in the cerebellum of offspring by altering the activity of different antioxidant enzymes and producing free radicals. Hg retention was not affected by co-exposure to BDE-99. However, MeHg co-exposure seemed to increase BDE-99 concentrations in selected brain regions in pups compared to pups exposed to BDE-99 only. These results showed that the adverse effects following prenatal co-exposure to MeHg and BDE-99 were associated with tissue concentrations very close to the current human body burden of this persistent bioaccumulative compound. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Toxic effects of dietary methylmercury on immune function and hematology in American kestrels (Falco sparverius)

    USGS Publications Warehouse

    Fallacara, Dawn M.; Halbrook, Richard S.; French, John B.

    2011-01-01

    Fifty-nine adult male American kestrels (Falco sparverius) were assigned to one of three diet formulations including 0 (control), 0.6, and 3.9 μg/g (dry wt) methylmercury (MeHg). Kestrels received their diets daily for 13 weeks to assess the effects of dietary MeHg on immunocompetence. Immunotoxic endpoints included assessment of cell-mediated immunity (CMI) using the phytohemagglutinin (PHA) skin-swelling assay and primary and secondary antibody-mediated immune responses (IR) via the sheep red blood cell (SRBC) hemagglutination assay. Select hematology and histology parameters were evaluated to corroborate the results of functional assays and to assess immunosuppression of T and B cell-dependent components in spleen tissue. Kestrels in the 0.6 and 3.9 μg/g MeHg groups exhibited suppression of CMI, including lower PHA stimulation indexes (p = 0.019) and a 42 to 45% depletion of T cell-dependent splenic lymphoid tissue (p = 0.006). Kestrels in the 0.6 μg/g group exhibited suppression of the primary IR to SRBCs (p = 0.014). MeHg did not have a noticeable effect on the secondary IR (p = 0.166). Elevation of absolute heterophil counts (p p p = 0.003) was apparent in the 3.9 μg/g group at week 12. Heterophilia, or the excess of heterophils in peripheral blood above normal ranges, was apparent in seven of 17 (41%) kestrels in the 3.9 μg/g group and was indicative of an acute inflammatory response or physiological stress. This study revealed that adult kestrels were more sensitive to immunotoxic effects of MeHg at environmentally relevant dietary concentrations than they were to reproductive effects as previously reported.

  5. Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study

    PubMed Central

    Engström, Karin; Love, Tanzy M; Watson, Gene E; Zareba, Grazyna; Yeates, Alison; Wahlberg, Karin; Alhamdow, Ayman; Thurston, Sally W; Mulhern, Maria; McSorley, Emeir M; Strain, JJ; Davidson, Philip W; Shamlaye, Conrad F; Myers, GJ; Rand, Matthew D; van Wijngaarden, Edwin; Broberg, Karin

    2016-01-01

    Background ATP-binding cassette (ABC) transporters have been associated with methylmercury (MeHg) toxicity in experimental animal models. Aims To evaluate the association of single nucleotide polymorphisms (SNPs) in maternal ABC transporter genes with 1) maternal hair MeHg concentrations during pregnancy and 2) child neurodevelopmental outcomes. Materials and methods Nutrition Cohort 2 (NC2) is an observational mother-child cohort recruited in the Republic of Seychelles from 2008–2011. Total mercury (Hg) was measured in maternal hair growing during pregnancy as a biomarker for prenatal MeHg exposure (N=1313) (mean 3.9 ppm). Infants completed developmental assessments by Bayley Scales of Infant Development II (BSID-II) at 20 months of age (N=1331). Genotyping for fifteen SNPs in ABCC1, ABCC2 and ABCB1 was performed for the mothers. Results Seven of fifteen ABC SNPs (ABCC1 rs11075290, rs212093, and rs215088; ABCC2 rs717620; ABCB1 rs10276499, rs1202169, and rs2032582) were associated with concentrations of maternal hair Hg (p<0.001 to 0.013). One SNP (ABCC1 rs11075290) was also significantly associated with neurodevelopment; children born to mothers with rs11075290 CC genotype (mean hair Hg 3.6 ppm) scored on average 2 points lower on the Mental Development Index (MDI) and 3 points lower on the Psychomotor Development Index (PDI) than children born to mothers with TT genotype (mean hair Hg 4.7 ppm) while children with the CT genotype (mean hair Hg 4.0 ppm) had intermediate BSID scores. Discussion Genetic variation in ABC transporter genes was associated with maternal hair Hg concentrations. The implications for MeHg dose in the developing child and neurodevelopmental outcomes need to be further investigated. PMID:27262785

  6. TrkB overexpression in mice buffers against memory deficits and depression-like behavior but not all anxiety- and stress-related symptoms induced by developmental exposure to methylmercury.

    PubMed

    Karpova, Nina N; Lindholm, Jesse Saku Olavi; Kulesskaya, Natalia; Onishchenko, Natalia; Vahter, Marie; Popova, Dina; Ceccatelli, Sandra; Castrén, Eero

    2014-01-01

    Developmental exposure to low dose of methylmercury (MeHg) has a long-lasting effect on memory and attention deficits in humans, as well as cognitive performance, depression-like behavior and the hippocampal levels of the brain-derived neurotrophic factor (Bdnf)in mice. The Bdnf receptor TrkB is a key player of Bdnf signaling. Using transgenic animals, here we analyzed the effect of the full-length TrkB overexpression (TK+) on behavior impairments induced by perinatal MeHg. TK overexpression in the MeHg-exposed mice enhanced generalized anxiety and cue memory in the fear conditioning (FC) test. Early exposure to MeHg induced deficits in reversal spatial memory in the Morris water maze (MWM) test and depression-like behavior in the forced swim test (FST) in only wild-type (WT) mice but did not affect these parameters in TK+ mice. These changes were associated with TK+ effect on the increase in Bdnf 2, 3, 4 and 6 transcription in the hippocampus as well as with interaction of TK+ and MeHg factors for Bdnf 1, 9a and truncated TrkB.T1 transcripts in the prefrontal cortex. However, the MeHg-induced anxiety-like behavior in the elevated plus maze (EPM) and open field (OF) tests was ameliorated by TK+ background only in the OF test. Moreover, TK overexpression in the MeHg mice did not prevent significant stress-induced weight loss during the period of adaptation to individual housing in metabolic cages. These TK genotype-independent changes were primarily accompanied by the MeHg-induced hippocampal deficits in the activity-dependent Bdnf 1, 4 and 9a variants, TrkB.T1, and transcripts for important antioxidant enzymes glyoxalases Glo1 and Glo2 and glutathione reductase Gsr. Our data suggest a role of full-length TrkB in buffering against memory deficits and depression-like behavior in the MeHg mice but propose the involvement of additional pathways, such as the antioxidant system or TrkB.T1 signaling, in stress- or anxiety-related responses induced by developmental MeHg

  7. TrkB overexpression in mice buffers against memory deficits and depression-like behavior but not all anxiety- and stress-related symptoms induced by developmental exposure to methylmercury

    PubMed Central

    Karpova, Nina N.; Lindholm, Jesse Saku Olavi; Kulesskaya, Natalia; Onishchenko, Natalia; Vahter, Marie; Popova, Dina; Ceccatelli, Sandra; Castrén, Eero

    2014-01-01

    Developmental exposure to low dose of methylmercury (MeHg) has a long-lasting effect on memory and attention deficits in humans, as well as cognitive performance, depression-like behavior and the hippocampal levels of the brain-derived neurotrophic factor (Bdnf)in mice. The Bdnf receptor TrkB is a key player of Bdnf signaling. Using transgenic animals, here we analyzed the effect of the full-length TrkB overexpression (TK+) on behavior impairments induced by perinatal MeHg. TK overexpression in the MeHg-exposed mice enhanced generalized anxiety and cue memory in the fear conditioning (FC) test. Early exposure to MeHg induced deficits in reversal spatial memory in the Morris water maze (MWM) test and depression-like behavior in the forced swim test (FST) in only wild-type (WT) mice but did not affect these parameters in TK+ mice. These changes were associated with TK+ effect on the increase in Bdnf 2, 3, 4 and 6 transcription in the hippocampus as well as with interaction of TK+ and MeHg factors for Bdnf 1, 9a and truncated TrkB.T1 transcripts in the prefrontal cortex. However, the MeHg-induced anxiety-like behavior in the elevated plus maze (EPM) and open field (OF) tests was ameliorated by TK+ background only in the OF test. Moreover, TK overexpression in the MeHg mice did not prevent significant stress-induced weight loss during the period of adaptation to individual housing in metabolic cages. These TK genotype-independent changes were primarily accompanied by the MeHg-induced hippocampal deficits in the activity-dependent Bdnf 1, 4 and 9a variants, TrkB.T1, and transcripts for important antioxidant enzymes glyoxalases Glo1 and Glo2 and glutathione reductase Gsr. Our data suggest a role of full-length TrkB in buffering against memory deficits and depression-like behavior in the MeHg mice but propose the involvement of additional pathways, such as the antioxidant system or TrkB.T1 signaling, in stress- or anxiety-related responses induced by developmental MeHg

  8. Methylmercury alters glutathione homeostasis by inhibiting glutaredoxin 1 and enhancing glutathione biosynthesis in cultured human astrocytoma cells.

    PubMed

    Robitaille, Stephan; Mailloux, Ryan J; Chan, Hing Man

    2016-08-10

    Methylmercury (MeHg) is a neurotoxin that binds strongly to thiol residues on protein and low molecular weight molecules like reduced glutathione (GSH). The mechanism of its effects on GSH homeostasis particularly at environmentally relevant low doses is not fully known. We hypothesized that exposure to MeHg would lead to a depletion of reduced glutathione (GSH) and an accumulation of glutathione disulfide (GSSG) leading to alterations in S-glutathionylation of proteins. Our results showed exposure to low concentrations of MeHg (1μM) did not significantly alter GSH levels but increased GSSG levels by ∼12-fold. This effect was associated with a significant increase in total cellular glutathione content and a decrease in GSH/GSSG. Immunoblot analyses revealed that proteins involved in glutathione synthesis were upregulated accounting for the increase in cellular glutathione. This was associated an increase in cellular Nrf2 protein levels which is required to induce the expression of antioxidant genes in response to cellular stress. Intriguingly, we noted that a key enzyme involved in reversing protein S-glutathionylation and maintaining glutathione homeostasis, glutaredoxin-1 (Grx1), was inhibited by ∼50%. MeHg treatment also increased the S-glutathionylation of a high molecular weight protein. This observation is consistent with the inhibition of Grx1 and elevated H2O2 production however; contrary to our original hypothesis we found few S-glutathionylated proteins in the astrocytoma cells. Collectively, MeHg affects multiple arms of glutathione homeostasis ranging from pool management to protein S-glutathionylation and Grx1 activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Evaluation of the uncertainty in an oral reference dose for methylmercury due to interindividual variability in pharmacokinetics.

    PubMed

    Clewell, H J; Gearhart, J M; Gentry, P R; Covington, T R; VanLandingham, C B; Crump, K S; Shipp, A M

    1999-08-01

    An analysis of the uncertainty in guidelines for the ingestion of methylmercury (MeHg) due to human pharmacokinetic variability was conducted using a physiologically based pharmacokinetic (PBPK) model that describes MeHg kinetics in the pregnant human and fetus. Two alternative derivations of an ingestion guideline for MeHg were considered: the U.S. Environmental Protection Agency reference dose (RfD) of 0.1 microgram/kg/day derived from studies of an Iraqi grain poisoning episode, and the Agency for Toxic Substances and Disease Registry chronic oral minimal risk level (MRL) of 0.5 microgram/kg/day based on studies of a fish-eating population in the Seychelles Islands. Calculation of an ingestion guideline for MeHg from either of these epidemiological studies requires calculation of a dose conversion factor (DCF) relating a hair mercury concentration to a chronic MeHg ingestion rate. To evaluate the uncertainty in this DCF across the population of U.S. women of child-bearing age, Monte Carlo analyses were performed in which distributions for each of the parameters in the PBPK model were randomly sampled 1000 times. The 1st and 5th percentiles of the resulting distribution of DCFs were a factor of 1.8 and 1.5 below the median, respectively. This estimate of variability is consistent with, but somewhat less than, previous analyses performed with empirical, one-compartment pharmacokinetic models. The use of a consistent factor in both guidelines of 1.5 for pharmacokinetic variability in the DCF, and keeping all other aspects of the derivations unchanged, would result in an RfD of 0.2 microgram/kg/day and an MRL of 0.3 microgram/kg/day.

  10. Benefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercury.

    PubMed

    Afonso, C; Costa, S; Cardoso, C; Oliveira, R; Lourenço, H M; Viula, A; Batista, I; Coelho, I; Nunes, M L

    2015-11-01

    The Se, Hg, and methylmercury (MeHg) levels in raw, cooked (boiled and grilled), and canned tuna (Thunnus spp.) were determined before and after an in vitro digestion, thereby enabling the calculation of the respective bioaccessibility percentages. A risk-benefit evaluation of raw and canned tuna on the basis of the Se and MeHg data was performed. Selenium bioaccessibility was high in tuna, though slightly lower in canned than in raw products. Mercury levels were high in raw and cooked tuna. Hg bioaccessibility percentages were low (39-48%) in the cooked tuna and even lower (<20%) in canned tuna. For the bioaccessible fraction, all molar Se:MeHg ratios were higher than one (between 10 and 74). A probabilistic assessment of MeHg risk vs Se benefit showed that while a weekly meal of canned tuna presents very low risk, raw, boiled, and grilled tuna consumption should not exceed a monthly meal, at least, for pregnant and nursing women. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. S-Mercuration of rat sorbitol dehydrogenase by methylmercury causes its aggregation and the release of the zinc ion from the active site.

    PubMed

    Kanda, Hironori; Toyama, Takashi; Shinohara-Kanda, Azusa; Iwamatsu, Akihiro; Shinkai, Yasuhiro; Kaji, Toshiyuki; Kikushima, Makoto; Kumagai, Yoshito

    2012-11-01

    We previously developed a screening method to identify proteins that undergo aggregation through S-mercuration by methylmercury (MeHg) and found that rat arginase I is a target protein for MeHg (Kanda et al. in Arch Toxicol 82:803-808, 2008). In the present study, we characterized another S-mercurated protein from a rat hepatic preparation that has a subunit mass of 42 kDa, thereby facilitating its aggregation. Two-dimensional SDS-polyacrylamide gel electrophoresis and subsequent peptide mass fingerprinting using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry revealed that the 42 kDa protein was NAD-dependent sorbitol dehydrogenase (SDH). With recombinant rat SDH, we found that MeHg is covalently bound to SDH through Cys44, Cys119, Cys129 and Cys164, resulting in the inhibition of its catalytic activity, release of zinc ions and facilitates protein aggregation. Mutation analysis indicated that Cys44, which ligates the active site zinc atom, and Cys129 play a crucial role in the MeHg-mediated aggregation of SDH. Pretreatment with the cofactor NAD, but not NADP or FAD, markedly prevented aggregation of SDH. Such a protective effect of NAD on the aggregation of SDH caused by MeHg is discussed.

  12. Methylmercury production in and export from agricultural wetlands in California, USA: the need to account for physical transport processes into and out of the root zone

    USGS Publications Warehouse

    Bachand, Philip A.M.; Bachand, Sandra M.; Fleck, Jacob A.; Alpers, Charles N.; Stephenson, Mark; Windham-Myers, Lisamarie

    2014-01-01

    Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~ 3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1 μg m− 2 for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3 μg m− 2. These exports are

  13. Methylmercury production in and export from agricultural wetlands in California, USA: the need to account for physical transport processes into and out of the root zone.

    PubMed

    Bachand, P A M; Bachand, S M; Fleck, J A; Alpers, C N; Stephenson, M; Windham-Myers, L

    2014-02-15

    Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1 μg m(-2) for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3 μg m(-2). These exports are within the

  14. Varying coefficient function models to explore interactions between maternal nutritional status and prenatal methylmercury toxicity in the Seychelles Child Development Nutrition Study

    PubMed Central

    Lynch, Miranda L.; Huang, Li-Shan; Cox, Christopher; Strain, J.J.; Myers, Gary J.; Bonham, Maxine P.; Shamlaye, Conrad F.; Stokes-Riner, Abbie; Wallace, Julie M.W.; Duffy, Emeir M.; Clarkson, Thomas W.; Davidson, Philip W.

    2010-01-01

    Maternal consumption of fish during the gestational period exposes the fetus to both nutrients, especially the long-chain polyunsaturated fatty acids (LCPUFAs), believed to be beneficial for fetal brain development, as well as to the neurotoxicant methylmercury (MeHg). We recently reported that nutrients present in fish may modify MeHg neurotoxicity. Understanding the apparent interaction of MeHg exposure and nutrients present in fish is complicated by the limitations of modeling methods. In this study we fit varying coefficient function models to data from the Seychelles Child Development Nutrition Study (SCDNS) cohort to assess the association of dietary nutrients and children’s development. This cohort of mother-child pairs in the Republic of Seychelles had fish consumption averaging 9 meals per week. Maternal nutritional status was assessed for five different nutritional components known to be present in fish (n-3 LCPUFA, n-6 LCPUFA, iron status, iodine status, and choline) and associated with children’s neurological development. We also included prenatal MeHg exposure (measured in maternal hair). We examined two child neurodevelopmental outcomes (Bayley Scales Infant Development-II (BSID-II) Mental Developmental Index (MDI) and Psychomotor Developmental Index (PDI)), each administered at 9 and at 30 months. The varying coefficient models allow the possible interactions between each nutritional component and MeHg to be modeled as a smoothly varying function of MeHg as an effect modifier. Iron, iodine, choline, and n-6 LCPUFA had little or no observable modulation at different MeHg exposures. In contrast the n-3 LCPUFA docosahexaenoic acid (DHA) had beneficial effects on the BSID-II PDI that were reduced or absent at higher MeHg exposures. This study presents a useful modeling method that can be brought to bear on questions involving interactions between covariates, and illustrates the continuing importance of viewing fish consumption during pregnancy as a

  15. Altered fine motor function at school age in Inuit children exposed to PCBs, methylmercury, and lead.

    PubMed

    Boucher, Olivier; Muckle, Gina; Ayotte, Pierre; Dewailly, Eric; Jacobson, Sandra W; Jacobson, Joseph L

    2016-10-01

    Motor deficits have frequently been reported in methylmercury (MeHg) poisoning in adults. However, whether exposure to neurotoxic contaminants from environmental sources early in life is associated with neuromotor impairments has received relatively little attention. This study examines the relation of developmental exposure to MeHg, polychlorinated biphenyls (PCBs), and lead to motor function in school-age Inuit children exposed through their traditional diet. In a prospective study in Nunavik, children (mean age=11.3years) were assessed on a battery of fine motor tasks, namely the Stanford-Binet Copying subtest (N=262), the Santa Ana Form Board, and the Finger Tapping Test (N=215). The relation of mercury (Hg; as an index of MeHg exposure), PCB congener 153 (PCB153), and lead concentrations in cord and current blood samples to task performance was examined using linear regression analyses. After adjustment for potential confounders and control for the other contaminants, higher current PCB concentrations were associated with poorer Santa Ana Form Board and Finger Tapping performance. Results were virtually identical when PCB153 was replaced by other PCB congeners. Higher current Hg levels were independently associated with poorer Finger Tapping performance. This is the first prospective longitudinal study in children to provide evidence of neuromotor impairments associated with postnatal exposure to seafood contaminants from environmental sources. Fine motor speed appears particularly sensitive to the effects of postnatal PCB exposure, which is unusually high in this population. Results with postnatal MeHg are concordant with previous cross-sectional studies with children and adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Maternal PUFA status but not prenatal methylmercury exposure is associated with children's language functions at age five years in the Seychelles.

    PubMed

    Strain, J J; Davidson, Philip W; Thurston, Sally W; Harrington, Donald; Mulhern, Maria S; McAfee, Alison J; van Wijngaarden, Edwin; Shamlaye, Conrad F; Henderson, Juliette; Watson, Gene E; Zareba, Grazyna; Cory-Slechta, Deborah A; Lynch, Miranda; Wallace, Julie M W; McSorley, Emeir M; Bonham, Maxine P; Stokes-Riner, Abbie; Sloane-Reeves, Jean; Janciuras, Joanne; Wong, Rosa; Clarkson, Thomas W; Myers, Gary J

    2012-11-01

    Evidence from the Seychelles Child Development Nutrition Study suggests that maternal nutritional status can modulate the relationship between prenatal methylmercury (MeHg) exposure and developmental outcomes in children. The aim of this study was to investigate whether maternal PUFA status was a confounding factor in any possible associations between prenatal MeHg exposure and developmental outcomes at 5 y of age in the Republic of Seychelles. Maternal status of (n-3) and (n-6) PUFA were measured in serum collected at 28 wk gestation and delivery. Prenatal MeHg exposure was determined in maternal hair collected at delivery. At 5 y of age, the children completed a comprehensive range of sensitive developmental assessments. Complete data from 225 mothers and their children were available for analysis. Multiple linear regression analyses revealed Preschool Language Scale scores of the children improved with increasing maternal serum DHA [22:6(n-3)] concentrations and decreased with increasing arachidonic acid [20:4(n-6)] concentrations, albeit verbal intelligence improved with increasing (n-6) PUFA concentrations in maternal serum. There were no adverse associations between MeHg exposure and developmental outcomes. These findings suggest that higher fish consumption, resulting in higher maternal (n-3) PUFA status, during pregnancy is associated with beneficial developmental effects rather than detrimental effects resulting from the higher concomitant exposures of the fetus to MeHg. The association of maternal (n-3) PUFA status with improved child language development may partially explain the authors' previous finding of improving language scores, as prenatal MeHg exposure increased in an earlier mother-child cohort in the Seychelles where maternal PUFA status was not measured.

  17. Methylmercury-induced inhibition of regulatory volume decrease in astrocytes: characterization of osmoregulator efflux and its reversal by amiloride.

    PubMed

    Aschner, M; Vitarella, D; Allen, J W; Conklin, D R; Cowan, K S

    1998-11-16

    Swelling of neonatal rat primary astrocyte cultures by hypotonic media leads to regulatory volume decrease (RVD) and the resumption of resting cell volume. RVD is associated with activation of conductive K+ and Cl- channels, allowing for the escape of KCl, as well as the release of osmoregulators, such as taurine and myoinositol. As we have previously shown [D. Vitarella, H.K. Kimelberg, M. Aschner, Inhibition of RVD in swollen rat primary astrocyte cultures by methylmercury (MeHg) is due to increase amiloride-sensitive Na+ uptake, Brain Res. 732 (1996) 169-178.], MeHg, when added to hypotonic buffer inhibits RVD, primarily due to increased cellular permeability to Na+ via the Na+/H+ antiporter. The present study was, therefore, undertaken to assess the ability of cation-anion cotransport blockers to reverse the inhibitory effect of MeHg on RVD in swollen astrocytes, and to further characterize MeHg-induced changes in astrocytic osmoregulatory release processes. The studies demonstrate the following: (1) MeHg-induced inhibition of RVD is partially inhibited by the Na+/H+ antiporter blocker, amiloride, but not SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid), DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid), furosemide or bumetanide; (2) exposure of swollen astrocytes to MeHg is associated with specific effects on osmoregulatory release, leading to significant inhibition of taurine release and a significant increase in potassium and myoinositol release compared with release in hypotonic conditions. Copyright 1998 Elsevier Science B.V.

  18. Methylmercury production and export from a restored tidal marsh: Crissy Field, Golden Gate National Recreation Area, San Francisco, CA

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Ward, K.; Marvin-Dipasquale, M. C.; Agee, J.; Kieu, L.; Kakouros, E.

    2009-12-01

    Well-mixed surface water in the restored salt marsh at Crissy Field, Golden Gate National Recreation Area, was found to have high aqueous methylmercury (MeHg) concentrations (>1 ng MeHg / L), despite its sandy substrate and low sediment total mercury (THg) concentrations. We sought to determine a) the extent to which the marsh was a source or a sink of MeHg to San Francisco Bay, b) where and when MeHg is produced within the marsh, and c) the extent to which MeHg concentrations in sediment and water varied with extended multi-week flooding events, impoundments caused by periodic sediment accumulation in the narrow inlet. Because Crissy Marsh is small in size, has a single inlet slough channel, and has a tidally-dominated water budget, we had a unique opportunity to construct a THg and MeHg flux budget for this single well-constrained wetland. A 24-hour sampling event was conducted over a full diurnal tidal cycle during August 2008. Particulate and filter-passing (0.45μm) THg and MeHg concentrations were assessed, in addition to concentrations of chlorophyll-a and total suspended solids. These measurements were coupled to water flux calculations from a USGS-derived hydrodynamic model based on tidal prism relationships at this site. The resulting Hg load calculations demonstrated that for this 24-hour period, the marsh was a net source of dissolved MeHg to the bay and a net sink of particulate THg from the bay. To determine where and when Hg was being methylated within the marsh environment, sediment percent (%) MeHg (a surrogate measure of MeHg production efficiency) was examined for 2 years along 8 transects, seasonally and across three marsh elevations (subtidal, low-intertidal, and high-intertidal). The low-intertidal zone (cordgrass-dominated) had higher sediment %MeHg than the other two elevations. Sediment %MeHg was also higher during summer than during winter, highest at the sediment surface (0-2cm), correlated with sediment organic content, and elevated

  19. Association between prenatal exposure to methylmercury and cognitive functioning in Seychellois children: a reanalysis of the McCarthy Scales of Children's Ability from the main cohort study.

    PubMed

    Palumbo, D R; Cox, C; Davidson, P W; Myers, G J; Choi, A; Shamlaye, C; Sloane-Reeves, J; Cernichiari, E; Clarkson, T W

    2000-10-01

    Methylmercury (MeHg) is a neurotoxicant whose high-dose effects first became known following a number of poisoning outbreaks that occurred worldwide. The primary human exposure is low dosage from fish consumption. Studies of fish-eating populations have not found a consistent pattern of association between exposures and outcomes. Therefore, examining specific areas of cognitive functioning has been suggested as an important approach to determine whether more subtle effects of MeHg exposure are present. In the Seychelles longitudinal study of prenatal and postnatal MeHg exposure from fish consumption and development, the McCarthy Scales of Children's Abilities (MSCA) were administered to children at age 66 months. No association between MeHg exposure and performance on the MSCA General Cognitive Index was identified. We analyzed these data further to determine whether associations were present on specific subscales of the MSCA. The standard MSCA subscales were analyzed. Then, more specific subscales of the MSCA were defined and analyzed utilizing a neuropsychological approach. The subscales were recombined to approximate the domains of cognitive functioning evaluated in the Faroes and New Zealand studies. Analyses of both the standard and the recombined MSCA subscales showed no adverse associations with MeHg exposure and neuropsychological endpoints. A positive association between postnatal MeHg exposure and performance on the MSCA Memory subscale was found. These findings are consistent with previous reports from the Seychelles study in that no adverse effects of MeHg exposure from fish consumption can be detected in this cohort.

  20. Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako; Cheng, Jinping

    Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes weremore » not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.« less

  1. Ecophysiological responses of juvenile seabass (Dicentrarchus labrax) exposed to increased temperature and dietary methylmercury.

    PubMed

    Maulvault, Ana Luísa; Barbosa, Vera; Alves, Ricardo; Custódio, Ana; Anacleto, Patrícia; Repolho, Tiago; Pousão Ferreira, Pedro; Rosa, Rui; Marques, António; Diniz, Mário

    2017-05-15

    The ecotoxicological effects of methylmercury (MeHg) exposure have been intensively described in literature. Yet, it is still unclear how marine biota will respond to the presence of MeHg under climate change, namely ocean warming. The present study aimed to investigate, for the first time, fish condition [Fulton's K index (K), hepatosomatic index (HIS) and brain-to-body mass ratio (BB-ratio)] and several stress-related responses in an ecologically and commercially important fish species (Dicentrachus labrax) exposed for 28days to dietary MeHg (8.0mg kg-1 dw) and temperature increase (+4°C). Results showed significant impairments on fish condition, i.e. up to 34% decrease on K, >100% increase on HIS and 44% decrease on BB-ratio, compared to control conditions. Significant changes on tissue biochemical responses were observed in fish exposed to both stressors, acting alone or combined, evidencing the relevance of assessing possible interactions between different environmental stressors in ecotoxicological studies. For instance, muscle showed to be the least affected tissue, only revealing significant alterations in GST activity of MeHg-enriched fish. On the other hand, liver exhibited a significant induction of GST (>100%) and CAT (up to 74%) in MeHg-enriched fish, regardless of temperature exposure, as well as decreased SOD activity (19%) and increased HSP70/HSC70 content (87%) in fish exposed to warming alone. Brain showed to be affected by temperature (69% of GST inhibition and >100% of increased CAT activity), MeHg (>100% of increased CAT activity, 47% of SOD inhibition and 55% of AChE inhibition), as well as by the combination of both (GST, SOD and AChE inhibition, 17%, 48% and 53%, respectively). Hence, our data provides evidences that the toxicological aspects of MeHg ca be potentiated by warmer temperatures, thus, evidencing the need for further research combining contaminants exposure and climate change effects, to better forecast ecological impacts in the

  2. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat.

    PubMed

    Roda, Elisa; Coccini, Teresa; Acerbi, Davide; Castoldi, Anna; Bernocchi, Graziella; Manzo, Luigi

    2008-05-01

    The developing central nervous system (CNS) is a target of the environmental toxicant methylmercury (MeHg), and the cerebellum seems the most susceptible tissue in response to this neurotoxicant. The cholinergic system is essential for brain development, acting as a modulator of neuronal proliferation, migration and differentiation processes; its muscarinic receptors (MRs) play pivotal roles in regulating important basic physiologic functions. By immunohistochemistry, we investigated the effects of perinatal (GD7-PD21) MeHg (0.5 mg/kg bw/day in drinking water) administration on cerebellum of mature (PD36) and immature (PD21) rats, evaluating the: (i) M2- and M3-MR expression; (ii) presence of gliosis; (iii) cytoarchitecture alterations. Regarding to M2-MRs, we showed that: at PD21, MeHg-treated animals did not display any differences compared to controls, while, at PD36 there was a significant increase of M2-immunopositive Bergmann cells in the molecular layer (ML), suggesting a MeHg-related cytotoxic effect. Similarly to M2-MRs, at PD21 the M3-MRs were not affected by MeHg, while, at PD36 a lacking immunoreactivity of the granular layer (IGL) was observed after MeHg treatment. In MeHg-treated rats, at both developmental points, we showed reactive gliosis, e.g. a significant increase in Bergmann glia of the ML and astrocytes of the IGL, identified by their expression of glial fibrillar acidic protein. No MeHg-related effects on Purkinje cells were detected neither at weaning nor at puberty. These findings suggest: (i) a delayed MeHg exposure-related effect on M2- and M3-MRs, (ii) an overt MeHg-related cytotoxic effect on cerebellar oligodendroglia, e.g. reactive gliosis, (iii) a selective vulnerability of granule cells and Purkinje neurons to MeHg, with the latter that remain unharmed.

  3. Hot Spots and Hot Moments of Methylmercury Production Associated With Agricultural and Non-agricultural Wetlands of the Yolo Bypass Wildlife Area, California

    NASA Astrophysics Data System (ADS)

    Marvin-Dipasquale, M.; Windham-Myers, L.; Agee, J. L.; Kakouros, E.; Cox, M. H.; Fleck, J.; Alpers, C. N.; Stephenson, M.

    2008-12-01

    The Yolo Bypass Wildlife Area (YBWA) is part of the larger Yolo Bypass floodwater protection zone associated with the Sacramento River and the Sacramento-San Joaquin Delta, in California. While mercury contamination is widespread throughout the region due to historic mining practices, the Yolo Bypass is responsible for a high proportion of the aqueous methylmercury (MeHg) entering the Delta, and biota from the Yolo Bypass are particularly elevated in toxic MeHg. Land use in the YBWA includes seasonally flooded agricultural fields (white rice, wild rice, fallow fields), and permanently and seasonally flooded non-agricultural wetlands used for resident and migratory waterfowl. Mercury biogeochemistry was examined in 0-2 cm surface sediment, as a function of habitat type, wetland management, and agricultural practices during the 2007-08 crop year. In permanently flooded wetlands, MeHg concentrations varied within a narrow range (ca. 0.5-1.5 ng/g dry wt) throughout the study period. In contrast, the three types of agricultural fields had higher MeHg concentrations throughout the rice-growing season (June-Sept; ca. 1.5-3.5 ng/g), and exhibited the highest levels (ca. 3.3-6.3 ng/g) in the post-harvest winter period (Dec-Feb). Further, naturally dried sediment, sampled during July '08 from post-harvest drained fallow agricultural fields (prior to reflooding) had MeHg concentrations that were also quite elevated (3.1 +/- 1.5 ng/g). This suggests that the initial elevated concentrations of overlying water MeHg, sometimes measured soon after flooding previously dried fields, may be related to the release of MeHg formed during the previous wet season and trapped in dried sediment, as opposed to being MeHg newly produced by bacteria upon soil rewetting. These results indicate that the 'hot spots and hot moments' associated with MeHg production in this system are linked to hydrologic manipulations (wetting and drying) in the agricultural fields, and that the practice of post

  4. Fatty acids, mercury, and methylmercury bioaccessibility in salmon (Salmo salar) using an in vitro model: Effect of culinary treatment.

    PubMed

    Costa, Sara; Afonso, Cláudia; Cardoso, Carlos; Batista, Irineu; Chaveiro, Nádia; Nunes, Maria Leonor; Bandarra, Narcisa Maria

    2015-10-15

    The effect of culinary treatments on the fatty acid profile, mercury (Hg), and methylmercury (MeHg) levels of salmon was studied. The bioaccessibility of fatty acids, Hg, and MeHg in raw and grilled salmon was determined. The most intense thermal treatment (grilling) did not alter the relative fatty acid (FA) profile. There were bioaccessibility differences between FAs. To the authors' knowledge, for the first time, higher bioaccessibility of the long-chain FAs than the short- and medium-chain FAs was measured. Chemical interaction phenomena seemed to play a role. On the other hand, higher levels of unsaturation decreased bioaccessibility. Two main alternative hypotheses were put forward, either lower polarity led to higher incorporation of FAs with longer hydrophobic aliphatic chain and lower number of double bonds in the emulsion present in the bioaccessible fraction or enzymatic selectivity preferentially hydrolyzed some FAs on the basis of their structure or position in the triacylglycerol molecule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Association between methylmercury and cardiovascular risk factors in a native population of Quebec (Canada): a retrospective evaluation.

    PubMed

    Valera, Beatriz; Dewailly, Eric; Poirier, Paul

    2013-01-01

    Epidemiological evidence suggests a negative impact of methylmercury (MeHg) on cardiovascular risk factors such as blood pressure (BP) and heart rate (HR). This issue is of concern in Arctic populations such as in the Inuit of Nunavik since this contaminant is accumulated in fish and marine mammals, which still represent the subsistence diet of this population. We examined the associations between MeHg and BP and resting HR among Inuit adults. The "Santé Quebec" health survey was conducted in 1992 in the 14 villages of Nunavik and a complete set of data was obtained for 313 Inuit adults≥18 years. Blood samples were collected in order to determine total mercury, lead, total polychlorinated biphenyls (PCBs), n-3 polyunsaturated fatty acids (PUFAs), fasting glucose and lipid profile while socio-demographic variables were obtained through questionnaires. Anthropometric measurements as well as BP and resting HR were obtained using standardised protocols. Pulse pressure (PP: systolic BP minus diastolic BP) was also calculated. Multiple linear regression was used in order to determine the change in the dependent variables associated with the quartiles of MeHg concentration, taking the quartile 1 as reference. The mean age of the participants was 38±14 years and the sample was composed of 132 men (42.2%) and 181 women (57.8%). MeHg geometric mean was 15.4 μg/L (95%CI: 13.9-17.0) and levels ranged from 0.8 to 112.0 μg/L. Resting HR increased linearly across quartiles of blood MeHg concentration after adjusting for confounders (p for trend=0.02). An increase of 6.9 beats per minute (bpm) between the 4th and 1st quartile was observed after adjusting for confounders. No significant association was observed between blood MeHg and systolic BP, diastolic BP or PP. MeHg was associated with increasing resting HR after considering traditional risk factors as well as other contaminants (lead and total PCBs) and n-3 PUFAs. In contrast, no significant association with blood

  6. Reducing Methylmercury Accumulation in the Food Webs of San Francisco Bay and Its Local Watersheds

    PubMed Central

    Davis, J.A.; Looker, R.E.; Yee, D.; Marvin-DiPasquale, M.; Grenier, J.L.; Austin, C.M.; McKee, L.J.; Greenfield, B.K.; Brodberg, R.; Blum, J.D.

    2013-01-01

    San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for the past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce loads

  7. Methylmercury and Pregnancy

    MedlinePlus

    ... chat Live Help Fact Sheets Share Methylmercury in Fish Wednesday, 01 November 2017 In every pregnancy, a ... You can be exposed to methylmercury by eating fish, shellfish, and marine animals. These animals absorb methylmercury ...

  8. Adverse Effects of Methylmercury: Environmental Health Research Implications

    PubMed Central

    Grandjean, Philippe; Satoh, Hiroshi; Murata, Katsuyuki; Eto, Komyo

    2010-01-01

    Background The scientific discoveries of health risks resulting from methylmercury exposure began in 1865 describing ataxia, dysarthria, constriction of visual fields, impaired hearing, and sensory disturbance as symptoms of fatal methylmercury poisoning. Objective Our aim was to examine how knowledge and consensus on methylmercury toxicity have developed in order to identify problems of wider concern in research. Data sources and extraction We tracked key publications that reflected new insights into human methylmercury toxicity. From this evidence, we identified possible caveats of potential significance for environmental health research in general. Synthesis At first, methylmercury research was impaired by inappropriate attention to narrow case definitions and uncertain chemical speciation. It also ignored the link between ecotoxicity and human toxicity. As a result, serious delays affected the recognition of methylmercury as a cause of serious human poisonings in Minamata, Japan. Developmental neurotoxicity was first reported in 1952, but despite accumulating evidence, the vulnerability of the developing nervous system was not taken into account in risk assessment internationally until approximately 50 years later. Imprecision in exposure assessment and other forms of uncertainty tended to cause an underestimation of methylmercury toxicity and repeatedly led to calls for more research rather than prevention. Conclusions Coupled with legal and political rigidity that demanded convincing documentation before considering prevention and compensation, types of uncertainty that are common in environmental research delayed the scientific consensus and were used as an excuse for deferring corrective action. Symptoms of methylmercury toxicity, such as tunnel vision, forgetfulness, and lack of coordination, also seemed to affect environmental health research and its interpretation. PMID:20529764

  9. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia).

    PubMed

    Perrot, Vincent; Pastukhov, Mikhail V; Epov, Vladimir N; Husted, Søren; Donard, Olivier F X; Amouroux, David

    2012-06-05

    Mercury undergoes several transformations that influence its stable isotope composition during a number of environmental and biological processes. Measurements of Hg isotopic mass-dependent (MDF) and mass-independent fractionation (MIF) in food webs may therefore help to identify major sources and processes leading to significant bioaccumulation of methylmercury (MeHg). In this work, δ(13)C, δ(15)N, concentration of Hg species (MeHg, inorganic Hg), and stable isotopic composition of Hg were determined at different trophic levels of the remote and pristine Lake Baikal ecosystem. Muscle of seals and different fish as well as amphipods, zooplankton, and phytoplankton were specifically investigated. MDF during trophic transfer of MeHg leading to enrichment of heavier isotopes in the predators was clearly established by δ(202)Hg measurements in the pelagic prey-predator system (carnivorous sculpins and top-predator seals). Despite the low concentrations of Hg in the ecosystem, the pelagic food web reveals very high MIF Δ(199)Hg (3.15-6.65‰) in comparison to coastal fish (0.26-1.65‰) and most previous studies in aquatic organisms. Trophic transfer does not influence MIF signature since similar Δ(199)Hg was observed in sculpins (4.59 ± 0.55‰) and seal muscles (4.62 ± 0.60‰). The MIF is suggested to be mainly controlled by specific physical and biogeochemical characteristics of the water column. The higher level of MIF in pelagic fish of Lake Baikal is mainly due to the bioaccumulation of residual MeHg that is efficiently turned over and photodemethylated in deep oligotrophic and stationary (i.e., long residence time) freshwater columns.

  10. Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study.

    PubMed

    Davidson, Philip W; Cory-Slechta, Deborah A; Thurston, Sally W; Huang, Li-Shan; Shamlaye, Conrad F; Gunzler, Douglas; Watson, Gene; van Wijngaarden, Edwin; Zareba, Grazyna; Klein, Jonathan D; Clarkson, Thomas W; Strain, J J; Myers, Gary J

    2011-12-01

    People worldwide depend upon daily fish consumption as a major source of protein and other nutrients. Fish are high in nutrients essential for normal brain development, but they also contain methylmercury (MeHg), a neurotoxicant. Our studies in a population consuming fish daily have indicated no consistent pattern of adverse associations between prenatal MeHg and children's development. For some endpoints we found performance improved with increasing prenatal exposure to MeHg. Follow up studies indicate this association is related to the beneficial nutrients present in fish. To determine if the absence of adverse outcomes and the presence of beneficial associations between prenatal MeHg and developmental outcomes previously reported persists into adolescence. This study was conducted on the Main Cohort of the Seychelles Child Development Study (SCDS). We examined the association between prenatal MeHg exposure and subjects' performance at 17 years of age on 27 endpoints. The test battery included the Wisconsin Card Sorting Test (WCST), the California Verbal Learning Test (CVLT), the Woodcock-Johnson (W-J-II) Achievement Test, subtests of the Cambridge Neuropsychological Test Automated Battery (CANTAB), and measures of problematic behaviors. Analyses for all endpoints were adjusted for postnatal MeHg, sex, socioeconomic status, maternal IQ, and child's age at testing and the child's IQ was added for problematic behavioral endpoints. Mean prenatal MeHg exposure was 6.9 ppm. There was no association between prenatal MeHg and 21 endpoints. Increasing prenatal MeHg was associated with better scores on four endpoints (higher W-J-II math calculation scores, reduced numbers of trials on the Intra-Extradimensional Shift Set of the CANTAB), fewer reports of substance use and incidents of and referrals for problematic behaviors in school. Increasing prenatal MeHg was adversely associated with one level of referrals to a school counselor. At age 17 years there was no consistent

  11. Fish Consumption and Prenatal Methylmercury Exposure: Cognitive and Behavioral Outcomes in the Main Cohort at 17 Years from the Seychelles Child Development Study

    PubMed Central

    Davidson, Philip W.; Cory-Slechta, Deborah A.; Thurston, Sally W.; Huang, Li-Shan; Shamlaye, Conrad F.; Gunzler, Douglas; Watson, Gene; van Wijngaarden, Edwin; Zareba, Grazyna; Klein, Jonathan D.; Clarkson, Thomas W.; Strain, J.J.; Myers, Gary J.

    2011-01-01

    Introduction People worldwide depend upon daily fish consumption as a major source of protein and other nutrients. Fish are high in nutrients essential for normal brain development, but they also contain methylmercury (MeHg), a neurotoxicant. Our studies in a population consuming fish daily have indicated no consistent pattern of adverse associations between prenatal MeHg and children’s development. For some endpoints we found performance improved with increasing prenatal exposure to MeHg. Follow up studies indicate this association is related to the beneficial nutrients present in fish. Objectives To determine if the absence of adverse outcomes and the presence of beneficial associations between prenatal MeHg and developmental outcomes previously reported persists into adolescence. Methods This study was conducted on the Main Cohort of the Seychelles Child Development Study (SCDS). We examined the association between prenatal MeHg exposure and subjects’ performance at 17 years of age on 27 endpoints. The test battery included the Wisconsin Card Sorting Test (WCST), the California Verbal Learning Test (CVLT), the Woodcock-Johnson (W-J-II) Achievement Test, subtests of the Cambridge Neuropsychological Test Automated Battery (CANTAB), and measures of problematic behaviors. Analyses for all endpoints were adjusted for postnatal MeHg, sex, socioeconomic status, maternal IQ, and child’s age at testing and the child’s IQ was added for problematic behavioral endpoints. Results Mean prenatal MeHg exposure was 6.9 ppm. There was no association between prenatal MeHg and 21 endpoints. Increasing prenatal MeHg was associated with better scores on four endpoints (higher W-J-II math calculation scores, reduced numbers of trials on the Intra-Extradimensional Shift Set of the CANTAB, fewer reports of substance use and incidents of and referrals for problematic behaviors in school. Increasing prenatal MeHg was adversely associated with one level of referrals to a school

  12. Methylmercury exposure for 14 days (short-term) produces behavioral and biochemical changes in mouse cerebellum, liver, and serum.

    PubMed

    Macedo-Júnior, Sérgio José; Luiz-Cerutti, Murilo; Nascimento, Denise B; Farina, Marcelo; Soares Santos, Adair Roberto; de Azevedo Maia, Alcíbia Helena

    2017-01-01

    Various studies on methylmercury (MeHg)-induced toxicity focused on the central nervous system (CNS) as a primary target. However, MeHg-mediated toxicity is related to metallic interaction with electrophilic groups, which are not solely restricted to the CNS, but these reactive groups are present ubiquitously in several systems/organs. The aim of this study was thus to examine MeHg-induced systemic toxicity in mice using a standardized neurotoxicology testing exposure model to measure cerebellar neurotoxicity by determining biochemical and behavioral parameters in the cerebellum. After 2 weeks exposure to MeHg (40 µg/ml; diluted in drinking water; ad libitum), adult male Swiss mice showed a marked motor impairment characteristic of cerebellar toxicity as noted in the following tests: rotarod, beam walking, pole, and hind limb clasping. MeHg treatment resulted in Hg deposition in the cerebellum as well as reduction in cerebellar weight, glutathione peroxidase (GPx) activity, and interleukin (IL)-6 levels. MeHg ingestion increased cerebellar glutathione reductase (GR) activity and brain-derived neurotrophic factor (BDNF) levels. In addition to cerebellar toxicity, MeHg treatment also elevated total and non-high density lipoprotein (non-HDL) cholesterol levels, as well as serum aspartate transaminase (AST) and alanine transaminase (ALT) enzymatic activities, systemic parameters. Increased liver weight and reduced serum urea levels were also noted in MeHg-exposed mice. Taken together, our findings demonstrated that a well-standardized exposure protocol to examine MeHg-induced neurotoxicity also produced systemic toxicity in mice, which was characterized by changes in markers of hepatic function as well as serum lipid homeostasis.

  13. Methylmercury production in soil in the water-level-fluctuating zone of the Three Gorges Reservoir, China: The key role of low-molecular-weight organic acids.

    PubMed

    Yin, Deliang; Wang, Yongmin; Jiang, Tao; Qin, Caiqing; Xiang, Yuping; Chen, Qiuyu; Xue, Jinping; Wang, Dingyong

    2018-04-01

    As important parts of dissolved organic matter, low-molecular-weight organic acids (LMWOAs) typically play important roles in desorbing Hg(II) from the soil solid-phase, which may directly or indirectly impact methylmercury (MeHg) production. However, the mechanism of these processes remains unclear. To better understand the effects of LMWOAs on Hg methylation in the soil, a field study was conducted to investigate the distribution of LMWOAs and their relationship with soil MeHg in a seasonally inundated area in the Three Gorges Reservoir (TGR), China. Meanwhile, laboratory simulation experiments were performed to determine the potential mechanism of LMWOAs in Hg methylation. The field investigation detected considerable amounts of LMWOAs in soil, among which tartaric acid and oxalic acid were dominant components. Among which, tartaric acid and oxalic acid were dominant components. Also, a seasonally and spatially heterogeneous distribution of LMWOAs in soil was observed. Notably, a significant positive relationship was found between MeHg concentrations and LMWOA pools in soil (r = 0.969, p < .01), implying that LMWOAs could promote soil MeHg production. The simulation experiments confirmed that the MeHg levels in soil were largely elevated with the addition of LMWOAs, which occurred mainly in oxygen-deficient environment and was mediated by biotic factors. The soluble Hg-LMWOA complexes, which were formed by the enhanced desorption of Hg(II) from solid-phase, were mostly responsible for the elevated MeHg production in soil. Moreover, those LMWOAs with more carboxylic groups were believed to enhance the net production of MeHg. The generated MeHg in sediment could diffuse into the overlying water, which thus poses a potential threat to the aquatic food web. Therefore, the enhanced Hg methylation caused by LMWOAs should be given more attention, especially in a seasonally inundated ecosystem, where the MeHg exposure is usually related to fishery activities

  14. Isolation and characterization of bacteria from mercury contaminated sites in Rio Grande do Sul, Brazil, and assessment of methylmercury removal capability of a Pseudomonas putida V1 strain.

    PubMed

    Cabral, Lucélia; Giovanella, Patrícia; Gianello, Clésio; Bento, Fátima Menezes; Andreazza, Robson; Camargo, Flávio Anastácio Oliveira

    2013-06-01

    Methylmercury (MeHg) is one of the most dangerous heavy metal for living organisms that may be found in environment. Given the crescent industrialization of Brazil and considering that mercury is a residue of several industrial processes, there is an increasing need to encounter and develop remediation approaches of mercury contaminated sites. The aim of this study was to isolate and characterize methylmercury resistant bacteria from soils and sludge sewage from Rio Grande do Sul, Brazil. Sixteen bacteria were isolated from these contaminated sites and some isolates were highly resistant to methylmercury (>8.7 μM). All the isolates were identified by 16S rDNA. Pseudomonas putida V1 was able to volatilize approximately 90 % of methylmercury added to growth media and to resist to copper, lead, nickel, chromate, zinc, cobalt, manganese and barium. In the presence of high concentrations of methylmercury (12 μM), cell growth was limited, but P. putida V1 was still able to remove up to 29 % of this compound from culture medium. This bacterium removed an average of 77 % of methylmercury from culture medium with pH in the range 4.0-6.0. In addition, methylmercury was efficiently removed (>80 %) in temperature of 21-25 °C. Polymerase chain reactions indicated the presence of merA but not merB in P. putida V1. The growth and ability of P. putida V1 to remove methylmercury in a wide range of pH (4.0 and 8.0) and temperature (10-35 °C), its tolerance to other heavy metals and ability to grow in the presence of up to 11.5 μM of methylmercury, suggest this strain as a new potential resource for degrading methylmercury contaminated sites.

  15. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I-Bench-scale microcosm study to assess methylmercury production.

    PubMed

    Randall, Paul M; Fimmen, Ryan; Lal, Vivek; Darlington, Ramona

    2013-08-01

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37ng/g-sediment dry weight) after only 48h of incubation and reached a maximum sediment concentration of 127ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10ng/L after 2 day, reaching a maximum observed concentration of 32.8ng/L after 14 days, and declining to 10.8ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. Published by Elsevier Inc.

  16. Varying coefficient function models to explore interactions between maternal nutritional status and prenatal methylmercury toxicity in the Seychelles Child Development Nutrition Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Miranda L., E-mail: Miranda_Lynch@urmc.rochester.edu; Huang, Li-Shan; Cox, Christopher

    Maternal consumption of fish during the gestational period exposes the fetus to both nutrients, especially the long-chain polyunsaturated fatty acids (LCPUFAs), believed to be beneficial for fetal brain development, as well as to the neurotoxicant methylmercury (MeHg). We recently reported that nutrients present in fish may modify MeHg neurotoxicity. Understanding the apparent interaction of MeHg exposure and nutrients present in fish is complicated by the limitations of modeling methods. In this study we fit varying coefficient function models to data from the Seychelles Child Development Nutrition Study (SCDNS) cohort to assess the association of dietary nutrients and children's development. Thismore » cohort of mother-child pairs in the Republic of Seychelles had fish consumption averaging 9 meals per week. Maternal nutritional status was assessed for five different nutritional components known to be present in fish (n-3 LCPUFA, n-6 LCPUFA, iron status, iodine status, and choline) and associated with children's neurological development. We also included prenatal MeHg exposure (measured in maternal hair). We examined two child neurodevelopmental outcomes (Bayley Scales Infant Development-II (BSID-II) Mental Developmental Index (MDI) and Psychomotor Developmental Index (PDI)), each administered at 9 and at 30 months. The varying coefficient models allow the possible interactions between each nutritional component and MeHg to be modeled as a smoothly varying function of MeHg as an effect modifier. Iron, iodine, choline, and n-6 LCPUFA had little or no observable modulation at different MeHg exposures. In contrast the n-3 LCPUFA docosahexaenoic acid (DHA) had beneficial effects on the BSID-II PDI that were reduced or absent at higher MeHg exposures. This study presents a useful modeling method that can be brought to bear on questions involving interactions between covariates, and illustrates the continuing importance of viewing fish consumption during pregnancy as

  17. Varying coefficient function models to explore interactions between maternal nutritional status and prenatal methylmercury toxicity in the Seychelles Child Development Nutrition Study.

    PubMed

    Lynch, Miranda L; Huang, Li-Shan; Cox, Christopher; Strain, J J; Myers, Gary J; Bonham, Maxine P; Shamlaye, Conrad F; Stokes-Riner, Abbie; Wallace, Julie M W; Duffy, Emeir M; Clarkson, Thomas W; Davidson, Philip W

    2011-01-01

    Maternal consumption of fish during the gestational period exposes the fetus to both nutrients, especially the long-chain polyunsaturated fatty acids (LCPUFAs), believed to be beneficial for fetal brain development, as well as to the neurotoxicant methylmercury (MeHg). We recently reported that nutrients present in fish may modify MeHg neurotoxicity. Understanding the apparent interaction of MeHg exposure and nutrients present in fish is complicated by the limitations of modeling methods. In this study we fit varying coefficient function models to data from the Seychelles Child Development Nutrition Study (SCDNS) cohort to assess the association of dietary nutrients and children's development. This cohort of mother-child pairs in the Republic of Seychelles had fish consumption averaging 9 meals per week. Maternal nutritional status was assessed for five different nutritional components known to be present in fish (n-3 LCPUFA, n-6 LCPUFA, iron status, iodine status, and choline) and associated with children's neurological development. We also included prenatal MeHg exposure (measured in maternal hair). We examined two child neurodevelopmental outcomes (Bayley Scales Infant Development-II (BSID-II) Mental Developmental Index (MDI) and Psychomotor Developmental Index (PDI)), each administered at 9 and at 30 months. The varying coefficient models allow the possible interactions between each nutritional component and MeHg to be modeled as a smoothly varying function of MeHg as an effect modifier. Iron, iodine, choline, and n-6 LCPUFA had little or no observable modulation at different MeHg exposures. In contrast the n-3 LCPUFA docosahexaenoic acid (DHA) had beneficial effects on the BSID-II PDI that were reduced or absent at higher MeHg exposures. This study presents a useful modeling method that can be brought to bear on questions involving interactions between covariates, and illustrates the continuing importance of viewing fish consumption during pregnancy as a case

  18. Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA

    USGS Publications Warehouse

    Barringer, J.L.; Riskin, M.L.; Szabo, Z.; Reilly, P.A.; Rosman, R.; Bonin, J.L.; Fischer, J.M.; Heckathorn, H.A.

    2010-01-01

    The upper Great Egg Harbor River watershed in New Jersey's Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006-2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river's flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils. ?? 2010 US Government.

  19. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringari, James; Nunes, Adriana K.C.; Franco, Jeferson L.

    2008-02-15

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinkingmore » water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F{sub 2}-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F{sub 2}-isoprostanes levels at all time points. Significant negative correlations were found between F{sub 2}-isoprostanes and GSH, as well as between F{sub 2}-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral

  20. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    PubMed Central

    Stringari, James; Nunes, Adriana KC; Franco, Jeferson L; Bohrer, Denise; Garcia, Solange C; Dafre, Alcir L; Milatovic, Dejan; Souza, Diogo O; Rocha, João BT; Aschner, Michael; Farina, Marcelo

    2010-01-01

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/L, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PNDs) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F2-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F2-isoprostanes levels at all time points. Significant negative correlations were found between F2-isoprostanes and GSH, as well as between F2-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at birth. Even

  1. Methylmercury causes neuronal cell death through the suppression of the TrkA pathway: In vitro and in vivo effects of TrkA pathway activators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako

    Methylmercury (MeHg) is an environmental toxin which induces cell death specific for the nervous systems. Here we show that MeHg causes neuronal cell death through the suppression of the tropomyosin receptor kinase A (TrkA) pathway, and that compounds activating the TrkA pathway prevent MeHg-induced nerve damage in vitro and in vivo. We first investigated the mechanism of MeHg-induced neurotoxicity in differentiating neurons using PC12 cells. Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. Further, MeHg-induced apoptosis was preceded by inhibition of neurite extension, as determined by ELISA analyses of the neurite-specific protein neurofilament tripletmore » H protein (NF-H). To determine the mechanism of MeHg-induced apoptosis, we evaluated the effects of MeHg on the TrkA pathway, which is known to regulate neuronal differentiation and viability. Western blot analysis demonstrated that, like the TrkA phosphorylation inhibitor K252a, MeHg inhibited phosphorylation of TrkA and its downstream effectors. Furthermore, GM1 ganglioside and its analog MCC-257, which enhance TrkA phosphorylation, overcame the effect of MeHg in neurons, supporting the involvement of the TrkA pathway in MeHg-induced nerve damage. Finally, we demonstrated that MCC-257 rescued the clinical sign and pathological changes in MeHg-exposed rats. These findings indicate that MeHg-induced apoptosis in neuron is triggered by inhibition of the TrkA pathway, and that GM1 ganglioside and MCC-257 effectively prevent MeHg-induced nerve damage. - Highlights: • Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. • Inhibition of neurite extension was involved in MeHg-induced apoptosis. • Like the TrkA phosphorylation inhibitor, MeHg inhibited phosphorylation of TrkA. • GM1 ganglioside and its analog effectively prevented MeHg-induced nerve damage.« less

  2. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts

    USGS Publications Warehouse

    Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R.

    2011-01-01

    The presence of inorganic mercury (IHg) and methylmercury (MeHg) in surface waters is a health concern worldwide. This study assessed the removal potential use of metal-based coagulants as a means to remove both dissolved IHg and MeHg from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however these studies used high concentrations of Hg and did not reflect naturally occurring concentrations of Hg. In this study, water collected from an agricultural drain in the Sacramento-San Joaquin Delta was filtered to isolate the dissolved organic matter (DOM) fraction. The DOM was then treated with a range of coagulant doses to determine the efficacy of removing all forms of Hg from solution. Three industrial-grade coagulants were tested: ferric chloride, ferric sulfate, and polyaluminum chloride. Coagulation removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant regarding large-scale removal of Hg at environmentally relevant concentrations.

  3. Neural stem cell apoptosis after low-methylmercury exposures in postnatal hippocampus produce persistent cell loss and adolescent memory deficits.

    PubMed

    Sokolowski, Katie; Obiorah, Maryann; Robinson, Kelsey; McCandlish, Elizabeth; Buckley, Brian; DiCicco-Bloom, Emanuel

    2013-12-01

    The developing brain is particularly sensitive to exposures to environmental contaminants. In contrast to the adult, the developing brain contains large numbers of dividing neuronal precursors, suggesting that they may be vulnerable targets. The postnatal day 7 (P7) rat hippocampus has populations of both mature neurons in the CA1-3 region as well as neural stem cells (NSC) in the dentate gyrus (DG) hilus, which actively produce new neurons that migrate to the granule cell layer (GCL). Using this well-characterized NSC population, we examined the impact of low levels of methylmercury (MeHg) on proliferation, neurogenesis, and subsequent adolescent learning and memory behavior. Assessing a range of exposures, we found that a single subcutaneous injection of 0.6 µg/g MeHg in P7 rats induced caspase activation in proliferating NSC of the hilus and GCL. This acute NSC death had lasting impact on the DG at P21, reducing cell numbers in the hilus by 22% and the GCL by 27%, as well as reductions in neural precursor proliferation by 25%. In contrast, non-proliferative CA1-3 pyramidal neuron cell number was unchanged. Furthermore, animals exposed to P7 MeHg exhibited an adolescent spatial memory deficit as assessed by Morris water maze. These results suggest that environmentally relevant levels of MeHg exposure may decrease NSC populations and, despite ongoing neurogenesis, the brain may not restore the hippocampal cell deficits, which may contribute to hippocampal-dependent memory deficits during adolescence. Copyright © 2013 Wiley Periodicals, Inc.

  4. Investigating Methylmercury Exposure in North Atlantic Cetaceans Using Multiple Isotope Tracers

    NASA Astrophysics Data System (ADS)

    Li, M.; Mikkelsen, B.; Yin, R.; Krabbenhoft, D. P.; Sunderland, E. M.

    2016-12-01

    Anthropogenic emissions have substantially perturbed the global biogeochemical cycle of mercury (Hg) and high latitude ecosystems are particularly vulnerable to Hg pollution and climate change. We investigated temporal changes in methylmercury (MeHg) exposures of long-finned pilot whales (Globicephala melas, n=59) between 1985-2015 using multiple isotopes (δ202Hg, Δ199Hg, Δ200Hg, Δ201Hg, δ13C, δ15N) as tracers of the physical environment and foraging ecology. Mass-independent fraction (MIF) of Hg (Δ199Hg, Δ201Hg) is mainly driven by photochemical demethylation in seawater. Enriched δ202Hg has been shown to result from demethylation. The ranges in Δ199Hg and Δ201Hg values in whales are similar across time periods with the exception of a few years following the 2010 volcanic eruption in Iceland that may have affected light penetration in surface waters. The mean δ202Hg values of whale muscle samples are consistently 1.5 ‰ across the study period, which is 1 ‰ higher than their prey (squid, blue whiting, and greater argentine). This fractionation is consistent with in vivo demethylation as a detoxification mechanism in the whales. Individuals with the highest MeHg concentrations have the lowest δ202Hg values and we infer this may result from more limited MeHg demethylation. We find a linear relationship between Δ200Hg anomalies (-0.1 to 0.2‰) and Δ199Hg (R2=0.76) that has not previously been reported. Variability in Δ200Hg is thought to be driven by photochemical reactions in the tropopause and may provide an effective tracer for atmospheric Hg inputs to the ocean that are methylated and accumulated in aquatic biota.

  5. Quantitative approach for incorporating methylmercury risks and omega-3 fatty acid benefits in developing species-specific fish consumption advice.

    PubMed

    Ginsberg, Gary L; Toal, Brian F

    2009-02-01

    Despite general agreement about the toxicity of methylmercury (MeHg), fish consumption advice remains controversial. Concerns have been raised that negative messages will steer people away from fish and omega-3 fatty acid (FA) benefits. One approach is to provide advice for individual species that highlights beneficial fish while cautioning against riskier fish. Our goal in this study was to develop a method to quantitatively analyze the net risk/benefit of individual fish species based on their MeHg and omega-3 FA content. We identified dose-response relationships for MeHg and omega-3 FA effects on coronary heart disease (CHD) and neurodevelopment. We used the MeHg and omega-3 FA content of 16 commonly consumed species to calculate the net risk/benefit for each species. Estimated omega-3 FA benefits outweigh MeHg risks for some species (e.g., farmed salmon, herring, trout); however, the opposite was true for others (swordfish, shark). Other species were associated with a small net benefit (e.g., flounder, canned light tuna) or a small net risk (e.g., canned white tuna, halibut). These results were used to place fish into one of four meal frequency categories, with the advice tentative because of limitations in the underlying dose-response information. Separate advice appears warranted for the neurodevelopmental risk group versus the cardiovascular risk group because we found a greater net benefit from fish consumption for the cardiovascular risk group. This research illustrates a framework for risk/benefit analysis that can be used to develop categories of consumption advice ranging from "do not eat" to "unlimited," with the caveat that unlimited may need to be tempered for certain fish (e.g., farm-raised salmon) because of other contaminants and end points (e.g., cancer risk). Uncertainties exist in the underlying dose-response relationships, pointing in particular to the need for more research on the adverse effects of MeHg on cardiovascular end points.

  6. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L.; Kakouros, Evangelos; Kieu, Le H.; Fleck, Jacob A.; Alpers, Charles N.; Stricker, Craig A.

    2014-01-01

    As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible ‘reactive’ mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored

  7. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA.

    PubMed

    Marvin-DiPasquale, Mark; Windham-Myers, Lisamarie; Agee, Jennifer L; Kakouros, Evangelos; Kieu, Le H; Fleck, Jacob A; Alpers, Charles N; Stricker, Craig A

    2014-06-15

    As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible 'reactive' mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored

  8. Sensitivity to methylmercury toxicity is enhanced in oxoguanine glycosylase 1 knockout murine embryonic fibroblasts and is dependent on cellular proliferation capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondovcik, Stephanie L.; Tamblyn, Laura; McPherson, John Peter

    2013-07-01

    Methylmercury (MeHg) is a persistent environmental contaminant with potent neurotoxic action for which the underlying molecular mechanisms remain to be conclusively delineated. Our objectives herein were twofold: first, to corroborate our previous findings of an increased sensitivity of spontaneously-immortalized oxoguanine glycosylase 1-null (Ogg1{sup −/−}) murine embryonic fibroblasts (MEFs) to MeHg through generation of Simian virus 40 (SV40) large T antigen-immortalized wild-type and Ogg1{sup −/−} MEFs; and second, to determine whether MeHg toxicity is proliferation-dependent. As with the spontaneously-immortalized cells used previously, the SV40 large T antigen-immortalized cells exhibited similar tendencies to undergo MeHg-initiated cell cycle arrest, with increased sensitivity inmore » the Ogg1{sup −/−} MEFs as measured by clonogenic survival and DNA damage. Compared to exponentially growing cells, those seeded at a higher density exhibited compromised proliferation, which proved protective against MeHg-mediated cell cycle arrest and induction of DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), and by its functional confirmation by micronucleus assessment. This enhanced sensitivity of Ogg1{sup −/−} MEFs to MeHg toxicity using discrete SV40 immortalization corroborates our previous studies, and suggests a novel role for OGG1 in minimizing MeHg-initiated DNA lesions that trigger replication-associated DSBs. Furthermore, proliferative capacity may determine MeHg toxicity in vivo and in utero. Accordingly, variations in cellular proliferative capacity and interindividual variability in repair activity may modulate the risk of toxicological consequences following MeHg exposure. - Highlights: • SV40 large T antigen-immortalized Ogg1{sup −/−} cells are more sensitive to MeHg. • Sensitivity to MeHg is dependent on cellular proliferation capacity. • OGG1 maintains

  9. Hg-contaminated terrestrial spiders pose a potential risk to songbirds at Caddo Lake (Texas/Louisiana, USA).

    PubMed

    Gann, Gretchen L; Powell, Cleveland H; Chumchal, Matthew M; Drenner, Ray W

    2015-02-01

    Methylmercury (MeHg) is an environmental contaminant that can have adverse effects on wildlife. Because MeHg is produced by bacteria in aquatic ecosystems, studies of MeHg contamination of food webs historically have focused on aquatic organisms. However, recent studies have shown that terrestrial organisms such as songbirds can be contaminated with MeHg by feeding on MeHg-contaminated spiders. In the present study, the authors examined the risk that MeHg-contaminated terrestrial long-jawed orb weaver spiders (Tetragnatha sp.) pose to songbirds at Caddo Lake (Texas/Louisiana, USA). Methylmercury concentrations in spiders were significantly different in river, wetland, and open-water habitats. The authors calculated spider-based wildlife values (the minimum spider MeHg concentrations causing physiologically significant doses in consumers) to assess exposure risks for arachnivorous birds. Methylmercury concentrations in spiders exceeded wildlife values for Carolina chickadee (Poecile carolinensis) nestlings, with the highest risk in the river habitat. The present study indicates that MeHg concentrations in terrestrial spiders vary with habitat and can pose a threat to small-bodied nestling birds that consume large amounts of spiders at Caddo Lake. This MeHg threat to songbirds may not be unique to Caddo Lake and may extend throughout the southeastern United States. © 2014 SETAC.

  10. Methylmercury poisoning

    MedlinePlus

    ... with this from of mercury. Poisoning from eating fish from water that is contaminated with methylmercury has ... or may become pregnant, and nursing mothers avoid fish that may contain unsafe levels of methylmercury. This ...

  11. Poor psychometric scores of children living in isolated riverine and agrarian communities and fish-methylmercury exposure.

    PubMed

    Fonseca, Márlon de F; Dórea, José G; Bastos, Wanderley R; Marques, Rejane C; Torres, João P M; Malm, Olaf

    2008-11-01

    Because of heavy dependence on fish, Amazonian riparian communities are chronically exposed to high levels of methylmercury (MeHg). We studied fish-MeHg exposure (total hair-Hg, HHg) as a determinant of neurocognitive scores of children living in two geographically distant, culturally distinct and isolated poor communities of non-urban environments: Amazonian riverines (Riparians, n=38) of the Puruzinho Lake community in the Rio Madeira Basin and rural agrarians from Iúna, Espírito Santo (Agrarians, n=32). Nutritional status was estimated by anthropometry (Z-scores) and individual cognitive abilities were assessed by the Wechsler Intelligence Scale for Children-III (WISC-III) and the Human Figure Drawings (HFD), both validated versions for Brazilian children. Anthropometric assessment showed slightly elevated Z-scores for the Agrarian children (not statistically significant) but median HHg concentrations were 14.4 and 0.25microgg(-1) respectively for Riparian and Agrarian children (p=0.000). Despite paradoxical MeHg exposures, both groups showed comparable HFD scores but very poor performance in WISC-III test battery; median of sum of WISC-III subtests scores (SigmaTOT) were 17.9 and 28.6 (p<0.000) for Riparian and Agrarian children, respectively (percentage scale). Spearman correlation between nutritional status (attained growth) and psychometric scores were statistically significant between height-for-age Z-score and Object Assembly subtest (r=0.269; p=0.043), SigmaTOT (r=0.319; p=0.016), Performance-IQ (r=0.311; p=0.019) and Perceptual Organization Index scores (r=0.302; p=0.023). In these isolated communities there are stronger determinants of neurocognitive poor performance than MeHg exposure. Global strategies for reducing human exposure to MeHg by curtailing fish consumption are unrealistic options for riverine subsistence populations and are not justifiable to prevent low cognitive scores.

  12. Assessment of human health risk associated with methylmercury in the imported fish marketed in the Caribbean.

    PubMed

    Fuentes-Gandara, Fabio; Herrera-Herrera, Claudia; Pinedo-Hernández, José; Marrugo-Negrete, José; Díez, Sergi

    2018-08-01

    The decline in marine and freshwaters catches in recent years in Colombia has led to a change in dietary habits, with an increase in the purchase and consumption of imported fish. This is of particular concern as fish are sometimes caught in mercury-contaminated waters, and are subsequently sold canned or uncanned. In addition, canned tuna has received little attention as it is widely assumed that concentrations are low. In this study, total mercury (THg) and methylmercury (MeHg) concentrations were evaluated in three imported fish species marketed in Colombia, Prochilodus lineatus, Prochilodus reticulatus, and Pangasianodon hypophthalmus, plus four brands of canned tuna and one of sardines. One brand of tuna showed the highest mean concentrations of THg (0.543 ± 0.237 μg/g, wet weight, ww) and MeHg (0.518 ± 0.337 μg/g ww), while concentrations in P. hypophthalmus were approximately 30 times lower (≈0.02 µg/g ww). The estimated weekly intake (EWI) in children was above the provisional tolerable weekly intake (PTWI) of MeHg established by the Joint FAO/World Health Organization (WHO) Expert Committee on Food Additives (JECFA) in 2007, 1.6 μg/kg body weight (bw) per week, for all the canned tuna brands. Values for adults were below PTWI, whereas for women of childbearing age, values were above PTWI only for brand D of canned tuna. The estimate of the potential risk indicated that MeHg levels in canned tuna can generate negative effects in vulnerable groups, while the EWI of fresh fish did not pose a threat to the general population. Therefore, establishing strategies to address the high consumption of canned tuna, and continuous monitoring to control commercial food, are recommended to decrease Hg exposure. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Diet enriched with the Amazon fruit açaí (Euterpe oleracea) prevents electrophysiological deficits and oxidative stress induced by methyl-mercury in the rat retina.

    PubMed

    Brasil, Alódia; Rocha, Fernando Allan de Farias; Gomes, Bruno Duarte; Oliveira, Karen Renata M; de Carvalho, Tayana Silva; Batista, Evander de Jesus O; Borges, Rosivaldo Dos Santos; Kremers, Jan; Herculano, Anderson Manoel

    2017-06-01

    The protective effect of a diet supplemented by the Amazonian fruit Euterpe oleracea (EO) against methylmercury (MeHg) toxicity in rat retina was studied using electroretinography (ERG) and biochemical evaluation of oxidative stress. Wistar rats were submitted to conventional diet or EO-enriched diet for 28 days. After that, each group received saline solution or 5 mg/kg/day of MeHg for 7 days. Full-field single flash, flash and flicker ERGs were evaluated in the following groups: control, EO, MeHg, and EO+MeHg. The amplitudes of the a-wave, b-wave, photopic negative response from rod and/or cone were measured by ERGs as well as the amplitudes and phases of the fundamental component of the sine-wave flicker ERG. Lipid peroxidation was determined by thiobarbituric acid reactive species. All ERG components had decreased amplitudes in the MeHg group when compared with controls. EO-enriched food had no effect on the non-intoxicated animals. The intoxicated animals and those that received the supplemented diet presented significant amplitude reductions of the cone b-wave and of the fundamental flicker component when compared with non-intoxicated control. The protective effect of the diet on scotopic conditions was only observed for bright flashes eliciting a mixed rod and cone response. There was a significant increase of lipid peroxidation in the retina from animals exposed to MeHg and EO-supplemented diet was able to prevent MeHg-induced oxidative stress in retinal tissue. These findings open up perspectives for the use of diets supplemented with EO as a protective strategy against visual damage induced by MeHg.

  14. Reducing methylmercury accumulation in the food webs of San Francisco Bay and its local watersheds.

    PubMed

    Davis, J A; Looker, R E; Yee, D; Marvin-Di Pasquale, M; Grenier, J L; Austin, C M; McKee, L J; Greenfield, B K; Brodberg, R; Blum, J D

    2012-11-01

    San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for the past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce loads

  15. Reducing methylmercury accumulation in the food webs of San Francisco Bay and its local watersheds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.A., E-mail: jay@sfei.org; Looker, R.E.; Yee, D.

    San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for themore » past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce

  16. Prenatal exposure to methylmercury and PCBs affects distinct stages of information processing: an event-related potential study with Inuit children.

    PubMed

    Boucher, Olivier; Bastien, Célyne H; Saint-Amour, Dave; Dewailly, Eric; Ayotte, Pierre; Jacobson, Joseph L; Jacobson, Sandra W; Muckle, Gina

    2010-08-01

    Methylmercury (MeHg) and polychlorinated biphenyls (PCBs) are seafood contaminants known for their adverse effects on neurodevelopment. This study examines the relation of developmental exposure to these contaminants to information processing assessed with event-related potentials (ERPs) in school-aged Inuit children from Nunavik (Arctic Québec). In a prospective longitudinal study on child development, exposure to contaminants was measured at birth and 11 years of age. An auditory oddball protocol was administered at 11 years to measure ERP components N1 and P3b. Multiple regression analyses were performed to examine the associations of levels of the contaminants to auditory oddball performance (mean reaction time, omission errors and false alarms) and ERP parameters (latency and amplitude) after control for potential confounding variables. A total of 118 children provided useable ERP data. Prenatal MeHg exposure was associated with slower reaction times and fewer false alarms during the oddball task. Analyses of the ERP parameters revealed that prenatal MeHg exposure was related to greater amplitude and delayed latency of the N1 wave in the target condition but not to the P3b component. MeHg effects on the N1 were stronger after control for seafood nutrients. Prenatal PCB exposure was not related to any endpoint for sample as a whole but was associated with a decrease in P3b amplitude in the subgroup of children who had been breast-fed for less than 3 months. Body burdens of MeHg and PCBs at 11 years were not related to any of the behavioural or ERP measures. These data suggest that prenatal MeHg exposure alters attentional mechanisms modulating early processing of sensory information. By contrast, prenatal PCB exposure appears to affect information processing at later stages, when the information is being consciously evaluated. These effects seem to be mitigated in children who are breast-fed for a more extended period. (c) 2010 Elsevier Inc. All rights

  17. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream

  18. Bioavailability of methylmercury to Sacramento blackfish (Orthodon microlepidotus): Dissolved organic carbon effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, M.H.; Cech, J.J. Jr.; Lagunas-Solar, M.C.

    1998-04-01

    The effect of dissolved organic carbon (DOC) on methylmercury (MeHg) uptake across the gills of Sacramento blackfish (Orthodon microlepidotus) was investigated using the Hg-203 radioisotope. The efficiency of fish gills in extracting MeHg from water was measured using a McKim-type fish respirometer that separated exposure water from expired water. Blackfish gill ventilation and oxygen consumption rates remained constant, while Me{sup 203}Hg uptake was decreased significantly in the presence of DOC. Mean Me{sup 203}Hg extraction efficiency, uptake rate constant, and blood to inspired water ratio decreased 78%, 73%, and 63%, respectively, with 2 mg C/L of DOC, and 85%, 82%, andmore » 70% with 5 mg C/L DOC, compared to the Me{sup 203}Hg reference treatment group. Because respiratory parameters remained unchanged, reductions in Me{sup 203}Hg uptake indicate strong interactions between DOC and Me{sup 203}Hg Methyl{sup 203}Hg levels in fish gills, kidney, and spleen from 2 and 5 mg C/L were significantly lower than those observed from the reference treatment group. These reductions in uptake (bioavailability) support the hypothesis that trans-gill transport of Me{sup 203}Hg is inhibited when it is complexed by DOC in the aqueous medium, decreasing Me{sup 203}Hg uptake and accumulation in fish organs.« less

  19. Mercury in the blood and eggs of American kestrels fed methylmercury chloride

    USGS Publications Warehouse

    French, J.B.; Bennett, R.S.; Rossmann, R.

    2010-01-01

    American kestrels (Falco sparverius) were fed diets containing methylmercury chloride (MeHg) at 0, 0.6, 1.7, 2.8, 3.9, or 5.0 ??g/g (dry wt) starting approximately eight weeks before the onset of egg laying. Dietary treatment was terminated after 12 to 14 weeks, and unhatched eggs were collected for Hg analysis. Blood samples were collected after four weeks of treatment and the termination of the study (i.e., 12-14 weeks of treatment). Clutch size decreased at dietary concentrations above 2.8 ??g/g. The average total mercury concentration in clutches of eggs and in the second egg laid (i.e., egg B) increased linearly with dietary concentration. Mercury concentrations in egg B were approximately 25% lower than in the first egg laid and similar in concentration to the third egg laid. Mercury concentrations in whole blood and plasma also increased linearly with dietary concentration. Total Hg concentrations in June blood samples were lower than those in April, despite 8 to 10 weeks of additional dietary exposure to MeHg in the diet. This is likely because of excretion of Hg into growing flight feathers beginning shortly after the start of egg production. The strongest relationships between Hg concentrations in blood and eggs occurred when we used blood samples collected in April before egg laying and feather molt. ?? 2010 SETAC.

  20. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age.

    PubMed

    Allen, Bruce C; Hack, C Eric; Clewell, Harvey J

    2007-08-01

    A Bayesian approach, implemented using Markov Chain Monte Carlo (MCMC) analysis, was applied with a physiologically-based pharmacokinetic (PBPK) model of methylmercury (MeHg) to evaluate the variability of MeHg exposure in women of childbearing age in the U.S. population. The analysis made use of the newly available National Health and Nutrition Survey (NHANES) blood and hair mercury concentration data for women of age 16-49 years (sample size, 1,582). Bayesian analysis was performed to estimate the population variability in MeHg exposure (daily ingestion rate) implied by the variation in blood and hair concentrations of mercury in the NHANES database. The measured variability in the NHANES blood and hair data represents the result of a process that includes interindividual variation in exposure to MeHg and interindividual variation in the pharmacokinetics (distribution, clearance) of MeHg. The PBPK model includes a number of pharmacokinetic parameters (e.g., tissue volumes, partition coefficients, rate constants for metabolism and elimination) that can vary from individual to individual within the subpopulation of interest. Using MCMC analysis, it was possible to combine prior distributions of the PBPK model parameters with the NHANES blood and hair data, as well as with kinetic data from controlled human exposures to MeHg, to derive posterior distributions that refine the estimates of both the population exposure distribution and the pharmacokinetic parameters. In general, based on the populations surveyed by NHANES, the results of the MCMC analysis indicate that a small fraction, less than 1%, of the U.S. population of women of childbearing age may have mercury exposures greater than the EPA RfD for MeHg of 0.1 microg/kg/day, and that there are few, if any, exposures greater than the ATSDR MRL of 0.3 microg/kg/day. The analysis also indicates that typical exposures may be greater than previously estimated from food consumption surveys, but that the variability

  1. Disparity between state fish consumption advisory systems for Methylmercury and US Environmental Protection Agency recommendations: a case study of the South Central United States

    USGS Publications Warehouse

    Adams, Kimberly; Drenner, Ray W.; Chumchal, Matthew M.; Donato, David I.

    2015-01-01

    Fish consumption advisories are used to inform citizens in the United States about noncommercial game fish with hazardous levels of methylmercury (MeHg). The US Environmental Protection Agency (USEPA) suggests issuing a fish consumption advisory when concentrations of MeHg in fish exceed a human health screening value of 300 ng/g. However, states have authority to develop their own systems for issuing fish consumption advisories for MeHg. Five states in the south central United States (Arkansas, Louisiana, Mississippi, Oklahoma, and Texas) issue advisories for the general human population when concentrations of MeHg exceed 700 ng/g to 1000 ng/g. The objective of the present study was to estimate the increase in fish consumption advisories that would occur if these states followed USEPA recommendations. The authors used the National Descriptive Model of Mercury in Fish to estimate the mercury concentrations in 5 size categories of largemouth bass–equivalent fish at 766 lentic and lotic sites within the 5 states. The authors found that states in this region have not issued site-specific fish consumption advisories for most of the water bodies that would have such advisories if USEPA recommendations were followed. One outcome of the present study may be to stimulate discussion between scientists and policy makers at the federal and state levels about appropriate screening values to protect the public from the health hazards of consuming MeHg-contaminated game fish.

  2. The putative multidrug resistance protein MRP-7 inhibits methylmercury-associated animal toxicity and dopaminergic neurodegeneration in Caenorhabditis elegans

    PubMed Central

    VanDuyn, Natalia; Nass, Richard

    2013-01-01

    Parkinson’s disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans (C. elegans) modulates whole animal and DA neuron sensitivity to MeHg. In this study we demonstrate that genetic knockdown of MRP-7 results in a 2-fold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology. PMID:24266639

  3. The putative multidrug resistance protein MRP-7 inhibits methylmercury-associated animal toxicity and dopaminergic neurodegeneration in Caenorhabditis elegans.

    PubMed

    VanDuyn, Natalia; Nass, Richard

    2014-03-01

    Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here, we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans modulates whole animal and DA neuron sensitivity to MeHg. In this study, we demonstrate that genetic knockdown of MRP-7 results in a twofold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology. © 2013 International Society for Neurochemistry.

  4. Effects of injected methylmercury on the hatching of common loon (Gavia immer) eggs

    USGS Publications Warehouse

    Kenow, Kevin P.; Meyer, Michael W.; Rossmann, Ronald; Gendron-Fitzpatrick, Annette; Gray, Brian R.

    2011-01-01

    To determine the level of in ovo methylmercury (MeHg) exposure that results in detrimental effects on fitness and survival of loon embryos and hatched chicks, we conducted a field study in which we injected eggs with various doses of MeHg on day 4 of incubation. Eggs were collected following about 23 days of natural incubation and artificially incubated to observe hatching. Reduced embryo survival was evident in eggs injected at a rate of ≥1.3 μg Hg/g wet-mass. When maternally deposited Hg and injected Hg were considered together, the median lethal concentration of Hg (LC50) was estimated to be 1.78 μg Hg/g wet-mass. Organ mass patterns from eggs of chicks injected at a rate of 2.9 μg Hg/g differed from that of controls and chicks from the 0.5 μg Hg/g treatment, largely related to a negative relation between yolk sac mass and egg mercury concentration. Chicks from eggs in the 2.9 μg Hg/g treatment were also less responsive to a frightening stimulus than controls and chicks from the 0.5 μg Hg/g treatment. We also found that the length of incubation period increased with increasing egg mercury concentration. Tissue Hg concentrations were strongly associated (r2 ≥ 0.80) with egg Hg concentration.

  5. Methylmercury Poisoning in Iraq

    ERIC Educational Resources Information Center

    Bakir, F.; And Others

    1973-01-01

    Discusses incidence of methylmercury poisoning throughout the world with increasing industrial and agricultural use of mercury compounds. Describes recent epidemic in Iraq resulting from use of wheat treated with methylmercurial fungicide. New data are presented on the toxicity of methylmercury and its metabolic fate in the human body. (JR)

  6. Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.

    PubMed

    Bellum, Sairam; Bawa, Bhupinder; Thuett, Kerry A; Stoica, Gheorghe; Abbott, Louise C

    2007-01-01

    At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H(2)DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca(2+)](i)) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.

  7. Photodegradation of methylmercury in lakes

    NASA Astrophysics Data System (ADS)

    Seller, P.; Kelly, C. A.; Rudd, J. W. M.; Machutchon, A. R.

    1996-04-01

    METHYLMERCURY can accumulate in fish to concentrations that threaten human health1. Fish methylmercury concentrations are high in many reservoirs2 and acidic lakes3, and also in many remote lakes4,5-a fact that may be related to increased atmospheric deposition of anthropogenically mobilized mercury during the past few decades6. Although sources of methylmercury to lakes and reservoirs are known7, in-lake destruction has not been demonstrated to occur at the low concentrations found in most water bodies. Here we report in situ incubations of lake water that show that methylmercury is decomposed by photo- degradation in surface waters. This process is abiotic and the rate is first-order with respect to methylmercury concentration and the intensity of solar radiation. In our study lake, the calculated annual rates of methylmercury photodegradation are almost double the estimated external inputs of methylmercury from rain, snow, streamflow and land runoff, implying the existence of a large source of methylmercury from bottom sediments. Photodegradation could also be an important process in the mercury cycle of other aquatic systems. This discovery fundamentally changes our understanding of aquatic mercury cycling, and challenges the long-accepted view that microbial demethylation dominates methylmercury degradation in natural fresh waters.

  8. Total mercury and methylmercury levels in fish from hydroelectric reservoirs in Tanzania.

    PubMed

    Ikingura, J R; Akagi, H

    2003-03-20

    Total mercury (THg) and methylmercury (MeHg) levels have been determined in fish species representing various tropic levels in four major hydroelectric reservoirs (Mtera, Kidatu, Hale-Pangani, Nyumba ya Mungu) located in two distinct geographical areas in Tanzania. The Mtera and Kidatu reservoirs are located along the Great Ruaha River drainage basin in the southern central part of the country while the other reservoirs are located within the Pangani River basin in the north eastern part of Tanzania. Fish mercury levels ranged from 5 to 143 microg/kg (mean 40 microg/kg wet weight) in the Mtera Reservoir, and from 7 to 119 microg/kg (mean 21 microg/kg) in the Kidatu Reservoir downstream of the Great Ruaha River. The lowest THg levels, in the range 1-10 microg/kg (mean 5 microg/kg), were found in fish from the Nyumba ya Mungu (NyM) Reservoir, which is one of the oldest reservoirs in the country. Fish mercury levels in the Pangani and Hale mini-reservoirs, downstream of the NyM Reservoir, were in the order of 3-263 microg/kg, with an average level of 21 microg/kg. These THg levels are among the lowest to be reported in freshwater fish from hydroelectric reservoirs. Approximately 56-100% of the total mercury in the fish was methylmercury. Herbivorous fish species contained lower THg levels than the piscivorous species; this was consistent with similar findings in other fish studies. In general the fish from the Tanzanian reservoirs contained very low mercury concentrations, and differed markedly from fish in hydroelectric reservoirs of similar age in temperate and other regions, which are reported to contain elevated mercury concentrations. The low levels of mercury in the fish correlated with low background concentrations of THg in sediment and flooded soil (mean 2-8 microg/kg dry weight) in the reservoir surroundings. This suggested a relatively clean reservoir environment that has not been significantly impacted by mercury contamination from natural or anthropogenic

  9. Species specific isotope dilution for the accurate and SI traceable determination of arsenobetaine and methylmercury in cuttlefish and prawn.

    PubMed

    Kumkrong, Paramee; Thiensong, Benjaporn; Le, Phuong Mai; McRae, Garnet; Windust, Anthony; Deawtong, Suladda; Meija, Juris; Maxwell, Paulette; Yang, Lu; Mester, Zoltán

    2016-11-02

    Methods based on species specific isotope dilution were developed for the accurate and SI traceable determination of arsenobetaine (AsBet) and methylmercury (MeHg) in prawn and cuttlefish tissues by LC-MS/MS and SPME GC-ICPMS. Quantitation of AsBet and MeHg were achieved by using a 13 C-enriched AsBet spike (NRC CRM CBET-1) and an enriched spike of Me 198 Hg (NRC CRM EMMS-1), respectively, wherein analyte mass fractions in enriched spikes were determined by reverse isotope dilution using natural abundance AsBet and MeHg primary standards. Purity of these primary standards were characterized by quantitative 1 H-NMR with the use of NIST SRM 350b benzoic acid as a primary calibrator, ensuring the final measurement results traceable to SI. Validation of employed methods of ID LC-MS/MS and ID SPME GC-ICPMS was demonstrated by analysis of several biological CRMs (DORM-4, TORT-3, DOLT-5, BCR-627 and BCR-463) with satisfying results. The developed methods were applied for the determination of AsBet and MeHg in two new certified reference materials (CRMs) prawn (PRON-1) and cuttlefish (SQID-1) produced jointly by Thailand Institute of Scientific and Technological Research (TISTR) and National Research Council Canada (NRC). With additional measurements of AsBet using LC-ICPMS with standard additions calibration and external calibration at NRC and TISTR, respectively, certified values of 1.206 ± 0.058 and 13.96 ± 0.54 mg kg -1 for AsBet as As (expanded uncertainty, k = 2) were obtained for the new CRMs PRON-1 and SQID-1, respectively. The reference value of 0.324 ± 0.028 mg kg -1 as Hg (expanded uncertainty, k = 2) for MeHg was obtained for the SQID-1 based on the results obtained by ID SPME GC-ICPMS method only, whereas MeHg in PRON-1 was found to be < 0.015 mg kg -1 . It was found that AsBet comprised 69.7% and 99.0% of total As in the prawn and cuttlefish, respectively, whereas MeHg comprised 94.5% of total Hg in cuttlefish. Crown Copyright © 2016

  10. Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects.

    PubMed

    Liu, Wei; Xu, Zhaofa; Yang, Tianyao; Xu, Bin; Deng, Yu; Feng, Shu

    2017-09-01

    Methylmercury (MeHg) is an extremely dangerous environmental pollutant that induces severe toxic effects in the central nervous system. Neuronal damage plays critical roles mediating MeHg-induced loss of brain function and neurotoxicity. The molecular mechanisms of MeHg neurotoxicity are incompletely understood. The objective of the study is to explore mechanisms that contribute to MeHg-induced neurocyte injuries focusing on neuronal Ca 2+ dyshomeostasis and alteration of N-methyl-D-aspartate receptors (NMDARs) expression, as well as oxidative stress in primary cultured cortical neurons. In addition, the neuroprotective effects of memantine against MeHg cytotoxicity were also investigated. The cortical neurons were exposed to 0, 0.01, 0.1, 1, or 2 μM methylmercury chloride (MeHgCl) for 0.5-12 h, or pre-treated with 2.5, 5, 10, or 20 μM memantine for 0.5-6 h, respectively; cell viability and LDH release were then quantified. For further experiments, 2.5, 5, and 10 μM of memantine pre-treatment for 3 h followed by 1 μM MeHgCl for 6 h were performed for evaluation of neuronal injuries, specifically addressing apoptosis; intracellular free Ca 2+ concentrations; ATPase activities; calpain activities; expressions of NMDAR subunits (NR1, NR2A, NR2B); NPSH levels; and ROS formation. Exposure of MeHgCl resulted in toxicity of cortical neurons, which were shown as a loss of cell viability, high levels of LDH release, morphological changes, and cell apoptosis. Moreover, intracellular Ca 2+ dyshomeostasis, ATPase activities inhibition, calpain activities, and NMDARs expression alteration were observed with 1 μM MeHgCl administration. Last but not least, NPSH depletion and reactive oxygen species (ROS) overproduction showed an obvious oxidative stress in neurons. However, memantine pre-treatment dose-dependently antagonized MeHg-induced neuronal toxic effects, apoptosis, Ca 2+ dyshomeostasis, NMDARs expression alteration, and oxidative stress. In conclusion, the

  11. Gene expression, glutathione status and indicators of hepatic oxidative stress in laughing gull (Larus atricilla) hatchlings exposed to methylmercury

    USGS Publications Warehouse

    Jenko, Kathryn; Karouna-Renier, Natalie K.; Hoffman, David J.

    2012-01-01

    Despite extensive studies of methylmercury (MeHg) toxicity in birds, molecular effects on birds are poorly characterized. To improve our understanding of toxicity pathways and identify novel indicators of avian exposure to Hg, the authors investigated genomic changes, glutathione status, and oxidative status indicators in liver from laughing gull (Larus atricilla) hatchlings that were exposed in ovo to MeHg (0.05–1.6 µg/g). Genes involved in the transsulfuration pathway, iron transport and storage, thyroid-hormone related processes, and cellular respiration were identified by suppression subtractive hybridization as differentially expressed. Quantitative polymerase chain reaction (qPCR) identified statistically significant effects of Hg on cytochrome C oxidase subunits I and II, transferrin, and methionine adenosyltransferase RNA expression. Glutathione-S-transferase activity and protein-bound sulfhydryl levels decreased, whereas glucose-6-phosphate dehydrogenase activity increased dose-dependently. Total sulfhydryl concentrations were significantly lower at 0.4 µg/g Hg than in controls. T ogether, these endpoints provided some evidence of compensatory effects, but little indication of oxidative damage at the tested doses, and suggest that sequestration of Hg through various pathways may be important for minimizing toxicity in laughing gulls. This is the first study to describe the genomic response of an avian species to Hg. Laughing gulls are among the less sensitive avian species with regard to Hg toxicity, and their ability to prevent hepatic oxidative stress may be important for surviving levels of MeHg exposures at which other species succumb.

  12. Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia.

    PubMed

    Tomiyasu, Takashi; Kodamatani, Hitoshi; Hamada, Yuriko Kono; Matsuyama, Akito; Imura, Ryusuke; Taniguchi, Yoko; Hidayati, Nuril; Rahajoe, Joeni Setijo

    2017-01-01

    This study investigates the distribution of total mercury (T-Hg) and methylmercury (MeHg) in the soil and water around the artisanal and small-scale gold mining (ASGM) area along the Cikaniki River, West Java, Indonesia. The concentration of T-Hg and MeHg in the forest soil ranged from 0.07 to 16.7 mg kg -1 and from <0.07 to 2.0 μg kg -1 , respectively, whereas it ranged from 0.40 to 24.9 mg kg -1 and from <0.07 to 56.3 μg kg -1 , respectively, in the paddy field soil. In the vertical variation of the T-Hg of forest soil, the highest values were observed at the soil surface, and these values were found to decrease with increasing depth. A similar variation was observed for MeHg and total organic carbon content (TOC), and a linear relationship was observed between them. Mercury deposited on the soil surface can be trapped and retained by organic matter and subjected to methylation. The slope of the line obtained for the T-Hg vs. TOC plot became larger near the ASGM villages, implying a higher rate of mercury deposition in these areas. In contrast, the plots of MeHg vs. TOC fell along the same trend line regardless of the distance from the ASGM village. Organic carbon content may be a predominant factor in controlling MeHg formation in forest soils. The T-Hg concentration in the river water ranged from 0.40 to 9.6 μg L -1 . River water used for irrigation can prove to be a source of mercury for the paddy fields. The concentrations of Hg 0 and Hg 2+ in river water showed similar variations as that observed for the T-Hg concentration. The highest Hg 0 concentration of 3.2 μg L -1 can be attributed to the waste inflow from work sites. The presence of Hg 0 in river water can become a source of mercury present in the atmosphere along the river. MeHg concentration in the river water was found to be 0.004-0.14% of T-Hg concentration, which was considerably lower than the concentrations of other Hg species. However, MeHg comprised approximately 0.2% of the T

  13. MICROBIAL ACTIVITIES FOR THE REMEDIATION OF MERCURY CONTAMINATION

    EPA Science Inventory

    Methylmercury (MeHg) accumulation by aquatic biota could be reduced by stimulating bacterial degradation of MeHg and the reduction of Hg(II) to volatile Hg to zero power. Reduction of Hg(II) affects MeHg production by substrate limitation. The potential of bacterial reduction of ...

  14. Distribution, behavior, and transport of inorganic and methylmercury in a high gradient stream

    USGS Publications Warehouse

    Flanders, J.R.; Turner, R.R.; Morrison, T.; Jensen, R.; Pizzuto, J.; Skalak, K.; Stahl, R.

    2010-01-01

    Concentrations of Hg remain elevated in physical and biological media of the South River (Virginia, USA), despite the cessation of the industrial use of Hg in its watershed nearly six decades ago, and physical characteristics that would not seem to favor Hg(II)-methylation. A 3-a study of inorganic Hg (IHg) and methylmercury (MeHg) was conducted in physical media (soil, sediment, surface water, porewater and soil/sediment extracts) to identify non-point sources, transport mechanisms, and potential controls on Hg(II)-methylation. Data collected from surface water and sediment indicate that the majority of the non-point sources of IHg to the South River are within the first 14. km downstream from the historic point source. Partitioning data indicate that particle bound IHg is introduced in this reach, releasing dissolved and colloidal bound IHg, which is transported downstream. Extraction experiments revealed that floodplain soils released a higher fraction of their IHg content in aqueous extractions than fine-grained sediment (FGS). Based on ultrafiltration [<5000 nominal molecular weight cutoff (NMWC)] the majority of soil IHg released was colloidal in nature, providing evidence for the continued evolution of IHg for Hg(II)-methylation from soil. Strong seasonal patterns in MeHg concentrations were observed in surface water and sediment. The highest concentrations of MeHg in surface water were observed at moderate temperatures, suggesting that other factors limit net Hg(II)-methylation. Seasonal changes in sediment organic content and the fraction of 1. N KOH-extractable THg were also observed and may be important factors in controlling net Hg(II)-methylation rates. Sulfate concentrations in surface water are low and the evidence suggests that Fe reduction may be an important Hg(II)-methylation process. The highest sediment MeHg concentrations were observed in habitats with large amounts of FGS, which are more prevalent in the upper half of the study area due to

  15. Economic benefits of methylmercury exposure control in Europe: monetary value of neurotoxicity prevention.

    PubMed

    Bellanger, Martine; Pichery, Céline; Aerts, Dominique; Berglund, Marika; Castaño, Argelia; Cejchanová, Mája; Crettaz, Pierre; Davidson, Fred; Esteban, Marta; Fischer, Marc E; Gurzau, Anca Elena; Halzlova, Katarina; Katsonouri, Andromachi; Knudsen, Lisbeth E; Kolossa-Gehring, Marike; Koppen, Gudrun; Ligocka, Danuta; Miklavčič, Ana; Reis, M Fátima; Rudnai, Peter; Tratnik, Janja Snoj; Weihe, Pál; Budtz-Jørgensen, Esben; Grandjean, Philippe

    2013-01-07

    Due to global mercury pollution and the adverse health effects of prenatal exposure to methylmercury (MeHg), an assessment of the economic benefits of prevented developmental neurotoxicity is necessary for any cost-benefit analysis. Distributions of hair-Hg concentrations among women of reproductive age were obtained from the DEMOCOPHES project (1,875 subjects in 17 countries) and literature data (6,820 subjects from 8 countries). The exposures were assumed to comply with log-normal distributions. Neurotoxicity effects were estimated from a linear dose-response function with a slope of 0.465 Intelligence Quotient (IQ) point reduction per μg/g increase in the maternal hair-Hg concentration during pregnancy, assuming no deficits below a hair-Hg limit of 0.58 μg/g thought to be safe. A logarithmic IQ response was used in sensitivity analyses. The estimated IQ benefit cost was based on lifetime income, adjusted for purchasing power parity. The hair-mercury concentrations were the highest in Southern Europe and lowest in Eastern Europe. The results suggest that, within the EU, more than 1.8 million children are born every year with MeHg exposures above the limit of 0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World Health Organization (WHO). The total annual benefits of exposure prevention within the EU were estimated at more than 600,000 IQ points per year, corresponding to a total economic benefit between €8,000 million and €9,000 million per year. About four-fold higher values were obtained when using the logarithmic response function, while adjustment for productivity resulted in slightly lower total benefits. These calculations do not include the less tangible advantages of protecting brain development against neurotoxicity or any other adverse effects. These estimates document that efforts to combat mercury pollution and to reduce MeHg exposures will have very substantial economic benefits in Europe, mainly in

  16. Associations between prenatal and recent postnatal methylmercury exposure and auditory function at age 19 years in the Seychelles Child Development Study.

    PubMed

    Orlando, Mark S; Dziorny, Adam C; Harrington, Donald; Love, Tanzy; Shamlaye, Conrad F; Watson, Gene E; van Wijngaarden, Edwin; Davidson, Philip W; Myers, Gary J

    2014-01-01

    The aim of this study was to determine if prenatal or recent postnatal methylmercury (MeHg) exposure from consuming ocean fish and seafood is associated with auditory deficits in young adults. Some investigators have reported adverse associations while others have found no associations. Ocean fish is an important nutrient source for billions of people around the world. Consequently, determining if there is an adverse association with objective auditory measures is important in assessing whether a risk is present or not. The peripheral and central auditory function of 534 subjects in the Seychelles Child Development Study (SCDS) Main Cohort was examined at age of 19 years. The auditory test battery included standard pure-tone audiometry, tympanometry, auditory brainstem response (ABR) latencies, and both click-evoked and distortion product otoacoustic emissions (OAE). Associations with MeHg were evaluated with multiple linear regression models, adjusting for sex, recent postnatal MeHg exposure, and hearing loss. Bilateral hearing loss (defined as a mean pure-tone threshold of greater than 25 dB) was present in 1.1%of the subjects and was not associated with prenatal or recent postnatal MeHg exposure. As expected, absolute and interwave ABR latencies were shorter for women as compared to men, as the stimulus presentation rate decreased from 69.9 to 19.9 clicks/s and as the stimulus intensity increased from 60 to 80 dBnHL. Similarly, larger OAE amplitudes were elicited in women as compared to men and in the right ears as compared to the left. There was no association of prenatal MeHg exposure with hearing loss, ABR absolute and interwave latencies or OAE amplitudes. As recent postnatal MeHg increased, some associations were found with a few ABR absolute and interwave latencies and a few OAE amplitudes. However, the direction of these associations was inconsistent. As recent postnatal MeHg levels increased the wave I absolute latencies were shorter at 80 dBnHL for all

  17. Expression of human oxoguanine glycosylase 1 or formamidopyrimidine glycosylase in human embryonic kidney 293 cells exacerbates methylmercury toxicity in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondovcik, Stephanie L.; Preston, Thomas J.; McCallum, Gordon P.

    Exposure to methylmercury (MeHg) acutely at high levels, or via chronic low-level dietary exposure from daily fish consumption, can lead to adverse neurological effects in both the adult and developing conceptus. To determine the impact of variable DNA repair capacity, and the role of reactive oxygen species (ROS) and oxidatively damaged DNA in the mechanism of toxicity, transgenic human embryonic kidney (HEK) 293 cells that stably express either human oxoguanine glycosylase 1 (hOgg1) or its bacterial homolog, formamidopyrimidine glycosylase (Fpg), which primarily repair the oxidative lesion 8-oxo-2′-deoxyguanosine (8-oxodG), were used to assess the in vitro effects of MeHg. Western blottingmore » confirmed the expression of hOgg1 or Fpg in both the nuclear and mitochondrial compartments of their respective cell lines. Following acute (1–2 h) incubations with 0–10 μM MeHg, concentration-dependent decreases in clonogenic survival and cell growth accompanied concentration-dependent increases in lactate dehydrogenase (LDH) release, ROS formation, 8-oxodG levels and apurinic/apyrimidinic (AP) sites, consistent with the onset of cytotoxicity. Paradoxically, hOgg1- and Fpg-expressing HEK 293 cells were more sensitive than wild-type cells stably transfected with the empty vector control to MeHg across all cellular and biochemical parameters, exhibiting reduced clonogenic survival and cell growth, and increased LDH release and DNA damage. Accordingly, upregulation of specific components of the base excision repair (BER) pathway may prove deleterious potentially due to the absence of compensatory enhancement of downstream processes to repair toxic intermediary abasic sites. Thus, interindividual variability in DNA repair activity may constitute an important risk factor for environmentally-initiated, oxidatively damaged DNA and its pathological consequences. - Highlights: • hOgg1 and Fpg repair oxidatively damaged DNA. • hOgg1- and Fpg-expressing cells are more

  18. Improvements and application of a modified gas chromatography atomic fluorescence spectroscopy method for routine determination of methylmercury in biota samples.

    PubMed

    Gorecki, Jerzy; Díez, Sergi; Macherzynski, Mariusz; Kalisinska, Elżbieta; Golas, Janusz

    2013-10-15

    Improvements to the application of a combined solid-phase microextraction followed by gas chromatography coupled to pyrolysis and atomic fluorescence spectrometry method (SPME-GC-AFS) for methylmercury (MeHg) determination in biota samples are presented. Our new method includes improvements in the methodology of determination and the quantification technique. A shaker instead of a stirrer was used, in order to reduce the possibility of sample contamination and to simplify cleaning procedures. Then, optimal rotation frequency and shaking time were settled at 800 rpm and 10 min, respectively. Moreover, the GC-AFS system was equipped with a valve and an argon heater to eliminate the effect of the decrease in analytical signal caused by the moisture released from SPME fiber. For its determination, MeHg was first extracted from biota samples with a 25% KOH solution (3h) and then it was quantified by two methods, a conventional double standard addition method (AC) and a modified matrix-matched calibration (MQ) which is two times faster than the AC method. Both procedures were successfully tested with certified reference materials, and applied for the first time to the determination of MeHg in muscle samples of goosander (Mergus merganser) and liver samples of white-tailed eagle (Haliaeetus albicilla) with values ranging from 1.19 to 3.84 mg/kg dry weight (dw), and from 0.69 to 6.23 mg kg(-1) dw, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Influence of eutrophication on the distribution of total mercury and methylmercury in hydroelectric reservoirs.

    PubMed

    Meng, Bo; Feng, X B; Chen, C X; Qiu, G L; Sommar, J; Guo, Y N; Liang, P; Wan, Q

    2010-01-01

    The distribution of mercury (Hg) and the characteristics of its methylation were investigated in Wujiangdu (WJD) and Yinzidu (YZD) reservoirs in Guizhou province, China. The two reservoirs are characterized by high and low levels of primary productivity, respectively. Mercury species in water samples from depth profiles in both reservoirs and from interface water in the WJD were analyzed each season during 2007. The concentrations of total Hg (HgT(unf)) and methylmercury (MeHgT(unf)) in unfiltered water samples from the WJD varied from 3.0 to 18 pmol dm(-3) and from 0.17 to 15 pmol dm(-3), respectively; ranges were 2.0 to 9.5 pmol dm(-3) for HgT(unf) and 0.14 to 2.2 pmol dm(-3) for MeHgT(unf) in the YZD. Elevated methylmercury concentrations in water samples from the bottom water and water-sediment interface demonstrated an active net Hg methylation in the downstream reach of the WJD. There was no discernable Hg methylation occurring in the YZD, nor in the upstream and middle reaches of the WJD. The results suggest that high primary productivity resulting from cage aquaculture activities in the WJD is an important control on Hg methylation in the reservoir, increasing the concentrations of MeHg in water in the Wujiang River basin Southwestern China.

  20. Spatial and visual discrimination reversals in adult and geriatric rats exposed during gestation to methylmercury and n-3 polyunsaturated fatty acids

    PubMed Central

    Paletz, Elliott M.; Day, Jeremy J.; Craig-Schmidt, Margaret C.; Newland, M. Christopher

    2007-01-01

    Fish contain essential long chain polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), an omega-3 (or n-3) PUFA, but are also the main source of exposure to methylmercury (MeHg), a potent developmental neurotoxicant. Since n-3 PUFAs support neural development and function, benefits deriving from a diet rich in n-3s have been hypothesized to protect against deleterious effects of gestational MeHg exposure. To determine whether protection occurs at the behavioral level, female Long-Evans rats were exposed, in utero, to 0, 0.5, or 5 ppm of Hg as MeHg via drinking water, approximating exposures of 0, 40, and 400 μg Hg/kg/day and producing 0, 0.29, and 5.50 ppm of total Hg in the brains of siblings at birth. They also received pre- and postnatal exposure to one of two diets, both based on the AIN-93 semipurified formulation. A “fish-oil” diet was high in, and a “coconut-oil” diet was devoid of, DHA. Diets were approximately equal in α-linolenic acid and n-6 PUFAs. As adults, the rats were first assessed with a spatial discrimination reversal (SDR) procedure and later with a visual (nonspatial) discrimination reversal (VDR) procedure. MeHg increased the number of errors to criterion for both SDR and VDR during the first reversal, but effects were smaller or nonexistent on the original discrimination and on later reversals. No such MeHg-related deficits were seen when the rats were retested on SDR after two years of age. These results are consistent with previous reports and hypotheses that gestational MeHg exposure produces perseverative responding. No interactions between Diet and MeHg were found, suggesting that n-3 PUFAs do not guard against these behavioral effects. Brain Hg concentrations did not differ between the diets, either. In geriatric rats, failures to respond were less common and response latencies were shorter for rats fed the fish oil diet, suggesting that exposure to a diet rich in n-3s may lessen the impact of age

  1. Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan.

    PubMed

    Su, Yen-Bin; Chang, Wei-Chun; Hsi, Hsing-Cheng; Lin, Chu-Ching

    2016-07-01

    Recent studies have shown that rice consumption is another critical route of human exposure to methylmercury (MeHg), the most toxic and accumulative form of mercury (Hg) in the food web. Yet, the mechanisms that underlie the production and accumulation of MeHg in the paddy ecosystem are still poorly understood. In 2013 and 2014, we conducted field campaigns and laboratory experiments over a rice growing season to examine Hg and MeHg cycling, as well as associated biogeochemistry in a suite of paddies close to a municipal solid waste incinerator and a coal-fired power plant station in Taiwan. Concentrations of total Hg and MeHg in paddy soil and rice grain at both sites were low and found not to exceed the control standards for farmland soil and edible rice in Taiwan. However, seasonal variations of MeHg concentrations observed in pore water samples indicate that the in situ bioavailability of inorganic Hg and activity of Hg-methylating microbes in the rhizosphere increased from the early-season and peaked at the mid-season, presumably due to the anoxia created under flooded conditions and root exudation of organic compounds. The presence of Hg-methylators was also confirmed by the hgcA gene detected in all root soil samples. Subsequent methylation tests performed by incubating the root soil with inorganic Hg and an inhibitor or stimulant specific for certain microbes further revealed that sulfate-reducers might have been the principal Hg-methylting guild at the study sites. Interestingly, results of hydroponic experiments conducted by cultivating rice in a defined nutrient solution amended with fixed MeHg and varying levels of MeHg-binding ligands suggested that chemical speciation in soil pore water may play a key role in controlling MeHg accumulation in rice, and both passive and active transport pathways seem to take place in the uptake of MeHg in rice roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The cumulative MeHg and PCBs exposure and risk of tribal ...

    EPA Pesticide Factsheets

    Studies have shown that the U.S. population continues to be exposed to methyl mercury (MeHg) and polychlorinated biphenyls (PCBs) due to the long half-life of those environmental contaminants. Fish intake of Tribal populations is much higher than the U.S. general population due to dietary habits and unique cultural practices. Large fish tissue concentration data sets from the Environmental Protections Agency’s (EPA’s) Office of Water, USGS’s EMMMA program, and other data sources, were integrated, analyzed, and combined with recent tribal fish intake data for exposure analyses using the dietary module within EPA’s SHEDS-Multimedia model. SHEDS-Multimedia is a physically-based, probabilistic model, which can simulate cumulative (multiple chemicals) or aggregate (single chemical) exposures over time for a population via various pathways of exposure for a variety of multimedia, multipathway environmental chemicals. Our results show that MeHg and total PCBs exposure of tribal populations from fish are about 3 to 10 and 5 to 15 times higher than the US general population, respectively, and that the estimated exposures pose potential health risks. The cumulative exposures of MeHg and total PCBs will be assessed to generate the joint exposure profiles for Tribal and US general populations. Model sensitivity analyses will identify the important contributions of the cumulative exposures of MeHg and total PCBs such as fish types, locations, and size, and key expos

  3. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Johnson, William P.; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Gregory; Fernandez, Diego P.; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark C.

    2015-01-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible ‘reactive’ Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values ofkmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation.

  4. Mercury-Selenium Relationships in Liver of Guiana Dolphin: The Possible Role of Kupffer Cells in the Detoxification Process by Tiemannite Formation

    PubMed Central

    Lailson-Brito, José; Dorneles, Paulo Renato; Andrade, Leonardo; Azevedo, Alexandre de Freitas; Fragoso, Ana Bernadete; Vidal, Lara Gama; Costa, Marianna Badini; Bisi, Tatiana Lemos; Almeida, Ronaldo; Carvalho, Dario Pires; Bastos, Wanderley Rodrigues; Malm, Olaf

    2012-01-01

    Top marine predators present high mercury concentrations in their tissues as consequence of biomagnification of the most toxic form of this metal, methylmercury (MeHg). The present study concerns mercury accumulation by Guiana dolphins (Sotalia guianensis), highlighting the selenium-mediated methylmercury detoxification process. Liver samples from 19 dolphins incidentally captured within Guanabara Bay (Rio de Janeiro State, Brazil) from 1994 to 2006 were analyzed for total mercury (THg), methylmercury (MeHg), total organic mercury (TOrgHg) and selenium (Se). X-ray microanalyses were also performed. The specimens, including from fetuses to 30-year-old dolphins, comprising 8 females and 11 males, presented high THg (0.53–132 µg/g wet wt.) and Se concentrations (0.17–74.8 µg/g wet wt.). Correlations between THg, MeHg, TOrgHg and Se were verified with age (p<0.05), as well as a high and positive correlation was observed between molar concentrations of Hg and Se (p<0.05). Negative correlations were observed between THg and the percentage of MeHg contribution to THg (p<0.05), which represents a consequence of the selenium-mediated methylmercury detoxification process. Accumulation of Se-Hg amorphous crystals in Kupffer Cells was demonstrated through ultra-structural analysis, which shows that Guiana dolphin is capable of carrying out the demethylation process via mercury selenide formation. PMID:22860072

  5. Associations of Baroreflex Sensitivity, Heart Rate Variability, and Initial Orthostatic Hypotension with Prenatal and Recent Postnatal Methylmercury Exposure in the Seychelles Child Development Study at Age 19 Years

    PubMed Central

    Périard, Daniel; Beqiraj, Bujar; Hayoz, Daniel; Viswanathan, Bharathi; Evans, Katie; Thurston, Sally W.; Davidson, Philip W.; Myers, Gary J.; Bovet, Pascal

    2015-01-01

    Background: A few studies have suggested an association between prenatal exposure to methylmercury and decreased heart rate variability (HRV) related to autonomic heart function, but no study has examined this association using baroreflex sensitivity (BRS). In this study we assessed the distribution of BRS and immediate orthostatic hypotension (IOH) in young Seychellois adults and their associations with exposure to prenatal and recent postnatal methylmercury. Methods: Subjects in theSeychelles Child Development Study (SCDS) main cohort were evaluated at age 19 years. Non-invasive beat-to-beat blood pressure (BP) monitoring (Finapres, Ohmeda) was performed at rest and during active standing in 95 consecutive subjects. Recent postnatal mercury exposure was measured in subjects’ hair at the age of 19 years and prenatal exposure in maternal hair grown during pregnancy. BRS was estimated by sequence analysis to identify spontaneous ascending and descending BP ramps. HRV was estimated by the following markers: PNN50 (relative numbers of normal-to-normal intervals which are shorter by more than 50 ms than the immediately following normal-to-normal intervals); rMSSD (root mean of the squared sum of successive interval differences); LF/HF (low frequency/high frequency component ratio); ratio of the mean expiratory/inspiratory RR intervals (EI ratio); and the ratio between the longest RR interval 30 s after active standing and the shortest RR interval at 15 s (Max30/Min15). IOH was estimated by the deepest BP fall within the first 15 s after active standing up. Results: Prenatal MeHg exposures were similar in boys and girls (6.7 ± 4.3, 6.7 ± 3.8 ng/g) but recent postnatal mercury levels were higher in males than females (11.2 ± 5.8 vs 7.9 ± 4.3 ng/g, p = 0.003). Markers of autonomic heart rate control were within the normal range (BRS: 24.8 ± 7 ms/mm Hg, PNN50: 24.9 ± 6.8%, rMSSD: 68 ± 22, LF/HF: 0.61 ± 0.28) in both sexes. After standing, 51.4% of subjects had a

  6. A Longitudinal Analysis of Prenatal Exposure to Methylmercury and Fatty Acids in the Seychelles

    PubMed Central

    Stokes-Riner, Abbie; Thurston, Sally W.; J.Myers, Gary; Duffy, Emeir M.; Wallace, Julie; Bonham, Maxine; Robson, Paula; Shamlaye, Conrad F.; Strain, J.J.; Watson, Gene

    2011-01-01

    Background Maternal fish consumption during pregnancy exposes the fetus simultaneously to methyl mercury (MeHg) and long chain polyunsaturated fatty acids (LCPUFA). Data from the Seychelles Child Development Nutrition Study (SCDNS) showed a negative association of MeHg with child development when children were 30 months of age, only when controlling for LCPUFA. Concomitantly, n-3 LCPUFA were found to have a significant positive association only at 9 months. These findings suggest that the effects of MeHg and LCPUFA may vary with age over the first few years of life. We address this by including outcomes at two ages and adjusting for the child's age at testing. Methods A longitudinal analysis utilizing linear mixed models was performed to assess the associations of maternal hair total mercury (THg, a biomarker for MeHg) and maternal LCPUFA with children's Bayley Scales of Infant Development Psychomotor Developmental Index (BSID-II PDI) at 9 and 30 months of age, and to determine whether these associations change over time. Data from 228 children were included. Results Maternal hair MeHg had a negative effect on BSID PDI, while maternal n-3 LCPUFA had a positive effect. These effects did not change significantly from 9 to 30 months in this analysis. Conclusions The longitudinal analysis provides increased power for estimating the relationships of prenatal MeHg and LCPUFA exposures during child development. Significant associations of these exposures in opposite directions confirm the importance of LCPUFA in development and the need to adjust for maternal nutrition when studying prenatal MeHg exposure. PMID:21145963

  7. Expansion of methylmercury poisoning outside of Minamata: an epidemiological study on chronic methylmercury poisoning outside of Minamata.

    PubMed

    Ninomiya, T; Ohmori, H; Hashimoto, K; Tsuruta, K; Ekino, S

    1995-07-01

    The first methylmercury poisoning by consumption of fish arose in Minamata, Japan, in 1953. Methylmercury dispersed from Minamata to the Shiranui Sea until 1968. Mercury concentration in the hair of residents on the coast of the Shiranui Sea was 10 to 20 times higher than that in nonpolluted people in Kumamoto Prefecture in 1960. People on the coast of the Shiranui Sea have consumed fish containing low-dose methylmercury without a ban over decades until 1968. We studied the effect of long-term consumption of methylmercury on those people 10 years later after the end of methylmercury dispersion. Our epidemiological study clarified that people in a fishing village (Ooura) on the coast of the Shiranui Sea showed a significantly higher frequency of neurological signs characteristic of methylmercury poisoning (hypoesthesia, ataxia, impairment of hearing, visual change, and dysarthria) in comparison with people in a nonpolluted fishing village (Ichiburi). The neurological disorders were still detected 10 years later in Ooura after the end of methylmercury dispersion from Minamata; hypoesthesia showed the highest frequency in Ooura. These results suggest that people on the coast of the Shiranui Sea were afected by long-term dietary exposure to methylmercury.

  8. Vertical distribution of mercury and MeHg in Nandagang and Beidagang wetlands: Influence of microtopography

    NASA Astrophysics Data System (ADS)

    Liu, Ruhai; Zhang, Yanyan; Wang, Yan; Zhao, Jin; Shan, Huayao

    2018-02-01

    Wetlands often show different small-scale topography, such as riffle, habitat island, deep water, shallow water zone and dry zone. Core soils in different micro topographical landforms of Nandagang and Beidagang wetlands in North China were sampled for THg and MeHg to analyze the influence of microtopography. Results showed that THg content in surface soil (<2 cm) was little higher than that at depth 2-4 cm of all stations. There were several peaks in the profile, which reflected mercury pollution in past. High THg content in undisturbed natural wetland soil implied accumulation of mercury. Harvest of plant, drained water decreased the accumulation of mercury in wetlands. Water level caused by microtopography affected the production of MeHg. Depth of the highest MeHg content decreased from N1, N2, N6, N3 to N4 following the increase of water level. Plant type and coverage also affected the vertical distribution of MeHg. More detailed profiles of MeHg, organic matter and total phosphorus in different sites show strong differences in soil chemistry, suggesting a complex interplay among hydrology, biogeochemistry and microtopography.

  9. Expansion of methylmercury poisoning outside of Minamata: An epidemiological study on chronic methylmercury poisoning outside of Minamata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Tadashi; Ohmori, Hiroyuki; Hashimoto, Kiyomi

    1995-07-01

    The first methylmercury poisoning by consumption of fish arose in Minamata, Japan, in 1953. Methylmercury dispersed from Minamata to the to the Shiranui Sea until 1968. Mercury concentration in the hair of residents on the coast of the Shiranui Sea was 10 to 20 times higher than in nonpolluted people in Kumamoto Prefecture in 1960. People on the coast of the Shiranui Sea have consumed fish containing low-dose methylmercury without a ban over decades until 1968. We studied the effect of long-term consumption of methylmercury on those people 10 years later after the end of methylmercury dispersion. Our epidemiological studymore » clarified that people in a fishing village (Ooura) on the coast of the Shiranui Sea showed a significantly higher frequency of neurological signs characteristics of methylmercury poisoning (hypoesthesia, ataxia, impairment of hearing, visual change, and dysarthria) in comparison with people in a nonpolluted fishing village (Ichiburi). The neurological disorders were still detected 10 years later in Ooura after the end of methylmercury dispersion from Minamata: hypoesthesia showed the highest frequency in Ooura. These results suggest that people on the coast of the Shiranui Sea were affected by long-term dietary exposure to methylmercury. 14 refs., 1 fig., 1 tab.« less

  10. Wetland management and rice farming strategies to decrease methylmercury bioaccumulation and loads from the Cosumnes River Preserve, California

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Fleck, Jacob; Windham-Myers, Lisamarie; McQuillen, Harry; Heim, Wes

    2014-01-01

    We evaluated mercury (Hg) concentrations in caged fish (deployed for 30 days) and water from agricultural wetland (rice fields), managed wetland, slough, and river habitats in the Cosumnes River Preserve, California. We also implemented experimental hydrological regimes on managed wetlands and post-harvest rice straw management techniques on rice fields in order to evaluate potential Best Management Practices to decrease methylmercury bioaccumulation within wetlands and loads to the Sacramento-San Joaquin River Delta. Total Hg concentrations in caged fish were twice as high in rice fields as in managed wetland, slough, or riverine habitats, including seasonal managed wetlands subjected to identical hydrological regimes. Caged fish Hg concentrations also differed among managed wetland treatments and post-harvest rice straw treatments. Specifically, Hg concentrations in caged fish decreased from inlets to outlets in seasonal managed wetlands with either a single (fall-only) or dual (fall and spring) drawdown and flood-up events, whereas Hg concentrations increased slightly from inlets to outlets in permanent managed wetlands. In rice fields, experimental post-harvest straw management did not decrease Hg concentrations in caged fish. In fact, in fields in which rice straw was chopped and either disked into the soil or baled and removed from the fields, fish Hg concentrations increased from inlets to outlets and were higher than Hg concentrations in fish from rice fields subjected to the more standard post-harvest practice of simply chopping rice straw prior to fall flood-up. Finally, aqueous methylmercury (MeHg) concentrations and export were highly variable, and seasonal trends in particular were often opposite to those of caged fish. Aqueous MeHg concentrations and loads were substantially higher in winter than in summer, whereas caged fish Hg concentrations were relatively low in winter and substantially higher in summer. Together, our results highlight the

  11. Total Mercury and Methylmercury in the Great Egg Harbor River Watershed, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Barringer, J. L.; Riskin, M. L.; Szabo, Z.; Fischer, J. M.; Reilly, P. A.; Rosman, R.; Bonin, J. L.; Heckathorn, H. A.

    2007-12-01

    Hydrologic and biogeochemical conditions are important factors in the transport and distribution of mercury (Hg) in New Jersey Coastal Plain watersheds that contain extensive freshwater wetlands and where Hg bioaccumulation is of concern. U.S. Geological Survey studies found Hg concentrations in top predator fish from the Great Egg Harbor River mainstem that ranged from 2.9 to 4.5 mg/kg (dry wt.) and exceeded 10 ng/L in the watershed's acidic streams. An ongoing study with the N.J. Department of Environmental Protection indicates that atmospheric deposition of Hg to the wetlands and streams may be augmented by substantial contributions of Hg from ground water. Although background levels of Hg in water from the underlying aquifer typically are less than 10 ng/L, concentrations in water from more than 600 domestic wells in southern New Jersey have been shown to exceed the drinking-water maximum contaminant level of 2,000 ng/L. Therefore, to determine ground-water inputs to the streams, samples of ground water discharging to the tributaries and mainstem as well as streamwater samples collected during various flow conditions were analyzed for total Hg and methylmercury (MeHg). Total Hg concentrations in ground water discharging to the tributaries and mainstem were low to moderate (0.29-22 ng/L) in relatively undeveloped areas (including wetlands), but higher (36 and 177 ng/L) in two urban/suburban areas where much of the Hg was in particulate form. In recent and ongoing studies, total Hg concentrations in unfiltered samples of surface water, except those for one suburban tributary, have ranged from 2.13 to 37.7 ng/L. Concentrations in the suburban tributary have ranged from 50 ng/L during a dry period to 250 ng/L during a wet period. Hg concentrations in samples from a wetlands-embedded reach of the mainstem varied markedly with flow. In addition to increases in concentrations of total Hg, UV absorbance and concentrations of dissolved organic carbon also increased with

  12. Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako; Kawamura, Miwako

    Methylmercury (MeHg) is an environmental neurotoxicant which induces neuropathological changes in both the central nervous and peripheral sensory nervous systems. Our recent study demonstrated that down-regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1), which is known to promote neuritic extension, preceded MeHg-induced damage in cultured cortical neurons, suggesting that MeHg-mediated axonal degeneration is due to the disturbance of neuritic extension. Therefore we hypothesized that MeHg-induced axonal degeneration might be caused by neuritic extension/retraction incoordination. This idea brought our attention to the Ras homolog gene (Rho)/Rho-associated coiled coil-forming protein kinase (ROCK) pathway because it has been known to be associatedmore » with the development of axon and apoptotic neuronal cell death. Here we show that inhibition of the Rho/ROCK pathway prevents MeHg-intoxication both in vitro and in vivo. A Rho inhibitor, C3 toxin, and 2 ROCK inhibitors, Fasudil and Y-27632, significantly protected against MeHg-induced axonal degeneration and apoptotic neuronal cell death in cultured cortical neuronal cells exposed to 100 nM MeHg for 3 days. Furthermore, Fasudil partially prevented the loss of large pale neurons in dorsal root ganglia, axonal degeneration in dorsal spinal root nerves, and vacuolar degeneration in the dorsal columns of the spinal cord in MeHg-intoxicated model rats (20 ppm MeHg in drinking water for 28 days). Hind limb crossing sign, a characteristic MeHg-intoxicated sign, was significantly suppressed in this model. The results suggest that inhibition of the Rho/ROCK pathway rescues MeHg-mediated neuritic extension/retraction incoordination and is effective for the prevention of MeHg-induced axonal degeneration and apoptotic neuronal cell death.« less

  13. Bench-Scale Investigation Of Mercury Phytoremediation By Water Hyacinths (Eichhornia crassipes) In Heavily Contaminated Sediments

    EPA Science Inventory

    Phytoremediation has the potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associat...

  14. Distinct toxicological characteristics and mechanisms of Hg2+ and MeHg in Tetrahymena under low concentration exposure.

    PubMed

    Liu, Cheng-Bin; Qu, Guang-Bo; Cao, Meng-Xi; Liang, Yong; Hu, Li-Gang; Shi, Jian-Bo; Cai, Yong; Jiang, Gui-Bin

    2017-12-01

    Inorganic divalent mercury complexes (Hg 2+ ) and monomethylmercury complexes (MeHg) are the main mercury species in aquatic systems and their toxicity to aquatic organisms is of great concern. Tetrahymena is a type of unicellular eukaryotic protozoa located at the bottom of food chain that plays a fundamental role in the biomagnification of mercury. In this work, the dynamic accumulation properties, toxicological characteristics and mechanisms of Hg 2+ and MeHg in five Tetrahymena species were evaluated in detail. The results showed that both Hg 2+ and MeHg were ingested and exhibited inhibitory effects on the proliferation or survival of Tetrahymena species. However, the ingestion rate of MeHg was significantly higher than that of Hg 2+ . The mechanisms responsible for the toxicity of MeHg and Hg 2+ were different, although both chemicals altered mitochondrial membrane potential (MMP). MeHg disrupted the integrity of membranes while Hg 2+ had detrimental effects on Tetrahymena as a result of the increased generation of reactive oxygen species (ROS). In addition, the five Tetrahymena species showed different capacities in accumulating Hg 2+ and MeHg, with T. corlissi exhibiting the highest accumulations. The study also found significant growth-promoting effect on T. corlissi under low concentration exposure (0.003 and 0.01μg Hg/mL (15 and 50nM)), suggesting different effect and mechanism that should be more closely examined when assessing the bioaccumulation and toxicity of mercury in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study.

    PubMed

    Engström, Karin; Love, Tanzy M; Watson, Gene E; Zareba, Grazyna; Yeates, Alison; Wahlberg, Karin; Alhamdow, Ayman; Thurston, Sally W; Mulhern, Maria; McSorley, Emeir M; Strain, J J; Davidson, Philip W; Shamlaye, Conrad F; Myers, G J; Rand, Matthew D; van Wijngaarden, Edwin; Broberg, Karin

    2016-09-01

    ATP-binding cassette (ABC) transporters have been associated with methylmercury (MeHg) toxicity in experimental animal models. To evaluate the association of single nucleotide polymorphisms (SNPs) in maternal ABC transporter genes with 1) maternal hair MeHg concentrations during pregnancy and 2) child neurodevelopmental outcomes. Nutrition Cohort 2 (NC2) is an observational mother-child cohort recruited in the Republic of Seychelles from 2008-2011. Total mercury (Hg) was measured in maternal hair growing during pregnancy as a biomarker for prenatal MeHg exposure (N=1313) (mean 3.9ppm). Infants completed developmental assessments by Bayley Scales of Infant Development II (BSID-II) at 20months of age (N=1331). Genotyping for fifteen SNPs in ABCC1, ABCC2 and ABCB1 was performed for the mothers. Seven of fifteen ABC SNPs (ABCC1 rs11075290, rs212093, and rs215088; ABCC2 rs717620; ABCB1 rs10276499, rs1202169, and rs2032582) were associated with concentrations of maternal hair Hg (p<0.001 to 0.013). One SNP (ABCC1 rs11075290) was also significantly associated with neurodevelopment; children born to mothers with rs11075290 CC genotype (mean hair Hg 3.6ppm) scored on average 2 points lower on the Mental Development Index (MDI) and 3 points lower on the Psychomotor Development Index (PDI) than children born to mothers with TT genotype (mean hair Hg 4.7ppm) while children with the CT genotype (mean hair Hg 4.0ppm) had intermediate BSID scores. Genetic variation in ABC transporter genes was associated with maternal hair Hg concentrations. The implications for MeHg dose in the developing child and neurodevelopmental outcomes need to be further investigated. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Evaluation Of Selected Sorption Materials For Capping Mercury-Contaminated Fresh Water Sediments

    EPA Science Inventory

    Fate and transport of mercury (Hg) and methylmercury (MeHg) within the aquatic environment involves many complex and interconnected pathways. MeHg is formed mainly at the sediment-water interface, just below which there is a transition from oxic to anoxic conditions. The format...

  17. Using raw and sulfur-impregnated activated carbon as active cap for leaching inhibition of mercury and methylmercury from contaminated sediment.

    PubMed

    Ting, Yu; Chen, Chi; Ch'ng, Boon-Lek; Wang, Ying-Lin; Hsi, Hsing-Cheng

    2018-07-15

    Sulfur-impregnated activated carbon (SAC) has been reported with a high affinity to Hg, but little research has done on understanding its potential as active cap for inhibition of Hg release from contaminated sediments. In this study, high-quality coconut-shell activated carbon (AC) and its derived SAC were examined and shown to have great affinity to both aqueous Hg 2+ and methylmercury (MeHg). SAC had greater partitioning coefficients for Hg 2+ (K D  = 9.42 × 10 4 ) and MeHg (K D  = 7.661 × 10 5 ) as compared to those for AC (K D  = 3.69 × 10 4 and 2.25 × 10 5 , respectively). However, AC appeared to have greater inhibition in total Hg (THg) leaching from sediment (14.2-235.8 mg-Hg/kg-sediment) to porewater phase as compared to SAC. 3 wt% AC amendment in sediment (235.8 mg/kg Hg) was the optimum dosage causing the porewater THg reduction by 99.88%. Moreover, significant inhibition in both THg and MeHg releases within the 83-d trial microcosm tests was demonstrated with active caps composed of SAC + bentonite, SAC + clean sediment, and AC + bentonite. While both AC and SAC successfully reduce the porewater Hg in sediment environment, the smaller inhibition in Hg release by SAC as compared to that by raw AC may suggest that possibly formed HgS nanoparticles could be released into the porewater that elevates the porewater Hg concentration. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Differences in the responses of three plasma selenium-containing proteins in relation to methylmercury-exposure through consumption of fish/whales.

    PubMed

    Ser, Ping Han; Omi, Sanae; Shimizu-Furusawa, Hana; Yasutake, Akira; Sakamoto, Mineshi; Hachiya, Noriyuki; Konishi, Shoko; Nakamura, Masaaki; Watanabe, Chiho

    2017-02-05

    Putative protective effects of selenium (Se) against methylmercury (MeHg) toxicity have been examined but no conclusion has been reached. We recently reported the lack of serious neurological symptoms in a Japanese fish-eating population with high intakes of MeHg and suggested a potential protective role for Se. Here, relationships between levels of Hg and Se in the blood and plasma samples, with a quantitative evaluation of Se-containing proteins, obtained from this population were examined. While levels of the whole-blood Hg (WB-Hg) and plasma Se (P-Se) showed a positive correlation, stratified analysis revealed that they correlated only in samples with higher (greater than the median) levels of MeHg. A food frequency questionnaire showed that consumption of fish/whales correlated with WB-Hg, but not with P-Se, suggesting that the positive correlation between WB-Hg and P-Se might not be the result of co-intake of these elements from seafood. Speciation of plasma Se revealed the differences in the responses of two plasma selenoproteins, glutathione peroxidase (GPx) and selenoprotein P (SePP), in relation to Hg exposure. In the high-Hg group, SePP showed a positive correlation with WB-Hg, but GPx did not. In the low-Hg group, neither SePP nor GPx showed any correlation with WB-Hg. These observations suggest that the increase in P-Se in the high-Hg group might be associated with an increase in SePP, which may, in turn, suggest an increased demand for one or more selenoproteins in various organs, for which SePP supplies the element. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Genetic polymorphisms in glutathione (GSH-) related genes affect the plasmatic Hg/whole blood Hg partitioning and the distribution between inorganic and methylmercury levels in plasma collected from a fish-eating population.

    PubMed

    de Oliveira, Andréia Ávila Soares; de Souza, Marilesia Ferreira; Lengert, André van Helvoort; de Oliveira, Marcelo Tempesta; Camargo, Rossana Batista de Oliveira Godoy; Braga, Gilberto Úbida Leite; Cólus, Ilce Mara de Syllos; Barbosa, Fernando; Barcelos, Gustavo Rafael Mazzaron

    2014-01-01

    This study aims to evaluate the effects of polymorphisms in glutathione (GSH-) related genes (GSTM1, GSTT1, GSTP1, GCLM, and GCLC) in the distribution of Hg in the blood compartments in humans exposed to methylmercury (MeHg). Subjects (n = 88), exposed to MeHg from fish consumption, were enrolled in the study. Hg species in the plasma compartment were determined by LC-ICP-MS, whereas genotyping was performed by PCR assays. Mean total Hg levels in plasma (THgP) and whole blood (THgB) were 10 ± 4.2 and 37 ± 21, whereas mean levels of plasmatic MeHg (MeHgP), inorganic Hg (IHgP), and HgP/HgB were 4.3 ± 2.9, 5.8 ± 2.3 µg/L, and 0.33 ± 0.15, respectively. GSTM1 and GCLC polymorphisms influence THgP and MeHgP (multivariate analyses, P < 0.050). Null homozygotes for GSTM1 showed higher THgP and MeHgP levels compared to subjects with GSTM1 (THgP β = 0.22, P = 0.035; MeHgP β = 0.30, P = 0.050) and persons carrying at least one T allele for GCLC had significant higher MeHgP (β = 0.59, P = 0.046). Also, polymorphic GCLM subjects had lower THgP/THgB than those with the nonvariant genotype. Taken together, data of this study suggest that GSH-related polymorphisms may change the metabolism of MeHg by modifying the distribution of mercury species iin plasma compartment and the HgP/HgB partitioning.

  20. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales

    EPA Science Inventory

    To understand the biochemistry of methylmercury (MeHg) that leads to the formation of mercury-selenium (Hg-Se) clusters is a long outstanding challenge that promises to deepen our knowledge of MeHg detoxification and the role SE plays in this process. Here, we show that mercury ...

  1. Selenium-mercury relationships in Idaho lake fish versus Northeastern USA lake fish

    EPA Science Inventory

    Methyl-mercury (MeHg) exposure to wildlife and humans occurs primarily through the foodweb, notably fish consumption. Selenium moderates the toxicity of MeHg in all animal models that utilize selenoenzymatic protein synthesis, as do humans. A Se:Hg molar ratio of <1:1 appears to...

  2. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA.

    PubMed

    Johnson, William P; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Greg; Fernandez, Diego P; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark

    2015-04-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible 'reactive' Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values of kmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Mercury cycling in agricultural and managed wetlands of California: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Stricker, Craig A.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos

    2014-01-01

    The role of live vegetation in sediment methylmercury (MeHg) production and associated biogeochemistry was examined in three types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields) and adjacent managed natural wetlands (cattail- and bulrush or tule-dominated) in the Yolo Bypass region of California's Central Valley, USA. During the active growing season for each wetland, a vegetated:de-vegetated paired plot experiment demonstrated that the presence of live plants enhanced microbial rates of mercury methylation by 20 to 669% (median = 280%) compared to de-vegetated plots. Labile carbon exudation by roots appeared to be the primary mechanism by which microbial methylation was enhanced in the presence of vegetation. Pore-water acetate (pw[Ac]) decreased significantly with de-vegetation (63 to 99%) among all wetland types, and within cropped fields, pw[Ac] was correlated with both root density (r = 0.92) and microbial Hg(II) methylation (kmeth. r = 0.65). Sediment biogeochemical responses to de-vegetation were inconsistent between treatments for “reactive Hg” (Hg(II)R), as were reduced sulfur and sulfate reduction rates. Sediment MeHg concentrations in vegetated plots were double those of de-vegetated plots (median = 205%), due in part to enhanced microbial MeHg production in the rhizosphere, and in part to rhizoconcentration via transpiration-driven pore-water transport. Pore-water concentrations of chloride, a conservative tracer, were elevated (median = 22%) in vegetated plots, suggesting that the higher concentrations of other constituents around roots may also be a function of rhizoconcentration rather than microbial activity alone. Elevated pools of amorphous iron (Fe) in vegetated plots indicate that downward redistribution of oxic surface waters through transpiration acts as a stimulant to Fe(III)-reduction through oxidation of Fe(II)pools. These data suggest that vegetation significantly affected rhizosphere

  4. Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter

    USGS Publications Warehouse

    Fleck, Jacob A.; Gill, Gary W.; Bergamaschi, Brian A.; Kraus, Tamara E.C.; Downing, Bryan D.; Alpers, Charles N.

    2014-01-01

    Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5 × 10-3 m2 mol-1 (s.d. 3.5 × 10-3) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg–DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems.

  5. Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter.

    PubMed

    Fleck, Jacob A; Gill, Gary; Bergamaschi, Brian A; Kraus, Tamara E C; Downing, Bryan D; Alpers, Charles N

    2014-06-15

    Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5×10(-3)m(2)mol(-1) (s.d. 3.5×10(-3)) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg-DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems. Published by Elsevier B.V.

  6. Mercury in fish tissue of Idaho lakes vs. those of the Northeastern United States as it relates to the moderating effects of selenium

    EPA Science Inventory

    The primary methyl-mercury (MeHg) exposure mode to wildlife and humans is through the consumption of aquatic organisms, particulary fish. Selenium has been demonstrated to moderate the toxicity of MeHg in every test animal type examined to date. A molar ratio of Se:Hg >1 appear...

  7. Genetic Polymorphisms in Glutathione (GSH-) Related Genes Affect the Plasmatic Hg/Whole Blood Hg Partitioning and the Distribution between Inorganic and Methylmercury Levels in Plasma Collected from a Fish-Eating Population

    PubMed Central

    de Oliveira, Andréia Ávila Soares; de Souza, Marilesia Ferreira; Lengert, André van Helvoort; de Oliveira, Marcelo Tempesta; Camargo, Rossana Batista de Oliveira Godoy; Braga, Gilberto Úbida Leite; Cólus, Ilce Mara de Syllos; Barbosa, Fernando; Barcelos, Gustavo Rafael Mazzaron

    2014-01-01

    This study aims to evaluate the effects of polymorphisms in glutathione (GSH-) related genes (GSTM1, GSTT1, GSTP1, GCLM, and GCLC) in the distribution of Hg in the blood compartments in humans exposed to methylmercury (MeHg). Subjects (n = 88), exposed to MeHg from fish consumption, were enrolled in the study. Hg species in the plasma compartment were determined by LC-ICP-MS, whereas genotyping was performed by PCR assays. Mean total Hg levels in plasma (THgP) and whole blood (THgB) were 10 ± 4.2 and 37 ± 21, whereas mean evels of plasmatic MeHg (MeHgP), inorganic Hg (IHgP), and HgP/HgB were 4.3 ± 2.9, 5.8 ± 2.3 µg/L, and 0.33 ± 0.15, respectively. GSTM1 and GCLC polymorphisms influence THgP and MeHgP (multivariate analyses, P < 0.050). Null homozygotes for GSTM1 showed higher THgP and MeHgP levels compared to subjects with GSTM1 (THgP β = 0.22, P = 0.035; MeHgP β = 0.30, P = 0.050) and persons carrying at least one T allele for GCLC had significant higher MeHgP (β = 0.59, P = 0.046). Also, polymorphic GCLM subjects had lower THgP/THgB than those with the nonvariant genotype. Taken together, data of this study suggest that GSH-related polymorphisms may change the metabolism of MeHg by modifying the distribution of mercury species iin plasma compartment and the HgP/HgB partitioning. PMID:24696865

  8. The levels of mercury, methylmercury and selenium and the selenium health benefit value in grey-eel catfish (Plotosus canius) and giant mudskipper (Periophthalmodon schlosseri) from the Strait of Malacca.

    PubMed

    Looi, Ley Juen; Aris, Ahmad Zaharin; Haris, Hazzeman; Yusoff, Fatimah Md; Hashim, Zailina

    2016-06-01

    The present study examined the concentrations of mercury (Hg), methylmercury (MeHg), and selenium (Se) in the multiple tissues of the Plotosus canius and Periophthalmodon schlosseri collected from the Strait of Malacca. The mean value in mg kg(-1) of Hg (P. canius: 0.34 ± 0.19; P. schlosseri: 0.32 ± 0.18) and MeHg in muscle (P. canius: 0.14 ± 0.11; P. schlosseri: 0.17 ± 0.11) were below the Codex general standard for contaminants and toxins in food and feed (CODEX STAN 193-1995), the Malaysian Food Regulation 1985 and the Japan Food Sanitation Law. For P. canius, the liver contained the highest concentrations of Hg (0.48 ± 0.07 mg kg(-1)) and MeHg (0.21 ± 0.00 mg kg(-1)), whereas for P. schlosseri, the gill contained the highest concentrations of Hg (0.36 ± 0.06 mg kg(-1)) and MeHg (0.21 ± 0.05 mg kg(-1)). The highest concentration of (80)Se (mg kg(-1)) was observed in the liver of P. canius (20.34 ± 5.68) and in the gastrointestinal tract (3.18 ± 0.42) of P. schlosseri. The selenium:mercury (Se:Hg) molar ratios were above 1 and the positive selenium health benefit value (HBVSe) suggesting the possible protective effects of Se against Hg toxicity. The estimate weekly intakes (EWIs) in μg kg(-1) body weight (bw) week(-1) of Hg (P. canius: 0.27; P. schlosseri: 0.15) and MeHg (P. canius: 0.11; P. schlosseri: 0.08) were found to be lower than the provisional tolerable weekly intake established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Based on the calculated EWIs, P. canius, and P. schlosseri were found to be unlikely to cause mercury toxicity in human consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Reducing uncertainty in risk modeling for methylmercury exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, R.; Egeland, G.; Middaugh, J.

    The biomagnification and bioaccumulation of methylmercury in marine species represents a challenge for risk assessment related to the consumption of subsistence foods in Alaska. Because of the profound impact that food consumption advisories have on indigenous peoples seeking to preserve a way of life, there is a need to reduce uncertainty in risk assessment. Thus, research was initiated to reduce the uncertainty in assessing the health risks associated with the consumption of subsistence foods. Because marine subsistence foods typically contain elevated levels of methylmercury, preliminary research efforts have focused on methylmercury as the principal chemical of concern. Of particular interestmore » are the antagonistic effects of selenium on methylmercury toxicity. Because of this antagonism, methylmercury exposure through the consumption of marine mammal meat (with high selenium) may not be as toxic as comparable exposures through other sources of dietary intake, such as in the contaminated bread episode of Iraq (containing relatively low selenium). This hypothesis is supported by animal experiments showing reduced toxicity of methylmercury associated with marine mammal meat, by the antagonistic influence of selenium on methylmercury toxicity, and by negative clinical findings in adult populations exposed to methylmercury through a marine diet not subject to industrial contamination. Exploratory model development is underway to identify potential improvements and applications of current deterministic and probabilistic models, particularly by incorporating selenium as an antagonist in risk modeling methods.« less

  10. Mercury cycling in stream ecosystems. 1. Water column chemistry and transport

    USGS Publications Warehouse

    Brigham, M.E.; Wentz, D.A.; Aiken, G.R.; Krabbenhoft, D.P.

    2009-01-01

    We studied total mercury (THg) and methylmercury (MeHg) in eight streams, located in Oregon, Wisconsin, and Florida, that span large ranges in climate, landscape characteristics, atmospheric Hg deposition, and water chemistry. While atmospheric deposition was the source of Hg at each site, basin characteristics appeared to mediate this source by providing controls on methylation and fluvial THg and MeHg transport. Instantaneous concentrations of filtered total mercury (FTHg) and filtered methylmercury (FMeHg) exhibited strong positive correlations with both dissolved organic carbon (DOC) concentrations and streamflow for most streams, whereas mean FTHg and FMeHg concentrations were correlated with wetland density of the basins. For all streams combined, whole water concentrations (sum of filtered and particulate forms) of THg and MeHg correlated strongly with DOC and suspended sediment concentrations in the water column. ?? 2009 American Chemical Society.

  11. Metallomics investigations on potential binding partners of methylmercury in tuna fish muscle tissue using complementary mass spectrometric techniques.

    PubMed

    Kutscher, Daniel J; Sanz-Medel, Alfredo; Bettmer, Jörg

    2012-08-01

    In this study, the binding behaviour of methylmercury (MeHg(+)) towards proteins is investigated. Free sulfhydryl groups in cysteine residues are known to be the most likely binding partners, due to the high affinity of mercury to sulphur. However, detailed knowledge about discrete binding sites in living organisms has been so far scarce. A metallomics approach using different methods like size-exclusion chromatography (SEC) and liquid chromatography (LC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) as well as complementary mass spectrometric techniques (electrospray ionisation-tandem mass spectrometry, ESI-MS/MS) are combined to sequence and identify possible target proteins or peptides after enzymatic digestion. Potential targets for MeHg(+) in tuna fish muscle tissue are investigated using the certified reference material CRM464 as a model tissue. Different extraction procedures appropriate for the extraction of proteins are evaluated for their efficiency using isotope dilution analysis for the determination of total Hg in the extracts. Due to the high chemical stability of the mercury-sulphur bond, the bioconjugate can be quantitatively extracted with a combination of tris(hydroxymethyl)aminomethane (TRIS) and sodium dodecyl sulphate (SDS). Using different separation techniques such as SEC and SDS-polyacrylamide gel electrophoresis (SDS-PAGE) it can be shown that major binding occurs to a high-molecular weight protein (M(w) > 200 kDa). A potential target protein, skeletal muscle myosin heavy chain, could be identified after tryptic digestion and capillary LC-ESI-MS/MS.

  12. Rice methylmercury exposure and mitigation: a comprehensive review.

    PubMed

    Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E

    2014-08-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Rice methylmercury exposure and mitigation: a comprehensive review

    USGS Publications Warehouse

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  14. Rice Methylmercury Exposure and Mitigation: A Comprehensive Review

    PubMed Central

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effect of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, which minimize methylmercury exposure through rice ingestion. PMID:24972509

  15. Assessing exposure risks for freshwater tilapia species posed by mercury and methylmercury.

    PubMed

    Cheng, Yi-Hsien; Lin, Yi-Jun; You, Shu-Han; Yang, Ying-Fei; How, Chun Ming; Tseng, Yi-Ting; Chen, Wei-Yu; Liao, Chung-Min

    2016-08-01

    Waterborne and dietborne exposures of freshwater fish to mercury (Hg) in the forms of inorganic (Hg(II)) and organic (methylmercury or MeHg) affect their growth, development, and reproduction. However, an integrated mechanistic risk model framework to predict the impact of Hg(II)/MeHg on freshwater fish is lacking. Here, we integrated biokinetic, physiological and biogeographic data to calibrate and then establish key risk indices-hazardous quotient and exceedance risk-for freshwater tilapia species across geographic ranges of several major rivers in Taiwan. We found that Hg(II) burden was highest in kidney followed by gill, intestine, liver, blood, and muscle. Our results showed that Hg was less likely to pose mortality risk (mortality rate less than 5 %) for freshwater tilapia species. However, Hg is likely to pose the potential hazard to aquatic environments constrained by safety levels for aquatic organisms. Sensitivity analysis showed that amount of Hg accumulated in tilapia was most influenced by sediment uptake rate. Our approach opens up new possibilities for predicting future fish population health with the impacts of continued Hg exposure to provide information on which fish are deemed safe for human consumption.

  16. Toxicity reference values for methylmercury effects on avian reproduction: Critical review and analysis.

    PubMed

    Fuchsman, Phyllis C; Brown, Lauren E; Henning, Miranda H; Bock, Michael J; Magar, Victor S

    2017-02-01

    Effects of mercury (Hg) on birds have been studied extensively and with increasing frequency in recent years. The authors conducted a comprehensive review of methylmercury (MeHg) effects on bird reproduction, evaluating laboratory and field studies in which observed effects could be attributed primarily to Hg. The review focuses on exposures via diet and maternal transfer in which observed effects (or lack thereof) were reported relative to Hg concentrations in diet, eggs, or adult blood. Applicable data were identified for 23 species. From this data set, the authors identified ranges of toxicity reference values suitable for risk-assessment applications. Typical ranges of Hg effect thresholds are approximately 0.2 mg/kg to >1.4 mg/kg in diet, 0.05 mg/kg/d to 0.5 mg/kg/d on a dose basis, 0.6 mg/kg to 2.7 mg/kg in eggs, and 2.1 mg/kg to >6.7 mg/kg in parental blood (all concentrations on a wet wt basis). For Hg in avian blood, the review represents the first broad compilation of relevant toxicity data. For dietary exposures, the current data support TRVs that are greater than older, commonly used TRVs. The older diet-based TRVs incorporate conservative assumptions and uncertainty factors that are no longer justified, although they generally were appropriate when originally derived, because of past data limitations. The egg-based TRVs identified from the review are more similar to other previously derived TRVs but have been updated to incorporate new information from recent studies. While important research needs remain, a key recommendation is that species not yet tested for MeHg toxicity should be evaluated using toxicity data from tested species with similar body weights. Environ Toxicol Chem 2017;36:294-319. © 2016 SETAC. © 2016 SETAC.

  17. Interactions between methylmercury and selenomethionine injected into mallard eggs

    USGS Publications Warehouse

    Klimstra, J.D.; Yee, J.L.; Heinz, G.H.; Hoffman, D.J.; Stebbins, K.R.

    2012-01-01

    Methylmercury chloride and seleno-L-methionine were injected separately or in combinations into mallard eggs (Anas platyrhynchos), and embryo mortality and teratogenic effects (deformities) were modeled using a logistic regression model. Methylmercury was injected at doses that resulted in concentrations of 0, 0.2, 0.4, 0.8, and 1.6 µg/g Hg in the egg on a wet weight basis and selenomethionine at doses that resulted in concentrations of 0, 0.1, 0.2, 0.4, and 0.6 µg/g Se in the egg, also on a wet weight basis. When selenomethionine and methylmercury were injected separately, hatching probability decreased in both cases. However, when methylmercury was injected at 1.6 µg/g in combination with selenomethionine at 0.2 µg/g, the presence of the methylmercury resulted in less embryo mortality than had been seen with 0.2 µg/g Se by itself, but it increased the number of deformed embryos and hatchlings. Selenomethionine appeared to be more embryotoxic than equivalent doses of methylmercury when injected into eggs, and both injected methylmercury and selenomethionine were more toxic to mallard embryos than when deposited naturally in the egg by the mother. The underlying mechanisms behind the interactions between methylmercury and selenomethionine and why methylmercury appeared to improve hatching probability of Se-dosed eggs yet increased deformities when the two compounds were combined are unclear. These findings warrant further studies to understand these mechanisms in both laboratory and field settings.

  18. Recent evidence from epidemiological studies on methylmercury toxicity.

    PubMed

    Murata, Katsuyuki; Yoshida, Minoru; Sakamoto, Mineshi; Iwai-Shimada, Miyuki; Yaginuma-Sakurai, Kozue; Tatsuta, Nozomi; Iwata, Toyoto; Karita, Kanae; Nakai, Kunihiko

    2011-09-01

    More than fifty years have passed since the outbreak of Minamata disease, and large-scale methylmercury poisoning due to industrial effluents or methylmercury-containing fungicide intoxication has scarcely happened in developed countries. On the other hand, widespread environmental mercury contamination has occurred in gold and mercury mining areas of developing countries. In this article, we provided an overview of recent studies addressing human health effects of methylmercury, which we searched using the PubMed of the US National Library of Medicine. The following suggestions were obtained for low-level methylmercury exposure: (1) In recent years, the proportion of human studies addressing methylmercury has tended to decrease. (2) Prenatal exposure to methylmercury through fish intake, even at low levels, adversely affects child development after adjusting for polychlorinated biphenyls and maternal fish intake during pregnancy, whereas maternal seafood intake has some benefits. (3) Long-term methylmercury exposure through consumption of fish such as bigeye tuna and swordfish may pose a potential risk of cardiac events involving sympathovagal imbalance. (4) In measuring methylmercury levels in preserved umbilical cord collected from inhabitants born in Minamata areas between 1945 and 1989, the elevated concentrations (≥1 mg/g) were observed mainly in inhabitants born between 1947 and 1968, and the peak coincided with the peak of acetaldehyde production in Minamata. (5) Since some developing countries appear to be in similar situations to Japan in the past, attention should be directed toward early recognition of a risky agent and precautions should be taken against it.

  19. Adverse effects of methylmercury: environmental health research implications.

    PubMed

    Grandjean, Philippe; Satoh, Hiroshi; Murata, Katsuyuki; Eto, Komyo

    2010-08-01

    The scientific discoveries of health risks resulting from methylmercury exposure began in 1865 describing ataxia, dysarthria, constriction of visual fields, impaired hearing, and sensory disturbance as symptoms of fatal methylmercury poisoning. Our aim was to examine how knowledge and consensus on methylmercury toxicity have developed in order to identify problems of wider concern in research. We tracked key publications that reflected new insights into human methylmercury toxicity. From this evidence, we identified possible caveats of potential significance for environmental health research in general. At first, methylmercury research was impaired by inappropriate attention to narrow case definitions and uncertain chemical speciation. It also ignored the link between ecotoxicity and human toxicity. As a result, serious delays affected the recognition of methylmercury as a cause of serious human poisonings in Minamata, Japan. Developmental neurotoxicity was first reported in 1952, but despite accumulating evidence, the vulnerability of the developing nervous system was not taken into account in risk assessment internationally until approximately 50 years later. Imprecision in exposure assessment and other forms of uncertainty tended to cause an underestimation of methylmercury toxicity and repeatedly led to calls for more research rather than prevention. Coupled with legal and political rigidity that demanded convincing documentation before considering prevention and compensation, types of uncertainty that are common in environmental research delayed the scientific consensus and were used as an excuse for deferring corrective action. Symptoms of methylmercury toxicity, such as tunnel vision, forgetfulness, and lack of coordination, also seemed to affect environmental health research and its interpretation.

  20. Methylmercury Poisoning—An Assessment of the Sportfish Hazard in California

    PubMed Central

    Dales, Loring; Kahn, Ephraim; Wei, Eddie

    1971-01-01

    A quantitative assessment of the methylmercury risk in California entails measurement of the contamination distribution, the probability of methylmercury intake and knowledge of the toxicological properties of methylmercury. This article reviews the scientific basis for the California State Task Force's decision to warn the public against excessive consumption of sport fish contaminated by methylmercury. PMID:5544687

  1. Transport of pyruvate into mitochondria is involved in methylmercury toxicity

    PubMed Central

    Lee, Jin-Yong; Ishida, Yosuke; Takahashi, Tsutomu; Naganuma, Akira; Hwang, Gi-Wook

    2016-01-01

    We have previously demonstrated that the overexpression of enzymes involved in the production of pyruvate, enolase 2 (Eno2) and D-lactate dehydrogenase (Dld3) renders yeast highly sensitive to methylmercury and that the promotion of intracellular pyruvate synthesis may be involved in intensifying the toxicity of methylmercury. In the present study, we showed that the addition of pyruvate to culture media in non-toxic concentrations significantly enhanced the sensitivity of yeast and human neuroblastoma cells to methylmercury. The results also suggested that methylmercury promoted the transport of pyruvate into mitochondria and that the increased pyruvate concentrations in mitochondria were involved in intensifying the toxicity of methylmercury without pyruvate being converted to acetyl-CoA. Furthermore, in human neuroblastoma cells, methylmercury treatment alone decreased the mitochondrial membrane potential, and the addition of pyruvate led to a further significant decrease. In addition, treatment with N-acetylcysteine (an antioxidant) significantly alleviated the toxicity of methylmercury and significantly inhibited the intensification of methylmercury toxicity by pyruvate. Based on these data, we hypothesize that methylmercury exerts its toxicity by raising the level of pyruvate in mitochondria and that mitochondrial dysfunction and increased levels of reactive oxygen species are involved in the action of pyruvate. PMID:26899208

  2. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Hsu-Kim, Heileen

    2010-07-01

    Methylmercury is a neurotoxin that accumulates in food webs and poses a significant risk to human health. In natural water bodies, methylmercury concentrations remain low due to the degradation of methylmercury into inorganic mercury by sunlight, a process known as photodecomposition. Rates of photodecomposition are relatively rapid in freshwater lakes, and slow in marine waters, but the cause of this difference is not clear. Here, we carry out incubation experiments with artificial freshwater and seawater samples to examine the mechanisms regulating methylmercury photodecomposition. We show that singlet oxygen-a highly reactive form of dissolved oxygen generated by sunlight falling on dissolved organic matter-drives photodecomposition. However, in our experiments the rate of methylmercury degradation depends on the type of methylmercury-binding ligand present in the water. Relatively fast degradation rates (similar to observations in freshwater lakes) were detected when methylmercury species were bound to sulphur-containing ligands such as glutathione and mercaptoacetate. In contrast, methylmercury-chloride complexes, which are the dominant form of methylmercury in marine systems, did not degrade as easily. Our results could help to explain why methylmercury photodecomposition rates are relatively rapid in freshwater lakes and slow in marine waters.

  3. What has methylmercury in umbilical cords told us? - Minamata disease.

    PubMed

    Yorifuji, Takashi; Kashima, Saori; Tsuda, Toshihide; Harada, Masazumi

    2009-12-20

    Severe methylmercury poisoning occurred in Minamata and neighboring communities in the 1950s and 1960s. The exposed patients manifested neurological signs, and some patients exposed in utero were born with so-called congenital Minamata disease. In a previous report, Nishigaki and Harada evaluated the methylmercury concentrations in the umbilical cords of inhabitants and demonstrated that methylmercury actually passed through the placenta (Nishigaki and Harada, 1975). However, the report involved a limited number of cases (only 35) and did not quantitatively evaluate the regional differences in the transition of methylmercury exposure. Therefore, in the present study, we evaluated the temporal and spatial distributions of methylmercury concentrations in umbilical cords, with an increased number of participants and additional descriptive analyses. Then, we examined whether the methylmercury concentrations corresponded with the history of the Minamata disease incident. A total of 278 umbilical cord specimens collected after birth were obtained from babies born between 1925 and 1980 in four study areas exposed to methylmercury. Then, we conducted descriptive analyses, and drew scatterplots of the methylmercury concentrations of all the participants and separated by the areas. In the Minamata area, where the first patient was identified in 1956, the methylmercury concentration reached a peak around 1955. Subsequently, about 5 years later, the concentrations peaked in other exposed areas with the expected exposure distribution corresponding with acetaldehyde production (the origin of methylmercury). This historical incident several decades ago in Minamata and neighboring communities clearly shows that regional pollution affected the environment in utero. Furthermore, the temporal and spatial distributions of the methylmercury concentrations in the umbilical cords tell us the history of the Minamata disease incident.

  4. Impacts of a North Pacific Predator on Nearshore Seawater Mercury Cycling via Top-Down Contamination

    NASA Astrophysics Data System (ADS)

    Cossaboon, J. M.; Ganguli, P. M.; Flegal, A. R., Jr.

    2015-12-01

    Marine mammals are common sentinel species for studying marine pollution, however their potential role as vectors of contaminants to local ecosystems has rarely been addressed. Organic methylmercury, or MeHg, is a potent neurotoxin that biomagnifies approximately one to ten million-fold in aquatic carnivores such as the Northern elephant seal (Mirounga angustirostris), whose excreta and molted pelage, in turn, constitute a source of environmental MeHg contamination at the base of marine food chains. This recycling of MeHg was evidenced by comparing total mercury (HgT) and MeHg concentrations in seawater at the Año Nuevo State Reserve pinniped rookery to those of neighboring coastal sites in Central California. The observed 17-fold enrichment of MeHg in seawater at Año Nuevo during the M. angustirostris molting season (0.28—9.5 pM) was remarkable, and exceeded the range of surface water MeHg concentrations observed in the highly urbanized San Francisco Bay estuary (<0.05—2.3 pM). The importance of MeHg inputs to Año Nuevo waters from Northern elephant seals was confirmed by the HgT concentrations in molted pelage samples (average = 3.6 μg g-1 dry wt.), which presumably contained >80% MeHg. This equates to an annual per-capita emission factor of 0.05 g MeHg per adult elephant seal. Based on this estimate, we calculate that approximately 0.2 kg of organic Hg entered the nearshore environment of Año Nuevo during that molting season. This elevated methylmercury (MeHg) in seawater adjacent to the rookery may become bioavailable to lower trophic levels, demonstrating that marine mammal colonization can substantially influence nearshore mercury cycling and potentially threaten ecosystem health.

  5. Consumption of freshwater fish by recreational and native freshwater anglers in the upper St-Maurice (Quebec, Canada) and estimation of the intake of methylmercury in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loranger, S.; Houde, L.; Schetagne, R.

    1995-12-31

    Hydro-Quebec is planning to build two hydroelectric reservoirs in the upper Saint-Maurice River, which would flood about 80% of the surrounding area. The methylmercury (MeHg) content in freshwater fish will therefore tend to increase during the first few years. This development will have a direct impact on the amount of MeHg that the actual users of this river section are exposed to. The objective of this study is to assess the consumption of local fish of these target groups using a Monte-Carlo approach. This study is part of a larger research project aimed at assessing human exposure and the healthmore » risks related to MeHg contamination in local fish. The fish consumption rate for recreational freshwater anglers was calculated using the duration of the average annual fishing trip, the average number of catches per species, the average fish weight per species exceeding a specific length of fish usually caught, and the edible portion of fish consumed. This rate was calculated for the native communities based on the total number of meals per year per species, the average fish weight per species, and the edible portion. Based on these calculations, average intake for sport fishermen is estimated at 6.9 g/day (sd = 6.4). This value is 5 to 25 times lower on average than for other North American native communities. However, it must be pointed out that the food habits of the native population were very similar to those of non-native populations; less than 30% of the food comes from traditional sources.« less

  6. Effects of molecular size fraction of DOM on photodegradation of aqueous methylmercury.

    PubMed

    Kim, Moon-Kyung; Won, A-Young; Zoh, Kyung-Duk

    2017-05-01

    This study investigated the photodegradation kinetics of MeHg in the presence of various size fractions of dissolved organic matter (DOM) with MW < 3.5 kDa, 3.5 < MW < 10 kDa, and MW > 10 kDa. The DOM fraction with MW < 3.5 kDa was most effective in MeHg photodegradation. Increasing UV intensity resulted in the increase of photodegradation rate of the MeHg in all size of DOM fractions. Higher rates of MeHg degradation was observed at higher pH. For the portion of MW < 3.5 kDa, the photodegradation rate of MeHg increased with increasing DOM concentration, indicating that radicals such as singlet oxygen ( 1 O 2 ) radicals can be effectively produced by DOM. At higher portion of MW > 3.5 kDa, the inhibition of MeHg degradation was observed due to the effect of DOM photo-attenuation. Our result indicates that radical mediated reaction is the main mechanism of photodegradation of MeHg especially in the presence of MW < 3.5 kDa. Our results imply that the smaller molecular weight fraction (MW < 3.5 kDa) of DOM mainly increased the photodegradation rate of MeHg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of methylmercury exposure on the immune function of juvenile common loons (Gavia immer)

    USGS Publications Warehouse

    Kenow, K.P.; Grasman, K.A.; Hines, R.K.; Meyer, M.W.; Gendron-Fitzpatrick, A.; Spalding, M.G.; Gray, B.R.

    2007-01-01

    We conducted a dose-response laboratory study to quantify the level of exposure to dietary Hg, delivered as methylmercury chloride (CH3HgCl), that is associated with suppressed immune function in captive-reared common loon (Gavia immer) chicks. We used the phytohemagglutinin (PHA) skin test to assess T-lymphocyte function and the sheep red blood cell (SRBC) hemagglutination test to measure antibody-mediated immunity. The PHA stimulation index among chicks receiving dietary Hg treatment did not differ significantly from those of chicks on the control diet (p = 0.15). Total antibody (immunoglobulin [Ig] M [primary antibody] + IgG [secondary response]) production to the SRBC antigen in chicks treated with dietary methylmercury (MeHg), however, was suppressed (p = 0.04) relative to chicks on control diets. Analysis indicated suppression of total Ig production (p = 0.025 with comparisonwise ?? level = 0.017) between control and 0.4 ??g Hg/g wet food intake treatment groups. Furthermore, the control group exhibited a higher degree of variability in antibody response compared to the Hg groups, suggesting that in addition to reducing the mean response, Hg treatment reduced the normal variation attributable to other biological factors. We observed bursal lymphoid depletion in chicks receiving the 1.2 ??g Hg/g treatment (p = 0.017) and a marginally significant effect (p = 0.025) in chicks receiving the 0.4 ??g Hg/g diet. These findings suggest that common loon chick immune systems may be compromised at an ecologically relevant dietary exposure concentration (0.4 ??g Hg/g wet wt food intake). We also found that chicks hatched from eggs collected from low-pH lakes exhibited higher levels of lymphoid depletion in bursa tissue relative to chicks hatched from eggs collected from neutral-pH lakes. ?? 2007 SETAC.

  8. Methylmercury and elemental mercury differentially associate with blood pressure among dental professionals

    PubMed Central

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2013-01-01

    Methylmercury-associated effects on the cardiovascular system have been documented though discrepancies exist, and most studied populations experience elevated methylmercury exposures. No paper has investigated the impact of low-level elemental (inorganic) mercury exposure on cardiovascular risk in humans. The purpose of this study was to increase understanding of the association between mercury exposure (methylmercury and elemental mercury) and blood pressure measures in a cohort of dental professionals that experience background exposures to both mercury forms. Dental professionals were recruited during the 2010 Michigan Dental Association Annual Convention. Mercury levels in hair and urine samples were analyzed as biomarkers of methylmercury and elemental mercury exposure, respectively. Blood pressure (systolic, diastolic) was measured using an automated device. Distribution of mercury in hair (mean, range: 0.45, 0.02–5.18 μg/g) and urine (0.94, 0.03–5.54 μg/L) correspond well with the US National Health and Nutrition Examination Survey. Linear regression models revealed significant associations between diastolic blood pressure (adjusted for blood pressure medication use) and hair mercury (n = 262, p = 0.02). Urine mercury results opposed hair mercury in many ways. Notably, elemental mercury exposure was associated with a significant systolic blood pressure decrease (n = 262, p = 0.04) that was driven by the male population. Associations between blood pressure and two forms of mercury were found at exposure levels relevant to the general population, and associations varied according to type of mercury exposure and gender. PMID:22494934

  9. Surveillance of Total Mercury and Methylmercury Concentrations in Retail Fish.

    PubMed

    Watanabe, Takahiro; Hayashi, Tomoko; Matsuda, Rieko; Akiyama, Hiroshi; Teshima, Reiko

    2017-01-01

    Most fish samples contain methylmercury, that the concentrations very greatly according to the fish species. To avoid the adverse health effects of methylmercury while retaining the benefits provided by fish consumption, it is important to select suitable fish species and to control the amount of the fish intake. We surveyed the concentrations of total mercury and methylmercury in 210 retail fish samples classified into 19 fish species by using validated analytical methods. The results of this survey were as follows. The total mercury and methylmercury concentrations were higher than 1 mg/kg in some samples of swordfish and bluefin tuna, which are large predatory fish species. In bluefin tuna and yellowtail, total mercury and methylmercury concentrations in farm-raised fish were lower than those in natural fish. There was a positive correlation between total mercury concentration and methylmercury concentration. Our results indicate that a cut-off value of 0.3 mg/kg total mercury in the screening of fish samples would increase the effectiveness of inspection.

  10. Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon.

    PubMed

    Matulik, Adam G; Kerstetter, David W; Hammerschlag, Neil; Divoll, Timothy; Hammerschmidt, Chad R; Evers, David C

    2017-03-15

    Mercury bioaccumulation is frequently observed in marine ecosystems, often with stronger effects at higher trophic levels. We compared total mercury (THg) and methylmercury (MeHg) from muscle with length, comparative isotopic niche, and diet (via δ 13 C and δ 15 N) among four sympatric coastal sharks in Florida Bay (USA): blacknose, blacktip, bull, and lemon. Mercury in blacknose and blacktip sharks increased significantly with size, whereas bull and lemon sharks had a high variance in mercury relative to size. Both δ 13 C and δ 15 N were consistent with general resource use and trophic position relationships across all species. A significant relationship was observed between δ 13 C and mercury in blacktip sharks, suggesting an ontogenetic shift isotopic niche, possibly a dietary change. Multiple regression showed that δ 13 C and δ 15 N were the strongest factors regarding mercury bioaccumulation in individuals across all species. Additional research is recommended to resolve the mechanisms that determine mercury biomagnification in individual shark species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mercury, methylmercury, and other constituents in sediment and water from seasonal and permanent wetlands in the Cache Creek settling basin and Yolo Bypass, Yolo County, California, 2005-06

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Alpers, Charles N.; Fleck, Jacob A.

    2009-01-01

    This report presents surface water and surface (top 0-2 cm) sediment geochemical data collected during 2005-2006, as part of a larger study of mercury (Hg) dynamics in seasonal and permanently flooded wetland habitats within the lower Sacramento River basin, Yolo County, California. The study was conducted in two phases. Phase I represented reconnaissance sampling and included three locations within the Cache Creek drainage basin; two within the Cache Creek Nature Preserve (CCNP) and one in the Cache Creek Settling Basin (CCSB) within the creek's main channel near the southeast outlet to the Yolo Bypass. Two additional downstream sites within the Yolo Bypass Wildlife Area (YBWA) were also sampled during Phase I, including one permanently flooded wetland and one seasonally flooded wetland, which had began being flooded only 1–2 days before Phase I sampling.Results from Phase I include: (a) a negative correlation between total mercury (THg) and the percentage of methylmercury (MeHg) in unfiltered surface water; (b) a positive correlation between sediment THg concentration and sediment organic content; (c) surface water and sediment THg concentrations were highest at the CCSB site; (d) sediment inorganic reactive mercury (Hg(II)R) concentration was positively related to sediment oxidation-reduction potential and negatively related to sediment acid volatile sulfur (AVS) concentration; (e) sediment Hg(II)R concentrations were highest at the two YBWA sites; (f) unfiltered surface water MeHg concentration was highest at the seasonal wetland YBWA site, and sediment MeHg was highest at the permanently flooded YBWA site; (g) a 1,000-fold increase in sediment pore water sulfate concentration was observed in the downstream transect from the CCNP to the YBWA; (h) low sediment pore water sulfide concentrations (<1 µmol/L) across all sites; and (i) iron (Fe) speciation data suggest a higher potential for microbial Fe(III)-reduction in the YBWA compared to the CCSB.Phase II

  12. IRIS Summary and Supporting Documents for Methylmercury ...

    EPA Pesticide Factsheets

    In January 2001, U.S. EPA finalized the guidance for methylmercury in the water quality criteria for states and authorized tribes. The links below take you to the best resources for this guidance. This final Guidance for Implementing the January 2001 Methylmercury Water Quality Criterion provides technical guidance to states and authorized tribes on how they may want to use the January 2001 fish tissue-based recommended water quality criterion for methylmercury in surface water protection programs (e.g., TMDLs, NPDES permitting). The guidance addresses questions related to water quality standards adoption (e.g., site-specific criteria, variances), assessments, monitoring, TMDLs, and NPDES permitting. The guidance consolidates existing EPA guidance where relevant to mercury.

  13. Spatial patterns of methylmercury risks to common loons and piscivorous fish in Canada.

    PubMed

    Depew, David C; Burgess, Neil M; Campbell, Linda M

    2013-11-19

    Deposition of inorganic mercury (Hg) from the atmosphere remains the principle source of Hg contamination for most aquatic ecosystems. Inorganic Hg is readily converted to toxic methylmercury (MeHg) that bioaccumulates in aquatic food webs and may pose a risk to piscivorous fish and wildlife. We conducted a screening-level risk assessment to evaluate the extent of risk to top aquatic piscivores: the common loon (Gavia immer), walleye (Sander vitreus), and northern pike (Esox lucius). Risk quotients (RQs) were calculated on the basis of a dietary Hg exposure indicator (HgPREY) modeled from over 230,000 observations of fish Hg concentrations at over 1900 locations across Canada and dietary Hg exposure screening benchmarks derived specifically for this assessment. HgPREY exceeded benchmark thresholds related to impaired productivity and behavior in adult loons at 10% and 36% of sites, respectively, and exceeded benchmark thresholds for impaired reproduction and health in fishes at 82% and 73% of sites, respectively. The ecozones of southeastern Canada characterized by extensive forest cover, elevated Hg deposition, and poorly buffered soils had the greatest proportion of RQs > 1.0. Results of this assessment suggest that common loons and piscivorous fishes would likely benefit from reductions in Hg deposition, especially in southeastern Canada.

  14. Associations of baroreflex sensitivity, heart rate variability, and initial orthostatic hypotension with prenatal and recent postnatal methylmercury exposure in the Seychelles Child Development Study at age 19 years.

    PubMed

    Périard, Daniel; Beqiraj, Bujar; Hayoz, Daniel; Viswanathan, Bharathi; Evans, Katie; Thurston, Sally W; Davidson, Philip W; Myers, Gary J; Bovet, Pascal

    2015-03-23

    A few studies have suggested an association between prenatal exposure to methylmercury and decreased heart rate variability (HRV) related to autonomic heart function, but no study has examined this association using baroreflex sensitivity (BRS). In this study we assessed the distribution of BRS and immediate orthostatic hypotension (IOH) in young Seychellois adults and their associations with exposure to prenatal and recent postnatal methylmercury. Subjects in the Seychelles Child Development Study (SCDS) main cohort were evaluated at age 19 years. Non-invasive beat-to-beat blood pressure (BP) monitoring (Finapres, Ohmeda) was performed at rest and during active standing in 95 consecutive subjects. Recent postnatal mercury exposure was measured in subjects' hair at the age of 19 years and prenatal exposure in maternal hair grown during pregnancy. BRS was estimated by sequence analysis to identify spontaneous ascending and descending BP ramps. HRV was estimated by the following markers: PNN50 (relative numbers of normal-to-normal intervals which are shorter by more than 50 ms than the immediately following normal-to-normal intervals); rMSSD (root mean of the squared sum of successive interval differences); LF/HF (low frequency/high frequency component ratio); ratio of the mean expiratory/inspiratory RR intervals (EI ratio); and the ratio between the longest RR interval 30 s after active standing and the shortest RR interval at 15 s (Max30/Min15). IOH was estimated by the deepest BP fall within the first 15 s after active standing up. Prenatal MeHg exposures were similar in boys and girls (6.7±4.3, 6.7±3.8 ng/g) but recent postnatal mercury levels were higher in males than females (11.2±5.8 vs 7.9±4.3 ng/g, p=0.003). Markers of autonomic heart rate control were within the normal range (BRS: 24.8±7 ms/mm Hg, PNN50: 24.9±6.8%, rMSSD: 68±22, LF/HF: 0.61±0.28) in both sexes. After standing, 51.4% of subjects had a transient systolic BP drop>40 mm Hg, but only 5

  15. BRAIN DEVELOPMENT AND METHYLMERCURY: UNDERESTIMATION OF NEUROTOXICITY

    PubMed Central

    Grandjean, Philippe; Herz, Katherine T.

    2011-01-01

    Methylmercury is now recognized as an important developmental neurotoxicant, though this insight developed slowly over many decades. Developmental neurotoxicity was first reported in a Swedish case report in 1952, and from a serious outbreak in Minamata, Japan a few years later. While the infant suffered congenital poisoning, the mother was barely harmed, thus reflecting a unique vulnerability of the developing nervous system. Nonetheless, exposure limits for this environmental chemical were based solely on adult toxicity until 50 years after the first report on developmental neurotoxicity. Even current evidence is affected by uncertainty, most importantly by imprecision of the exposure assessment in epidemiological studies. Detailed calculations suggest that the relative imprecision may be as much as 50%, or greater, thereby substantially biasing the results toward the null. In addition, as methylmercury exposure usually originates from fish and seafood that also contains essential nutrients, so-called negative confounding may occur. Thus, the beneficial effects of the nutrients may appear to dampen the toxicity, unless proper adjustment is included in the analysis to reveal the true extent of adverse effects. These problems delayed the recognition of low-level methylmercury neurotoxicity. However, such problems are not unique, and many other industrial compounds are thought to cause developmental neurotoxicity, mostly with less epidemiological support than methylmercury. The experience obtained with methylmercury should therefore be taken into account when evaluating the evidence for other substances suspected of being neurotoxic. PMID:21259267

  16. Mercury and methylmercury in aquatic sediment across western North America

    USGS Publications Warehouse

    Fleck, Jacob; Marvin-DiPasquale, Mark C.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Lutz, Michelle A; Tate, Michael T.; Alpers, Charles N.; Hall, Britt D.; Krabbenhoft, David P.; Eckley, Chris S.

    2016-01-01

    Large-scale assessments are valuable in identifying primary factors controlling total mercury (THg) and monomethyl mercury (MeHg) concentrations, and distribution in aquatic ecosystems. Bed sediment THg and MeHg concentrations were compiled for > 16,000 samples collected from aquatic habitats throughout the West between 1965 and 2013. The influence of aquatic feature type (canals, estuaries, lakes, and streams), and environmental setting (agriculture, forest, open-water, range, wetland, and urban) on THg and MeHg concentrations was examined. THg concentrations were highest in lake (29.3 ± 6.5 μg kg− 1) and canal (28.6 ± 6.9 μg kg− 1) sites, and lowest in stream (20.7 ± 4.6 μg kg− 1) and estuarine (23.6 ± 5.6 μg kg− 1) sites, which was partially a result of differences in grain size related to hydrologic gradients. By environmental setting, open-water (36.8 ± 2.2 μg kg− 1) and forested (32.0 ± 2.7 μg kg− 1) sites generally had the highest THg concentrations, followed by wetland sites (28.9 ± 1.7 μg kg− 1), rangeland (25.5 ± 1.5 μg kg− 1), agriculture (23.4 ± 2.0 μg kg− 1), and urban (22.7 ± 2.1 μg kg− 1) sites. MeHg concentrations also were highest in lakes (0.55 ± 0.05 μg kg− 1) and canals (0.54 ± 0.11 μg kg− 1), but, in contrast to THg, MeHg concentrations were lowest in open-water sites (0.22 ± 0.03 μg kg− 1). The median percent MeHg (relative to THg) for the western region was 0.7%, indicating an overall low methylation efficiency; however, a significant subset of data (n > 100) had percentages that represent elevated methylation efficiency (> 6%). MeHg concentrations were weakly correlated with THg (r2 = 0.25) across western North America. Overall, these results highlight the large spatial variability in sediment THg and MeHg concentrations throughout western North America and underscore the important roles that landscape and land

  17. A Novel Role of MerC in Methylmercury Transport and Phytoremediation of Methylmercury Contamination.

    PubMed

    Sone, Yuka; Uraguchi, Shimpei; Takanezawa, Yasukazu; Nakamura, Ryosuke; Pan-Hou, Hidemitsu; Kiyono, Masako

    2017-01-01

    MerC, encoded by merC in the transposon Tn21 mer operon, is a heavy metal transporter with potential applications for phytoremediation of heavy metals such as mercuric ion and cadmium. In this study, we demonstrate that MerC also acts as a transporter for methylmercury. When MerC was expressed in Escherichia coli XL1-Blue, cells became hypersensitive to CH 3 Hg(I) and the uptake of CH 3 Hg(I) by these cells was higher than that by cells of the isogenic strain. Moreover, transgenic Arabidopsis plants expressing bacterial MerC or MerC fused to plant soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) accumulated CH 3 Hg(I) effectively and their growth was comparable to the wild-type plants. These results demonstrate that when the bacterium-derived merC gene is ectopically introduced in genetically modified plants, MerC expression in the transgenic plants promotes the transport and sequestration of methylmercury. Thus, our results show that the expression of merC in Arabidopsis results in transgenic plants that could be used for the phytoremediation and elimination of toxic methylmercury from the environment.

  18. Effects of Prenatal Methylmercury Exposure: From Minamata Disease to Environmental Health Studies.

    PubMed

    Sakamoto, Mineshi; Itai, Takaaki; Murata, Katsuyuki

    2017-01-01

    Methylmercury, the causative agent of Minamata disease, can easily penetrate the brain, and adult-type Minamata disease patients showed neurological symptoms according to the brain regions where the neurons, mainly in the cerebrum and cerebellum, were damaged. In addition, fetuses are exposed to methylmercury via the placenta from maternal fish consumption, and high-level exposure to methylmercury causes damage to the brains of infants. Typical patients with fetal-type Minamata disease (i.e., serious poisoning caused by in utero exposure to methylmercury) were born during the period of severe methylmercury pollution in 1955-1959, although they showed no abnormality during gestation nor at delivery. However, they showed difficulties in head control, sitting, and walking, and showed disturbances in mental development, these symptoms that are similar to those of cerebral palsy, during the growth periods after birth. The impaired development of fetal-type Minamata disease patients was one of the most tragic and characteristic feature of Minamata disease. In this review, we first summarize 1) the effects of prenatal methylmercury exposure in Minamata disease. Then, we introduce the studies that were conducted mainly by Sakamoto et al. as follows: 2) a retrospective study on temporal and regional variations of methylmercury pollution in Minamata area using preserved umbilical cord methylmercury, 3) decline in male sex ratio observed in Minamata area, 4) characteristics of hand tremor and postural sway in fetal-type Minamata disease patients, 5) methylmercury transfer from mothers to infants during gestation and lactation (the role of placenta), 6) extrapolation studies using rat models on the effects of prenatal methylmercury exposure on the human brain, and 7) risks and benefits of fish consumption.

  19. Neurophysiologic measures of auditory function in fish consumers: associations with long chain polyunsaturated fatty acids and methylmercury.

    PubMed

    Dziorny, Adam C; Orlando, Mark S; Strain, J J; Davidson, Philip W; Myers, Gary J

    2013-09-01

    Determining if associations exist between child neurodevelopment and environmental exposures, especially low level or background ones, is challenging and dependent upon being able to measure specific and sensitive endpoints. Psychometric or behavioral measures of CNS function have traditionally been used in such studies, but do have some limitations. Auditory neurophysiologic measures examine different nervous system structures and mechanisms, have fewer limitations, can more easily be quantified, and might be helpful additions to testing. To date, their use in human epidemiological studies has been limited. We reviewed the use of auditory brainstem responses (ABR) and otoacoustic emissions (OAE) in studies designed to determine the relationship of exposures to methyl mercury (MeHg) and nutrients from fish consumption with neurological development. We included studies of experimental animals and humans in an effort to better understand the possible benefits and risks of fish consumption. We reviewed the literature on the use of ABR and OAE to measure associations with environmental exposures that result from consuming a diet high in fish. We focused specifically on long chain polyunsaturated fatty acids (LCPUFA) and MeHg. We performed a comprehensive review of relevant studies using web-based search tools and appropriate search terms. Gestational exposure to both LCPUFA and MeHg has been reported to influence the developing auditory system. In experimental studies supplemental LCPUFA is reported to prolong ABR latencies and human studies also suggest an association. Experimental studies of acute and gestational MeHg exposure are reported to prolong ABR latencies and impair hair cell function. In humans, MeHg exposure is reported to prolong ABR latencies, but the impact on hair cell function is unknown. The auditory system can provide objective measures and may be useful in studying exposures to nutrients and toxicants and whether they are associated with children

  20. Intrauterine Exposure to Methylmercury and Neurocognitive Functions: Minamata Disease.

    PubMed

    Yorifuji, Takashi; Kato, Tsuguhiko; Kado, Yoko; Tokinobu, Akiko; Yamakawa, Michiyo; Tsuda, Toshihide; Sanada, Satoshi

    2015-01-01

    A large-scale food poisoning caused by methylmercury was identified in Minamata, Japan, in the 1950s. The severe intrauterine exposure cases are well known, although the possible impact of low-to-moderate methylmercury exposure in utero are rarely investigated. We examined neurocognitive functions among 22 participants in Minamata, mainly using an intelligence quotient test (Wechsler Adults Intelligent Scale III), in 2012/2013. The participants tended to score low on the Index score of processing speed (PS) relative to full-scale IQ, and discrepancies between PS and other scores within each participant were observed. The lower score on PS was due to deficits in digit symbol-coding and symbol search and was associated with methylmercury concentration in umbilical cords. The residents who experienced low-to-moderate methylmercury exposure including prenatal one in Minamata manifested deficits in their cognitive functions, processing speed in particular.

  1. Influence of Reservoir Water Level Fluctuations on Sediment ...

    EPA Pesticide Factsheets

    Mercury (Hg) is a pollutant of global concern due to its ability to accumulate as methylmercury (MeHg) in biota. Mercury is methylated by anaerobic microorganisms such as sulfate reducing bacteria (SRB) in water and sediment. Throughout North America, reservoirs tend to have elevated methylmercury (MeHg) concentrations compared to natural lakes and rivers. This impact is most pronounced in newly created reservoirs where methylation is fueled by the decomposition of flooded organic material, which can release Hg and enhance microbial activity. Much less is known about the longer-term water-level management impacts on Hg cycling in older reservoirs. The objective of our study was to understand the role of on-going water-level fluctuations on sediment MeHg concentrations and sulfur speciation within a reservoir 75 years after initial impoundment. The study was performed at the Cottage Grove Reservoir located 15 km downstream of the historical Black Butte Hg mine. For 8 months each year, the water level is lowered resulting in roughly half of the reservoir’s sediment being exposed to the atmosphere. Water samples from the inflow, water-column, outflow, and sediment were collected seasonally over a year for total-Hg, MeHg, and several ancillary parameters. The results showed that conditions in the reservoir were favorable to methylation with a much higher %MeHg observed in the outflowing water (34%) compared to the inflow (7%) during the late-summer. An

  2. Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter

    USGS Publications Warehouse

    Jeremiason, Jeffrey D.; Portner, Joshua C.; Aiken, George R.; Hiranaka, Amber J.; Dvorak, Michelle T.; Tran, Khuyen T.; Latch, Douglas E.

    2015-01-01

    This study examined the kinetics of photoreduction of Hg(II) and photodemethylation of methylmercury (MeHg+) attached to, or in the presence of, dissolved organic matter (DOM). Both Hg(II) and MeHg+ are principally bound to reduced sulfur groups associated with DOM in many freshwater systems. We propose that a direct photolysis mechanism is plausible for reduction of Hg(II) bound to reduced sulfur groups on DOM while an indirect mechanism is supported for photodemethylation of MeHg+ bound to DOM. UV spectra of Hg(II) and MeHg+ bound to thiol containing molecules demonstrate that the Hg(II)–S bond is capable of absorbing UV-light in the solar spectrum to a much greater extent than MeHg+–S bonds. Experiments with chemically distinct DOM isolates suggest that concentration of DOM matters little in the photochemistry if there are enough reduced S sites present to strongly bind MeHg+ and Hg(II); DOM concentration does not play a prominent role in photodemethylation other than to screen light, which was demonstrated in a field experiment in the highly colored St. Louis River where photodemethylation was not observed at depths ≥10 cm. Experiments with thiol ligands yielded slower photodegradation rates for MeHg+ than in experiments with DOM and thiols; rates in the presence of DOM alone were the fastest supporting an intra-DOM mechanism. Hg(II) photoreduction rates, however, were similar in experiments with only DOM, thiols plus DOM, or only thiols suggesting a direct photolysis mechanism. Quenching experiments also support the existence of an intra-DOM photodemethylation mechanism for MeHg+. Utilizing the difference in photodemethylation rates measured for MeHg+ attached to DOM or thiol ligands, the binding constant for MeHg+ attached to thiol groups on DOM was estimated to be 1016.7.

  3. INFLUENCE OF A CHLOR-ALKALI SUPERFUND SITE ON MERCURY BIOACCUMULATION IN PERIPHYTON AND LOW-TROPHIC LEVEL FAUNA

    PubMed Central

    Buckman, Kate L.; Marvin-DiPasquale, Mark; Taylor, Vivien F.; Chalmers, Ann; Broadley, Hannah J.; Agee, Jennifer; Jackson, Brian P.; Chen, Celia Y.

    2015-01-01

    In Berlin, NH, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US EPA Superfund site and source of mercury (Hg) to the river. A study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40x increase, mean±sd: 20.1±24.8 ng g−1 DW) and total mercury (THg, 10–30x increase, mean±sd: 2045±2669 ng g−1 DW) compared to all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7x on average) relative to the reference (THg mean±sd: 33.5±9.33 ng g−1 DW; MeHg mean±sd: 0.52±0.21 ng g−1 DW). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L−1) and dissolved (0.76 ng L−1) fractions were 5-fold higher than at the reference sites, and 2–5-fold higher than downstream. Methylmercury production potential (MPP) of periphyton material was highest (2–9 ng g−1 d−1 DW) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g−1 d−1 DW). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies and shiners showed a weak positive relationship with porewater MeHg concentration. PMID:25732794

  4. Methylmercury is the predominant form of mercury in bird eggs: a synthesis

    USGS Publications Warehouse

    Ackerman, Joshua T.; Herzog, Mark P.; Schwarzbach, Steven E.

    2013-01-01

    Bird eggs are commonly used in mercury monitoring programs to assess methylmercury contamination and toxicity to birds. However, only 6% of >200 studies investigating mercury in bird eggs have actually measured methylmercury concentrations in eggs. Instead, studies typically measure total mercury in eggs (both organic and inorganic forms of mercury), with the explicit assumption that total mercury concentrations in eggs are a reliable proxy for methylmercury concentrations in eggs. This assumption is rarely tested, but has important implications for assessing risk of mercury to birds. We conducted a detailed assessment of this assumption by (1) collecting original data to examine the relationship between total and methylmercury in eggs of two species, and (2) reviewing the published literature on mercury concentrations in bird eggs to examine whether the percentage of total mercury in the methylmercury form differed among species. Within American avocets (Recurvirostra americana) and Forster’s terns (Sterna forsteri), methylmercury concentrations were highly correlated (R2 = 0.99) with total mercury concentrations in individual eggs (range: 0.03–7.33 μg/g fww), and the regression slope (log scale) was not different from one (m = 0.992). The mean percentage of total mercury in the methylmercury form in eggs was 97% for American avocets (n = 30 eggs), 96% for Forster’s terns (n = 30 eggs), and 96% among all 22 species of birds (n = 30 estimates of species means). The percentage of total mercury in the methylmercury form ranged from 63% to 116% among individual eggs and 82% to 111% among species means, but this variation was not related to total mercury concentrations in eggs, foraging guild, nor to a species life history strategy as characterized along the precocial to altricial spectrum. Our results support the use of total mercury concentrations to estimate methylmercury concentrations in bird eggs.

  5. Marine biogeochemistry: Methylmercury manufacture

    NASA Astrophysics Data System (ADS)

    Cossa, Daniel

    2013-10-01

    The neurotoxin methylmercury can accumulate in marine food webs, contaminating seafood. An analysis of the isotopic composition of fish in the North Pacific suggests that much of the mercury that enters the marine food web originates from low-oxygen subsurface waters.

  6. Mercury bioaccumulation increases with latitude in a coastal marine fish (Atlantic silverside, Menidia menidia)

    PubMed Central

    Baumann, Zofia; Mason, Robert P.; Conover, David O.; Balcom, Prentiss; Chen, Celia Y.; Buckman, Kate L.; Fisher, Nicholas S.; Baumann, Hannes

    2016-01-01

    Human exposure to the neurotoxic methylmercury (MeHg) occurs primarily via the consumption of marine fish, but the processes underlying large-scale spatial variations in fish MeHg concentrations [MeHg], which influence human exposure, are not sufficiently understood. We used the Atlantic silverside (Menidia menidia), an extensively studied model species and important forage fish, to examine latitudinal patterns in total Hg [Hg] and [MeHg]. Both [Hg] and [MeHg] significantly increased with latitude (0.014 and 0.048 μg MeHg g−1 dw per degree of latitude in juveniles and adults, respectively). Four known latitudinal trends in silverside traits help explain these patterns: latitudinal increase in MeHg assimilation efficiency, latitudinal decrease in MeHg efflux, latitudinal increase in weight loss due to longer and more severe winters, and latitudinal increase in food consumption as an adaptation to decreasing length of the growing season. Given the absence of a latitudinal pattern in particulate MeHg, a diet proxy for zooplanktivorous fish, we conclude that large-scale spatial variation in growth is the primary control of Hg bioaccumulation in this and potentially other fish species. PMID:28701819

  7. Mercury accumulation in mallards fed methylmercury with or without added DDE

    USGS Publications Warehouse

    Heinz, G.H.

    1987-01-01

    Adult female mallards (Anas platyrhynchos) were fed a control diet or diets containing 1 ppm methylmercury chloride, 5 ppm methylmercury chloride, 1 ppm methylmercury chloride plus 5 ppm DDE, or 5 ppm methylmercury chloride plus 5 ppm DDE. The presence of DDE in the diet did not affect retention of mercury in breast muscle or eggs. There was a good correlation between the levels of mercury in the breast muscle of females and their eggs, and this correlation was unaffected by the presence of DDE in the diet. This correlation suggests that one could predict mercury levels in female mallards in the field when only eggs have been collected and vice versa.

  8. Human milk as a source of methylmercury exposure in infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandjean, P.; Jorgensen, P.J.; Weihe, P.

    As methylmercury is excreted in human milk and infants are particularly susceptible to toxicity due to this compound, the purpose of this study was to evaluate the possible transfer of methylmercury to infants via breast-feeding. In a community with a high intake of seafood, 583 children from a birth cohort were followed. The duration of nursing was recorded, and hair samples were obtained for mercury analysis at approximately 12 months of age. The hair mercury concentrations increased with the length of the nursing period, and those nursed throughout the first year showed the highest geometric mean (9.0 nmol/g or 1.8more » [mu]g/g). Human milk therefore seems to be an important source of methylmercury exposure in infants. As increasing time interval from weaning to hair sample collection was not associated with any detectable decrease in mercury concentrations. A slow or absent elimination of methylmercury during the first year after birth could explain this finding. In certain fishing communities, infants nursed for long periods may be at increased risk of developing methylmercury toxicity. 25 refs., 2 figs., 3 tabs.« less

  9. Freshwater discharges drive high levels of methylmercury in Arctic marine biota.

    PubMed

    Schartup, Amina T; Balcom, Prentiss H; Soerensen, Anne L; Gosnell, Kathleen J; Calder, Ryan S D; Mason, Robert P; Sunderland, Elsie M

    2015-09-22

    Elevated levels of neurotoxic methylmercury in Arctic food-webs pose health risks for indigenous populations that consume large quantities of marine mammals and fish. Estuaries provide critical hunting and fishing territory for these populations, and, until recently, benthic sediment was thought to be the main methylmercury source for coastal fish. New hydroelectric developments are being proposed in many northern ecosystems, and the ecological impacts of this industry relative to accelerating climate changes are poorly characterized. Here we evaluate the competing impacts of climate-driven changes in northern ecosystems and reservoir flooding on methylmercury production and bioaccumulation through a case study of a stratified sub-Arctic estuarine fjord in Labrador, Canada. Methylmercury bioaccumulation in zooplankton is higher than in midlatitude ecosystems. Direct measurements and modeling show that currently the largest methylmercury source is production in oxic surface seawater. Water-column methylation is highest in stratified surface waters near the river mouth because of the stimulating effects of terrestrial organic matter on methylating microbes. We attribute enhanced biomagnification in plankton to a thin layer of marine snow widely observed in stratified systems that concentrates microbial methylation and multiple trophic levels of zooplankton in a vertically restricted zone. Large freshwater inputs and the extensive Arctic Ocean continental shelf mean these processes are likely widespread and will be enhanced by future increases in water-column stratification, exacerbating high biological methylmercury concentrations. Soil flooding experiments indicate that near-term changes expected from reservoir creation will increase methylmercury inputs to the estuary by 25-200%, overwhelming climate-driven changes over the next decade.

  10. [Fish and seafood as a source of human exposure to methylmercury].

    PubMed

    Mania, Monika; Wojciechowska-Mazurek, Maria; Starska, Krystyna; Rebeniak, Małgorzata; Postupolski, Jacek

    2012-01-01

    Fish and seafood are recommended diet constituents providing high quality protein, vitamins, minerals and omega-3 fatty acids, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, these foodstuffs can also be the major source ofmethylmercury intake in humans. In general, more than 90% of the mercury in fish is found as methylmercury, but contents of methylmercury can vary considerably between species. Predatory species that are at the top of the food chain and live a long time, may accumulate higher levels of methylmercury. This paper contains information about sources of human exposure to organic compounds of mercury, toxicity, metabolism and transformation of mercury in the environment. Assessment of methylmercury by international risk assessment bodies such as the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and U.S. National Research Council (NRC) were presented. Climate changes and their influence on the mercury cycle in the environment especially mercury methylation and concentrations of methylmercury in marine species were also presented. Consumer advice prepared by European Commission and Member States as regards consumption of predatory fishes such as swordfish, tuna, shark, marlin and pike, taking into account the most vulnerable groups of population e.g. women planning pregnancy, pregnant or breastfeeding women and children were presented. Mercury and methylmercury contamination of fishes and seafood on the basis of the literature references as well as intake of mercury with fish and fish products in Poland and other European country were discussed. The role of selenium as a factor which counteracts methylmercury toxicity and protects against some neurological effects of methylmercury exposure in humans, as well as information on potential etiological factors connected with autism disorder were also described. Attention has also been drawn to increasing number of notifications to Rapid Alert System for Food and Feed

  11. The effect of methylmercury exposure on behavior and cerebellar granule cell physiology in aged mice.

    PubMed

    Bellum, Sairam; Thuett, Kerry A; Bawa, Bhupinder; Abbott, Louise C

    2013-09-01

    Epidemiology studies have clearly documented that the central nervous system is highly susceptible to methylmercury toxicity, and exposure to this neurotoxicant in humans primarily results from consumption of contaminated fish. While the effects of methylmercury exposure have been studied in great detail, comparatively little is known about the effects of moderate to low dose methylmercury toxicity in the aging central nervous system. We examined the toxic effects of a moderate dose of methylmercury on the aging mouse cerebellum. Male and female C57BL/6 mice at 16-20 months of age were exposed to methylmercury by feeding a total dose of 5.0 mg kg(-1) body weight and assessed using four behavioral tests. Methylmercury-treated aged mice performed significantly worse in open field, footprint analysis and the vertical pole test compared with age-matched control mice. Isolated cerebellar granule cells from methylmercury-treated aged mice exhibited higher levels of reactive oxygen species and reduced mitochondrial membrane potentials, but no differences in basal intracellular calcium ion levels compared with age-matched control mice. When aged mice were exposed to a moderate dose of methylmercury, they exhibited a similar degree of impairment when compared with young adult mice exposed to the same moderate dose of methylmercury, as reported in earlier studies from this laboratory. Thus, at least in mice, exposure of the aged brain to moderate concentrations methylmercury does not pose greater risk compared with the young adult brain exposed to similar concentrations of methylmercury. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.

    PubMed

    Lewis, Ariel S; Huntington, Thomas G; Marvin-DiPasquale, Mark C; Amirbahman, Aria

    2016-05-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    USGS Publications Warehouse

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  14. Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Fleck, Jacob; Alpers, Charles N.; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Stricker, Craig; Stephenson, Mark; Feliz, David; Gill, Gary; Bachand, Philip; Brice, Ann; Kulakow, Robin

    2010-01-01

    d) Identification and testing of potential management approaches for reducing MeHg contamination. In addition, the quantitative results reported here assess the effect of current land use practices in the Yolo Bypass MeHg production, bioaccumulation and export, and provide process-based advice towards achieving current goals of the RWQCB-CVR's Sacramento -- San Joaquin Delta Estuary TMDL for Methyl & Total Mercury (Wood et al., 2010b). Further work is necessary to evaluate biotic exposure in the Yolo Bypass Wildlife Area at higher trophic levels (e.g. birds), to quantify winter hydrologic flux of MeHg to the larger Delta ecosystem, and to evaluate rice straw management options to limit labile carbon supplies to surface sediment during winter months. In summary, agricultural management of rice fields -- specifically the periodic flooding and production of easily degraded organic matter -- promotes the production of MeHg beyond rates seen in naturally vegetated wetlands, whether seasonally or permanently flooded., The exported load from MeHg from these agricultural wetlands may be controlled by limiting hydrologic export from fields to enhance on-site MeHg removal processes, but the tradeoff is that this impoundement increases Me Hg exposure to resident organisms.

  15. Neurological and neurocognitive functions from intrauterine methylmercury exposure.

    PubMed

    Yorifuji, Takashi; Kado, Yoko; Diez, Midory Higa; Kishikawa, Toshihiro; Sanada, Satoshi

    2016-05-03

    In the 1950s, large-scale food poisoning caused by methylmercury was identified in Minamata, Japan. Although severe intrauterine exposure cases (ie, congenital Minamata disease patients) are well known, possible impacts of methylmercury exposure in utero among residents, which is likely at lower levels than in congenital Minamata disease patients, are rarely explored. In 2014, the authors examined neurological and neurocognitive functions among 18 exposed participants in Minamata, focusing on fine motor, visuospatial construction, and executive functions. More than half of the participants had some fine motor and coordination difficulties. In addition, several participants had lower performance for neurocognitive function tests (the Rey-Osterrieth Complex Figure test and Keio version of the Wisconsin card sorting test). These deficits imply diffuse brain damage. This study suggests possible neurological and neurocognitive impacts of prenatal exposure to methylmercury among exposed residents of Minamata.

  16. Prenatal methylmercury poisoning: clinical observations over five years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin-Zaki, L.; Majeed, M.A.; Elhassani, S.B.

    1979-02-01

    Thirty-two infants prenatally exposed to methylmercury and their mothers were examined over a five-year period after the Iraqi methylmercury epidemic. Severity of poisoning in mothers was related to the peak mercury concentration in their hair and in the infants to the maximum concentration in maternal hair during pregnancy. In nine cases of cerebral palsy, methylmercury exposure occurred only during the last trimester. All infants except three (two were orphaned soon after birth and one was bottle-fed) were exposed postnatally via suckling. Whereas the mother's symptoms usually improved, the damage to the fetal nervous system appears to be permanent. Milder casesmore » previously not identified in other studies are reported. The syndrome consists of varying degrees of developmental retardation in addition to exaggerated tendon reflexes and the pathologic extensor plantar reflex (minimal brain damage syndrome).« less

  17. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil

    PubMed Central

    Wang, Yongjie; Dang, Fei; Evans, R. Douglas; Zhong, Huan; Zhao, Jiating; Zhou, Dongmei

    2016-01-01

    Methylmercury (MeHg) accumulation in rice has great implications for human health. Here, effects of selenium (Se) on MeHg availability to rice are explored by growing rice under soil or foliar fertilization with Se. Results indicate that soil amendment with Se could reduce MeHg levels in soil and grain (maximally 73%). In contrast, foliar fertilization with Se enhanced plant Se levels (3–12 folds) without affecting grain MeHg concentrations. This evidence, along with the distinct distribution of MeHg and Se within the plant, demonstrate for the first time that Se-induced reduction in soil MeHg levels (i.e., MeHg-Se antagonism in soil) rather than MeHg-Se interactions within the plant might be the key process triggering the decreased grain MeHg levels under Se amendment. The reduction in soil MeHg concentrations could be mainly attributed to the formation of Hg-Se complexes (detected by TEM-EDX and XANES) and thus reduced microbial MeHg production. Moreover, selenite and selenate were equally effective in reducing soil MeHg concentrations, possibly because of rapid changes in Se speciation. The dominant role of Se-induced reduction in soil MeHg levels, which has been largely underestimated previously, together with the possible mechanisms advance our mechanistic understanding about MeHg dynamics in soil-rice systems. PMID:26778218

  18. Mercury mass balance study in Wujiangdu and Dongfeng Reservoirs, Guizhou, China.

    PubMed

    Feng, Xinbin; Jiang, Hongmei; Qiu, Guangle; Yan, Haiyu; Li, Guanghui; Li, Zhonggen

    2009-10-01

    From October 2003 to September 2004, we conducted a detailed study on the mass balance of total mercury (THg) and methylmercury (MeHg) of Dongfeng (DF) and Wujiangdu (WJD) reservoirs, which were constructed in 1992 and 1979, respectively. Both reservoirs were net sinks for THg on an annual scale, absorbing 3319.5 g km(-2) for DF Reservoir, and 489.2 g km(-2) for WJD Reservoirs, respectively. However, both reservoirs were net sources of MeHg to the downstream ecosystems. DF Reservoir provided a source of 32.9 g MeHg km(-2) yr(-1), yielding 10.3% of the amount of MeHg that entered the reservoir, and WJD Reservoir provided 140.9 g MeHg km(-2) yr(-1), yielding 82.5% of MeHg inputs. Our results implied that water residence time is an important variable affecting Hg methylation rate in the reservoirs. Our study shows that building a series of reservoirs in line along a river changes the riverine system into a natural Hg methylation factory which markedly increases the %MeHg in the downstream reservoirs; in effect magnifying the MeHg buildup problem in reservoirs.

  19. Microbial Mercury Cycling in Sediments of the San Francisco Bay-Delta

    USGS Publications Warehouse

    Marvin-DiPasquale, M.; Agee, J.L.

    2003-01-01

    Microbial mercury (Hg) methylation and methylmercury (MeHg) degradation processes were examined using radiolabled model Hg compounds in San Francisco Bay-Delta surface sediments during three seasonal periods: late winter, spring, and fall. Strong seasonal and spatial differences were evident for both processes. MeHg production rates were positively correlated with microbial sulfate reduction rates during late winter only. MeHg production potential was also greatest during this period and decreased during spring and fall. This temporal trend was related both to an increase in gross MeHg degradation, driven by increasing temperature, and to a build-up in pore water sulfide and solid phase reduced sulfur driven by increased sulfate reduction during the warmer seasons. MeHg production decreased sharply with depth at two of three sites, both of which exhibited a corresponding increase in reduced sulfur compounds with depth. One site that was comparatively oxidized and alkaline exhibited little propensity for net MeHg production. These results support the hypothesis that net MeHg production is greatest when and where gross MeHg degradation rates are low and dissolved and solid phase reduced sulfur concentrations are low.

  20. Microbial mercury cycling in sediments of the San Francisco Bay-Delta

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Agee, Jennifer L.

    2003-01-01

    Microbial mercury (Hg) methylation and methylmercury (MeHg) degradation processes were examined using radiolabled model Hg compounds in San Francisco Bay-Delta surface sediments during three seasonal periods: late winter, spring, and fall. Strong seasonal and spatial differences were evident for both processes. MeHg production rates were positively correlated with microbial sulfate reduction rates during late winter only. MeHg production potential was also greatest during this period and decreased during spring and fall. This temporal trend was related both to an increase in gross MeHg degradation, driven by increasing temperature, and to a build-up in pore water sulfide and solid phase reduced sulfur driven by increased sulfate reduction during the warmer seasons. MeHg production decreased sharply with depth at two of three sites, both of which exhibited a corresponding increase in reduced sulfur compounds with depth. One site that was comparatively oxidized and alkaline exhibited little propensity for net MeHg production. These results support the hypothesis that net MeHg production is greatest when and where gross MeHg degradation rates are low and dissolved and solid phase reduced sulfur concentrations are low.

  1. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa)

    PubMed Central

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-01-01

    Background and Aims Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Methods Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. Key Results The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Conclusions Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. PMID:24948669

  2. Comprehensive gene and microRNA expression profiling on cardiovascular system in zebrafish co-exposured of SiNPs and MeHg.

    PubMed

    Hu, Hejing; Shi, Yanfeng; Zhang, Yannan; Wu, Jing; Asweto, Collins Otieno; Feng, Lin; Yang, Xiaozhe; Duan, Junchao; Sun, Zhiwei

    2017-12-31

    Air pollution has been shown to increase cardiovascular diseases. However, little attention has been paid to the combined effects of PM and air pollutants on the cardiovascular system. To explore this, a high-throughput sequencing technology was used to determine combined effects of silica nanoparticles (SiNPs) and MeHg in zebrafish. Our study demonstrated that SiNPs and MeHg co-exposure could cause significant changes in mRNA and miRNA expression patterns in zebrafish. The differentially expressed (DE) genes in profiles 17 and 26 of STC analysis suggest that SiNPs and MeHg co-exposure had more proinflammatory and cardiovascular toxicity in zebrafish than single exposure. Major gene functions associated with cardiovascular system in the co-exposed zebrafish were discerned from the dynamic-gene-network, including stxbp1a, celf4, ahr1b and bai2. In addition, the prominently expressed pathway of cardiac muscle contraction was targeted by 3 DE miRNAs identified by the miRNA-pathway-network (dre-miR-7147, dre-miR-26a and dre-miR-375), which included 23 DE genes. This study presents a global view of the combined SiNPs and MeHg toxicity on the dynamic expression of both mRNAs and miRNAs in zebrafish, and could serve as fundamental research clues for future studies, especially on cardiovascular system toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A new mass screening method for methylmercury poisoning using mercury-volatilizing bacteria from Minamata Bay.

    PubMed

    Nakamura, K; Naruse, I; Takizawa, Y

    1999-09-01

    A simplified mass screening method for methylmercury exposure was developed using methylmercury-volatilizing bacteria from Minamata Bay. Some bacteria can transform methylmercury into mercury vapor. Most mercury in the hair is methylmercury, which is readily extracted with HCl solution. Black spots are formed on X-ray film due to the reduction of Ag(+) emulsion with mercury vapor produced by methylmercury-volatilizing bacteria. By exploiting these characteristics, a screening method was developed, whereby the fur of rats injected with methylmercury chloride formed clear black spots on X-ray film, whereas the fur of rats injected with saline did not. Subsequently, 50 human hair samples were examined using this mass screening method. The method identified people who had high mercury concentration, over 20 microg/g. A few thousand hair samples may be screened in a day using this method because it is rapid, simple, and economical. This method, therefore, enables screening of persons with methylmercury poisoning in mercury-polluted areas. Copyright 1999 Academic Press.

  4. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna

    USGS Publications Warehouse

    Buckman, Kate L.; Marvin-DiPasquale, Mark C.; Taylor, Vivien F.; Chalmers, Ann T.; Broadley, Hannah J.; Agee, Jennifer L.; Jackson, Brian P.; Chen, Celia Y.

    2015-01-01

    In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g–1 dry wt) and total mercury (THg; 10–30× increase, mean ± SD: 2045 ± 2669 ng g–1 dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g–1 dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g–1 dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L–1) and dissolved (0.76 ng L–1) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2–9 ng g–1 d–1 dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g–1 d–1 dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration.

  5. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna.

    PubMed

    Buckman, Kate L; Marvin-DiPasquale, Mark; Taylor, Vivien F; Chalmers, Ann; Broadley, Hannah J; Agee, Jennifer; Jackson, Brian P; Chen, Celia Y

    2015-07-01

    In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10-40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g(-1) dry wt) and total mercury (THg; 10-30× increase, mean ± SD: 2045 ± 2669 ng g(-1) dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3-7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g(-1) dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g(-1) dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L(-1)) and dissolved (0.76 ng L(-1)) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2-9 ng g(-1) d(-1) dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g(-1) d(-1) dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration. © 2015 SETAC.

  6. Methylmercury: Reproductive and behavioral effects on three generations of mallard ducks

    USGS Publications Warehouse

    Heinz, G.H.

    1979-01-01

    Three generations of mallard ducks (Anas platyrhynchos) were fed either a control diet or a diet containing 0.5 ppm mercury in the form of methylmercury. The levels of mercury in adult tissues and eggs remained about the same over 3 generations. The methylmercury diet had no effect on adult weights or weight changes during the reproductive season. Females fed a diet containing 0.5 ppm mercury laid a greater percentage of their eggs outside their nestboxes than did controls, and also laid fewer eggs and produced fewer ducklings. Methylmercury in the diet appeared to result in a small amount of eggshell thinning. Ducklings from parents fed methylmercury were less responsive than, controls to tape-recorded maternal calls, but were hyper-responsive to a frightening stimulus in avoidance tests; there were no significant differences in locomotor activity in an open-field test.

  7. Methylmercury induces the expression of TNF-α selectively in the brain of mice

    PubMed Central

    Iwai-Shimada, Miyuki; Takahashi, Tsutomu; Kim, Min-Seok; Fujimura, Masatake; Ito, Hitoyasu; Toyama, Takashi; Naganuma, Akira; Hwang, Gi-Wook

    2016-01-01

    Methylmercury selectively damages the central nervous system (CNS). The tumor necrosis factor (TNF) superfamily includes representative cytokines that participate in the inflammatory response as well as cell survival, and apoptosis. In this study, we found that administration of methylmercury selectively induced TNF-α expression in the brain of mice. Although the accumulated mercury concentration in the liver and kidneys was greater than in the brain, TNF-α expression was induced to a greater extent in brain. Thus, it is possible that there may exist a selective mechanism by which methylmercury induces TNF-α expression in the brain. We also found that TNF-α expression was induced by methylmercury in C17.2 cells (mouse neural stem cells) and NF-κB may participate as a transcription factor in that induction. Further, we showed that the addition of TNF-α antagonist (WP9QY) reduced the toxicity of methylmercury to C17.2 cells. In contrast, the addition of recombinant TNF-α to the culture medium decreased the cell viability. We suggest that TNF-α may play a part in the selective damage of the CNS by methylmercury. Furthermore, our results indicate that the higher TNF-α expression induced by methylmercury maybe the cause of cell death, as TNF-α binds to its receptor after being released extracellularly. PMID:27910896

  8. Primate paneth cell degeneration following methylmercury hydroxide ingestion.

    PubMed Central

    Mottet, N. K.; Body, R. L.

    1976-01-01

    The effects of methylmercury on the intestinal epithelium were studied in 14 adolescent male Macaca mulatta monkeys weighing 3 to 5 kg. They were divided into three groups: two controls received daily applesauce vehicle without methylmercury. Nine chronic low-dose animals received 0.2 to 1.0 mg of methylmercury per day for 80 to 491 days. Three acute high-dose animals received 2.0 mg methylmercury for 17 to 18 days, when they became terminally ill. Light and electron microscopic observations were made on samples of duodenum and ileum following perfusion and immersion fixation in a glutaraldehyde-paraformaldehyde fixative. Numerous uniquely structured inclusions were prominent in the Paneth cells of the chronic low-dose animals and some necrotic Paneth cells were seen, especially in the most chronic and higher dosed animals of the group. Acute high-dose treatment produced some inclusions in the Paneth cells similar to those of the chronic low-dose group, but degenerative and necrotic cells were more frequently seen. These alterations were not seen in other intestinal epithelial cells. Paneth cells are selectively altered. These findings suggest that a function of Paneth cells may be to eliminate metals from the body. Images Figure 11 Figure 12 Figure 13 Figure 1 Figure 2 Figure 3 Figures 4 and 5 Figure 14 Figure 15 Figures 16-18 Figures 6-10 PMID:820204

  9. Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Greenfield, Ben K; Zhong, Huan; Wang, Yujun; Yang, Zhousheng; Zhou, Dongmei

    2015-07-15

    Mercury presents a potential risk to soil organisms, yet our understanding of mercury bioaccumulation in soil dwelling organisms is limited. The influence of soil geochemistry and digestive processes on both methylmercury (MeHg) and total mercury (THg) bioavailability to earthworms (Pheretima guillemi) was evaluated in this study. Earthworms were exposed to six mercury-contaminated soils with geochemically contrasting properties for 36 days, and digestive fluid was concurrently collected to solubilize soil-associated mercury. Bioaccumulation factors were 7.5-31.0 and 0.2-0.6 for MeHg and THg, respectively, and MeHg accounted for 17-58% of THg in earthworm. THg and MeHg measured in soils and earthworms were negatively associated with soil total organic carbon (TOC). Earthworm THg and MeHg also increased with increasing soil pH. The proportion of MeHg and THg released into the digestive fluid (digestive solubilizable mercury, DSM) was 8.3-18.1% and 0.4-1.3%, respectively. The greater solubilization of MeHg by digestive fluid than CaCl2, together with a biokinetic model-based estimate of dietary MeHg uptake, indicated the importance of soil ingestion for MeHg bioaccumulation in earthworms. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Species differences in the sensitivity of avian embryos to methylmercury

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Klimstra, J.D.; Stebbins, K.R.; Kondrad, S.L.; Erwin, C.A.

    2009-01-01

    We injected doses of methylmercury into the air cells of eggs of 26 species of birds and examined the dose-response curves of embryo survival. For 23 species we had adequate data to calculate the median lethal concentration (LC50). Based on the dose-response curves and LC50s, we ranked species according to their sensitivity to injected methylmercury. Although the previously published embryotoxic threshold of mercury in game farm mallards (Anas platyrhynchos) has been used as a default value to protect wild species of birds, we found that, relative to other species, mallard embryos are not very sensitive to injected methylmercury; their LC50 was 1.79 ug/g mercury on a wet-weight basis. Other species we categorized as also exhibiting relatively low sensitivity to injected methylmercury (their LC50s were 1 ug/g mercury or higher) were the hooded merganser (Lophodytes cucullatus), lesser scaup (Aythya affinis), Canada goose (Branta canadensis), double-crested cormorant (Phalacrocorax auritus), and laughing gull (Larus atricilla). Species we categorized as having medium sensitivity (their LC50s were greater than 0.25 ug/g mercury but less than 1 ug/g mercury) were the clapper rail (Rallus longirostris), sandhill crane (Grus canadensis), ring-necked pheasant (Phasianus colchicus), chicken (Gallus gallus), common grackle (Quiscalus quiscula), tree swallow (Tachycineta bicolor), herring gull (Larus argentatus), common tern (S terna hirundo), royal tern (Sterna maxima), Caspian tern (Sterna caspia), great egret (Ardea alba), brown pelican (Pelecanus occidentalis), and anhinga (Anhinga anhinga). Species we categorized as exhibiting high sensitivity (their LC50s were less than 0.25 ug/g mercury) were the American kestrel (Falco sparverius), osprey (Pandion haliaetus), white ibis (Eudocimus albus), snowy egret (Egretta thula), and tri-colored heron (Egretta tricolor). For mallards, chickens, and ring-necked pheasants (all species for which we could compare the toxicity of our

  11. Total mercury and methylmercury in fish fillets, water, and bed sediments from selected streams in the Delaware River basin, New Jersery, New York, and Pennsylvania, 1998-2001

    USGS Publications Warehouse

    Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.

    2004-01-01

    Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed

  12. MONITORING THE RESPONSE TO CHANGING MERCURY DEPOSITION

    EPA Science Inventory

    There is a crucial need to document the impact and effectiveness of regulation of anthropogenic mercury (Hg) emissions on human, wildlife and ecosystem health to ascertain the need for further controls. The impact of elevated methylmercury (MeHg) levels in fish on human and wildl...

  13. Iron status as a covariate in methylmercury-associated neurotoxicity risk.

    PubMed

    Fonseca, Márlon de Freitas; De Souza Hacon, Sandra; Grandjean, Philippe; Choi, Anna Lai; Bastos, Wanderley Rodrigues

    2014-04-01

    Intrauterine methylmercury exposure and prenatal iron deficiency negatively affect offspring's brain development. Since fish is a major source of both methylmercury and iron, occurrence of negative confounding may affect the interpretation of studies concerning cognition. We assessed relationships between methylmercury exposure and iron-status in childbearing females from a population naturally exposed to methylmercury through fish intake (Amazon). We concluded a census (refuse <20%) collecting samples from 274 healthy females (12-49 years) for hair-mercury determination and assessed iron-status through red cell tests and determination of serum ferritin and iron. Reactive C protein and thyroid hormones was used for excluding inflammation and severe thyroid dysfunctions that could affect results. We assessed the association between iron-status and hair-mercury by bivariate correlation analysis and also by different multivariate models: linear regression (to check trends); hierarchical agglomerative clustering method (groups of variables correlated with each other); and factor analysis (to examine redundancy or duplication from a set of correlated variables). Hair-mercury correlated weakly with mean corpuscular volume (r=.141; P=.020) and corpuscular hemoglobin (r=.132; .029), but not with the best biomarker of iron-status, ferritin (r=.037; P=.545). In the linear regression analysis, methylmercury exposure showed weak association with age-adjusted ferritin; age had a significant coefficient (Beta=.015; 95% CI: .003-.027; P=.016) but ferritin did not (Beta=.034; 95% CI: -.147 to .216; P=.711). In the hierarchical agglomerative clustering method, hair-mercury and iron-status showed the smallest similarities. Regarding factor analysis, iron-status and hair-mercury loaded different uncorrelated components. We concluded that iron-status and methylmercury exposure probably occur in an independent way. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    PubMed

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP.

  15. Chronic methylmercurialism in a horse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seawright, A.A.; Roberts, M.C.; Costigan, P.

    1978-02-01

    Chronic methylmercurialism was produced in a horse given 10 g methylmercury chloride over 10 weeks. Neurological signs, particularly proprioceptive disturbances, were apparent by the final week of dosing and became more severe thereafter. An exudative dermatitis, a reluctance to move, weight loss, reduced appetite and dullness were among the earlier clinical signs, and renal changes characterized by a steadily increasing BUN and glucosuria were detected later. Pathological lesions were confined to the kidneys and the nervous system. There was mild neuronal degeneration in the cerebral cortex and in the cerebellar cortex, axonal demyelination in the dorsal columns of the spinalmore » cord and extensive degeneration of ganglion cells in the dorsal root ganglia. The blood organic mercury level, which had plateaued in the second month, increased rapidly in the last weeks of dosing with a sharp rise terminally. This pattern was repeated for the much lower inorganic mercury levels except for a terminal decrease. The proportion of inorganic mercury was five times greater in the dorsal root ganglia than elsewhere in the CNS, although total mercury levels were similar. Highest tissue mercury levels were found in the liver and kidneys, over 50% being in the form of inorganic mercury. As dealkylation of the methylmercury appeared to be more efficient in the dorsal root ganglia and the kidneys, inorganic mercury derived therefrom may have been responsible for some of the clinical and pathological features of this intoxication in the horse. 21 references, 6 figures, 2 tables.« less

  16. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothenberg, Sarah E.; Keiser, Sharon; Ajami, Nadim J.

    The mechanisms by which gut microbiota contribute to methylmercury metabolism remain unclear. Among a cohort of pregnant mothers, the main objectives of our pilot study were to determine 1) associations between gut microbiota and mercury concentrations in biomarkers (stool, hair and cord blood) and 2) the contributions of gut microbial mercury methylation/demethylation to stool methylmercury. Moreover, for pregnant women (36-39 weeks gestation, n=17) donated hair and stool specimens, and cord blood was collected for a subset (n=7). The diversity of gut microbiota was determined using 16S rRNA gene profiling (n=17). For 6 stool samples with highest/lowest methylmercury concentrations, metagenomic wholemore » genome shotgun sequencing was employed to search for one mercury methylation gene (hgcA), and two mer operon genes involved in methylmercury detoxification (merA and merB). There were seventeen bacterial genera that were significantly correlated (increasing or decreasing) with stool methylmercury, stool inorganic mercury, or hair total mercury; however, aside from one genus, there was no overlap between biomarkers. No definitive matches for hgcA or merB, while merA were detected at low concentrations in all six samples. Proportional differences in stool methylmercury were not likely attributed to gut microbiota through methylation/demethylation. Gut microbiota potentially altered methylmercury metabolism using indirect pathways.« less

  17. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study

    DOE PAGES

    Rothenberg, Sarah E.; Keiser, Sharon; Ajami, Nadim J.; ...

    2016-02-01

    The mechanisms by which gut microbiota contribute to methylmercury metabolism remain unclear. Among a cohort of pregnant mothers, the main objectives of our pilot study were to determine 1) associations between gut microbiota and mercury concentrations in biomarkers (stool, hair and cord blood) and 2) the contributions of gut microbial mercury methylation/demethylation to stool methylmercury. Moreover, for pregnant women (36-39 weeks gestation, n=17) donated hair and stool specimens, and cord blood was collected for a subset (n=7). The diversity of gut microbiota was determined using 16S rRNA gene profiling (n=17). For 6 stool samples with highest/lowest methylmercury concentrations, metagenomic wholemore » genome shotgun sequencing was employed to search for one mercury methylation gene (hgcA), and two mer operon genes involved in methylmercury detoxification (merA and merB). There were seventeen bacterial genera that were significantly correlated (increasing or decreasing) with stool methylmercury, stool inorganic mercury, or hair total mercury; however, aside from one genus, there was no overlap between biomarkers. No definitive matches for hgcA or merB, while merA were detected at low concentrations in all six samples. Proportional differences in stool methylmercury were not likely attributed to gut microbiota through methylation/demethylation. Gut microbiota potentially altered methylmercury metabolism using indirect pathways.« less

  18. Robust Mercury Methylation across Diverse Methanogenic Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmour, Cynthia C.; Bullock, Allyson L.; McBurney, Alyssa

    ABSTRACT. Methylmercury (MeHg) production was compared among nine cultured methanogenic archaea that containhgcAB, a gene pair that codes for mercury (Hg) methylation. The methanogens tested produced MeHg at inherently different rates, even when normalized to growth rate and Hg availability. Eight of the nine tested were capable of MeHg production greater than that of spent- and uninoculated-medium controls during batch culture growth.Methanococcoides methylutens, anhgcAB +strain with a fused gene pair, was unable to produce more MeHg than controls. Maximal conversion of Hg to MeHg through a full batch culture growth cycle for each species (exceptM. methylutens) ranged from 2 to >50%more » of the added Hg(II) or between 0.2 and 17 pmol of MeHg/mg of protein. Three of the species produced >10% MeHg. The ability to produce MeHg was confirmed in severalhgcAB +methanogens that had not previously been tested (Methanocella paludicolaSANAE,Methanocorpusculum bavaricum,Methanofollis liminatansGKZPZ, andMethanosphaerula palustrisE1-9c). Maximal methylation was observed at low sulfide concentrations (<100 μM) and in the presence of 0.5 to 5 mM cysteine. ForM. hollandica, the addition of up to 5 mM cysteine enhanced MeHg production and cell growth in a concentration-dependent manner. As observed for bacterial Hg methylators, sulfide inhibited MeHg production. An initial evaluation of sulfide and thiol impacts on bioavailability showed methanogens responding to Hg complexation in the same way as doDeltaproteobacteria. The mercury methylation rates of several methanogens rival those of the better-studied Hg-methylating sulfate- and iron-reducing Deltaproteobacteria. IMPORTANCE. Archaea, specifically methanogenic organisms, play a role in mercury methylation in nature, but their global importance to MeHg production and the subsequent risk to ecosystems are not known. Methanogenesis has been linked to Hg methylation in several natural habitats where methylmercury

  19. Robust Mercury Methylation across Diverse Methanogenic Archaea

    DOE PAGES

    Gilmour, Cynthia C.; Bullock, Allyson L.; McBurney, Alyssa; ...

    2018-04-10

    ABSTRACT. Methylmercury (MeHg) production was compared among nine cultured methanogenic archaea that containhgcAB, a gene pair that codes for mercury (Hg) methylation. The methanogens tested produced MeHg at inherently different rates, even when normalized to growth rate and Hg availability. Eight of the nine tested were capable of MeHg production greater than that of spent- and uninoculated-medium controls during batch culture growth.Methanococcoides methylutens, anhgcAB +strain with a fused gene pair, was unable to produce more MeHg than controls. Maximal conversion of Hg to MeHg through a full batch culture growth cycle for each species (exceptM. methylutens) ranged from 2 to >50%more » of the added Hg(II) or between 0.2 and 17 pmol of MeHg/mg of protein. Three of the species produced >10% MeHg. The ability to produce MeHg was confirmed in severalhgcAB +methanogens that had not previously been tested (Methanocella paludicolaSANAE,Methanocorpusculum bavaricum,Methanofollis liminatansGKZPZ, andMethanosphaerula palustrisE1-9c). Maximal methylation was observed at low sulfide concentrations (<100 μM) and in the presence of 0.5 to 5 mM cysteine. ForM. hollandica, the addition of up to 5 mM cysteine enhanced MeHg production and cell growth in a concentration-dependent manner. As observed for bacterial Hg methylators, sulfide inhibited MeHg production. An initial evaluation of sulfide and thiol impacts on bioavailability showed methanogens responding to Hg complexation in the same way as doDeltaproteobacteria. The mercury methylation rates of several methanogens rival those of the better-studied Hg-methylating sulfate- and iron-reducing Deltaproteobacteria. IMPORTANCE. Archaea, specifically methanogenic organisms, play a role in mercury methylation in nature, but their global importance to MeHg production and the subsequent risk to ecosystems are not known. Methanogenesis has been linked to Hg methylation in several natural habitats where methylmercury

  20. An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed

    USGS Publications Warehouse

    Burns, Douglas A.; Nystrom, Elizabeth A.; Wolock, David M.; Bradley, Paul M.; Riva-Murray, Karen

    2014-01-01

    Inverse empirical models can inform and improve more complex process-based models by quantifying the principal factors that control water quality variation. Here we developed a multiple regression model that explains 81% of the variation in filtered methylmercury (FMeHg) concentrations in Fishing Brook, a fourth-order stream in the Adirondack Mountains, New York, a known “hot spot” of Hg bioaccumulation. This model builds on previous observations that wetland-dominated riparian areas are the principal source of MeHg to this stream and were based on 43 samples collected during a 33 month period in 2007–2009. Explanatory variables include those that represent the effects of water temperature, streamflow, and modeled riparian water table depth on seasonal and annual patterns of FMeHg concentrations. An additional variable represents the effects of an upstream pond on decreasing FMeHg concentrations. Model results suggest that temperature-driven effects on net Hg methylation rates are the principal control on annual FMeHg concentration patterns. Additionally, streamflow dilutes FMeHg concentrations during the cold dormant season. The model further indicates that depth and persistence of the riparian water table as simulated by TOPMODEL are dominant controls on FMeHg concentration patterns during the warm growing season, especially evident when concentrations during the dry summer of 2007 were less than half of those in the wetter summers of 2008 and 2009. This modeling approach may help identify the principal factors that control variation in surface water FMeHg concentrations in other settings, which can guide the appropriate application of process-based models.

  1. Experimental sulfate amendment alters peatland bacterial community structure.

    PubMed

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity

    NASA Astrophysics Data System (ADS)

    Hwang, Gi-Wook; Murai, Yasutaka; Takahashi, Tsutomu; Naganuma, Akira

    2014-07-01

    Methylmercury causes serious damage to the central nervous system, but the molecular mechanisms of methylmercury toxicity are only marginally understood. In this study, we used a gene-deletion mutant library of budding yeast to conduct genome-wide screening for gene knockouts affecting the sensitivity of methylmercury toxicity. We successfully identified 31 genes whose deletions confer resistance to methylmercury in yeast, and 18 genes whose deletions confer hypersensitivity to methylmercury. Yeast genes whose deletions conferred resistance to methylmercury included many gene encoding factors involved in protein transport to vacuoles. Detailed examination of the relationship between the factors involved in this transport system and methylmercury toxicity revealed that mutants with loss of the factors involved in the transportation pathway from the trans-Golgi network (TGN) to the endosome, protein uptake into the endosome, and endosome-vacuole fusion showed higher methylmercury resistance than did wild-type yeast. The results of our genetic engineering study suggest that this vesicle transport system (proteins moving from the TGN to vacuole via endosome) is responsible for enhancing methylmercury toxicity due to the interrelationship between the pathways. There is a possibility that there may be proteins in the cell that enhance methylmercury toxicity through the protein transport system.

  3. Trophic transfer efficiency of methylmercury and inorganic mercury to lake trout Salvelinus namaycush from its prey

    USGS Publications Warehouse

    Madenijian, C.P.; David, S.R.; Krabbenhoft, D.P.

    2012-01-01

    Based on a laboratory experiment, we estimated the net trophic transfer efficiency of methylmercury to lake trout Salvelinus namaycush from its prey to be equal to 76.6 %. Under the assumption that gross trophic transfer efficiency of methylmercury to lake trout from its prey was equal to 80 %, we estimated that the rate at which lake trout eliminated methylmercury was 0.000244 day−1. Our laboratory estimate of methylmercury elimination rate was 5.5 times lower than the value predicted by a published regression equation developed from estimates of methylmercury elimination rates for fish available from the literature. Thus, our results, in conjunction with other recent findings, suggested that methylmercury elimination rates for fish have been overestimated in previous studies. In addition, based on our laboratory experiment, we estimated that the net trophic transfer efficiency of inorganic mercury to lake trout from its prey was 63.5 %. The lower net trophic transfer efficiency for inorganic mercury compared with that for methylmercury was partly attributable to the greater elimination rate for inorganic mercury. We also found that the efficiency with which lake trout retained either methylmercury or inorganic mercury from their food did not appear to be significantly affected by the degree of their swimming activity.

  4. Secondary sex ratio in regions severely exposed to methylmercury "Minamata disease".

    PubMed

    Yorifuji, Takashi; Kashima, Saori

    2016-05-01

    Secondary sex ratio (i.e., male proportion at birth) is considered to function as a sentinel health indicator. Thus, examining this ratio spatially and temporally in regions with severe environmental exposure to compounds such as methylmercury may provide insight into the evolution of exposure. We evaluated spatial and temporal distributions of the secondary sex ratio in Minamata, Japan, and neighboring areas, where severe methylmercury poisoning occurred in the 1950s and 1960s. We selected four areas exposed to methylmercury: Minamata, Ashikita, Goshonoura, and Izumi. After obtaining the number of live births, we conducted descriptive analyses by study area. We observed a reduction in male births in the exposed areas. In particular, a decline in the sex ratio of the Minamata area, where the first patient was officially identified in 1956, was seen around 1955. The ratio during 1955-1959 around Minamata was 0.496 [95% confidence interval (CI) 0.481-0.511]; the 95% CI did not include the value of 0.515 (the secondary sex ratio of the entire Japanese population during the study period). Declines in this ratio were also observed in other exposed areas around 1960, when acetaldehyde production (the origin of methylmercury) reached its peak. These analyses demonstrate that temporal and spatial distributions of the secondary sex ratio reflect the evolution of methylmercury exposure corresponding with the known history of Minamata disease.

  5. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Boyd, E.S.; King, S.; Tomberlin, J.K.; Nordstrom, D. Kirk; Krabbenhoft, D.P.; Barkay, T.; Geesey, G.G.

    2009-01-01

    Summary Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH ??? 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg +), while undetectable or near the detection limit (0.025 ng l -1) in the source water of the springs, was present at concentrations of 4-7 ng g-1 dry weight of mat biomass. Detection of MeHg + in tracheal tissue of larvae grazing the mat suggests that MeHg+ enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg+ was two to five times higher in larval tissue than mat biomass indicating MeHg+ biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg+ to species in the food web whose range extends beyond a particular geothermal feature of YNP. ?? 2008 The Authors. Journal compilation ?? 2008 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE

    PubMed Central

    2013-01-01

    The bacterial merE gene derived from the Tn21 mer operon encodes a broad-spectrum mercury transporter that governs the transport of methylmercury and mercuric ions across bacterial cytoplasmic membranes, and this gene is a potential molecular tool for improving the efficiency of methylmercury phytoremediation. A transgenic Arabidopsis engineered to express MerE was constructed and the impact of expression of MerE on methylmercury accumulation was evaluated. The subcellular localization of transiently expressed GFP-tagged MerE was examined in Arabidopsis suspension-cultured cells. The GFP-MerE was found to localize to the plasma membrane and cytosol. The transgenic Arabidopsis expressing MerE accumulated significantly more methymercury and mercuric ions into plants than the wild-type Arabidopsis did. The transgenic plants expressing MerE was significantly more resistant to mercuric ions, but only showed more resistant to methylmercury compared with the wild type Arabidopsis. These results demonstrated that expression of the bacterial mercury transporter MerE promoted the transport and accumulation of methylmercury in transgenic Arabidopsis, which may be a useful method for improving plants to facilitate the phytoremediation of methylmercury pollution. PMID:24004544

  7. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    NASA Astrophysics Data System (ADS)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  8. Prenatal organochlorine and methylmercury exposure and memory and learning in school-age children in communities near the New Bedford Harbor Superfund site, Massachusetts.

    PubMed

    Orenstein, Sara T C; Thurston, Sally W; Bellinger, David C; Schwartz, Joel D; Amarasiriwardena, Chitra J; Altshul, Larisa M; Korrick, Susan A

    2014-11-01

    Polychlorinated biphenyls (PCBs), organochlorine pesticides, and methylmercury (MeHg) are environmentally persistent with adverse effects on neurodevelopment. However, especially among populations with commonly experienced low levels of exposure, research on neurodevelopmental effects of these toxicants has produced conflicting results. We assessed the association of low-level prenatal exposure to these contaminants with memory and learning. We studied 393 children, born between 1993 and 1998 to mothers residing near a PCB-contaminated harbor in New Bedford, Massachusetts. Cord serum PCB, DDE (dichlorodiphenyldichloroethylene), and maternal peripartum hair mercury (Hg) levels were measured to estimate prenatal exposure. Memory and learning were assessed at 8 years of age (range, 7-11 years) using the Wide Range Assessment of Memory and Learning (WRAML), age-standardized to a mean ± SD of 100 ± 15. Associations with each WRAML index-Visual Memory, Verbal Memory, and Learning-were examined with multivariable linear regression, controlling for potential confounders. Although cord serum PCB levels were low (sum of four PCBs: mean, 0.3 ng/g serum; range, 0.01-4.4), hair Hg levels were typical of the U.S. fish-eating population (mean, 0.6 μg/g; range, 0.3-5.1). In multivariable models, each microgram per gram increase in hair Hg was associated with, on average, decrements of -2.8 on Visual Memory (95% CI: -5.0, -0.6, p = 0.01), -2.2 on Learning (95% CI: -4.6, 0.2, p = 0.08), and -1.7 on Verbal Memory (95% CI: -3.9, 0.6, p = 0.14). There were no significant adverse associations of PCBs or DDE with WRAML indices. These results support an adverse relationship between low-level prenatal MeHg exposure and childhood memory and learning, particularly visual memory.

  9. Relation of Prenatal Methylmercury Exposure from Environmental Sources to Childhood IQ.

    PubMed

    Jacobson, Joseph L; Muckle, Gina; Ayotte, Pierre; Dewailly, Éric; Jacobson, Sandra W

    2015-08-01

    Although prenatal methylmercury exposure has been linked to poorer intellectual function in several studies, data from two major prospective, longitudinal studies yielded contradictory results. Associations with cognitive deficits were reported in a Faroe Islands cohort, but few were found in a study in the Seychelles Islands. It has been suggested that co-exposure to another contaminant, polychlorinated biphenyls (PCBs), may be responsible for the positive findings in the former study and that co-exposure to nutrients in methylmercury-contaminated fish may have obscured and/or protected against adverse effects in the latter. We aimed to determine the degree to which co-exposure to PCBs may account for the adverse effects of methylmercury and the degree to which co-exposure to docosahexaenoic acid (DHA) may obscure these effects in a sample of Inuit children in Arctic Québec. IQ was estimated in 282 school-age children from whom umbilical cord blood samples had been obtained and analyzed for mercury and other environmental exposures. Prenatal mercury exposure was related to poorer estimated IQ after adjustment for potential confounding variables. The entry of DHA into the model significantly strengthened the association with mercury, supporting the hypothesis that beneficial effects from DHA intake can obscure adverse effects of mercury exposure. Children with cord mercury ≥ 7.5 μg/L were four times as likely to have an IQ score < 80, the clinical cut-off for borderline intellectual disability. Co-exposure to PCBs did not alter the association of mercury with IQ. To our knowledge, this is the first study to document an association of prenatal mercury exposure with poorer performance on a school-age assessment of IQ, a measure whose relevance for occupational success in adulthood is well established. This association was seen at levels in the range within which many U.S. children of Asian-American background are exposed.

  10. Biomagnifications of mercury and methylmercury in tuna and mackerel.

    PubMed

    Hajeb, P; Jinap, S; Ahmad, I

    2010-12-01

    Seawater may be contaminated by harmful substances, including toxic elements released by human activities. The present study evaluates the total mercury and methylmercury concentrations and their correlations to fish body size in longtail tuna and short-bodied mackerel from Chendring, Kuantan, at east coast and Kuala Perlis at west costs of Peninsular Malaysia during May to November 2007. Total mercury and methylmercury in muscle tissue of 69 samples of longtail tuna and short-bodied mackerel, ranged from 0.180 to 1.460 μg/g and 0.0.169-0.973 μg/g and 0.251-1.470 μg/g and 0.202-1.352, whereas the methylmercury to total mercury ratio ranged from 70% to 83%, respectively. Samples of both species from the east coast showed higher levels of mercury compared to those from west coast. In all of the locations, significant positive correlations were found between fish body weight and mercury content (R(2) > 0.470). The estimated weekly intake of total mercury and methylmercury from the consumption 66.33 g/week of short-bodied mackerel and 18.34 g/week of longtail tuna (based on local dietry survey) was found to be lower than the maximum limit of 5 and 1.5 μg/kg bodyweight established by FAO/WHO and codex, respectively.

  11. Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir

    USGS Publications Warehouse

    Stewart, A.R.; Saiki, M.K.; Kuwabara, J.S.; Alpers, Charles N.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.

    2008-01-01

    Physical and biogeochemical characteristics of the aquatic environment that affect growth dynamics of phytoplankton and the zooplankton communities that depend on them may also affect uptake of methylmercury (MeHg) into the pelagic food web of oligotrophic reservoirs. We evaluated changes in the quality and quantity of suspended particulate material, zooplankton taxonomy, and MeHg concentrations coincident with seasonal changes in water storage of a mining-impacted reservoir in northern California, USA. MeHg concentrations in bulk zooplankton increased from 4 ng??g-1 at low water to 77 ?? 6.1 ng??g-1 at high water and were positively correlated with cladoceran biomass (r = 0.66) and negatively correlated with rotifer biomass (r = -0.65). Stable isotope analysis revealed overall higher MeHg concentrations in the pelagic-based food web relative to the benthic-based food web. Statistically similar patterns of trophic enrichment of MeHg (slopes) for the pelagic and benthic food webs and slightly higher MeHg concentrations in zooplankton than in benthic invertebrates suggest that the difference in MeHg bioaccumulation among trophic pathways is set at the base of the food webs. These results suggest an important role for plankton dynamics in driving the MeHg content of zooplankton and ultimately MeHg bioaccumulation in top predators in pelagic-based food webs. ?? 2008 NRC.

  12. Methylmercury bioaccumulation across a productivity gradient in streams

    EPA Science Inventory

    Conceptual models have identified periphyton as a potentially improtant pathway for biomagnifying pollutants in streams. This hypothesis, however, has neither been tested experimentally, norinvestigated form ethylmercury (MeHg) a ubiquitous aquatic contaminant.

  13. In-stream production of methylmercury in a northern California river during summer baseflow

    NASA Astrophysics Data System (ADS)

    Tsui, M. T.; Finlay, J. C.; Nollet, Y. H.; Balogh, S. J.

    2009-12-01

    In stream ecosystems, it is well established that terrestrial landscape features such as wetlands are important in determining the aqueous concentration and flux of methylmercury. In contrast, our understanding of in-stream production of methylmercury is inadequate, especially on an ecosystem scale. In this study, we examined the relationship between the net production of dissolved methylmercury and algal metabolism in an 8-km reach of a third order stream (South Fork Eel River) in northern California. The stream has a forested watershed with no wetlands and has a long period of baseflow that typically extends from late May to early October. There was an intense rainfall in early May, 2009, but no major precipitation was recorded afterward, as is typical of Mediterranean climate of the study site. We collected surface water samples along the main channel and four major tributaries to the study stream reach. Temporal patterns of algal metabolism were inferred from net changes in total dissolved phosphorus and silica uptake and algal abundance. There was essentially no net production of methylmercury within the study reach (~ 0 µg Hg/km/d) in mid-May but net production of methylmercury occurred afterward when discharge declined exponentially, water temperature increased and algal metabolism increased (i.e. phosphorus and silica were taken up biologically). Net production of dissolved methylmercury peaked in mid-June (100 µg Hg/km/d) and then declined in mid-July (58 µg Hg/km/d) and mid-August (45 µg Hg/km/d) within the 8-km reach. The absence of surface runoff during the summer (e.g. June through September) indicates that the observed net production of methylmercury occurred within the channel and algal metabolism is coupled to the mercury methylation process. In summary, our study suggests that, in addition to watershed features, in-stream production of methylmercury should be considered as an important factor mediating mercury bioavailability in flowing waters

  14. Tidal fluxes of mercury and methylmercury for Mendall Marsh, Penobscot River estuary, Maine.

    PubMed

    Turner, R R; Mitchell, C P J; Kopec, A D; Bodaly, R A

    2018-05-08

    Tidal marshes are both important sites of in situ methylmercury production and can be landscape sources of methylmercury to adjacent estuarine systems. As part of a regional investigation of the Hg-contaminated Penobscot River and Bay system, the tidal fluxes of total suspended solids, total mercury and methylmercury into and out of a regionally important mesohaline fluvial marsh complex, Mendall Marsh, were intensively measured over several tidal cycles and at two spatial scales to assess the source-sink function of the marsh with respect to the Penobscot River. Over four tidal cycles on the South Marsh River, the main channel through which water enters and exits Mendall Marsh, the marsh was a consistent sink over typical 12-h tidal cycles for total suspended solids (8.2 to 41 g m -2 ), total Hg (9.2 to 47 μg m -2 ), total filter-passing Hg (0.4 to 1.1 μg m -2 ), and total methylmercury (0.2 to 1.4 μg m -2 ). The marsh's source-sink function was variable for filter-passing methylmercury, acting as a net source during a large spring tide that inundated much of the marsh area and that is likely to occur during approximately 17% of tidal cycles. Additional measurements on a small tidal channel draining approximately 1% of the larger marsh area supported findings at the larger scale, but differences in the flux magnitude of filter-passing fractions suggest a highly non-conservative transport of these fractions through the tidal channels. Overall the results of this investigation demonstrate that Mendall Marsh is not a significant source of mercury or methylmercury to the receiving aquatic systems (Penobscot River and Bay). While there is evidence of a small net export of filter-passing (<0.4 μm pore size) methylmercury under some tidal conditions, the mass involved represents <3% of the mass of filter-passing methylmercury carried by the Penobscot River. Copyright © 2018. Published by Elsevier B.V.

  15. Removal of methylmercury and tributyltin (TBT) using marine microorganisms.

    PubMed

    Lee, Seong Eon; Chung, Jin Wook; Won, Ho Shik; Lee, Dong Sup; Lee, Yong-Woo

    2012-02-01

    Two marine species of bacteria were isolated that are capable of degrading organometallic contaminants: Pseudomonas balearica, which decomposes methylmercury; and Shewanella putrefaciens, which decomposes tributyltin. P. balearica decomposed 97% of methylmercury (20.0 μg/L) into inorganic mercury after 3 h, while S. putrefaciens decomposed 88% of tributyltin (55.3 μg Sn/L) in real wastewater after 36 h. These data indicate that the two bacteria efficiently decomposed the targeted substances and may be applied to real wastewater.

  16. Comparative study on toxicity of methylmercury chloride and methylmercury hydroxide to the human neuroblastoma cell line SH-SY5Y.

    PubMed

    Patnaik, Rajashree; Padhy, Rabindra N

    2018-05-11

    Toxicities of methylmercury chloride (CH 3 HgCl) and methylmercury hydroxide (CH 3 HgOH) to cultured neuroblastoma cell line SH-SY5Y in vitro are evaluated. This is the comparative study between two methylmercury compounds to find out the extent of toxicity of these compounds are toxic to SH-SY5Y cell line. Both cytotoxicity and genotoxicity experiments were carried out to find out the more toxic compound. For cytotoxicity study, four staining assay methods independently with trypan blue (TB), acridine orange/ethidium bromide (AO/EB), 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT), and neutral red (NR) were used and the comet assay method was done for genotoxicity study. The obtained toxicity data were used for probit analysis. In cytotoxicity, CH 3 HgCl had minimum inhibitory concentration (MIC) value in each assay method as 3 mg/L invariably; LC 25 values were in the range 7.41 to 10.23 mg/L, and LC 50 values were 14.79 to 15.48 mg/L; while LC 75 values were 20.89 to 26.91 mg/L. Moreover, LC 100 value was 30 mg/L, known from comet assay experiments for CH 3 HgCl. Similarly for CH 3 HgOH, the MIC value in each assay method was invariably 3 mg/L, the LC 25 values were in the range 12.58 to 16.59 mg/L, and LC 50 values were 19.49 to 23.44 mg/L; LC 75 values were 27.54 to 30.90 mg/L and LC 100 value was 42 mg/L in each assay done for cytotoxicity and genotoxicity studies. Computed DNA fragmentation indices in comet assays were 98.6 ± 0.57 30 mg/L with CH 3 HgCl and 76 ± 5.29 30 mg/L with CH 3 HgOH. This study clearly indicated that methylmercury chloride is more toxic than methylmercury hydroxide to SH-SY5Y cell line. Toxicity of Hg had been quantified with in vitro cultured human neuroblastoma cell line; since it has neurotoxic effects, its neural evaluation has implications in environmental health issues.

  17. Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed

    USGS Publications Warehouse

    Schuster, P.F.; Shanley, J.B.; Marvin-DiPasquale, M.; Reddy, M.M.; Aiken, G.R.; Roth, D.A.; Taylor, Howard E.; Krabbenhoft, D.P.; DeWild, J.F.

    2008-01-01

    Mercury and organic carbon concentrations vary dynamically in streamwater at the Sleepers River Research Watershed in Vermont, USA. Total mercury (THg) concentrations ranged from 0.53 to 93.8 ng/L during a 3-year period of study. The highest mercury (Hg) concentrations occurred slightly before peak flows and were associated with the highest organic carbon (OC) concentrations. Dissolved Hg (DHg) was the dominant form in the upland catchments; particulate Hg (PHg) dominated in the lowland catchments. The concentration of hydrophobic acid (HPOA), the major component of dissolved organic carbon (DOC), explained 41-98% of the variability of DHg concentration while DOC flux explained 68-85% of the variability in DHg flux, indicating both quality and quantity of the DOC substantially influenced the transport and fate of DHg. Particulate organic carbon (POC) concentrations explained 50% of the PHg variability, indicating that POC is an important transport mechanism for PHg. Despite available sources of DHg and wetlands in the upland catchments, dissolved methylmercury (DmeHg) concentrations in streamwaters were below detection limit (0.04 ng/L). PHg and particulate methylmercury (PmeHg) had a strong positive correlation (r 2 = 0.84, p < 0.0001), suggesting a common source; likely in-stream or near-stream POC eroded or re-suspended during spring snowmelt and summer storms. Ratios of PmeHg to THg were low and fairly constant despite an apparent higher methylmercury (meHg) production potential in the summer. Methylmercury production in soils and stream sediments was below detection during snowmelt in April and highest in stream sediments (compared to forest and wetland soils) sampled in July. Using the watershed approach, the correlation of the percent of wetland cover to TmeHg concentrations in streamwater indicates that poorly drained wetland soils are a source of meHg and the relatively high concentrations found in stream surface sediments in July indicate these zones are

  18. Differences in mortality among bobwhite fed methylmercury chloride dissolved in various carriers

    USGS Publications Warehouse

    Spann, J.W.; Heinz, G.H.; Camardese, M.B.; Hill, E.F.; Moore, John F.; Murray, H.C.

    1986-01-01

    Twelve-day-old bobwhite chicks were fed a diet containing 0, 5.4 or 20 ppm methylmercury chloride. The methylmercury chloride was added to the diet either in a dry, pulverized form or dissolved in acetone, propylene glycol or corn oil. Mortality was measured for 6 weeks, and samples of liver were saved for mercury analysis. Mortality was significantly lower in birds fed 20 ppm methylmercury chloride when acetone was the solvent. The reduced mortality could not be explained by effects of acetone on dietary level of mercury or on uptake of mercury into the body.

  19. Methylmercury and selenium speciation in different tissues of beluga whales (Delphinapterus leucas) from the western Canadian Arctic.

    PubMed

    Lemes, Marcos; Wang, Feiyue; Stern, Gary A; Ostertag, Sonja K; Chan, Hing Man

    2011-12-01

    Monitoring data have shown that the total monomethylmercury (CH(3) Hg(+) and its complexes; collectively referred as MeHg hereafter) concentrations in Arctic marine mammals have remained very high in recent decades. Toward a better understanding of the metabolic and toxicological implications of these high levels of MeHg, we report here on the molecular forms of MeHg in the muscle, brain, liver, and kidneys of 10 beluga whales from the western Canadian Arctic. In all tissues analyzed, monomethylmercury was found to be dominated by methylmercuric cysteinate, a specific form of MeHg believed to be able to transport across the blood-brain barrier. Another MeHg-thiol complex, methylmercuric glutathionate, was also detected in the muscle and, to a much lesser extent, in the liver and brain tissues. Furthermore, a profound inorganic Hg peak was detected in the liver and brain tissues, which showed the same retention time as a selenium (Se) peak, suggesting the presence of an Hg-Se complex, most likely an inorganic Hg complex with a selenoamino acid. These results provide the first analytical support that the binding of MeHg with glutathione and Se may have protected beluga whales from the toxic effect of high concentrations of MeHg in their body. Copyright © 2011 SETAC.

  20. Hormesis associated with a low dose of methylmercury injected into mallard eggs

    USGS Publications Warehouse

    Heinz, Gary H.; Hoffman, David J.; Klimstra, Jon D.; Stebbins, Katherine R.; Kondrad, Shannon L.; Erwin, Carol A.

    2012-01-01

    We injected mallard (Anas platyrhynchos) eggs with methylmercury chloride at doses of 0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 μg mercury/g egg contents on a wet-weight basis. A case of hormesis seemed to occur because hatching success of eggs injected with 0.05 μg mercury (the lowest dose) was significantly greater (93.3%) than that of controls (72.6%), whereas hatching success decreased at progressively greater doses of mercury. Our finding of hormesis when a low dose of methylmercury was injected into eggs agrees with a similar observation in a study in which a group of female mallards was fed a low dietary concentration of methylmercury and hatching of their eggs was significantly better than that of controls. If methylmercury has a hormetic effect at low concentrations in avian eggs, these low concentrations may be important in a regulatory sense in that they may represent a no-observed adverse effect level (NOAEL).

  1. Rapid determination of methylmercury in fish and shellfish: method development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hight, S.C.; Corcoran, M.T.

    The AOAC official first action method for methylmercury in fish and shellfish was modified to provide more rapid determination. Methylmercury is isolated from homogenized, acetone-washed tissue by addition of HCl and extraction by toluene of the methylmercuric chloride produced. The extract is analyzed by electron capture gas chromatography (GC) on 5% DEGS-PS treated with mercuric chloride solution. The quantitation limit of the method is 0.25 ..mu..g Hg/g. Swordfish, shark, tuna, shrimp, clams, oysters, and NBS Research Material-50 (tuna) were analyzed for methylmercury by the AOAC official first action method. All products also were analyzed by the modified method and themore » AOAC official method for total Hg. In addition, selected extracts obtained with the modified method were analyzed by GC with Hg-selective, microwave-induced helium plasma detection. There was no significant different between the results for the various methods. Essentially all the Hg present (determined as total Hg) was in the organic form. Coefficients of variation from analyses by the modified method ranged from 1 to 7% for fish and shellfish containing methylmercury at levels of 0.50-2.30 ..mu..g Hg/g. The overall average recovery was 100.5%.« less

  2. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic

  3. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies.

    PubMed

    Rothenberg, Sarah E; Feng, Xinbin; Dong, Bin; Shang, Lihai; Yin, Runsheng; Yuan, Xiaobo

    2011-05-01

    In China, total Hg (HgT) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of HgT (water-saving: 3.3±1.6 ng/g; flooded: 110±9.2 ng/g) and MeHg (water-saving 1.3±0.56 ng/g; flooded: 12±2.4 ng/g) were positively correlated with root-soil HgT and MeHg contents (HgT: r2=0.97, MeHg: r2=0.87, p<0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of HgT and other trace elements were significantly higher in unmilled brown rice (p<0.05), while MeHg content was similar (p>0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Performance Evaluation of an Improved GC-MS Method to Quantify Methylmercury in Fish.

    PubMed

    Watanabe, Takahiro; Kikuchi, Hiroyuki; Matsuda, Rieko; Hayashi, Tomoko; Akaki, Koichi; Teshima, Reiko

    2015-01-01

    Here, we set out to improve our previously developed methylmercury analytical method, involving phenyl derivatization and gas chromatography-mass spectrometry (GC-MS). In the improved method, phenylation of methylmercury with sodium tetraphenylborate was carried out in a toluene/water two-phase system, instead of in water alone. The modification enabled derivatization at optimum pH, and the formation of by-products was dramatically reduced. In addition, adsorption of methyl phenyl mercury in the GC system was suppressed by co-injection of PEG200, enabling continuous analysis without loss of sensitivity. The performance of the improved analytical method was independently evaluated by three analysts using certified reference materials and methylmercury-spiked fresh fish samples. The present analytical method was validated as suitable for determination of compliance with the provisional regulation value for methylmercury in fish, set in the Food Sanitation haw.

  5. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America.

    PubMed

    Hoggarth, Cameron G J; Hall, Britt D; Mitchell, Carl P J

    2015-10-01

    Using enriched stable (201)Hg injections into intact sediment cores, we provide the first reported Hg methylation potential rate constants (km) in prairie wetland ponds (0.016-0.17 d(-1)). Our km values were similar to other freshwater wetlands and did not differ in ponds categorized with high compared to low surface water concentrations of sulphate. Sites with high sulphate had higher proportions of methylmercury (MeHg) in sediment (2.9 ± 1.6% vs. 1.0 ± 0.3%) and higher surface water MeHg concentrations (1.96 ± 1.90 ng L(-1)vs. 0.56 ± 0.55 ng L(-1)). Sediment-porewater partitioning coefficients were small, and likely due to high ionic activity. Our work suggests while km measurements are useful for understanding mercury cycling processes, they are less important than surface water MeHg concentrations for assessing MeHg risks to biota. Significant differences in MeHg concentrations between sites with high and low sulphate concentrations may also inform management decisions concerning wetland remediation and creation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China.

    PubMed

    Zhao, Lei; Qiu, Guangle; Anderson, Christopher W N; Meng, Bo; Wang, Dingyong; Shang, Lihai; Yan, Haiyu; Feng, Xinbin

    2016-08-01

    Understanding mercury (Hg) methylation/demethylation processes and the factors controlling methylmercury (MeHg) production within the rice paddy ecosystem of Hg mining areas is critical to assess the risk of MeHg contamination in rice grain. Two typical Hg-contaminated mining sites, a current-day artisanal site (Gouxi) and an abandoned site (Wukeng), were chosen in this study. We qualified the in situ specific methylation/demethylation rate constants in rice paddy soil during a complete rice-growing season. Our results demonstrate that MeHg levels in rice paddy soil were a function of both methylation and demethylation processes and the net methylation potential in the rice paddy soil reflected the measured MeHg production at any time point. Sulfate stimulating the activity of sulfate-reducing bacteria was a potentially important metabolic pathway for Hg methylation in rice paddies. We suggest that bioavailable Hg derived from new atmospheric deposition appears to be the primary factor regulating net MeHg production in rice paddies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Occurrence and mobility of mercury in groundwater: Chapter 5

    USGS Publications Warehouse

    Barringer, Julia L.; Szabo, Zoltan; Reilly, Pamela A.; Bradley, Paul M.

    2013-01-01

    Mercury (Hg) has long been identified as an element that is injurious, even lethal, to living organisms. Exposure to its inorganic form, mainly from elemental Hg (Hg(0)) vapor (Fitzgerald & Lamborg, 2007) can cause damage to respiratory, neural, and renal systems (Hutton, 1987; USEPA, 2012; WHO, 2012). The organic form, methylmercury (CH3Hg+; MeHg), is substantially more toxic than the inorganic form (Fitzgerald & Lamborg, 2007). Methylmercury attacks the nervous system and exposure can prove lethal, as demonstrated by well-known incidents such as those in 1956 in Minimata, Japan (Harada, 1995), and 1971 in rural Iraq (Bakir et al., 1973), where, in the former, industrial release of MeHg into coastal waters severely tainted the fish caught and eaten by the local population, and in the latter, grain seed treated with an organic mercurial fungicide was not planted, but eaten in bread instead. Resultant deaths are not known with certainty but have been estimated at about 100 and 500, respectively (Hutton, 1987). Absent such lethal accidents, human exposure to MeHg comes mainly from ingestion of piscivorous fish in which MeHg has accumulated, with potential fetal damage ascribed to high fish diets during their mothers’ pregnancies (USEPA, 2001). Lesser human exposure occurs through ingestion of drinking water (USEPA, 2001), where concentrations of total Hg (THg; inorganic plus organic forms) typically are in the low nanograms-per-liter range[1] - , particularly from many groundwater sources, and concentrations at the microgram-per-liter level are rare.

  8. A Physiologically-based Model for Methylmercury Uptake and Accumulation in Female American Kestrels

    EPA Science Inventory

    A physiologically-based model was developed to describe the uptake, distribution, and elimination of methylmercury in female American Kestrels (Falco sparverius). The model was adapted from established models for methylmercury in rodents. Features unique to the model include meth...

  9. Country-specific estimates of the incidence of intellectual disability associated with prenatal exposure to methylmercury.

    PubMed

    Bellinger, David C; O'Leary, Keri; Rainis, Holly; Gibb, Herman J

    2016-05-01

    This paper describes country-specific estimates of the incidence of intellectual disability in children associated with prenatal exposure to methylmercury. A systematic review was undertaken to identify country-specific data on hair mercury concentrations in women of reproductive age. A variety of approaches were used to estimate biomarker concentrations for countries lacking such data. A dose-effect relationship derived on the basis of the data from three large prospective studies relating prenatal methylmercury exposure to IQ in children was used to estimate the country-specific incidences of mild, moderate, severe, and profound intellectual disability in children as a result of prenatal methylmercury exposure. The incidence of methylmercury-associated mild intellectual disability (IQ scores 50-70) varied nearly 40-fold across countries, with the greatest incidences generally in countries that are islands or that are coastal. Countries with high birth rates and greater consumption of foods that contribute most to methylmercury intake in humans (seafood, rice) can be expected to make the largest contributions to the worldwide burden of disease associated with methylmercury. The assumptions and limitations of the estimates are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem.

    PubMed

    Lu, Xia; Liu, Yurong; Johs, Alexander; Zhao, Linduo; Wang, Tieshan; Yang, Ziming; Lin, Hui; Elias, Dwayne A; Pierce, Eric M; Liang, Liyuan; Barkay, Tamar; Gu, Baohua

    2016-04-19

    Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 μM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments.

  11. A COMBINED PHYSIOLOGICAL AND BIOENERGETICS-BASED MODEL FOR METHYLMERCURY IN FEMALE AMERICAN KESTRELS

    EPA Science Inventory

    The results of this combined dose-response and modeling effort will be used to improve effects characterizations for methylmercury in avian wildlife. This information will reduce uncertainty in risk assessments for methylmercury in the environment and contribute to the developme...

  12. Female reproductive impacts of dietary methylmercury in yellow perch (Perca flavescens) and zebrafish (Danio rerio).

    PubMed

    DeBofsky, Abigail R; Klingler, Rebekah H; Mora-Zamorano, Francisco X; Walz, Marcus; Shepherd, Brian; Larson, Jeremy K; Anderson, David; Yang, Luobin; Goetz, Frederick; Basu, Niladri; Head, Jessica; Tonellato, Peter; Armstrong, Brandon M; Murphy, Cheryl; Carvan, Michael J

    2018-03-01

    The purpose of this study was to evaluate the effects of environmentally relevant dietary MeHg exposures on adult female yellow perch (Perca flavescens) and female zebrafish (Danio rerio) ovarian development and reproduction. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg following a whole life-cycle exposure. Chronic whole life dietary exposure of F 1 zebrafish to MeHg mimics realistic wildlife exposure scenarios, and the twenty-week adult yellow perch exposure (where whole life-cycle exposures are difficult) captures early seasonal ovarian development. For both species, target dietary accumulation values were achieved prior to analyses. In zebrafish, several genes involved in reproductive processes were shown to be dysregulated by RNA-sequencing and quantitative real-time polymerase chain reaction (QPCR), but no significant phenotypic changes were observed regarding ovarian staging, fecundity, or embryo mortality. Yellow perch were exposed to dietary MeHg for 12, 16, or 20 weeks. In this species, a set of eight genes were assessed by QPCR in the pituitary, liver, and ovary, and no exposure-related changes were observed. The lack of genomic resources in yellow perch hinders the characterization of subtle molecular impacts. The ovarian somatic index, circulating estradiol and testosterone, and ovarian staging were not significantly altered by MeHg exposure in yellow perch. These results suggest that environmentally relevant MeHg exposures do not drastically reduce the reproductively important endpoints in these fish, but to capture realistic exposure scenarios, whole life-cycle yellow perch exposures are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [Methylmercury exposure in the general population; toxicokinetics; differences by gender, nutritional and genetic factors].

    PubMed

    González-Estecha, Montserrat; Bodas-Pinedo, Andrés; Guillén-Pérez, José Jesús; Rubio-Herrera, Miguel Ángel; Ordóñez-Iriarte, José M; Trasobares-Iglesias, Elena M; Martell-Claros, Nieves; Martínez-Álvarez, Jesús Román; Farré-Rovira, Rosaura; Herráiz-Martínez, Miguel Ángel; Martínez-Astorquiza, Txantón; Calvo-Manuel, Elpidio; Sáinz-Martín, María; Bretón-Lesmes, Irene; Prieto-Menchero, Santiago; Llorente-Ballesteros, M Teresa; Martínez-García, M José; Salas-Salvadó, Jordi; Bermejo-Barrera, Pilar; García-Donaire, José Antonio; Cuadrado-Cenzual, M Ángeles; Gallardo-Pino, Carmen; Moreno-Rojas, Rafael; Arroyo-Fernández, Manuel; Calle-Pascual, Alfonso

    2014-11-01

    Mercury is an environmental toxicant that causes numerous adverse effects on human health and natural ecosystems. The factors that determine the existance of adverse effects, as well as their severity are, among others: the chemical form of mercury (elemental, inorganic, organic), dosis, age, period of exposure, pathways of exposure and environmental, nutritional and genetic factors. In the aquatic cycle of mercury, once it has been deposited, it is transformed into methylmercury due to the action of certain sulphate-reducing bacteria, which bioaccumulates in the aquatic organisms and moves into the food chain. The methylmercury content of large, long-lived fish such as swordfish, shark, tuna or marlin, is higher. Methylmercury binds to protein in fish and is therefore not eliminated by cleaning or cooking the fish. Fetuses and small children are more vulnerable to the neurotoxic effects of methylmercury from the consumption of contaminated fish. Methylmercury is absorbed in the gastrointestinal tract and crosses the blood-brain barrier and the placenta. The intake of certain dietary components such as polyunsaturated fatty acids, selenium, fiber, thiol compounds, certain phytochemicals and other nutrients can modify methylmercury bioaccesibility and its toxicity. Apart from environmental factors, genetic factors can influence mercury toxicity and explain part of the individual vulnerability. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  14. A comparison of results from a hydrologic transport model (HSPF) with distributions of sulfate and mercury in a mine-impacted watershed in northeastern Minnesota.

    PubMed

    Berndt, Michael E; Rutelonis, Wes; Regan, Charles P

    2016-10-01

    The St. Louis River watershed in northeast Minnesota hosts a major iron mining district that has operated continuously since the 1890s. Concern exists that chemical reduction of sulfate that is released from mines enhances the methylation of mercury in the watershed, leading to increased mercury concentrations in St. Louis River fish. This study tests this idea by simulating the behavior of chemical tracers using a hydrologic flow model (Hydrologic Simulation Program FORTRAN; HSPF) and comparing the results with measured chemistry from several key sites located both upstream and downstream from the mining region. It was found that peaks in measured methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and dissolved iron (Fe) concentrations correspond to periods in time when modeled recharge was dominated by active groundwater throughout the watershed. This helps explain why the timing and size of the MeHg peaks was nearly the same at sites located just upstream and downstream from the mining region. Both the modeled percentages of mine water and the measured sulfate concentrations were low and computed transit times were short for sites downstream from the mining region at times when measured MeHg reached its peak. Taken together, the data and flow model imply that MeHg is released into groundwater that recharges the river through riparian sediments following periods of elevated summer rainfall. The measured sulfate concentrations at the upstream site reached minimum concentrations of approximately 1 mg/L just as MeHg reached its peak, suggesting that reduction of sulfate from non-point sources exerts an important influence on MeHg concentrations at this site. While mines are the dominant source of sulfate to sites downstream from them, it appears that the background sulfate which is present at only 1-6 mg/L, has the largest influence on MeHg concentrations. This is because point sourced sulfate is transported generally under oxidized

  15. Evaluation of mercury cycling and hypolimnetic oxygenation in mercury-impacted seasonally stratified reservoirs in the Guadalupe River watershed, California

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Beutel, Marc W.; Dent, Stephen R.; Schladow, S. G.

    2016-10-01

    Surface water reservoirs trap inorganic mercury delivered from their watersheds, create conditions that convert inorganic mercury to highly toxic methylmercury (MeHg), and host sportfish in which MeHg bioaccumulates. The Santa Clara Valley Water District (District) actively manages and monitors four mercury-impaired reservoirs that help to serve communities in South San Francisco Bay, California. The Guadalupe River watershed, which contains three of those reservoirs, also includes the New Almaden mercury-mining district, the largest historic mercury producer in North America. Monthly vertical profiles of field measurements and grab samples in years 2011-2013 portray annual cycling of density stratification, dissolved oxygen (DO), and MeHg. Monitoring results highlight the role that hypolimnetic hypoxia plays in MeHg distribution in the water column, as well as the consistent, tight coupling between MeHg in ecological compartments (water, zooplankton, and bass) across the four reservoirs. Following the 2011-2013 monitoring period, the District designed and installed hypolimnetic oxygenation systems (HOS) in the four reservoirs in an effort to repress MeHg buildup in bottom waters and attain regulatory targets for MeHg in water and fish tissue. Initial HOS operation in Calero Reservoir in 2014 enhanced bottom water DO and depressed hypolimnetic buildup of MeHg, but did not substantially decrease mercury levels in zooplankton or small fish.

  16. Sequestosome1/p62 protects mouse embryonic fibroblasts against low-dose methylercury-induced cytotoxicity and is involved in clearance of ubiquitinated proteins.

    PubMed

    Takanezawa, Yasukazu; Nakamura, Ryosuke; Harada, Ryohei; Sone, Yuka; Uraguchi, Shimpei; Kiyono, Masako

    2017-12-01

    Methylmercury (MeHg) is a widely distributed environmental pollutant that causes a series of cytotoxic effects. However, molecular mechanisms underlying MeHg toxicity are not fully understood. Here, we report that sequestosome1/p62 protects mouse embryonic fibroblasts (MEFs) against low-dose MeHg cytotoxicity via clearance of MeHg-induced ubiquitinated proteins. p62 mRNA and protein expression in MEFs were temporally induced by MeHg exposure p62-deficient MEFs exhibited higher sensitivity to MeHg exposure compared to their wild-type (WT) counterparts. An earlier and higher level of accumulation of ubiquitinated proteins was detected in p62-deficient cells compared with WT MEFs. Confocal microscopy revealed that p62 and ubiquitinated proteins co-localized in the perinuclear region of MEFs following MeHg treatment. Further analysis of MEFs revealed that ubiquitinated proteins co-localized with LC3-positive puncta upon co-treatment with MeHg and chloroquine, an autophagy inhibitor. In contrast, there was minimal co-localization in p62-deficient MEFs. The present study, for the first time, examined the expression and distribution of p62 and ubiquitinated proteins in cells exposed to low-dose MeHg. Our findings suggest that p62 is crucial for cytoprotection against MeHg-induced toxicity and is required for MeHg-induced ubiquitinated protein clearance.

  17. Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga

    USGS Publications Warehouse

    Gorski, P.R.; Armstrong, D.E.; Hurley, J.P.; Krabbenhoft, D.P.

    2008-01-01

    Bioavailability of mercury (Hg) to Selenastrum capricornutum was assessed in bioassays containing field-collected freshwater of varying dissolved organic carbon (DOC) concentrations. Bioconcentration factor (BCF) was measured using stable isotopes of methylmercury (MeHg) and inorganic Hg(II). BCFs for MeHg in low-DOC lake water were significantly larger than those in mixtures of lake water and high-DOC river water. The BCF for MeHg in rainwater (lowest DOC) was the largest of any treatment. Rainwater and lake water also had larger BCFs for Hg(II) than river water. Moreover, in freshwater collected from several US and Canadian field sites, BCFs for Hg(II) and MeHg were low when DOC concentrations were >5 mg L-1. These results suggest high concentrations of DOC inhibit bioavailability, while low concentrations may provide optimal conditions for algal uptake of Hg. However, variability of BCFs at low DOC indicates that DOC composition or other ligands may determine site-specific bioavailability of Hg.

  18. Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, Qc, Canada).

    PubMed

    Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc

    2015-02-01

    Within wetlands, epiphytes and macrophytes play an important role in storage and transfer of metals, through the food web. However, there is a lack of information about spatial and temporal changes in their metal levels, including those of mercury (Hg), a key priority contaminant of aquatic systems. We assessed total mercury (THg) and methylmercury (MeHg) concentrations of epiphyte/macrophyte complexes in Lake St. Pierre, a large fluvial lake of the St. Lawrence River (Québec, Canada). THg and MeHg concentrations were ten fold higher in epiphytes than in macrophytes. THg concentrations in epiphytes linearly decreased as a function of the autotrophic index, suggesting a role of algae in epiphyte Hg accumulation, and % of MeHg in epiphytes reached values as high as 74%. Spatio-temporal variability in THg and MeHg concentrations in epiphytes and macrophytes were influenced by water temperature, available light, host species, water level, dissolved organic carbon and dissolved oxygen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Impacts of crab bioturbation and local pollution on sulfate reduction, Hg distribution and methylation in mangrove sediments, Rio de Janeiro, Brazil.

    PubMed

    Correia, Raquel Rose Silva; Guimarães, Jean Remy Davée

    2016-08-15

    Mercury (Hg) and methylmercury (MeHg) are highly toxic and poorly studied in mangroves. Burrowing Uca crabs change sediment topography and biogeochemistry and thus may affect Hg distribution and MeHg formation. We studied added (203)Hg distribution, Me(203)Hg formation and sulfate reduction rates (SRR) in sediment aquariums containing Uca leptodactyla; and analyzed profiles of Me(203)Hg formation and SRR in sediment cores from two mangroves with distinct environmental impacts. MeHg formation and SRR were higher in the top (≤6cm) sediment and there was no significant difference in Hg methylation in more or less impacted mangroves. In aquariums, crab bioturbation favored Hg retention in the sediment. In the treatment without crabs, Hg volatilization and water Hg concentrations were higher. Hg methylation was higher in bioturbated aquariums but SRR were similar in both treatments. These findings suggest that bioturbating activity favors Hg retention in sediment but also promotes MeHg formation near the surface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Preliminary assessment of mercury accumulation in Massachusetts and Minnesota seasonal forest pools

    Treesearch

    Robert T. Brooks; Susan L. Eggert; Keith H. Nislow; Randall K. Kolka; Celia Y. Chen; Darren M. Ward

    2012-01-01

    Seasonal forest pools (SFPs) are common, widespread, and provide critical habitat for amphibians and invertebrates. The ephemeral hydrology of SFPs has been identified as an important factor in the production of biologically active methylmercury (MeHg). To investigate mercury (Hg) in SFPs, we collected water, fine benthic organic matter (FBOM), detrital materials, and...

  1. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    NASA Astrophysics Data System (ADS)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-08-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  2. Toxicity of methylmercury injected into eggs when dissolved in water versus corn oil

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Klimstra, J.D.; Stebbins, K.R.; Kondrad, S.L.

    2011-01-01

    In a previous study, the embryotoxicity of methylmercury dissolved in corn oil was compared among 26 species of birds. Corn oil is not soluble in the water-based matrix that constitutes the albumen of an egg. To determine whether the use of corn oil limited the usefulness of this earlier study, a comparison was made of the embryotoxicity of methylmercury dissolved in corn oil versus water. Mallard (Anas platyrhynchos) and chicken (Gallus gallus) eggs were injected with methylmercury chloride dissolved in corn oil or water to achieve concentrations of 0, 0.2, 0.4, 0.8, and 1.6??g/g mercury in the egg on a wet weight basis. Hatching success at each dose of mercury was compared between the two solvents. For mallards, 16.4% of the eggs injected with 1.6??g/g mercury dissolved in water hatched, which was statistically lower than the 37.6% hatch rate of eggs injected with 1.6??g/g mercury dissolved in corn oil, but no differences in hatching success were observed between corn oil and water at any of the other doses. With chicken eggs, no significant differences occurred in percentage hatch of eggs between corn oil and water at any of the mercury doses. Methylmercury dissolved in corn oil seems to have a toxicity to avian embryos similar to that of does methylmercury dissolved in water. Consequently, the results from the earlier study that described the toxicity of methylmercury dissolved in corn oil to avian embryos were probably not compromised by the use of corn oil as a solvent. ?? 2011 SETAC.

  3. Toward the next generation of air quality monitoring: Mercury

    NASA Astrophysics Data System (ADS)

    Pirrone, Nicola; Aas, Wenche; Cinnirella, Sergio; Ebinghaus, Ralf; Hedgecock, Ian M.; Pacyna, Jozef; Sprovieri, Francesca; Sunderland, Elsie M.

    2013-12-01

    Mercury is a global pollutant that is ubiquitous in the environment. Enrichment of mercury in the biosphere as the result of human activities and subsequent production of methylmercury (MeHg) has resulted in elevated concentrations in fish, wildlife and marine mammals globally. Elemental mercury (Hg0) is the most common form of mercury in the atmosphere, and the form that is most readily transported long distances from its emission source. Most mercury deposition from the atmosphere is in the highly soluble, oxidised inorganic form HgII. Thus, understanding atmospheric transport and oxidant distribution is essential for understanding mercury inputs to ecosystems. Methylmercury (MeHg) is the most toxic form of mercury that accumulates in aquatic food web and can cause a variety of negative health effects such as long-term IQ deficits and cardiovascular impairment in exposed individuals. Humans are predominately exposed to MeHg by consuming fish. Hg0 emitted from anthropogenic sources has a long (6 months-1 year) atmospheric residence time allowing it to be transported long distances in the atmosphere. It is eventually oxidised to the highly soluble HgII (likely by atomic Br and/or OH/O3) and rapidly deposited with precipitation. Some of the mercury deposited to terrestrial and marine ecosystems is converted to MeHg, which is the only form that bioaccumulates in aquatic food webs. Recent studies suggest that there is a first-order relationship between the supply of inorganic mercury to ecosystems and production of MeHg, thus implying that declines in deposition will translate directly into reduced concentrations in biota and human exposures. However, one of the major uncertainties in this cycle is the time scale required for these changes to take place and this is known to vary from years to centuries across different environmental compartments depending on their physical and biogeochemical attributes. Thus, a key challenge in the case of mercury pollution is

  4. Distribution and availability of mercury and methylmercury in different waters from the Rio Madeira Basin, Amazon.

    PubMed

    Vieira, Miguel; Bernardi, José V E; Dórea, José G; Rocha, Bruno C P; Ribeiro, Romulo; Zara, Luis F

    2018-04-01

    Waters from the Amazon Basin have distinct physicochemical characteristics that can be optically classified as "black", "clear" and "white". We studied the distribution of total-Hg (THg) and methyl-Hg (MeHg) in these waters and respective suspended solids, sediment, phytoplankton, zooplankton, and benthic macroinvertebrates (BM) in the Madeira River Basin. Compared with the other types of water, the more acidic "black" kind had the highest THg and MeHg concentrations. The trend (black > clear > white) occurred for the concentrations of THg and MeHg in sediments and in the biotic compartment (plankton, macroinvertebrates). Organic Hg accounted for a small percentage (0.6-0.4%) of the THg in sediments but was highest in water (17-15%). For plankton and BM, the biota sediment accumulation factor (BSAFs) of MeHg (53-125) were greater than those of THg (4.5-15); however, the BSAF trend according to water type (black > clear > white) was only significant for MeHg. Sediment THg is correlated with all forms of Hg in biotic and abiotic matrices. The results indicate that water acidity in the Amazon is an important chemical characteristic in assessing Hg contamination of sediments and bioaccumulation in the aquatic food web. The differences in the BSAFs between THg and MeHg support the use of this factor for evaluating the bioaccumulation potential of sediment-bound Hg. The results add information critical to assessing environmental and health risks related to Hg methylation and potential fish-MeHg contamination, especially in tropical aquatic environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. IRIS Summary and Supporting Documents for Methylmercury

    EPA Science Inventory

    In January 2001, U.S. EPA finalized the guidance for methylmercury in the water quality criteria for states and authorized tribes. The links below take you to the best resources for this guidance.

  6. Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnivetskaya, Tatiana A.; Hu, Haiyan; Van Nostrand, Joy D.

    In this paper, paddy soils from mercury (Hg)-contaminated rice fields in Guizhou, China were studied with respect to total mercury (THg) and methylmercury (MeHg) concentrations as well as Bacterial and Archaeal community composition. Total Hg (0.25–990 μg g –1) and MeHg (1.3–30.5 ng g –1) varied between samples. Pyrosequencing (454 FLX) of the hypervariable v1–v3 regions of the 16S rRNA genes showed that Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Euryarchaeota, and Crenarchaeota were dominant in all samples. The Bacterial α-diversity was higher in samples with relatively Low THg and MeHg and decreased with increasing THg and MeHg concentrations. In contrast, Archaeal α-diversitymore » increased with increasing of MeHg concentrations but did not correlate with changes in THg concentrations. Overall, the methylation gene hgcAB copy number increased with both increasing THg and MeHg concentrations. The microbial communities at High THg and High MeHg appear to be adapted by species that are both Hg resistant and carry hgcAB genes for MeHg production. The relatively high abundance of both sulfate-reducing δ- Proteobacteria and methanogenic Archaea, as well as their positive correlations with increasing THg and MeHg concentrations, suggests that these microorganisms are the primary Hg-methylators in the rice paddy soils in Guizhou, China.« less

  7. Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China

    DOE PAGES

    Vishnivetskaya, Tatiana A.; Hu, Haiyan; Van Nostrand, Joy D.; ...

    2018-03-05

    In this paper, paddy soils from mercury (Hg)-contaminated rice fields in Guizhou, China were studied with respect to total mercury (THg) and methylmercury (MeHg) concentrations as well as Bacterial and Archaeal community composition. Total Hg (0.25–990 μg g –1) and MeHg (1.3–30.5 ng g –1) varied between samples. Pyrosequencing (454 FLX) of the hypervariable v1–v3 regions of the 16S rRNA genes showed that Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Euryarchaeota, and Crenarchaeota were dominant in all samples. The Bacterial α-diversity was higher in samples with relatively Low THg and MeHg and decreased with increasing THg and MeHg concentrations. In contrast, Archaeal α-diversitymore » increased with increasing of MeHg concentrations but did not correlate with changes in THg concentrations. Overall, the methylation gene hgcAB copy number increased with both increasing THg and MeHg concentrations. The microbial communities at High THg and High MeHg appear to be adapted by species that are both Hg resistant and carry hgcAB genes for MeHg production. The relatively high abundance of both sulfate-reducing δ- Proteobacteria and methanogenic Archaea, as well as their positive correlations with increasing THg and MeHg concentrations, suggests that these microorganisms are the primary Hg-methylators in the rice paddy soils in Guizhou, China.« less

  8. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000.

    PubMed

    Sunderland, Elsie M; Dalziel, John; Heyes, Andrew; Branfireun, Brian A; Krabbenhoft, David P; Gobas, Frank A P C

    2010-03-01

    Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost 40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast, MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs.

  9. Response of a macrotidal estuary to changes in anthropogenic mercury loading between 1850 and 2000

    USGS Publications Warehouse

    Sunderl, E.M.; Dalziel, J.; Heyes, A.; Branfireun, B.A.; Krabbenhoft, D.P.; Gobas, F.A.P.C.

    2010-01-01

    Methylmercury (MeHg) bioaccumulation in marine food webs poses risks to fish-consuming populations and wildlife. Here we develop and test an estuarine mercury cycling model for a coastal embayment of the Bay of Fundy, Canada. Mass budget calculations reveal that MeHg fluxes into sediments from settling solids exceed losses from sediment-to-water diffusion and resuspension. Although measured methylation rates in benthic sediments are high, rapid demethylation results in negligible net in situ production of MeHg. These results suggest that inflowing fluvial and tidal waters, rather than coastal sediments, are the dominant MeHg sources for pelagic marine food webs in this region. Model simulations show water column MeHg concentrations peaked in the 1960s and declined by almost40% by the year 2000. Water column MeHg concentrations respond rapidly to changes in mercury inputs, reaching 95% of steady state in approximately 2 months. Thus, MeHg concentrations in pelagic organisms can be expected to respond rapidly to mercury loading reductions achieved through regulatory controls. In contrast MeHg concentrations in sediments have steadily increased since the onset of industrialization despite recent decreases in total mercury loading. Benthic food web MeHg concentrations are likely to continue to increase over the next several decades at present-day mercury emissions levels because the deep active sediment layer in this system contains a large amount of legacy mercury and requires hundreds of years to reach steady state with inputs. ?? 2010 American Chemical Society.

  10. Measurements of mercury methylation rates and bioavailability in the Allequash Creek Wetland, Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Creswell, J. E.; Babiarz, C. L.; Shafer, M. M.; Armstrong, D. E.

    2008-12-01

    Wetlands are known to be hot spots for the production of methylmercury (MeHg) and subsequent export into other aquatic ecosystems. Because MeHg is a bioaccumulative neurotoxin, and because the primary route of human exposure to mercury is through the consumption of contaminated fish, understanding the processes by which MeHg is produced in the aquatic environment is important to the protection of human health. Inorganic Hg(II) is known to be methylated by bacteria in the anoxic zones of wetland sediments, but bioavailability plays a role in this process, as certain chemical complexes of mercury are unavailable to the microbial community. In the Allequash Creek wetland, a strong relationship has been observed between MeHg and Dissolved Organic Carbon (DOC) concentrations, but the observed relationship between MeHg and total Hg is weak. This observation implicates factors other than Hg(II) concentration as drivers of methylation. In this study, depth-resolved estimates of the bioavailability of inorganic Hg(II) were made by measuring the net mercury methylation rate potential in the hyporheic zone of the wetland. Gross mercury methylation was measured in sediment cores amended with stable isotope-enriched Hg(II), by analyzing isotopically-enriched methylmercury produced during an incubation. Demethylation was measured by amending replicate cores with stable isotope-enriched methylmercury and analyzing the amount consumed over the incubation period. Analyses were conducted using an inductively coupled plasma-quadrupole mass spectrometer. A method comparison was made between incubating cores intact, with mercury amendments injected through core tube walls, and incubating sectioned cores, with mercury amendments mixed into homogenized sediments. The value of incubating intact cores is that disturbance to the sediment and the microbial community is minimized, resulting in experimental conditions that more accurately mimic in situ conditions. The value of mixing mercury

  11. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    USGS Publications Warehouse

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-01-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  12. The cumulative MeHg and PCBs exposure and risk of tribal and US general population with SHEDS-multimedia

    EPA Science Inventory

    Studies have shown that the U.S. population continues to be exposed to methyl mercury (MeHg) and polychlorinated biphenyls (PCBs) due to the long half-life of those environmental contaminants. Fish intake of Tribal populations is much higher than the U.S. general population due t...

  13. Teratogenic efects of injected methylmercury on avian embryos

    USGS Publications Warehouse

    Heinz, Gary H.; Hoffman, David J.; Klimstra, Jon D.; Stebbins, Katherine R.; Kondrad, Shannon L.; Erwin, Carol A.

    2011-01-01

    Controlled laboratory studies with game farm mallards (Anas platyrhynchos) and chickens (Gallus gallus) have demonstrated that methylmercury can cause teratogenic effects in birds, but studies with wild species of birds are lacking. To address this need, doses of methylmercury chloride were injected into the eggs of 25 species of birds, and the dead embryos and hatched chicks were examined for external deformities. When data for controls were summed across all 25 species tested and across all types of deformities, 24 individuals out of a total of 1,533 (a rate of 1.57%) exhibited at least one deformity. In contrast, when data for all of the mercury treatments and all 25 species were summed, 188 deformed individuals out of a total of 2,292 (8.20%) were found. Some deformities, such as lordosis and scoliosis (twisting of the spine), misshapen heads, shortening or twisting of the neck, and deformities of the wings, were seldom observed in controls but occurred in much greater frequency in Hg-treated individuals. Only 0.59% of individual control dead embryos and hatchlings exhibited multiple deformities versus 3.18% for Hg-dosed dead embryos and hatchlings. Methylmercury seems to have a widespread teratogenic potential across many species of birds.

  14. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland

    Treesearch

    J.K. Coleman Wasik; D.R. Engstrom; C.P.J. Mitchell; E.B. Swain; B.A. Monson; S.J. Balogh; J.D. Jeremiason; B.A. Branfireun; R.K. Kolka; J.E. Almendinger

    2015-01-01

    A series of severe droughts during the course of a long-term, atmospheric sulfate-deposition experiment in a boreal peatland in northern Minnesota created a unique opportunity to study how methylmercury (MeHg) production responds to drying and rewetting events in peatlands under variable levels of sulfate loading. Peat oxidation during extended dry periods mobilized...

  15. Supercritical fluid carbon dioxide extraction and liquid chromatographic separation with electrochemical detection of methylmercury from biological samples

    USGS Publications Warehouse

    Simon, N.S.

    1997-01-01

    Using the coupled methods presented in this paper, methylmercury can be accurately and rapidly extracted from biological samples by modified supercritical fluid carbon dioxide and quantitated using liquid chromatography with reductive electrochemical detection. Supercritical fluid carbon dioxide modified with methanol effectively extracts underivatized methylmercury from certified reference materials Dorm-1 (dogfish muscle) and Dolt-2 (dogfish liver). Calcium chloride and water, with a ratio of 5:2 (by weight), provide the acid environment required for extracting methylmercury from sample matrices. Methylmercury chloride is separated from other organomercury chloride compounds using HPLC. The acidic eluent, containing 0.06 mol L-1 NaCl, insures the presence of methylmercury chloride and facilitates the reduction of mercury on a glassy carbon electrode. If dual glassy carbon electrodes are used, a positive peak is observed at -0.65 to -0.70 V and a negative peak is observed at -0.90V with the organomercury compounds that were tested. The practical detection limit for methylmercury is 5 X 10-8 mol L-1 (1 X 10-12 tool injected) when a 20 ??L injection loop is used.

  16. Comparative In Vitro Toxicity Evaluation of Heavy Metals (Lead, Cadmium, Arsenic, and Methylmercury) on HT-22 Hippocampal Cell Line.

    PubMed

    Karri, Venkatanaidu; Kumar, Vikas; Ramos, David; Oliveira, Eliandre; Schuhmacher, Marta

    2018-07-01

    Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC 10 -IC 30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.

  17. PUFA Status and Methylmercury Exposure Are Not Associated with Leukocyte Telomere Length in Mothers or Their Children in the Seychelles Child Development Study.

    PubMed

    Yeates, Alison J; Thurston, Sally W; Li, Huiqi; Mulhern, Maria S; McSorley, Emeir M; Watson, Gene E; Shamlaye, Conrad F; Strain, J J; Myers, Gary J; Davidson, Philip W; van Wijngaarden, Edwin; Broberg, Karin

    2017-11-01

    Background: Leukocyte telomere length (TL) is associated with age-related diseases and early mortality, but there is a lack of data on the determinants of TL in early life. Evidence suggests that dietary intake of marine n-3 (ω-3) polyunsaturated fatty acids (PUFAs) is protective of telomere attrition, yet the effect of methylmercury exposure, also found in fish, on TL is unknown. Objective: The aim of this study was to investigate the associations between prenatal PUFA status, methylmercury exposure, and TL in mothers and children in the SCDS (Seychelles Child Development Study), for whom fish consumption is high. Methods: Blood samples collected from 229 mothers (at 28 wk gestation and delivery) and children (at 5 y of age) in the SCDS first nutrition cohort were analyzed for PUFA concentrations. Prenatal mercury was measured in maternal hair collected at delivery. Postnatal mercury was also measured in children's hair samples with the use of a cumulative metric derived from values obtained at 3-5 y of age. Relative TL was measured in blood obtained from mothers at delivery, in cord blood, and in children at 5 y of age by quantitative polymerase chain reaction. Linear regression models were used to investigate the associations between PUFA status, methylmercury exposure, and TL. Results: Neither prenatal PUFA status or methylmercury exposure was associated with TL of the mother or child or with TL attrition rate. However, a higher prenatal n-6:n-3 PUFA ratio was significantly associated with longer TLs in the mothers (β = 0.001, P = 0.048). Child PUFA status and methylmercury exposure were not associated with child TL. However, higher family Hollingshead socioeconomic status (SES) scores at 9 mo of age were significantly associated with longer TLs in cord blood (β = 0.005, P = 0.03). Conclusions: We found no evidence that PUFA status or methylmercury exposure are determinants of TL in either the mother or child. However, our results support the hypothesis that

  18. Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California

    USGS Publications Warehouse

    Domagalski, Joseph L.; Alpers, Charles N.; Slotton, D.G.; Suchanek, T.H.; Ayers, S.M.

    2004-01-01

    Concentrations and loads of total mercury and methylmercury were measured in streams draining abandoned mercury mines and in the proximity of geothermal discharge in the Cache Creek watershed of California during a 17-month period from January 2000 through May 2001. Rainfall and runoff were lower than long-term averages during the study period. The greatest loading of mercury and methylmercury from upstream sources to downstream receiving waters, such as San Francisco Bay, generally occurred during or after winter rainfall events. During the study period, loads of mercury and methylmercury from geothermal sources tended to be greater than those from abandoned mining areas, a pattern attributable to the lack of large precipitation events capable of mobilizing significant amounts of either mercury-laden sediment or dissolved mercury and methylmercury from mine waste. Streambed sediments of Cache Creek are a significant source of mercury and methylmercury to downstream receiving bodies of water. Much of the mercury in these sediments is the result of deposition over the last 100-150 years by either storm-water runoff, from abandoned mines, or continuous discharges from geothermal areas. Several geochemical constituents were useful as natural tracers for mining and geothermal areas, including the aqueous concentrations of boron, chloride, lithium and sulfate, and the stable isotopes of hydrogen and oxygen in water. Stable isotopes of water in areas draining geothermal discharges showed a distinct trend toward enrichment of 18O compared with meteoric waters, whereas much of the runoff from abandoned mines indicated a stable isotopic pattern more consistent with local meteoric water. ?? 2004 Elsevier B.V. All rights reserved.

  19. Temporal Assessment of Methylmercury in an Endangered Pacific Seabird (Invited)

    NASA Astrophysics Data System (ADS)

    Vo, A. E.; Bank, M. S.; Shine, J. P.; Edwards, S. V.

    2010-12-01

    Methylmercury cycling in the Pacific Ocean has garnered significant attention in recent years, especially with regard to rising mercury emissions from Asia. Uncertainty exists over the extent to which mercury accumulation in biota may have resulted from increases in anthropogenic output over time. To address this, we assessed historical and recent mercury exposure in an endangered Pacific seabird, the Black-footed Albatross (Phoebastria nigripes), using feather samples from museum specimens spanning the past 130 years. We additionally analyzed stable isotopes of nitrogen (δ15N) and carbon (δ13C) to control for confounding factors of temporal change in trophic structure or diet. As a long-lived, wide-ranging, top marine predator and an endangered, keystone species in the North Pacific, the Black-footed Albatross comprises an ideal sentinel species for determining the effect of both global increases in mercury throughout the previous century and regional increases during the recent past on bioaccumulation and risk among avian wildlife. A significantly higher proportion of post-1940 samples contained above deleterious threshold levels (~40,000 ng/g) of methylmercury relative to pre-1940 samples, and mean concentrations were significantly higher in post-1990 than in pre-1990 samples. We also found increasingly higher amounts of (presumably curator-mediated) inorganic mercury contamination in older museum samples for the Black-footed Albatross as well as two non-pelagic comparison species, which informs future studies on bioaccumulation in museum specimens to analyze methylmercury rather than total mercury in all but recently collected specimens. Although complementary stable isotope data suggested no historic change in albatross trophic level, there was a significant change in δ13C signature over time. However, after controlling for these potential confounders, time significantly and positively associated with methylmercury exposure. Changes in methylmercury levels

  20. Mercury cycling in peatland watersheds. Chapter 11.

    Treesearch

    Randall K. Kolka; Carl P.J. Mitchell; Jeffrey D. Jeremiason; Neal A. Hines; David F. Grigal; Daniel R. Engstrom; Jill K. Coleman-Wasik; Edward A. Nater; Edward B. Swain; Bruce A. Monson; Jacob A. Fleck; Brian Johnson; James E. Almendinger; Brian A. Branfireun; Patrick L. Brezonik; James B. Cotner

    2011-01-01

    Mercury (Hg) is of great environmental concern due to its transformation into the toxic methylmercury (MeHg) form that bioaccumulates within the food chain and causes health concerns for both humans and wildlife (U.S. Environmental Protection Agency 2002). Mercury can affect neurological development in fetuses and young children. In adults, exposure to Hg can lead to...

  1. Long term neurocognitive impact of low dose prenatal methylmercury exposure in Hong Kong.

    PubMed

    Lam, Hugh Simon; Kwok, Ka Ming; Chan, Peggy Hiu Ying; So, Hung Kwan; Li, Albert Martin; Ng, Pak Cheung; Fok, Tai Fai

    2013-04-01

    International studies suggest that low dose prenatal methylmercury exposure (>29 nmol/L) has long-term adverse neurocognitive effects. There is evidence that the majority of children in Hong Kong exceed this level as a result of high fish consumption of mothers during pregnancy. To study whether there are any associations between low-dose prenatal methylmercury exposure and neurocognitive outcomes in Hong Kong children. All 1057 children from the original birth cohort were eligible for entry into the study, except children with conditions that would affect neurocognitive development, but were unrelated to methylmercury exposure. Subjects were assessed by a wide panel of tests covering a broad range of neurocognitive functions: Hong Kong Wechsler Intelligence Scale for Children (HK-WISC), Hong Kong List Learning Test (HKLLT), Tests of Everyday Attention for Children (TEACH), Boston Naming Test, and Grooved Pegboard Test. 608 subjects were recruited (median age 8.2 years, IQR 7.3, 8.8; 53.9% boys). After correction by confounders including child age and sex, multivariate analysis showed that cord blood mercury concentration was significantly associated with three subtests: Picture Arrangement of HK-WISC (coefficient -0.944, P=0.049) and Short and Long Delay Recall Difference of the HKLLT (coefficient -1.087, P=0.007 and coefficient -1.161, P=0.005, respectively), i.e., performance worsened with increasing prenatal methylmercury exposure in these subtests. Small, but statistically significant adverse associations between prenatal methylmercury exposure and long-term neurocognitive effects (a visual sequencing task and retention ability of verbal memory) were found in our study. These effects are compatible with findings of studies with higher prenatal methylmercury exposure levels and suggest that safe strategies to further reduce exposure levels in Hong Kong are desirable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary.

    PubMed

    Reinhart, Bethany L; Kidd, Karen A; Curry, R Allen; O'Driscoll, Nelson J; Pavey, Scott A

    2018-06-01

    Although estuaries are critical habitats for many aquatic species, the spatial trends of toxic methylmercury (MeHg) in biota from fresh to marine waters are poorly understood. Our objective was to determine if MeHg concentrations in biota changed along a salinity gradient in an estuary. Fourspine Stickleback (Apeltes quadracus), invertebrates (snails, amphipods, and chironomids), sediments, and water were collected from ten sites along the Saint John River estuary, New Brunswick, Canada in 2015 and 2016, with salinities ranging from 0.06 to 6.96. Total mercury (proxy for MeHg) was measured in whole fish and MeHg was measured in a subset of fish, pooled invertebrates, sediments, and water. Stable sulfur (δ 34 S), carbon (δ 13 C), and nitrogen (δ 15 N) isotope values were measured to assess energy sources (S, C) and relative trophic level (N). There were increases in biotic δ 13 C and δ 34 S from fresh to more saline sites and these measures were correlated with salinity. Though aqueous MeHg was higher at the freshwater than more saline sites, only chironomid MeHg increased significantly with salinity. In the Saint John River estuary, there was little evidence that MeHg and its associated risks increased along a salinity gradient. Copyright © 2018. Published by Elsevier B.V.

  3. Hair-to-blood ratio and biological half-life of mercury: experimental study of methylmercury exposure through fish consumption in humans.

    PubMed

    Yaginuma-Sakurai, Kozue; Murata, Katsuyuki; Iwai-Shimada, Miyuki; Nakai, Kunihiko; Kurokawa, Naoyuki; Tatsuta, Nozomi; Satoh, Hiroshi

    2012-02-01

    The hair-to-blood ratio and biological half-life of methylmercury in a one-compartment model seem to differ between past and recent studies. To reevaluate them, 27 healthy volunteers were exposed to methylmercury at the provisional tolerable weekly intake (3.4 µg/kg body weight/week) for adults through fish consumption for 14 weeks, followed by a 15-week washout period after the cessation of exposure. Blood was collected every 1 or 2 weeks, and hair was cut every 4 weeks. Total mercury (T-Hg) concentrations were analyzed in blood and hair. The T-Hg levels of blood and hair changed with time (p < 0.001). The mean concentrations increased from 6.7 ng/g at week 0 to 26.9 ng/g at week 14 in blood, and from 2.3 to 8.8 µg/g in hair. The mean hair-to-blood ratio after the adjustment for the time lag from blood to hair was 344 ± 54 (S.D.) for the entire period. The half-lives of T-Hg were calculated from raw data to be 94 ± 23 days for blood and 102 ± 31 days for hair, but the half-lives recalculated after subtracting the background levels from the raw data were 57 ± 18 and 64 ± 22 days, respectively. In conclusion, the hair-to-blood ratio of methylmercury, based on past studies, appears to be underestimated in light of recent studies. The crude half-life may be preferred rather than the recalculated one because of the practicability and uncertainties of the background level, though the latter half-life may approximate the conventional one.

  4. Association between prenatal exposure to methylmercury and visuospatial ability at 10.7 years in the seychelles child development study.

    PubMed

    Davidson, Philip W; Jean-Sloane-Reeves; Myers, Gary J; Hansen, Ole Nørby; Huang, Li-Shan; Georger, Leslie A; Cox, Christopher; Thurston, Sally W; Shamlaye, Conrad F; Clarkson, Thomas W

    2008-05-01

    The Seychelles Child Development Study was designed to test the hypothesis that prenatal exposure to MeHg from maternal consumption of a diet high in fish is detrimental to child neurodevelopment. To date, no consistent pattern of adverse associations between prenatal exposure and children's development has appeared. In a comprehensive review of developmental studies involving MeHg, a panel of experts recommended a more consistent use of the same endpoints across studies to facilitate comparisons. Both the SCDS and the Faeroe Islands studies administered the Bender Visual Motor Gestalt Test. However, the method of test administration and scoring used was different. We repeated the test on the SCDS Main Study children (mean age 10.7 years) using the same testing and scoring procedure reported by the Faeroe studies to obtain Copying Task and Reproduction Task scores. We found no association between prenatal MeHg exposure and Copying Task scores which was reported from the Faeroese study. However, our analysis did show a significant adverse association between MeHg and Reproduction Task scores with all the data (p=0.04), but not when the single outlier was removed (p=0.07). In a population whose exposure to MeHg is from fish consumption, we continue to find no consistent adverse association between MeHg and visual motor coordination.

  5. [Consensus document on the prevention of exposure to methylmercury in Spain].

    PubMed

    González-Estecha, Montserrat; Bodas-Pinedo, Andrés; Guillén-Pérez, José Jesús; Rubio-Herrera, Miguel Ángel; Martínez-Álvarez, Jesús Román; Herráiz-Martínez, Miguel Ángel; Martell-Claros, Nieves; Ordóñez-Iriarte, José M; Sáinz-Martín, María; Farré-Rovira, Rosaura; Martínez-Astorquiza, Txantón; García-Donaire, José Antonio; Calvo-Manuel, Elpidio; Bretón-Lesmes, Irene; Prieto-Menchero, Santiago; Llorente-Ballesteros, M Teresa; Martínez-García, M José; Moreno-Rojas, Rafael; Salas-Salvadó, Jordi; Bermejo-Barrera, Pilar; Cuadrado-Cenzual, María Ángeles; Gallardo-Pino, Carmen; Blanco Fuentes, María; Torres-Moreno, Miriam; Trasobares-Iglesias, Elena M; Barceló Martín, Bernardino; Arroyo-Fernández, Manuel; Calle-Pascual, Alfonso

    2014-11-21

    The beneficial effects of fish consumption in both children and adults are well known. However, the intake of methylmercury, mainly from contaminated fish and shellfish, can have adverse health effects. The study group on the prevention of exposure to methylmercury (GEPREM-Hg), made up of representatives from different Spanish scientific societies, has prepared a consensus document in a question and answer format, containing the group's main conclusions, recommendations and proposals. The objective of the document is to provide broader knowledge of factors associated with methylmercury exposure, its possible effects on health among the Spanish population, methods of analysis, interpretation of the results and economic costs, and to then set recommendations for fish and shellfish consumption. The group sees the merit of all initiatives aimed at reducing or prohibiting the use of mercury as well as the need to be aware of the results of contaminant analyses performed on fish and shellfish marketed in Spain. In addition, the group believes that biomonitoring systems should be set up in order to follow the evolution of methylmercury exposure in children and adults and perform studies designed to learn more about the possible health effects of concentrations found in the Spanish population, ta king into account the lifestyle, eating patterns and the Mediterranean diet. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. Silent latency periods in methylmercury poisoning and in neurodegenerative disease.

    PubMed Central

    Weiss, Bernard; Clarkson, Thomas W; Simon, William

    2002-01-01

    This article discusses three examples of delay (latency) in the appearance of signs and symptoms of poisoning after exposure to methylmercury. First, a case is presented of a 150-day delay period before the clinical manifestations of brain damage after a single brief (<1 day) exposure to dimethylmercury. The second example is taken from the Iraq outbreak of methylmercury poisoning in which the victims consumed contaminated bread for several weeks without any ill effects. Indeed, signs of poisoning did not appear until weeks or months after exposure stopped. The last example is drawn from observations on nonhuman primates and from the sequelae of the Minamata, Japan, outbreak in which low chronic doses of methylmercury may not have produced observable behavioral effects for periods of time measured in years. The mechanisms of these latency periods are discussed for both acute and chronic exposures. Parallels are drawn with other diseases that affect the central nervous system, such as Parkinson disease and post-polio syndrome, that also reflect the delayed appearance of central nervous system damage. PMID:12426145

  7. Silent latency periods in methylmercury poisoning and in neurodegenerative disease.

    PubMed

    Weiss, Bernard; Clarkson, Thomas W; Simon, William

    2002-10-01

    This article discusses three examples of delay (latency) in the appearance of signs and symptoms of poisoning after exposure to methylmercury. First, a case is presented of a 150-day delay period before the clinical manifestations of brain damage after a single brief (<1 day) exposure to dimethylmercury. The second example is taken from the Iraq outbreak of methylmercury poisoning in which the victims consumed contaminated bread for several weeks without any ill effects. Indeed, signs of poisoning did not appear until weeks or months after exposure stopped. The last example is drawn from observations on nonhuman primates and from the sequelae of the Minamata, Japan, outbreak in which low chronic doses of methylmercury may not have produced observable behavioral effects for periods of time measured in years. The mechanisms of these latency periods are discussed for both acute and chronic exposures. Parallels are drawn with other diseases that affect the central nervous system, such as Parkinson disease and post-polio syndrome, that also reflect the delayed appearance of central nervous system damage.

  8. The oral bioavailability and toxicokinetics of methylmercury in common loon (Gavia immer) chicks

    USGS Publications Warehouse

    Fournier, F.; Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Hines, R.K.

    2002-01-01

    We compared the toxicokinetics of methylmercury in captive common loon chicks during two time intervals to assess the impact of feather growth on the kinetics of mercury. We also determined the oral bioavailability of methylmercury during these trials to test for age-related changes. The blood concentration-time curves for individuals dosed during feather development (initiated 35 days post hatch) were best described by a one-compartment toxicokinetic model with an elimination half-life of 3 days. The data for birds dosed following completion of feather growth (84 days post hatch) were best fitted by a two-compartment elimination model that includes an initial rapid distribution phase with a half-life of 0.9 days, followed by a slow elimination phase with a half-life of 116 days. We determined the oral bioavailability of methylmercury during the first dosing interval by comparing the ratios of the area under the blood concentration-time curves (AUC0→∞) for orally and intravenously dosed chicks. The oral bioavailability of methylmercury during the first dosing period was 0.83. We also determined bioavailability during both dosing periods using a second measure because of irregularities with intravenous results in the second period. This second bioavailability measure estimated the percentage of the dose that was deposited in the blood volume (f), and the results show that there was no difference in bioavailability among dosing periods. The results of this study highlight the importance of feather growth on the toxicokinetics of methylmercury.

  9. An investigation of enhanced mercury bioaccumulation in fish from offshore feeding.

    PubMed

    Chételat, John; Cloutier, Louise; Amyot, Marc

    2013-08-01

    We investigated the dietary pathways of mercury transfer in the food web of Morency Lake (Canada) to determine the influence of carbon source and habitat use on mercury bioaccumulation in fish. Whole-body concentrations of methylmercury (MeHg) were significantly different in four fish species (white sucker, brown bullhead, pumpkinseed and smallmouth bass) and increased with both trophic position and greater feeding on offshore (versus littoral) carbon. An examination of fish gut contents and the depth distribution of invertebrates in Morency Lake showed that smallmouth bass and brown bullhead were supplementing their littoral diet with the consumption of either opossum shrimp (Mysis diluviana) or profundal amphipods in offshore waters. The zooplanktivore Mysis had significantly higher MeHg concentrations than zooplankton and benthic invertebrates, and it was an elevated source of MeHg to smallmouth bass. In contrast, profundal amphipods consumed by brown bullhead did not have higher MeHg concentrations than littoral amphipods. Instead, partitioning of benthic invertebrate resources likely explains the greater MeHg bioaccumulation in brown bullhead, associated with offshore feeding of amphipods. White sucker and brown bullhead had a similar trophic position but white sucker consumed more chironomids, which had one-third the MeHg concentration of amphipods. Our findings suggest that offshore feeding in a lake can affect fish MeHg bioaccumulation via two different processes: (1) the consumption of MeHg-enriched pelagic prey, or (2) resource partitioning of benthic primary consumers with different MeHg concentrations. These observations on the mechanisms of habitat-specific bioaccumulation highlight the complexity of MeHg transfer through lake food webs.

  10. Methylmercuric Chloride Induces Activation of Neuronal Stress Circuitry and Alters Exploratory Behavior in the Mouse

    PubMed Central

    Cooper, Joel F.

    2007-01-01

    Methylmercury (MeHg) is a well known neurotoxicant, responsible for neurological and cognitive alterations. However, there is very little information available on the effects of MeHg administration on activation of murine neuronal pathways involved in the stress response, and whether this is altered as a function of repeated exposure to MeHg. Moreover, interactions between MeHg and other psychogenic and inflammatory stressors have yet to be fully determined. Acute intraperitoneal (IP) exposure of male C57BL/6J mice to MeHg (2−8 mg/Kg) dose-dependently attenuated exploratory behavior in the open field in the presence and absence of a novel object. In addition, increased numbers of c-Fos immunoreactive cells appeared in response to acute IP and ICV MeHg within thalamic (PVA/PV), hypothalamic (PVN), central amygdaloid (CeC), septal and hippocampal (dentate gyrus) nuclei, medial bed nucleus (BSTm) and the locus coeruleus (Lc). The increase in c-Fos positive cells in response to acute IP and ICV MeHg did not appear to be influenced further by open field exposure. Repeated administration of MeHg led to an attenuation of most parameters of open field behavior altered by acute MeHg. However, increased c-Fos was significant in the CeC, Dg, supracapsular bed nucleus (BSTs), and Lc. Moreover, open field exposure after repeated treatments resulted in significant c-Fos responses in similar areas. Interestingly, 3 days after the final repeated MeHg dose (2 or 4 mg/kg) c-Fos increases to an immunogenic stressor (LPS) were not affected by MeHg pretreatment. These results demonstrate that systemic exposure to acute and repeated MeHg serves to activate the brain's stress circuitry, and furthermore appears to engage normal neuronal habituation processes. PMID:17764854

  11. Geochemical data for mercury, methylmercury, and other constituents in sediments from Englebright Lake, California, 2002

    USGS Publications Warehouse

    Alpers, Charles N.; Hunerlach, Michael P.; Marvin-DePasquale, Mark C.; Antweiler, Ronald C.; Lasorsa, Brenda K.; De Wild, John F.; Snyder, Noah P.

    2006-01-01

    Deep coring penetrated the full thickness of material deposited after 1940 at six locations in the reservoir; the cores reached a maximum depth of 32.8 meters below the reservoir floor. At the three deep coring sites closest to Englebright Dam, concentrations of HgT (dry basis) were consistently in the range of 100 to 500 ng/g (nanogram per gram), in sediment dominantly of silt size (median grain size of 0.004 to 0.063 mm [millimeter]). At the deep coring sites located farther upstream, the upper parts of the profile had lower concentrations of HgT, generally ranging from 2 to 100 ng/g, in sediment dominantly of sand size (median grain size from 0.063 to 2 mm). The lower part of the vertical profiles at three upstream coring sites had higher concentrations of HgT than the upper and middle parts of these profiles, and had finer median grain size. The highest median concentration of MeHg (1.1 ng/g) was in the top 2 cm (centimeter) of the shallow box cores. This vertical interval also had the highest value of the ratio of MeHg to HgT, 0.41 percent. Median concentrations of MeHg and median values of MeHg/HgT decreased systematically with depth from 0-4 to 4-8 to 8-12 cm in the shallow cores. However, similar systematic decreases were not observed at the meter scale in the deep cores of the MEM (MEthylMercury) series. The overall median of the ratio MeHg/HgT in the deep cores was 0.25 percent, not much less than the overall median value for the shallow cores (0.33 percent). Mercury-203 radiotracer divalent inorganic mercury (203Hg(II)) was used to determine microbial mercury-methylation potential rates for 11 samples collected from three reservoir locations and various depths in the sediment profile. For the five shallow mercury-methylation subsamples, ancillary geochemical parameters were assayed, including microbial sulfate reduction rates, sulfur speciation (sediment acid volatile sulfide, total reduced sulfur, and pore-water sulfate), iron speciation (sediment acid

  12. [Methylmercury: existing recommendations; methods of analysing and interpreting the results; economic evaluation].

    PubMed

    González-Estecha, Montserrat; Bodas-Pinedo, Andrés; Martínez-García, María José; Trasobares-Iglesias, Elena M; Bermejo-Barrera, Pilar; Ordóñez-Iriarte, José María; Llorente-Ballesteros, María Teresa; Prieto-Menchero, Santiago; Guillén-Pérez, José Jesús; Martell-Claros, Nieves; Cuadrado-Cenzual, María Ángeles; Rubio-Herrera, Miguel Ángel; Martínez-Álvarez, Jesús Román; Calvo-Manuel, Elpidio; Farré-Rovira, Rosaura; Herráiz-Martínez, Miguel Ángel; Bretón Lesmes, Irene; García-Donaire, José Antonio; Sáinz-Martín, María; Martínez-Astorquiza, Txantón; Gallardo-Pino, Carmen; Moreno-Rojas, Rafael; Salas-Salvadó, Jordi; Blanco Fuentes, María; Arroyo-Fernández, Manuel; Calle Pascual, Alfonso

    2014-11-04

    The beneficial effects of fish consumption are well- known. Nevertheless, there is worldwide concern regard methylmercury concentrations in fish, which is why many countries such as the United States, Australia, New Zealand, Canada and numerous European countries have made fish consumption recommendations for their populations, particularly vulnerable groups, in order to México methylmercury intake. Blood and hair are the best biological samples for measuring methylmercury. The most widely-used method to analyse methylmercury is cold vapor atomic absorption spectrometry, although there are also direct methods based on the thermal decomposition of the sample. In recent years, the number of laboratories that measure mercury by inductively coupled plasma mass spectrometry has increased. In addition, the different kinds of mercury can be distinguished by coupling chromatography methods of separation. Laboratories that analyse mercury in biological samples need to participate in external quality control programmes. Even if mercury emissions are reduced, mercury may remain in the environment for many years, so dietary recommendations are fundamental in order to reduce exposure. It is necessary to propose public health measures aimed at decreasing mercury exposure and to evaluate the benefits of such measures from the economic and social standpoints. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Significant interaction effects from sulfate deposition and climate on sulfur concentrations constitute major controls on methylmercury production in peatlands

    NASA Astrophysics Data System (ADS)

    Åkerblom, Staffan; Bishop, Kevin; Björn, Erik; Lambertsson, Lars; Eriksson, Tobias; Nilsson, Mats B.

    2013-02-01

    Transformation of inorganic mercury (Hg) to methyl mercury (MeHg) in peatlands is a key process in making boreal catchments a source of MeHg to freshwater ecosystems. Due to the importance of sulfur-reducing bacteria (SRB) for this process, past atmospheric deposition of sulfate (SO42-) may have increased net terrestrial Hg methylation. A long-term (14-year) factorial design field experiment was used to investigate the effect of enhanced SO42- deposition and raised temperature using a greenhouse (GH) treatment (air temperature˜+4 °C; soil temperature 20 cm below mire surface ˜+2 °C) on sulfur (S) turnover, net Hg methylation, MeHg and total Hg concentrations in a boreal mire in northern Sweden. Of the SO42--S added during 14 years, 50% was retained in the plots without GH treatment while the combination of SO42- addition and GH treatment resulted in 15% S retention. The addition of SO42- (7-fold ambient SO42--deposition) increased (p < 0.05) the net Hg methylation (200%) as well as the store of S (150%) and MeHg (120%) in the peat. A combination of enhanced SO42- deposition and GH treatment decreased both the net Hg methylation rate constant (0.018 ± 0.006 d-1) and MeHg content (1.2 ± 0.2 ng g-1 dry weight (dw)) relative to the sites with enhanced SO42- deposition without GH treatment (0.065 ± 0.013 d-1 and 3.7 ± 0.6 ng g-1 dw, respectively). The concentration of Hg in the peat declined (p < 0.05) in response to experimental addition of SO42-. Despite the decrease in Hg in response to SO42- deposition, these plots had the highest amounts of MeHg as well as the highest Hg methylation rate constants. This indicates that the concentration of S is more important than the concentration of Hg for the production of MeHg in this boreal landscape. These results also show that long-term chronic SO42- deposition at rates similar to those found in polluted areas of Europe and North America increase the capacity of wetlands to methylate Hg and store MeHg, which can

  14. [Improvement of the method for methylmercury determination in aquatic products using liquid chromatography online coupled with atomic fluorescence spectrometry].

    PubMed

    Shang, Xiaohong; Zhao, Yunfeng; Zhang, Lei; Li, Xiaowei; Wu, Yongning

    2011-07-01

    The improvement method was developed for methylmercury determination using liquid chromatography online coupled with cold vapor atomic fluorescence spectrometry (LC-CV-AFS). Cysteine was used as complexing agent in mobile phase instead of mercaptoethanol. Under the optimized conditions, baseline separation of mercury species could be achieved within 8 min on a C18 column with a mobile phase of 5% (v/v) acetonitrile-1 g/L L-cysteine-50 mmol/L ammonium acetate aqueous solution. The linear range of calibration curve of methylmercury was 1-50 microg/L and the limit of detection (S/N = 3) for methylmercury was 0.3 microg/L. Ultrasonication assisted hydrochloric acid extraction was used to extract methylmercury from seafood samples. The sample extract was cleaned up by a C18 solid phase extraction (SPE) cartridge. For validation of the method, certified reference materials and spiked seafood samples were analyzed. The determined methylmercury contents of certified reference materials NIST1566b, BCR464 and GBW10029 agreed well with the certified values. The determined methylmercury values for Food Analysis Performance Assessment Scheme (FAPAS) sample 07115 were satisfied. The recoveries of methylmercury in seafood samples at three spiked levels (10, 50 and 500 microg/kg) ranged from 89% to 112%, including cooked seafood food. The precision of the method based on relative standard deviation (RSD) was not more than 7%. The present method of LC-CV-AFS is accurate, sensitive, simple, and can meet the demand of methylmercury determination in seafood.

  15. THE COMPETITION BETWEEN METHYLMERCURY RISKS AND OMEGA-3 POLYUNSATURATED FATTY ACID BENEFITS: A REVIEW OF CONFLICTING EVIDENCE ON FISH CONSUMPTION AND CARDIOVASCULAR HEALTH.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LIPFERT, F.W.; SULLIVAN, T.M.

    2006-10-31

    The health concerns of methylmercury (MeHg) contamination of seafood have recently been extended to include cardiovascular effects, especially premature mortality. Although the fatty acids (fish oils) found in most species are thought to confer a wide range of health benefits, especially to the cardiovascular system, some epidemiological studies have suggested that such benefits may be offset by adverse effects of MeHg. This comprehensive review is based on searches of the NIH MEDLINE database and compares and contrasts 145 published studies involving cardiovascular effects and exposures to mercury and other fish contaminants, intake of fatty acids including dietary supplements of fishmore » oils, and rates of seafood consumption. Since few of these studies include adequate simultaneous measurements of all of these potential predictor variables, we summarized their effects separately, across the available studies of each, and then drew conclusions based on the aggregated findings. It is important to realize that studies of seafood consumption encompass the net effects of all of these predictor variables, but that seafood intake studies are rarely supported by human biomarker measurements that reflect the actual uptake of harmful as well as beneficial fish ingredients. As a result, exposure measurement error is an issue when comparing studies and predictor variables. It is also possible that the observed benefits of eating fish may relate more to the characteristics of the consumers than to those of the fish. We found the evidence for adverse cardiovascular effects of MeHg to be sparse and unconvincing. Studies of cardiovascular mortality show net benefits, and the findings of adverse effects are mainly limited to studies Finland at high mercury exposure levels. By contrast, a very consistent picture of beneficial effects is seen for fatty acids, after recognizing the effects of exposure uncertainties and the presence of threshold effects. Studies based on

  16. Reference Dose for Methylmercury (External Review Draft)

    EPA Science Inventory

    In 1997, U.S. EPA issued the Mercury Study Report to Congress (MSRC). Among the assessments in the MSRC was a state-of-the-science evaluation of the health effects of methylmercury. There has been considerable discussion within the scientific community regarding the level of e...

  17. Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods

    NASA Astrophysics Data System (ADS)

    Shi, Xiangming; Mason, Robert P.; Charette, Matthew A.; Mazrui, Nashaat M.; Cai, Pinghe

    2018-02-01

    In aquatic environments, sediments are the main location of mercury methylation. Thus, accurate quantification of methylmercury (MeHg) fluxes at the sediment-water interface is vital to understanding the biogeochemical cycling of mercury, especially the toxic MeHg species, and their bioaccumulation. Traditional approaches, such as core incubations, are difficult to maintain at in-situ conditions during assays, leading to over/underestimation of benthic fluxes. Alternatively, the 224Ra/228Th disequilibrium method for tracing the transfer of dissolved substances across the sediment-water interface, has proven to be a reliable approach for quantifying benthic fluxes. In this study, the 224Ra/228Th disequilibrium and core incubation methods were compared to examine the benthic fluxes of both 224Ra and MeHg in salt marsh sediments of Barn Island, Connecticut, USA from May to August, 2016. The two methods were comparable for 224Ra but contradictory for MeHg. The radiotracer approach indicated that sediments were always the dominant source of both total mercury (THg) and MeHg. The core incubation method for MeHg produced similar results in May and August, but an opposite pattern in June and July, which suggested sediments were a sink of MeHg, contrary to the evidence of significant MeHg gradients between overlying water and porewater at the sediment-water interface. The potential reasons for such differences are discussed. Overall, we conclude that the 224Ra/228Th disequilibrium approach is preferred for estimating the benthic flux of MeHg and that sediment is indeed an important MeHg source in this marshland, and likely in other shallow coastal waters.

  18. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency.

    PubMed

    Fahrion, Jennifer K; Komuro, Yutaro; Li, Ying; Ohno, Nobuhiko; Littner, Yoav; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi

    2012-03-27

    In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca(2+) spikes through alterations in Ca(2+), cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca(2+) spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca(2+) spike frequency by stimulating internal Ca(2+) release and Ca(2+) influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca(2+) spike frequency and Ca(2+), cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication.

  19. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency

    PubMed Central

    Fahrion, Jennifer K.; Ohno, Nobuhiko; Littner, Yoav; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi

    2012-01-01

    In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca2+ spikes through alterations in Ca2+, cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca2+ spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca2+ spike frequency by stimulating internal Ca2+ release and Ca2+ influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca2+ spike frequency and Ca2+, cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication. PMID:22411806

  20. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales

    NASA Astrophysics Data System (ADS)

    Gajdosechova, Zuzana; Lawan, Mohammed M.; Urgast, Dagmar S.; Raab, Andrea; Scheckel, Kirk G.; Lombi, Enzo; Kopittke, Peter M.; Loeschner, Katrin; Larsen, Erik H.; Woods, Glenn; Brownlow, Andrew; Read, Fiona L.; Feldmann, Jörg; Krupp, Eva M.

    2016-09-01

    To understand the biochemistry of methylmercury (MeHg) that leads to the formation of mercury-selenium (Hg-Se) clusters is a long outstanding challenge that promises to deepen our knowledge of MeHg detoxification and the role Se plays in this process. Here, we show that mercury selenide (HgSe) nanoparticles in the liver and brain of long-finned pilot whales are attached to Se-rich structures and possibly act as a nucleation point for the formation of large Se-Hg clusters, which can grow with age to over 5 μm in size. The detoxification mechanism is fully developed from the early age of the animals, with particulate Hg found already in juvenile tissues. As a consequence of MeHg detoxification, Se-methionine, the selenium pool in the system is depleted in the efforts to maintain essential levels of Se-cysteine. This study provides evidence of so far unreported depletion of the bioavailable Se pool, a plausible driving mechanism of demonstrated neurotoxic effects of MeHg in the organism affected by its high dietary intake.